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Whenever the transputer’s event input is asserted, Helios responds by exe-
cuting each of the handlers which have been added into the kernel’s list. This
technical note describes the Helios routines, SetEvent() and RemEvent(),
which are used to add or remove the handler, and the event structure which
is used to define the handler. An example C program is included to show
how a simple handler is used.

1 The Event structure
The event structure is used to define the event handler. It is defined as:

struct Event

{
struct Node Node;
word Priority;
void (*Handler) ();
word *Data;
word Reserved;

};

The instance of struct Node is used to link this event handler into a list
of handlers which is maintained by the kernel. The position of the handler
within this list is determined by the Priority field; small numbers represent
high priority handlers and large numbers represent lower priority ones. The
handler field is used to store a pointer to the handler’s code, and the data
field contains a pointer to its data area; this data pointer is passed as an
argument to the handler routine whenever it is called.

2 SetEvent()

This routine should be used to install an event handler within the kernel’s
list of handlers. The syntax of this routine is:

word SetEvent( Event *handler ) /* returns an error code */

When called, this routine uses the priority field in the Event structure to
determine the handler’s position in the list. The handler will always be
inserted before other handlers that have a higher value in their priority
field.



3 RemEvent()

This routine removes the specified event-handler from the kernel’s handler
list. The syntax of this routine is:

word RemEvent( Event *handler ) /* returns an error code */

4 An Example Program

/* Program to demonstrate the action of SetEvent and *
* RemEvent, plus the calling convention of the event routine. */

#include <syslib.h>
#include <event.h>
#include <sem.h>

/* these two templates should be in event.h, but aren’t. */
word SetEvent (Event *event):
word RemEvent (Event *event);

void do_something(word *data, Event *event);

Event event = { /* setup Event structure */
NULL,NULL,
0,
do_something,
NULL,
NULL

Semaphore evsem; /* event to process signal */

int main()

{
InitSemaphore (&evsem,0) ;
SetEvent (&event) ;
Wait (&evsem) ;
RemEvent (&event) ;
return O;
}

/* Event handier routine */
void do_something(word *data, Event *event)
{

Signal (&evsem) ;
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