
Parsytec File System
User’s Guide

Version 2.1
August 20, 2013

Parsytec reserves the right to make changes in specification at any time and without
notice. The information furnished by Parsytec in this publication is believed to be accu-
rate, however no responsibility is assumed for its use, nor for any infringement of patents
or rights of third parties resulting from its use. No license is granted under any patents,
trademarks or other rights of Parsytec.

This manual is Copyright c© 1992 by Parsytec GmbH
The Parsytec File System is Copyright c© 1988 - 1992 by Parsytec GmbH.

Authors:
Adruni Ishan basic Version (design and implementation)
Matthias Clauss basic Version (design)
Hans-Joachim Ermen checker
Christian Fleischer MSC device driver, ptar utility
Günter Lauven multivolume extensions and checker integration
Oliver Imbusch v2.1 bug fixes and minor extensions

This documentation was written by Oliver Imbusch,
contributions by A Ishan (Version 1.1 Handbook), H-J Ermen (Checker Documentation),
N Garnett (Technical Report No 20 of Perihelion Software, “Device Configuration”),
G Lauven (“Short description of PFS v2.0”), and C Fleischer (“MSC Device Driver
Documentation”, “The ptar utility”).

All Rights reserved. This document may not, in whole or in part, be copied, photocopied,
reproduced or reduced to any electronic medium or machine readable form without prior
consent, in writing from

Parsytec GmbH
Juelicher Strasse 338
D-5100 Aachen
Germany.

HELIOSTM is a trademark of Perihelion Software Ltd.
SUN Workstation R© is a registered trademark of Sun Microsystems, Inc.
Occam R© is a registered trademark of the INMOS Group of Companies.

The use of registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from relevant protective
laws and regulations and therefore free for general use.

CONTENTS i

Contents

Contents . i

List of Figures . iv

1 Introduction 1

1.1 Main features . 1

1.2 The PFS data structures on disc . 2

1.2.1 Disc layout . 3

1.2.2 Directory entries and files . 3

1.3 Checker . 4

1.3.1 How to use it . 5

1.3.2 The different phases of the checking process 6

1.3.2.1 Phase I . 6

1.3.2.2 Phase II . 6

1.3.2.3 Phase III . 6

1.3.2.4 Phase IV . 7

1.4 Related manuals . 7

2 Upgrade 9

2.1 Backups . 9

2.2 Hardware update . 9

2.3 Software upgrade . 10

2.3.1 devinfo file, coming from PFS v2.0.x 12

2.3.2 devinfo file, coming from HFS v1.x 13

3 Installation 15

3.1 Requirements . 15

3.1.1 Hardware . 15

3.1.2 Software . 15

3.2 Copying files . 15

3.3 Device configuration . 16

3.3.1 Conditions . 17

ii CONTENTS

3.3.2 General structure . 17

3.3.3 The developer’s box - an example 18

3.3.4 The hardware resources . 18

3.3.4.1 Description of the equipment 18

3.3.4.2 From drives to partitions 20

3.3.4.3 A complete discdevice . 22

3.3.5 Piling up the file server . 23

3.3.5.1 From partitions to volumes 23

3.3.5.2 Complete? . 25

3.4 Running the multi-volume file server . 27

3.4.1 Startup . 27

4 MSC device driver 31

4.1 The SCSI bus . 31

4.2 Internal details . 31

4.2.1 Device driver internals . 31

4.2.2 Process structure . 32

4.2.3 Supported Helios requests . 32

4.2.4 Error handling . 34

4.3 Adding new SCSI devices . 34

4.3.1 Required documents . 34

4.3.2 Testing single SCSI commands . 35

4.3.3 Creating the scsiinfo configuration file 39

4.3.3.1 General structure . 39

4.3.3.2 Toplevel . 40

4.3.3.3 Device level . 40

4.3.3.4 Command/error/request level 42

4.3.3.4.1 Commands . 42

4.3.3.4.1.1 Mandatory SCSI commands 42

4.3.3.4.1.2 Other SCSI commands 48

4.3.3.4.2 Errors . 50

4.3.3.4.2.1 Conditions 51

4.3.3.4.3 Requests . 51

4.3.3.5 Compiling . 52

4.3.4 Testing scsiinfo/devinfo entries 52

CONTENTS iii

5 Commands 57

5.1 access . 57

5.2 chmod . 58

5.3 finddrv . 59

5.4 format . 60

5.5 fs . 61

5.6 fsync . 62

5.7 gdi . 63

5.8 gsi . 64

5.9 load . 65

5.10 makefs . 66

5.11 man . 67

5.12 matrix . 68

5.13 mksuper . 69

5.14 ptar . 70

5.15 refine . 72

5.16 sync . 73

5.17 termvol . 74

5.18 testdrv . 75

5.19 testinfo . 76

5.20 unload . 77

6 Backups 79

6.1 Creating archives . 79

6.1.1 What is an archive? . 79

6.2 Argument syntax . 79

6.3 Operation modes . 80

6.4 Other options . 80

6.4.1 General options . 80

6.4.2 Create options . 82

6.4.3 Extract options . 82

6.5 Creating backups . 82

iv LIST OF FIGURES

7 Benchmarks 85

7.1 The programs . 85

A The configuration files 87

A.1 Quick reference to the scsiinfo keywords 87

A.2 scsiinfo syntax definition . 87

A.3 Quick reference to the devinfo keywords 88

B Errors 91

List of Figures

1.1 Disc layout overview . 4

2.1 Xilinx EPROM . 10

2.2 Jumper J0 . 10

2.3 Jumper J9 . 10

2.4 MSC board . 11

3.1 Sample network . 16

3.2 Device connection to the SCSI bus . 20

3.3 Partitioning of the drives . 23

3.4 Combining partitions to volumes . 26

4.1 Process structure after OpenDevice() . 32

4.2 Process structure after opening two SCSI devices 33

4.3 “Guide to the famous Pickwick drive”, page 69 36

4.4 “Guide to the famous Pickwick drive”, page 42 39

Chapter 1

Introduction

The Parsytec File System (PFS) is a powerful tool to handle mass storage devices in
multi-transputer networks. Various applications which need highest data transfer rates
can be realized in combination with SCSI devices which can be accessed by Parsytec’s
“Mass Storage Controller” (MSC) board. Typical fields for applications which can make
use of this product are for example image processing and distributed databases.

1.1 Main features

• The Parsytec File System (PFS) is based on the Berkeley Fast File System (FFS)
up from version 4.2BSD. A lot of extensions have been made to achieve maximal
performance and to guarantee an optimal use of the disc capacities.

• It is possible to connect up to seven SCSI devices to one MSC which then can be
managed by one PFS. In addition to the standard devices, new SCSI drives can
easily be added by editing the driver’s scsiinfo.src configuration file.

• The PFS offers a concept of multivolume/multipartition. It is for example possible
to declare two harddiscs to appear as one volume to the user (multipartition) or
one harddisc may be split into several volumes (multivolume). It all depends on
the volume and partition description of the user in devinfo.src. Devices with
changeable media and raw devices are not allowed to be multipartitioned and have
to be single volumes.

• The file system checker for structured volumes checks the consistency of data and
data structures of a file system. A lot of possible errors are recovered; there are
very few situations the checker cannot be successfull. When the checker succeeds,
the file system is guaranted to be in a consistent state and the file server can work
with it. There are three checking modes: no checks, basic checks and full checks.
The checker is noninteractive and is called when a structured volume is loaded
(mounted).

1

2 CHAPTER 1. INTRODUCTION

• Several mechanisms have been added to handle fatal error situations. Bad blocks
of structured devices are reassigned automatically. When buffer cache’s checksum
is enabled, data are only written on disc if no inconsistence did occur. On error the
data is left unchanged on disc. Termination or unloading (unmounting) of volumes
is done with respect to active processes working on that volume.

• The basic block size is set to 4 KBytes (whereas the maximum file size is 4 GBytes).
In dependancy on the client’s request, the server is able to build packets of various
sizes in its buffer cache to fit the request in an optimal way. The packet handling
is done in a transparent manner to the client tasks.

• Directories and files are placed on the disc or partition by using different strategies
to get a good compromise between spreading and clustering of information (minimal
fragmentation). To implement such balancing procedures, the file server divides the
disc into a number of equal sized “cylinder groups” which are controlled separately.

• In contrast to the BSD Fast File System the inode handling was implemented in a
more straight-forward way: inodes and entry names build “Directory Entries” which
are kept in special directory blocks. You are able to create as many directories
as you want, in one directory up to 448 entries (files or sub-directories) can be
combined.

• To achieve maximal flexibility for the user, the server as well as the driver is full
parametrizable (via the devinfo file, see section 3.3, and the scsiinfo file, see
section 4.3). With the desired hardware and application environment in mind, it
is possible (and necessary) to manipulate the parameters of the devices and the
buffer cache in a very wide range.

• Various utilities are added to the software package to ease handling of the server.
Especially protection mechanisms based on capabilities are enabled.

• The ptar utility helps you to archive lots of MBytes on your streamer tape.

• The PFS is delivered with a configurable device driver. This driver performs data
transfer directly from and to the user’s buffer, thereby eliminating intermediate
copy operations. Requests regarding the same disc device are sorted to reduce head
movement. By using the transputer event line, reaction times could be minimised.

1.2 The PFS data structures on disc

This section gives you a brief description of important data structures as managed by
the Parsytec File System. It will make easier to understand the basic principles of the
file system checker (described below) and to follow the different phases of the checking
process.

1.2. The PFS data structures on disc 3

1.2.1 Disc layout

The Parsytec File System divides a disc into independant (logical) parts of equal sizes1,
called “cylinder groups”. This approach has several advantages: in combination with
algorithms for block allocation and creation of new directory entries and files, it can be
assured that the storage space on disc is used in the most efficient way: on the one hand,
fragmentation of disc space is minimized, on the other hand, one gets optimal medium
access times by spreading data in a regular way over the disc.

All information required to manage a cylinder group is collected within one data block,
known as an “info block”. Every cylinder group has it’s own info block and it is placed
with a fixed “relative rotational offset”. The most important data structure, building the
major part of each info block, is a “bitmap”—an array of bytes used to note all free and
allocated blocks within the specific cylinder group. Some additional summary information
give a short description of the actual usage of a cylinder group. They contain e g the
number of free blocks and the number of sub-directories which are kept in a cyclinder
group.

Another “special purpose” data block, called “summary block”, collects the summary
information from all cylinder group info blocks and some additional ones which describe
the whole file system with all cyclinder groups as one unit. Using this summary informa-
tion makes it especially easy and efficient for the file server to decide where to allocate
new blocks on disc to expand ane existing file or to create a new sub-directory or file.

There should also be a place on disc where some fixed parameters of the established file
system can be found. These are for example items like the number of cylinder groups,
the size of each cylinder group and the “rotational offset” for a placement of info blocks
within the different cylinder groups. The Parsytec File System puts this information
and a lot of other important data in a structure called “superblock”. To have enough
redundacy, a copy of this superblock is held within each info block. Having formatted a
disc once, the content of the superblock structure should never be changed under normal
operating conditions.

See figure 1.1 for an overview.

1.2.2 Directory entries and files

All relevant information required to describe a sub-directory entry or a file is kept in a
data structure called “inode”. These are for example items like the creation date, the
size (measured in bytes), and a type flag to determine whether the entry describes a
sub-directory, a symbolic link, or an ordinary file. Additional information like an access
matrix and the number of blocks allocated by this entry and others can also be found
within in the corresponding inode.

To keep an inode as small as possible without loosing too much efficiency, only a restricted
number of direct block references to data blocks are made (“direct blocks”). If a larger
file has to be managed, a “single indirect block” is allocated, which exclusively contains

1They all contain the same number of blocks.

4 CHAPTER 1. INTRODUCTION

First data block

Root directory block

Info block of the 1st cylinder group

Boot block

Info block of the 2nd cylinder group

�

�

CG 0

CG 1

...

...

Summary block

Figure 1.1: Disc layout overview

references to data blocks. But one level of indirection is not the limit: very large files of
hundreds of Megabytes are described by using a second level of indirection. In this case,
a “double indirect block” is allocated and noted in the inode which keeps references to
single indirect blocks, which again refer data blocks. This builds the basic mechanism to
handle a wide range of file sizes (up to 4 GBytes) without wasting too much disc space
for allocating blocks in advance.

There is one type of data block, called “directory block” which is noted by an inode of
type “directory” (a sub-directory entry) and represents a special variant of an ordinary
data block: a directory block only contains inode data structures and allows the Parsytec
File System by this way to build hierarchical directory structures.

1.3 Checker

The Parsytec File System Checker is a maintenance tool to guarantee consistency of block
based file systems. Under various conditions, a file system kept on a harddisc may come
into an inconsistent state. Events like a power loss, a hardware malfunction or other
disastrous errors like a head crash may result in damaged data structures on disc. Under
certain conditions, it may be even impossible to get initial access to the file system’s root

1.3. Checker 5

directory afterwards.

To recover from such an error and to repair corrupted parts of a file system the Parsytec
File System Checker was written. It builds an integral part of the Parsytec File System
and is executed every time when a volume is loaded. By this way, it can be assured in
general that a file system is definitely in a consistent state after the checker has made all
essential tests and corrections.

1.3.1 How to use it . . .

The Parsytec File System Checker is started directly after the successful boot of a volume.
All checks and corrections—if required—are done automatically and there is no need for
user interaction. In general, the file system checker works in a “silent” mode, only
reporting the different phases of the checking processes which are entered. If an error
occurs that needs corrections on disc, the checker reports it by writing a message to the
server window.

After finishing the checking process, the start-up sequence of the volume is completed
and the file system is accessable by the user in the normal manner2.

The system administrator has the opportunity to select from two different checking
modes: at first, it is possible to perform a BASIC-CHECK when a volume is loaded.
In this case, all data structures on disc which are used to manage block allocation are
tested. If the File System Checker is called with FULL-CHECK mode enabled, the
complete directory tree is scanned and each entry is tested, regardless whether it is a
file, a symbolic link or a sub-directory entry. This is the default checking mode. If some
of the BASIC-CHECKs fail, the FULL-CHECK mode is called automatically to detect
other possible inconsistencies and to correct them afterwards.

The Parsytec File System can be booted with various options. The checker relevant ones
are

-f: perform FULL-CHECKs (default)
-b: perform only BASIC-CHECKs
-n: bypass the checker completely

There may be one fatal error condition which makes it impossible to run the checker and
to make corrections properly: a damaged superblock within the info block of the first
cylinder group. In this case, differences between the data structures describing a physical
disc and data kept within devinfo may be recognized. Run the mksuper command to
make the file system bootable again3. All required information is taken from the actual
devinfo file and a new superblock structure is filled up. Afterwards, the file server can
be booted in the normal manner.

2The checking process usually finishes successfully. Only under fatal error conditions like checking a
non-formatted disc or working with a damaged disc controller, the File System Checker may fail. In this
case, the file system cannot be booted, neither checked in the usual way, until the hardware malfunction
or other reasons for the failure have been removed.

3An empty file system is created with makefs, that destroys all data when executed on a file system
that already contains files.

6 CHAPTER 1. INTRODUCTION

1.3.2 The different phases of the checking process

Consistency checking and correction operations done by the Parsytec File System Checker
are split into four main phases:

1.3.2.1 Phase I

contains all tests which are executed running in BASIC-CHECK mode:

At first, the validity of the superblock data structure as found in the info block of the
first cylinder group is prooved. Afterwards, this superblock is compared with the copies
found in the info blocks of the other cylinder groups. The next step is to compare the
content of the different cylinder group bitmaps with the summary information kept in
the info blocks and in the summary block.

Finally, the root directory inode is inspected to make sure that it is possible to get initial
access to the file system’s root directory. (The root directory inode is part of the summary
block.)

If the Parsytec File System Checker is called in BASIC-CHECK mode and no error was
detected, the checking process is finished at this moment. Otherwise, the FULL-CHECK
mode is automatically entered and the following three phases are also performed.

1.3.2.2 Phase II

is used to traverse the complete directory tree and to make all essential checks for single
directory entries. These test operations build the main part of the checking process
when running in FULL-CHECK mode: beginning with the inode of the root directory,
the whole directory tree is worked out and each individual entry is tested under various
conditions. If certain error limits are exceeded, an entry may be detected as “non-usable”
and is deleted afterwards.

1.3.2.3 Phase III

takes the results of the Phases I and II and corrects all block allocation errors which were
previously detected:

There are two serious error conditions which are handled during phase III. At first, there
may be a block which is referred by more than one entry. The file system checker has to
decide which entry may be the legal owner (most recent modifier) of such a block and
has to do the required corrections. Secondly, there may be a block which is noted in a
bit-map as allocated but not referred by any of the entries touched during phase II. Such
a “lost” block may become an entry in the /lost+found-directory if it contains directory
information (inodes). By this way, it is possible to re-integrate sub-directory structures
which were cut-off due to an error condition.

1.4. Related manuals 7

1.3.2.4 Phase IV

performs some general tidyup-operations and adjusts the file system’s summary informa-
tion which are kept in the summary block.

1.4 Related manuals

The following manuals may be useful as references:

• MSC Mass Storage Controller Technical Documentation

• Perihelion Technical Report No. 20 Device Configuration

• The Helios Parallel Operating System

• ANSI X2.131-1986 Small Computer System Interface

• Manuals to your SCSI devices

In addition to that, the file readme.pfs contains most actual changes not considered in
this handbook.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Upgrade

This chapter covers the hardware changes and software upgrade to use PFS v2.1. It
has only to be read by former users of an old MSC board, the Helios File System v1.x,
and the Parsytec File System v2.0.x. You will find a step by step guideline for a proper
update to the PFS v2.1.

2.1 Backups

If you follow the instructions in this chapter, you should find a perfectly working PFS
afterwards. But:

If anything can go wrong, it will.

With this in mind, it’s urgently recommended to backup your data to your host system
before installing the new PFS.

2.2 Hardware update

This section has to be read by all users performing an update.

There are several requirements for proper operation of the MSC Device Driver (Jumper
and EPROM placement is shown in figure 2.4):

• Xilinx EPROM
The EPROM for Xilinx initialisation has to be updated to Revision 6 (at least).
Only these revisions support event generation as necessary for the driver. The
EPROM has to be placed as shown in figure 2.1. Please check which version is
installed on your MSC.

• Jumper settings
Some jumpers have to be adjusted to ensure suitable event generation:

9

10 CHAPTER 2. UPGRADE

��
Figure 2.1: Xilinx EPROM

– The ERROR PAL (U52) activates the ERRORIN input of the transputer
when the data transfer controller or the extension board requests an event.
J0 enables or disables the activation of the ERRORIN input in by the error
PAL cause of an error condition: program error, address error or parity error.
It has to be placed in 1-2 position as shown in figure 2.2.

��
��

��
��

��
��3 2 1

Figure 2.2: Jumper J0

– J9 makes connection between the ERRORIN pin and the EVENTREQ pin
of the transputer. So if this jumper is inserted as shown in figure 2.3 an
activation of ERRORIN of the ERROR PAL U52 also generates an event.

��
��

��
��

2

1

Figure 2.3: Jumper J9

Figure 2.4 shows the exact location of the EPROM and the two jumpers.

If these requirements are not met, the device driver will not start up. Instead it will send
a message to the server window, complaining about missing events from the hardware.

It’s not too difficult to carry out the necessary changes on your own, but if you are
thumb-fingered or want to prevent loss of warranty of your MSC board, please send the
board to Parsytec. We will perform the update (including tests) for you.

2.3 Software upgrade

The general installation procedure is described in chapter 3. Refer to that and install
the PFS before you proceed. The next sections go into detail about changes of your
devinfo.src. In addition to that, the declaration of your MSC in your resource map
has changed. For more details see section 3.4.

2.3. Software upgrade 11

Figure 2.4: MSC board

12 CHAPTER 2. UPGRADE

2.3.1 devinfo file, coming from PFS v2.0.x

This section is only for users who have worked with PFS v2.0.x up to now. It is assumed
that you have worked through the device configuration example in the PFS v2.0 manual.
Therefore, only the differences to the original bible.src file are outlined here.

For each drive, the type and id specifications have to be changed. The type entry now
refers to the position of the device declaration in the scsiinfo.src file (which is the
configuration file for the MSC device driver, see chapter 4), and id values are now given as
hexadecimal numbers to allow the specification of different Logical Unit Numbers within
a single device (0x31 refers to SCSI address 3, LUN 1).

The entry for the Wren VI drive will now look as follows:

drive # Wren VI
{
id 0x30 # SCSI address 3, LUN 0
type 0 # first entry in scsiinfo

}

The description of partitions has not been changed, but the controller specification of
the discdevice block. It’s now given in hexadecimal notation, too. Thus, your discdevice
entry for the MSC should be:

discdevice msc21 # MSC driver for PFS v2.1
{
name msc21.dev # refers to /helios/lib/msc21.dev
controller 0x70 # uses Address 7, LUN 0
addressing 1024 # use 1 KByte blocks

partition # number 0
{
:

}

:
:

drive # number 0
{
:

}
} # end of discdevice

After modifying the devinfo.src file, compile it to binary form with

% gdi devinfo.src /helios/etc/devinfo

2.3. Software upgrade 13

2.3.2 devinfo file, coming from HFS v1.x

This section is only for users who have worked with HFS v1.x up to now.

CAUTION:
This is a mini example for those users who work with only one MSC connected to
one harddisc.

1. Create a new file upgrade.src in the directory /helios/etc (based on /helios/
info.src/hfs2pfs.src):

fileserver msc21
{
device msc21
blocksize 4096

smallpkt 1
mediumpkt 4
hugepkt 16

smallcount 20
mediumcount 8
hugecount 28

volume
{
name <Old> # The file server doesn’t care about your

volume’s name and you could change it any
time, but with respect to consistency of
shell scripts, makefiles, and user programs
it’s recommended to use the old name

partition 0
cgsize <Old> # This value MUST be taken from the old

devinfo.src, as well as
ncg <Old> # this one.

}
}

discdevice msc21
{
name msc21.dev
controller 0x70
addressing 1024

partition
{
drive 0

}

drive

14 CHAPTER 2. UPGRADE

{
id 0x00 # Usually, only one harddisc is connected to the

MSC and occupies SCSI address 0 (1st nibble),
Logical Unit Number 0 (second nibble).

type 0 # This refers to a device description number in
the scsiinfo.src file. Probably you have a WREN
harddisc, it’s description is at position number 0.

}
}

2. Translation:

% gdi /helios/etc/upgrade.src /helios/etc/upgrade.di

3. Starting the file server, loading the only volume (prepared for mksuper):

% remote -d MSC fs upgrade.di msc21
% load -m /<VolumeName>

4. Now, the file server tries to find out the correct disc parameters, following this
description (decreasing priority):

(a) Reading the superblock from the harddisc
The HFS has stored the values for cgsize and ncg in this block.

(b) Evaluating the configuration file,
which is /helios/etc/upgrade.di in this case. If the devinfo-parameter was
not given at file server’s startup time, /helios/etc/devinfo is used by de-
fault.

CAUTION:
If the superblock is damaged, the priority is given to the values in the
configuration file. For that reason, cgsize and ncg in upgrade.src must
be given the same values as in your old devinfo.src.

5. Write parameters to disc
Now, the correct PFS parameters have to be written to the superblock by executing:

% mksuper /<VolumeName>

In some cases there may be problems: you have discovered the values for cgsize and
ncg and have written them down to devinfo, but the mksuper command couldn’t
be executed successfully. This behaviour occurs if the product of ncg and cgsize
exceeds the size of your harddisc. This error was not checked by the HFS and
the wrong parameters were written to disc. To solve this problem, decrease ncg
in upgrade.src, compile it, and restart the file server until mksuper is performed
succesfully. By doing this, some data may get lost, of course. So do backup
your file system now at the latest (use your old devinfo) to rescue as many data
as possible.

Chapter 3

Installation

3.1 Requirements

3.1.1 Hardware

The file server makes use of Parsytec’s MSC-board which offers at least 4 MBytes RAM
and a T805 Transputer for processing. The PFS will run on this processor and builds up
its buffer cache structures by making use of the MSC’s memory. A suitable SCSI-device
with a capacity of up to 2 GBytes can be added. If you have used HFS v1.x of PFS
v2.0.x up to now, see section 2.2 for necessary hardware updates.

NOTE:
If you have used an old version of the MSC board up to now, please refer section
2.2 for an update of your hardware.

Figure 3.1 demonstrates how the PFS is integrated into a system which makes use of the
MSC and a SCSI-device.

3.1.2 Software

To work with the PFS properly, the “Helios distributed operating system” is required.
The software is able to run with Helios version 1.2 and upper.

3.2 Copying files

The Parsytec File System is shipped on one 5,25” (HD) disc in IBM-PC compatible
format respectively on a quarter inch streamer tape. Your disc/tape is expected to
contain the files listed in contents.pfs. Copy all files from the subdirectories of the
distribution disc to the associated directories of the host’s file system. If you use a PC,
this can be done for example by

15

16 CHAPTER 3. INSTALLATION

Transputer
Network

TPM-4

(T800, 4 MByte)

MSC

(T800, 4 MByte)

PC/SUN

Host File Server

�

�

� ��

SCSI-Interface

�

�

	

Figure 3.1: Sample network

>xcopy a: c:\helios /s (under MS-DOS)

or

% cp -r /a/* /helios (under Helios)

SUN users perform

cd /helios
tar xvf /dev/rst0

3.3 Device configuration

This section describes how to establish your PFS. For that reason we will create the file
/helios/etc/devinfo.src and compile it via the gdi-command to /helios/etc/dev-
info. The file server will use this file to get technical information about your hardware
and about the logical structure you want to give to your file system.

NOTE:

• In addition to devinfo, scsiinfo contains information about the connected
SCSI devices. Refer chapter 4 if you want to add SCSI devices of a not yet
supported type.

3.3. Device configuration 17

• If you have used HFS v1.x or PFS v2.0.x before, see chapter 2 and execute
the changes do your devinfo.src first.

3.3.1 Conditions

There are three different kinds of information you have to write down in your /helios/
etc/devinfo.src file (henceforth called devinfo to save space):

• technical facts concerning your hardware (e g a Winchester’s SCSI-address). For
these you should be armed with a guide to your devices.

• strategical information about the method you want to manage your file system (e
g the size and apportionment of your buffer cache). For these you should consult
the file bible.src (introduced below) to get some convenient standard values.

• arbitrary but necessary information about your taste to handle your volumes. For
this you should have (if you prefer to name your volumes with your friends’ names)
at least five friends if you want to establish five volumes, for example.

NOTE:
The Parsytec File System, once configured, allows you to forget detailed information
about the SCSI drives connected to the MSC board. You only work with some
volumes (data pools with a name), whereat there can be some logical volumes on
one hardware drive, or some partitions of different drives can be combined to one
volume. Since devinfo is the essential way to configure your file server, you should
not do a ‘quick and dirty’-hack. As well as some values cannot be changed without
loss of data, you will pay for every minute you save creating the devinfo with much
more time in your daily work, because inconsiderate partition of your buffer cache
can slow down data transfer significantly, for example.

3.3.2 General structure

The devinfo contains a sequence of entries consisting of a keyword, a name, and a
description. The keywords currently supported are fileserver and discdevice. The name
is used to identify the entry and has no other meaning. The description is enclosed in
braces (‘{’ and ‘}’) and consists of a sequence of keyword/value pairs. The character
‘#’ introduces a comment which extends to the end of the line. Keywords expect to be
given a value of a certain type, this may be either a name, a file name, a number or a
description. Names consist of a leading alphabetic character followed by alphanumerics
or periods. File names are a sequence of names separated by slashes (‘/’). Numbers
are sequences of numerals preceded by an optional minus sign. By default, numbers are
interpreted in decimal, but the standard C-syntax may be used to provide values in octal
or hexadecimal.

18 CHAPTER 3. INSTALLATION

3.3.3 The developer’s box - an example

To make you familiar with creating your own devinfo we will watch step by step the
formation of the devinfo that was used by the programmer of the file server to test his
program.

NOTE:
It’s easier to describe the configuration buttom-up, although the notation in our
devinfo is top-down.

3.3.4 The hardware resources

3.3.4.1 Description of the equipment

On our desktop we see a big box containing

CDC WREN VI a 600 MB Winchester drive,
Exabyte EXB-8200 an 8mm Cartrige Tape Subsystem,
Sony SMO-D501 a rewritable 5.25” optical disc drive, connected to a

SMO-C501 SCSI controller,
Rodime 40 a 40 MB Winchester drive,
Tandberg TDC 3600 a conventional tape streamer,

all SCSI devices. First we want to tell our file server about these five hardware drives.
We do this by using the drive keyword, followed by information about the SCSI address
(id) and a type identification, both together enclosed in braces. The value that is given to
the type keyword refers to entries in the scsiinfo file, which is described more detailed
in section 4.3.

NOTE:
Similar to devinfo, scsiinfo can be changed by the user to make it possible to
use non-standard hardware in nexus with the PFS, whereas ‘non-standard’ means
SCSI devices ‘not delivered by Parsytec’. All drives that you purchase at Parsytec
are supported by the standard scsiinfo (which is updated in case of enlargement
of our hardware assortment). In the following all type values refer to the original
scsiinfo.src and have to be corrected if that file is changed.

Let’s start creating devinfo with writing down the drive list (that consists of five drive
blocks which are numbered by the file server automatically):

Remember, a #-character introduces a comment which ends here ->
The first drive is the Rodime 40MB. It will be referenced by number 0 (in
our drive list) by the file server. (NOTE: the sequence of the drives
stipulates their numbering)

drive # the drive keyword indicates the start of some hardware device

3.3. Device configuration 19

information
{ # the opening brace
id 0x00 # this drive occupies SCSI address 0 (represented by the first

hexadecimal digit), and Logical Unit Number 0 (specified by
by the latter hexdigit)

type 1 # this drive is of type 1 (which means Rodime drive when working
with standard scsiinfo)

} # the closing brace

The second drive is the WREN VI. Since its description follows drive 0’s
specification, it will get number 1 in the drive list

drive # hey file server, here’s an info about my hardware
{ # from here
id 0x10 # SCSI address 1, LUN 0
type 0 # getting information from device block #0 in scsiinfo, which

represents a WREN VI device
} # to here

Optical disc drive, number 2 in drive list

drive
{
id 0x30 # SCSI address 3, LUN 0
type 2 # optical disc

}

Number 3:

drive{id 0x40 type 3}#this version to declare an Exabyte streamer works too,
#of course, but doesn’t satisfy our esthetic necessaries

Number 4:

drive # so let’s return to this pretty styled version to explain the
{ # fifth drive, the Tandberg tape streamer
id 0x50 # at SCSI address 5, LUN 0
type 4 # described in scsiinfo at position #4

}

NOTE:
If you remove one of your drives and delete its description, all following drive blocks
will get a new number automatically. This has consequences in the partition block
(see below).

Figure 3.2 reflects the situation after writing down all drive descriptions.

20 CHAPTER 3. INSTALLATION

0 1 3 4 5 7

drive #0 drive #1 drive #2 drive #3 drive #4

Rodime Wren Sony Exabyte Tandberg
Controller

Figure 3.2: Device connection to the SCSI bus

3.3.4.2 From drives to partitions

Now, the file server knows the SCSI address, Logical Unit Number, and the drive type
of every SCSI device in our system. The second thing we want to do is to install a low
level logical structure on all the drives. This structure is a division in subsections, called
partitions. A partition (use this keyword to unite the following information) is defined
by the drive number where it takes place, the first and the last block (the corresponding
keywords are drive, start and end). Afterwards, partitions can be combined to larger
structure, called volumes. These volumes are the data pools the user works with.

NOTE:

• The drive keyword must be given a value.

• The start and end keywords are only allowed if the medium that keeps the
partition is structured (can be random accessed) and is unremoveable (the
medium cannot be changed). In other terms: you need a Winchester drive to
use start and end (which is given the last block by default).

• The values of start and end are interpreted in addressing size. This keyword
is described below.

• As the drive list, the partition list will be numbered by the file server au-
tomatically - with the same consequences when deleting one partition block
(following partitons’ number will decrease by one, so that an eror occurs in a
volume definition block, see below).

The partitions:

The first partition occupies the first 20,000 blocks of drive 0 (that
was the Rodime 40MB).

partition # number 0 in partition list
{
drive 0 # this partition takes place on drive 0,
start 0 # starts at block 0 and
end 19999 # ends at block 19999.

NOTE:
The size of a block is defined by yourself. You can do
that by giving a value to the keyword addressing as
described below. So, if addressing equals 1024, this

3.3. Device configuration 21

partition (number 0) takes the first 20MB on drive 0.
}

partition # number 1 in partition list
{
drive 0 # the same drive as partition 0
start 20000 # starts beyond partition 0 (that ended at block 19,999)

Since we want to get the rest of drive 0, the end keyword is
obsolete.

}

Now we start to devide drive 1 (the WREN VI) in different partitions:
the first with 20,000 blocks (0 - 19,999),

partition # number 2 in list
{
drive 1
start 0
end 19999

}

the two following with each 100,000 blocks

partition # number 3
{
drive 1
start 20000
end 119999

}

partition # number 4
{
drive 1
start 120000
end 219999

}

and the 6th that takes the rest of drive 1.

partition # number 5
{
drive 1
start 220000

}

The Tandberg streamer occupies a complete partition

partition # number 6
{
drive 4 # a streamer is changable and not structured, so we have to give

up to divide it in smaller partitions
}

22 CHAPTER 3. INSTALLATION

as well as the optical disc

partition # number 7
{
drive 2 # an optical disc is changable, so the start and end keywords

are not allowed
}

and the Exabyte streamer.

partition # number 8
{
drive 3

}

3.3.4.3 A complete discdevice

Enclose the nine partition blocks and the four drive blocks together in braces and place
the keyword discdevice, followed by a name for the group of drive resources, in front of
that block. There are three specifications left to add in the discdevice block to complete
the hardware declaration: the name of the file containing the device drivers (placed in the
/helios/lib directory), the address of the SCSI controller and the addressing size for
the devices in this group (following the keyword addressing, interpreted in byte). Let’s
have a look at our complete discdevice block:

discdevice msc21 # Mass Storage Controller, driver version 2.1
{
name msc21.dev # FIXED and expanded to /helios/lib/msc21.dev
controller 0x70 # the controller’s SCSI address and LUN
addressing 1024 # FIXED: we want all disc devices to handle with an

addressing size of one KByte
partition # number 0
{
:

}

: see above
:

drive # number 0
{
:

}

: see above
:

} # end of discdevice msc21 block

3.3. Device configuration 23

See figure 3.3 for the effects.

0 1 3 4 5 7

drive #0 drive #1 drive #2 drive #3 drive #4

Rodime Wren Sony Exabyte Tandberg Controller

0 1 2 3 4 5 7 8 6

Figure 3.3: Partitioning of the drives

3.3.5 Piling up the file server

3.3.5.1 From partitions to volumes

At this point we want to attach our nine partitions to seven volumes, whereby two
volumes consist of each two partitions and the other volumes claim only one. Since the
names of my friends are not to you, the seven volume names will be provided by the
bible. In addition to the name of a volume you must enter at least two keywords and
their values: partition and type. The simpliest volume blocks look like these:

volume # number 0
{
name pride
partition 8 # the complete Exabyte streamer
type raw # in opposite to partitions on random accessable drives like

optical disc drives or Winchesters which are of type
structured

}

volume # number 1
{
name anger
partition 6 # This is the Tandberg device
type raw

}

The next volume makes use of the minfree keyword. This causes your file server to leave
some blocks free for the /lost+found directory that will be created by the checker.

volume # number 2
{
name covetousness

24 CHAPTER 3. INSTALLATION

partition 7 # optical disc drive (complete)
minfree 100 # all but 100 blocks are used by the file server

NOTE:
The value of minfree is interpreted in the
fileserver’s blocksize (see below) and NOT in
discdevice’s addressing size.

type structured
}

Let’s try to construct our first Winchester volume now using two more optional keywords,
cgsize and ncg. The blocks of a partition are combined to larger structures called cylinder
groups. You are able to choose the number of blocks per cylinder group (via cgsize)
and/or the number of cylinder groups per partition (via ncg). The remaining value(s)
is/are calculated by the file server.

NOTE:

• There are maxima for both, the cgsize and the ncg values (see below).

• It’s no error if the product of cgsize and ncg is smaller than the number of
blocks your partitions offer. The remaining blocks are not used.

volume # number 3
{
name lust
partition 4 # in the middle of WREN
cgsize 256 # One cylinder group consists of 256 blocks.

NOTE:
-Once more: the size of THIS blocks are fixed by
the blocksize keyword.
-The ncg keyword was not used, its value will be
calculated.
-The maximum for cgsize is 3072.

minfree 100
type structured

}

Ok, well done. Immediately the next one (using both cylinder group parameters):

volume # number 4
{
name gluttony
partition 1 # second part of the Rodime
cgsize 256 # assuming that the blocksize is 4096 bytes, a

cylinder group occupies 1024 KBytes,

3.3. Device configuration 25

ncg 20 # so volume 4 claims 20 MBytes
NOTE:
-Partition 1 must offer that 20 MBytes, of course,
but here it does
-The maximum for ncg is 300.

minfree 100
type structured

}

The two-partitions-on-one-volume-version:

volume # number 5
{
name envy
partition 3 # second part of the WREN
partition 5 # fourth part of the WREN

neither the ncg nor the cgsize keyword is used, the
file server has to do the job

minfree 100
type structured

}

Last but not least: two partitions on two drives combined to one volume:

volume # number 6
{
name sloth
partition 0 # Rodime’s first
partition 2 # WREN’s first
ncg 40 # We want the file server to install 40 cylinder

groups.
NOTE:
-The cgsize keyword was not used, its value will
be calculated.

minfree 100
type structured

}

The volume structure is shown in figure 3.4—I hope we survive.

3.3.5.2 Complete?

Almost. Two kind of information are left to write down: the type of discdevice you want
to handle with your file server (following the keyword device) and some information about
your buffer cache’s apportionment. There are three different kinds of packages, and it’s
your’s to determine their number. Here’s the complete fileserver block:

26 CHAPTER 3. INSTALLATION

0 1 3 4 5 7

drive #0 drive #1 drive #2 drive #3 drive #4

Rodime Wren Sony Exabyte Tandberg Controller

0 1 2 3 4 5 7 8 6

sloth gluttony lust envy covetousness pride anger

� � ���� � � �

� � � � � � � � �

Figure 3.4: Combining partitions to volumes

fileserver msc21
{
device msc21 # use the discdevice msc21 block (defined above)
blocksize 4096 # FIXED to 4 KBytes
syncop 0 # 0 turns the synchronous mode OFF (1 turns ON).

In Synchrous mode all data are written on disc
immediately, else the sync process does that job every
20 seconds.
NOTE:
The syncop switch concerns user data. System data
(like directory information) are always written at
once.

smallpkt 1 # FIXED to 1 -- blocks per small cache packet
mediumpkt 4 # FIXED to 4 -- blocks per medium cache packet
hugepkt 16 # FIXED to 16 -- blocks per huge cache packet
smallcount 20 # number of small cache packets (1 <= smallcount <= 30)
mediumcount 8 # number of medium cache packets (1 <= mediumcount <= 15)
hugecount 28 # number of huge cache packets (1 <= hugecount <= 42)

NOTE:
The number of blocks that are reserved for the
buffer cache must be <= 750.

volume # number 0
{
:

}
: see above
:

}

3.4. Running the multi-volume file server 27

3.4 Running the multi-volume file server

The following example checklist should help you to setup a new file system and work
with it. For this example we use a network with a node named “MSC” which offers a
T805 and at least 4 MBytes RAM to keep the file server with all data structures. We
assume that you’ve already copied the files from the distribution disc as described at the
beginning of this chapter.

NOTE:
There are two ways to start the Parsytec File System. Note that the the MSC node
must be of attribute HELIOS (declared in your resource map) on both cases.

1. To get the first experience, it’s recommended to start it via remote from your
shell. This allows the execution of the file server under the full control of the
user.

2. Later, if everything is working well, the file server is capable of getting started
in the general Helios startup sequence. The shell script /helios/etc/startrc
is looking for pfsbook and pfsrc (both placed in the /helios/etc directory)
and excutes them. pfsbook might look like
domain get /MSC
domain book /MSC

whereas pfsrc could be
test -d MSC
if (0 == $status)

remote -d MSC fs msc21
else

echo "No processor MSC to start PFS."
endif

Creating this two files will guarantee that the file server is up and running
when the user login prompt appears.

3.4.1 Startup

Boot the Helios network as usual

> server (on PC systems)

or

% helios (on SUN systems)

After logging in, you can prepare an empty file system based on the information which
is kept in devinfo. To change some of the file system parameters, you have to edit
devinfo.src as described above and recompile it with the gdi-command.

28 CHAPTER 3. INSTALLATION

% pushd /helios/etc
% emacs devinfo.src

<editing>

% gdi devinfo.src devinfo
% popd

If the devinfo is successfully compiled, we start the file server on our MSC-board via

% remote -d MSC fs -f msc21

Now the server is active and all volumes specified in the devinfo are waiting for being
loaded. When using a volume the first time, an empty file system must be created. We
edit ldvol1st

% emacs ldvol1st

load -m $1
makefs $1

and start it for every structured volume:

% ldvol1st /covetousness
% ldvol1st /lust
% ldvol1st /gluttony
% ldvol1st /envy
% ldvol1st /sloth

NOTE:
Do not run ldvol1st if your volume contains any data. To ease daily work we
create the loadall shell script

% emacs loadall

load /pride
load /covetousness
load /lust
load /anger
load /gluttony
load /envy
load /pride

and start its execution in every future session.

Now, our network could look like this:

/Cluster/MSC/pride/. . .
/covetousness/. . .
/lust/. . .
/anger/. . .

3.4. Running the multi-volume file server 29

/gluttony/. . .
/envy/. . .
/sloth/. . .
/tasks/loader

/procman
/fs

...

All volumes are started, you are now able to run our copy-demo (see chapter 7), format
an optical disc or do what you are payed for. If you like to format a disc, create a script
like

% emacs formtopt

unload $1
load -m $1
format $1
makefs $1

NOTE:
Formatting an optical disc takes approximately 45 minutes. So be aware before
typing

% formtopt /covetousness

The last shell script we offer to you leads to terminating all your volumes and thereby
the complete file server.

% emacs termall

termvol /pride
termvol /covetousness
termvol /lust
termvol /anger
termvol /gluttony
termvol /envy
termvol /pride

If you like to sin again, restart the file server.

30 CHAPTER 3. INSTALLATION

Chapter 4

MSC device driver

This chapter gives you a short introduction to the SCSI bus, the internal details of the
MSC device driver and explains how to add new device descriptions in the scsiinfo file.

4.1 The SCSI bus

The SCSI (Small Computer System Interface) as defined in the ANSI X3.131-1986 stan-
dard is a widely used interface between host computers and peripheral devices, such as
disc drives, tape streamers and printers. It supports data rates up to 5 megabytes per
second and provides some device independence for host computers.

The Interface protocol differs between two types of participants: initiators (devices ca-
pable of initiating an operation) and targets (devices capable of responding to a request
to perform an operation). Up to 8 devices of different type may be connected to a single
bus system, as the architecture of SCSI includes a priority-based distributed arbitration
scheme.

The Parsytec MSC board uses the single-ended version of the SCSI bus, thereby allowing
maximum cable lengths of 6.0 meters. The onboard WD 33C93A SCSI controller satisfies
the ANSI X3T9.2 specifications, with the exception of device disconnection/reconnection.

4.2 Internal details

This section gives a deeper view into the MSC device driver. It examines the inner
structure of the driver, describes the usage of SCSI commands and explains how the
Helios requests are performed.

4.2.1 Device driver internals

A Helios device is a piece of software which contains code to access a specific hardware
device. It is loaded dynamically by the program which uses it, typically a server, which
then uses the hardware through a defined interface and provides a GSP interface for it.

31

32 CHAPTER 4. MSC DEVICE DRIVER

This MSC device driver is written to support the Parsytec File System in connection
with the MSC Mass Storage Controller board. It is highly optimised for throughput and
flexibility on the SCSI interface.

4.2.2 Process structure

The OpenDevice() call loads the driver and calls its Open function. The process structure
after successful completion is shown in figure 4.1.

SCSI controller

SCSI bus control

Parsytec File System

direct access

channel
��

�

�

� �

�

�

�

Figure 4.1: Process structure after OpenDevice()

The driver forks a SCSI bus control process, which is responsible for interaction with
the controller hardware. This process runs at high priority to reduce reaction times.
Communication to this process uses hardware channels to allow the use of the occam-
style Alternate construct. Opening a SCSI device generates a new device control process,
which knows about commands and sequences and handles single Helios requests. The
DevOperate() function puts all forthcoming requests from the file system into request
queues, from which the device control process extracts them as they are handled indi-
vidually. For random access devices, the device control process uses a special algorithm
to optimize head movement and to reduce seek delays. Figure 4.2 shows the process
structure after openening two SCSI devices.

4.2.3 Supported Helios requests

Due to the demands of the Parsytec File System, the driver supports 8 different device
requests. Originally, these requests refer to partitions, but they are mapped onto physical
drives within the device driver. Valid requests are:

• FG Open
Open a SCSI device for further use. This request is implemented by executing a
sequence of SCSI commands called the initialisation sequence, which has to be de-
fined in scsiinfo. If none of the commands fails and all necessary drive parameters
have been evaluated, the device control process is forked off. Opening an already

4.2. Internal details 33

SCSI controller

SCSI bus control

Parsytec File System

direct access

channel

device control device control

�

�

�

�

�

�

�

�

�

�

�

�

Figure 4.2: Process structure after opening two SCSI devices

opened device will only succeed if the device is a fixed disc device, otherwise the
request is deemed erroneous.

• FG Close
Release an opened device and terminate its device control process. If the device
has been opened more than once, the device control process stays alive until all
users have closed the device.

• FG Read
Read some data from the SCSI device. This request is directly mapped onto the
Read SCSI command.

• FG Write
Write some data to the SCSI device. Like Read, this request maps onto the Write
SCSI command.

• FG GetSize
Report the block size and the number of blocks for a partition. Using the informa-
tion from the initialisation sequence, this request can be fulfilled without interaction
with the SCSI device.

• FG Format
Format a medium and prepare it for further usage. This request is implemented
in several phases: First, the format sequence is executed, then the driver issues
the Format SCSI command. After completion, the whole medium is verified and
defective blocks are reassigned. For tape drives, the Format request may be used
to erase a tape.

• FG WriteMark
Write filemarks to a tape using the Write Filemarks SCSI command.

34 CHAPTER 4. MSC DEVICE DRIVER

• FG Seek
Position a tape at the specified position. This request performs the Rewind SCSI
command if both the position and size values of the request are zero. Otherwise,
a Space SCSI command will be issued using the lowest 2 bits of the position value
as the command code. The size value (positive or negative) specifies the range of
medium movement.

4.2.4 Error handling

If a SCSI command returns a CHECK CONDITION status, the device driver issues a
Request Sense command and evaluates an error code from the replied sense data. The
class of this error code is interpreted in the following way:

• EC Recover
The driver retries the command up to five times before reporting the error code. For
Read or Write SCSI commands, EC Recover codes are suppressed to allow retries
upon corrected ECC errors.

• EC Warn
If a Read or Write SCSI command on a disc device returns an EC Warn code,
the driver tries to detect the number of the block which caused the problem. If
possible, the defective block will be reassigned. In case of success, the driver returns
a ‘Recoverable, broken Medium’ error code.

• EC Error, EC Fatal
Error codes belonging to these classes cause the driver to abort the request imme-
diately.

4.3 Adding new SCSI devices

This section gives a guideline to add new devices to the scsiinfo.src file. It explains the
principles of driver operation and presents tools for device inspection and verification of a
modified scsiinfo file. Imagine you have got your brand new DICKENS Pickwick-1836
drive and you plan to use it with the Parsytec File System.

1. You have to find out how the drive acts on the SCSI bus and how the different
commands work.

2. You should add a new entry to your scsiinfo.src file to reflect the new drive.

3. You should check whether the new drive can work together properly with the other
drives on the SCSI bus.

4.3.1 Required documents

For testing the new drive, you should have the Reference Manual or User’s Manual at
hand (the manual which defines the SCSI command subset supported by the drive).

4.3. Adding new SCSI devices 35

4.3.2 Testing single SCSI commands

To explore the behaviour of a new SCSI drive, you might want to issue single SCSI
commands and have a look at the drive’s respose. This can be achieved using the testdrv
utility, which lets you define the low-level parameters and data values for a SCSI request
and shows the returned data.

NOTE:
In most cases it’s not necessary to test each SCSI command that’s defined for a
new drive. Usually you first create the new device description and try to run the
testinfo utility. Only if that fails, go step by step through the requests using the
testdrv utility.

It’s presumed that you have connected the new device to the SCSI bus, have adjusted an
unequivocal SCSI address via jumpers or dip switches and have installed/removed the
SCSI terminators.

CAUTION:
The testdrv utility does not preserve any data previously contained in the tested
drives. Prove that you have a complete set of backups for all tested drives.

Start testdrv on your MSC board via

% remote MSC testdrv <DiscDeviceName>

The screen changes to

Current Request parameters:

1) Target ID : 0
2) Target LUN : 0
3) Sector size : 0
4) Read : 0
5) Blockmove : 0
6) Timeout : 0 sec
7) CDB size : 0
8) CDB : 00 00 00 00 00 00 00 00 00 00 00 00
9) Size : 0

Rest : 0
Status : 0x0

A) Data : 00 00 00 00 ...

1..A: edit field R: send request Q: quit

36 CHAPTER 4. MSC DEVICE DRIVER

and you have the choice wether to construct a request by editing the different fields, to
perform the request or to leave the program. Let’s send the first request to a new SCSI
device. Type ‘1’ to be asked for the

New Target ID :

Type in the SCSI address of your new device. Change the values of Target LUN, Sector
size, Read and Timeout, and your screen is expected to look like

Current Request parameters:

1) Target ID : 1
2) Target LUN : 0
3) Sector size : 1024
4) Read : 1
5) Blockmove : 0
6) Timeout : 5 sec
7) CDB size : 0
8) CDB : 00 00 00 00 00 00 00 00 00 00 00 00
9) Size : 0

Rest : 0
Status : 0x0

A) Data : 00 00 00 00 ...

1..A: edit field R: send request Q: quit

To be sure to work with the correct drive and not to destroy any useful data, it’s rec-
ommended to perform the Inquiry SCSI command first. On this account we consult the
“Guide to the famous Pickwick drive”, and on page 69 we find the entry shown in figure
4.3.

Command: INQUIRY
Group: 0
OP-code: 12H
Command descriptor block:

00

01

02

03

04

05

Byte

Bit

Logical Unit Number Reserved

Reserved

Reserved

Allocation Length

ReservedX X Flag Link

0 0 0 1 0 0 1 0

01234567

Figure 4.3: “Guide to the famous Pickwick drive”, page 69

That’s all the information we need to give the correct values to CDB size, CDB and size:

4.3. Adding new SCSI devices 37

• CDB size
INQUIRY is a group 0 command, thus it’s command descriptor block size is 6.

• CDB

– The first byte of the CDB contains the opeartion code, which is 12H in our
example.

– The three most significant bits of the second byte have to contain the LUN
(which is zero here).

– The remaining bits of byte #01 are reserved and must be set to zero, as well
as the bytes #02 and #03.

– The allocation length has to be fixed in byte #04. Since we want to make
the drive to transfer the complete response to the INQUIRY command, its
maximum length has to be entered here (the Pickwick drive answers with 51
(33H) bytes).

– The first two bits of the last byte are not checked by the drive (marked as X’s
in the CDB), so we can leave their values at 0. The next four bits are reserved
and therefore expected to be 0. The last two bits are set to zero, too, because
we don’t want to perform several linked requests but only a single one.

• Size
The expected data is of length 33H, so testdrv must reserve this 51 bytes for the
response.

NOTE:
There are some useful keys when editing the CDB resp. the Data field:

↑, Ctrl-P Move cursor to previous line
↓, Ctrl-N Move cursor to next line
←, Ctrl-B Move cursor to previous byte/character
→, Ctrl-F Move cursor to next byte/character
PgUp Move cursor to previous page
PgDn Move cursor to next page
Tab Change to byte/ASCII area
R Reset all bytes (set to 0x00)
S Set all bytes (set to 0xFF)
P Preset all bytes (set to 0x00 . . . 0xFF)

If your screen equals to

Current Request parameters:

1) Target ID : 1
2) Target LUN : 0
3) Sector size : 1024
4) Read : 1

38 CHAPTER 4. MSC DEVICE DRIVER

5) Blockmove : 0
6) Timeout : 5 sec
7) CDB size : 6
8) CDB : 12 00 00 00 33 00 00 00 00 00 00 00
9) Size : 51

Rest : 0
Status : 0x0

A) Data : 00 00 00 00 ...

1..A: edit field R: send request Q: quit

perform the request by pressing ‘r’. If everything was done in the right way, the value
of status is 0x0 and the Data field contains 01 80 01 00 Press ‘a’ to have a look
at the complete data block.

New Data

xxxxxx | x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA cB xC xD xE xF | ascii
-------+---+-----------------
000000 | 01 80 01 00 2E 00 00 00 44 49 43 4B 45 4E 53 20 |DICKENS
000010 | 50 69 63 6B 77 69 63 6b 2D 31 38 33 36 20 20 20 | Pickwick-1836
000020 | 2D 30 37 3A 30 36 43 52 45 41 54 45 44 31 31 31 | -07:06CREATED111
000030 | 00 00 17 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000040 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000050 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000060 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000070 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000080 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000090 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0000a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0000b0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0000c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0000d0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0000e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0000f0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

If the status is 0x1 (which means CHECK CONDITION), you have to perform the
REQUEST SENSE command to get information about the error that has occured. That
command is described in our handbook, too (see figure 4.4).

The CDB is followed by a description of the Extended Sense Byte Definitions (including
the Sense Key Value Definitions), which has a max. length of 26 (1AH) bytes. So we
transform our screen to

Current Request parameters:

1) Target ID : 1
2) Target LUN : 0

4.3. Adding new SCSI devices 39

Command: REQUEST SENSE
Group: 0
OP-code: 03H
Command descriptor block:

00

01

02

03

04

05

Byte

Bit

Logical Unit Number Reserved

Reserved

Reserved

Allocation Length

Reserved0 0 Flag Link

0 0 0 0 0 0 1 1

01234567

Figure 4.4: “Guide to the famous Pickwick drive”, page 42

3) Sector size : 1024
4) Read : 1
5) Blockmove : 0
6) Timeout : 5 sec
7) CDB size : 6
8) CDB : 03 00 00 00 1A 00 00 00 00 00 00 00
9) Size : 26

Rest : 0
Status : 0x0

A) Data : 00 00 00 00 ...

1..A: edit field R: send request Q: quit

and perform the request. Interpreting the received data byte by byte will help us to find
the error.

4.3.3 Creating the scsiinfo configuration file

The device driver needs some technical information about the connected SCSI devices.
This information is provided in the file /helios/etc/scsiinfo. Run gsi with the
shipped file /helios/etc/scsiinfo.src, and gsi will print a list of the supported drives.
scsiinfo.src is ASCII text and can be edited to add new device descriptions. It is
recommended to copy the file pattern.src to <NewDevice>.src, to change that copy
afterwards like described in itself and in this manual, and to append the new device
description afterwards to scsiinfo.

4.3.3.1 General structure

The scsiinfo.src file contains a sequence of entries consisting a keyword, a name and
a description. The currently supported keyword is device. The name is used to identify

40 CHAPTER 4. MSC DEVICE DRIVER

the entry within the file and has no further meaning. The description is enclosed in
braces (‘{’ and ‘}’) and consists of a sequence of keyword/value pairs. The character ‘#’
introduces a comment which extends to the end of the line.

Each keyword expects a value of a certain type. This may either be a name, a number, a
description or a list. Names are either character sequences enclosed in double quotes or
consist of a leading alphabetic character followed by alphanumerics or underscores. Num-
bers are sequences of numerals according to the standard C syntax, optionally preceded
by a minus sign. Lists are sequences of numbers in the range from 0 to 255, enclosed in
braces.

See appendix A.2 for a formal description of the scsiinfo file. The next paragraphs will
give you a top-down introduction.

4.3.3.2 Toplevel

A scsiinfo file is a list of device descriptions and consequently has the following form:

device "Dickens Pickwick Series 18" # This is the 1st device description,
{ # so you have to refer to it with
: # "type 0x0n" from the devinfo file
: # The gsi command which compiles
: # scsiinfo.src to scsiinfo will
: # report the string after the device
: # keyword when translating this
: # device description block. The
: # string has no other meaning.

}

: # more devices...
:

device "Dickens Tupman Device" # This is the last device description
{ # block within scsiinfo.
:

}

4.3.3.3 Device level

Let’s have a look at a typcial device description block:

device "Dickens Pickwick Series 18"
{
type random # The device type specifies the set of mandatory

commands for device operation. Other possible
values are "structured" (wich means the same like

4.3. Adding new SCSI devices 41

"random" and points out a disc device), "raw" and
"sequential" (wich both hint a tape device).

ident "DICKENS Pickwick-1836" # The specified name is expected as
the reply to the Inquiry SCSI command and is used
to verify the correct application of a description
onto a device.

command # A SCSI command description as described below. A
{ # device-type dependent set of commands has to be
: # defined.

}

:

command # End of the command description list.
{
:

}

error # An error condition which can be extracted from the
{ # reply to the Request Sense SCSI command. Conditions
: # which are not defined result in an unspecified
: # error.

}

:

error # End of the error description list.
{
:

}

request # Both the Helios FG_Open and FG_Close requests are
{ # processed with a SCSI command sequence (which may
: # be empty). For the Helios FG_Format request, it is
: # also possible to define an initialisation sequence
: # to prepare the device for the Format command.

}

:

request # End of the request description list.
{
:
}

} # End of the device description block.

42 CHAPTER 4. MSC DEVICE DRIVER

4.3.3.4 Command/error/request level

4.3.3.4.1 Commands A command description block is of the following form:

command
{
name Mode_Select # The command name is used to identify the

standard SCSI commands, which are mandatory for
a device. Command names are also referred in
sequence definitions. Command names are not
case-sensitive, and underscores are treated as
spaces.

read no # The direction of data flow is necessary for
correct driver operation.

blockmove yes # The device driver can use a fast blockmove
operation to speed up data transfer. This
operation is only possible if the device
performs sector transfers under all
circumstances.

cdbsize 6 # The size of the Command Descriptor Block in
bytes. Default values are calculated for groups
0, 1, 2 and 6, other commands need this value.

cdb # The Command Descriptor Block defines the SCSI
{ # command to be executed. For the Request Sense,
: # Inquiry, Mode Sense, Read, Write, Verify, Write
: # Filemark and Space SCSI commands position and
: # size parameters are inserted at runtime. For
: # all other commands, the CDB should contain the
: # complete description including sizes.

}

datasize 0x10 # Only the Read, Write, Verify and Space SCSI
commands use calculated data sizes. For all
other commands, the transfer size in bytes
should be supplied.

data # Some SCSI commands, e g Mode Select, need
{ # user-supplied parameters. Up to datasize bytes
: # may be provided here.

}

}

4.3.3.4.1.1 Mandatory SCSI commands The device driver supports disc (random
access) and tape (sequential access) drives. Due to their different characteristics, both

4.3. Adding new SCSI devices 43

types use different SCSI commands and different parameters. The following list names
those SCSI commands which have to be defined for either drive type.

• Common commands
These commands have to be defined for both device types:

Test Unit Ready checks whether a logical unit is ready for media access. It takes
no parameter and has no reply.

command
{
name Test_Unit_Ready
read yes
cdb { 0x00 0x00

0x00 0x00
0x00 <VendorUnique> }

}
}

Request Sense requests that the target shall send sense data to the initiator, thus
providing additional information in case of errors. Both extended and nonex-
tended sense data format is supported. The expected <DataSize> should be
supplied in scsiinfo. Sense data is checked for known error conditions as
defined in scsiinfo (see below).

command
{
name Request_Sense
read yes
cdb { 0x03 0x00

0x00 0x00
<DataSize> <VendorUnique> }

datasize <DataSize>
}

Inquiry requests that information regarding the target parameters and identity is
sent to the initiator. The expected <DataSize> should be supplied in scsi-
info. Inquiry data is used to check the device identity against the ident value
of the scsiinfo device entry. Further information regarding the device type
and medium removability is also extracted.

command
{
name Inquiry
read yes
cdb { 0x12 0x00

0x00 0x00
<DataSize> <VendorUnique> }

datasize <DataSize>

44 CHAPTER 4. MSC DEVICE DRIVER

}

• Commands for direct-access device types
Disc devices are always used in blocked mode. Therefore, a transfer size value refers
to a specific number of blocks. The following commands are mandatory for disc
devices:

Format Unit ensures that the medium is formatted so that all data blocks are
accessible. This does not require a physical formatting, and there is no guar-
antee that the medium will be altered. The CDB is taken as is from scsiinfo,
any format mode and interleave parameters have to be named in the CDB def-
inition there. Any defect lists should be supplied as data to the Helios request.
The command has no reply.

command
{
name Format
read no
cdb { 0x04 <Mode>

<VendorUnique> <Interleave(MSB)>
<Interleave(LSB)> <VendorUnique> }

}

Reassign Blocks requests the target to reassign defective blocks to unused spare
blocks reserved for this purpose. The required defect list is generated by the
device driver.

command
{
name Reassign_Blocks
read no
cdb { 0x07 0x00

0x00 0x00
0x00 <VendorUnique> }

}

Read requests the target to transfer user data from the medium to the initiator.
Both logical block address and transfer size are calculated from the Helios
request and inserted into the CDB.

command
{
name Read
read yes
cdb { 0x08 0x00

0x00 0x00
0x00 <VendorUnique> }

4.3. Adding new SCSI devices 45

}

Write requests the target to transfer user data from the initiator to the medium.
Both logical block address and transfer size are calculated from the Helios
request and inserted into the CDB.

command
{
name Write
read no
cdb { 0x0A 0x00

0x00 0x00
0x00 <VendorUnique> }

}

Mode Sense provides a means for the target to report medium, unit or device
parameters to the initiator. The expected <DataSize> should be supplied in
scsiinfo. Mode data is used to check medium write protection. If a block
descriptor is available, it will be used to get information about the number
and the size of logical blocks on the medium.

command
{
name Mode_Sense
read yes
cdb { 0x1A 0x00

0x00 0x00
<DataSize> <VendorUnique> }

datasize <DataSize>
}

Read Capacity causes the target to send information about the medium capacity
to the initiator. Capacity data is used to determine the disc size, therefore
the PMI bit of the CDB has to be cleared (set to zero).

command
{
name Read_Capacity
read yes
cdb { 0x25 0x00

0x00 0x00
0x00 0x00
0x00 0x00
0x00 <VendorUnique> }

datasize 0x08
}

46 CHAPTER 4. MSC DEVICE DRIVER

Verify command requests the target to verify data written on the medium. This
shall be a medium verification (no data will be transferred for this command),
and the BytChk bit of the CDB has to be cleared (set to zero).

command
{
name Verify
read no
cdb { 0x2F 0x00

0x00 0x00
0x00 0x00
0x00 0x00
0x00 <VendorUnique> }

}

• Commands for sequential-access device types
Tape devices may be used in blocked or nonblocked mode. The operating mode has
to be set up before the first medium access command is issued, usually during the
initialisation sequence. Transfer sizes and position values in variable length mode
will be in bytes. Now, here are the commands which are needed for tape devices:

Rewind requests that the target rewind the logical unit to the beginning-of-
medium or load-point. Depending on the <Immediate> bit, the status is re-
turned as soon as the operation is initiated or after the operation is completed.
It is recommended to clear this bit (set to zero).

command
{
name Rewind
read yes
cdb { 0x01 <Immediate>

0x00 0x00
0x00 <VendorUnique> }

}

Read requests the target to transfer user data from the medium to the initiator.
The transfer length is calculated from the Helios request and inserted into
the CDB. The <Fixed> bit has to be set according to the selected mode. In
variable block mode, the transfer size should meet the block size found on the
medium.

command
{
name Read
read yes
cdb { 0x08 <Fixed>

0x00 0x00
0x00 <VendorUnique> }

}

4.3. Adding new SCSI devices 47

Write command requests the target to transfer user data from the initiator to the
medium. The transfer length is calculated from the Helios request and inserted
into the CDB. The <Fixed> bit has to be set according to the selected mode.

command
{
name Write
read no
cdb { 0x0A <Fixed>

0x00 0x00
0x00 <VendorUnique> }

}

Write Filemarks causes a specified number of filemarks to be written to the
medium.

command
{
name Write_Filemarks
read no
cdb { 0x10 0x00

0x00 0x00
0x00 <VendorUnique> }

}

Space provides a variety of positioning functions determined by <Code> and the
count value, which is adapted to meet the block size if fixed mode is used.

command
{
name Space
read yes
cdb { 0x11 <Code>

0x00 0x00
0x00 <VendorUnique> }

}

Mode Sense provides a means for the target to report medium, unit or device
parameters to the initiator. The expected <DataSize> should be supplied in
scsiinfo. Mode data is used to check medium write protection. If a block
descriptor is available, it will be used to get information about the number
and the size of logical blocks on the medium. A logical block size of zero marks
variable length mode and is interpreted as a block length of one.

command
{
name Mode_Sense
read yes
cdb { 0x1A 0x00

48 CHAPTER 4. MSC DEVICE DRIVER

0x00 0x00
<DataSize> <VendorUnique> }

datasize <DataSize>
}

4.3.3.4.1.2 Other SCSI commands Those commands described above are essential
for driver operation, and the presence of their definitions is checked by the gsi compiler.
Various other commands may be defined in the scsiinfo file, they can be used for device
initialisation or to prepare formatting. Some examples are the following commands:

• Commands for direct-access device types

Mode Select provides a means for the initiator to specify medium, unit or device
parameters. Its parameter list has to be declared in scsiinfo.

command
{
name Mode_Select
read no
cdb { 0x15 0x00

0x00 0x00
<ParameterListLength> <VendorUnique> }

datasize <ParameterListLength>
data { 0x00

<MediumType>
0x00
<BlockDescriptorLength>
<BlockDescriptor(s)>
<VendorUnique> }

}

Start/Stop Unit causes the target to enable or disable the unit for further op-
eration. A Winchester disc drive might spin down if a Stop Unit command is
issued, hereby reducing its power consumption. The Start Unit command is
typically part of the initialisation sequence to ensure correct drive operation.

command
{
name Start_Unit
read no
cdb { 0x1B 0x00

0x00 0x00
0x01 <VendorUnique> }

}

command
{
name Stop_Unit

4.3. Adding new SCSI devices 49

read no
cdb { 0x1B 0x00

0x00 0x00
0x00 <VendorUnique> }

}

• Commands for sequential-access device types

Mode Select provides a means for the initiator to specify medium, unit or device
parameters. Its parameter list has to be declared in scsiinfo.

command
{
name Mode_Select
read no
cdb { 0x15 0x00

0x00 0x00
<ParameterListLength> <VendorUnique> }

datasize <ParameterListLength>
data { 0x00

0x00
<Mode>
<BlockDescriptorLength>
<BlockDescriptor(s)>
<VendorUnique> }

}

Erase requests part or all of the medium to be erased, which means that the
medium shall appear as gap or unwritten. This command might be used as a
replacement to the Format command to put a medium into a known state.

command
{
name Format # Do not use Erase!
read no
cdb { 0x19 <Long>

0x00 0x00
0x00 <VendorUnique> }

}

Load/Unload causes the target to enable or disable the unit for further operation.
A tape drive e g might eject the medium if a Unload command is issued, hereby
reducing its power consumption. This SCSI command is mostly defined twice
in scsiinfo to load the medium within the initialisation sequence and to
unload it after usage. It may also be used to request the re-tension function
on peripheral devices that support this function.

50 CHAPTER 4. MSC DEVICE DRIVER

command
{
name Load
read no
cdb { 0x1B 0x00

0x00 0x00
(<ReTension> | 0x01) <VendorUnique> }

}

command
{
name Unload
read no
cdb { 0x1B 0x00

0x00 0x00
<ReTension> <VendorUnique> }

}

• Commands for removable medium device types
Prevent/Allow Medium Removal requests that the target should enable or
disable the removal of the medium from the unit. Usually, this SCSI command is
defined twice in scsiinfo to distinguish between allowing and preventing medium
removal.

command
{
name Prevent_Medium_Removal
read yes
cdb { 0x1E 0x00

0x00 0x00
0x01 <VendorUnique> }

}

command
{
name Allow_Medium_Removal
read yes
cdb { 0x1E 0x00

0x00 0x00
0x00 <VendorUnique> }

}

4.3.3.4.2 Errors After a Request Sense SCSI command, the reply will be scanned
for known errors, which are defined with the following error description block:

error

4.3. Adding new SCSI devices 51

{
code 0x47110815 # This value is returned as the Helios error

code if all of the following conditions are
met.

condition # A condition description block, see below. Any
{ # number of these may appear.
:

}

:

condition
{
:

}

}

4.3.3.4.2.1 Conditions Conditions are evaluated in order of appearance. If all con-
ditions for an error code are fulfilled, the associated error code will be returned.

condition
{
offset 0x08 # Byte offset into the Request Sense reply data.
mask 0xFF # Bit mask to apply to the addressed byte.
value 0x15 # Value to be expected after masking out unused bits.

If this value is found, the condition is satisfied.
}

4.3.3.4.3 Requests These keywords are used to specify a SCSI command sequence:

request
{
fncode 0x06060842 # Helios function code, for which the sequence shall

be submitted.

item Mode_Select # One of the earlier defined commands, which shall be
executed.

}

52 CHAPTER 4. MSC DEVICE DRIVER

4.3.3.5 Compiling

If this source file finally meets your environment, compile it to binary form with:

% gsi scsiinfo.src /helios/etc/scsiinfo

4.3.4 Testing scsiinfo/devinfo entries

After recompiling both the scsiinfo file and the devinfo file, you should ensure that
the driver will work correctly with the new configuration. Another test utility named
testinfo allows you to simulate Helios requests as if they were comming from the file
server. testdrv doesn’t support multivolume/multipartition devinfos. Only volumes
that consist of one partition will be tested correctly.

CAUTION:
The testinfo utility does not preserve any data previously contained in the tested
drives. Prove that you have a complete set of backups for all tested drives.

Starting testinfo is as follows:

% remote MSC testinfo msc21

Defined Volumes : 3
0 : tandberg
1 : exabyte
2 : wren

(O)pen Volume open (A)ll (Q)uit :

The program starts and displays the list of volumes as defined in devinfo (imagine that
each volume occupies a complete drive). Now you may select a command by pressing
one of the keys enclosed in brackets. When a volume has been opened successfully, the
program creates a new window for that volume, using the volume name for the window
name. After opening e g the Tandberg tape streamer, the main window will look as
follows:

Defined Volumes : 3
0 : tandberg
1 : exabyte
2 : wren

(O)pen Volume open (A)ll (Q)uit : o

Which Volume : 0

4.3. Adding new SCSI devices 53

sending Open request for Volume #0 (tandberg)
time = 36 ms, Actual 0, Result 0x0

Load result : Error 0x0

Raw 1, Removable 1, Loaded 1
Protected 0, Formatted -1, NotLocked 0

Defined Volumes : 3
0 : * tandberg
1 : exabyte
2 : wren

(O)pen Volume open (A)ll :

In this example, the FG Open request was completed successfully within 36 ms. The Load
result gives further information about the drive’s state and type: The drive is of type raw
and uses removable media. The medium which has been loaded is not write-protected,
but no access check has been made. In the volume list the tandberg drive is marked
open with the asterisk. Furthermore, (Q)uit is disabled until all volumes are closed.
There are two types of volume windows, for disc drives and for tape drives, reflecting the
different command sets for each drive type. For the Tandberg streamer, a tape window
is opened and a menu offers several requests to execute and a test to perform. We choose
to perform the test and are asked for the File Size and the Files per Loop. After
typing in ‘20’ and ‘8’, we make the tape to rewind first, and the test begins. After a
few minutes, we stop the test by pressing a key, the tape is rewound a short summary is
printed to the screen.

tandberg

HandleTape #0 (tandberg) :
(G)etSize (R)ead (W)rite (S)eek (E)rase (F)ilemark (T)est (C)lose : t
File Size (4 MByte) : 20
Files per Loop (8) :
1: Space reverse, test whole tape 0: Rewind, test from start : 0
Testting Tape tandberg: From start with 8 files of 20 MByte, loop 1:
Rewind... 53 ms
Write Filemark... 687 ms, file avg 77 KByte/sec
Write 501... 643 ms, 99 KByte/sec, bus avg 103 KByte/sec
Test stopped.
Rewind... 38577 ms
Maximum value after 1 Loop:
Write count : 502, Reda Count 0, Tape Size 41024 units of 1024 bytes
Number of Requests with data errors : 0

HandleTape #0 (tandberg) :
(G)etSize (R)ead (W)rite (S)eek (E)rase (F)ilemark (T)est (C)lose : c
Executing close request ...

54 CHAPTER 4. MSC DEVICE DRIVER

time: 101 ms, Actual: 0, Result 0x0
press any key to close the window...

There are some more items in the menu to choose from, here is a short description:

‘G’ Perform a GetSize request. testinfo reports the number of blocks ans the block
size.

‘W’ Perform a Write request. You have to enter the number of units (whereas each
unit contains devinfo’s addressing bytes) and the comparison seed. A sequence
of random number (initialized with the comparison seed) will be written do tape.
The time needed, the number of bytes actally written and the Helios error code
is reported. In case of failure a Request Sense will be executed and its result will
appear, too.

‘R’ Perform a Read request. You have to enter the number of units and the comparison
seed, too. Based on that seed, the same sequence of random numbers is generated
again and is expected to match the sequence written to tape before. testinfo
reports time, bytes, error code and sense data (if required).

‘S’ Perform a Seek request. You have to choose wether to look for blocks, for file
marks, or for sequential file marks. The number of blocks/marks to skip has to be
entered.

‘E’ Perform a Format request.

‘F’ Perform a Write Filemark request. Please enter the number of file marks to write.

‘T’ Conduct a test like described above.

‘C’ Perform a Close request and close the window.

To finish this mini-session, press ‘c’, which causes testinfo to close the tandbergwindow
and to return to the main menu.

A test session with a random access drives is quite similar, an example could be as follows:

wren
executing GetSize request ...
Device has 647926 block of 1024 bytes.

HandleDisc #2 (wren) :
(R)ead (W)rite (F)ormat (G)etSize (T)est (C)lose : t
Test disc wren :
Number of requests (16): 16
Request size (1 .. 64 units) : 64
Allocted 16 requests of 64 units.
Test: (S)ame (C)ontiguous op(T)imised (R)andom (O)ptimised (E)nd : o
Press any key to stop :

4.3. Adding new SCSI devices 55

Random Optimised :
wwwwwwwwwwwwwwww
16 requests of 64 KByte each written in 1790 ms (571 KBytes/sec)
rrrrrrrrrrrrrrrr
16 requests of 64 KByte each read in 1781 ms (574 KBytes/sec)
Random Optimised :
wwwwwwwwwwwwwwww
16 requests of 64 KByte each written in 1730 ms (591 KBytes/sec)
rrrrrrrrrrrrrrrr
16 requests of 64 KByte each read in 1731 ms (591 KBytes/sec)
Test: (S)ame (C)ontiguous op(T)imised (R)andom (O)ptimised (E)nd : e

In addition to the tape menu the disc menu offers some different kind of tests. After
entering the number of requests and the size of each request, you have the choice between
5 tests:

‘S’ Repeat the last test.

‘C’ Read/write some blocks that are in series on disc. Wait for the completion of each
request.

‘T’ Like ‘C’ , but its waited for the undevided completion of the requests.

‘R’ Read/write some blocks placed in different disc areas.

‘O’ Like, ‘R’, but wait for undevided completion.

56 CHAPTER 4. MSC DEVICE DRIVER

Chapter 5

Commands

The following commands can be executed from the command line and are supplied to
make better use of the Parsytec File System.

5.1 access

Purpose: Reports access rights of a file.
Format: access <File>
Description: access reports the user’s access rights of file. For more details see

“The Helios Parallel Operating System”, section 3.4, “Protection:
a tutorial”.

See also: chmod, matrix, refine

57

58 CHAPTER 5. COMMANDS

5.2 chmod

Purpose: Alter the protection bits of a file.
Format: chmod [vxyz][+-=] [rwefghvxyzda] <File>
Description: chmod is used to enable and disable the protection bits of a <File>.

For more details see “The Helios Parallel Operating System”, sec-
tion 3.4, “Protection: a tutorial”.

See also: access, matrix, refine

5.3. finddrv 59

5.3 finddrv

Purpose: Looks for SCSI devices.
Format: finddrv <DiscDevice>
Description: finddrv reads /helios/etc/devinfo and loads the driver spec-

ified in the <DiscDevice> block. The driver reads the /helios/
etc/scsiinfo file and tests every SCSI address for devices.

60 CHAPTER 5. COMMANDS

5.4 format

Purpose: Format a disc.
Format: format <PathToVolume>
Description: This command works with optical discs only. The specified volume

is tried to be formatted physically. After formatting each sector
is verified and reassigned on error. The volume has to be loaded
with the -m option otherwise format returns an error. Depending
on medium size the execution of this command may last some time
because the format command scans every physical sector on disc.

See also: makefs, mksuper

5.5. fs 61

5.5 fs

Purpose: Start the Parsytec File Server.
Format: fs [-c][-o][-f|-b|-n] [<DevInfoName>] <FileServer>
Description: The file server is started, loads <DevInfoName> (when given), tries

to install the file server specified in the <FileServer> (usually of
value ‘msc21’) block. The file server has to be started on a MSC
in the background. This is normally done with

remote -d MSC fs msc21

Options:

• -c
The use of the buffer cache checksum is enabled. Using this
mode reduces speed of file server by factor three. Default is
working without buffer cache checksum.

• -o
If this option is given the file server reports open requests to
the server window.

• -f, -b, -n
These options work with structured volumes only. The
checking mode is determined. This option is overridden
by the checking mode option of a load command. Default
checking mode is -f.

– -f
Full checks; file system data and directory trees are
checked.

– -b
Basic checks; file system data is checked and on occur-
rence of errors directory trees are checked.

– -n
No checks; checker is bypassed completely.

NOTE:
fs allocates memory for all volumes specified in devinfo. So
you have to execute a termvol command for those volumes
to terminate the file server and to clean the memory, even if
some volumes have not been loaded.

See also: load, unload, termvol

62 CHAPTER 5. COMMANDS

5.6 fsync

Purpose: Toggle between partly and fully synchronous mode.
Format: fsync <PathToVolume> [-as]
Description: fsync allows the selection between two operation modes: at vol-

ume load time the default mode is the partly synchronous mode
(-a) which means that all data-blocks are written with a certain
delay (of max. 20 seconds) to disc, when the “sync process”—
which is part of the server—becomes active and detects some of
them. To guarantee that all blocks are written directly to disc
(“write-through-cache”), the user has the alternative to switch to
fully synchronous mode (-s) , which eliminates all delayed-write
operations.

See also: sync

5.7. gdi 63

5.7 gdi

Purpose: Generate a “device information file”.
Format: gdi <Input> <Output>
Description: gdi is a simple compiler which generates a binary object from

the given device information <Input> file. The default filename
which is searched by the server is /helios/etc/devinfo, so
gdi’s <Output> should be that file. When using other values for
<Output> (necessary if you are using several MSCs with different
devinfos), the file server has to be given the correct devinfo as
parameter.

See also: gsi

64 CHAPTER 5. COMMANDS

5.8 gsi

Purpose: Generates a “SCSI-information file”.
Format: gsi <Input> <Output>
Description: gsi is a simple compiler which generates a binary object from

the given SCSI-information <Input> file. The file name which is
searched by the MSC device driver is /helios/etc/scsiinfo, so
gsi’s <Output> has to be that file.

See also: gdi

5.9. load 65

5.9 load

Purpose: Load a volume.
Format: load [-v][-l][-m][-f|-b|-n] <PathToVolume>
Description: The volume specified by <PathToVolume> is loaded (mounted) and

for structured volumes the checker is called and a file system is
tried to be set up. After file server startup this has to be done
with every volume explicitly. Changeable media are locked after
they have been loaded so that they cannot be removed until an
unload command is given.
Options:

• -v
The load command waits for the completion of the load and
reports about the results. On success load reports about
the number of cylinder groups and blocks per cylinder group
of the loaded file system. This option has no effect if the -m
option is given. Default is not to wait for completion.

• -m
This option works with structured volumes only. The specific
volume is loaded but the checker is not called and no file
system is tried to be set up. This option must be applied
before using the makefs, format or mksuper command. This
option disables the -v option.

• -f, -b, -n
These options work with structured volumes only. The
checking mode is determined. If none of these options is
given the checking mode determined in the file server com-
mandline is used. If no specific checking mode was given
there the default mode (-f) is used.

– -f
Full checks; file system data and directory trees are
checked.

– -b
Basic checks; file system data is checked and on occur-
rence of errors directory trees are checked.

– -n
No checks; checker is bypassed completely.

• -l
This option only has an effect during a full check. If there
are ‘hanging’ symbolic links detected after a full check these
links will be destroyed. Default is not to destroy ‘hanging’
links.

See also: unload, termvol

66 CHAPTER 5. COMMANDS

5.10 makefs

Purpose: Create a file system.
Format: makefs <PathToVolume>
Description: This command works with structured volumes only. A new file

system is tried to be created on the volume depending on the
volume/partition description in /helios/etc/devinfo (that was
created via the gdi command). The volume has to be loaded
with the -m option and physically formatted, otherwise makefs
returns an error. On success makefs reports about the number of
cylinder groups and blocks per cylinder group of the file system it
has installed.

CAUTION:
When accidently running on a data containing file system,
all files will be destroyed.

See also: format, load, mksuper

5.11. man 67

5.11 man

Purpose: Prints command description.
Format: man <PFScommand>
Description: Prints (via more) a short description of the given <PFScommand>.

68 CHAPTER 5. COMMANDS

5.12 matrix

Purpose: Display the access matrix of a file.
Format: matrix <File>
Description: The utility matrix displays the access matrix of the given <File>.

For more details see “The Helios Parallel Operating System”, sec-
tion 3.4, “Protection: a tutorial”.

See also: access, chmod, refine

5.13. mksuper 69

5.13 mksuper

Purpose: Generate a superblock.
Format: mksuper <PathToVolume>
Description: This command works with structured volumes only. A superblock

(info block 0) of the specified volume is constructed depending on
the /helios/etc/devinfo information and written to disc. The
volume has to be loaded with the -m option, otherwise mksuper
will return an error. This command should only be used if the
checker failed because of a corrupted superblock.

See also: format, load, makefs

70 CHAPTER 5. COMMANDS

5.14 ptar

Purpose: Store files in an archive.
Format: ptar <Options> <Files>
Description: ptar allows you storing copies of files in an archive.

Options:

• -c, -d, -t, -x
These four option switch between the operation modes.

– -c
Create a new archive.

– -d
Compare the files in the archive with those in the file
system and report about differences.

– -t
Display a list a the files in the archive.

– -x
Extract files from archive.

• -B, -C, -f, -M, -N, -R, -T, -v, -w
General options.

– -B <Number>
Set blocking factor to <Number>.

– -C <Directory>
Change into <Dirtectory> before continuing.

– -f <Filename>
Archive files in <Filename> (instead of using the value
of TARFILE respectively ‘tar.out’).

– -M
Work on a multi-volume archive.

– -N <Date>
Work only on files whose creation or modification date
is newer than <Date>.

– -R
Print each message’s record number.

– -T <Filename>
Work on the list of files in <Filename>, too.

– -v
Enter verbose mode.

– -w
Wait for user’s confirmation before every action.

5.14. ptar 71

• -h, -V
Creation options.

– -h
Treat simbolic links as normal files or directories.

– -V <Name>
Write a volume header at the beginning of the archive.

• -k, -m, -p
Extraction option:

– -k
Keep existing files in the file system.

– -m
Do not extract the modification and access date from archive.

– -p
Set access matrices as recorded in the archive.

See chapter “Backups” for detailed information.

72 CHAPTER 5. COMMANDS

5.15 refine

Purpose: Refine or restrict a capability.
Format: refine [-+=][rwefghvxyzda] <File>
Description: refine allows refining and restricting of capabilities associated to

a <File>. For more details see “The Helios Parallel Operating
System”, section 3.4, “Protection: a tutorial”.

See also: access, chmod, matrix

5.16. sync 73

5.16 sync

Purpose: Force a sync operation immediately.
Format: sync <PathToVolume>
Description: The utility sync forces an “extra” sync operation which guarantees

that all data blocks in the buffer cache with the “delayed-write”
flag set are written immediately to disc. sync is especially useful
to guarantee consistency if the file server or the whole system shall
be shut down.

See also: fsync

74 CHAPTER 5. COMMANDS

5.17 termvol

Purpose: Terminate a volume.
Format: termvol [-v] <PathToVolume>
Description: The volume specified by <PathToVolume> is terminated. There-

fore the volume is unloaded and then the volume specific central
server is terminated. A volume which has been terminated can-
not be loaded again before starting the file server again. If all
volumes have been terminated the whole file server will terminate
automatically.

NOTE:
With respect to safety of data there’s no command to ter-
minate all volumes (and thereby the complete file server) at
once.

Option:

• -v
The termvol command waits for the completion of the vol-
ume termination.

See also: fs, load, unload

5.18. testdrv 75

5.18 testdrv

Purpose: Perform low-level SCSI commands.
Format: testdrv <DiscDevice>
Description: testdrv reads /helios/etc/devinfo and loads the driver speci-

fied in the <DiscDevice> block. It lets you compose SCSI requests
and performs them on a specified drive. testdrv must be executed
on the transputer placed on the MSC board, so you must type e g

% remote MSC testdrv msc21

CAUTION:
Data is not preserved, you have to backup the drives that
are intended to be tested.

See also: Section 4.3.2

76 CHAPTER 5. COMMANDS

5.19 testinfo

Purpose: Test devices described in devinfo/scsiinfo.
Format: testinfo <FileServer>
Description: testinfo performs some menu controlled standard test with the

drives described in the information files (whereas multivolume/
multipartition devinfos are not supported). testinfo must be
executed on the transputer placed on the MSC board, so you must
type e g

% remote MSC testinfo msc21

CAUTION:
Data are not preserved, you have to backup the drives that
are intended to be tested.

See also: Section 4.3.4

5.20. unload 77

5.20 unload

Purpose: Unload a volume.
Format: unload [-v] <PathToVolume>
Description: The volume specified by <PathToVolume> is unloaded (un-

mounted). Actually working processes on that volume are closed
and the volume is updated. Protected media are unlocked so that
they can be removed. In contrary to the termvol command the
central server for this volume is not terminated so that the volume
may be loaded again.
Option:

• -v
unload waits for the completion of the volume unloading.

See also: fs, load, termvol

78 CHAPTER 5. COMMANDS

Chapter 6

Backups

6.1 Creating archives

The Parsytec tape archive program, ptar, is a tool to store copies of a file or a group of
files in an archive. This archive may be written directly to tape, stored as a file or sent
through a pipe to another program, e g compress. ptar can also be used to list the files
in an archive or to extract the files in the archive.

6.1.1 What is an archive?

An archive describes the names and contents of the constituent files. Archives are ba-
sically files, but may be written to and read from a tape. The format used by ptar is
compatible with the standard tar format, and archives may be sent to other machines
even though they run different operating systems. Piping one ptar to another is an easy
way to copy a directory’s contents from one place on a disc to another, hereby preserving
the dates, modes and link-structure of all the files within.

6.2 Argument syntax

The full syntax of the ptar command is as follows:

% ptar <Options> [<Files>]

Options and file names may be freely mixed, because each argument starting with ‘-’
is considered to be an option argument. A single option argument may contain several
options, of which the last one may expect a parameter. This parameter should come
immediately after the option, possibly separated from it by a space. It is not feasable
to put more than one parameterised option into a single argument, since the rest of the
argument following the first parameterised option is regarded as its parameter value.

79

80 CHAPTER 6. BACKUPS

6.3 Operation modes

ptar is used to create an archive, to extract files from an archive or to list the contents
of an archive as well. Each time you run ptar, you must specify exactly one of these
operation modes which should be the first option for ptar. Other arguments are file
names to work on, files to put into the archive or the files to extract from it. If you don’t
specify any file name, the default will depend on the operation mode: when creating an
archive, all files in the current directory are used. When reading, listing or comparing
an archive, ptar will work on all files in the archive. If a file name argument actually
names a directory, then that directory, its files and all its subdirectories are used.

Here’s a list of the ptar operation modes:

• -c
Create a new archive that contains all the files specified on the command line.

• -d
Compare the files in the archive with their counterparts in the file system. ptar
will report all differences in size, mode, access matrix and contents. If a file exists
in the archive but cannot be found in the file system, it will report this. If you
specify file names, those files are compared with the archive and they all must exist
in the archive.

• -t
Display a list of the files in the archive. If you specify file names, only those files
will be mentioned if they exist in the archive.

• -x
Extract the specified files from the archive. If no file names are given, all files from
the archive will be extracted.

6.4 Other options

All other options are not compulsory. Some of them make sense with all modes, while
others should only be used with particular modes.

6.4.1 General options

These options are always meaningful, regardless of the operation mode.

• -b <Number>
Use a blocking factor of <Number> for the archive. The default blocking factor is 20
blocks. When reading or writing the archive, ptar will always read from or write
to the archive in blocks of <Number> * 512 bytes. Larger blocking factors result in
better throughput of data, but might reduce media utilisation.

6.4. Other options 81

• -C <Directory>
Change into the <Directory> before continuing. This option is usually interspersed
with the files ptar should work on. It is especially useful when you have several
widely spread files that you want to store in the same direcctory. For example,

% ptar -c <FileHere1> <FileHere2> -C <OtherDir> <FileThere>

will place the files <FileHere1> and <FileHere2> from the current directory in
the archive followed by the file <FileThere> from the directory <OtherDir>. Note
that the file <FileThere> is recorded under the precise name <FileThere>, not
as <OtherDir>/<FileThere>. Thus, the archive will contain three files which all
appear to have come from the same directory; if the archive is extracted with ‘ptar
-x’, all three files will be created in the same directory. In contrast,

% ptar -c <FileHere1> <FileHere2> <OtherDir>/<FileThere>

will record the third file in the archive under the name <OtherDir>/<FileThere>
so that, if ‘ptar -x’ is used, the third file will be created in a subdirectory named
<OtherDir>.

• -f <Filename>
Use <Filename> as the name of the archive file. If no ‘-f’ option is given but the
environment variable TARFILE exists, its value is used, otherwise the ptar writes
to the default ‘tar.out’. If the filename is ‘-’, ptar writes to the standard output
(when creating) or reads from the standard input (when listing or extracting).
Thus, ptar can be used as the head or the tail of a command pipeline.

• -M
Work on a multi-volume archive - an archive that will not fit on a single medium
used to hold it. When this option is used, ptar will not abort when it reaches the
end of a medium. Instead, it will ask to prepare a new volume.

• -N <Date>
Work only on files whose creation or modification dates are newer than <Date>.
The main purpose is for creating an archive; then only new files are written. If
extracting, only newer files are extracted.

• -R
Print, along with each message, the record number within the archive where the
message occurred. This option is especially useful when reading damaged archives,
since it helps to pinpoint the damaged sections.

• -T <Filename>
Read a list of file names from <Filename> and add them to the list of files to work
on. If <Filename> is given as ‘-’, the list is read from standard input. Several ‘-T’
options may be given in the command line. Note that using both ‘-T -’ and ‘-f
-’ will not work unless you have specified the ‘-c’ mode before.

• -v
This option causes ptar to be verbose about the actions it is taking. Normally
ptar does its work silently; this option displays the name of each file ptar treats.

82 CHAPTER 6. BACKUPS

When used with the ‘-t’ option, ptar prints full information about each file like
‘ls -l’.

• -w
Wait for user confirmation before taking the specified action. ptar prints a message
for each operation it intends to take, and waits for a line of input. If your input
line begins with ‘y’, the action is performed, otherwise it is skipped. This option
can only be used together with the ‘-f -’ option when an archive is created.

6.4.2 Create options

These options are used to control which files ptar puts into an archive, or to control the
format the archive is written in.

• -h
Follow symbolic links as if they were normal files or directories and archive the
linked-to object. Normally, ptar simply records the presence of a symbolic link. If
the linked-to object is encountered again, a complete second copy will be written
to the archive.

• -V <Name>
Write a volume header at the beginning of the archive. If this option is used together
with ‘-M’, each volume of the archive will have a header of ‘<Name> Volume <N>’,
whereas <N> is the volume number.

6.4.3 Extract options

These options are useful for extracting files from the archive.

• -k
Keep existing files within the file system, do not overwrite them from the archive.

• -m
Do not extract the modification and access dates from the archive. The modification
and access times will be the time of extraction.

• -p
Set the access matrix of extracted files exactly as recorded in the archive. If this
option is not used, access matrices will be set to the default matrices for directories
or files.

6.5 Creating backups

ptar can be used to perform full or incremental backups. Backups should only be done
when no other users or programs are modifying files in the file system. If files are modified

6.5. Creating backups 83

while ptar is making a backup, they may not be stored properly in the archive, in which
case you won’t be able to restore them if necessary. You should use the ‘-V’ option
for full backups to name the archive, so you can tell what an archive is even without a
label. For incremental backups, you will need to use the ‘-N <Date>’ option to tell ptar
to only store files that have been modified or added since date, where date should be
the date and time of the last full or incremental backup. A standard scheme is to do a
monthly full backup and a weekly incremental backup of everything that has changed
since the last monthly. Also, perform a daily incremental dump of everything that has
changed since the last monthly or weekly dump. Unless you are in a hurry (and trust in
the ptar program and your tapes), you should compare the backup with the file system
after creation using the ‘ptar -d’ command to ensure that the backup has been written
properly. This will also detect cases where files have been modified while or just after
being archived.

84 CHAPTER 6. BACKUPS

Chapter 7

Benchmarks

To fit you for both, writing your own programs using the PFS and testing the data
transfer rate of your system, we implemented two small C-programs and some shell
scripts to work with them.

7.1 The programs

create
can be used to generate a file of a given size. We used it to create kbyte.1 (of
size 1 KByte), block.1 (of size 4 KBytes) and packet.1 (of size 64 KBytes). In
general, it’s called like

% create <ContextDir> <FileName> <FileSize>

to create the file <ContextDir>/<FileName> that will contain <FileSize> bytes.
See copy.c for the sources.

copy
can be used to measure PFS’ data transfer rate. It’s called

% copy <PathToSrc> <PathToDest> <PathToVolume> <ReadCount> <WriteCount>

to copy the file <PathToSrc> to <PathToDest> using the file server for <PathTo-
Volume>. If you want to measure the transfer rate from/to your host you may
give values to <ReadCount> and <WriteCount> which differ from one. So you can
simulate a 20 MByte file on your PC’s harddisc that claims only 1 MByte by
reading/writing it twenty times. See copy.c, csync.c and pathsplt.c for the
sources.

cppfs
is a shell script pattern to ease the usage of copy. It has to be modified to meet
your environment.

demo1-demo4
conduct some standard tests.

85

86 CHAPTER 7. BENCHMARKS

Appendix A

The configuration files

A.1 Quick reference to the scsiinfo keywords

The following section describes each keyword, the type of value which it expects and
the default value assumed if the keyword is omitted. The default value <None> marks
keywords which must be given a value.

keyword member of default meaning
blockmove command no Turn blockmove mode on/off
cdb command <None> Command Descriptor Block
cdbsize command <GroupDependent> Size of the Command Descriptor Block in

bytes
code error <None> Helios error code
command device <None> SCSI command description
condition error <None> Condition description
data command <NoData> Parameter list/replied data
datasize command 0 Size of parameter list or replied data
error device <None> Error description
fncode request <None> Helios function code
ident device <None> Reply of the Inquiry SCSI command
item request <NoCommand> Command to be executed
mask condition <None> Bit mask to apply to the addressed byte
name command <None> Command’s name
offset condition <None> Byte offset into the Request Sense reply

data
read command <None> Direction of data flow
request device <None> Request description
type device <None> Selects disc or tape devices
value condition <None> Expected value after masking out unused

bits.

A.2 scsiinfo syntax definition

The following syntax definition specifies all items and their order of appearance, using
these symbols:

87

88 APPENDIX A. THE CONFIGURATION FILES

[] Square brackets surround items that are optional.
{ } Braces surround optional items that can be repeated.
<> Fishtail brackets enclose generic expectations.
. . . Three dots denote continuation of a series; for example, 12. . . 89 is the

same as the series 123456789.
| A vertical bar separates two mutually exclusive alternatives.

scsiinfo ::= <entry> {<entry>}
entry ::= ‘device’ <name> <description>

description ::= ‘{’ <type> <ident> {<command>} {<error>} {<request>} ‘}’
type ::= ‘type’ ‘sequential’ | ‘raw’ | ‘random’ | ‘structured’
ident ::= ‘ident’ <name>

command ::= ‘command’ ‘{’ <cmdname> <read> <cdb> [<cdbsize>] [<datasize>]
[<data>] ‘}’

cmdname ::= ‘name’ <name>
read ::= ‘read’ ‘yes’ | ‘no’
cdb ::= ‘cdb’ ‘{’ <number> {<number>} ‘}’

cdbsize ::= ‘cdbsize’ <number>
datasize ::= ‘datasize’ <number>

data ::= ‘data’ ‘{’ <data item> {<data item>} ‘}’
data item ::= <number> | <string>

error ::= ‘error’ ‘{’ <errcode> <condition> {<condition>} ‘}’
errcode ::= ‘code’ <number>

condition ::= ‘condition’ ‘{’ <offset> <mask> <value> ‘}’
offset ::= ‘offset’ <number>
mask ::= ‘mask’ <number>
value ::= ‘value’ <number>

request ::= ‘request’ ‘{’ <fncode> {<item>} ‘}’
fncode ::= ‘fncode’ <number>

item ::= ‘item’ <name>
name ::= <word> | <string>
string ::= ‘”’ {<any printable ascii character>} ‘”’
word ::= <letter> {<letter> | <digit> | <underscore>}

number ::= [‘-’] <ovalue> | <dvalue> | <xvalue>
ovalue ::= ‘0’ {<odigit>}
dvalue ::= <nzdigit> {<digit>}
xvalue ::= ‘0’ ‘x’ | ‘X’ <xdigit> {<xdigit>}
odigit ::= ‘0’ . . . ‘7’
digit ::= ‘0’ . . . ‘9’

nzdigit ::= ‘1’ . . . ‘9’
xdigit ::= ‘0’ . . . ‘9’ | ‘A’ . . . ‘F’ | ‘a’ . . . ‘f’
letter ::= ‘A’ . . . ‘Z’ | ‘a’ . . . ‘z’

underscore ::= ‘ ’

A.3 Quick reference to the devinfo keywords

There are some keywords that must be given a fixed value:

A.3. Quick reference to the devinfo keywords 89

keyword member of must be meaning
addressing discdevice 1024 Discdevice’s addressing size
blocksize fileserver 4096 fileserver’s blocksize (interpreted in bytes)
hugepkt fileserver 1 Size of huge cache packets (interpreted in file-

server’s blocksize)
mediumpkt fileserver 4 Size of medium cache packets (interpreted in file-

server’s blocksize)
name discdevice msc21.dev Device driver’s filename (placed in /helios/lib)
smallpkt fileserver 16 Size of small cache packets (interpreted in file-

server’s blocksize)

The other keyword’s values a chosen by the user. A default of <None> forces the user to
give a value to the keyword.

keyword member of gdi default meaning
controller discdevice 0 SCSI-controller’s address
cgsize volume <BestPossible> Cylinder group’s size (interpreted in file-

server’s blocksize)
device fileserver <None> Discdevice the fileserver will use
discdevice <None> Start of a discdevice block
drive discdevice <None> Start of a drive block

partition 0 Drive where the partition takes place (in-
terpreted in a drive list’s number that’s
generated by the file server)

end partition <LastBlock> Last block that is claimed by the partition
(interpreted in discdevice’s addressing size)

fileserver <None> Start a file server block
hugecount fileserver <Tolerable> Number of huge packets in the cache
id drive 0 Drive’s SCSI-address
mediumcount fileserver <Tolerable> Number of huge packets in the cache
minfree volume 0 Space to be left free for the checker’s

/lost+found directory (interpreted in file-
server’s blocksize)

name volume <None> Volume’s name
ncg volume <BestPossible> Number of cylinder groups of volume
partition discdevice <None> Start of a partition block

volume <None> Partition that’s occupied by volume (in-
terpreted in a partition list’snumber that’s
generated by the file server)

smallcount fileserver <Tolerable> Number of small packets in the cache
start partition 0 First block that is claimed by the partiton

(interpreted in discdevice’s addressing size)
syncop fileserver 0 Switch to toggle between partly (= 0) or

full (= 1) synchronous mode
type drive <None> Drive’s type (refering to scsiinfo entires)

volume structured Volume’s type
volume fileserver <None> Start of a volume block

90 APPENDIX A. THE CONFIGURATION FILES

Appendix B

Errors

There are several error messages that may occur when starting/running the file server
or any of the utilitiy commands. We differ between fatal error conditions that lead to
stopping a program (e g not enough memory for the file server and its buffer cache) and
normal errors/warnings that result in non performing of command (e g a full disc) but
keep the file server running. Most of the messages explain theirselves, here are the most
important ones:

Text: Failed to load devinfo.
Description: The file server did not find the device information file

that usually has to be placed in /helios/etc or given as
parameter.

Corrective measures: Create the required file by editing the /helios/etc/devin-
fo.src file and compiling that via the gdi command.

Text: Failed to find filesystem info.
Description: The value of the last parameter of fs and the value of the

fileserver keyword in your devinfo are not equal.
Corrective measures: Reenter your fs call (if there was an error in typing) or

correct the value in your devinfo (don’t forget to use the
gdi command afterwards).

Text Failed to find discdevice info.
Description: In your devinfo there’s no discdevice block corresponding

to the value you gave to device in the fileserver block.
Corrective measures: Complete your devinfo and recompile it (use gdi).

91

92 APPENDIX B. ERRORS

Text Failed to open device.
Description: The OpenDevice() call couldn’t succeed.
Corrective measures:

• Usually, the device driver’s name as written in dev-
info’s discdevice block (following the name keyword)
does not correspond to an existing file.

NOTE:
The name should be msc21.dev and is expanded
to /helios/lib/msc21.dev. Assert that this file
contains your device driver.

• Maybe you didn’t start the file server on a MSC node.
The correct call is

% remote -d MSC fs msc21

• You have an old MSC board in use and didn’t perform
an update of your hardware. See section 2.2 for further
information.

• Else there could be problems with your SCSI devices or
the SCSI bus. Check your hardware and try it again.

Text Failed to to init device info for fileserver.
Description: Have a look at the server window to get detailed information.
Corrective measures: Correct the errors by editing your devinfo or clearing the

memory

Text: Not enough memory for PFS v2.1.
or
Failed to allocate memory for server.

Description: There was not enough memory for the file server’s buffer
cache etc.

Corrective measures:

• Have a look at your devinfo file. Maybe your
buffer cache appotionment via smallcount/medium-
count/hugecount results in asking for more memory
than the MSC board offers. Correct the values.

• You’ve already started a file server and some difficul-
ties occured, so that you wanted to restart the file
server, but it’s still in memory. Note that you have to
terminate all volumes, even though one of them was
not loaded.

	Contents
	List of Figures
	1 Introduction
	1.1 Main features
	1.2 The PFS data structures on disc
	1.2.1 Disc layout
	1.2.2 Directory entries and files

	1.3 Checker
	1.3.1 How to use it ...
	1.3.2 The different phases of the checking process
	1.3.2.1 Phase I
	1.3.2.2 Phase II
	1.3.2.3 Phase III
	1.3.2.4 Phase IV

	1.4 Related manuals

	2 Upgrade
	2.1 Backups
	2.2 Hardware update
	2.3 Software upgrade
	2.3.1 devinfo file, coming from PFS v2.0.x
	2.3.2 devinfo file, coming from HFS v1.x

	3 Installation
	3.1 Requirements
	3.1.1 Hardware
	3.1.2 Software

	3.2 Copying files
	3.3 Device configuration
	3.3.1 Conditions
	3.3.2 General structure
	3.3.3 The developer’s box - an example
	3.3.4 The hardware resources
	3.3.4.1 Description of the equipment
	3.3.4.2 From drives to partitions
	3.3.4.3 A complete discdevice

	3.3.5 Piling up the file server
	3.3.5.1 From partitions to volumes
	3.3.5.2 Complete?

	3.4 Running the multi-volume file server
	3.4.1 Startup

	4 MSC device driver
	4.1 The SCSI bus
	4.2 Internal details
	4.2.1 Device driver internals
	4.2.2 Process structure
	4.2.3 Supported Helios requests
	4.2.4 Error handling

	4.3 Adding new SCSI devices
	4.3.1 Required documents
	4.3.2 Testing single SCSI commands
	4.3.3 Creating the scsiinfo configuration file
	4.3.3.1 General structure
	4.3.3.2 Toplevel
	4.3.3.3 Device level
	4.3.3.4 Command/error/request level
	4.3.3.4.1 Commands
	4.3.3.4.1.1 Mandatory SCSI commands
	4.3.3.4.1.2 Other SCSI commands

	4.3.3.4.2 Errors
	4.3.3.4.2.1 Conditions

	4.3.3.4.3 Requests

	4.3.3.5 Compiling

	4.3.4 Testing scsiinfo/devinfo entries

	5 Commands
	5.1 access
	5.2 chmod
	5.3 finddrv
	5.4 format
	5.5 fs
	5.6 fsync
	5.7 gdi
	5.8 gsi
	5.9 load
	5.10 makefs
	5.11 man
	5.12 matrix
	5.13 mksuper
	5.14 ptar
	5.15 refine
	5.16 sync
	5.17 termvol
	5.18 testdrv
	5.19 testinfo
	5.20 unload

	6 Backups
	6.1 Creating archives
	6.1.1 What is an archive?

	6.2 Argument syntax
	6.3 Operation modes
	6.4 Other options
	6.4.1 General options
	6.4.2 Create options
	6.4.3 Extract options

	6.5 Creating backups

	7 Benchmarks
	7.1 The programs

	Appendix
	A The configuration files
	A.1 Quick reference to the scsiinfo keywords
	A.2 scsiinfo syntax definition
	A.3 Quick reference to the devinfo keywords

	B Errors

