Use of the Transputer Event
Line from Helios

Perihelion Software Technical Report No. 13

Andy Evans

January 1989

Perihelion Software Limited
The Maltings
Charlton Road
Shepton Mallet

Somerset
BA4 5QE
England
Telephone +44 749 4203
Fax. +44 749 4977

Copyright (c) 1988,1989 Perihelion Software Ltd.

Permission to copy this technical note without fee is hereby granted, provided
that the copyright message and this permission appears in all copies.

tirlainis
plujt]e[r

njelt|

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

Contents

1

2

The Event structure
SetEvent()
RemEvent()

An Example Program

Whenever the transputer’s event input is asserted, Helios responds by exe-
cuting each of the handlers which have been added into the kernel’s list. This
technical note describes the Helios routines, SetEvent() and RemEvent(),
which are used to add or remove the handler, and the event structure which
is used to define the handler. An example C program is included to show
how a simple handler is used.

1 The Event structure
The event structure is used to define the event handler. It is defined as:

struct Event

{
struct Node Node;
word Priority;
void (*Handler) ();
word *Data;
word Reserved;

};

The instance of struct Node is used to link this event handler into a list
of handlers which is maintained by the kernel. The position of the handler
within this list is determined by the Priority field; small numbers represent
high priority handlers and large numbers represent lower priority ones. The
handler field is used to store a pointer to the handler’s code, and the data
field contains a pointer to its data area; this data pointer is passed as an
argument to the handler routine whenever it is called.

2 SetEvent()

This routine should be used to install an event handler within the kernel’s
list of handlers. The syntax of this routine is:

word SetEvent(Event *handler) /* returns an error code */

When called, this routine uses the priority field in the Event structure to
determine the handler’s position in the list. The handler will always be
inserted before other handlers that have a higher value in their priority
field.

3 RemEvent()

This routine removes the specified event-handler from the kernel’s handler
list. The syntax of this routine is:

word RemEvent(Event *handler) /* returns an error code */

4 An Example Program

/* Program to demonstrate the action of SetEvent and *
* RemEvent, plus the calling convention of the event routine. */

#include <syslib.h>
#include <event.h>
#include <sem.h>

/* these two templates should be in event.h, but aren’t. */
word SetEvent (Event *event):
word RemEvent (Event *event);

void do_something(word *data, Event *event);

Event event = { /* setup Event structure */
NULL,NULL,
0,
do_something,
NULL,
NULL

Semaphore evsem; /* event to process signal */

int main()

{
InitSemaphore (&evsem,0) ;
SetEvent (&event) ;
Wait (&evsem) ;
RemEvent (&event) ;
return O;
}

/* Event handier routine */
void do_something(word *data, Event *event)
{

Signal (&evsem) ;

3

	1 The Event structure
	2 SetEvent()
	3 RemEvent()
	4 An Example Program

