
Gesellschaft fUr f7j)Glr:JRW"rl..ec
__Pa_ra_lI_e'_eS_y_st_em_t_ec_h_nik_m_b_H Lf;:!..~U CVv-&~ _

H eli 0 s Series

Software Product

Copyright (C) parsytec GmbH 1989

II!====HE=LIOSFI=LESYST=EM===1.11

---,---,

iJ
"~'

Autor
A. Ishan

Helios File System

Software Documentation

Version 1.1, September 1989

copyright

This manual is copyright (C) 1989 by Parsytec GmbH

All Rights reserved. This document may not, in whole
or in part, be copied, photocopied, reproduced or
reduced to any electronic medium or machine readable
form without prior consent, in writing from Parsytec
GmbH, D-5100 Aachen, Juelicher strasse 338, West­
Germany.

The Helios File System is copyright (C) 1989 by
Parsytec GmbH.

This software was written by A.lshan. Additional
work was done by M.Clauss and H.J.Ermen.

Printed in West-Germany

Con ten t

1.

1.1

Introduction

Main Features

...................... 1

1

2.

2.1

2.2

3.

4.

Hardware Requiremen~s

MSC - Version

Rawdisk - Version

Software Requirements

Installation

3

3

4

5

6

,.,-,

5.

6.

7.

Defining Disc - Devices ••.•....... 10

Tutorial Installation .•..•.•....... 13

Commands • . • . . • . • • . . • • • • • • • • • 16

o

1. I n t rod u c t ion

The Helios File-System (HFS) is a powerful tool to
handle mass-storage devices in multi-Transputer net­
works. Various applications which need highest data
transfer rates can be realized - especially in com­
bination with SCSI-devices which can be accessed by
Parsytec's "Mass-Storage-Controller" (MSC) board.
Typical fields for applications which can make use
of this product are for example image-processing and
real-time and distributed databases.

1.1 M a i n F eat u res

o The Helios-File-System (HFS) is based on the
Berkeley Fast-File-System (FFS) up from version
4.2BSD. A lot of extensions have been made to
achieve maximal performance and guarantee an optimal
use of the disk-capacities.

o The basic block size is set to 4 KBytes. In
dependancy on the cl ient ' s request, the server is
able to build "packets" of various sizes in it's
buffer cache to fit the request in an optimal way.
The packet-handling is done in a transparent manner
to the client tasks.

,~.\

o Directories and files are placed on the disk or
partition by using different strategies to get a
good compromise between spreading and clustering of
information (minimal fragmentation). To implement
such balancing procedures, the file-server divides
the disk into a number of equal sized "cylinder­
groups" which are controlled separately.

o In contrast to the BSD Fast-File-System the
inode-handling was implemented in a more straight­
forward way: Inodes and entry-names build "Directo~

ry-Entries" which are kept in special directory­
blocks. There is no fixed upper limit of the number
of directory-entries in the file-system.

o The HFS is designed as a device-independant
standard Helios-server. This means especially, that
the server can be placed in the Transputer-network
on a node by the user's choice. The topology of the
target network is therefore nearly irrelevant! More
than one HFS can be installed and used in one Helios
network (only the MSC-versiont) which can be acces­
sed by a nearly unlimited number of users tasks.

o The HFS also offers an inexpensive alternative
to the MSC-board and SCSI-devices: If a PC or compa­
tible machine is used as a host, it is possible to
make use of a "rawdisk-interface". The rawdisk re­
quires a separate partition on the PC's hard-disk
which has to be formatted physically first and on
which the logical file-system is created by a spe­
cial Helios-utility. (see below)

/ ' '

,-

o To achieve maximal flexibility for the user,
the server is full parametrizable. with the desired
hardware and application environment in mind, it is
possible to manipulate the disk- and the buffer­
cache parameters in a very wide range.

o Various utilities are added to the software ­
package to ease handling of the server. Especially
protection mechanisms based on capabilities are
enabled.

o A file-system consistency checker and more
tools for diagnostic work will be added in the next
release of the Helios File System (HFS release 1.2).

2. Hardware Requirements

The distribution includes three device drivers in
source-code and binary format which build the inter­
face between the device independant layers of the

file-server and the physical storage device. The

sources of these device drivers are part of the

package to demonstrate how a device driver has to be
written. The following devices are especially sup­
ported:

2.1 MSC - version

The MSC-version makes use of Parsytec' s MSC-board

which offers 4 MBytes RAM and a T800 Transputer for

processing. The HFS will run on this processor and
builds up it's buffer-cache structures by making use
of the MSC' s memory. A suitable SCSI-device with a
capacity of up to 2 GBytes can be easily added. At
the moment only hard-disks are supported - future

versions will also allow access to streamers and
optical drives.

The following example demonstrates how the HFS is

integrated into a system which makes use of the MSC

and a SCSI-device.

PC fSUN
(Host)

TPM-4

(T800,4MB)

SCSI-Interface
I

I
I
I
I

MSC
(T800,4MB)

,
file-server

-

2.2 Rawdisk - Version

As mentioned before, the rawdisk-version makes use
of a separate partition of the PC's harddisk. To
allow comfortable work, there should be at least 20
MBytes on this partition. The server can be placed
in this case on a processor by the user's choice.
The only thing to be kept in mind is that this node

should offer enough memory to install a suitable

buffer-cache.

An example for a Helios-network, working with the
HFS in combination with the Rawdisk-device is shown
below:

PC

(Host)

DOS-Partition

HFS-Partition

TPM-4

(T800,4MB)

Transputer-network

MTM-2-11
(T800,2MB)

\
file-server

3. Software - Requirements

To work with the HFS properly, the "Helios distri­
buted operating system" is required. The software is
able to run with Helios version 1.1 (Is and In) and
upper.

/)
J-

4. Installation

The Helios File System is shipped on one 5,25" (DO)
disk in IBM-PC compatible format. You should find
the following directories and files on this disk:

The server program "fs" and various utilities :

a:\bin\chmod
a:\bin\fs
a:\bin\fsync
a:\bin\gdi
a:\bin\matrix
a:\bin\refine
a:\bin\sync

l' a: \bin\termfs

The device-info source files and binary objects

a:\etc\devinfo.src
a:\etc\devinfo

Device driver programs

a:\lib\raw.dev
a:\lib\msc.dev
a:\lib\msc02.gen

Example device drivers

a:\device\raw
a:\device\msc
a:\device\m212

The PC rawdisk device-driver
The MSC (SCSI) device-driver
The M212 device-driver

New and modified header-files

a:\include\device.h
a:\include\module.h

'-'

i) The first step is to copy all files from the
subdirectories of the distribution disk to the asso­
ciated directories of the host's file-system. This
can be done for example by :

xcopy a: c:\helios /s (under MS-DOS)

or

cp -r /a/* /helios

ii) Device dependant notes:

(under Helios)

,........ , ,~_.-.,

, .---.

If you are using a rawdisk-device, you have to
prepare the desired partition on your PC-harddisk
under MS-DOS with the utility MAKEDISK.EXE, which is
found in the sUbdirectory \DEVICE\RAW. One of the
tasks of MAKEDISK is to erase the File Allocation
Table (FAT) of this partition.

Note that this partition is - after for­
matting - for exclusive use of the HFS. No
MS-DOS files can be placed there simul­
taneously !

The rawdisk-device has to be declared in the
HOST. CON configuration file. The following line has
to be added:

Add for example

rawdisk drive =d ,

if you want to make use of the DOS-partition "d" on
your harddisk.

I f you are using the MSC as your mass-storage
system, the file MSC02.GEN which contains some OCCAM
low-level supporting routines has to be placed in
the /lib - directory.

You should declare the processor on which the
HFS is installed as a SYSTEM-node in your resource­
maps to prevent the Task-Force Manager from
executing other tasks on this node.

iii) Booting the file-server

After installation and booting the
an empty file system can be created
cuting "fs" with the option "-mil
processor:

Helios-network,
on disk by exe­
on the desired

.---. ':"" ." .~

remote <processor> fs -m <device>

This causes the logical formatting routine to create
an empty file-system depending on the informations
kept in the device description file (see below!). If
the server shall be rebooted another time without
formatting, the following command line has to be
executed:

remote <processor> fs <device> &

To ease handling at system startup-time, this line
can be placed for example in the "loginrc" script­
file.

Note that the user has to take care, that the de­
sired processor really exists as a Helios-node and
offers enough memory to install buffer-cache data
structures. If the MSC-board is used it is recommend
that the server is always executed on this
processor!

5. Defining Disk Devices

All device-dependant informations associated with
the physical disk device which shall be used by the
HFS are kept in a "device information file"
(devinfo.src). This file resides in the jetc
directory and can be easily modified by using a text
editor. A special utility "gdi" generates a binary
object named "devinfo" from the device
information file. This file also has to be placed in
jetc where it is accessed during the file-server' s
boot phase.

Some "advanced" utilities for optimization of the
buffer-cache layout - especially the possibility to
choose buffer-cache packet-sizes totally free - will
be supplied in the next release of the HFS (version
1.2). This version will also contain a comprehensive
Technical Manual which offers a deeper view into the
mechanism and techniques which are used by the HFS.

The following listing is an example which shows, how
informations are arranged in the device information
file.

, Example for 8 device information file
, *****.***.*.*****.*********************••••,
, A M212 - device

fileserver m212
{

device m212
cachesize 100
syncop 0
volune (

name fs
partition 0

)

)

, The PC-rawdisk environment

fi leserver raw
{

.r--.. ##
device
cachesize
syncop
smallpkt
med i l.II'pkt
hugepkt
smallcount
mediuncount
hugecount
volune
(

raw
1000
o
1

4
16
10

4

14

Type of discdevice
Cache size in kBytes (excluded)
Partly synchronous mode

Blocks per small cache packet (const.)
Blocks per medium cache packet (const.)
Blocks per huge cache packet (const.)
Number of small cache packets «= 10)

Number of medium cache packets «= 4)
Number of huge cache packets «= 14)

name
partition
cgsize
neg
cgoffset
minfree

)

)

The MSC (SCSI) environment

fileserver msc
{

fs
o
256
8
3
o

Name table entry
currently not used
Blocks per cylinder-group «= 256)
Number of cylinder-group «= 8)
Offset in cylinder-group (const.)
currently not used

##

device
cachesize
syncop
smallpkt
medi l.II'pkt
hugepkt
smallcount
mediuncount
hugecount
volune
(

msc
2000
o
1

4
16

20
8
28

Type of discdevice
Cache size in kBytes (excluded)
Partly synchronous mode
Blocks per small cache packet (const.)
Blocks per medium cache packet (const.)
Blocks per huge cache packet (const.)
Number of small cache packets «= 40)
Number of medium cache packets «= 15)

Number of huge cache packets «= 50)

name
partition
cgsize
neg
cgoffset
minfree

>
)

fs
o
2560
4

3
o

Name table entry
currently not used
Blocks per cylinder-group «= 3072)
Number of cylinder-group «= 300)
Offset in cylinder-group (const.)
currently not used

discdevice m212
{

name m212.dev
controller 3
addressing 1
mode Ox11
partition (

drive 0

start 2

>
drive {

id 1
type 1
sectorsize 512
sectors 17
tracks 4
cylinders 612

>
>

discdevice raw
,~

{

-t'"_~ name raw.dev
controller 0

addressing 1
partition {

drive 0

>
#I drive {
#I id 0
#I type 0
#I sectorsize 512
iI sectors 17
iI tracks 6
iI cylinders 176
iI >
>

discdevice IlISC
{

"" ,...,....\ name IlISc.dev
.......,,1 controller 0

addressing 1
partition {

drive 0

>
#I drive {
#I id 0

#I type 0

#I sectorsize 512
iI sectors 17
iI tracks 6
#I cylinders 769
iI >
>

serialserver l ink3
{

device link.dev

,~ address 3

>

6. T u tor i a 1 Ins tal 1 a t ion :

The following example checklist should help you to
setup a new file-system and work with it. For this
example we use the configuration as described below:

A PC acting as a host with the partition "d"
for use by the HFS (rawdisk-version)

A network with a node named "HFS" which offers a
T800 and 4 MBytes RAM (a TPM-4 for example) to
keep the file-server with all data structures.

startup:

The first step is to prepare the MS-DOS partition
for working with the HFS. Execute the following
command from MS-DOS level. Make sure that you have
saved all files from the desired partition, because
the whole MS-DOS filing-system on this logical drive
will be erased!

makedisk d

Add the following line to your HOST. CON - file:

rawdisk drive = d

Then the Hel ios network can be booted as usual.
(Make also sure that the processor "HFS" is declared
as a SYSTEM-node in the resource-map.):

server

After logging in, you can prepare an empty file­
system, based on the informations which are kept in
the devinfo - file. Take a look at the declarations
for the "raw" file-system and the "raw"-device in
the example above. If you want to change some
parameters, you have to recompile the devinfo-file:

pushd Ihelios letc

emacs devinfo.src

<editing>

Compilation of a modified device information file:

gdi devinfo.src devinfo

popd

An empty Helios file-system will be created on the
rawdisk-partition by executing:

remote HFS fs -m raw

Note that the file-server is
formatting the disk. To perform
boot you should type in:

remote HFS fs raw ,

not booted after
the initial server

Now the
created
of the
absolute

server is booted
on the processor
file-system you
pathname:

and a name-table entry is
"HFS". To access the root
can use for example an

cp xyz Iraw

This command will copy the file "xyz" into the root­
directory of the file-system.

Finishing:

To terminate the file-server properly before
shutting down the whole system, you should generate
a "last sync" to write all blocks to disk which are
marked as "delayed write". Note that this step is
always recommended, if you are working in the
"partly synchronous" mode (syncop = 0 in the device
information file)

sync /raw

The server itself is terminated by performing

termfs /raw

~"

7. Commands

The following commands can be executed from the
command line and are supplied to make better use of
the Helios File System.

c h mod

Purpose: Alter the protection bits of a file

Format: chmod [vxyz][+-:] [rwefghvxyzda] <file>

Description:

chmod is used to enable and disable the protection
bits of a file. For more details see: Technical In­
formation, chapter 13 "Protection and Authenti­
cation".

f s

Purpose: The binary object of the Helios File System

Format: fs -m <device>

fs <device> &

Description:

to create a new file ­
system

, to boot the file-server

fs contains the binary code of the file server. If
it is called with the option -m, the formatting rou­
tine is executed to generate a new file-system on
the disk. After completion of this step the program
terminates. A call of fs without the option -m cau­
ses the file-server to be booted. To place the ser­
ver on a processor of your choice make use of the
utility remote.

purpose:

Format:

f s y n c

Toggle between partly and fully
synchronous mode

fs <file server> [-as]

..J

. -"-'"
,...)

Description:

fsync allows the selection between two operation
modes: At server startup-time the default mode is
the "partly synchronous mode" (-a) which means that
all data-blocks are written with a certain delay (of
max. 20 seconds) to disk, when the "sync-process" ­
which is part of the server - becomes active and
detects some of them. To guarantee that all blocks
are written directly to disk ("write-through­
cache"), the user has the alternative to switch to
fully synchronous mode (-s) , which eliminates all
delyed-write operations .

/~~)

''t<t«w'''';

g d i

Purpose: Compile a "device information file"

Format: gdi <input> <output>

Description:

gdi is a simple compiler which generates a binary
object from the given device information file. The
default filename which is searched by the server is
"devinfo". This file has to be placed in the jetc ­
directory.

mat r i x

Purpose: Display the access matrix of a file

Format: matrix <file>

Description:

The utility matrix displays the access matrix of the
given file. For more details see: Technical Infor­
mation, chapter 13 "Protection and Authentica­
tion".

ref i n e

Purpose: Refine or restrict a capability

Format: refine <file>

Description:

refine allows refining and restricting of capa­
bilities associated to a file. For more details see:
Technical Information, chapter 13 , "Protection and
Authentication".

/~,...

s y n c

Purpose: Force a sync-operation immediately

Format: sync <file server>

Description:

The utility sync forces an "extra" sync-operation
which guarantees that all data-blocks in the buffer­
cache with the "delayed-write" flag set are written
immediately to disk. sync is especially useful to
guarantee consistency, if the file-server or the
whole system shall be shut-down.

-

t e r m f s

Purpose: Terminate an active file-server

Format: termfs <file server>

Description:

termfs closes all ports to a file-server, deallo­
cates the memory in use and finally terminates the
file-server program. The user has to take care, that
all client programs are in a proper state and that
the last sync-process has been succesfully executed.

	Content
	1 Introduction
	1.1 Main Features

	2 Hardware Requirements
	2.1 MSC - Version
	2.2 Rawdisk - Version

	3 Software - Requirements
	4 Installation
	5 Defining Disk Devices
	6 Tutorial Installation
	7 Commands
	chmod
	fs
	fsync
	gdi
	matrix
	refine
	sync
	termfs

