
Author:

Hans-Joachirn Ermen

Hellos System Software Series

Software Documentation

Copyright (C) 1990, Parsytec GmbH

The Hellos

Application Guide

(including Hellos 1.15 Release Notes)

January 1990

Copyright

This manual is Copyright (C) 1990 Parsytec GmbH

All Rights reserved. This document may not, in whole or in part, be copied,
photocopied, reproduced or reduced to any electronic medium or machine

readable form without prior consent, in writing from Parsytec GmbH, D-5100

Aachen, luelicher Strasse 338, West-Germany.

Helios is a trademark of Perihelion Software Ltd. Inmos is a trademark of the
INMOS group of companies.

Printed in West-Germany

Contents

Contents

Introduction 4

1. Hellos Release 1.15 5

1.1 Installation Notes 7

2. Resource Management 9
2.1 Resource Map Structure Details 10
2.2 Naming ofNe~orkElements 15
2.3 Attributes 18

3. Parallel Programming 22
3.1 The Programming Model 23
3.2 Usage of POSIX Streams 24
3.3 Writing a CDL-Script 29
3.4 Usage of Indices and Parameters 37
3.5 An Example Task Force 41
3.6 Using a Load Balancer 45
3.7 Language Dependent Differences 47

4. Task Force Management 49
4.1 The Basic Mechanisms 50
4.2 Working with Task Forces 55

5. Networking Mechanisms 60
5.1 Different Network Sizes 61
5.2 Booting a MUltiprocessor Network 63
5.3 Reset and Reboot 67
5.4 Usage of Links 70
5.5 Basic Multi-User Facilities 73

Appendix

A. Further Informations 79
B. POSIX-call Support under FORTRAN 80
C. Working with Farms 82
D. Diagnostics from the Task Force Manager 87

3

Introduction

Introduction

4

During the last two years, the Helios Operating System has become a widely

accepted standard development and application interface in parallel computer

environments, based on the Transputer. It includes a set of versatile and

powerful tools for the development and execution of parallel applications. With
the latest release on Helios, called "Helios 1.15", which is directly based on the
release 1.1, many improvements and enhancements in functionality, basic
reliability and performance have been added to the system.

This guide is intended to give the user a practical guideline to make better use of

Helios and to demonstrate some standard methods and procedures, which can

be used during daily work with the system. The features added in Helios 1.15 are

particularly covered in depth. Points of deeper discussion are topics, which are
only touched upon in the original documentation with a consequent lack of a
practical point of view or which tend to produce misunderstanding. Beyond this,
the manual may be helpful to everyone who wants to come into closer contact

with this unique operating system. Many questions, asked by developers and

users during the last year have been taken into consideration.

It is assumed that the reader is familiar with the basic concepts of Helios as
described in the original documentation (liThe Helios Operating System"). This
guide is neither a Helios introduction, nor should it replace the original
documentation as supplied by Perihelion Software Ltd!

1. Helios Release 1.15

I. Hellos Release 1.15

Topics:

- The version history
- What are the actual development aims?
- Modifications and enhancements

5

Helios 1.15 is directly based on the release 1.1 in the single user version (Helios

Is). An intermediate version - named Helios 1.1A - was created by Perihelion in

close co-operation with Parsytec and is fully supported by Perihelion and

Parsytec. Some additional features were added by Parsytec and incorporated
into Helios release 1.15. Nevertheless the basic functionality of Helios 1.15 and

of Helios 1.1A, is nearly the same as Helios 1.1. A subset of features which were
basically implemented in the Helios network-version (Helios In) are left out, but
will be included into the next official release.

Some of the most important enhancements take place in the areas of networking

and Task Force Management to support very large Transputer networks with
much more than 64 processors, active under the control of one or an arbitrary
number of users. It is now possible to support a wide range of different

topologies and to run Task Forces with a nearly indefinite number of Task

components which are executed in parallel. The Helios operating system kernel
routines - called Nucleus - has also been improved to optimize the system's long

term behaviour and give a maximum of robustness in spite of a heavy usage of

the available processor resources. In addition to this improvement of "system

imminent" features, the set of standard utilities was also touched upon. Some
other user commands were added or extended, including the Norcroft C­

Compiler, which is now available in the version 1.17.

1. Helios Release 1.15 6

Most of the modifications made to the system were heavily tested by Perihelion
and Parsytec in different environments on a wide range of Parsytec hardware ­
from a single processor machine to a SuperCluster with 64 processors and
electronic configuration facilities up to a fixed- topology machine with 144
processors - but should also work on most of the other vendors' machines
without major problems.

1.1 Installation Notes

1.1 Installation Notes

Topics:

- Move from Helios 1.1 to Helios 1.15

- Differences in the fIle arrangement

7

Helios version 1.15 is delivered in the same format as the original release and
can be directly copied onto an existing Helios directory tree. Please note, that

the PC-disk contains only an additional set of fIles as a supplement, which have
to be moved together with the Helios 1.1 release fIles, if you are creating a new
system from scratch (1).

On a PC-hosted system, the following command can be used to install Helios

1.15 from MS-DOS level .(For this example it is assumed, that a Helios 1.1
directory tree is residing on a fixed disk partition c: under \helios. The Helios
1.15 supplement disk may be inserted into disk drive a:.)

xcopy a: c:\helios /s <CR>

The arrangement of the different files under Helios 1.15 differs from Helios

version 1.1 in the way, that the device driver for reset & analyze is now resident

in the /helios/lib - directory. The user has to copy the desired driver from his etc
- directory into the lib - directory. This can be done for example for the Parsytec

device driver ''paJa.d" under MS-DOS in the following way:

> copy c:\helios\etc\paJa.d c:\helios\lib <CR>

(1) : Ifyou are using a SUN as your host system, you get a complete Hellos version, which has to be
installed as described in the installation guide for Hellos version 1.1 for the SUN.

1.1 Installation Notes 8

In this case, the standard boot program rboot has to be replaced by the Parsytec

specific binary object ''pa rboot":

> copy c:\helios\lib\pa rboot c:\helios\lib\rboot <CR>

After finishing the installation of the Helios 1.15 files, the system can be booted

in the same way as before. Note that the Network Server and the Task Force

Manager have now a serial number and an initialization message is printed after
successful start of each of them (2).

(2) : A note for users running X-Windows on a GDS-board: To avoid problems, it is actually
recommended to make no use of the steal-utility!

2. Resource Management

2. Resource Management

9

A set of processors, building a Helios network, is described in a "resource map".

Each processor - forming a node in the network topology - is given an unique

name and all link interconnections which are used, have to be specified. In

addition to this, a set of attributes can be used to describe a certain processor, its

resources and usage in a more detailed way. A pre-compiled binary object, which

is derived from the text-file of a resource map by the "resource map generator"

(rmgen), is inspected during the system's boot phase and gives the Network Server

(NS) all information needed to boot a complete network subsequently.

Because the resource map generator performs only very basic error checks, the

user should take great care to write a properly defined resource map!

The declaration of processors and link connections does not have to describe

essentially the complete existing physical topology. It is also possible to subdivide

a pool of processors into different separate Helios networks, each controlled by

its own Network Server without affecting the others. As described in chapter 5.5,

it is in particular possible, to establish communication links between these

different subnets and to share subnets between different users.

The resource map generator (rmgen) is sensitive in interpreting a command line.

To avoid problems, the following calling sequence is preferable:

I% rmgen -0 fIle.map fIle.rm <CR>

2.1 Resource MaD Structure Details

2.1 Resource Map Structure Details

Topics:
- The general layout policies
- Use of hierarchical subnets
- The "Master Node"

- How should processors be arranged within a resource map?

10

Helios organizes a collection of processors in a resource map in the way, that it

builds logical sub-networks, which are controlled by a centralized instance called
Network SeNer (NS). The usual way to define a Helios network is, to put the
complete set of processors into one subnet-structure. This approach is called a
"non- hierarchical network".

The Network SeNer is also able to handle hierarchical subnet-structures. In this

case, different groups of processors are put into different subnets, usually
directly bound to a certain network topology; building a tree for example.
Because this adds system administration overhead to the network controlling
routines and makes the usage of Helios naming mechanisms much more
complicated and inefficient, the user should try to avoid hierarchical subnets as
far as possible! The only justification for declaring hierarchical subnet-structures

occurs when Transputer hardware from different vendors is used to build one

physical Helios network. In this case, it is essential to be able to specify different

reset & analyze schemes for the different underlying Transputer hardware.

Under all other conditions, a non-hierarchical subnet description is preferred.

One node in each subnet has to be declared as a "Master Node", responsible for

keeping control over booting the rest of a network. This is done by the Network

SeNer running on this node and some other binary objects, which are passed

through the network by the Network SeNer, following a certain boot-path. In
addition to this, the Master Node processor also has to be noted as a "controller"

2.1 Resource Map Structure Details 11

(CONTROL-attribute) directly after the beginning of a subnet-specification. In
a non-hierarchical network, the Master Node is always identical with the first

processor in the subnetwork, known as the "root processor'. Therefore, working
with non-hierarchical networks seems to make the definition of a Master Node

and a controller processor obsolete, but nevertheless, they have to be specified!

In conjunction with the Master Node attribute, the desired reset & analyze

device driver is specified as an argument. If Parsytec hardware is used, the
device driver ''pa ra.d" has to be placed as an argument.

A typical resource map, describing a network with one processor may look

similar to the following: (It is recommended, that the root processor is always

connected with the host's link interface by using link O!)

This is an example for a resource map which describes

a network consisting of one processor.

subnet /Cluster {

CONTROL Rst_Anl [/Cluster/OOl;

terminal 00 { -10, , , ;

terminal 10 {; 10;}

}

(Listing 1)

HEllOS;

Mnode Rst_Anl [pa_ra.dl;

ptype T800;

}

Note, that you can insert comments into your resource map script files by using
the OCCAM-like preamble "__" as you can see it in the first two lines of Listing 1.

2.1 Resource Map Stmcture Details 12

A processor grid, consisting of four Transputers may be specified in the

following way: (Another node - the MSC mass storage node - is connected to

processor "03".)

-. This is an example resource map

subnet /Cluster {
CONTROL Rst_Anl [/Cluster/OO];

terminal 00 { -10, ,-01 , ;

terminal 01 { -00, -02, -03,;

terminal 02 { ,,-04,-01

terminal 03 { -01,-04,-MSC,;

terminal 04 < -02",-03

terminal MSC < -03",

terminal 10 {; 10;}
}

(Listing 2)

SYSTEM;
Mnode Rst_Anl [pa_ra.dl;
ptype T800;
}

HELlOS;
memory #100000;
ptype T800;
}

HEllOS;
memory #100000;
ptype T800;
}

HEllOS;
memory #100000;
ptype T800;
}

HEllOS;
memory #100000;
ptype T800;
}

SYSTEM;
memory #400000;
ptype T800;
}

2.1 Resource Map Structure Details

This resource map describes a physical topology like this:

13

Host

(PC/SUN)

(Figure 1)

Link enumeration

o
30

2

The Network SeIVer tries to boot the processors declared in the given resource

map by using a "breadth-first" algorithm. (A more detailed description of the

boot mechanism is given in chapter 5.2.) Writing a resource map, the user has to

take into account, that the order of processors within the resource map

influences directly the initial boot sequence. It causes especially major problems,

if a processor is specified in the resource map and picked up by the Network
SeIVer, before it has been succesfully booted by one of the processors declared

before. This is the main reason for problems users usually have while booting

certain network topologies, especially different kinds of meshed structures!

2.1 Resource Map Stmcture Details 14

A practical example: It is not possible to boot the network shown above
successfully, if the specification of processor "04" follows in the resource map as

the second declaration directly after processor "00" has been declared, because
processor "04" has not been booted by any other active node yet!

If a network consists of only one "isolated" processor, the installation of a
Network Server and a Task Force Manager is not recommended, because there

are no distributed resources to be managed. To prevent the system from

installing them, just put the associated lines in the "initrc" file into comments.
The initrc - file can be found in the etc - directory. (3)

(3) : See chapter 5 for more details about booting of multiple processor networks..

2.2 Namine of Network Elements

2.2 Naming of Network Elements

15

Each individual subnet can be given a name free of the user's choice. As a

convention, most of the example resource maps use "Cluster" as the name of the

subnet, but there is no restriction to call a subnet maybe "Net" or

"Hippopotamus".

In the same way, each processor has to be given an unique name by the user. To

keep the subnet structures clear, a well established method is to enumerate all

processors which can be defined as pure processing nodes with digits, whereas

processors, which have to perform special tasks - like generating graphics or

accessing mass storage devices - are named by using letters.

A special note for the users of Parsytec MultiCluster or SuperCluster machines:

The utility program "hconfig", which examines a binary resource map and sends a

request to the Network Configuration Manager (NCM) to allocate processors and

configure them, makes some assumptions on the processor naming scheme: It is

assumed, that all processors which are part of a dynamic partitioned and

configured network, are enumerated numerically beginning with "01". Therefore

you have to take great care by choosing processor names to avoid conflicts with

"external" nodes and MultiCluster- or SuperCluster- processors (4).

By default, the root-processor's name is set to "00". The pseudo I/O-node, which

allows access to the host's external devices is usually called "10". Please keep in
mind, that you have to change also your host.con file, if you want to give your

root-processoror I/O-node another name than "00" or "10".

(4) : A more detailed description of partitioning and configuring a MuliCluster or SuperCluster
machine can be found in the associated system software documentation.

2.2 Naming of Network Elements 16

Imagine a network consisting of a root node, 16 "general processing nodes" and a
graphics node running the X-Window environment. The following naming
scheme may be used for best clarity:

00 = root processor
01 = first processor
02 = second procesor

16 =
GDS = a graphics node (Parsytec ODS board)
10 = pseudo I/O-node

(Figure 2)

Taking the example resource map for the one- processor network from above

and changing the root's name to "MY" and the name of the I/O-node to "PC"
results in the following script. The complete subnet shall have the name "PCNet"
and the Parsytec reset & analyze device driver is used:

subnet /PCNet {

CONTROL Rst_Anl [/PCNet/MYJ;

terminal MY { ·PC, , , ; HELlOS;

Mnode Rst_Anl [pa_ra.dJ;

ptype T800;

}

terminal PC {; 10;}

}

(Listing 3)

2.2 Naming of Network Elements

In addition to these changes, the lines

17

rootyrocessor

10yrocessor
=

=

/MY
fPC

have to be added to your host.con file.

If you have modified your host.con file, you have to exit from Helios and restart
the server from your DOS or UNIX shell to make the system notice the
modifications. (A restart using the hot-key combination SHIff+CTRL+ FlO

under MS-DOS does not open the host.con file for re-initialization!)

2.3 Attributes

2.3 Attributes

18

Various attributes can be added to a certain processor description within a

resource map to determine the usage of this resource in a more detailed way.
The following subset of attributes should be used whenever a network is

specified; especially if Task Force management facilities are required:

i) Processor usage: HELlOS / SYSTEM

Declaring a Transputer as a "HELIOS"-node allows the Task Force Manager as a

global network instance, to place components of a Task Force on this processor.

If this is to be avoided, a processor has to be noted as a "SYSTEM"-node in the

resource map! In this case, the mapping routines of the Task Force Manager,

which have to decide where to execute different components of a Task Force,
ignore this node completely. If the Task Force Manager is not involved, it makes

no difference, whether a processor is declared as SYSTEM or HELlOS. For
example, it is still possible, to place explicitly Tasks using "remote" on a
SYSTEM-node!

It is especially sensible to declare a processor as a SYSTEM node under the
following two conditions:

1) If a certain processor is not an "ordinary" processor in the way that it
offers perhaps access to external hardware like mass storage devices or bit map

graphics. To avoid problems with the server pro&rams running on these nodes,

influenced by user Task Forces, they should always be given the SYSTEM­
attribute.

2.3 Attributes 19

.---.....

2) If you are using a large Helios network controlled by a root processor

which is equipped with limited memory, its declaration as a SYSTEM-node
guarantees, that memory is not used up by Task Force components. Because the
Task Force Manager allocates various chunks of memory dynamically, if a large

number of Task Forces have to be controlled, it is a good approach to keep the

root processor in general free from all other network-wide activities like

executing components of a Task Force by using the SYSTEM-attribute, to avoid

memory bottlenecks.

Other processors can also be declared as SYSTEM nodes, if some more
resources are required, which should not be influenced by Task Forces running

in the background. For example, if two dedicated processors within a 32­

processor system are specified as SYSTEM-nodes, they can be used for editing,

compiling etc. without demands by Task Forces, which are running "in the
background" and making use of the remaining 30 processors, which are declared

as HELlOS-nodes.

ii) Memory attribute: memory

For each processor, the size of external memory can be specified by using the

"memory" attribute. This is especially recommended, if a node has a memory

size different from 1 MByte.

The memory attribute is also used by the Task Force Manager during the

initialization phase of a Task Force to determine the amount of memory
available for task components on a certain processor. In combination with the
memory attribute as supplied by component declarations in a CDL-script (5),

the Task Force Manager is able to "look ahead" and calculate the number of

components of a Task Force, which can be placed on a single processor.

(5) : CDL stands for "Component Distnbution Language", which is a script language used for
descnbing parallel applications. A more detailed discussion follows in chapter 3!

2.3 Attributes 20

If a node is equipped with 4 MBytes for example, the following line has to be

added to the processor description in the resource map:

memory #400000;

iii) Processor type: ptype

Using Transputer hardware in conjunction with Helios allows the user to choose

between the T414 and the the T800 processors. This information is taken by the

Task Force Manager to detect, which processors offer floating point support and

which are only able to emulate floating point operations. This influences directly

the mapping of components, if some of them require floating point support.

If a node is equipped with a T800, it should be specified in the resource map in

the following way:

ptype T800;

iv) External Links: ext []

If it is desired to combine a Helios network with other independent Helios

networks or with processors running an OCCAM application, the

interconnecting links have to be specified. Because the Network Server is not able

to get informations about alien Helios or OCCAM networks during the boot

phase, these links have to be declared as "external".

23 Attributes 21

Remember the example shown in figure 1: Ifwe want to make use of an external

link, connected to processor "02" (link 1), we have to change the processor

declaration in the following way to get an "external" link. (Please note, that the
resource map does not give any information about the processor, which is

connected to the external link.)

-- Example processor description with link 1 declared

-- as an external link. In this case, we are using a

-- T414 Transputer

terminal 02 {,ext[Ol,·04,·01 HELlOS;

memory #100000;

ptype T414;

}

(Listing 4)

The index within the external declaration is used to distinguish multiple external

links within one subnet. If we want to add another external link, we have to

increment the index by using ext[1], ext[2] and so on.

3. Parallel Programmine

3. Parallel Programming

22

The parallel programming model of Helios is based on a system service called

the "Task Force Manager", which is responsible for distribution and execution­
control of parallel applications, named Task Forces. A script language, called
Component Distribution Language (CDL), which is used to express parallelism

within a Task Force, builds the user interface for application specification. The

main difference in comparison with all other parallel programming models for
Transputers is, that each component of a Task Force under Helios is written in a

"standard" sequential programming language like C, FORTRAN, Pascal or

Modula-2. The management of parallel applications is done here at an operating

system level. There is no need to add language extensions or library functions to
express parallelism! This makes it much more easier to port larger software
packages onto a parallel computer running under Helios (6).

The examples given with this documentation are written in C and FORTRAN­

77. These two Helios compilers are actually the two programming tools, which

should be preferred, because of their full implementation, language specification
conformance following the particular ANSI-standards and - last but not least ­
their high reliability.

(6) : To come into fIrst contact with parallel applications under Helios, the "Parallel Programming
Tutorial", published by Perihelion Software Ltd, is worthwile reading.

3.1 The Programming Model

3.1 The Programming Model

Topics:
- How to outline a parallel application under Helios

23

The process of parallel program development under Helios can be divided into

three separate steps:

At first, the user has to think about possibilities to split up an application

or an algorithm to build a number of independant tasks, which can be executed
in parallel. These tasks are written, compiled and tested separately by using
standard sequential programming languages.

The second step is, to define communication channels between these

different tasks. The communication mechanism used, is based on a model of
"pairs of associated streams", directly following the POSIX conformance

specification for stream-I/O. Different tasks are reading and writing from
different POSIX-streams, which are connected transparently by the Task Force

Manager by using pipe-servers.

There is no information contained within an individual task component

which gives any hint about the "other side" of such a communication channel.

This gap has to be filled by the user by writing a "COL-script". During this third

step of development, the whole Task Force as a parallel application - built of

several task components - has to be described. Each component can be specified

in various ways and it is especially possible, to define the set of corresponding
streams. With a COL-script, different independant task components are joined
together to build a homogeneous unity - a parallel application!

3,2 Usage of POSIX Streams

3.2 Usage of POSIX Streams

Topics:

Why should POSIX streams be preferred?
The POSIX stream enumeration schema
Error handling using POSIX calls

24

As mentioned before, the communication mechanism for Task Forces is based
on "Streams". In the first instance, it makes no difference, whether C-streams,
POSIX-streams or streams at the Helios system-call-level are used, but there are

some good reasons to prefer the usage of POSIX-streams:

C-streams offer comfortable routines for data transfer, but add a lot of

overhead to an application. The behaviour of C-streams is a llttle bit unforseen
because by default, internal buffering mechanisms are used. As a consequence,

working with C-streams results in the lowest performance in comparison to all

other Hellos communication machanisms and should be avoided!

The Hellos-streams build a layer directly based on the basic Hellos

message passing surface and offer better data transfer rates than using C­

streams. On the other hand, the corresponding routines for handling Hellos­

streams are unique to this operating system, which makes it much more difficult

to port existing software from another machine.

POSIX-streams give a good compromise between these two alternatives: On one
hand they are familiar to all UNIX-users - well defined since UNIX version 7 •
on the other hand, working with POSIX-streams under Helios offers nearly the
same data transfer rates than using Hellos-streams directly. In conjunction with
the POSIX compatible calls read() and write(), nearly all communication models

for typical Task Forces can be realized. Because of the fact, that not only the

3.2 Usage of POSIX Streams 25

Hellos C-compiler, but also the FORTRAN, Pascal and Modula-2 compilers

have a POSIX-compatible library interface. Consequently it is very easy to write

portable applications and mixed-language Task Forces based on the POSIX­
standard. These are good reasons to concentrate on the POSIX communication
mechanisms, when writing a Task Force.

The POSIX-streams are enumerated beginning with "0" and have the following
specific meaning (7):

Stream Meaning Direction

0 stdin <--

1 = stdout -->

2 = stderr -->

(3 = stddbg)

4 = auxi I iary 1 . input <--

S = auxil iary 1 - output -->

6 auxi Iiary 2 - input <--

7 auxiliary 2 • output _.>

(. .. and so on ...)

(Figure 3)

(7) : The stddbg-stream should not be used within a Task Force. If debug-messages have to be
displayed, the use of the stdeIT-stream or the IOdebug() call should be preferred.

3.2 Usage of POSIX Streams 26

--.........

To keep the standard streams "free" for I/O-usage and error handling, it is
preferable to use the auxiliary streams for communication between different task

components. This has to be done explicitely by using the stream-attribute within

a component declaration and performing read() and write() calls to streams,
beginning with the auxiliaryI-input (8). The convention for the usage qf auxiliary

streams is to read from streams with an even number (4,6,...) and to write to
streams, which have an odd number (5,7,...).

The number of streams to a Helios I/O-server is limited and depends on the

memory available on the host machine. The user should take care - especially in
a PC-hosted environment - that his application Task Forces do not open too

many streams (about 50 or more) to the I/O-server.

A common sloppiness, directly concerned with the usage of the POSIX-calls
read() and write(), is the lack of a proper return-code checking within the

application. It is the responsibility of the user, to inspect the return value of the

POSIX-calls to find out, how many bytes actually have been transferred! Under

many circumstances, this is one of the main reasons for a "strange" behaviour of
a Task Force running under Helios.

The following little procedures may give an idea, how POSIX stream-I/O can be
performed, based on a proper return-code handling (9):

(8) : As shown below in greater detail, there are some variants of Task Force declarations, which do
not aIlow an absolutely free usage of streams.
(9) : The inspection of the global variable enno can give more hints to identify the reason for a read
or write failure.

3.2 Usage of POSIX Streams

#include <helios.h>
#include <posfx.h>

/***
* Read operation with error handling
**/

int
fUll_read (int stream, char *buf, int amount)
{

int result;

while (amount> 0)
{

result = read (stream, buf, amount);
if (result <= 0)

return -1;
amount -= result;
buf = &(buf[result]);

}

return 0;
}

/***
* ~rite operation with error handling
**/

int
full_write (int stream, char *buf, int amount)
{

int result;

while (amount> 0)
{

result = write (stream, buf, amount);
if (result <= 0)

return -1;
amount -= result;
buf = &(buf[result]);

}

return 0;
}

(Listing 5)

27

3.2 US8Ke of POSIX Streams 28

Using a fullJead() or the similar full_write() procedure guarantees, that the

request is always fulfilled with the only termination condition arising, if a fatal

error like a broken stream connection occurs. In this case, "-1" is returned to the

calling routine. In all other cases, especially if only a part of a set of data could

be transferred, a retry is made to get or send the remaining bytes. For example,

if 20 KBytes are desired to be read from another task and only 16 KBytes are

received with one data transfer, a second try is made to get the remaining 4

KBytes.

In general the user should make sure, that task components within a Task Force

are terminated correctly, if transfer operations fail because of fatal error

conditions.

3.3 Writing a CDL script

3.3 Writing a CDL script

Topics:
Oifferences between Helios 1.1 and Helios 1.15

Component declarations (An example)
Useful attributes within a COL-script

Automatic vs. static mapping of streams

29

The COL-compiler under Helios 1.15 offers basically the same functionality as
the COL-compiler under Helios version 1.1. There are some restrictions

concerning more "esoteric" features within the Component Distribution

Language, which are no longer supported under this version. These are
especially the life-, time- and the priority- attribute. Some other limitations,

existing under Helios 1.1, like the number of streams within a Task Force are
now removed. A lot of well-known bugs within the COL-compiler are also fixed
now and the listing output has been be improved.

Interpreting a command line by the COL-compiler is still quite sensitive. To
generate a precompiled COL-object, the following sequence of parameters

within a command line is preferred.

I% cdl -0 target source.cdl <CR>

To write a COL-script, the user has fIrst to decide, whether to force the COL­

compiler to manage stream connections for different task components

transparently or whether he wants to define pairs of associated streams by
himself, using component declarations. If the general parallel operator ,,-'V\" is
taken, which gives no information about the communication structure between

different Task Force components, the user has always to specify explicitly the

3.3 Writing a CDL script 30

stream connections within each component declaration. If other parallel
operators, like unidirectional pipelines (" I") or farming constructs (" III ") are
chosen, the CDL-compiler assumes, that certain combinations of fixed pairs of
streams are used to connect different task components. In this case, the user has

to take care, that the read() and write() POSIX-calls within his application

programs match these fIXed pairs of streams.

To make the process of stream allocation clearer, we show two examples: The
first one is based on the general parallel operator """" and makes use of

explicitely allocated streams. The second one works with bidirectional pipe­
operators ("< >") and uses a set of streams, allocated by the CDL-compiler. In

this case, the most important attributes, which can be used in a component

declaration, are explained.

1) The first example describes a "dummy" Task Force, consisting of three
components, which are specified in separate component declarations. To be
completely independant from CDL-restrictions, we decide to declare the
communication channels on our own by using the stream-attribute within the

component declarations. This conditions the usage of the general parallel

operator """" to describe the relationship between the different independent

components:

3.3 Writine a CDL script

1) The parallel application:

31

Stream1 6

5

(Figure 4)

3.3 Writine a CDL script

2> The resulting COL-script:

#I/helios/bin/cdl

These are the component declarations:

component Task_A {
puid /CLuster/01;
code master;

32

memory
streams

100000;
",,<IStreamO,,<IStream2,>IStream1;

}

component Task_B {
code slave;
memory 100000;
streams "",>IStream3,<IStream1,>IStream2;

}

component Task_C {
memory 100000;
streams ",,<IStream3,>IStreamO;

}

This line describes the paralLeL appLication in generaL

Task.-A

(Listing 6)

This example Task Force consists of three components, which are connected via
three communication channels, modelled as pairs of POSIX-streams.

The streams attribute specifies a list of POSIX-compatible streams, beginning

with stdin, which is equivalent to the POSIX-stream number zero (figure3). The
identifiers "StreamO", "Streaml", "Stream2" and "Stream3u are names chosen by
the user and are used to identify pairs of connected streams. Note, that these

names are of the user's choice and can be replaced by any other strings if

required!

3J Writing a CDL script 33

The code-attribute is used to specify the binary object, which has to be executed
for each component. If the code-attribute is not used, the CDL-compiler

assumes, that the name of the task component matches the name of an

executable binary object. To use a binary object, which is not found using the

standard search-paths, a full pathname can be specified. If the binary "master",

for example, resides in a subdirectory called II/helios/user/private", it can be
specified by using the code-attribute in the following way:

code /helios/user/private/master

Component "Task A" is forced to be executed on processor "01" inside the
subnet "/Cluster". Such a static placement of components can be generated by
using the puid-attribute. The puid-attribute makes particular sense, if the
physical network topology is identical with the logical communication topology
given with a Task Force and if only QM Task Force is to be run in the network.

In this case, the step of "mapping" a Task Force automatically onto a given
network can be avoided without a loss of "mapping-qualitiy" (10). Another reason

for using the puid-attribute may be, that a certain component has to be placed on

a distinct processor because of the need to access certain features, provided by
such a node like bit mapped graphics or other interfaces to the "real world" (11).

The memory-attribute gives the Task Force Manager useful information to
decide, where to place different task components in a network. In combination

with the memory-attribute used within resource-maps, the Task Force Manager

can "look-ahead" and afterwards calculate the number of task components,

which can be placed on different nodes, without trying to start them directly by
performing the Execute() system call. Although the memory-attribute is not
recommended in general, it should always be integrated into component
declarations! This is done in case certain processors might be running out of

memory, when a Task Force is set up.

(10) ; See chapter 4 for more details about Task Forces and mapping strategies.
(11) : The use of the attribute attrib - in combination with similar resource map specifications - does
not offer in general the possibility to specify devices, which are associated to a certain processor and
are recognized by the system. Therefore the use of this attribute should be avoided!

3J Writine a CDL script 34

2) The second example of a Task Force description using the Component
Distribution Language, also consisting of three components. In this case, we

define the communication structure by using pipe-operators within the COL­

script. This makes the specification of streams within different task components

obsolete! A COL-script 'for such an application. named "test.cdl" • may look like

this: (There are bidirectional communication channels created between Task_A

and Task B and also between Task B and Task C.)- --

#l/helios/bin/cdl

component Task_A {
code master;
memory 100000;

}

component Task_B {
code slave;
memory 100000;

}

component Task_C {
memory 100000;

}

In this case, the communication structure is defined
by the user, whereas the CDL'c~Her is responsible
for a proper mapping onto streams.

(Listing 7)

To get detailed information about the mapping of streams done by the COL·

compiler, a listing of all task components, derived from a COl-script, can be

generated by the COL-compiler using the -1 option. Based on such a listing, the

user can make sure, that the right streams are used within his programs. If we

assume, that our COL-script is named "test.cdl", we can generate a listing-file

"test.1st" during compilation of the COL-script by performing:

Task_C
/Cluster/IO/helios/example/slave
ANY

Task_B
/Cluster/IO/helios/example/slave
ANY

Task_A
/Cluster/IO/helios/example/master
ANY

3.3 Writing a CDL script

I% cdl -0 test -1 test.1st test.cdl <CR>

The listing, we have got as a result looks like this:

coomand:

list of components:

name:
code:
ptype:
puid:
attribs:
memory: 100000
streams: <I streamO(O), >lstream1(1), stderr(2), unused(3)
arguments: Task_C

name:
code:
ptype:
puid:
attribs:
memory: 100000
streams: <I stream2(O), >1 stream3(1), stderr(2), unused(3)

<I stream1(4), >/ streamO(5)
arguments: Task_B

name:
code:
ptype:
puid:
attribs:
memory: 100000
streams: stdin(O), stdout(1), stderr(2), unused(3),

</ stream3(4), >1 stream2(5)
arguments: Task_A

35

3J Writine a CDL script 36

Ifwe take a look at the stream connections, we can see that Task_A and Task_B
are communicating by using the standard streams (on the side of Task_B) and

the first pair of auxiliary streams (on the side of Task A). The first pair of
auxiliary streams is also used by Task_B to communicate with Task_C, which

again makes use of the standard streams.

The COL-compiler verifies the existence of each component specified in a COL­
script. If one binary object can not be found using the standard search-paths, an
error message is shown and the compilation is aborted.

A last note: It is not absolutely necessary to make an ultimate decision among

these two alternatives; the "manual" and the "automatic" mapping of streams. It

is also possible to make use of both approaches within a COL-script. A typical
application example may be a Task Force, consisting of a number of elements
which are building an uni-directional pipe (using the" I" operator for simplicity)
with some additional streams, allocated explicitly by using the streams-attribute.

3,4 Usage of Indices and Parameters

3,4 Usage ofIndices and Parameters

Topics:

Indices for streams and components

Run-time parameter

Compile-time parameter

37

Writing a COL-script for a large application tends to become a little bit

cumbersome, if each component has to be specified explicitly. The COL-syntax
allows the usage of indexed task components and streams, which makes it much

more easier to describe regular communication topologies like uni- or bi­

directional pipes or rings. In combination with the possibility to pass compile- or
run-time parameters to a COL-script, it is possible to write compact and

versatile COL-scripts.

The following example COL-script describes a ring-topology with n elements,

which makes use of a pair of auxiliary streams ("6" for reading and "7" for

writing) for communication. There is one controller component and a chain of n­

1 elements within the communication ring. The last element uses the same
binary code as the other elements in the chain with the only difference being,

that this component is forced to close the ring by connecting its write-stream
with the reader of the controlling component ("control"). It is possible to pass
run-time arguments to a COL-script. They are identified by using the meta­
characters $1, $2, ... and so on - a scheme, which is well known from shell-scripts.

3.4 Usa" of Indices and Parameters

#1 Ihelios/bin/cdl

component control <
memory 500000:
streams "",,<IStrearn<0},>IStrearn<1}:

}

component element[i] <
memory 100000:
streams "",,</Strearn<i+1},>IStream<i+2}:

}

38

component last <
memory
code
streams

}

100000:
element;
"",,<IStream($2+1},>IStream<0};

control $1 .• (•• [i<$2] element<i)) •• last

(Listing 8)

The names of the inter-connecting streams are built by using the "Stream" text­
pattern (12) and the result of the calculations within the curly brackets ({...}).

This makes it possible, to defme a sequence of chaining elements by using one

component declaration. In the example above, the component declaration for

"element" is replicated $2-times and the index "i" is used to build unique
component-names and stream identifiers. The run-time parameter $1 is directly
passed as an argument to the component "control".

If the index itself has to be passsed as an argument to a task component, it has to

be pre-fixed by a leading percentage ("%") character. To give the index "i" as a

second parameter to "control", the description-line of the parallel application
within the CDL-script has to be extended in the following way:

control $1 %i AA (AA [i<$2] element{i}) /V\ last

(12) : ... or any other string of the user's choice!

3.4 Usa&e of Indices and Parameters 39

If it is desired to use a pre-compiled CDL-script, we have to distinguish between
compile- and run-time parameters. The terminology used for parameters in pre­
compiled COL-scripts differs slightly in comparison to COL-scripts, which are
executed immediately:

1) "Textual" COL-script:

Compile-time parameter Sn

Run-time parameter = Sn

2) Precompiled COL-script:

Compile-time parameter = Sn

Run-time parameter = \Sn

Referring to the example above, we have to change $2 into a compile-time

parameter, if we want to make use of a pre-compiled COL-script. The line
describing the parallel application within the COL-script can be modified in the
following way:

control \$1 AA (AA [i <$1] element{i}) AA last

To compile the COL-script for a fixed topology ring with 12 "element"­
components (= a total number of 14 task components), it can be compiled by
typing:

I% cdl -0 target source.cdl 12 <CR>

3.4 Usar:e of Indices and Parameters 40

Mter setting the "edl"-flag in the actual environment, the Task Force can be

executed by calling the pre-compiled binary object. An argument given to this

binary is passed as a run-time argument to the "control"-component within the

Task Force. These two steps can be performed in the following way:

set cdl

target 16

<CR>
<CR>

As explained in greater detail below (Chapter 4), it is in general to be preferred

to start a Task Force by executing the COL-script directly than working with pre­

compiled binary objects, having the cdI-flag set. The main reason for doing this is

that - as a side effect of setting the edl-flag - not only Task Forces, but also single

commands (like cc, emacs, ...), which are executed from a shell, are distributed

through the network under the control of the Task Force Manager! This can

make the system's behaviour under certain conditions unpredictable for the user.

3.5 An Example Task Force

3.5 An Example Task Force

41

The following chapter gives a fairly simple example of a Task Force, consisting

of two components. There is a master component, which generates some data

and passes them to a slave component. The slave performs some data-processing

operations and sends the results back to the master, where a separate receiver
process is forked to get them asynchronously. Both task components make use of

the fully-checked POSIX based procedures full..!ead() and full_write() , as

outlined above. A module with these two procedures has to be linked with the

master and the slave component.

The listing of the master component:

/********************** master.c ***********************/

#include <helios.h>
#include <nonansi.h>
#include <posix.h>
#include <stdio.h>
#include <stdlib.h>

void receiver (void);

/* This semaphore is used for synchronisation of sender */
/* and receiver process at the termination point. */

Semaphore sync;

int
main (int argc , char *argv[])
{

int i ,n;

n = atoi (argv[1]);

InitSemaphore (&sync, 1);
if (Fork (4000, receiver, 0) == NULL)
{

fprintf (stderr, "%5: Unable to fork receiver process\n",
argv[O]);

exit (1);
}

3.s An Example Task Force

for (i = 0 : i < n : i++)
{

full_write (5, (char *) &i, 4):
printf ("master: sent data XcI to slave\n", 0;
fflush (stdout):

)

/* -1 is used as a termination identifier. */

= -1:
full_write (5, (char *) &i, 4):
printf ("master: sent termination word to slave\n"):
fflush (stdout):

Wait (&sync):
}

void
receiver (void)
{

word rec = 0:

Wait (&sync);

for (; rec 1= -1 ;)

{

fullJead (6, (char *) &rec, 4);
printf ("master: got result %d from slave\n", rec):
fflush (stdout):

}

printf ("master: got termination word back from slave\n"):
fflush (stdout):

Signal (&sync):
}

(Listing 9)

42

3.5 An Example Task Force

The listing of the slave component:

/************************* slave.c *************************/

#include <helios.h>
#include <stdio.h>
#include <posix.h>

int
main ()
{

word rec = 0;

for (;;
{

full_read (4, (char *) &rec, 4);
printf ("slave: Got data %d from master\n", rec);
fflush (stdout);

if (rec == -,)
break;

/* At this point, we do some processing ••• */

rec =rec * 2;

full_write (7, (char *) &rec, 4);
printf ("slave: Passed calculated data %d back to master\n",

rec);
fflush (stdout);

)

full_write (7, (char *) &rec, 4);
printf ("slave: Passed termination word back to master\n");
fflush (stdout);

)

(Listing 10)

43

3.5 An Example Task Force 44

The CDL-script for this Task Force is really compact and looks like this: (The
file is called "calc.cdl".)

#1 /helios/bin/cdl

component master {
memory 50000;
streams ,.",>150,<151;

}

component slave {
memory 50000;
streams ,.,,<150, •• >151;

}

master $1 •• slave

(Listing 11)

To start the Task Force by executing the CDL-script, the following line may be

executed. (For this example, a sequence of 50 numbers is generated by the
master and passsed to the slave for processing.)

1% calc.cdl 50 <CR>

3.6 Using a Load Balancer

3.6 Using a Load Balancer

Topics:

- Farming constructs and Load Balancing

- Limitations of usage

45

The use of the fanning-construct (III) within a CDL-script seems to be one of
the most attractive features of the Component Distribution Language. In
combination with the general replicator (0) and a load balancer task, which build
a transparent interface between a master task and a number of replicated slave­

tasks, it is very easy to describe Task Forces which distribute data among various

slaves for processing. Unfortunately, the use of the fanning-construct in

combination with the load balancer places some restrictions on the user, which
have to be taken into account to make best usage of the available resources:

Firstly, the user has to be aware, that the load balancer allocates various
chunks of memory dynamically for buffering of packets, which are transferred
between the load balancer, the master task and the slave tasks. This makes it

essential, to place the load balancer on a processor which is equipped with

enough memory to do this job. Other components of a Task Force should not be
executed on this node!

The load balancer as supplied under Helios 1.15 supports only packet­

mode. Therefore, the application has to make use of proper defined packets for
data transfer. An example Task Force, which is based on this packet protocol can

be found in Appendix B.

The following fixed pairs of streams are used by the load balancer: The
master communicates with the load balancer by using the first pair of auxiliary

streams (4 and 5). The slaves make use of the stdin and stdout streams to

exchange data with the load balancer.

3.6 Using a Load Balancer 46

The user can write his own load balancer task, if he pays attention to the
interfaces, which have to be defmed for the communication with the master and

an arbitrary number of slaves. To give an idea of how a load balancer is

structured, the Helios load balancer is supplied with its source code on the

distribution medium. The source codes gives also some hints about special

features, like "broadcasting" and terminate function codes.

It should be explicitely mentioned at this point, that working with a load balancer

does not offer under all circumstances the best results in performance and usage

of resources. Such a centralized instance may become a kind of bottleneck, if the

number of slaves is drastically increased! Therefore it has to be considered

carefully, under which conditions the use of a load balancer makes sense.

3.7 Lan&WJge Dependent Notes

3.7 Language Dependent Notes

Topics:

Task Forces written in FORTRAN-??

Task Forces written in Modula-2 and in Pascal

47

The Helios FORTRAN-77 compiler has implemented an interface to POSIX­

compatible stream operations. The FORTRAN programmer can directly make

use of these calls by including them in the FORTRAN source code. The POSIX

calls are pre-fixed by a "POS_" and offer the same functionality as their C

equivalents. A consequence of this is, that the user has to check return-codes for

errors to make sure that all data were transmitted correctly (13). A typical

POSIX-write operation within a FORTRAN-program may look like this:

C *** USAGE OF POSIX WRITE OPERATION ***
C

NUM = 128
C

ERR = POS_WRITE (6, NUM, 4)
IF ERR .NE. 4 THEN

C

C *** ERROR HANDLING CODE ***
C

END IF
C

C

(Listing 12)

The stream number ("6"), the name of a variable or an array ("NUM") and its

size measured in bytes ("4") are used as parameters.

(13) : An example for a FORTRAN POSIX-interface with return-code checking can be found in
Appendix A. This separate module "posixop.c" dermes the procedures PSX_READ() and
PSX_WRITE(), which are written in C and have to be linked with a FORTRAN module.

3,7 Language Dependent Notes 48

A general note concerning the usage of Hellos FORTRAN within Task Forces:

Because it is not possible to generate separate processes within a FORTRAN

program and to have the benefit of full asynchronous processes for data transfer,

the user has to take great care in derming synchronous data transfer mechanisms

to avoid wasting of time and incalculable delays of data flow.

Prospero-Pascal and Rowley Modula-2 are both equipped with an interface to

the POSIX-llbrary which can be used for Task Force communication. Please

take a closer look to the associated documentation for a more detailed

description. Prospero Pascal also supports processes within a Hellos task, which

makes it possible to work with asynchronous communication models similar to

C. The different points concerning Task Forces we have mentioned before, are

also relevant in case of applications written in Pascal and Modula-2!

4. Task Force Manaeement

4. Task Force Management

49

Task Force Management services, based on sequential programming languages

and the Component Distribution Language for the defmition of parallel

applications are both unique features offered by Helios and make this operating

system especially sympathetic for the parallelization of a wide range of
applications.

A separate Helios-server, called Task Force Manager (TFM), is responsible for

setting up a parallel application ("Task Force"), by creating the stream
connections for communication and for monitoring the execution and

termination of the different task components within a Task Force. The Task

Force Manager has a close relationship with the Network Server and is not able to
run without this second "global" server working in the background. Both the
Network Server and the Task Force Manager have to be established on the first
node of the network, called the root processor! It should be mentioned, that the
Task Force Manager under Helios 1.15 has been totally rewritten from scratch

and no longer places restrictions on quantities such as the number of processors,

task components or streams, which can be managed!

The following chapter is intended to give a better insight into the basic

mechanisms used by the Task Force Manager; something which is still a little

"mystic" to many Relios users. There are a lot of things which have to be taken
into consideration while working with Task Forces to make best usage of the
system and to avoid problems during the execution of Task Forces.

4.1 The Basic Mechanisms

4.1 The Basic Mechanisms

Topics:

Getting diagnostics with diag tfm

The different phases of Task Force Management

A closer look to the mapping, done by the
Task Force Manager

50

".

Experience with the Task Force Manager under Helios 1.1 has shown, that the

user-interface - especially the error handling mechanisms and the error

messages given by the Task Force Manager - are not of great practical use.

Nearly all error conditions are reduced to the well-known messages "Posix Error

22" and "Exec Format Error", which defmitely prove, that a Task Force could not
be set up successfully, but do not give any hints about the reason for the failure.

To get better diagnostic informations concerning the different phases of Task
Force Management, a utility diag tfm is added under Helios 1.15. This little

program sends messages to the Task Force Manager and allows enabling and
disabling of different protocol phases, beginning with the step of Task Force
creation up to the termination phase (14). To get the initial menu from diag_tfm

with a list of the selectable options, just type:

1% diag_tfm <CR>

As a "short-key", it is also possible to call diag_tfm in a non-interactive mode with
the arguments none, most or all. Using none disables all diagnostics messages,

whereas all does the opposite. To enable a standard set of diagnostic messages

given by the Task Force Manager (except: Phase 2 mapping and environment

info), just execute:

(14) : The diagnostic output is written on a PC's server window or on the actual active window shell
on a SUN, from which diag_tfm was executed.

4.1 The Basic Mechanisms

1% diag_tfm most <CR>

51

(Appendix C presents the output of the Task Force Manager's diagnostic report

for the example Task Force described in chapter 3.5, based on the option most.)

If a Task Force is initiated, it is the fIrst job of the Task Force Manager, to "map"

the given application onto the network topology to find a nearly optimal

placement of all components of the Task Force. (A more detailed description of

the mapping process is given below.) After this mapping is done, the Task Force

Manager takes the generated mapping data structures and begins to execute the

task components remotely on the different target processors.

For each component, a separate monitoring process is created by the Task Force

Manager to keep control over the behaviour of the whole Task Force by

monitoring the work of each component. With GetProgramlnfo-calls, periodically

sent from each monitor process to the associated task component, the Task

Force Manager gets all information needed. This is in particular useful, if one of

the task components terminates because of the occurrence of a certain error

condition. If the Task Force Manager recognizes this, it is possible to force the

correct termination of the whole Task Force.

During setup of a Task Force, the connection of streams is done by using pipe­

servers, which are installed on demand on different nodes. The communication

streams are created as separate entries in the different pipe-servers directories.

After passing an environment to each task component and creation of a new

entry in the Task Force Manager's directory, the Task Force is established and

can begin to run.

4.1 The Basic Mechanisms 52

To get an survey of the different Task Forces actually controlled by the Task
Force Manager, the Task Force Manager's directory can be listed by using the Is­

utility. Please note, that precompiled CDL-scripts are entered into this directory
with their full names, whereas CDL-scripts - directly executed by the user - build
"synthetic" names, based on the string "cdl.tf." with an unique number for
identification added.

Is ftfm <CR>

The Task Force Manager performs two separate phases of "mapping" to find a
nearly optimal placement of task components on the different nodes of a given
Transputer network. These two phases of the mapping process are built up in
the following way:

1) Phase 1 of the mapping process is fairly simple and is based on an

analysis of the resources, which are available within a Helios network. During
this phase, the Task Force Manager verifies especially the availability of memory
to execute a Task Force, built of a certain number of task components. To assist

the Task Force Manager doing this job, it is recommended to specify the memory

on each node in the resource map and to declare the amount of memory needed

by each component of a Task Force by using component declarations within a
CDL-script. If this is done by the user in a proper way, the Task Force Manager
can "look ahead" to decide, how to place a number of task components on the

different processors to make best usage of the resources. Other aspects like the

network topology, the communication structures within the Task Force and the
actual workload of distinct processors are not taken into account at this
moment!

4.1 The Basic Mechanisms S3

An easy example for this rrrst step of the mapping process: Imagine a network as

described in figure 3. There are four processors declared as HELlOS-nodes,

which can be used for the execution of Task Forces, each of them equipped with

1 MBytes. Ifwe want to run a Task Force, consisting of eight similar components
- each of them requiering 200 KBytes of RAM - the Task Force Manager will
decide to place two components on each node. This is done without any regard
to topology dependent aspects and pre-dermed communication structures in the
corresponding CDL-script! The Task Force Manager works straightforwardly by

using the Network Server's directory and accesses the processors in the same
sequence as they are noted there.

At first, it seems to be unsatisfactory to work with such a simple approach. On

the other hand, the results of the mapping process are not as bad as might be

supposed, because most of the time, there are really simple and regular
processor- and communication topologies used, like pipes, rings and grids.
Under these circumstances, the mapping results, after finishing phase 1 are
usually acceptable.

2) To improve the mapping of irregular Task Force structures, a second
phase of the mapping process can be optionally enabled for the Task Force
Manager. This "phase 2 mapping" takes also topology dependent aspects into
account and tries to find an optimal placement of task components on the basis
of the calculation of correlation matrizes. This is a highly heuristic procedure
which has advantages, but also some disadvantages, which we mention below:

The amount of time needed to map a certain Task Force description

onto a given network increases with the number of processors and the number of
task components in an exponential way. This can result in extraordinary long
times for setting up larger Task Forces (15).

(15) : For example: The "phase 2 mapping" of a 20 processor pipe onto a 5x4 processor grid needs
nearly one minute to fInish!

4.1 The Basic Mechanisms 54

In theory, the overall quality of the phase 2 mapping is nearly optimal, if
all possible combinations of network and communication topologies are taken

into account regardless of whether they make sense or are of practical use. Ifwe

concentrate on examples, which have a practical relevance, the results of the

mapping process are only sub-optimal; especially if we take the time for

performance of the needed calculations into account.

As a consequence of this, the phase 2 mapping is by default disabled at the
moment, when the Task Force Manager is started, The user can enable phase 2

of the mapping process by using the diagJfm - utility as described above. To
become totally free from the mapping algorithms used by the Task Force

Manager, it is possible to specify a processor attribute (puid) for each task

component within a component declaration. As mentioned before, this makes

particular sense, if the topology of the network and the communication topology
within the application are identical.

4.2 Working with Task Forces

4.2 Working with Task Forces

Topics:

Working with or without the CDL-flag ?

Task Force termination
The problem of memory fragmentation

55

Working with a Helios shell offers the possibility, to set a flag called "cdI" for

Task Force execution. In contrast to the basic variant, to make use of Task Force

Management services by executing CDL-scripts directly, eveD' single binary
object which is executed is treated in this case as a separate Task Force and is
distributed in the network.

This can make especially sense in a "development environment", based on
a small network size (begining with two up to four processors), because different
shells, compilers and other utilities are transparently placed on different

processors. Under these circumstances, setting the cdl-flag results in a better

utilization of the processor resources.

The use of the cdl-flag becomes critical, if a network is intended be used
for development purposes and for application execution in parallel. In this case,
it is desired to keep parts of the network (usually the larger part) free for the

exclusive execution of these "application Task Forces", which shall not be

influenced by other jobs, meanwhile initiated by the user. This cannot be

achieved, if the cdl-flag is set, because there is no internal barrier between
processors within a subnet. It may happen for example, that the Task Force

Manager places different utilities temporarily on processors, which are required
with their full memory space for the execution of application Task Forces.
Because the behaviour of the system is in this case totally unforseen, it is better
to make no use of the cdl-flag!

4,2 Working with Task Forces

If the edl-flag was previously set, it can be removed by typing:

56

unset cdl <CR>

If more than one processor is required for development purposes, it is a good

approach to declare not only the root processor, but also some other nodes in

the resource map as SYSTEM-nodes and to start different shells and other

utilities explicitely on these Transputers. The remaining processors - declared as

HELlOS-nodes - are for exclusive execution of application Task Forces and are

not directly influenced by jobs executed on the set of "development processors"
(16).

In general, Task Forces can be terminated in two different ways: Simply by

typing CTRL-C from the corresponding shell or by removing the associated

entry from the Task Force Manager's directory. If we have started the job in the

background, we have to bring it first back into the foreground to terminate it via

CTRL-C. Imagine a Task Force running in the background with the job

identification number "4". By typing

1% %4 <CR>

for example, we can move this job back into the foreground again and terminate

it subsequently by typing CTRL-C.

(16) : A last note: If the cdI-flag is Dot set, Task Forces can only be started by executing their script­
fIles directly from a shell. If a precompiled CDL-script is to be executed, the cdI-flag has to be set!

4.2 Working with Task Forces 57

To pass a termination request directly to the Task Force Manager, a message can
be sent to this server, referring to an entry noted in the Task Force Manager's

directory by using the standard nn-utility. An example: Ifwe want to terminate a
Task Force named "cdl.tf.1.4", we can execute the following command line:

rm /tfm/cdl.tf.1.4 <CR>

The Task Force Manager tries very hard to get rid of task components within a
Task Force: If a termination condition arises, it sends a KILL-signal to each of
the task components. If this does not succeed, it deletes them explicitly.

An important note for FORTRAN-programmers: The underlying FORTRAN

run-time system is actually not able to manage direct termination requests,

which are passed to the Task Force Manager directly by using nn! Therefore it is

strictly recommended to terminate FORTRAN Task Forces only by using
CTRL-C within the associated user-shell!

Another point, which has to be taken into consideration is the general problem

of memory fragmentation on processors like Transputers, which are not able to

manage virtual memory. There is a great possibility that previously contignous

memory will become increasingly fragmented during a Helios session as tasks
and Task Forces are executed and terminated.

A realistic scenario can make this problem a little bit more clear: There are
certain Helios servers like pipe, ram, null and fifo and resident libraries like CLib

and Posix, which are not installed by default on every node to keep as much

memory as possible free for application programs. These parts of code are

loaded "on demand". Now imagine a Task Force, which is started directly after
the system has booted. At this time, none of the servers and libraries mentioned
above are installed. During Task Force setup, the different task components are

4.2 Workine with Task Forces 58

placed on the distinct processors with regard to the results of the mapping

process. After this is done, pipe servers are required to establish the necessary

streams for communication. Because pipe servers are requested at this moment

for the first time, they are loaded into memory and are placed on the next free

memory location. After fmishing the Task Force, all memory used by the

different components is freed. The pipe servers on the other side still remain in

memory, staying at their initial location. This results in the first significant

fragmentation of memory! If another Task Force is initiated while the first one

is still running and some of the components require the X-Library for example,

this resident library is also loaded on demand and placed at the next free

memory location and so on ...

The problem of memory fragmentation on the Transputer is not Helios specific

and cannot be solved in general in an efficient way because of the lack of
assistance from the Transputer hardware. But there is a possibility to moderate

the increase of memory fragmentation by "pre-loading" certain standard servers

and resident libraries at an early stage directly after the system has booted. A

utility called preload is added under Helios 1.15 to do this job. This program can
be executed with the name of a subnet or a list of processor names specified as

arguments. The following servers and libraries are installed:

o tion: none -all

CLib XX XX

Posix XX XX

ram XX

null XX

fifo XX

pipe XX XX

(Figure 5)

I .

4.2 Worldn!: with Task Forces 59

To perform a preload of the minimal set of servers and libraries for all

processors of a subnet named /Cluster, the following command-line may be

executed:

I% preload /Cluster <CR>

As an alternative to this, it is possible to pass a list of processor names to build a

subset for pre-loading. To pre-load the complete set of servers and libraries as

listed above on five distinct node, the command

I% preload /01 /02 /03 /04 /06 -all <CR>

maybe used.

Thepreload command can be integrated into the loginrc-script file, if it is desired

to work with pre-loaded libraries and servers every session.

So Network Mechanisms

So Network Mechanisms

60

Hellos 1.15 uses basically the same Network Server as Hellos 1.1 with some

modifications and enhancements concerning the boot-mechanism and the usage

of links. The new Hellos bootstrap is nearly five times faster than the old one

and does not impose any restriction on the desired topology. The two main

difficulties concerning the Hellos 1.1 boot mechanisms - working with meshed

topologies and rebooting active Hellos networks without a centralized reset ­

does not cause problems anymore.

5.1 Different network sizes

5.1 Different network sizes

Topics:

- Choosing the right memory size for the

root node.

61

There is a special point, which has to be taken into early consideration at the

moment, when a Helios multi-Transputer network has to be established: The

size of the root node's memory. The Network Server and the Task Force Manager

make wide usage of dynamic memory, which is allocated depending on the size

of the network and the number of Task Forces and Task Components actually

running. Because of the fact that the Network Server and the Task Force Manager

have to be placed nearly always on the root processor, it is desirable to have as

much memory as possible available on this node to avoid any kind of memory

bottlenecks during operation.

The following basic scheme gives a guideline on choosing the right amount of

memory for the root processor. There are two different categories defined,

which differ in the way how the root node is used during work with the system:

1) Category A describes an environment, which keeps, for most of the time,

enough memory on the root processor to run for example an additional shell or

to execute some other utilities.

2) Under Category B, the root node's memory may be fully used by the

Network Server and the Task Force Manager. This can make it impossible, to run
any other program on it!

In general, the root node should always be declared as a SYSTEM node to keep

it free from Task Force components. This is absolutely recommended, if you are

using a configuration of category B, because otherwise the system may come into

a critical state while running out of memory resources.

5.1 Different network sizes 62

The table of root processor memory sizes, depending on the number of
processors being integrated in a network looks like this:

Root node to be equipped with •••

Processors

16
32

64
128

(Figure 6)

Category A

1 MB
2 MB
4 MB

> 4 MB

Category B

< 1 MB
1 MB
2 MB
4 MB

5.2 Booting a Multiprocessor Network

5.2 Booting a Multiprocessor Network

Topics:
- Starting the Network Server within the initrc-me
- Starting the Network Server from a user shell
- The Helios 1.15 boot-path

63

Every Helios network contains exactly one processor which is directly connected
to the host computer's bus via a "bus-bridgehead". This root-processsor is booted

under the control of the server program running on the host. An arbitrary
number of network processors is booted by the Network Server routines from the
moment the Network Server is successfully established on the root-processor.

Starting a Network Server is usually done by a special system task called init,
which becomes active directly after setting up the first node and before allowing

any user interaction. This task reads an initre script-file, which is searched in the

etc-directory and executes the commands described there one after another. The
following two lines within the standard initre-file cause the start of the Network
Server and the Task Foree Manager. The init task proceeds after the successful
setup of the Task Foree Manager (17).

run -e /helios/bin/startns startns -r /helios/etcjdefault.map

waitfor /tfm

The order of commands in the initre-me has influence on the sequence of the
system's setup steps: Under some conditions, a certain sequence may be strictly
recommended. For example: If you want to run your X-server on a graphics

node like Parsytec's GDS board, which might not be directly conected to your

(17) : Depending on the user licence, the program "startns.any" may be executed instead of "startns".
In this case, no limitations on the number of processors are set.

5.2 BootinK a Multiprocessor Network 64

root-processor, you are forced to start the Network Setver first to boot the
network and then run the terminal emulator program, which accesses the X­

server. If you do it the other way round - as shown in the 1.1 release initrc
example fIle - the X-server may be searched before the graphics node is
succesfully initialized. This causes problems under certain circumstances (18).

It is not essential, to start the Network Setver from the init-task. It may be

desirable under some conditions, to boot only the root-processor during a first

step - without using any resource map - and then starting the Network Setver

from a user shell as a totally independent second step. This makes particular

sense if the user has access to a machine like a Parsytec MultiCluster or
SuperCluster, which allows dynamic partitioning and configuration from a
running Helios network. In this case, the user can first allocate a set of resources
and configure them by using the electronic configuration facilities. If this
succeeds, it is possible to start the Network Setver explicitly with a resource map

binary as an argument, describing the actual configuration and boot the

processors subsequently. If the allocation has failed because of a lack of

resources, the user can try again with a network of a smaller size.

If a Network SeNer has been established, the system has to be rebooted, if
another resource map, describing a different topology is to be used. This is
recommended, because the Network SeNer is not able to perform a context

switch from one Helios network topology to another. Rebooting the whole

network and starting the Network Setver again forces this context switch!

Imagine a topology consisting of a root processor and a network with 16

processors, configured. as a 4x4-grid. The resource map is kept in a fIle called
"grid4x4.map". After booting the root node and (eventually) allocating the
resources, the network can be booted from a user shell by using the following
command-line:

(18) : Please note, that this is only a representative example - there may be other system
configurations, which also require a rearrangement of statements within the initre-fJJ.e.

5.2 Booting a Multiprocessor Network

1% startns -r grid4x4.map <CR>

65

The bootpath of Helios has changed from a "depth-first" proceeding in version
1.1. to a "breadth-fIrst" mechanism under Helios 1.15. The breadth-first
mechanism has some advantages in comparison to the old one, especially
resulting in a much more faster bootstrap with a better balanced boot tree.

The bootpath, used to establish a 4x4 processor network, looks like this:

00 Link enumeration

o
30

2

01--02 -- 03 --04

I I I I
05 -----06----- 07-- --- 08

I I I I
09----- 10----- 11-----12

I I I I
13----- 14------15---- - 16

General Helios link =
Helios link used as B boot-link =

(Figure 7)

As mentioned during the discussion of resource map structures before, it is
strictly recommended to choose an order of processor declarations which

guarantees, that a new declared processor was successfully booted by another
processor, before it is accessed the fIrst time!

5.2 Booting a Multiprocessor Network 66

The Helios 1.15 boot mechanism takes care, that all link connections, which are
declared in the resource map are usable for message passing. This is done by

turning the associated links into intelligent mode with the state nmning after

successful booting of a processor (details see below). It is in general of great

advance, to use a meshed topology, because in this case, it is possible to

communicate by using various redundant link paths which keeps the individual

link traffic rates as low as possible. Another aspect, that gives a good argument
for the usage of redundant link paths, is the greater fault tolerance.

5.3 Reset and Reboot

5.3 Reset and Reboot

Topics:

- Reset and reboot using the Network Context

- Reset and reboot with Parsytec hardware

67

There are two different approaches to reset and reboot a particular processor or

a part of a Helios network:

The first variant takes the informations hold by the Network Server and allows a
selective "soft" reset and reboot of a processor under the control of the Network

Server. This mechanism is totally independent of the underlying hardware
topology and the initial reset and boot mechanisms, but requires some additional

informations about the processors from the Network Server. With the two utility
programs reset and boot, a selective reset and boot can be performed.

To reset a node called "04" and boot it again afterwards, the following command
sequence has to be executed:

reset /04
boot /04

<CR>
<CR>

An important restriction to be mentioned for this approach is, that it is neither
possible to extend a network by booting "new" processors via links which have to
be specified explicitly, nor is it possible to reset a node physically via a dedicated

link!

5.3 Reset and Reboot 68

Parsytec Transputer hardware differs from all other vendors' products in the
way, that it is allowed to reset every processor via each of the four links. No
centralized reset mechanism is used. This results in a functionality which makes
Helios especially sympathetic to Parsytec hardware: Without terminating a

Helios session, it is possible to reset and reboot nearly every processor in a
network through a dedicated link without affecting the others. Beyond this,

processors can be integrated into the network context during a Helios session
without declaring them in a resource map; just by resetting and booting them via

links which are known by the user! This results in a system of maximal flexibility

with a very high fault tolerance, because the crash of one processor usually does
not have major influence on the behaviour of the remaining nodes (19).

To get the full benefit of using Parsytec hardware, a special binary object for
individual reset and boot of a processor is supplied. This file, called pa..!boot,

can be found in the lib-directory and should replace the original rboot program,
if Parsytec hardware is used. The Network Server uses the pa..!boot-binary during
the initial network boot to reset and boot all processors which are found,

following the boot path as shown above.

The pa..!boot program can also be called directly from a user shell to reset and
reboot a certain processor which may have crashed. This can be done as shown
below: We assume, that we want to reboot a processor called "05" from another

node which has given the name "04". The link to be used may be link number 2.

The actual subnet is named /Cluster. The following command can be executed
for resetting and rebooting node "05".

% /helios/lib/paJboot 2 /04 /Cluster/05 <CR>

(19) : The only processor which should never be reset and rebooted during a Hellos session is the
root-processor.

5.3 Reset and Reboot 69

Ifyou only want to reset a certain processor, you can use the pa...!eset utility and
execute it remotely on a neighbour node. With reference to the example above,

this can be done by typing:

I% remote 04 paJeset 2 <CR>

As mentioned before, resetting and rebooting processors by using pa...!eset and

pa...!boot is not restricted to nodes which are declared in a resource map. It is

also possible, to boot additional nodes during a Helios session and expand a

network step by step. These nodes can be used nearly in the same way as
processors which are booted under the control of the Network Server with the

only major difference, that the Network Server is not able to integrate them into
its actual context. This results in a behaviour under which the Is command on
this processor (for example: "Is /NEW/tasks") works very well, whereas ps, which
accesses the Network Server's directory fails. It is also impossible for the Task
Force Manager to make use of such a node during initialization of a Task Force,

because the Task Force Manager also depends on the information, kept by the
Network Server. All other operations - especially distributed searches for

programs running on such a node - will succeed.

5.4 Usage of Links

5.4 Usage of Links

Topics:
- Link modes: dumb and intelligent

- Usage of dumb links

- Combining Helios with OCCAM networks

- Usage of redundant link paths

70

The Helios kernel routines consist of processes called Link Guardians, which are
responsible for managing all link data transfer operations for each individual

physical link connection. Helios distinguishes between two different "modes" for
Transputer links (20), intelligent and dumb. A link used for standard Helios
message passing communication is configured into intelligent mode. A set of
various states like running, dead, crashed and timeout is associated to an
intelligent link. If a link is to be kept free from all Helios message passing

protocols, it has to be turned into dumb mode. In this case it is possible to
perform basic byte-to-byte link communication between two nodes without any

effects from higher Helios communication mechanisms.

The user can take control over the link modes by using the Configure() system­
call. In conjunction with the LinkData() call, which gets a copy of the actual
configuration vector for the desired link, it is possible, to change the mode of a

link during a Helios session. This can be especially useful, if a Helios network is
to be combined with an OCCAM network (= "hybrid network"). In this case, the

communication between the two networks has to be managed from the Helios

side by using a dumb link. The system calls Link/n() and LinkOut() are supplied
to perform data transfer operations on a dumb link. The communication
protocol between OCCAM and Helios is full under the control and
responsibility of the user. The second scenario, which makes use of different link
modes and associated states, is a distributed Helios network of an arbitrary

(20) : We do not take account on non-connected links here.

5.4 USB" of Links 71

number of processors, organized in pools of various sizes and topologies, which

are connected and disconnected at any time during a Helios session and allow

data transfer and remote execution of Task Forces and single tasks between

different logical networks.

The following configuration gives an example of a "hybrid network", consisting of

OCCAM and Helios nodes. We assume, that there is a MultiTool server (21)

running on the Helios node "01", using link number 1 as an entry into the

OCCAM subnetwork. This link and link 1 of processor "02" are configured into

dumb mode to allow direct link data transfer between the two networks. (These

link have to be declared as "external" within the Hellos resource map.)

Link enuneration

o
30 1

2

dumb link

Helios • Network

(Figure 8)

OCCAM • Network

(21) : MultITool is the Parsytec specific Transputer development environment, which is based on the
InmosTDS.

5,4 Usa" of Links 72

Such an environment makes special sense, if a time-critical application has to be
realized. Because of the fact that Helios - as a non-deterministic operating

system - is not able to guarantee fixed response times which are essential for
real-time applications, it is a good approach to use a "hybrid network": On the

"OCCAM-side", all time-critical parts of the application are handled including

the access to high-speed devices. The Helios part of the network can be used for

comfortable user interaction (X-Windows), fast filing system (Helios filing
system with SCSI-devices) and all other tasks concerning data-processing and

number crunching. On the Helios side, the user gets the full benefit of a
comfortable development environment and standard programming interfaces.

The following fragment of code demonstrates the usage of the LinkData() and
Configure() system calls to tum a link into dumb mode. The configuration vector

of the specified link is read and whether the link is in a running state is checked.
If this is the case, nothing is changed, because another instance makes use of the
link. Otherwise, the link is put into dumb mode.

#include <helios.h>
#include <link.h>
/* ... */

{

struct
struct
word

/* ... */

Linklnfo linfo;
Li nkConf conf;
l ink_num;

LinkData (link_num, &linfo);
if (linfo.State 1= Link_State_Running)

<
conf. Id = link_null;
conf.Mode = Link_Mode_Dumb;
conf.State = 0;
conf. Flags = 0;

Configure (conf);
}

/* ... */
}

(Listing 13)

5.5 Basic Multi-User Facilities

s.s Basic Multi-User Facilities

Topics:

- Connecting and disconnecting Helios networks

- Naming conventions

- "Application shells" and remote Task Forces

- The question of security

73

Helios 1.15 offers basic mechanisms and tools to connect and disconnect various

Helios networks at runtime. External links, declared in different resource maps

build the interface between these different subnetworks. Because it is sensible to

establish and destroy logical connections between separate Helios networks and

to share processor resources in common, the basic mechanisms and some well­

proved results of multi-networking will be discussed in greater depth below.

At first, we define a sample test environment with a practical working surface to

point out all relevant aspects of multi-networking: There are two separate Helios

networks, one consisting of three processors (User A, subnet name "Net"), the

other one consisting of 16 processors (User B, subnet name "Pool"). User A uses

a PC as a host whereas user B resides on a Sun. The link connection between the

two networks via the terminal nodes /Net/POO (link 1) and /PooljOO (link 3) is

declared in both resource maps as an external link.

5$ Basic Multi-User Facilities

link enuneretion

o
30

2

74

/Net

PC

(fPC)

User A

(Figure 9)

I
I
I
I

external link
I
I
I

/Pool

Sun

User B

Helios handles these external links in the following way: After booting up the
two separate subnetworks "Net" and "Pool", the extemallinks are configured to
intelligent mode and reside in dead state (22). They can be activated from both

sides by using the elink utility program. Ifuser A, for example wants to come into
contact with user B, he has to execute the elink-command like this:

1% elink /00 1 <CR>

After this, the links on both sides have changed to running state and allow
distributed searches through the whole network. To access the Network Server
of the subnet "Pool" from the side of user A for example, the command

(22) : This can be verified in a very easy way by using the extended map utility under Helios 1.15 with
the submenu for link activities.

5.5 Basic Multi-User Facilities

I% Is -1 jPoolfns <CR>

75

may be used. Another example: If user B wants to copy a sub-directory called
"/helios/example" from the host's filing system of user A (fPC) into a sub­
directory "my_exam", he can execute the following command line:

1% cp jPCjheliosjexamplej* my_exam

The connection between two subnetworks can be removed by using the dUnk
utility. This turns the associated link into dumb-mode, which makes it impossible
for tasks "from the other side" to send any Helios message over this link.
Unfortunately, the reconfiguration of a link into dumb-mode causes the Link

Guardian on the other side also to change the link into dumb-mode. This makes
it in general impossible to re-establish the connection from one side again, if a

link has once entered dumb mode. As a solution, a utility program intellgt is
supplied under Helios version 1.15, which can be used to keep a link intelligent.

This program has to be called by the user B in the following way (23):

I% remote 00 intellgt 3 5 & <CR>

(23) : In this case it is assumed that user A accesses the processor pool of user B for operating. This
makes it essential for user B to keep the external link (3) intelligent to allow user A connection and
disconnection.

5,5 Basic Multi-User Facilities 76

The task intellgt is installed on processor "00", which ''watches'' on link 1 (first
parameter) of this Transputer and - if the link has turned to dumb mode ­

reconfigures the link back to intelligent. This is done in steps of five seconds

(second parameter). If such a task is installed on processor "00" (in "Pool"), user

A is able to connect and disconnect the two subnets without any restrictions! In

the worst case, user A has to wait for maximal five seconds to satisfy his request
for connecting both subnetworks.

There are some other critical points which have to be taken into consideration to
avoid name clashes:

1) The I/O-nodes should be given individual names to allow an unique

identification of the different host-machines and the devices controlled by them.

This is done in the example configuration by renaming the "Net"-I/O node to
"PC" instead of "10".

2) By default, the system login-windows are given the name "console". This

may also cause problems during distributed searches, fmding the "right" console­

device for terminal output. Therfore it is a good practice, to give the initial

console window other names than "console". This can be done by changing the
appropriate line in the initre-file:

console /window console 2

This line causes the creation of login window-shell with the name "console_2"
instead of "console" which is used as a default value..

3) Sometimes it may be useful to give each processor within the whole

'network an unique name. This guarantees, that there are no problems arising

concerning context ambiguities, while searching for a particular processor.

5.5 Basic Multi-User Facilities 77

There are in general two possibilities to make use of processor resources from

remote subnetworks: At first, a utility program called remotetf, which is added

under Helios 1.15, can be used: This little program can be compared with the

standard remote-utility with the major difference, that it accesses a Task Force
Manager across a network boundary instead of a processor within the local
network context. If user A wants to make use of the processor resources of user
B, he can use remotetf in the following way: (A task force named "test.cdl" is

passed to the Task Force Manager /Pool/tfm to be executed.)

I% remotetf /Pool cdl test.cdl <CR>

It should be noticed, that it is only possible to pass executable binary objects as
an argument to remotetf. Therefore, the COL-compiler is passsed as the main

argument for remotetf and the COL-script and optional parameters follow as
parameters of the COL-compiler. If the connected subnetworks are using for

example identical I/O-node or processor names, it is a good practice, to specify

full pathnames for puid and code attributes within the COL-script to avoid name
clashing conflicts. A CDL- script, named "test.cdl", may look for example like
this:

#!/heLios/bin/cdL

component master {
memory 100000;
code /Net/PC/heLios/test/master;
}

component sLave {
memory 100000;
code /Net/PC/heLios/test/sLave;
}

master [$1] III sLave

(Listing 14)

5.5 Basic Multi-User FacUities 78

The second variant for user A to work with the processor pool of user B is, to

place a shell - in this case called "application shell" - remotely on one of the

processors of the network of user B. Such an application shell can be generated

in the following way:

wsh /Pool/l0 <CR>

Ifuser A switches to this new created window shell, he gets the full context of the

network "Pool", whereas the terminal I/O streams are redirected to his console
device. Such a shell is called "application shelf', because it is especially helpful to

make use of such a shell to start Task Forces and other single task applications.

In contrast to this, other shells of user A which reside locally in network /Net

can be used for development purposes like editing and compiling ("development

shelf').

A point of general interest is the question of security in such a Helios multi-user

environment: Helios 1.15 does not support any mechanisms for access right
setting and checking on network level (24)! It is under the full responsibility of

the different users to take care, that no conflicts are arising while using a shared

processor pool. This makes it especially preferable to work with the remotetf­

utility instead of using remote installed "application shells", if a better separation

of different user activities is to be realized. Nevertheless, it is in general possible

for any user to get influence on the behaviour of other user's Task Forces, if they

are sharing the same resources!

(24) : Full access right mechanisms will be implemented in the next release of Hellos.

Appendix A . Further Information

Appendix A - Further Information

79

There are some topics which have to be mentioned here, because they were not

discussed in depth before:

This application guide is only the first part of an additional set of Helios

documentation supplied by Parsytec. A second volume, dealing with a wide

range of themes which are left out so far, like

> building resident and non-resident libraries

> working with dumb-links,

> communicating via message passing,

> tayloring the system in general and

> making best use of utilities and compilers,

which are Helios specific,

will follow.

There are some more additional utilities on the distribution medium like

where and pp, which are not discussed in greater detail here. An emacs
configuration-file called emacs.rc (for the PC) is also supplied.

System programmers can get more information from the "Helios

Technical Reports", published by Perihelion Software Ltd. A list of the available

items can be received.

ADpendix B • Proper POSIX handline

Proper POSIX handling under FORTRAN

1**

*

80

*
*
*
* 0

*
*
* 0

*
*
*

EXTENDED POSIX STREAM-I/O SUPPORT FOR HELlOS FORTRAN
==

Extensions to the functionality of some POSIX compatible stream­
calls to offer a more comfortable data transfer handling for the
FORTRAN programmer.
This module has to be compiled with the stack checking option
disabled ("c -Fs .•• "), if it has to be linked with a FORTRAN
program.

.*.****.*****.*******

* Uritten : 8/12/89 , H-J Ermen
***1

#include <helios.h>
#include <posix.h>

word *PSX_READ (word *para[]);
word *PSX_WRITE (word *para[]);

1**
* CONTROLLED READ FROM A POSIX STREAM

*
* Parameters :

*
*
*
*
* Return

*

para =Pointer to an array of pointers with the
following meaning:

para [0] Stream
para[1] Pointer to the buffer to be transferred
para[Z] Amount of data (bytes) to be transferred
o if no error occurrs, otherwise -1

**1
word *
PSX_READ (word *para[])
{

word stream, amount, result, ret;
char *buff;

stream =*para[O];
buff (byte *) para[1];
amount =*para[2];

Appendix B - Proper poSa handling

while amount> 0)
{

resuLt = read (stream, buff, amount);
if resuLt <= 0)
{

ret = -1;
return &ret;

}

amount -= result;
buff = &(buff[resuLt]);

}

ret =0;
return &ret;

}

/***
* CONTROLLED WRITE TO A POSIX STREAM

*

81

* Parameters

*
*
*
*
* Return

*

para = Pointer to an array of pointers with the
foLLowing meaning:

para [0] Stream
para[1] Pointer to the buffer to be transferred
para [2] Amount of data (bytes) to be transferred
o if no error occurrs, otherwise -1

**/
word *
PSX_WRITE (word *para[])
{

word stream, amount, resuLt, ret;
char *buff;

stream =*para[O];
buff = (byte *) para[1];
amount =*para[2];

whiLe amount> 0)
{

resuLt = write (stream, buff, amount);
if resuLt <= 0)
{

ret = -1;
return &ret;

}

amount -= resuLt;
buff =&(buff[resuLt]);

}

ret = 0;
return &ret;

}

Appendix C - Working with farms

Working with farms:

/* gen.c

*
* NUMBER GENERATOR

*

82

* -
*
* -
* -
*
*/

used as a front-end for a farm of worker tasks to test the behaviour
of the load balancer.
transfers random initialized data arrays to the worker processes
to be linked with a module whic defines full_read() and full_write

#include <helios.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <syslib.h>
#include <posix.h>
#include <lb.h>
#include <nonansi.h>

#define DIM 2

typedef struct datapkt {
LB_HEADER header;
double data [DIM] [DIM];
int index;

} datapkt;

void reader (int count);

/* The data packet used for */
/* the data transfer: */

/* Used by the load balancer*/
/* The data: an array */
/* For identification */

static datapkt r-pkt;
static datapkt d-pkt;

static debug =0;

/* For receiving data
/* For sending data

/* Default: no debugging

*/

*/

*/

Semaphore wait_term; /* Used for synchronization */
/* at termination point */

Appendix C - Workine with farms

/***

* THE WRITER , SENDING ARRAYS TO THE WORKER PROCESSES
**/

int
main int argc , char *argv[]
{

int count, i, j;

83

II argc > 3)if
(

)

argc < 2

printf

return

("Usage: Xs
argv[O]);

1·,

<n~r

/* Check the arguments */
/* -d : debugging */

of arrays to be calculated> [-d]\n",

count = atoi (argv[1]);
if (argc > 2 && argv[2] [1] -- 'd')

debug = 1;

for (= 0 < DIM i++ /* Initialize the array
for j = 0 ; j < DIM ; j++)

d-Pkt.data [i] [j] = 1.234;

*/

InitSemaphore (&wait_term, 1); /* For correct termination */

Fork (5000, &reader, 4, count); /* Create the receiver pro- */
/* cess. */

d-pkt.header.size = sizeof (datapkt) • sizeof (LB_HEADER);
d-pkt.header.control = 0;

for (i =0 ; i < count ; i++
{

d-pkt.index = i;

/* Transfer the sequence
/* of arrays to the lb

*/

*/

/* Wait, until write succeeds*/
full_write (5, (char *) &d-Pkt, sizeof (datapkt));
if debug)
{

printf (ligen: Written array no: %d\n",);
fflush (stdout);

)

)

/* Prepare and transfer the */
/* termination message */

d-pkt.header.size = 0;
d-pkt.header.control = LB_MASTER + Fn_Terminate;
full_write (5, (char *) &d-pkt.header, sizeof (LB_HEADER));

Appendix C - Workina with farms

/* Wait fo~ the ~eceive~

/* p~ocess to te~minate.

Wait (&wait_te~m);
printf (ligen: finished\n");
fflush (stdout);
exit (0);

}

/***
* RECEIVE RESULTS FROM FARM WORKER COMPONENTS
**/

void
reader (int count
(

int i, j;

*/

*/

84

Wait &wait_te~m);

full_~ead (4, (char *) &r-pkt,

fo~ (i = 1
(

<= count ; i++)

/* Note that the ~eceiver

/* is active
/* Expect the exact number
/* of packets

sizeof (datapkt));

*/

*/
*/

*/

if (debug)
{

p~intf (ligen: Received array no: %d\n", ~-pkt.index);

fflush (stdout);
}

}

<eof>

}

Signal &wait_te~m); /* Allow the sende~ to
/* terminate the task

*/

*/

Appendix C - Working with farms

/* work..c

*
* FARM WORKER-TASK

*

85

* -
*
* .
*
*
*/

this is one element in a processor farm which is connected via the
the load balancer to the master task..
reads arrays of double, performs some calculations and transfers them
back.

#include <helios.h>
#include <stdio.h>
#include <stdlib.h>
#include <syslib.h>
#include <math.h>
#include <posix.h>
#include <lb.h>

#define DIM 2

typedef struct datapk.t {
LB_HEADER header;
double data [DIM] [DIM];
int index;

} datapk.t;

static struct datapk.t dJ)k.t;

int
main (
{

int
double

i, j, repeat;
result;

for
(

;;)
/* Expect the data packet */

full_read (0, (char *) &dJ)k.t, sizeof (datapk.t));
/* We have received a ter- */

/* minate request? */

if ((dJ)k.t.header.control &LB_FN) == Fn_Terminate
break.;

/* This is a (dummy) calcu· */

/* lation part. */
for (repeat =0 ; repeat < 10000 / DIM ; repeat++

for (i =0 ; i < DIM ; i++)
for (j = 0 ; j < DIM ; j++)

result = sin (dJ)k.t.data [i] [j])/0.234;

Appendix C . Workine with farms 86

/* Prepare the repLy */

d-pkt.header.size =sizeof (datapkt) • sizeof (LB_HEADER);

/* Write the resuLt of the */

1* calculation back *1
fulL_write (1, (char *) &d-Pkt, sizeof (datapkt));

}

exit (0);

}

<eof>

The CDL-script used:

#! IheLios/bin/cdL

component Lb {
memory
code

}

component gen {
memory

}

200000;
IheL ios/bin/lb;

80000;

component work {
memory 30000;

}

gen $2 -d [$1] III work

Al!pendix D . Diagnostics from the Task Force Manager

Diagnostics from the Task Force Manager

••• start •••

87

/Cluster/tfm :
/Cluster/tfm :
/Cluster/tfm :
/Cluster/tfm :
/Cluster/tfm :
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm :
/Cluster/tfm :
/Cluster/tfm :
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm :

create request received
calling create_tf
create_tf, building cdl object for cdl.tf.1
create_tf, creating mapping structure
create_tf, performing mapping
Overall Mapping quality for Phase1 1e
mapping done
allocating mapped resources
executing components
executed /Cluster/PC/helios/c/cdl/demos/s_ on /Cluster/01/tasks
executed /Cluster/PC/helios/c/cdl/demos/m_ on /Cluster/02/tasks
create_tf, installing monitor processes
creating monitors for cdl.tf.1.1
create_tf, creating connecting streams
task /Cluster/01/tasks/s_.6, calling GetProgramInfo
task /Cluster/02/tasks/m_.5, calling GetProgramInfo
created cst ream object /Cluster/01/pipe/S1.1
created cstream object /Cluster/02/pipe/SO.1
create_tf, done
create done
open request received
successfull open
stream_server for tf cdl.tf.1.1
stream_server for cdl.tf.1.1, received environment
stream_server for cdl.tf.1.1, Programlnfo, port c0560019

execution •••

termination •••

/Cluster/tfm :
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm
/Cluster/tfm :

task /Cluster/01/tasks/s_.6 terminated with 0
tf cdl.tf.1.1, component terminated, 1 left
task /Cluster/02/tasks/m_.5 terminated with 100
tf cdl.tf.1.1, component terminated, 0 left
deleting program /Cluster/01/tasks/s_.6
deleting program /Cluster/02/tasks/m_.5
tf cdl.tf.1.1, sending terminate to c0560019
tf cdl.tf.1.1, waiting for 1 Close requests
stream_server, close request
stream_server for cdl.tf.1.1 finishing
deleting tf cdl.tf.1.1
delete_tf for cdl.tf.1.1, removing task force from directory
delete_tf, calling terminate
delete_tf, freeing task list
delete_tf, releasing mapped resources

Annendix D - Dialm0stics from the Task Force Mana&er

/Cluster/tfm : delete_tf, free'fng connecting streams
/Cluster/tfm : Deleting pipe /Cluster/D2/plpe/SO.1
/Cluster/tfm : Deleting pipe /Cluster/01/plpe/S1.1
/Cluster/tfm : delete_tf, free'fng mapping structure
/Cluster/tfm : delete_tf, free'ing edl object
/Cluster/tfm : delete_tf, free'ing TASK_FORCE structure
/Cluster/tfm : delete_tf, done
/Cluster/tfm : Mem free is 24780 , heap is 31964

••• terminated •••

88

	Contents
	Introduction
	1 Helios Release 1.15
	1.1 Installation Notes

	2 Resource Management
	2.1 Resource Map Structure Details
	2.2 Naming of Network Elements
	2.3 Attributes

	3 Parallel Programming
	3.1 The Programming Model
	3.2 Usage of POSIX Streams
	3.3 Writing a CDL script
	3.4 Usage of Indices and Parameters
	3.5 An Example Task Force
	3.6 Using a Load Balancer
	3.7 Language Dependent Notes

	4 Task Force Management
	4.1 The Basic Mechanisms
	4.2 Working with Task Forces

	5 Network Mechanisms
	5.1 Different network sizes
	5.2 Booting a Multiprocessor Network
	5.3 Reset and Reboot
	5.4 Usage of Links
	5.5 Basic Multi-User Facilities

	Appendix
	A Further Information
	B Proper POSIX handling
	C Working with farms
	D Diagnostics from the Task Force Manager

