
Writing a Helios Server

Perihelion Software Technical Report No. 8

N. Garnett

April 1989

Perihelion Software Limited
The Maltings

Charlton Road
Shepton Mallet

Somerset
BA4 5QE
England

Telephone +44 749 4203
Fax. +44 749 4977

Copyright (c) 1988,1989 Perihelion Software Ltd.

Permission to copy this technical note without fee is hereby granted, provided
that the copyright message and this permission appears in all copies.

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

2

Contents

1 Introduction 4

2 The Server Library 4

3 The Ram Disc Server 5

4 Additional Features 19

5 Converting from V1.0 to V1.1 Servers 20

3

1 Introduction

This technical note describes how to write a server for Helios using the Server
Library. It largely takes the form of an annotated listing of the current Helios
ram disc server which demonstrates most of the features. This note should
be read in conjunction with the description of the server library in The Helios
Operating System. You should also look at the contents of servlib.h where
the data structures and prototypes of the functions are defined.

2 The Server Library

The Server Library is one of the resident libraries in the Helios nucleus. It
provides a number of procedures and management routines to help in the
production of Helios servers.

Primarily the server library provides support for a server which needs to
maintain a directory structure in memory, it is of little use to servers which
maintain off-line directory structures such as filing systems. The directory
tree is composed of DirNode and ObjNode structures which implement di-
rectory and terminal nodes respectively. Either may be made an initial
substructure of a larger server defined structure. These two structures are
substantially similar and may often be used interchangeably in many server
library routines.

The server library also provides a message decoder and dispatcher. This
waits for messages on a specified port, validates them as GSP messages,
and forks a worker process to execute a service procedure. This procedure
may either be supplied by the server, or may be one of several standard
procedures supplied by the server library itself.

While the server library is a resident part of the nucleus, its definitions are
not part of the default set in /helios/lib/cstart.o. To access the library
you must either add /helios/lib/servlib.def during program linkage,
or use /helios/lib/sstart.o in place of cstart.o. Note, however, that
sstart.o does not include either the C library or Posix library in the link
so procedures from these libraries cannot be used. The program’s main is
also entered immediately so no arguments can be passed. The advantage
of this is that such servers will run on nodes with only the nucleus present
without causing extra code to be loaded.

4

3 The Ram Disc Server

We start with the header files and some definitions:

#include <helios.h> /* standard header */
#include <string.h> /* string operations */
#include <codes.h> /* function & error codes */
#include <syslib.h> /* system library */
#include <servlib.h> /* server library */
#include <task.h> /* task structure */

typedef struct File
{

ObjNode ObjNode; /* node for directory struct */
} File;

#define Upb ObjNode.Size /* use ObjNode size field */
#define Buffers ObjNode.Contents /* use ObjNode contents field */
#define Users ObjNode.Account /* number of opens */

#define FileMax 1024 /* bytes in each block */

DirNode Root; /* root of directory system */

/* Forward procedure definitions */
static File *CreateNode(MCB *m, DirNode *d, string pathname);
void FileRead(MCB *m, File *f);
void FileWrite(MCB *m, File *f);
void FileSeek(MCB *m, File *f);

The File structure here contains just the ObjNode but in other servers it may
contain other fields. The following #defines re-define fields of the ObjNode
structure for convenience. The ObjNode field, Contents, is an otherwise
unused three word field which in this case is used as a list of data buffers.
Root is a static DirNode structure which is used as the root of the ram filing
system.

static void do_open(ServInfo *);
static void do_create(ServInfo *);
static void do_delete(ServInfo *);

static DispatchInfo RamInfo = {
&Root, /* Dir tree system root */
NullPort, /* request port */
SS_RamDisk, /* subsystem code */
NULL, /* parent name */
{ NULL, 0 }, /* escape function */

5

{
{ do_open, 2000 }, /* FG_Open */
{ do_create, 2000 }, /* FG_Create */
{ DoLocate, 2000 }, /* FG_Locate */
{ DoObjInfo, 2000 }, /* FG_ObjectInfo */
{ NullFn, 2000 }, /* FG ServerInfo */
{ do_delete, 2000 }, /* FG_Delete */
{ DoRename, 2000 }, /* FG_Rename */
{ DoLink, 2000 }, /* FG_Link */
{ DoProtect, 2000 }, /* FG_Protect */
{ DoSetDate, 2000 }, /* FG_SetDate */
{ DoRefine, 2000 }, /* FG_Refine */
{ NullFn, 2000 } /* FG_CloseObj */

}
}

This DispatchInfo structure is passed to the server library dispatcher. The
request port is filled in below, in main, and the parent name is NULL (de-
faults to the current processor name). The main table contains a list of
function/stacksize pairs. If an incoming message is one of the standard
GSP functions the appropriate entry in the table is forked off with the given
stack size. If the message code is outside the standard range, and the es-
cape function is defined, this is called instead, allowing servers to implement
private protocols.

int main()
{

char mcname[100];

MachineName(mcname);

RamInfo.ParentName = mcname;

InitNode((ObjNode *)&Root, "ram", Type_Directory,
0, DefDirMatrix);

InitList(&Root.Entries);
Root.Nentries = 0;

RamInfo.RegPort = NewPort();

The first thing to do in main is to initialise the directory structure by calling
InitNode on the root directory. It is important that this node has the same
name as the server’s name in the name table.

The following piece of code does not actually appear in the real ram server.
This is because the ram server is usually loaded on demand from disc the

6

first time a name entry installed by the nucleus is touched. This is not,
however, normally the case for other servers which must install their own
name in the name server in the following way:

{
NameInfo Info;
Object *o = Locate(NULL,mcname);

Info.Port = RamInfo.ReqPort;
Info.Flags = Flags_StripMame;
Info.Matrix = DefDirMatrix;
Info.LoadData = NULL;

nte = Create(o, Root->Name, Type_Name,
sizeof(NameInfo), (byte *)&Info);

Close(o);
}

The result of Create is an Object structure. The name may be removed by
Delete(nte,NULL);, or simply by calling Exit which will do it automati-
cally. Next, we install a parent for the root node and enter the dispatcher.

{
Object *o;
LinkNode *Parent;

o = Locate(NULL,mcname);

Parent = (LinkNode *)Malloc(sizeof(LinkNode) + strlen(mcname));
InitNode(&Parent->ObjNode, "..", Type_Link, 0, DefDirMatrix);
Parent->Cap = o->Access;
strcpy(Parent->Link,mcname);
Root.Parent = (DirNode *)Parent;

Close(o);
}

Dispatch(&RamInfo);
Exit(0);

}

To allow ".." to work in the root directory the root node’s parent is set
up as a symbolic link to the current processor. Finally the server library
dispatcher is entered. It will only return if the main request port is freed,
or other errors start to occur. The call to Exit will clean up the server

7

and cause it to quit. However most servers, once they are running, do not
terminate.

The following three procedures are responsible for creating new nodes in the
directory tree.

File *NewFile(DirNode *dir, string name, word flags, Matrix matrix)
{

File *f = New(File);

if(f == NULL) return NULL;

InitNode(&f->ObjNode,name,Type_File,flags,matrix);

InitList(&f->Buffers);
f->Upb = 0;
f->Users = 0;

Insert(dir, &f->ObjNode, TRUE);

return f;
}

DirNode *NewDir(DirNode *dir, string name, word flags, Matrix matrix)
{

DirNode *d = New(DirNode);

if(d == NULL) return NULL;

InitNode((ObjNode *)d,name,Type_Directory,flags,matrix);

InitList(&d->Entries);
d->Nentries = 0;
d->Parent = dir;

Insert(dir, (ObjNode *)d, TRUE);

return d;
}

static File *CreateNode(MCB *m, DirNode *d, string pathname)
{

File *f;
char *name;

IOCCreate *req = (IOCCreate *)(m->Control);
name = objname(pathname);

if(req->Type == Type_Directory)

8

f = (File *)NewDir(d, name, 0, DefDirMatrix);
else

f = NewFile(d, name, 0, DefFileMatrix);

if(f == NULL) m->MsgHdr.FnRc |= EC_Error | EG_Create;

return f;
}

NewFile and NewDir are substantially the same, they allocate and initialise
an appropriate structure and call Insert to insert the new node in the direc-
tory. The third argument to Insert indicates whether the directory being
added to has been locked by this process. This is the case in both places
where CreateNode is called below.

The following set of procedures are forked off as processes from the dis-
patcher. The first is the Create operation.

static void do_create(ServInfo *servinfo)
{

MCB *m = servinfo->m;
MsgBuf *r;
DirNode *d;
File *f;
IOCCreate *req = (IOCCreate *)(m->Control);
char *pathname a servinfo->Pathname;

d = GetTargetDir(servinfo); /* find target’s parent dir */

if(d == NULL)
{

ErrorMsg(m,EO_Directory);
return;

}

f = (File *)GetTargetObj(servinfo); /* look for target */

m->MsgHdr.FnRc = SS_Ram; /* re-init return code */

if(f != NULL) /* if it exists, moan */
{

ErrorMsg(m,EC_Error+EG_Create+EO_File);
return;

}

/* check that we can write to directory, i.e. create a file */
unless(CheckMask(req->Common.Access.Access,AccMask_W))
{

9

ErrorMsg(m,EC_Error+EG_Protected+EO_Directory);
return;

}

r = New(MsgBuf);

if(r == NULL)
{

ErrorMsg(m,EC_Error+EG_NoMemory+EO_Message);
return;

}

f = CreateNode(m, d, pathname); /* create file/directory */

if(f == NULL)
{

ErrorMsg(m,EC_Error+EG_NoMemory+EO_File);
Free(r);
return;

}

FormOpenReply(r,m,&f->ObjNode, 0, pathname);

PutMsg(&r->mcb);

Free(r);
}

This function creates a new node in the directory tree and returns its name
and a capability for it. The sequence of operations here is substantially the
same for all dispatched procedures.

When do create is entered it is passed a ServInfo structure which contains
the current state of the transaction, including the request message and a
current position in the directory hierarchy. The FnRc field of the message
is initialised to the subsystem code given in the DispatchInfo structure in
preparation for generating a reply.

A GSP message contains a context directory name and an object, or target,
name relative to it. The context directory will have been located and the
capability in the message checked against it before do create is called. If
an error is found during this process an error message will be generated by
the server library automatically without calling the server code. In order to
locate the target object the procedures GetTargetDir and GetTargetObj
must be called. The first locates the parent directory of the target object
and the second moves on from there to the object itself, if it exists. If any
errors are detected by either of these procedures a NULL result is returned
and the EG and EC fields of the message FnRc field are filled in.

10

The server library protects the data structures against concurrent update by
keeping its current target object locked. On entry to a dispatched procedure
the context directory is locked. When GetTargetDir returns, the target’s
parent directory is locked. When GetTargetObj returns either the target
object is locked, or the parent directory remains locked if the target does
not exist.

In do create the target object should not exist, so an error message is gener-
ated if it does. ErrorMsg sends an error message back to the sender of the
request, it ORs the second argument with the value in the FnRc of the mes-
sage. This allows the server to add an EO field to the error code generated
by a server library function.

As GetTargetDir followed the path from the context directory, it updated
the access mask stored in the capability in the message to reflect any changes
in protection status. In do_create this final mask is checked to ensure that
the client has write access to the directory, and hence can create the file.
Following this we allocate a buffer for the reply message, call CreateNode to
make the new file or directory, and finally call FormOpenReply to generate a
reply message. The GSP functions FG_Create, FG_Locate and FG_Open all
generate a special reply message containing the name and capability of an
object, FormOpenReply builds this reply. Finally the reply message is sent
back and the buffer freed.

The next procedure handles the Open operation.

static void do_open(ServInfo *servinfo)
{

MCB *m = servinfo->m;
MsgBuf *r;
DirNode *d;
File *f;
IOCMsg2 *req = (IOCMsg2 *)(m->Control);
Port reqport;
byte *data = m->Data;
char *pathname = servinfo->Pathname;

/* find target’s parent dir */
d = (DirNode *)GetTargetDir(servinfo);

if(d == NULL)
{

ErrorMsg(m,EO_Directory);
return;

}

r = New(MsgBuf); /* get reply buffer */

11

if(r == NULL)
{

ErrorMsg(m,EC_Error+EG_NoMemory);
return;

}

/* find the target itself */
f = (File *)GetTargetObj(servinfo);

/* if file does not exist and O_Create set, create it */
if(f == NULL && (req->Arg.Mode & O_Create))
{

m->MsgHdr.FnRc = SS_Ram; /* clear error code */
/* if file does not exist, see whether we are allowed to */
/* create a file here. */
unless(CheckMask(req->Common.Access.Access,AccMask_W))
{

ErrorMsg(m,EC_Error+EG_Protected+EO_Directory);
Free(r);
return;

}
f = CreateNode(m, d, pathname);

}

if(f == NULL)
{

/* does not exist: winge */
ErrorMsg(m,EO_File);
Free(r);
return;

}

/* check we are allowed to perform the operation requested */
unless(CheckMask(req->Common.Access.Access,

req->Arg.Mode&Flags_Mode))
{

ErrorMsg(m,EC_Error+EG_Protected+EO_File);
Free(r);
return;

}

/* generate reply message */
FormOpenReply(r, m, &f->objNode, Flags_Server|Flags_Closeable, pathname);

reqport = NewPort(); /* install message reply port */
r->mcb.MsgHdr.Reply = reqport;

PutMsg(&r->mcb);
Free(r);

12

The first half of do open is very similar to do create in locating and checking
access to the target object, creating it if necessary, and generating a reply.
The main difference is that the reply contains a new port which is to be
used by the client to send requests to this process to access the file.

The next piece of code tests whether the object to be accessed is a directory.
If it is, then the Server Library routine DirServer is called to handle all
further requests.

if(f->ObjNode.Type == Type_Directory)
{

/* directory - let ServLib handle it */
DirServer(servinfo,m,reqport);
FreePort(reqport);
return;

}

If the O_Truncate bit is set then the file is truncated by calling AdjustBuffers.
This server library routine is used to manage a list of Buffer structures and
will be explained in more detail later.

/* if Truncate bit set - dispose of all data */
if(req->Arg.Mode & O_Truncate)
{

f->Upb = 0;
AdjustBuffers(&f->Buffers,0,0,FileMax);

}

We are now ready to enter a dispatching loop servicing requests from the
client to access the file. Note that since the target may have been locked by
GetTargetDir we unlock it before calling GetMsg to allow concurrent access
to the file by several clients.

f->Users++; /* count an extra user */

UnLockTarget(servinfo);

forever
{

word e;
m->MsgHdr.Dest = reqport;
m->Timeout = StreamTimeout; /* = 30 mins */
m->Data = data;

e = GetMsg(m);

13

if(e == EK_Timeout) break; /* timeout - quit */

if(e < Err_Null) continue; /* other errors - just loop */

At this point we have a valid request so we re-lock the file to ensure that
this operation is atomic. We then decode the request and pass control to a
suitable piece of handling code.

Wait(&f->ObjNode.Lock); /* lock file */

switch(m->MsgHdr.FnRc & FG_Mask)
{
case FG Read:

FileRead(m,f);
break;

case FG_Write:
FileWrite(m,f);
break;

case FG Close:
/* close just frees the request port, unlocks & returns */
if(m->MsgHdr.Reply != NullPort) ErrorMsg(m,Err Null);
FreePort(reqport);
f->Users--;
Signal(&f->ObjNode.Lock);
return;

case FG GetSize:
InitMCB(m,0,m->MsgHdr.Reply,NullPort,Err_Null);
MarshalWord(m,f->Upb);
PutMsg(m);
break;

case FG Seek:
FileSeek(m,f);
break;

case FG_SetSize:
{

/* change size of file - only truncates are allowed */
word newsize = m->Control[0];
if(newsize > f->Upb)

ErrorMsg(m,EC_Error+EG Parameter+l);
else
{

if(newsize < f->Upb) f->Upb = newsize;
AdjustBuffers(&f->Buffers,0,f->Upb,FileMax);

14

InitMCB(m,0,m->MsgHdr.Reply,NullPort,Err_Null);
MarshalWord(m,f->Upb);
PutMsg(m);

}
break;

}

default:
ErrorMsg(m,EC_Error+EG_FnCode+EO_File);
break;

}

Signal(&f->ObjNode.Lock); /* free lock */
}

f->Users--;
FreePort(reqport);

}

The final dispatched procedure implemented here is do delete, which removes
the file or directory.

static void do_delete(ServInfo *servinfo)
{

MCB *m = servinfo->m;
File *f;
IOCCommon *req = (IOCCommon *)(m->Control);

f = (File *)GetTarget(servinfo);

if(f == NULL)
{

ErrorMsg(m,EO_File);
return;

}

unless(CheckMask(req->Access.Access,AccMask_D))
{

ErrorMsg(m,EC_Error+EG_Protected+EO_File);
return;

}

if(f->ObjNode.Type == Type_Directory &&
((DirNode *)f)->Nentries != 0)

{
/* non-empty directory - complain */
ErrorMsg(m,EC_Error+EG_Delete+EO_ Directory);
return;

15

}
else if (f->ObjNode.Type == Type_File)
{

if(f->Users != 0)
{

/* file in use - complain */
ErrorMsg(m,EC_Error+EG_InUse+EO_File);
return;

}
f->Upb = 0;
AdjustBuffers(&f->Buffers,0,0,FlleMax);

}

Unlink(&f->ObjNode,FALSE);
Free(f);

ErrorMsg(m,Err_Null);
}

Again the first half of do delete is fairly standard, the procedure GetTarget
is simply a combination of GetTargetDir and GetTargetObj and is used
when the parent directory of the object is not needed. The rest of the
procedure simply determines whether the delete is allowed. Finally the
delete is performed by Unlink which detaches the ObjNode from its parent
directory and updates the directory entry count. The second argument to
Unlink indicates whether the parent directory is locked, which in this case
it is not.

The following three routines are called from do open to handle the read,
write and seek requests.

void FiIeRead(MCB *m, File *f)
{

ReadWrite *rw = (ReadWrite *)m->Control;

word pos = rw->Pos;
word size = rw->Size;

if(pos < 0)
{

ErrorMsg(m,EC_Error|EG_Parameter|1);
return;

}

if(size < 0)
{

ErrorMsg(m,EC_Error|EG_Parameter|2);
return;

16

}

if(pos == f->Upb)
{

m->MsgHdr.FnRc = ReadRc_EOF;
ErrorMsg(m,0);
return;

}

/* limit read to actual file size */
if(pos + size > f->Upb) rw->Size = f->Upb - pos;

DoReed(m,GetReadBuffer,&f->Buffers);

f->ObjNode.Dates.Access = GetDate();
}

A read request consists of a position, a size and a timeout (which is not used
here). Most of this routine is concerned with checking that the position and
size are within bounds.

The read request itself is handled by the system library routine DoRead. The
arguments to this are the read request containing the (possibly updated)
position and size, a buffer supply procedure and an argument to be passed
to this procedure. In DoRead, whenever some data to be sent to the client is
needed, the buffer supply procedure is called with the file position required
and the argument supplied to DoRead. The result of this procedure is a
pointer to a Buffer structure containing the data at the given file position.
The procedure used here, GetReadBuffer, is supplied by the server library
and works in conjunction with AdjustBuffers to manage a Buffer list.

void FileWrite(MCB *m, File *f)
{

ReadWrite *rw = (ReadWrite *)m->Control;
word pos = rw->Pos;
word size = rw->Size;

if(pos > f->Upb)
{

ErrorMsg(m,EC_Error|EG_Parameter|1);
return;

}

f->Upb = (f->Upb>(pos+size))?f->Upb:pos+size;

/* re-arrange the buffers in the File */
if(!AdjustBuffers(&f->Buffers,0,f->Upb,FileMax))

17

{
f->Upb = ((Buffer *)f->Buffers.Tail)->Pos+FileMax;
ErrorMsg(m,EC_Error|EG_NoMemory);
return;

}

DoWrite(m,GetWriteBuffer,&f->Buffers);

f->ObjMode.Dates.Modified = GetDate();
f->ObjNode.Dates.Access = GetDate();

}

FileWrite handles write requests. Like FileRead the first part of this rou-
tine is concerned with checking and adjusting limits. The call to AdjustBuffers
is used to add any extra Buffers needed to the end of the Buffer list. As
implied already, AdjustBuffers is used to implement a simple list of data
buffers. The first argument to AdjustBuffers is the address of a list of
Buffer structures, the last argument is the size of the buffers. The remain-
ing two arguments are the position of the last byte in the buffer list and the
position of the last+1 byte. AdjustBuffers will add and remove buffers on
the list to provide buffering for all the bytes between these two values. In
this server the buffer list always starts at zero, but any value less than or
equal to the buffer end position is permitted, allowing servers to maintain a
moving buffer window.

The last routine is support for seek requests. Since the position is always
sent with a read or write request this does nothing except re-calculate the
new file position.

void FileSeek(MCB *m, File *f)
{

SeekRequest *req = (SeekRequest *)m->Control;
word curpos = req->CurPos;
word mode = req->Mode;
word newpos = req->NewPos;

switch(mode)
{

case S_Beginning: break;
case S_Relative: newpos += curpos; break;
case S_End: newpos += f->Upb; break;

}

if(newpos > f->Upb) newpos = f->Upb;
elif(newpos < 0) newpos = 0;

InitMCB(m,D,m->MsgHdr.Reply,NullPort,Err_Null);

18

MarshalWord(m,newpos);

PutMsg(m);
}

4 Additional Features

In addition to the routines described above the server library also contains
the following procedures (you are referred to servlib.h for the argument
templates):

GetContext(servinfo)

This is used by the dispatcher to locate and check the context object of a
GSP message, it is of little use to the general user unless you want to write
your own dispatcher.

pathcat(path,name)

Concatenates the second string onto the first separating them with a */*.

addint(name,val)

Adds the string corresponding to the decimal value of its second argument
to the string given as the first. It is not possible to add a value of zero with
this routine.

name = objname(path)

Returns a pointer to the last component of the given pathname.

obj = Lookup(dir,name,dirlocked)

Searches the given directory for the named entry. If the third argument is
false the directory will be locked during the search.

MarshalInfo(mcb,objnode)

Initialises the given MCB with a reply suitable to be returned as a result of
the objectinfo request on the given object.

newmask = UpdMask(oldmask,matrix)

Returns a new access mask which consists of an old access mask updated
by the given access matrix.

success = GetAccess(cap,key)

The given capability is decrypted with the key and, if valid, its cleartext

19

access mask ANDed with the encrypted mask. If the capability does not
decrypt the procedure returns FALSE, otherwise it returns TRUE.

Crypt(encrypt,key,data,size)

The data buffer described by the last two arguments are (en/de)crypted
with the given key.

key = NewKey()

A new encryption key is returned.

NewCap(&cap,obj,mask)

A new capability for the given object is created containing the given access
mask.

v = ServMalloc(size)

This is used for memory allocation in all servers and servlib.h redefines
Malloc to this routine. The server library keeps a safety net memory block
which is freed if a memory allocation ever fails, this is implemented in
ServMalloc. This allows servers to report memory allocation failure but
to retain sufficient memory to allow a tidy cleanup to be implemented.

5 Converting from V1.0 to V1.1 Servers

A number of changes have been made to the server library in the upgrade
from V1.0 to V1.1.

The main change is the locking of objects by GetTargetDir and GetTargetObj.
In most cases this is transparent, except that a call to UnlockTarget must
be added before the do_open dispatch loop. This has also caused the argu-
ment spec of a number of procedures to change, specifically Insert, Unlink,
Lookup and DirServer, which will all be reported by the compiler.

Additionally the layout of the DispatchInfo structure has changed and
some field names in ServInfo have altered. The original procedure crypt
has been replaced by Crypt.

20

	1 Introduction
	2 The Server Library
	3 The Ram Disc Server
	4 Additional Features
	5 Converting from V1.0 to V1.1 Servers

