
Helios - A Distributed
Operating System

Perihelion Software Technical Report No. 2

Tim King

December 1988

Perihelion Software Limited
The Maltings

Charlton Road
Shepton Mallet

Somerset
BA4 5QE
England

Telephone +44 749 4203
Fax. +44 749 4977

Copyright (c) 1988,1989 Perihelion Software Ltd.

Permission to copy this technical note without fee is hereby granted, provided
that the copyright message and this permission appears in all copies.

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

2

Contents

1 Underlying Primitives 4

2 Implementation 5

3 User Interface 7

4 Parallel Programming 9

3

Helios is an operating system specifically designed for the transputer, and
was intended right from the start to run on multiple processors. Although
appearing similar to Unix at the user level the underlying implementation is
entirely different in order to handle this. This technical note describes some
of the major features.

1 Underlying Primitives

Helios is based on the client-server model for operating systems, a technique
which is widely used in many current systems. Inter-process communica-
tion is handled by message passing although this underlying mechanism is
effectively hidden by layers of system software above it. A client process
wishing to access a system resource, such as opening a file, sends a mes-
sage to a server process requesting this action to be performed on its behalf.
The server replies with another message indicating success or failure. Sub-
sequently the client can read or write this file by sending further messages
to the server.

This mechanism is convenient for a number of reasons. The server is re-
sponsible for handling the resource, for example keeping locks on files. This
is easy to arrange when the server runs as a distinct process within the
machine. The client may either behave in a simple fashion and send a mes-
sage and then wait for the reply, alternatively the client may engage in
asynchronous I/O and perform some other action while waiting for a reply
message to arrive from a server. The interface for servers is consistent, thus
making it simple for extra servers to be added to the system to handle any
added hardware.

The underlying Helios design uses this client-server model, but with the
additional feature that the processes which act as clients and servers may
reside in different processors. The client always makes the same call to
send a message to a server, but the actual delivery mechanism may either
pass the message to a process in the same transputer or transmit it through
any number of other transputers before reaching the final destination. The
actual location of the destination process is unknown to the sender, as is the
route by which it is sent.

Unix is a registered trademark of AT&T

4

-------------- --------------
Client 1		Server B
	==============	
Server A		
-------------- --------------

||
||

-------------- --------------
Client 2		Client 3
	==============	
-------------- --------------

In the example above, all the clients communicate with the two servers using
identical calls. When Client 1 sends a message to Server A, the message is
passed via a memory to memory copy. When Client 3 sends a message to
Server B the message goes into the transputer running Client 2, then into
that running Client 1 before entering the correct transputer and being routed
to the Server B process. The route the message takes is transparent to the
clients, which means that the topology of the network is also transparent.

Servers are located within the network of processors by name. A naming
hierarchy is maintained by Helios, with a named network at the top level and
processor clusters below this. Each processor within a cluster is also named,
so that a server may be either uniquely identified by their full name or
specified generically by a shorter subset of the name. Thus a specific server
may be referenced as /NetA/Cluster5/00/tasks, while a generic name such
as /tasks will cause the nearest server to be used. The location of a server
is produced as the result of a distributed search, spreading in an ink-blot
fashion out of all the links of the processors in the search path.

This scheme also allows an element of fault tolerance to be introduced. All
messages sent by Helios have a timeout associated with them. If a message
fails to get through within the specified timeout, the system automatically
retries a number of times. If these all fail then a new distributed search is
performed which attempts to identify a new route to the server.

2 Implementation

Helios is implemented as a true distributed operating system. Each pro-
cessor node contains a Helios kernel, which handles memory management
and message passing. Each node also contains two servers - the processor
manager and the loader. The processor manager is responsible for process

5

creation within that processor and other housekeeping jobs, while the loader
handles the loading and unloading of both program modules and resident
libraries which are loaded on demand.

Other servers run on one or several processing nodes within the network.
Some servers must run on nodes with particular hardware attached; for
example the file system needs the disc device connected while a window
manager must run in a processor with video memory attached. Other servers
with no particular hardware requirement may be distributed to share the
load equitably.

It is also possible to have processing nodes within a Helios network which do
not run Helios all the time. One or more processors may be reset and loaded
with a program written in a language such as occam. Links connected to
these nodes are specified as ”dumb” links and a program is written which
runs under Helios and supports a private protocol down the dumb links.
This provides the connection between the program running on the naked
hardware and Helios. It is especially useful where specific hardware config-
urations must be used at certain times, but not at others. It is also useful
when interconnecting T212 or M212 processors which are too small to run
the Helios kernel.

Most transputer networks are normally connected to other computer systems
which act as hosts. Helios treats these host systems just like a transputer
processing node, and achieves this by running a program called the I/O
Server within the host system. This program, written in C, causes the host
processor to appear to the rest of the network just like another node running
Helios. Messages sent to the link adapter connected to the host are replied
to in the same way as messages sent to real transputer nodes.

The I/O Server provides support for Helios servers running on the host.
As far as the rest of a Helios network is concerned, the host processor is a
normal Helios node running servers. These are usually servers for consoles,
file systems, serial ports and so on. They are implemented by the I/O Server
communicating with the host operating system. In particular, the file server
is implemented by mapping Helios requests onto the existing file system.
This has the advantage of using the host filing system disc format, and also
allowing access to any remote filing system supported over other networks
such as Ethernet.

Any Helios network may contain any number of transputer nodes and host
nodes. The transputer links may be regarded as a local area network con-
necting different hosts. A simple example is described below, where there
are four Helios nodes, two naked nodes and one host system. One Helios
node is running nothing except the base system, while other servers are
distributed around the network.

6

-------------- -------------- --------------
Helios		Helios		Host OS
	--------	Window Mgr	--------	
		Shell		IO Server
-------------- -------------- --------------

| |
| |

-------------- --------------
Helios		Helios

File Server		Shell
-------------- --------------

| |
| |

-------------- --------------
Naked node		Naked node

(occam)		(occam)
-------------- --------------

3 User Interface

There are two main user interfaces within Helios. The first is the shell,
which provides a command line interface at which commands and parameters
may be typed. The other interface is the graphical interface provided by
Xwindows, although the shell runs within an Xwindows window in this case
as well.

The shell is a intended to be as similar as possible to the Unix csh. It pro-
vides pipes as a way of communicating between programs, and redirection
of standard input, output and error streams. Jobs may be run in the back-
ground and shell scripts executed. The use of scripts is enhanced by the
wide range of control structures available, such as while and foreach loops,
conditional statements and so on. Values may be assigned to variables, and
these expanded at a later date.

Particular attention has been given to the ease of use of the shell. The
command names are identical to those in Unix, but the alias facility may
be used to change the names that are typed or to provide shortcuts for
commonly used commands and option combinations.

All of the commands entered into the shell are stored in a history list. Items
may be retrieved from this list in two ways. In the first way, traditional
Unix instructions such as !cc retrieve the most recent command in the list

7

that starts with the character(s) that follow the !, which in this case would
be cc. Alterations to previous commands may be also be made using adap-
tations of this syntax; but most users prefer the second way of retrieving
commands, which-is simply by using the cursor keys. Command lines may
be edited using the cursor keys and other control key combinations chosen
to be compatible with the Helios editor.

A further feature allows both commands and filenames to be completed by
the system. At any point while typing a command or a filename argument
the user may press ESCAPE. If the name is now uniquely specified the
system will automatically complete it. If there are more than one possible
completion an error is signaled; the user may then press CTRL-D and a list
of the possible completion is printed

The commands supported by Helios include the standard Unix-like file ma-
nipulation commands such as ls, mv, rm and so on. These have a more
general use than might as first be imagined, as all the servers respond to the
same protocol. This means that when ls is used to examine the directory of
a file server, the server is sent a request to open and read the file system di-
rectory. This is part of the general server protocol supported by all servers.
The same request may be passed, for example, to the processor manager.
The implementation of the processor manager provides a list of active tasks
as the reply to a request to read from the directory, and so the command
line

ls /tasks

will cause a list of the active processes on processor 00 to be listed. In the
same way the loader can be examined, so for example

ls -l /loader

will cause the size of currently loaded modules to be displayed.

Other standard Unix-like commands provided include make with an identical
syntax to the Unix command, the Micro Emacs editor and text processing
tools such as diff and grep.

Helios is written in C, and a new C compiler conforming to the proposed
ANSI standard was written as part of the Helios project. A number of
other languages have been provided by third parties including FORTRAN,
Pascal, Modula2 and occam. Programming tools under development include
support libraries and a source level debugger.

8

4 Parallel Programming

Helios was designed from the outset to support multiple processors and it
provides built-in mechanisms for handling the resource of multiple proces-
sors. One of the design aims for Helios was ability to run the same binary
code on different transputer installations, independent of the topology or
the number of processors.

Each computer running Helios runs a network manager, which is responsible
for initially booting the network. This server also monitors the network,
detects when a processor has crashed and attempts to reboot it if possible.
The network manager is handed a blueprint file which describes the resources
within the network. This includes the number of processors and how they
are connected, but also other information about each processing node such
as the type of processor, amount of external memory, existence of video
memory and so on.

The network manager is complemented by the Task Force Manger or TFM.
This is responsible for managing the resources indicated by the network
manager. It is handed a similar blueprint file whenever a job is to be exe-
cuted, and attempts to match the resources required with those available.
For example, a job may require three processors connected so that the cen-
tral one has video memory. The TFM decides on a suitable mapping from
the requested network to that available in the current system. The decision
on the way in which the mapping is done depends on the current load in the
system as well as the physical resources available.

The normal interface to Helios is via the shell described earlier. When
requested to do so, the shell will execute commands by passing them to the
TFM rather than simply spawning a child process in the same processor. In
this way a simple shell command of the form:

ls | more

will result in the ls command running in one processor, the original shell in
another and the more command in yet another, assuming sufficient proces-
sors are available. Output from ls is sent to more via a pipe between the two
processors. Pipes are implemented as direct message passing between the
two processors, with efficiency enhanced by removal of redundant copying.

More complicated examples are possible though the use of a special language
called the Component Distribution Language or CDL. This is a type of job
control language which allows different components of a parallel program to
be described. The description includes the components of the program, the
way in which they are interconnected and any special resources needed by

9

each component.

An example of the use of CDL can be shown using the standard technique
of dividing up a program into a master task which distributes work, and a
number of slaves which handle work in parallel. Two programs, master and
slave, are separately compiled. The CDL system is then used to specify the
parallelism. The CDL compiler would be given an input line such as

master [5]||| slave

which will cause Helios to load a copy of the master, the load balancer and
five copies of the slave into suitable spare processors. Pipes are provided to
link the master to the load balancer, and the balancer to each of the slaves.

The CDL is in general more complicated than this simple example, because
of the way in which attributes can be specified for each of the different
parallel parts, but this simple case shows how it allows tasks to be distributed
among processors. Note that the use of the CDL and pipes is independent
of the language used; indeed master and slave could be written in different
languages.

occam is a trademark of the Inmos Group of Companies.

X Windows System is a trademark of MIT.

Helios is a trademark of Perihelion Software Ltd.

10

	1 Underlying Primitives
	2 Implementation
	3 User Interface
	4 Parallel Programming

