
The Helios Shell

PERIHELION SOFTWARE LTD

September 1991

Copyright

This document Copyright c© 1991, Perihelion Software Limited. All rights re-
served. This document may not, in whole or in part be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine read-
able form without prior consent in writing from Perihelion Software Limited,
The Maltings, Charlton Road, Shepton Mallet, Somerset BA4 5QE, UK.

This manual is Edition 1.3, September 1991.

Acorn and ARM are trademarks of Acorn Computers Ltd.

Amiga is a registered trademark of Commodore-Amiga, Inc.

Apple is a registered trademark of Apple Computers, Inc.

Atari is a trademark of the Atari Corporation.

Commodore is a registered trademark of Commodore Electronics, Ltd.

Ethernet is a trademark of Xerox Corporation.

Helios is a trademark of Perihelion Software Limited.

IBM is a registered trademark of International Business Machines, Inc.

Inmos, occam, T414, T425 and T800 are trademarks of the Inmos group of companies.

Intel and iPSC are registered trademarks of Intel Corporation.

Macintosh is a trademark of Apple Computers, Inc.

Meiko and Cesius are trademarks of Meiko Limited.

Motorola is a trademark of Motorola, Inc.

MS-DOS is a registered trademark of The Microsoft Corporation.

Parsytec, Paracom and SuperCluster are trademarks of Parsytec GmbH.

POSIX refers to the standard defined by IEEE Standard 1003.1-1988;

Posix refers to the library calls based upon this standard.

Transtech is a trademark of Transtech Devices Ltd.

Sun, SunOs and SunView are trademarks of Sun Microsystems.

Telmat and T.Node are trademarks of Telmat Informatique.

Unix is a registered trademark of AT&T.

The X Window System is a trademark of MIT.

Printed in the UK.
PDF generated in AT (Vienna).

i

Acknowledgements

The Helios Shell was written by members of the Helios group at Perihelion Soft-
ware Limited. Helios software is available for multi-processor systems hosted
by a wide range of computer types. Information on how to obtain copies of
Helios software is available from Distributed Software Limited, The Maltings,
Charlton Road, Shepton Mallet, Somerset BA4 5QE, UK. (Telephone: 0749
344345.)

ii

Contents

1 Introducing the Helios shell 2

2 Using the shell 3
2.1 Giving commands to the shell . 3
2.2 Filename/command completion 4

2.2.1 Name completion using ESC 4
2.2.2 Name completion using CTRL-D 5

2.3 Simple shell input and output . 5
2.3.1 Redirection . 5
2.3.2 Pipes . 6

2.4 The history facilities . 7
2.5 Wildcards . 8
2.6 Running tasks in the background 10
2.7 Aliases . 11
2.8 Shell variables . 11
2.9 Using shell windows . 12

3 An advanced description of the shell 13
3.1 Characters and words . 14
3.2 Strings . 15
3.3 Metacharacters . 15
3.4 Expressions . 17
3.5 Command execution . 17
3.6 The history list and history substitution 18
3.7 Aliases . 21
3.8 Variables and variable substitution 22

3.8.1 Shell variables . 22
3.8.2 Assigning values to shell variables 24
3.8.3 Variable substitution . 25

3.9 Redirection . 26
3.10 Control flow . 27

3.10.1 if-then-else . 28
3.10.2 switch . 28
3.10.3 while . 29
3.10.4 foreach . 29

1

Chapter 1

Introducing the Helios shell

This guide is divided into two parts: the first part describes simple use of the
Helios shell, including the most common activities; the second part describes
more advanced use of the shell.

Helios provides a task called the Helios shell, which acts as a command line
interface to the operating system. Within the Helios shell the user can give all
the Helios commands, including the one-line, built-in shell commands. These
shell commands were intentionally designed to be similar enough to Unix shell
commands for Unix users to feel at home. However, Unix users should note
that not all Unix shell commands are available in Helios and that commands
with identical names in both shells may not act in exactly the same way.

The Helios shell also includes various shorthand methods to save typing, and
personalisation methods to help users to create their own commands. Several
shells can be used simultaneously, if this is desirable.

2

Chapter 2

Using the shell

This section provides an introduction to the most commonly used features
within the Helios shell. It is intended that this section will be sufficient for
the novice user. Anyone who requires a more detailed explanation is advised
to consult chapter 3.

2.1 Giving commands to the shell

The simplest kind of command is a single word, where a word is one or more
characters delimited by blank space, tabs, or by the beginning or end of the
line. The entire line is known as a command line. The simple command:

ls

tells the shell to provide a list of the contents of the current directory.
A command may include a whole sequence of words, where the first word

specifies the command and the rest qualify its action. These qualifying words
or arguments include options. Options are built-in alternatives associated
with a particular command. They are usually keywords of the form ‘-x’ that
determine what optional action a command must take. Options are usually
given after the command. For example,

ls -l

tells the shell to provide a list as before, but with even greater detail. Other
arguments may include the name of a file to be edited. For example,

ls -l myfile

tells the shell to give the same sort of details as above, only this time just for
the file named ‘myfile’. Notice the option ‘-l’ goes before the other argument;
this is always the order.

3

CHAPTER 2. USING THE SHELL 4

2.2 Filename/command completion

There is a useful feature of the Helios shell that saves a lot of typing at the
keyboard. Type the first few letters of a filename, or of a command name,
and then press the escape key. The shell automatically completes the name,
if it can, by matching the characters typed to the range of names available.
Although this feature can be used for names of any length, it is most useful for
long names. If the key sequence CTRL-D is used instead of pressing the escape
key, a list of possible options or matches for the specified command or directory
name is produced.

2.2.1 Name completion using ESC

Press the escape key (ESC) after typing one or more characters, and this will
cause the shell to search for a name that begins with that sequence of characters.
The shell can determine whether to look for a command name or a filename
or directory name by its context and relative position on the command line.
If the shell finds a file with a name which begins with the characters typed,
it completes the filename and displays the result on the screen. If it finds
that more than one file shares the same initial characters, it appends as many
characters as it can to form a stub that is common to all the possible files and
then signals an error by sounding the terminal’s bell. When this situation arises,
either complete the file name, or add a few extra characters before re-using the
escape key. For example, instead of typing:

cd examples

the user could enter the following:

cd exESC

The escape key then forces the shell to complete the name, examples. Sim-
ilarly, give:

daESC

and the shell supplies the last two letters to complete the command name date.
The user can then press the return key to execute date. However, give:

dESC

and the shell sounds a terminal bell to show that it does not know how to
complete the name because there is more than one name that starts with the
letter ‘d’.

CHAPTER 2. USING THE SHELL 5

2.2.2 Name completion using CTRL-D

As an alternative to the escape key, use the control combination CTRL-D. This
combination causes the shell to list all the files with names that begin with the
specified stub. It then redisplays the text entered, enabling the user to complete
the name with its correct ending.

Suppose, for example, the directory ‘fred’ contains two files: one is called
test.tst and the other is test.txt. In this case the command line:

cat /fred/teESC

will be ambiguous as the stub, ‘te’, refers to more than one file. The shell
will attempt to complete the name, adding as many characters as it can before
signalling an error:

/fred/test.t

At this point there are three options: complete the name, add an ‘s’ and
use the escape key to force the shell to complete the name, or use CTRL-D to
list all the files with names which begin with ‘test.t’.

When using CTRL-D, there is no need to worry about using characters that
might match more than one name. Take an example used earlier: the letter ‘d’
followed by ESC. Suppose that CTRL-D had been used instead of ESC:

dCTRL-D

the shell would have provided a list something like this:

date* df* diff* dump*

enabling the user to find the correct command, complete it, and execute it.

2.3 Simple shell input and output

This section describes the control of input and output through the use of redi-
rection and pipes.

2.3.1 Redirection

When using the shell, commands are generally issued by typing them in at the
keyboard. The keyboard is the default method of input; it is what is meant by
standard input (stdin). The shell usually returns any output by ‘printing’
it on the screen, unless it is requested to do otherwise. This default output is
known as the standard output (stdout).

For example, type the command:

ls

and the contents of the current directory appear on the screen like this:

CHAPTER 2. USING THE SHELL 6

file1 file2 file3

followed by the current prompt on a line by itself. If there is no output, the
shell indicates that it has executed the command by returning a prompt to the
screen. The default prompt is a percentage sign:

%

The user may wish to redirect the output to somewhere other than the
standard output. This can be done by including a greater than symbol >
within the command, followed by the name of the destination. To send the
contents of the current directory to the file contents, type:

ls > contents

It does not matter if the >symbol is surrounded with blank space or not.
The shell treats >as a separate word with a meaning of its own and not as part
of the command or its argument. For example,

ls>contents

would be equally acceptable. If the file contents does not exist, it is created;
otherwise, this command line will overwrite everything in contents with the
output of ls. To ensure that the output is added to the end of an existing file
instead of overwriting it, give a double greater than symbol >>instead.

To take input from somewhere other than the standard input, precede the
name of the input source (often this is the name of a file, the contents of which
are to be directed to the stdin of the command), with a less than symbol <.
Again, it can be given immediately before the name or separated from it it with
blank space.

2.3.2 Pipes

Whereas redirection can be used to force a process to communicate with files
instead of with a terminal, pipes can be used to make processes communicate
directly with other processes. This is particularly useful when running a com-
mand with an output which needs to be sent directly to the input of a second
program for further processing. As an example of pipelining, consider the fol-
lowing:

ls | wc -w

In this case, the output from ls (a list of all the files in the current directory)
is being used as the input to wc (word count). wc with the -w option counts
the number of words and displays the result on the screen. This executes ls
and wc, simultaneously piping the output (stdout) of ls to the input (stdin)
of wc. The overall effect of this command line is to count the number of files
in the current directory.

CHAPTER 2. USING THE SHELL 7

2.4 The history facilities

The shell stores in memory each command typed into it, and places these com-
mands on a list of past events. The shell allows the user to recall this list to
review previous actions, to repeat a command, or to edit a previous command
before executing it again. The user can even specify the number of previous
commands which will be retained in the list by assigning a value to the shell
variable history. If history has not been set, or has been assigned a value of
0, only the most recent command will be retained.

Each event on the history list is associated with a number, starting with
1 and increasing sequentially. As each event occurs, it is added to the list.
The number appears to the left of the event when the events are listed with
history. For example, the last four events might look like this when listed:

100 date
101 ls -l
102 cd newfile
103 history

(Notice that history is included as the most recent event, number 103). To
find out the current event number without resorting to the history command,
place a ! character in the prompt string. The prompt string is merely the first
word of the shell variable prompt. For example, type:

set prompt="! : "

and the shell prompts with:

104 :

or whatever the event number is at present, followed by a colon. The shell then
continues to increment this number with each new event.

To access an event and re-introduce it as current input, use the exclamation
mark (!) character. A pair of these characters followed by newline tells the
shell to access the last event, echo it to the terminal, substitute it as the current
line of input and repeat its action. To do this with any other event on the list,
be more specific. The ! character can be followed by the number of the event
to be accessed. To re-execute the date command, type:

!100

The shell will display the event associated with that number and execute it:

date
FRI JAN 29 13:22:07 1991
105:

CHAPTER 2. USING THE SHELL 8

An event can be referred to by its position in relation to the current event
using a minus sign followed by an integer, where the integer refers to the number
of events to go back on the list. For example, suppose the user knows that the
current event number is 106 (because the current prompt is set up to reflect
event numbers) and the user types !-6:

106 : !-6

The shell will act as if they had typed !100 (in other words, 6 from 106
translates as event number 100).

An event can be retrieved from the history list by following ! with as
many characters of the command name as will specify it exactly. The shell
searches backwards from the current event until it finds the first match in
the history. It then repeats that command. For example, to repeat the last
command beginning with ‘d’, type:

!d

Take care that the last command with this initial letter is the command
sought. It may be useful to use two or more letters after the ! to ensure that
the correct event is pinpointed and retrieved.

The above examples simply show how to capture a past event and re-
introduce it verbatim as current input. The user can, however, retrieve a past
event from the history list, make some changes and then re-execute the edited
command line. Certain control-key combinations allow the retrieval of com-
mand lines from the history list and then position the cursor for inserting text
into the line or deleting text from it. A list of these control keys is given below.

Note: the ‘up’ and ‘down’ arrow keys can also be used to scroll through
the history list.

2.5 Wildcards

Whenever a filename can be given, wildcards can be used as a shorthand method
for entering the name. One of these wildcards is *, which instructs the shell to
replace that character with as many characters as are necessary to produce a
valid filename. Another wildcard character, ?, has a similar meaning, but will
only be replaced by a single character. [abc] can also be used to specify the
match of a single character with one of a group of characters, but this type of
wildcard will only match with a character if it is listed within the brackets.

When substituting for wildcards, the shell will use any characters which are
adjacent to the wildcard to generate a pattern which will be compared with each
of the filenames in a directory. A list of filenames which match this pattern is
then generated and inserted into the command line in place of the word which
contained the wildcard.

To determine which directories are searched during wildcard substitution,
consider the wildcard’s position within the command line. If the character ap-
pears within a command name, each of the directories which have been assigned

CHAPTER 2. USING THE SHELL 9

CTRL-A Moves the cursor to the start of a line.

CTRL-B Moves the cursor to the left by one character.

CTRL-E Moves the cursor to the end of a line.

CTRL-F Moves the cursor to the right by one character.

CTRL-L Moves the cursor to the left by one word.

CTRL-N Replaces the current line with the next line in the history list. This
can be used repeatedly to display each line in the list.

CTRL-P Replaces the current line with the preceding line in the history list.
This can be used repeatedly to display each line in the list.

CTRL-R Replaces the current line with one from the history list which be-
gins with the same word as at the cursor’s current position. When
CTRL-R is used on a blank line the last command is fetched from
the history list.

CTRL-U Deletes the entire line.

CTRL-W Moves the cursor to the right by one word.

CTRL-X Deletes the word at the cursor.

to the shell variable path will be searched. If, however, the wildcard appears
within a command’s argument, only the current directory will be searched.
Listed below are a few examples of wildcard usage.

*

General wildcard. Represents a series of characters. For example, rm *
deletes all the files in the current directory, rm *.c deletes all the files in
the current directory with names which end in .c and rm Pe*.c deletes
all the files in the current directory with names which begin with Pe and
end with .c, such as Perihelion.c.

?

Wildcard for one character only. For example, ls ?a.c lists all the files
with names which consist of four characters, where the last three charac-
ters are known to be a.c. This could match aa.c, ba.c, etc.

[...]

CHAPTER 2. USING THE SHELL 10

Wildcard for one character, but it only matches with the specified char-
acters. For example, od t.[abc] displays the contents of the files t.a, t.b
and t.c.

2.6 Running tasks in the background

The Helios shell allows the running of a task, or pipeline of tasks, without the
need to wait for its completion, by using the ampersand character, &. This
metacharacter, when appended to a pipeline, causes the entire pipeline to be
run in the background, which frees the shell so that it can process the next
command line, which may also be run in the background.

Whenever a task is executed in the background, the shell assigns a job
number to that task. This job number is displayed on the standard output
device when the task begins to execute and it is also displayed alongside a
suitable message when the task has completed. As each task has a unique
job number, many commands use it to identify a particular task. The jobs
command for example, lists all of the current tasks and their job numbers.

It should be noted that the output of tasks running in the background
is directed to stdout unless otherwise redirected, so there is a possibility of
interference with the output of tasks running in the foreground. As an example
of how to use the background facilities, consider the following:

fgrep Helios huge > Helios &

In this example fgrep is being used to search for all occurrences of the word
‘Helios’ within the file ‘huge’. As this task may take some time to complete,
it is useful to be able to run it in the background, so that other tasks can
be completed simultaneously. When this task begins executing, the shell will
display the following type of message on the screen, followed by a shell prompt:

[1] 1234

This shows that the task has been assigned the job number 1 and that it
has a process identification number of 1234. When the task terminates, the
following message will be displayed:

[1] Done fgrep Helios huge

indicating that job number 1 completed successfully. Several tasks can be ex-
ecuted simultaneously either by using many command lines, such as that de-
scribed above, or by constructing a single compound command line. The follow-
ing example shows how two background processes and one foreground process
can be invoked from within a single command line:

fgrep Helios huge > helios & fgrep Perihelion huge >
perihelion & echo hello

CHAPTER 2. USING THE SHELL 11

In this example, two instances of the fgrep command are being executed
in the background (the >symbol shows that all output is to be sent to a file
instead of to the screen) and one echo command is being executed in the
foreground. The shell lists the job and the process identification for each of the
two background tasks and then executes each command:

[1] 1234
[2] 1235

Similar messages to that shown above will be displayed when each process
terminates.

2.7 Aliases

In its simplest form, the aliasing mechanism allows alternative names to be as-
sociated with a command name. This is particularly beneficial to users who are
not familiar with Unix-style commands, as each command can be assigned an
alternative name which more closely matches that of a more familiar operating
system. A particularly good example of this is the ls command. Users who are
more familiar with the MS-DOS equivalent, dir, may therefore alias dir to be
equivalent to ls, so that either name can be used:

alias dir ls

The command dir can now be used to list the contents of the current di-
rectory. An extension of this idea is to assign an alias to a command and its
arguments. By default, the ls command produces a list of the files in the current
directory. However, a command that lists all the files along with their creation
dates and other information may be preferable to some users. This effect can be
achieved by invoking ls with the -l option, or by assigning an alias to produce
a command with default behaviour which gives this more detailed list of files:

alias ls ’ls -l’

The use of the above alias will cause all references to the command called
ls to be replaced with ls -l. (Notice the use of the quote characters to ensure
that the command ls -l is treated as a single word.)

2.8 Shell variables

The Helios shell supports a list of variables which can be assigned values. These
variables may then appear within command lines where they will be substituted
for their values. Some of these variables are created and maintained by the shell
(such as cwd, which always contains the name of the current working directory)
but others can be created or removed at will by the user. A particularly useful
application of shell variables is as a shorthand for long filenames. Consider, for
example, the following assignment:

set h=/usr/perihelion/helios

CHAPTER 2. USING THE SHELL 12

The above command results in the creation of a shell variable h, which
is assigned the value /usr/perihelion/helios. If the shell finds the character
sequence $h within any future command line, it performs a variable substitution
which causes those two characters to be replaced with the value of the variable
h. The following two command lines are therefore equivalent:

emacs $h/test.c
emacs /usr/perihelion/helios/test.c

Variable names may consist of up to 20 alphanumeric characters. If such
names are used, it may be necessary to use braces, {}, to enclose the name
whenever it is used within a command line. This allows the shell to distinguish
between characters which form part of the variable name and those which form
part of the following text. Braces can be omitted if the variable name is followed
by any non-alphanumeric character, including a blank space:

set helios=/usr/perihelion/helios

cd ${helios}/bin
ls $helios

A shell variable can be assigned new values by reapplying the set command,
and they can be deleted with the unset command.

2.9 Using shell windows

A child shell is created from within the original parent shell with wsh. This
command creates a window and then executes a shell within it. This newly
created shell is independent of other shells in other windows and it can be used
to execute commands concurrently with them.

The way in which these windows are displayed on the screen is dependent
upon which I/O processor is being used, and so is their user interface. Trans-
puter systems that use an IBM PC (or equivalent) may not be able to display
more than one window at a time. For these systems a virtual windowing system
is used whereby each window occupies the entire screen. A process running in
any of these windows may write to the screen at any time, but only the currently
active window will receive input from the keyboard. To change the currently
active window and so redirect the standard input to another window, use
ALT-F1. Repeated use of this key combination will cycle through the available
windows.

For systems that are capable of displaying windows, each call to wsh results
in a new window being created on the screen. The window that is active can
be identified by a highlighted title. A window can be selected by moving the
mouse over it or by clicking the mouse on the window, depending on the window
manager used.

Chapter 3

An advanced description of
the shell

The Helios shell is executed whenever a user logs into the system, or it can be
started from within an existing shell by using either of the commands shell or
wsh. The first stage is to execute each of the commands that are listed in the
shell script, cshrc, which should be in the user’s home directory. If the shell
is a login shell, the commands listed in the file ‘login’ will also be executed.
When creating a child shell by using the command shell, various options and
arguments can be specified, as follows:

shell [-cefinstvxVX] [arg1 ...argn]

The argument strings generally do not affect the behaviour of the shell and
are stored in the shell variable argv. The option flags are used to modify the
behaviour of the shell and are listed below.

Option Action

c

Assumes the (single) following argument to be a command line which is
to be executed. Any arguments which follow are copied into the shell
variable argv.

e

Causes the shell to terminate if any command executed from within the
shell produces an error.

f

Prevents the shell from reading and executing the commands in the file
cshrc when it is invoked.

i

Causes the shell to run interactively and to display prompts. Command
line editing is then available and the prompt is displayed. Without this

13

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 14

option the shell tries to discover what type of input has been specified.
This option is an override mechanism.

n

Causes all commands entered into the shell to be parsed but not executed.
This facility is useful for checking the syntax of shell scripts.

s

Instructs the shell to take input from the standard input device.

t

Causes the shell to read just one line of commands, and then to terminate.

v

Causes the shell variable verbose to be set. All command lines will be
echoed to the screen after history substitution has been performed.

x

Causes the shell variable echo to be set. All commands will be echoed
to the screen before execution.

V

Causes the shell variable verbose to be set. It differs from v (see above)
in that this option sets the verbose mode before the shell reads cshrc;
the other option does not.

X

Causes the shell variable echo to be set. It differs from x (see above)
in that this option sets the echo mode before the file cshrc is read; the
other option does not.

3.1 Characters and words

The shell parses a command line by first splitting the line into its constituent
words. Words, with certain exceptions, are characters that are delimited by
blank spaces or tabs, or enclosed in pairs of double quotes.

The exceptions are special characters that form separate words even if they
are not delimited by blanks or tabs. These characters, known as the parser
metacharacters, are as follows: & | ; < > (). When doubled into metachar-
acter pairs such as the following, && || << >> each pair forms a single, separate
word.

To make one of these metacharacters part of another word and thereby
remove its special meaning, place the special backslash character \ immediately
before it. This character makes the shell treat a subsequent character as literal
text without any special meaning. In fact, it has this effect on any single
character that follows it. For example, place a \ before a newline character

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 15

(carriage return / linefeed), and the shell translates that character as a blank
space because its usual meaning has been removed.

The Helios shell also understands the concept of a string, which it treats as
part of a word. A string can be made up of one or more characters, includ-
ing white space, enclosed in single or double quotes. Because the shell treats
strings as part of a single word, metacharacters in a string cannot form sep-
arate words and spaces and tabs fail to have their usual effect. As explained
previously, cancel the effect of a newline with \; nevertheless, attempt to use
\newline in a string and a real newline character is produced. The differences
between strings enclosed in single quotes and strings enclosed in double quotes
are explained in section 3.2.

When the user inputs to the shell indirectly through a shell script (a shell
script is a text file of shell commands), rather than directly from the terminal,
the special character # can be used to introduce a comment. When the shell
finds a #, it treats any subsequent text on the same line of input as a comment
and ignores it. To turn off the special meaning of this character, place the
literal character \ immediately before it.

3.2 Strings

Character sequences enclosed in single or double quotes form part of a word. A
complete word can be formed entirely from a string delimited by white space, or
from character sequences which contain a string. The quote characters will not
form part of the word unless they are preceded by a backslash character (\).
Character sequences enclosed in single quotes are subject to history substitution
only. History substitution can be used anywhere on a command line and always
occurs in strings, unless the history substitution characters are preceded by a
backslash. Variable substitution will only occur in double-quoted strings and
alias substitution never occurs in a string. Notice that ! must be preceded by
a backslash to nullify its effect. The only exceptions are that ! does not take
effect when followed by space, end-of-line, or =. For example, the ! would
not generate any history substitutions in set prompt="! ".

3.3 Metacharacters

The following metacharacters are listed from left to right in order of precedence:

| ; || && & () < > << >>

such that | is the most senior (that is, takes precedence over everything else)
and & is the most junior. (and the following metacharacters do not have any
precedence. These characters are listed below, together with their functions.

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 16

Character Action

|

Pipes the output from one process to the input of another. For example,
the command sort datalist | cat sorts the file datalist and then it
displays the output.

;

Used to separate sequences of pipelines (or single commands). The shell
will fully execute each pipeline before executing the next. For example,
the line ls ; cat text will cause ls to be executed, followed by cat.

||

Used to separate two pipelines (or single commands). The second pipeline
will only be executed if the first fails. This metacharacter is analogous
to the logical OR operator. For example, in ls || echo ls failed, the
echo command will only be executed if ls fails. It exits with a non-zero
return code.

&&

Used to separate two pipelines (or single commands). The second pipeline
will only be executed if the first succeeds. This metacharacter is anal-
ogous to the logical AND operator. For example, in ls test && cat
test, cat will only be executed if ls succeeds. It exits with a zero return
code.

&

Puts the task into the background. For example, sort bigfile & runs
the sort program on the file bigfile as a background task. It does not
wait for it to terminate.

(

Used with a terminating) to group together a sequence of commands to
be run in a child shell. For instance, (cd;pwd) lists the full pathname of
the user’s home directory, but since it is run in a child shell, the current
directory of the parent shell is unchanged.

)

Used with an opening (to group together a series of pipelines. See the
entry for (.

>

Redirects output from standard output (stdout). date > now for exam-
ple, redirects the output of date from stdout to a file called now. If
now does not exist, it is created. If it does exist, it is overwritten.

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 17

<

Redirects input from standard input (stdin). For example, cat < text
redirects the input of cat so that it is taken from the file called text. Since
cat takes a filename, the same effect can be achieved with cat directly.

>>

Redirects output from stdout in the same way as >, except that it ap-
pends files instead of overwriting them. For example, if the file called
now exists, date >> now redirects the output from stdout and adds it
to the end of now.

<<

Causes the command to read its input from the input of the shell until
the word following the <<symbol in the command line is encountered.
For example, cat << end makes cat read its input from the shell’s input
until it finds the word end on a line by itself.

3.4 Expressions

A number of commands that are built into the shell can take expressions as
arguments. These expressions may be constructed using arithmetic and logical
operators which are similar to those used in the C programming language. In
the following list the order of operator precedence increases from left to right,
with square brackets indicating groups of operators of equal precedence:

|| && | ^ & [== != =~ !~][<= >= < >][<< >>][+ -][* / %] ! ~ [()]

In cases where operators of the same precedence occur several times, they are
evaluated left to right. A full list of valid operators can be found in Table 3.1.

3.5 Command execution

The shell takes input, acts upon any commands it finds and produces output.
In doing so, it may perform certain substitutions and transformations. These
actions are listed below in the order in which they may occur.

1. (History substitution.) Using previous command input to produce new
input.

2. (Alias substitution.) Checking alternative command names for built-in
commands.

3. (Variable substitution.) Substituting a value for a named variable.

4. Expanding the name of a command.

5. Expanding the name of a filename given as an argument.

Each of the actions listed is described in the sections to follow.

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 18

Operator Description

|| logical OR
| bitwise OR
^ bitwise exclusive OR (XOR)
&& logical AND
& bitwise AND
== equivalent
!= not equivalent
=~ tests for match with specified pattern
!~ tests for no match with specified pattern
! logical NOT
~ bitwise NOT
<= less than or equal to
>= greater than or equal to
< less than
> greater than
>> shift right
<< shift left
+ addition
- subtraction
/ division
* multiplication
% modulus

Table 3.1 Operators

3.6 The history list and history substitution

The Helios shell places words from previous commands into a list so that they
can be retrieved, edited and executed at a later stage. This is particularly
useful for repeating previous commands, correcting typing errors in commands
or executing commands which are similar to those which have already been
used.

The Helios shell provides two levels of access to the history list. Firstly
there is an interactive history mechanism which allows the list to be accessed
and edited by using various control key combinations. The list can also be
accessed and manipulated by using special characters which are placed in a
command line.

When the shell gives a prompt, respond by entering a line of text or use
the control keys which are listed below. These control keys allow the current
command line to be overwritten with a previous command line from the history
list. This line may then be edited by using other control keys to position the
cursor ready for text to be inserted or deleted. The edited command line can
then be executed by pressing the return key. There is no need to move the
cursor to the end of the line.

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 19

CTRL-A

Moves the cursor to the start of the line.

CTRL-E

Moves the cursor to end of the line.

CTRL-P

Replaces the current line with the preceding line in the history list. This
can be used repeatedly to display each line in the list.

CTRL-R

Replaces the current line with a line from the history list which begins
with the same word as at the current cursor position. If CTRL-R is used
on a blank line, the last command is fetched from the history list.

CTRL-U

Deletes the entire line.

CTRL-W

Moves the cursor to the right by one word.

CTRL-X

Deletes the word at the cursor’s current position.

The shell is instructed that a history substitution is to occur in a command
line by using the character !. This character may occur at any point in a line
and is followed by one or more qualifying characters. When the command line is
submitted for execution, the shell will attempt to replace these characters with
a word (or a group of words) extracted from the history list. The command
line is then echoed to the screen and executed.

There are three types of qualifying character which can be used with !. The
first of these is a number which corresponds to the event number of the required
entry in the list. All entries in the history list are assigned an event number
by the shell, such that the first entry is numbered 1 and subsequent entries are
assigned progressively larger event numbers (2,3,4,...). The character sequence
!100 therefore refers to event number 100 in the list. Similarly, if the current
event number is known, an offset can be specified instead of an absolute event
number. If the current event number is 106, !–6 will therefore refer to event
100.

The ‘!’ character itself can also be used as a qualifying character. In this
case, whenever the shell encounters the character sequence !!, it substitutes it
for the last entry in the history list. A command line consisting solely of these
two characters is therefore an instruction to the shell that it should repeat the
last command.

To select a specific word from a previous command, use the colon character.
When used in conjunction with the ‘!’ character and an optional event number,
it causes the shell to substitute these characters for the specified sequence of

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 20

words which are stored in the history list. A full list of designators which can
be used with the colon character is given below, but as an example, consider
the following command line:

echo !100:2

This will echo to the screen the second word from event number 100.

Designator Meaning

n nth argument. Argument 0 is the first (command) word.

^ The first argument (equivalent to ‘1’).

$ The last argument.

* All arguments. If the event relates to a single word, this will be null.

n-m A range of words. For example, 0–2 means words 0 to r2.

-m Equivalent to 0–m.

n- All arguments from argument n onwards (excluding the final word).

n* All arguments from argument n onwards (including the final word).

In addition to this, it is possible to omit the colon character whenever the
qualifying character is ^, $, * or -. The previous event can be recalled with one
or more words changed by use of ^ alone. This is achieved by ensuring that ^
is the first non-blank character on a command line. The shell then interprets
all characters up to the next ^ as a pattern which is to be replaced by the
characters which follow the second occurrence of ^. For example,

^helois^helios

replaces the first occurrence of helois in the last command with helios and
then executes the result. To append additional text to a line, use a third ^, as
in:

^helois^helios^hello

This command will substitute helois for helios and append hello. A
complete or partial listing of all events currently in the history list, with their
associated event numbers, can be obtained by using the history command.

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 21

3.7 Aliases

After performing the history substitutions, the shell performs alias substitutions
on the command line. Aliases are alternative names which the user may assign
to almost all of the commands which are available from within Helios. They
are created by using the alias command and removed from the shell’s list of
aliases by using unalias. For example,

alias dir ls

assigns the alias dir to ls so that all references to the command dir will now
be treated as an invocation of ls. Similarly,

unalias dir

causes the shell to forget the alias.
When substituting a command name for an alias, the Helios shell allows the

full facilities of the history mechanism to be employed. Furthermore, since the
shell adds a command line to its history list before it performs alias substitution,
all references to the previous command actually refer to the current command
before alias substitution was performed. For example, consider the case where
echo2 had been defined as an alias:

alias echo2 ‘echo \!:2’

meaning that echo2 has become an alias for the command which echoes the
second argument of the previous command to the screen. (The quotes are
needed to ensure that echo and its argument are treated as one word and the
‘\’ before the ‘!’ character is needed to prevent the shell from performing the
history substitution at the time the alias is defined.) Type:

echo2 one two three

and the shell will enter the command into the history list and substitute echo2
and its arguments for the aliased command. History substitution will then be
reapplied to the resulting command line, so that the command actually executed
is as follows:

echo two

In cases where the alias does not make use of the history facilities, only
the command name is substituted. The arguments are left unchanged. As an
example, consider the following:

alias dir ls
dir /helios

which is equivalent to:

ls /helios

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 22

3.8 Variables and variable substitution

When the shell is executed, it receives a list of variables from the operating
system, and these provide the shell with information about the environment
in which it is running. These environment variables are then copied into the
shell’s own variables and are passed on to any program that is executed from
within the shell. These variables are listed below.

HOME The user’s home directory.

USER The user’s login name.

PATH The list of directories which are searched when a command is
executed.

TERM The terminal type.

SHELL The full pathname for the shell.

EDITOR The editor to be used.

When the shell variables user, term, home and path are changed, the shell
changes the corresponding environment variables USER, TERM, HOME
and PATH to reflect that change. The shell also provides two commands
for manipulating these and the other environment variables directly. These
commands are described below.

setenv name value

Sets the named environment variable to the value of the string value.

unsetenv pattern

Unsets all environment variables with names which match the pattern.

printenv

Lists the environment variables and their values.

3.8.1 Shell variables

The Helios shell maintains a list of internal variables which can have one or
more words as a value. Some of these variables are maintained directly by the
shell, but others can be created or destroyed by the user. The value of any of
these variables can be included in a command line at any point. The shell then
uses variable substitution to substitute the variable’s name for its value. The
variables listed below are predefined and have special meaning to the shell.

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 23

argv

The arguments of the command line which was used to invoke the shell,
where the first argument is $argv[1].

cdpath

Used to specify a list of directories which are used by cd when it is search-
ing for a subdirectory.

cwd

The full path name of the current directory.

echo

When set, this will instruct the shell to echo all commands on the stan-
dard output device before they are executed.

history

The number of commands remembered in the history list. The last com-
mand to be executed is always remembered by the shell, regardless of the
setting of this variable. Note that large history lists may result in the
shell running out of memory.

home

The home directory. The filename expansion of ~ is the value of this
variable. cd without any argument will arrive in this directory.

ignoreeof

If set, this variable instructs the shell to ignore the end-of-file characters
(CTRL-D) which would otherwise terminate the shell.

noclobber

If set, this variable acts as a safeguard during redirection of input and
output. It instructs the shell to prevent files from being overwritten by
>and ensures that a file is already present before it is used with >>.
Suitable error messages are generated if these conditions are not satisfied.

noglob

If set, this variable prevents the shell from performing filename expansions
specified by metacharacters such as *.

nonomatch

If set, this variable will prevent the shell from generating an error when
a filename expansion fails to match with a file. In these circumstances,
the unexpanded pattern is passed on to the command. Note that this
variable does not affect the error reporting for badly formed patterns.

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 24

path

Each word of the path variable specifies a directory in which commands
are to be sought for execution. An empty list is assumed to refer to the
current directory only. If this variable is not set, commands will only be
executed if their full pathname is specified.

prompt

The value of this variable is used as the prompt sign by the shell. For
example, the command set prompt="$ " sets the prompt to the two-
character string ‘$ ’. Two special characters may be used in the prompt
string. The character ‘!’ is expanded to the current history event num-
ber; the character ‘?’ is expanded to the current window name used by
the shell. This is useful when running multiple shells through the wsh
command on a machine without a graphics screen.

status

The value of this variable is maintained by the shell and will always rep-
resent the exit code which was returned by the previous command. A
non-zero value shows that the command failed; 0 shows that it termi-
nated correctly.

verbose

If set, this variable causes the shell to echo each word of a command
line to the standard output device immediately after it has been history-
substituted.

3.8.2 Assigning values to shell variables

To assign a value to a shell variable, use the set command. This command
can be used to create and initialise a new variable or to assign a new value to
an existing variable. It can also be used to display the current values of all
variables:

set

displays all variables and their values.

set name

sets name to equal a single word of length 0 (a null word).

set name =value

assigns the string value to the variable name.

Note that the value of a variable can be any sequence of characters delimited
by white space. If white space is required to form part of the value, quotes must
enclose the sequence of characters. This is illustrated below.

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 25

set prompt=$

sets prompt to $.

set prompt=”$ ”

sets prompt to $.

The variables can also be assigned a list of values, by enclosing the entire
group of value strings in brackets. The following assignment can therefore be
used to assign the three values: hello, hello there and world:

set strings=(hello "hello there" world)

3.8.3 Variable substitution

The value of a shell variable can be substituted into a command line at any
point by using the character $ followed by the variable’s name. If the variable’s
name consists of more than one character and it is not delimited by white
space, the name should be enclosed in braces {}. The braces can be used in
other circumstances, but they are not strictly necessary. If the variable path
is assigned the value /helios/bin/, these command lines have the following
meanings:

$path = /helios/bin/
${path}command = /helios/bin/command
hello${path}command = hello/helios/bin/command

If a variable has been assigned a list of values, any one of those values can
be selected by using an index with the name of the variable. If path is assigned
three values (/helios, /helios/bin and /helios/bin/cmds), these command
lines have the following meanings:

$path
= /helios /helios/bin /helios/bin/cmds

$path[0]
= not valid - shell generates error message

$path[1]
= /helios

$path[3]
= /helios/bin/cmds

$path[4]
= not valid - shell generates error message

hello${path[2]}world
= hello/helios/binworld

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 26

Other character sequences in the command lines can also be used to access
a variable or to obtain information about its current status:

$#name ${#name}
This character sequence is replaced by the number of words that are assigned

to the variable name. If path has been assigned the three values given earlier,
echo $#path will echo 3 to the screen. When the shell is taking its input from
a file (instead of from the terminal), the character sequence

$0

will be replaced by the name of that file. If the input is not being taken from
a file, an error will be generated. (See also $?0.) The sequence

$number
${number}

is equivalent to $argv[number]. This character sequence can be used to
determine if a variable has been set:

$?name $?{name}
If the variable has been set, the sequence is replaced by 1; otherwise, it is

replaced by 0. This character sequence can be used to determine if the shell is
taking its input from a file:

$?0

If a file is being used, the character sequence is replaced by 1; otherwise, it
is replaced by 0. (See also the entry for $0.) The following character sequence
will be substituted by words read from the standard input device:

$<

This sequence is particularly useful for obtaining keyboard input from within
a shell script. A command line containing shell variables is entered into the
history list in its expanded form. Multiple variable substitutions in a single line
are allowed, but recursive substitutions are not supported.

3.9 Redirection

Any command which communicates with the user by means of the standard
input and output devices can be made to communicate with files instead. This
can be achieved by using metacharacters in a command line and it is particularly
useful for sending large amounts of output to a file for casual viewing with a
text editor. The metacharacters and their filename arguments can usually be
placed anywhere on a command line.

< name

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 27

This redirects input to come from the file filename, instead of from stdin.
The filename will be subjected to variable, alias and wildcard substitution. For
example,

cat < /helios/example/hello.c

causes cat to read its input from hello.c instead of from the keyboard,

cat << word

takes input from the standard input device, stdin, until the word (word) is
encountered. For example,

cat << end

causes cat to take its input from the keyboard and to interpret the first occur-
rence of end as the end of input.

>filename >!filename >&filename >&!filename

These redirect output to the named file. Those metacharacter sequences
which do not include the ampersand character redirect output that would oth-
erwise be sent to the standard output device, stdout; those which include the
ampersand character redirect the standard error output, stderr. If the named
file does not exist, it is created. If it does exist it is overwritten. By setting the
shell variable noclobber, the shell is prevented from overwriting a file. The
! character overrides the effects of noclobber. The filename is subjected to
variable, alias and wildcard substitution. For example,

cc -o outfile infile >& errors

The file errors now contains the compiler’s error messages. If the error
messages relate to a file, emacs could be used to display these messages and
to edit the file simultaneously by using the editor’s windowing facilities.

>>filename >>&filename >>!filename >>&!filename

The above redirect output and append it to the named file. These metachar-
acter sequences are similar to those constructed from a single >character, but
they append output to the named file instead of overwriting its current con-
tents. If the shell variable noclobber is set, an error is generated if the file does
not exist. This error can be suppressed by using the metacharacter sequences
which use !.

3.10 Control flow

A number of the shell’s built-in commands are for specifying the order in which
commands are executed. These commands are similar to the control flow com-
mands which occur in many high-level programming languages, such as C. They
are normally used in shell scripts, but they can be entered from a terminal. If
a terminal is used, the commands following the control flow constructs may or
may not be executed when they are entered. If the shell will not execute the
next command, the prompt will be changed to a question mark (?).

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 28

3.10.1 if-then-else

This sequence of commands can be used to select a group of commands for
execution. The syntax for this construct is as follows:

if (expression) then
command
. . .
command

else
command
. . .
command

endif

If expression evaluates to any non-zero value, all commands up to the fol-
lowing else or endif commands will be executed. If the expression evaluates
to zero, all commands between else and endif will be executed. None of the
commands in this construct can be pipelines or lists of commands separated
by a semi-colon. If nested if-then-else constructs are used, only one endif is
needed as a terminator:

if ($term == "ibm") then
echo This is an IBM

else
echo This is not an IBM

endif

3.10.2 switch

This construct can be used to select one of many commands for execution. The
syntax is as follows:

switch (string)
case <string-1>:

command
. . .
command

breaksw. . .
case <string-n>:

command
. . .
command

breaksw
default:

command
. . .
command

breaksw

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 29

endsw

The construct allows a unique label (case prefix) to be applied to each
group of commands so that the group is only executed if the label matches the
string. If none of the case labels match with the argument string, the commands
following the optional default label will be executed. The argument string will
be subjected to both variable and wildcard expansion, but if wildcards are used
and the pattern matches with more than one file, an error is generated. The
case labels may also contain wildcards and shell variables, but wildcards in
this context will be tested for a match with the argument string and not with
filenames. For example:

switch (hello)
case hi:

echo this should not appear
breaksw
case *llo:

echo this should appear
breaksw

endsw

3.10.3 while

This construct is used to repeat a group of commands while the specified ex-
pression evaluates to zero. The syntax for this construct is as follows:

while (expression)
command-1
. . .
command-n

end

Consider the following as an example of its use:

set i=10
while ($i != 0)
@i = $i - 1
echo Current value of i is $i

end

3.10.4 foreach

This command assigns a series of values to a shell variable and executes a
sequence of commands between each new assignment. The syntax for this
construct is as follows:

CHAPTER 3. AN ADVANCED DESCRIPTION OF THE SHELL 30

foreach name (wordlist)
command-1
. . .
command-n

end

As an example of its use, consider the following:

foreach person (andy alan paul tim)
echo $person

end

where each of the four names is written to the standard output device.

Index

!, 7, 8
! history substitution character, 19
! logical NOT operator, 17
! = test for non-equivalence, 17
! ∼ operator, 17
− subtraction operator, 17
== test for equivalence, 17
=∼ operator, 17
| bitwise OR operator, 17
| metacharacter in shell, 17
| pipes in shell, 6, 17
|| logical OR operator, 17
∼ bitwise NOT operator, 17
×, 20
× multiplication operator, 17
(metacharacter in shell, 17
) metacharacter in shell, 17
* wildcard for group of characters, 8
-, 20
/ division operator, 17
; pipeline separator, 17
? wildcard for single character, 8
[for wildcards, 8
- comments in shell scripts, 15
$, 20
% modulus operator, 17
& bitwise AND operator, 17
& shell metacharacter, 10, 17
&& logical AND operator, 17
&& metacharacter in shell, 17
<<metacharacters in shell, 17
<<redirection of I/O, 27
<<shift left operator, 17
>>redirection of I/O, 6, 27
>>redirection of output to file, 17
>>shift right operator, 17
>>& redirection of I/O, 27
<less than operator, 17
<metacharacter in shell, 17

<redirection of I/O, 6, 27
<= operator, 17
>greater than operator, 17
>metacharacter in shell, 17
>redirection of I/O, 6, 27
>= operator, 17
>& redirection of I/O, 27
+ addition operator, 17
^, 20
^ used to manipulate history list, 20

Accessing variables, 26
Aliases, 21

within shell, 11
Arguments (command qualifiers), 3
argv, 13

- shell variable, 22
Arithmetic operators in shell, 17
Assignments

to shell variables, 24
to shell variables, 12

Asterisk - wildcard for group of char-
acters, 8

Automatic
name completion, 4

Automatic name completion, 5

Background
tasks, 10

in shell, 17
Backslash - use of within shell, 14
breaksw - shell command, 29

case - shell command, 29
cdpath - shell variable, 23
Changing

the shell’s prompt, 24
windows on IBM, 12

Command
/filename completion in shell, 4

31

INDEX 32

completion - shell, 4
description of commands, 3
line

cursor positioning in, 8
editing, 8
shell options, 13

qualifiers
arguments, 3
options, 3

repetition of, 7
repetition of previous commands,

8
Comments in shell scripts, 15
Compatibility

Helios shell to Unix, 2
Control

keys used in shell, 8, 18
CTRL-D, 5
CTRL-D - use of in shell, 4
Cursor

positioning in command line, 8
cwd - shell variable, 23

default - shell command, 29
dir - typical example of aliasing, 11

echo - shell variable, 23
Editing

command lines in shell, 18
of command line, 8

EDITOR - environment variable, 22
end - shell command, 29, 30
endif - shell command, 28
endsw - shell command, 29
Environment variable

EDITOR, 22
HOME, 22
PATH, 22
shell, 22
TERM, 22
USER, 22

Environment variables, 22
ESCAPE

use of in shell, 4
Event

list - see history list, 7
numbers, 7

history, 7
Events

past, 8
repetition of, 8

Execution
of the shell, 13

Expressions in shell, 17

Filename
completion - in shell, 4

Flow-control commands, 27
foreach - shell command, 29

Graphical display of windows, 12
fgrep - command, 10

Helios
shell - Unix compatibility, 2

History
event numbers, 7
list, 7, 18
list (size of), 7
list - interactive use of, 8
substitution, 18
substitution using !, 19
within alias definition, 21

history - shell command, 7
history - shell variable, 7, 23
home - shell variable, 23
HOME - environment variable, 22

I/O
redirection of, 5, 17, 26

IBM
display of windows, 12

if-then-else construct in shell, 28
ignoreeof - shell variable, 23
Input

redirection of input from file, 17
to the shell, 5

Interactive
use of history list, 8, 18

Job numbers in shell, 10
jobs - shell command, 10

Length of shell variable names, 12
List

INDEX 33

interactive use of history list, 8
Logical operators in shell, 17
ls - command, 3

Metacharacter in shell
(, 17
), 17
<, 17
>, 17

Metacharacter precedence, 15
Metacharacters in shell, 14, 15

<<, 17

Name completion, 5
automatic, 4, 5

noclobber - shell variable, 23
noglob - shell variable, 23
nonomatch - shell variable, 23

Operator
! ∼, 17
=∼, 17
logical AND &&, 17
logical NOT !, 17
addition +, 17
bitwise AND &, 17
bitwise NOT ∼, 17
bitwise OR |, 17
division /, 17
greater than >, 17
less than <, 17
logical OR ||, 17
modulus %, 17
multiplication ×, 17
operator precedence, 17
shift left <<, 17
shift right >>, 17
subtraction, 17

Operators in shell, 17
Options

(command qualifiers), 3
for shell command line, 13

Output
from the shell, 5
redirection of output to file, 17
standard, 5

Parser metacharacters, 14

Past events - repetition of, 8
path - shell variable, 23
PATH - environment variable, 22
Pipeline separator, ‘;’, 17
Pipelines of commands, 6
Pipes, 6

in shell, 17
Precedence

of arithmetic/logical operators, 17
of metacharacters in shell, 15

printenv - shell command, 22
Prompt

changing, 24
in shell, 7
setting, 24

prompt - shell variable, 7, 24

Question mark symbol - wildcard for
single character, 8

Redirection, 17
of I/O

>&, 27
of I/O, 5, 17, 26

<<, 27
>>, 6, 27
>>&, 27
<, 6, 27
>, 6, 27

of input from file, 17
of output to file, 17

>>, 17
Repeating

commands, 7
events, 8
past events, 8
previous commands, 8

Retrieve
a range of words from a past event,

20
all arguments from a past event,

20

Select
first argument from past event, 20
last argument from past event, 20
n’th argument from past event, 20

set - shell command, 24

INDEX 34

setenv - shell command, 22
Setting the shell’s prompt, 24
Shell

aliases in, 11
background tasks, 17
command completion, 4
command line options, 13
comments in shell scripts, 15
control keys, 8, 18
editing command lines in, 18
executing, 13
expressions in, 17
filename completion, 4
input, 5
job numbers, 10
metacharacters, 14, 15
operators (arithmetic & logical), 17
output, 5
pipes, 6, 17
prompt, 6, 7
strings in command lines, 15
strings within shell command, 15
substitutions, 17
variables, 11, 22

assignment to, 12, 24
name length, 12

windows, 12
words in, 14

shell - environment variable, 22
Shell command

breaksw, 29
case, 29
default, 29
end, 29, 30
endif, 28
endsw, 29
foreach, 29
history, 7
jobs, 10
printenv, 22
set, 24
setenv, 22
switch, 28
unsetenv, 22
while, 29

Shell command line
word, 3

Shell variable
argv, 22
cdpath, 23
cwd, 23
echo, 23
history, 7, 23
home, 23
ignoreeof, 23
noclobber, 23
noglob, 23
nonomatch, 23
path, 23
prompt, 7, 24
status, 24
verbose, 24

Shift
left operator, 17
right operator, 17

Special characters in shell, 14
Square brackets symbol for wildcards,

8
Standard

output, 5
status - shell variable, 24
stdout, 5
Strings

in shell, 15
single and double quotes, 15
within shell command, 15
within shell commands, 15

Substitution
by shell in command line, 17
history, 18

switch - shell command, 28

Tasks
background tasks, 10

TERM
environment variable, 22

Test
for equivalence ==, 17
for non-equivalence ! =, 17

Unix
compatibility of shell, 2

unsetenv - shell command, 22
USER - environment variable, 22

INDEX 35

Using
shell windows, 12
the history list, 7

Variable substitution, 25
Variables

environment, 22
shell

assignments to, 12
name length, 12

Variables in shell, 11, 22
verbose - shell variable, 24

while - shell command, 29
Wildcards, 8
Windows

changing on IBM host, 12
on graphics systems, 12
using, 12
with IBM host, 12

word - shell command line, 3
Words - within shell, 14
wsh - shell windows, 12

	The Helios Shell
	Copyright
	Acknowledgements
	Contents
	Chapter 1: Introducing the Helios shell
	Chapter 2: Using the shell
	2.1 Giving commands to the shell
	2.2 Filename/command completion
	2.2.1 Name completion using ESC
	2.2.2 Name completion using CTRL-D

	2.3 Simple shell input and output
	2.3.1 Redirection
	2.3.2 Pipes

	2.4 The history facilities
	2.5 Wildcards
	2.6 Running tasks in the background
	2.7 Aliases
	2.8 Shell variables
	2.9 Using shell windows

	Chapter 3: An advanced description of the shell
	3.1 Characters and words
	3.2 Strings
	3.3 Metacharacters
	3.4 Expressions
	3.5 Command execution
	3.6 The history list and history substitution
	3.7 Aliases
	3.8 Variables and variable substitution
	3.8.1 Shell variables
	3.8.2 Assigning values to shell variables
	3.8.3 Variable substitution

	3.9 Redirection
	3.10 Control flow
	3.10.1 if-then-else
	3.10.2 switch
	3.10.3 while
	3.10.4 foreach

	Index

