
The Helios PC Server

Perihelion Software Technical Report No. 1

Bart Veer

April 1989

Perihelion Software Limited
The Maltings

Charlton Road
Shepton Mallet

Somerset
BA4 5QE
England

Telephone +44 749 4203
Fax. +44 749 4977

Copyright (c) 1988,1989 Perihelion Software Ltd.

Permission to copy this technical note without fee is hereby granted, provided
that the copyright message and this permission appears in all copies.

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

2

Contents

1 Introduction 4

2 System Configuration 4

3 The Configuration File 4

4 The Link Interface 5

5 Discs 5

6 Multiple Windows 6

7 Serial Ports 7

8 Parallel Ports 9

9 Printer 9

10 X-Window Support 9

11 User-Defined Traps 11

12 Debugging Facilities 15

3

1 Introduction

The Helios PC Server provides a complete interface between Helios running
on one or more transputers and your PC running MS-DOS. This note de-
scribes some of that interface in more detail than the generic description
of IO Servers provided in the Helios manual. It assumes a familiarity with
both Helios and MS-DOS.

2 System Configuration

This technical report refers to version 3.60 of the PC Server and should be
accurate for all 3.6x versions of this program. The PC Server is designed to
run on any PC or AT or compatible, under version 3.0 or later versions of
MS-DOS. It can work with any Inmos B004 transputer board or compatible,
a Meiko MK026 interface board, or a Cesius Accelerator board. It provides
Helios with access to the PC’s filing system, screen, keyboard, mouse, serial
ports, and parallel ports. It is not guaranteed to run on any other configu-
ration, and will not provide access to any other devices. It is not guaranteed
to coexist with any Terminate-and-Stay-Resident software nor with all de-
vice drivers. It is not guaranteed to run correctly on all PC or AT clones,
although all reasonable care has been taken.

3 The Configuration File

The PC Server needs to know certain details of the system configuration.
These are held in the host.con configuration file, which is used when the PC
Server starts up. The following entries must be present in the configuration
file.

Host = PC
Box = B004
Message_Limit = 60000
Helios_Directory = \helios
System_Image = \helios\lib\nucleus
bootfile = \helios\lib\nboot.i

The Host can be PC or AT. The Box can be B004, MK026, or Cesius.
The Message Limit imposes a limit on the amount of data transferred be-
tween the PC and the transputer in one message, and should be between
600 and 65000 bytes. Large values will reduce the time taken to read large
files from the hard disc, but may increase delays for interactive software.

4

The Helios Directory is the location within the MS-DOS filing system of
the main Helios directory. Similarly the system image is the name of the
Helios nucleus, and the bootfile is the name of the nboot.i program used dur-
ing bootstrap. The configuration file will also contain some device-specific
entries, which will be discussed below.

4 The Link Interface

The server can use three different transputer link interfaces: Inmos B004 or
compatible; Meiko MK026; and Cesius. It would need small modifications to
work with other interfaces, and you should contact the board manufacturer
about availability. Some aspects of the link interface can be configured in
the host.con file, as follows:

Link_Base = 0x150
Reset_Timeout = 9999
Analyse_Timeout = 4999

Link Base specifies the address of the link interface in the PC. The defaults
are 0x150 for B004, 0x100 for MK026, and 0x180 for Cesius. Reset Timeout
specifies a loop count used to control resetting the root transputer. If you
have any problems resetting the root you may need to increase or decrease
this value. Analyse Timeout is a similar loop count used when analysing
the transputer.

5 Discs

The PC server provides access to any floppy disc, hard disc or networked
disc drive, in the drive range A-Z. Under Helios these drives are accessed as
/a, /b, etc. In addition there is a pseudo-drive /helios containing the main
Helios directories. The PC server can locate hard discs and networked discs
automatically, but MS-DOS does not provide a simple way of determining
whether there are one or two floppy disc drives. The server assumes initially
that there is only one floppy disc, which is drive A. If you have more than
one floppy disc then you will need to add an entry in the HOST.CON file
to specify which drives are floppies. This entry is of the form

floppies = abd

where the keyword floppies is followed by the drive letters of those drives
which are floppies. The example above specifies that drives A, B and D are

5

floppies.

MS-DOS imposes a number of limits on file access. In particular there can
be at most 17 files open at any one time, and file names must be MS-DOS
file names. If more than one program writes to a file at any one time, or if
one program reads from a file whilst another program writes, the result is
undefined.

6 Multiple Windows

The PC Server supports multiple pseudo-windows. Each window takes up
the entire screen, but the Server remembers the current state for each win-
dow and updates the screen when you switch windows. Output to windows
continues whether or not the window is currently visible. Under some cir-
cumstances it may be desirable to run a window manager such as X-windows
on the transputer side rather than on the I/O processor, and hence the server
windows are optional. To enable server windows, you need the following line
in the host.con file:

Server_Windows

The Server’s window manager is a standard Helios server. Hence you can list
the contents of the window directory by ”ls /IO/window”, and this gives you
the names of the current windows. You can create your own windows using
suitable system library Create() calls, or the equivalent in other libraries.

Object *window_manager = Locate(NULL, "/window");
Object *window = Create(window_manager, "mywindow", Type_File, 0);
Stream *stream = Open(window, NULL, O_WriteOnly);

Alternatively you can use the wsh command to create a new window auto-
matically, and run a new shell in that window. Windows must be deleted
explicitly, by using the rm command, for example, and do not go away just
because no application is currently using them.

The Server has its own window, which cannot be accessed directly from
Helios. The Server’s debugging output, certain error messages, and any
output sent to the Server using an IOdebug() call appear on this window.
By default the Server window comes to the front automatically when any
output is sent to this window. This option can be disabled by the following
entry in the host.con file.

Server_Windows_nopop

6

However, this option should be used with care because it means that you
will not notice error messages automatically.

To switch between windows there are three special key combinations. The
first is Alt-F1. If you hold down either Alt key and then press function key 1,
the Server will switch to the next window. When you reach the final window
the Server will wrap around to its own window and then back to the first
Helios window; Alt-F2 has a similar effect to Alt-F1, but moves backwards
through the window list instead of forwards. The other key combination
is Alt-Shift-F1. This is used to switch between the Server window and
some other window. It is particularly useful when the Server has switched
automatically to its own window to display some error message, because you
can use it to get back to the previous window without cycling through all
the others.

Each window has its own set of attributes. Hence if you disable Console
Echo in one window it does not affect any others. Many applications can
write to a window, but only one application should read from it any one time
to avoid confusion. In particular, applications that read from the window
should never be run in the background because both the application and the
shell will try to read from the window and each will tend to get about half
the characters.

7 Serial Ports

The PC server can provide complete control over the communications ports
of your PC. To achieve this it has to work at a very low level, interacting
directly with the 8250 chip, rather than going via dos or bios calls. This
may cause problems on non-standard hardware, so the server only accesses
the serial ports if specified in the host.con file. The following line is needed:

rs232_ports = 1,2

This causes the server to use com1 and com2 only. Note that serial ports
used by devices such as serial mice cannot be accessed from Helios, because
the device driver will tend to use the port at the same time as the server.

A program running under Helios may read and write from

/rs232/default

which refers to the standard communications port. This port is usually
COM1; however, if you have more than one serial port (COM1 and COM2)

7

and you use ls to list the directory /rs232, you will discover three entries
called default, com1 and com2. The name default will refer to com1, but
you can rename com2 as default using the mv command, in which case
default now refers to com2. Programs can, of course, refer to com1 and
com2 directly. You can also change which port is the default by adding an
entry to the HOST.CON file of the form

default_rs232 = com2

which makes com2 the default.

MS-DOS only defines the addresses of com1 and com2. To access com3
onwards you need to provide additional information in the host.con file. For
example,

com3_base = 0xnnn

will setup support for /rs232/com3, assuming the base address of the port
to be hexadecimal nnn. Another problem can occur if you use a serial port
for a device such as a mouse, because both the server and the device driver
will need to take over the rs232 interrupt vectors. By default the server
takes over both rs232 interrupt vectors, but you can configure it to use only
one of them by a line of the form:

rs232_interrupt = 1

For example, suppose your PC is equipped with two serial ports com1 and
com2, and you want to use com1 for a serial mouse, and com2 as a Helios
serial port. You would need the following two lines in the host.con file.

rs232_ports = 2
rs232_interrupt = 2

The /rs232 directory will contain a single entry /rs232/default, and this will
refer to port com2.

For full details of a Helios rs232 device, please consult The Helios Operating
System or technical note no. 6, The Helios RS232 Device (both available
from Perihelion Software Ltd.). The PC implementation has a number of
limitations. In particular, the 8250 UART chip only supports one baud rate,
so the same baud rate is used for input and output.

8

8 Parallel Ports

The server supports access to the parallel ports from Helios, using standard
BIOS calls. As with the serial ports, the file

/centronics/default

refers to the default parallel printer port, which is normally LPT1. If you
have more than one parallel port then you will find entries default, lpt1
and lpt2 in the /centronics directory. Again you can use these extra entries
directly, rename them using mv, or add a HOST.CON entry

default_centronics = lpt2

to change the default port when the server starts.

9 Printer

The PC server also provides a device called ’printer’ which refers to either
the serial or parallel ports. The directory /printers contain an entry called
default, plus an entry for each serial port, plus an entry for each parallel
port. You can use my to rename the required serial or parallel port as
default; alternatively the entry

default_printer = com2

could be used to alter the default to the second serial line whenever the
server starts.

10 X-Window Support

An implementation of X-windows on the transputer needs access to a mouse
device, and a raw keyboard device. The PC Server can supply these, al-
though they tend to be very hardware specific and hence may not work
correctly on all machines. They are therefore optional, and are available
only if you have the following line in the host.con file:

XSupport

9

The Helios /mouse device provides a Helios mouse as described in the man-
ual. It works via a standard MS-DOS mouse device driver, usually supplied
with the mouse hardware, and hence it should work on all hardware. In
particular, it is known to work with PC serial mice and Microsoft bus mice,
although in the case of serial mice you need to worry about clashes with the
Helios /rs232 device as described above. The amount of movement needed
to generate a mouse event can be configured in the host.con file, by the
following line:

mouse_resolution = 8

Smaller values reduce the amount of movement needed to generate a mouse
event. The Helios mouse device provides pseudo-absolute coordinates. This
facilitates recovery if an event message is lost, because the lost message can
be ignored completely and the mouse can still be positioned correctly. If
the application needs relative mouse coordinates, the following filter routine
may be used:

void filter_coords(int x, int y)
{ static int old_x = 0x1000000, old_y;
int dx, dy;

dx = x - old_x; dy = y - old_y; old_x = x; old_y = y;

if (abs(dx) > 0x4000)
{ if (abs(dx) > 0x100000) return; /* initial position */
dx = (dx > 0) ? dx - 0x08000 : dx + 0x08000;

}
if (abs(dy) > 0x4000)
dy = (dy > 0) ? dy - 0x08000 : dy + 0x08000;

feed_to_cat(dx, dy);
}

The raw keyboard provides Helios with key-up-key-down scancodes, and is
intended for use only by X-windows. It works by taking over the keyboard
interrupt vector and interacting directly with the keyboard chip, so it may
not work correctly on all hardware. The keyboard device works as docu-
mented in the Helios manual, except that the data sent in the event messages
are not ASCII + extensions but PC scancodes.

When the raw keyboard is enabled it is still possible to use the Server’s
debugging facilities, e.g. control-shift-F10 to reboot the transputer. How-
ever, there may be a slight problem with certain keyboards; when the Server
gets an interrupt for key 0x12 down, it has no way of knowing whether this

10

key corresponds to ’w’ on a QWERTY keyboard or to ’z’ on a French AZ-
ERTY keyboard, for example. Hence the Server assumes that you are using
a QWERTY keyboard for the purpose of analysing debugging options.

11 User-Defined Traps

It is possible to activate trap 60 under MS-DOS directly from Helios. The
following example program in C would be run under Helios on the trans-
puter. Following this we show the matching assembler program which would
be need to be run on the PC under MS-DOS. Note that if the application
does not send a message to the /PC stream at least once every 30 minutes,
the PC Server assumes that the application has crashed and will close the
stream automatically. If this happens the application should just reopen the
stream.

/**
*** This program illustrates how to activate trap 60 on an
*** IBM PC or compatible. This allows you to install your
*** own resident modules and access them from Helios,
*** e.g. to control devices not supported by the standard
*** Helios server.
**/

#include <stdio.h>
#include <stdlib.h> /* Needed for exit() */
#include <syslib.h>
#include <message.h>

int main(void)
{ MCB mob;
Object *IO;
Stream *stream;
Port reply_port;
WORD result;

IO = Locate(NULL, "/pc"); /* Find the server for */
if (IO == Null(Object)) /* the host machine */
{ printf("Unable to locate /pc - exiting.\n");
exit(1);

}

/* Now open a Stream to the host */
stream = Open(IO, "/pc", O_ReadOnly);
if (stream == Null(Stream))
{ printf("Unable to open /pc - exiting\n");
Close(IO);

11

exit(1);
}

reply_port = NewPort(); /* Get a reply port */
if (reply_port == NullPort)
{ printf("Unable to get reply port - exiting\n");
Close(IO);
exit (1);

}

mcb.MsgHdr.DataSize = 0; /* Fill in a message structure */
mcb.MsgHdr.ContSize = 0; /* The message has no data */
mcb.MsgHdr.Flags = MsgHdr_Flags_preserve;
mcb.MsgHdr.Dest = stream->Server; /* Message port for device */
mcb.MsgHdr.Reply = reply_port; /* Our own port */
mcb.MsgHdr.FnRc = 0x20765432; /* A private function code */
mcb.Date = Null(BYTE); /* (see codes.h) */
mcb.Control = Null(WORD);
mcb.Timeout = 10 * OneSec;

result = PutMsg(&mcb); /* Try to send a message */
if (result != 0) /* Tidy up if it fails */
{ printf("PutMsg returns %lx\n", result);
Close(IO);
Close(stream);
FreePort(reply_port);
return(result);

}

mcb.MsgHdr.Dest = reply_port; /* Device’s reply will be sent here */

result = GetMsg(&mcb);
printf("GetMsg returned %lx\n", result);

Close(IO); /* Tidy up and exit */
Close(stream);
FreePort(reply_port);
return(0);

}

12

;
; Resident program to test the Helios call-trap facility.
;
; Install a simple routine at interrupt 0x60, to be called
; by the Server when it receives a private protocol message
; for the /pc device. The routine gets a pointer to the
; Server MCB in registers ds:dx, allowing it to manipulate
; the message before it is sent back to the client - make sure
; that the data size and control size entries in the MCB are
; set correctly. The routine should return in under two seconds,
; with a 32-bit reply code in dx:ax - this is sent back as the
; message FnRc to the client. The MCB structure can be found in
; the Helios manual and in the message.h header file.
;

cseg segment para public ’CODE’

org 100H

assume cs:cseg, ds:cseg, es:cseg, ss:cseg

Init proc near

mov dx,cs ; force all segment registers to
mov ds,dx ; a sensible value
mov es,dx
mov dx,offset trap ; install routine "trap" as the
mov ax,2560H ; interrupt vector for trap 0x60
int 21H

mov dx,offset signon ; display a message to show that
mov ah,9 ; the routine is installed
int 21H

mov dx,((offset Pgm_Len+15)/16)+20H ; terminate but
mov ax,3100H ; stay resident
int 21H

Init endp

;
; This is the routine that will be activated by the Server
;

trap proc far

sti ; make sure that interrupts are enabled

mov ax,cs ; set the data segment register

13

mov ds,ax
mov dx,offset warn ; display a message to show that the
mov ah,9 ; trap has been activated
int 21H
mov dx,8765H ; return code 0x87654321
mov ax,4321H

iret

trap endp

cr equ 0dH
lf equ 0aH

signon db cr,lf,’Trap 60 handler installed’,cr,lf,’$’
warn db cr,lf,’Trap 60 activated’,cr,lf,’$’

Pgm_Len equ $-Init ; size of this program, needed
; to terminate but stay resident

cseg ends

end init

14

12 Debugging Facilities

The numbers of debugging flags have increased significantly since the publi-
cation of the Helios manual, and the full list is shown below. Each debugging
flag can be activated on the command line, for example, by using ”server
-mns” to start the server with message, name and distributed search de-
bugging enabled. Alternatively a flag can be toggled at any time using
a control-shift-key combination. For example, control-shift-M will enable
or disable message debugging. These debugging flags are aimed mainly at
system programmers, but can prove extremely useful when developing ap-
plications. Suggestions for additional debugging flags are always welcome,
with the proviso that I am running out of letters.

A This enables or disables All the debugging options.
B This option gives information during the Bootstrap process.
C This option gives information about serial line Communications.

Note that C is also used on the command line to specify an
alternative host.con file, so this option can only be enabled at
run-time.

D Used on the command line to enter the Debugger. At run-time
the control-shift-F7 option should be used.

I This option gives information about the Servers Initialisation
process, useful if the server appears to boot up the transputer
correctly but nothing else happens.

K This gives information about Keyboard events.
M This is used for Message debugging. Details of the Helios function

and error codes are held in the header file codes.h
N This controls Name debugging.
O This informs the user whenever Helios attempts to Open a file.
P This informs the user whenever Helios attempts to close a file.

It is not mnemonic, but C was already taken and P is next to O
in the alphabet and on a QWERTY keyboard.

Q This gives information when the Server is Quitting back to MS-
DOS.

R This gives information about Reading files.
S This outputs a message whenever the Server receives a dis-

tributed Search.
W This gives information about Writing to files.
X This lists all the streams currently open. Again, it is not

mnemonic but S was already taken, and it is unlikely that there
will ever be a mnemonic use for X.

15

	1 Introduction
	2 System Configuration
	3 The Configuration File
	4 The Link Interface
	5 Discs
	6 Multiple Windows
	7 Serial Ports
	8 Parallel Ports
	9 Printer
	10 X-Window Support
	11 User-Defined Traps
	12 Debugging Facilities

