The Helios X Window System Manual

PERIHELION SOFTWARE LTD

May 1991

Copyright

This document is Copyright © 1991 by Perihelion Software Limited. All Rights
Reserved. This document may not, in whole or in part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or machine readable
form without prior consent, in writing, from Perihelion Software Limited, The
Maltings, Charlton Road, Shepton Mallet, Somerset BA4 5QE, UK.

This manual refers to the X Window System V11 release 4. The information
within this manual was partially based on material in the following two documents:
The XLib C Language X Interface, by Jim Gettys, Ron Newman, and Robert Schei-
fler, and The X Window System Protocol, Version 11, by Robert Scheifler and Ron
Newman. These two documents are copyright (c) 1985, 1986, 1987, 1988, 1989
the Massachusetts Institute of Technology, Cambridge, Massachusetts, The United
States of America, and Digital Equipment Corporation, Maynard, Massachusetts,
The United States of America. The material was used according to the terms of
the copyright, which grants free use, subject only to the following conditions:

‘Permission to use, copy, modify and distribute this documentation (that is,
the original MIT or DEC documenis) for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all copies
and that both that copyright notice and this permission notice appear in sup-
porting documentation, and that the name of MIT or Digital not be used in
advertising or publicity pertaining to distribution of the software without spe-
cific, written prior permission. MIT and Digital make no representations
about the suitability of the software described herein for any purpose. It is
provided "as is" without expressed or implied warranty.’

As all X Window System manuals are ultimately based upon the original MIT
work, a rough similarity between this manual and others describing X is clearly
unavoidable. Nevertheless, some care has been taken to give the description of
the material a new slant whilst still describing the same software.

The X Window System software copyright is held by the members of the X
Consortium, formed by MIT and others in 1986. Permission for the use of X is
granted to any party interested in implementing it.

Helios C copyright © 1988, Codemist Ltd.

Helios is a trademark of Perihelion Software Limited.

The X Window System is a trademark of MIT.

Unix and OpenLook are registered trademarks of AT&T.

Motif is a registered trademark of Open Software Foundation, Inc.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

TOS is aregistered trademark of Atari Corporation.

ii

This manual was written by Nick Clifton, with the editorial assistance of Ian
Davies.
Part number DM5049

Contents

1 introdnction

1.1
12
1.3
14
1.5

16

21
22
23

24

2.5

What is provided ?
What is missing ?
What is required ? .
What is on the discs ?

What are the differences between X for Helios and X for Unix ?
What are the differences between X for Helios release 4 and re-

lease2 ?

Installation and Configuration

Installation

Installing X in a restricted space

Configuring the X server

2.3.1 The X server resource file

232 Command line options

2.3.3 The Helios I/O server resource file
2.34 Environment variables

2.3.5 Keyboard device driver

Starting X

24.1 Starting X automatically (the X/Helios window server)
242 Starting X manually (the startx script)
24.3 Starting multiple X servers

244 Notstarting any X servers
Configuring X clients

2.5.1 Shell parameters

iii

QN W N = e ek

e -]

1
11
13
15
15
17
17
18
19
19
19
20
20
21
21
21

CONTENTS

2.5.2
253
2.54
2.5.5
2.5.6

The Xdefaults file

Host specific defaults
Application specific defaults
Window manager resource files
Environment variables

2.6 Problems starting X
2.7 Making your own hardware device driver

Programming With X Under Helios

3.1 How to compile X clients

3.2 Compiling Unix based X clients
3.3 Compiling Helios based X clients
3.4 Example program

Xlib Summary

4.1 Listing by Subject

4.1.1
4.1.2
4.1.3
4.14
4.1.5
4.1.6
4.1.7
4.1.8
4.19
4.1.10
4.1.11
4.1.12
4.1.13
4.1.14
4.1.15
4.1.16
4.1.17
4.1.18
4.1.19
4.1.20
4.1.21
4.1.22
4.1.23
4.1.24

Buffers

Client Connections
Colorcells

Colormaps

Context Manager
Cursors

Display Specifications
Drawing Primitives
Errors

Events

Extensions

Fonts

Grabbing

Graphics Context (GC)
Host Access
Housekeeping

Images

Keyboard

Macros (Display)
Macros (Image Format)
Mapping

Output Buffer
Pointers

Properties

iv

22
22
23
23

25

30
31
33
34

35
35
35
36
36

37
37
37
37
38
38
39
39
39
40
41
41
41
41
42
43
43

CONTENTS

4.1.25
4.1.26
4.1.27
4.1.28
4.1.29
4.1.30
4.1.31
4.1.32
4.1.33
4.1.34
4.1.35
4.1.36
4.1.37
4.1.38
4.1.39
4.1.40

4.2 Macros

Regions

Resource manager and database
Save set

Screen saver

Selections

Standard geometry

Text

Tile, pixmap, stipple and bitmap
User preferences

Visuals

Window attributes

Window configuration

Window existence

Window manager hints
Window manipulation

Window mapping

4.3 Functions

A.1 Motf

Bibliography

A.2 X Toolkit

A.3 XLibrary

A.4 Open Look

A.5 Quick Reference Guides
A.6 X User Guides

45
46
46
46
46
46
47
47
47
47
48
48
48
49
49
49
57

114
115
116
116
117
117
117

1

Introduction

1.1 Whatis provided ?

This product is a complete implementation of the X11 protocol at both the client
and server ends. It is based on the X11 release 4 distribution tapes (patched to
level 18) from MIT and includes all of the features of that server (including the
SHAPE,MULTI_BUFFERING and MITMISC extensions), and most of the clients.
This product includes all of the libraries and header files necessary to compile X
clients, including those that use the X toolkit and Athena Widget libraries. The
product makes use of the new features available in Helios 1.2.1 including sockets,
BSD support, pseudo-terminals, and ethernet support.

1.2 What is missing ?

This product does not include the files needed for compiling Motif or OpenLook
X clients, these files are scheduled for inclusion in future products. The following
standard X clients are not provided:

xditview Helios does not currently support DVI format files
xdm Too UNIX specific

xinit Unnecessary, startx shell script or initrc work fine
Xman Unix style manual pages not supported by Helios
xmh Unix mailer not yet ported to Helios

["'\

Introduction _ 2

In addition a large number of the clients contributed to X11R4 tapes have not
yet been ported. All of these clients are available in the public domain, along with
numerous other X programs, games, etc.

1.3 What isrequired ?

In order to use this package you will need the following :

o A transputer network of one or more T425s, T800s and / or T805s. Note,
T200s and T400s are not supported.

e Helios 1.2.1.
o Lots of disc space (preferably > 30 megabytes).

¢ Lots of RAM on the transputers (preferably a minimum of 2 megabytes per
transputer involved with X).

Optionally you may also want :

e A transputer with graphics hardware and VRAM and a mouse attached to
your host machine, (in order to run the X server).

o An ethernet connection supported by the Helios Ethernet Package (in order
to run X clients connected over the ethemet).

e More RAM (lots more RAM .. .).

¢ More transputers.

If you want to build your own X clients, or you have a graphics board not
currently supported by this package you will also need :

e The Helios C Compiler (version 2.0 or later).
o The Helios Assembler.
o The Helios Compiler Driver (version 1.46 or later).

o The Helios Assembler Macro Pre-Processor (for making device drivers).

o~

Introduction

1.4 'What is on the discs ?

The discs or tape that comes with this package contain the following directories.
These directories are intended to be installed into your existing Helios world, start-
ing from the /helios directory, (file names appear in parentheses) :

Resource files for X clients (Xauthority, Xdefaults, twmrc,

bin

bin/X11

uwmrec).

example X world start up shell script (startx).

The X server (Xhelios.)
The X clients . . .
Demos (aquarium, clover, frac, ico, maze,

Info

Bitmap editor
Font compiler
Benchmarks
Logos

Customisers

Window managers

Utilities

Clocks

X debugging tools
Text editor
Terminal emulator
Font tools

Load monitors

Window dump tools

Games

muncher, plaid, psycho, puzzle, rose,
worm, xeyes, xfade, xlock, xmandel)
(appres, listres, showcols, showkeys,
showsnf, xdpyinfo, xisatoms, xIsclients,
xIsfonts, xlswins, xprop, xversion,
xwininfo)

(atobm, bitmap, bmtoa)

(bdftosnf, mkfontdir)

(gbench, x11perf, xbench, xgc)
(hroot, perilogo, xlogo)

(setkeys, xauth, xhost, xmodmap,
xrdb, xset, xsetroot, xstdcmap)

(twm, uwm)

(xbiff, xcalc, xclipboard,
xcutsel, xrefresh)
(oclock, xclock)
(xev, xmag, xscope)
(xedit)

(xterm)

(xfd, xfontsel)
(xlights, xload)
(xpr, xwd, xwud)
(xtrek)

Introduction 4
bin/X11/pond Bitmaps used by the aquarium demo.
etc Resource files for the X server. (newXrc,
newXrc.ATW,
- newXrc.GDS)
Example initrc file. (initrc.x)
examples Sources of example X clients . . .
Taking over control of the X server. (grab.c)
Modifying the keyboard map. (setkeys.c)
Athena Widget demo. (hello.c)
Load displayer. (xlights.c)
include Extensions to the Helios ioevents.h header
file (xioevents.h).
includelX11 Header files for clients using the (C language)
X library and X toolkit library.
includelX11/Xaw Header files for clients using the (C language)
X Athena Widget library.
include/X11/Xmu Header files for clients using the (C language)
X Miscellaneous Utilities library.
include/X 11/bitmaps A collection of bitmaps ready for use.
includelX 11/extensions

Header files for clients using the X server ex-
tensions library. '

Introduction

lib

lib/iX11

libiX11/app-
defaults

The X libraries . ..

The resident X library (X, Xlib.def)

The scanned X library (libX11.a)

X miscellaneous utilities (libXmu.a)

X extensions (libXext.a)

X Display Manager Control Protocol (libXdmcp.a)
X Toolkit (libXt.a)

X Athena Widget (libXaw.a)

Unix emulation (unix.lib)

The device drivers . . .

Keyboard drivers (keyboard.d, keyboard.no keyboard.yes)
Mouse driver (mouse.d)

Graphics hardware drivers (newG300.d,

newATW.d, newGDS.d, newsplash.d, Paratech.d)

Miscellaneous . . .

The X/Helios Window Server (window)

The Helios pty server (ttyserv.bak, tpseudo.dbk)
The Xtrek daemon (xtrekd)

The databases . . .

The X Error Message Database (XErrorDB)

The X Toolkit Error Message Database (XtErrorDB)
The colour name database (rgb.dir, rgb.pag, rgb.txt)

Application specific resource files.

lib/X11|/fonts/100dpi Common variable width fonts for 100 dots-per-inch displays.

lib/X11/fonts/75dpi Common variable width fonts for 75 dots-per-inch displays.

lib/X11Ifonts/misc

lib/X11|fontsir2

lib/X11/twm

Miscellaneous and fixed-width fonts.
Fonts originally supplied for the X11 release 2 server.

Default resource file for the twm window manager.

Introduction 6

local/xsrc The Imake utility (imake, Imake.rules,
Imake.tmpl, Library.Tmpl, Project.tmpl,
Server.tmpl, helios.cf, site.def).
Header files used by device drivers (hard-
ware.h, md.h, mdkeyboard.h, mdmouse.h,
mdautils.h).

local/xsrcldevices Source code for device drivers . . .
Keyboard device driver (keyboard.c)
Mouse device driver (mouse.c)
Generic graphics hardware device driver (generic.c)
Example G300 device driver (new(G300.c)
The device driver module header (device.a, device.0)

Source code for the device driver test harness . . .
The harness program (harness, harness.c)

The screen handling routines (screen.c screen.h)
A device driver reset utility (reset.c)

1.5 What are the differences between X for Helios and X for
Unix ?

There are several important differences between X running under Helios and X
running under Unix. If you are used to X for Unix, or you are reading any of the
books on X normally available, you should bear the following points in mind :

o There are two X libraries. The first (just called X) is a resident library,
containing the most frequently used X library calls. The second (called
libX11 .a) is a scanned library containing all the remaining X library calls.
All X clients must be linked with the first X library, (with the option -IX
to the Helios Compiler Driver), but only some will need to be linked with
the second, (using the option -IX1I). If you find that the Helios linker is
complaining about missing X library functions, then make sure that you are
linking with the second X library as well as the first. (A resident library is
shared by all programs running on the same processor, a scanned library is
linked in with the program using it, but only those functions actually used
by the program are extracted from the scanned library.) The makefile in the
examples directory demonstrates how to compile an X client.

—~~

Introduction 7

¢ The names of some of the standard X11 header files have had to be changed
because they clash with the names of other header files when the MS-DOS
or TOS filing systems are being used. The files that have changed are :

in include/X11:
Old Name New Name
CompositeL.h | Composite.Ih
CompositePh | Composite.Ph
ConstrainP.h | Constrain.Ph
Intrinsicl.h Intrinsic.Ih
IntrinsicP.h Intrinsic.Ph
Resourcel.h Resource.lh
in include/X11/Xaw:
Old Name New Name
AsciiSinkP.h AsciiSink.Ph
AsciiSrcP.h AsciiSrc.Ph

AsciiTextPh AsciiText.Ph
MenuButtonP.h | MenuButton.Ph
ScrollbarP.h ScrollBar.Ph
SimpleMenuP.H | SimpleMenu.Ph
TemplateP.h Template.Ph
TextSinkP.h TextSink. Ph

ViewportP.h Viewport.Ph

o Similarly the names of some of the X resource files have been changed :

Old Name New Name
Xdefaults Xdefaults
Xdefaults-<hostname> | Xdef-<hostname> |
Xauthority Xauthority

e Another consequence of these restricted filing systems is that commands
whose names are longer than 8 characters (for example mkfontdir) can
only be executed from the command line if their name is truncated to 8 char-
acters (mkfontdi) or if the full path name is given, (/helios/bin/X11
/mkfontdir), or if your current directory is the directory containing the
command, (cd /helios/bin/X11 ; mkfontdir).

>

Introduction 8

¢ A bug in the current version(s) of the Helios C Compiler means that the
XtOffsetOf() macro (defined in the header file Intrinsic.h) does not work with
sub-structures. That is you cannot do XtOffsetOf(struct fred, field.sub_field).
In order to get around this problem, four new macros are provided, (also de-
fined in Intrinsic.h), called :

XtOffsetOfMul(),
XtOffsetOfMulMul(),
XtOffsetOfMulMulMul(),
XtOffsetOfMulArray()

which cope with one, two, and three levels of sub-fields and a sub-field with
an array as a sub-sub-field, respectively. These macros should be used wher-
ever the X1OffsetOf() macro fails to compile, which will most commonly be
in static declarations of the XtResource structure.

¢ There is a known bug that drawing wide line ellipses can cause the X server
to go into a infinite loop, effectively locking up the transputer upon which
it is running. '

¢ Theroot of the filing system has changed. Whenever you see /usr mentioned
by an X client you should interpret this as /helios. So for example, appli-
cation resources normally reside in the directory /usr/lib/X11/app-defaults
on Unix systems, whereas under Helios, they reside in /helios/lib/X11/app-
defaults.

¢ The Helios X server can support a wide range of different display types, (de-
pending upon the settings in its resource files, and upon which device drivers
itloads). Conventional X servers are built to support only a small number of
displays, (that is those supplied by the manufacturer of the computer upon
which the X server is running). Thus the Helios X server can often report
different statistics about the display which it is managing, depending upon
the installation in which it is running,

1.6 What are the differences between X for Helios release 4 and
- release2 ?

If you have used the previous X product from Perihelion Software (which im-
plemented release 2 of the X11 server and clients), you should be aware of the
following changes that have been made for release 4 :

Introduction 9

o The X server resource file is now called newXrc. (The previous release used
~aresource file called Xrc). The format of this file has changed considerably
from the release 2 version. In particular,

- keywords no longer have to be in upper case, (in fact keywords are
now case insensitive).

- Comments start with a hash character (#) and extend to the end of the
line.

- The first (uncommented) occurrence of a keyword is the one that is
used. Any subsequent occurrences are ignored, (and no warning is

produced).
- Variables take the form <keyword> = <value> where <keyword>
- and <value> are sequences of alpha-numerics, underscores, periods
and forward slashes.
- If other characters are required in either field they should be enclosed
between double quotes ().

- The sequence \ <char> is treated as <char> except that <char> is
treated as if it were an alpha-numeric. (Note the sequence \# is treated
as an alpha-numeric, not the start of a comment). A backslash can be
inserted by the sequence \\ .

- White space between <keyword> and the equality sign, and white
space between the equality sign and <value> is ignored.

~ An alternative form of just <keyword> with no equality sign is also
accepted. This form specifies a boolean variable (switched on).

. - The form !<keyword> specifies a boolean variable (switched off).

o The X toolkit and Athena Widget libraries now work, and do not leak mem-
ory.

o This release is much bigger, both in terms of disc space used, and in terms of
memory requirements. The X server cannot be practically run in less than
2 megabytes of RAM, and most X clients will need at least a megabyte of
RAM in order to run.

¢ The release 2 fonts are provided (in the directory /helios/lib/X11/fonts/Ir2),
but they are not included in the X server’s default font path. They can be
added by the command:

xset fp+ /helios/lib/X11/fonts/r2

Introduction 10

o Graphics hardware device drivers are now also responsible for putting en-
tries into the colour lookup table(s) on the hardware board. This means that
(in theory) any kind of CLUT can be supported, and the hardware driver can
do things like synchronising installing CLUT entries with the frame fiyback
events.

e The directory structure has been reorganised to more closely resemble the
directory structure used by Unix implementations of X. In particular the X
clients directory used to be called /helios/xclients whereas it is now called
/helios/bin/X11 and the X fonts directory used to be called /heliosifonts
whereas it is is now called /helios/lib/X11[fontsIr2.

e The X server no longer supports the Helios GSP model. It is no longer
possible to use the 1s /X command to see which clients have contacted
the X server, and clients cannot talk directly to the server via the Read()
and Write() system calls. This also means that the X library macro called
ConnectionStream() is now called ConnectionNumber and that it returns a
POSIX level file index, rather than a Helios level Stream pointer.

2

Installation and Configuration

This chapter covers all that you need to know about installing and configuring your
X world. The chapter is best used by reading it through completely first, and then
following the instructions on Installation in Section 2.1.

2.1 Installation

In order to install X you should follow these steps:
1. Read Chapter 1 then this chapter.

2. Make sure you have sufficient resources available. For example, do you
have enough disc space, the right version of Helios, a graphics TRAM, a
mouse, etc ?

3. Make a backup of the discs or tapes (just in case...).

4. Start Helios. Run loadpac and select option 4 (install software) then option
11 (install the X Window System). You will be prompted to insert the in-
stallation discs (in order) and messages will explain exactly what is going
on. The entire process will take about one hour, so be prepared for a long
wait.

5. If you have not done so already, reboot Helios.

11

Installation and Configuration 12

6. Follow the notes on Configuration in Section 2.3. In particular make sure
you have edited your host.con file (section 2.3.3 and your newXrc file (sec-
tion 2.3.1.

7. If your graphics hardware is not one of those supported by the Helios X
package you will need to make a graphics hardware device driver. See Sec-
tion 2.7.

8. Try starting the X server, for example :

remote -d <graphics transputer>
/helios/bin/Xhelios

If it works, the screen on the monitor should be cleared to a grey cross-hatch
pattern and a cursor shaped like a black X should be in the top left hand
quarter of the screen. The X server should have printed out the following
messages (or something very similar):

X: loading resource file: /helios/etc/newXrc...loaded

X: loading frame buffer drivex: newG300.d...locaded

X: loading keyboaxd driver: keyboazd.d...loaded
X: loading mouse driver: mouse.d...loaded

reading font directory /helios/1ib/X11/fonts/misc/fonts.dir...succeeded

: reading font alias file /helios/lib/X11/fonts/misc/fonts.alias...succeeded

: reading font directory /helios/l1ib/X11/fonts/75dpi/fonts.dir...succeeded

: reading font alias file /helios/lib/X11/fonts/75dpi/fonts.alias...succesded

: reading font directory /helios/lib/Xx11/fonts/100dpi/fonts.dix...succeeded

: reading font alias file /helios/lib/X11/fonts/100dpi/fonts.alias...succeeded

: Sexver Ready

9. Try starting an X client, for example :

/helios/bin/X11/ico -display helios:0

(This should create a black window with a white, wire-frame icosahedron
bouncing about inside it.) '

Installation and Configuration 13

10. Reboot Helios and then follow the notes on starting X in Section 2.4.

11. If you wish to run the game xtrek you will need to have installed the Helios
Ethernet Package and you will need to add the line :

xtrek stream tcp wait guest /helios/lib/xtrekd
xtrekd

to the file /heliosl/liblinetd.conf.
You should now have successfully installed X.

2.2 Installing X in a restricted space

If you have a limited amount of disc space in which to install X you could try
some of the options mentioned below. It is usually best to install all of the X
release first, and then remove files as necessary, rather than performing only a
partial installation, which could leave some critical files uninstalled.

FONTS (/helios/lib/X11|fonts)

The X server comes supplied with a large number of fonts, but it does not
actually need all of them in order to work. The misc directory should not be
deleted, but the other three (r2, 100dpi, 75dpi) can be removed (probably in
that order). If you remove some files from any of these directories, but you
do not delete it entirely then you should run the command mkfontdir. If you
delete any of the directories 100dpi, 75dpi, or misc then you must create a
dummy directory to replace them. To do this type :

cd /helios/lib/X11/fonts

mkdir <name-of-deleted-font-directory>
cd <name-of-deleted-font-d:l.rectory>
cat > fonts.dir

0 <return> <CTRL-D>

touch fonts.alias

The font directories are :

| Name Size
12 2.3 megabytes
100dpi: 3 megabytes
75dpi: | 2.5 megabytes
misc: .7 megabytes

Installation and Configuration 14

COMMANDS (/helios/bin/X11)

A large number of commands are provided with the X package, however few
of them are really essential. The bigger commands tend to be the ones that
use the X toolkit and Athena Widget libraries. You will probably not want
to delete the commands xterm (terminal emulator), twm (window manager),

and xset (display configurer).

Name Size
appres: 190 kilobytes (simple resource displayer)
aquarium: | 207 kilobytes (simple fishy demo)
clover: 208 kilobytes (simple and buggy colour demo)
listres: 365 kilobytes (simple resource displayer)

- oclock: 211 kilobytes (nice circular clock)

: xbiff: 218 kilobytes (simple file monitor)
xcalc: 250 kilobytes (simple desktop calculator)
xclipboard: | 301 kilobytes (simple cut and paste tool)
xclock: 217 kilobytes (simple clock)
xcutsel: 238 kilobytes (simple cut and paste tool)
xedit: 313 kilobytes (basic editor program)
xeyes: 213 kilobytes (nice moving eyes demo)
xfd: 258 kilobytes (useful font displayer)
xfontsel: 287 kilobytes (not quite as useful font displayer)
xgc: 369 kilobytes (benchmarking program)
xload: 233 kilobytes (unimpressive load monitor)
xmandel: 254 kilobytes (standard mandelbrot demo)
xscope 112 kilobytes (X server debugging tool)

LIBRARIES (/heliosllib)

If you do not intend to compile any X clients under Helios, then you can
remove the header files and libraries that they would need. (Do not delete
the resident X library /helios/lib/X, as this is needed by compiled X clients.)

Name Size

libX11.a: | 294 kilobytes (scanned X library)
libXaw.a: | 305 kilobytes (Athena Widget library)
libXt.a: 390 kilobytes (X toolkit library)
libX*.a: 184 kilobytes (remaining X libraries)

"~

Installation and Configuration 15

HEADER FILES (/helioslinclude/X11)

Again if you do not intend to compile any X clients under Helios then you
can delete the header files that they would use.

Name Size
* h: 498 kilobytes
* /% _h: | 304 kilobytes

DEVICE DRIVERS (/helios/locallxsrc)

If you have a device driver that works with your display hardware then you

will not need to build your own, and you can delete the directory containing
the sources of the example drivers.

Name Size
xsrc: | 273 kilobytes

X SERVER (/helios/bin/Xhelios)

If you do not have any graphics hardware in your processor network, then
you may not want to run the X server and instead just have your X clients
connect to an X server somewhere else on the ethernet. In this case you can
delete the X server object code and its device drivers.

Name - Size
Xhelios: | 482 kilobytes

2.3 Configuring the X server

This section describes how the X server can be configured to suit your environ-

ment. This is basically done by editing various text files that control the behaviour
of the X server.

2.3.1 The X server resource file

Once started up the X server will attempt to read in a resource file called newXrc.
This file specifies many of the configurable options in the X server. The file itself is
fully commented, explaining what the options are and what values they can have.
A list of those options which apply specifically to the X server, (rather than to any
of the device drivers loaded by the X server), is set out below :

Installation and Configuration 16

auto_repeat_delay
This is the time (in milliseconds) before a key which is being held down
will start to generate repeat key press events.

auto_repeat_interval
This is the time (in milliseconds) that will elapse between key press events
generated by the auto-repeat feature.

auto_repeat_filter
This is a list of ASCII codes for keys which should not be allowed to auto-
repeat.

hardware_device

This is the file name of the hardware device driver that the X server should
use to control the display. Currently device drivers are provided for graph-
ics cards based on an INMOS G300 TRAM (new(G300.d) and the SPLASH
card from Tektite (newsplash.d). In addition untested drivers are supplied
for the Atari Transputer Workstation (newATW.d), the ParsyTec GDS graph-
ics board (newGDS.d) and the Paratech GM8103/PSG8103 graphics card

(Paratech.d).
keyboard_device

This is the file name of keyboard device driver that the X server should load.
mouse_device

This is the file name of mouse device driver that the X server should load.

There are many more parameters in the newXrc file, but these are used by the
various device drivers loaded by the X server, and not by the X server itself.
- The X server will look in the following places (in order) when trying to load a
newXrc file : '

1. The file specified by the X server’s command line option -newXrc.

2. The file specified in the environment variable NEWXRC.

3. The X server’s current directory.

4. Theuser’s home directory (as specified by the environment variable HOME).
5. The file /helios/etc/newXrc.

Installation and Configuration : 17

2.3.2 Command line options

The X server understands a large selection of options on its command line. The
full list can be found by running the X server with the -help option, or by reading
the X server’s manual page. This section lists a few of the more important options,
including a couple which do not appear in the standard Unix implementation.

be

Enable bug compatibility mode (for buggy release 2 and 3 X
clients).

-bs

Disable backing store support (saves memory).
-fp <string> |

Specifies the default font path.
-fn <string>

Specifies the default font (normally fixed).
-su

Disable save under support (saves memory).
:<number>

Specifies the screen number of the server.
notcp

Do not try to create a socket in the Intemet domain. (This option
is useful if you do not have the Helios Ethernet product.) [Helios
Specific]

-newXrc <path>

Specifies the path name of the X server’s resource file (see Sec-
tion 2.3.1). [Helios Specific]

2.3.3 The Helios I/O server resource file

The Helios I/O server resource file (normally called /helios/host.con) contains var-
ious parameters that control how Helios interacts with its host computer, (usually
a PC or clone). If this host machine is being used to provide the mouse and key-
board input to the X server, (the usual situation), then certain parameters in the
host.con file can affect how the X server behaves. These parameters are :

Installation and Configuration 18

Xsupport

This must be enabled (that is there must be no hash (#) signs between this
parameter and the start of the line). This parameter tells the Helios IO server
that the X server will be requiring the keyboard and mouse services.

mouse_resolution

This specifies how far the mouse can be moved (on your desk top) before it
will send a mouse motion event to the X server. A smaller number means
finer grain mouse movements, but lots more messages will be produced,
possibly slowing down disc access.

mouse_divisor

This specifies by how much the distance moved by the mouse on the desk
top should be reduced when reporting a mouse motion event to the X server.
A smaller number means that slight movements of the mouse will cause the
cursor on the screen to move further.

It is recommended that you set the mouse_divisor to the value 1 (one) and the
mouse_resolution to 4 (four) for the best results. In addition, if you are using the
Microsoft Mouse Driver, then it is recommended that you turn off the acceleration
provided by that driver. This can usually be done by changing the command :

REM C:\MOUSE1l\SETSPEED /P2 /FC:\MOUSEl\mousepro.fil
in the autoexec.bat file to the line :
C:\MOUSE1\SETSPEED /P4 /rc': \MOUSE1\mousepzro.£il

In addition if the X/Helios Window Server is being used, (see the Section 2.4)
~ then the following parameter must be commented out of the host.con file :
Server_windows

This parameters tells the Helios I/O server to implement its own /window
service, rather than allowing the X/Helios Window service to create win-
dows.

2.3.4 Environment variables

The X server uses two environment variables, HOME and NEWXRC, both of
which are covered in Section 2.3.1 describing the newXrc file. |

Installation and Configuration 19

2.3.5 Keyboard device driver

The X server comes supplied with two versions of the keyboard device driver,
(called keyboard.no and keyboard.yes) in the directory /helios/lib. The file key-
board.yes is a full implementation of an X keyboard device driver. If it is used the
X server will take over complete control of the keyboard, and X clients will be able
to receive keyboard events whenever any key is pressed. The file keyboard.no,
however, is a fake. It causes the X server to receive its information about the key-
board by reading from its standard input, (just like any ordinary program). This
means, for example, that X clients will never see function keys, cursor keys, con-
trol characters, etc. Instead they will just receive the normal alphabetic, numeric
and punctuation keys. The purpose of this fake keyboard driver is to allow the X
server to be run from a normal Helios session, (that is one that was started without
starting up X), and to allow the Helios session to retain control of the keyboard, so
for example ALT-F1 can still be used to switch between windows, whilst also al-
lowing X clients to receive keyboard input whenever the user types at the X server.
The X server actually loads a file called /helios/liblkeyboard.d for its device driver,
unless overridden by the X server resource file, so you should check which of the
two keyboard drivers has been copied onto this file before starting the X server.

2.4 Starting X

There are two basic ways of starting an X world under Helios. The first is have
the X server start up automatically when Helios is booted. The second method is
to start up Helios first (without starting X) and then to run a shell script to start
up the X world. The former method is much easier from a user’s point of view,
whereas the latter makes debugging much easier if things go wrong.

A word of warning about two of the X clients. The X terminal emulator xterm
and the Tab Window Manager twm both produce status information whilst they are
starting up. This is because both of these clients have long initialisation sequences,
and the messages are there to confirm that they are still working. The messages are
produced on stderr and can be removed by redirecting the output of the command
to /null, for example :

xterm >& /null

24.1 Starting X automatically (the X/Helios window server)

In order to do this the file host.con (normally found in /helios) must be edited
to comment out the line starting Server_windows. This will allow the X/Helios
Window Server (the file /helios/lib/window) to be run. This program will read in

Installation and Configuration 20

the X server resource file /helios/etc/inewXrc. (Note that this is the only version
that will be read, no command line or environment variables exist to change this.)

This file is examined to find the parameters processor, (which tells the window
server upon which transputer it should run the X server), and progname, (which
tells the window server the name and location of the object code for the X server).
The window server will then start an X server, wait for it to start up, and then
create a window on the X server, inside of which the normal Helios login program
will be run. Users can then log in to Helios as normal.

In order for this start up method to work, the full keyboard device driver must
be installed. To make sure, type:

cd /helios/lib
cp keyboard.yes keyboard.d

Note that the terminal emulator used by the window server is not Xterm, but its
own built in emulator (which is much smaller!) You can still run Xterm, however,
simply by invoking it from the command line once you have logged in.

2.4.2 Starting X manually (the startx script)

For more control over what is started and when, you may prefer to start up Helios
first and then start up the X world by hand. The shell script /helios/startx is pro-
vided as an example of how to do this. The script needs editing before it can be
used. You should read the script, make any changes necessary and then try running
it. If things do not work, try running the commands individually.

This method is amenable to running with either form of keyboard driver, al-
though if the fake keyboard driver is used then once the X server has started you
will still be able to type commands to the normal Helios environment.

2.4.3 Starting multiple X servers

You can run multiple X servers in the same Helios network. In order to do this you
will need multiple graphics cards, (that is you cannot run two X servers on the same
graphics card). Each X server is started up with a different display number, and
- then this number is used by X clients to distinguish which display(s) they wish to
contact. For example if you have a Helios network with two graphics cards called
£red, and jim then you could start up two X servers with the commands :

remote -d fred /helios/bin/Xhelios :0
remote -d jim /helios/bin/Xhelios :1

Installation and Configuration 21

These servers can then be contacted by X clients with display names of Helios: 0
(for the X server running on the processor called £red) and Helios: 1 (for the
X server running on the processor called jim).

2.4.4 Not starting any X servers

If you have the Helios Ethernet package installed and your Helios network is con-
nected up to the ethernet, then you can run X clients on the Helios network, dis-
playing their output on X servers connected elsewhere on the ethernet. Thus you
may not want to run an X server under Helios at all. Note that the reverse is also

true. If you have one (or more) X servers running on the Helios network, you can~ |

run X clients elsewhere on the ethernet displaying their output on the Helios X
servers. In fact you can have all possible combinations going on simultaneously!

2.5 Configuring X clients

X clients also have a range of ways in which they can be configured. This section
describes what they are and how to use them.

2.5.1 Shell parameters

In order to be able to execute X clients you must have either set your current di-
rectory to the directory containing the clients, (using the cd command), or (more
commonly) you must set your shell’s search path to include the directory contain-
ing the X clients. The latter method can be done by editing the file ~/.cshrc. If this
file has acommand along the linesof : set path = (. /helios/local/bin
/helios/bin) theneditittoread: set path = (. /helios/local/bin
/helios/bin /helios/bin/X11)

If the ~/.cshrc file does not contain a line setting up the path variable then you
should add a line that looks like the second version of the set path command
above.

Whilst you are editing the file ~/.cshrc you should also add the line :
setenv DISPLAY helios:0

This line tells X clients which X server they should contact, (unless the client has
an option on its command line to override this).

Once you have finished making changes to the ~/.cshrc file you should save it
and then type :

source ~/.cshre

I
i

Installation and Configuration 22

2.5.2 The Xdefaults file

Most X clients can be configured in two ways. Firstly by options specified on their
command lines, and secondly through a resource mechanism provided by the X
library. This second method takes the form of a file called Xdefawlts that should
be located in the user’s home directory. (Note that the following description is an
abbreviated explanation of how the Xdefaults mechanism works. For a complete
description you should consult one of the various books available on the X library.
See Appendix A for a bibliography.)
The Xdefaults file contains lines in the following format :

<program name>*<program resource>:<value>

So, for example to set the foreground colour of the Helios terminal emulator, (the
terminal emulator used by the X/Helios Window Server), the line should read :

term*foreground: black

Spaces between the various components are optional, and are ignored when pars-
ing the file. If no program name is given then the resource applies to all programs,
hence :

*foreground: blue

Sets the foreground colour of every X client (that actually uses a foreground re-
source) to be blue. If there are clashes, then the more specific case will prevail.
Thus if both of the above lines were in the Xdefaults file, then terminal emula-
tor would still have a black foreground, whilst everyone else would have a blue
foreground. The order that the lines appear in the Xdefaults file is not important.

2.5.3 Host specific defaults

The file Xdefaults is read by the X library, not the X server. This means that the file
must be accessible to the X client, wherever that may be running. In a networked
environment the X client could well be running on a different processor, (and
under a different filing system), from the X server. The X library thus provides
a mechanism for specifying defaults that are specific to an X server, rather than
an X client. What happens is that after opening the file Xdefaults the X library
will try to open a file called Xdef-<name-of-X-server's-host-machine>. This file
must also be in the home directory of the X client (not the X server.) Thus if
the X client is running on a machine called fred and the X server is running on a
machine called jim, then the X library will try to open the files SHOME/Xdefaults

Installation and Configuration 23

and $HOME/Xdef-jim, both in fred's file space. If there are any clashes between
the two default files then the host specific version will take priority.

Note Unix versions of the X library call these files Xdefaults and Xdefaults-
<host> respectively. The names have been changed by the Helios version of the
X library, to avoid problems when the MS-DOS filing system is being used.

2.5.4 Application specific defaults

X clients that have been built using the X toolkit, have a third potential source
of default values. These are the files kept in the directory /helios/lib/X11/app-
defaults. These files provide resource values, (in exactly the same format as the
Xdefaults file) on a per-application basis. Each file is named after its application,
(with the first two letters capitalised), and contains resources specifically for use
by that application. Thus if you have an application called fred, which uses the X
toolkit, then during fred's start up, the X toolkit will attempt to load a file called
/helios/libiX11/app-defaults/iFRed. Entries in this file will take precedence over
entries in either of the Xdefaults files. The point of this mechanism is that parsing
the various defaults files is a slow and compute intensive operation, so reducing

the amount of information that has to be parsed on a per-client basis is a definite
win,

2.5.5 Window manager resource files

The X window managers avoid the use of the Xdefaults mechanism altogether
by having their own resource files. These files have quite a different format, and
are parsed by the window managers themselves. These files are fully documented
in the manual pages of the window managers, so only a brief summary follows
here. The files (called uwmrc for the uwm window manager, and twmrc for the
twm window manager) basically work by defining what should happen when a
mouse button is pressed somewhere on the screen. The resource files distinguish
between which mouse button was pressed, which modifier keys on the keyboard
were pressed at the time, (control, shift, etc), and where the mouse was on the
screen, (over the background, over a window, over an icon, etc). The window
managers provide a range of built in functions, (such as resizing a window, turning
a window into an icon, etc), and they also provide the possibility of defining menus
that should appear when button is pressed. These menus can then run further
window manager commands, or they can provide strings to be executed by the
Helios shell. The files are always kept in the user’s home directory, and they are
entirely text based, so that they can be easily edited.

N

Installation and Configuration ' 24

2.5.6 Environment variables

The following environment variables affect clients using the X library :

DISPLAY

This is the (default) name and screen number of the X server to be contacted
by the X client.

HOME

This is used to locate the user’s home directory (when searching for the
Xdefaults file).

USER
If SHOME does not exist then the X library tries to use $USER instead.

XENVIRONMENT

If this variable exists it is used as the path name of the host specific defaults
file, rather than $HOME/Xdef-<host>.

RESOURCE_NAME

If this variable exists, it is used instead of the client’s name when parsing
the defaults databases.

XAUTHORITY
If this variable exists then it is used as the path name for the X Authorisation
Database.

In addition if the client uses the X toolkit, the following extra environment
variables may be used :
XUSERFILESEARCHPATH

If this variable exists then it specifies the path name of the application spe-
cific defaults database.

XAPPLRESDIR

If $XUSERFILESEARCHPATH does not exist, and this variable does ex-
ist, then it is used as the pathname of the directory to be searched for the
application specific defaults.

LANG

If it exists this variable is used to set up the language field of X toolkit’s
XtPerDisplay structure.

Installation and Configuration 25

XFILESEARCHPATH

If it exists, then this variable is used as a prefix to all the filenames located
by the X toolkit.

2.6 Problems starting X

If you have problems starting or configuring your X world then this section may
help. The section tries to identify common problems and their solutions, but if
you are still stuck then contact your distributor. If you have a support contract
with DSL, you can also contact them for help.

e Exec Format Error

This usually means one of three things. Either the command you just tried
to run is corrupt, (maybe because you ran out of disc space when copying
it onto your hard disc, or because it was copied in ASCII mode and not
BINARY mode), in which case you should check the size of the program
against the size of the original and if necessary copy it again. Alternatively
there may not be enough memory left on the processor upon which you want
to run the command. (You can check the amount of memory left using the
map or free commands.) Try running the program on a different processor,
or removing a few programs that are already running on that processor. An-
other case when this error message can occur is when the program needs a
resident library in order to run, and that library is not present in /helios/lib.
You can check which libraries the program is trying to load by using the
CTRL_SHIFT-L key sequence and watching the messages appearing on the
Helios Server window.

o X Server hangs up loading mouse driver

This usually occurs when Xsupport has not been enabled in the host.con file.
Locate this file (it is usually in the directory /helios) and edit it. Make sure
that the line containing the word Xsupport does not have any hash signs (#)
at the start.

o Command not found

Make sure you have the directory containing the command in your search
path. All the X clients are located in the directory /helios/bin/X11. You can
add this directory to your search path with the commands:

set path = ($path /helios/bin/X11)
rehash

Installation and Configuration 26

(You can put these commands in your cshrc file so that they are executed
every time you start up a Helios shell.)

Another possible problem is that if the command has more than eight char-
acters in its name then the Helios shell may not be able to find it. (See the
note in Section 1.5.)

e Xterm does not start

The X terminal emulator program (xterm) needs the Helios pseudo terminal
server in order for it to work. This server is normally supplied with the
Helios Ethernet package, but if you have not purchased this you can use the
backup versions supplied with the X package. First check to see if you have
the files /helios/lib/ttyserv and /helios!libl/tpseudo.d. If they are missing then

type:

cd /helios/lib
cp ttyserv.bak ttyserv
cp tpseudo.dbk tpseudo.d

If the Xterm program is working it should display the following messages
whilst starting up :

Xterm: starting

Xterm: initialising X toolkit
Xterm: initialised X toolkit
Xterm: getting resources
Xterm: got resources

Xterm: getting a terminal
Xterm: spawning a child
Xterm: child spawned

Xterm: Ready

o Lots of carriage return characters (CTRL-M) in a text file

This can happen as a consequence of the way MS-DOS stores text files.
The Helios utility x/atecr can be used to remove these unwanted characters.

Simply type :
xlatecr <name-of-bad-file>

2.7 Making your own hardware device driver

If you have a graphics card that is not currently supported by the Helios X package
you will need to create your own device driver for it. This is not a difficult task.

Installation and Configuration 27

In order to complete the task you will need :

o The Helios C compiler, Helios Assembler, Helios Compiler driver, and pos-

sibly the Helios Assembler Macro Pre-Processor.

e Knowledge of how to drive the graphics card, (preferably in C).

e The example device driver sources (supplied).

The directory /heliosllocal/xsrc/devices contains a skeleton form of an X graphics
hardware device driver (called generic.c) and an example of a working device

driver for the INMOS G300 graphics chip (called new(G300.c). What you need to
do is as follows :

1.
2.
3.

cd to /helios/locallxsrc/devices
Copy generic.c or newG300.c to <your-device-name>.c

Edit <your-device-name>.c to implement the three functions required, (see
below).

. Edit makefile and change the variable PROGRAM to match the name of your

device driver.

. Compile your device driver object code, (type make <your-device-

name> . o) and fix any simple bugs, typos, etc. Note the header files used
by the code are in the parent of the current directory.

. Link your device driver, (type make). If the linker complains about

Symbol '’ .<xyz>'’ undefined - set to zero

where <xyz> is a system function call, it means that <xyz> is missing
from the file device.a. Edit device.a and create a stub for <xyz> (in exactly
the same as there is already a stub for Malloc and Open). Re-make device.o
(for which you will need the Helios Assembler Macro Pre-Processor) and
then relink your device driver.

Copy newXrc to newXrc.G300

Edit newXrc and replace all of the G300 specific parameters with comments
and default values for the parameters used by your device driver. Also
change the value of the hardware_device parameter to match the name of
your device driver.

Installation and Configuration 28

9. Run the program harness (located in the current directory) which will at-
tempt to load your device driver and use it to initialise the graphics hard-
ware. The program will try to identify any device specific parameters and
allow you to change them dynamically. When it is working the program
fills the screen with vertical columns of solid colour (ranging from black to
through to bright red, then black through to bright green, then black through
to blue, and then repeating) with a solid white border (4 pixels wide) all the
way around the outside.

10. When everything is working correctly copy the file newXrc to /helios/etc or
wherever it ought to be installed. Copy your device driver to /helios/lib and
try starting the X server.

11. If your keyboard and / or mouse are not attached to the Helios I/O server then
you will need some way of attaching them to the X server. You can either
attempt to implement the /keyboard and /mouse services as provided by the
IO server, or you can create your own keyboard and mouse device drivers
based on the files keyboard.c and mouse.c. If you do this be sure to edit the
newXrc file to set the parameters keyboard_device and mouse_device.

The graphics hardware device driver provides three functions to the X server,
all of which are documented here :

DevClose

This function is called by the X server when it wishes the graphics hardware
to be shutdown. Currently this function will not be called, but it should be
supported to enable compatibility with future versions of the X server.

DevOpen

This function is called when the X server wishes the graphics hardware to
be initialised. The function is passed two parameters, pdev (which can be
ignored) and pinfo. The second parameter can be used to access the con-
tents of the X server’s resource file in order to obtain the values of param-
eters used by your device driver. This function must perform two actions.
It must initialise the graphics hardware, (apart from the colour lookup ta-
ble(s)), taking note of any parameters set by the user in the newXrc buffer,
and it must allocate and fill out a Hardware_Device structure. This structure
is documented in the file /helios/local/xsrc/hardware.h and contains fields
that tell the X server about hardware dependent information. The function
must retumn a pointer to this filled out structure.

Installation and Configuration 29

DevOperate

This function is called whenever the X server wants to install values into the
colour lookup table(s) provided by the graphics hardware. (The X server
will never want to read these values.) The X server will try to baich up
multiple requests to change entries in the CLUT, so that they can all be
performed together. The format of the request is defined in the file
/heliosllocall/xsrc/hardware.h.

Note, all device drivers must be compiled with a special option to the Helios
C Compiler (-m) which means that static variables are not allowed. If you need
to pass information between the various functions you must use the pprivate field
of the Hardware_Device structure.

N

3

Programming With X Under Helios

This chapter describes how to compile X clients under Helios. It covers the prob-
lems you are most likely to encountered, and describes one of the example pro-

grams provided.

3.1 How to compile X clients

X clients should be compiled by using the Helios Compiler Driver. All of the
programs should be linked with the resident X library, and if necessary the scanned
X library. A typical command line will look like this :

¢ client.c -0 -1X11 -1X -0 client

If the client uses the X toolkit and / or the Athena Widget library, then these
libraries should be linked in. The command line for a typical large X client will
look like :

c *.0 -0 -1lXaw -1lXt -lXext -lXmu -1X11 -1X -o client

The Helios Compiler Driver has a large range of options, and is fully docu-
mented in the Helios Encyclopaedia. The program emulates most of the features
of the Unix cc command, (including the features specified in the POSIX stan-
dard). X clients, can, if you wish, be compiled by hand, (that is directly invoking
the Helios C Compiler and Helios Assembler), but this is a tedious and error prone
operation.

Programming With X Under Helios 31

3.2 Compiling Unix based X clients

Helios, with its support of the POSIX standard, and its BSD emulation library, is
now very close in its programming interface, to Unix. The major problems that
you are likely to come across whilst porting X clients to Helios are as follows :

Earlier X releases

This package implements X11 release 4. X clients written for earlier re-
leases, or for earlier versions of the X protocol, may encounter some prob-
lems. In particular, release 4 is more strict about adherence to the X11 pro-
tocol, and clients which assume, for example, that all the bits in a pixel can
be specified as ' ~0’ will not necessarily work. For these clients, either
fixing the incorrect assumptions, or enabling the bug compatibility mode of
the X server (by typing xset bc) is the best answer.

ANSIC

The Helios C Compiler is a strict ANSI C compiler. It does not have a
K&R option, and it tends to produce lots of warnings even from the simplest
program. A lot of these warnings can be suppressed by the -wA to the Helios
Compiler Driver, and others can be safely ignored. Error messages starting
with the words Serious Error, however, must not be ignored as they will
prevent the code from compiling.

Stack

Helios does not operate in a virtual memory environment, and so the stack
of executing programs cannot be extended whilst the program is running.
The Helios Compiler Driver automatically gives X clients a stack size of
10 kilobytes, but for very big X clients, (or highly recursive ones), this may
not be enough. The stack size can be changed at compile time by the -s
<number> option to the Helios Compiler Driver, or by using the

objed -i -s <number> <program-name>

command after the program has been built. If the program does run out~

of stack, then either it will simply crash, (having walked over the memory

used by its vector stack), or if you are lucky, it will give you a message about
stack overflow and then terminate.

Memory

Another consequence of the lack of virtual memory is that programs have
complete access to the entire address space, and can easily corrupt the op-
erating system or any other running program. Programs should be very

Programming With X Under Helios 32

careful to avoid writing through NULL pointers, using memory after it has
been freed, for example :

free(node); node = node->next;
or freeing static data :
free("Hello World");

fork()

Helios does not support the fork() system call. It does support vfork() (with
the provision that the vfork(), and subsequent exec() calls both take place
inside the same function). If your program cannot exist without the fork()
you should investigate the Fork() system call, but be prepared for a long
hard battle.

BSD Emulation

If you wish to use the BSD emulation features of Helios then your C pro-
grams must be compiled with the -D_BSD set and linked with the BSD
emulation library, (-lbsd).

Variable Arguments

The way variable arguments are handled in ANSI C differs slightly from
K&R C. The follow shows an example of a function written in both K&R

Cand ANSIC:

/* K&R style */ /* ANSI style */

#include <varargs.h> #include <stdarg.h>

void void

debug(format, va_alist) debug(const char * format,
const char * format;
va_dcl

{ {
va_list args; | va_list args;
va_start(args); va_start(args, format);

viprintf(stderr, format, args); viprintf(stderr, format, ar,

Programming With X Under Helios 33

fputc(’\n’, stderr); fputc(*\n’, stderr);
va_end(args); va_end(args);
return; return;
} /* debug */ } /* debug */
Shared Memory

Helios does not have a shared memory model, but since ail clients execut-
ing on the same processor have full access to the all the memory on that

processor, a shared memory scheme between cooperating clients can easily
be implemented.

3.3 Compiling Helios based X clients

There are several features of the Helios environment that can be used advanta-
geously by X clients, this section mentions a few.

Fast RAM

Although the X server takes over all of the available Fast RAM on the pro-
cessor upon which it is running, if the X client is running on another proces-
sor, then it could have some Fast RAM available to it. The Helios functions
Accelerate() and AccelerateCode(), (both of which are documented in the
Helios Encyclopaedia) can be used to access this resource.

Inline Code

The Helios C Compiler supports inline transputer assembler via the _oper-
ate() macro. This is used extensively by the X server, especially when it
performs 2D block copies. The header file /helios/includel/bytblt.h demon-
strates exactly how this macro works.

Lightweight Threads

Helios supports lightweight (that is low administration overheads) threads
via the Fork() system call. Helios also has full support for semaphores,
linked lists, and inter-process communication.

Programming With X Under Helios ‘ 34

Distributed Processing

Helios is a distributed operating system, with full support for distributed and
parallel processing. The CDL language can be used to specify the connec-
tivity of tasks, and the tasks can communicate via ordinary reads and writes
on their streams.

3.4 Example program

The directory /helios/examples has four example programs in it. Three of them,
hello.c, setkeys.c, and xlights.c are (relatively) simple examples of X clients. The
fourth, grab.c, discussed here, is an example of how a non-X client could take
over control of the screen, do something (for example display images loaded off
disc), and then return control to the X server. The code can be compiled with the
command :

¢ grab.c -DEXAMPLE CODE -FA -0 -1X11 -1X -o grab
and then run, (on the processor with the graphics hardware) with the command :
grab

Note, if your graphics card does not have a G300 chip displaying on a monitor
that is 1024 pixels wide by 768 pixels tall, then you will need to edit grab.c before
compiling it, and change the #define constants near line 225.

The program, when run, demonstrates taking over the X server, displaying
a vaguely interesting pattern by writing directly into the video RAM, and then
returning control to the X server, (whereupon the screen is repainted).

4

Xlib Summary

This chapter provides a quick reminder of the functions and macros in the X Win-
dows System Library, XIib. It does not attempt to give a full description of Xlib. If
you require further information, you should consult one of the X reference books
listed in the bibliography at the end of this manual (Appendix A).

To help you find and use the most suitable function or macro for a particular
purpose, the information described in this chapter has been arranged in several
sections. The first section lists each function or macro by subject; this is useful for
determining which functions are available for achieving the desired effect. Sub-
sequent sections give an alphabetical list of macros and functions, and provide
information about their purpose and the calling syntax. Notice that a quick and
easy way to check whether a particular name refers to a function or a macro is to
look at the first letter of the name: Xlib functions start with an X, whereas macros
do not. Most macros also have function equivalents; if you prefer to use a function
instead of the macro, prefix the macro name by X.

As in the rest of this manual, the names of the functions and macros have
not been changed from the originals; the spelling used in the descriptions follows
British rather than American English (that is, color is spelt as colour).

4.1 Listing by Subject

4.1.1 Buffers
XStoreBuffer

35

X1lib Summary

XStoreBytes
XFetchBuffer
XFetchBytes
XRotateBuffers

4.1.2 Client Connections

XKillClient
XSetCloseDownMode

4.1.3 Colorcells

BlackPixel

—~ WhitePixel

‘ XAllocColor

XAllocColorCells
XAllocColorPlanes
XAllocNamedColor
XFreeColors
XLookupColor
XParseColor
XQueryColor
XQueryColors
XStoreColor
XStoreColors
XStoreNamedColor

~

4.1.4 Colormaps

DefaultColormap
DefaultColormapOfScreenp
DisplayCells
XCopyColormapAndFree
XCreateColormap
XFreeColormap
XGetStandardColormap
XInstallColormap
XListInstalledColormaps
XSetStandardColormap
XSetWindowColormap

Xlib Summary

XUninstallColormap

4.1.5 Context Manager

XDeleteContext
XFindContext
XSaveContext
XUniqueContext

4.1.6 Cursors

XCreateFontCursor
XCreateGlyphCursor
XCreatePixmapCursor
XDefineCursor
XFreeCursor
XRecolorCursor
XQueryBestCursor
XQueryBestSize
XUndefineCursor

4.1.7 Display Specifications

DefaultColormap
DefaultDepth
DefaultGC
DefaultScreenDefault
VisualDisplayCells
DisplayHeightMM
DisplayPlanes
DisplayString
DisplayWidth
DisplayWidthMM
RootWindow
ScreenCount

4.1.8 Drawing Primitives

XCopyArea
XCopyPlane

37

Xlib Summary

XClearArea
XClearWindow
XDraw
XDrawArc
XDrawArcs
XDrawFilled
XDrawLine
XDrawLines
XDrawPoint
XDrawPoints
XDrawRectangle
XDrawRectangles
XDrawSegments
XFillArc
XFillArcs
XFillPolygon
XFillRectangle
XFillRectangles

419 Errors

XDisplayName
XGetErrorDatabaseText
XGetErrorText
XSetAfterFunction
XSetErrorHandler
XSetIOErrorHandler
XSynchronize

4.1.10 Events

QLength

XAllowEvents
XCheckIfEvent
XCheckMaskEvent
XCheckTypedEvent
XCheckTypedWindowEvent
XCheckWindowEvent
XEventsQueued
XGetInputFocus

Xlib Summary

XGetMotionEvents
XIfEvent
XMaskEvent
XNextEvent
XPeekEvent
XPeekIfEvent
XPending
XPutBackEvent
XSelectInput
XSendEvent
XSetInputFocus
XSynchronize
XWindowEvent

4.1.11 Extensions

XFreeExtensionList
XListExtensions
XQueryExtension

4.1.12 Fonts

XCreateFontCursor
XFreeFont
XFreeFontInfo
XFreeFontNames
XFreeFontPath
XGetFontPath
XGetFontProperty
XListFonts
XListFontsWithInfo
XLoadFont
XQueryFont
XSetFont
XSetFontPath
XUnloadPath

4.1.13 Grabbing
XChangeActivePointerGrab

L~

Xlib Summary

XGrabButton
XGrabKey
XGrabKeyboard
XGrabPointer
XGrabServer
XUngrabButton
XUngrabKey
XUngrabKeyoard
XUngrabPointer
XUngrabServer

4.1.14 Graphics Context (GC)

DefaultGC
XChangeGC
XCopyGC
XCreateGC
XFreeGC
XGCContextFromGC
XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetClipRectangles
XSetDashes
XSetFillRule
XSetFillStyle
XSetForeground
XSetFunction
XSetGraphicsExposures
XSetLineAttributes
XSetPlaneMask
XSetRegion
XSetState
XSetStipple
XSetSubwindowMode
XSetTile
XSetTSOrigin

40

Xlib Summary

4.1.15 Host Access

XAddHost

XAddHosts
XDisableAccessControl
XEnableAccessControl
XListHosts
XRemoveHost .
XRemoveHosts
XSetAccessControl

4.1.16 Housekeeping

DefaultScreen
XCloseDisplay
XFree
XOpenDisplay
XNoOp

4.1.17 Images

ImageByteOrder
XAddPixel
XCreateImage
XDestroyImage
XGetImage
XGetPixel
XGetSubImage
XPutlmage
XPutPixel
XSubImage

4.1.18 Keyboard

XChangeKeyboardMapping
XDeleteModifiermapEntry
XFreeModifiermap
XGetKeyboardMapping
XGetModifierMapping
XInsertModifiermapEntry
XKeycodeToKeysym

—~~

Xlib Summary

XKeysymToKeycode
XKeysymToString
XLookupKeysym
XLookupString
XNewModifiermap
XQueryKeymap
XRebindKeysym
XRefreshKeyboardMapping
XSetModifierMapping
XStringToKeysym

4.1.19 Macros (Display)

AllPlanes

BlackPixel
BlackPixelOfScreen
CellsOfScreen
ConnectionNumber
DefaultColormap
DefaultColormapOfScreen
DefaultDepth
DefaultDepthOfScreen
DefaultGC
DefaultGCOfScreen
DefaultRootWindow
DefaultScreen
DefaultScreenOfDisplay
DefaultVisual
DefaultVisualOfScreen
DisplayCells
DisplayHeightMM
DisplayOfScreen
DisplayPlanes
DisplayString
DisplayWidth
DisplayWidthMM
DoesBackingStore
DoesSaveUnders
EventMaskOfScreen
HeightOfScreen

42

Xlib Summary

HeightMMOfScreen
LastKnownRequestProcessed
MaxCmapsOfScreen
MinCmapsOfScreen
NextRequest
PlanesOfScreen
ProtocolRevision
Protocol Version
QLength
RootWindow
RootWindowOfScreen
ScreenCount
ScreenOfDisplay
ServerVendor
VendorRelease
WhitePixel
WhitePixelOfScreen
WidthOfScreen
WidthMMOfScreen

4.1.20 Macros (Image Format)

BitmapBitOrder
BitmapPad
BitmapUnit
ImageByteOrder

4.1.21 Mapping

XChangeKeyboardMapping
XDeleteModifiermapEntry
XFreeModifiermap
XGetKeyboardMapping
XGetModifierMapping
XGetPointerMapping
XInsertModifiermapEntry
XMapRaised
XMapSubwindows
XMapWindow

XNewModifiermapXQueryKeymap

43

Xlib Summary

XRefreshKeyboardMapping
XSetModifierMapping
XSetPointerMapping
XUnmapSubwindows
XUnmapWindow

4.1.22 Output Buffer

XFlush
XSync

4.1.23 Pointers

XChangeActivePointerGrab
XChangePointerControl
XGetPointerControl
XGetPointerMapping
XGrabPointer
XQueryPointer
XSetPointerMapping
XUngrabPointer
XWarpPointer

4.1.24 Properties

XChangeProperty
XDeleteProperty
XGetAtomName
XGetFontProperty

- XGetWindowProperty
XInternAtom
XListProperties
XRotateWindowProperties
XSetStandardProperties

4.1.25 Regions

XClipBox
XCreateRegion
XDestroyRegion

Xlib Summary

XEmptyRegion
XEqualRegion
XIntersectRegion
XOffsetRegion
XPointInRegion
XPolygonRegion
XRectInRegion
XSetRegion
XShrinkRegion
XSubtractRegion
XUnionRectWithRegion
XUnionRegion
XXorRegion

4.1.26 Resource manager and database

Xpermalloc
XrmGetFileDatabase
XrmlInitialize
XrmGetResource
XrmGetStringDatabase
XrmMergeDatabases
XrmParseCommand
XrmPutFileDatabase
XrmPutLineResource
XrmPutResource
XrmPutStringResource
XrmQGetResource
XrmQGetSearchList
XrmQGetSearchResource
XrmQPutResource
 XrmQPutStringResource
XrmQuarkToString
XrmStringToBindingQuarkList
XrmStringToQuarkList
XrmStringToQuark
XrmUniqueQuark

Xlib Summary

4.1.27 Save set

XAddToSaveSet
XChangeSaveSet
XRemoveFromSaveSet

4.1.28 Screen saver

XActiveScreenSaver
XForceScreenSaver
XGetScreenSaver
XResetScreenSaver
XSetScreenSaver

4.1.29 Selections

XConvertSelection
XGetSelectionOwner
XSetSelectionOwner

4.1.30 Standard geometry

XGeometry
XParseGeometry
XTranslateCoordinates

4.1.31 Text

XDrawImageString
XDrawImageString16
XDrawString
XDrawString16
XDrawText
XDrawText16
XQueryTextExtents
XQueryTextExtents16
XTextExtents
XTextExtents16
XTextWidth
XTextWidth16

46

Xlib Summary

4.1.32 Tile, pixmap, stipple and bitmap

XCreateBitmapFromData
XCreatePixmap
XCreatePixmapFromBitmapData
XFreePixmap

XQueryBestSize
XQueryBestStipple
XQueryBestTile
XReadBitmapFile

XSetTile
XSetWindowBorderPixmap
XSetWindowBackgroundPixmap
XWriteBitmapFile

4.1.33 User preferences

XAutoRepeatOff
XAutoRepeatOn

XBell
XChangeKeyboardControl
XGetDefault
XGetKeyboardControl
XGetPointerControl

4.1.34 Visuals

DefaultVisual
XGetVisuallnfo
XMatchVisuallnfo

4.1.35 Window attributes

XChangeWindowAttributes
XDefineCursor

XGetGeometry
XGetWindowAttributes
XSetWindowBackground
XSetWindowBackgroundPixmap
XSetWindowBorder
XSetWindowBorderPixmap

Xlib Summary

XSetWindowColormap
XSelectInput

4.1.36 Window configuration

XConfigureWindow
XGetGeometry
XMoveResizeWindow
XMoveWindow
XResizeWindow
XRestackWindow
XSetWindowBorderWidth

4,137 Window existence
XCreateSimpleWindow
XCreateWindow
XDestroySubwindows
XDestroyWindow

4.1.38 Window manager hints

XFetchName
XGetClassHint
XGetlconName
XGetlconSizes
XGetNormalHints

g XGetSizeHints
XGetTransientForHint
XGetWMHints
XGetZoomHints
XSetClassHint
XSetCommand
XSeticonName
XSetlconSizes
XSetNormalHints
XSetSizeHints
XSetTransientForHint
XSetWMHints
XSetZoomHints

Xlib Summary 49

XStoreName

4.1.39 Window manipulation

XCirculateSubwindows
XCirculateSubwindowsDown
XCirculateSubwindowsUp
XConfigureWindow
XLowerWindow
XMoveWindow
XMoveResizeWindow
XQueryTree
XRaiseWindow
XReparentWindow
XResizeWindow
XRestackWindows
XSetWindowBorderWidth

4.1.40 Window mapping

XMapRaised
XMapSubwindows
XMapWindow
XUnmapSubwindows
XUnmapWindow

4.2 Macros

All of these macros are also available as functions, with an X prepended to their
name. Thus the function version of the RootWindow() macro is called XRootWin-
dow().

AllPlanes
Returns a value, with all bits set, which is suitable for use as a ‘plane’ argument
to a procedure. The returned value is compatible with the C type unsigned long.

unsigned long
AllPlanes

BitmapBitOrder
Return value is an integer; equivalent to the macro’s MSBFirst or LSBFirst.

Xlib Summary 50

int
BitmapBitOrder(Display * display)
BitmapPad
Each scanline must be padded to a multiple of bits returned by this function.
int
BitmapPad(Display * display)
BitmapUnit

Returns the size of the bitmap’s scanline unit in bits. The scanline is calculated
in multiples of this value; it is always less than the bitmap scanline pad.

int
BitmapUnit(Display * display)

BlackPixel
Returns the black pixel value for the specified screen.

unsigned long
BlackPixel(Display * display, int screen_number)

BlackPixelOfScreen
Returns the black pixel value for the specified screen.

unsigned long
BlackPixelOfScreen(Screen * screen)

CellsOfScreen
Returns the number of colour map cells of the specified screen.

int
CellsOfScreen(Screen * screen)

ConnectionNumber
Returns a file descriptor for the display.

int
ConnectionNumber(Display * display)
DefaultColormap

Returns the default colour map ID for allocation on the screen; most routine
allocations of colour should be made out of this colour map.

Xlib Summary 51

Colormap
DefauliColormap(Display * display, Screen * screen)

DefaultColormapOfScreen
Returns the default colour map of the specified screen.

Colormap :
DefaultColormapOfScreen{ Screen * screen) .

DefaultDepth

Returns the default depth (planes) of the default root window, for the specified
screen.

int
DefaultDepth(Display * display, int screen_number)

DefaultDepthOfScreen
Returns default depth of specified screen.
int
DefaultDepthOfScreen(Screen * screen)
DefaultGC
Returns the default graphics context for the root window of the specified screen.

This GC is created for the convenience of simple applications and contains the de-

fault GC components with the foreground and background pixel values initialised
to black and white.

GC
DefaultGC(Display * display, int screen_number)

DefaultGCOfScreen
Returns the default graphics context of the specified screen.

GC
DefaultGCOfScreen(Screen * screen)

DefaultRootWindow
Returns the root window for the specified screen.

Window
DefaultRootWindow(Screen * screen)

Xlib Summary 52

DefaultScreen

Returns the default screen number referenced in XOpenDisplay(). This macro
should be used to retrieve the screen number in applications that will use only a
single screen.

int
DefaultScreen(Display * display)

DefaultScreenOfDisplay
Returns the default screen of the specified display.

Screen *
DefaultScreenOfDisplay(Display * display)

DefaultVisual
Returns the default visual type for the specified screen.

Visual *
DefaultVisual(Display * display, int screen_number)

DefaultVisualOfScreen
Returns the default visual of the specified screen.

Visual *
DefaultVisualOfScreen(Screen * screen)

DisplayCells
Returns the number of entries in the default colour map.
int
DisplayCells(Display * display, int screen_number)
DisplayHeightMM
Returns the height of the specified screen, in millimeters.
int
DisplayHeightMM(Display * display, int screen_number)

DisplayOfScreen
Returns the display of the specified screen.

Display *
DisplayOfScreen{ Screen * screen)

Xlib Summary S3

DisplayPlanes

Returns the depth of the root window in the specified screen.
int
DisplayPlanes(Display * display, int screen_number)

DisplayString

Returns the string that was passed to XOpenDisplay() when the current dis-
play was opened. If the display was opened with a NULL string, this macro re-
turns the value of the environment variable, DISPLAY. This macro is useful when

a child process is created, and wants to open a new connection to the same display
as the parent process.

char *
DisplayString(Display * display)

DisplayWidth
Returns the width of the screen in pixels.
int
DisplayWidsh(Display * display, int screen_number)
DisplayWidthMM
Returns the width of the specified screen in millimeters.
i .
DisplayWidthMM(Display * display, int screen_number)
DoesBackingStore

Returns a value which indicates if the screen supports backing stores; the re-
turned value may be WhenMapped, NotUseful, or Always.

int
DoesBackingStore(Screen * screen)
DoesSaveUnders
Returns a boolean flag indicating whether the screen supports save unders;
TRUE indicates that is does.

Bool
DoesSaveUnders(Screen * screen)

EventMaskOfScreen
Returns the initial root event mask for the specified screen.

Xlib Summary “ 54

long
EventMaskOfScreen(Screen * screen)

HeightMMOfScreen
Returns the height of the specified screen in millimeters.
int
HeightMMOYfScreen(Screen * screen)
HeightOfScreen
Returns the height of the screen (in pixels).
int
HeightOfScreen(Screen * screen)

ImageByteOrder
Specifies the required byte order for images for each scanline unit in XYFor-
mat or for each pixel value in ZFormat. This macro returns LSBFirst or MSBFirst.
int
ImageByteOrder(Display * display)

LastKnownRequestProcessed
Returns the serial number of the request which was known by Xlib to have
been processed by the X Server. This number is automatically set by Xlib when
replies, events, and errors are received. |
int
LastKnownRequestProcessed(Display * display)

MaxCmapsOfScreen
Returns the maximum number of colour maps supported by the screen.

int
MaxCmapsOfScreen(Screen * screen)

MinCmapsOfScreen -
Returns the minimum number of colour maps supported by the screen.

int
MinCmapsOfScreen(Screen * screen)
NextRequest

Returns the full serial number that is to be used for the next request issued to the
X Server. Serial numbers are maintained separately for each display connection.

Xlib Summary 55

int
NextRequest(Display * display)

PlanesOfScreen
Returns the number of planes in the specified screen.

int
PlanesOfScreen(Screen * screen)
ProtocolRevision
Returns the minor protocol revision number of the X Server (4).
int
ProtocolRevision(Display * display)

Protocol Version

Returns the major version number (11) of the X protocol which is associated
with the connected display.

int
ProtocolVersion{ Display * display)
QLength |

Returns the length of the event queue for the connected display. Note that there
may be events that have not been read into the queue yet.

int
QLength(Display * display)

RootWindow

Returns the root window; this macro is used with functions that take a parent
window as an argument.

Window
RootWindow(Display * display, int screen_number)

RootWindowOfScreen
Returns the root window of the specified screen.

Window
RootWindowOfScreen(Screen * screen)

ScreenCount
Returns the number of available screens.

Xlib Summary , 56

int
ScreenCount(Display * display)

ScreenOfDisplay
Returns a pointer to the screen of the specified display.

Screen *
ScreenOfDisplay(Display * display, int screen_number)

ServerVendor |
Returns a pointer to a null terminated string which identifies the owner of this
X server implementation.

Char *
ServerVendor(Display * display)

VendorRelease

Returns the vendor’s release number for the X server.
int
VendorRelease(Display * display)

WhitePixel
Returns the white pixel value for the specified screen.

unsigned long
WhitePixel(Display * display, int screen_number)

WhitePixelOfScreen
Returns the white pixel value of the specified screen.

unsigned long
WhitePixelOfScreen(Screen * screen)

WidthMMOfScreen

Returns the width of the specified screen (in millimeters).
int
WidthMMOfScreen(Screen * screen)

WidthOfScreen
Returns the width of the screen (in pixels).

int
- WidthOfScreen(Screen * screen)

| Xlib Summary 57

4.3 Functions

XActivateScreenSaver

Turns on the screen saver to avoid burning out phosphors when the display is
left on but unused.

void
XActivateScreenSaver(Display * display)

XAddExtension
Obtains an extension code for use with an extension to the X library.

ExtCodes *
XAddExtension(Display * display)

XAddHost
Adds the specified host to the access control list.

void
XAddHost(Display * display, XHostAddress * host)

XAddHosts
Adds a number of specified hosts to the access control list.

void
XAddHosts(Display * display, XHostAddress * host, int num_hosts)

XAddPixel

Adds a constant value to each pixel value in an image.
int
XAddPixel(XImage * ximage, unsigned long value)

XAddToExtensionList
Adds an extension data structure to the extsntion data structure list.

void
XAddToExtensionLisy(struct _XExtData ** structure, XExtData * ext_data)

XAddToSaveSet
Adds the children of the specified window to the client’s save set.

void :
XAddIoSaveSet(Display * display, Window w)

Xlib Summary 58

XAllocColor
Allocates the read-only colormap cell with the closest RGB values available
and then returns the actual RGB values used.

Status
XAllocColor(Display * display, Colormap cmap, XColor * colorcell_def)

XAllocColorCells
Allocates read/write colormap cells in a read/write colormap.

Status

XAllocColorCells(Display * display, Colormap cmap, Bool contig,
unsigned long * plane_masks_return, unsigned int nplanes,
unsigned long * pixels_return, unsigned int npixels)

XAllocColorPlanes
Allocates read/write colour planes.

Status

XAllocColorPlanes(Display * display, Colormap cmap, Bool contig,
unsigned long * pixels_return, int ncolors, int nreds, int ngreens,
int nblues, unsigned long * rmask_return,
unsigned long * gmask_return, unsigned long * bmask_return)

XAllocNamedColor
Finds the RGB values for colorname from the colour database and then allo-
cates a read-only colorcell with the closest colour available (see AllocColor).

Status
N XAllocNamedColor(Display * display, Colormap cmap,
' const char * colourname, XColor * colorcell_def,
XColor * rgb_db_def)

XAllocClassHint
Returns allocated space suitable for use as an XClassHint structure.

XClassHins *
XAllocClassHint(void)

XAllocIconSize
Returns allocated space suitable for use as an XIconSize structure.

XlconSize *
XAllocIconSize(void)

Xlib Summary 59

XAllocSizeHints
Returns allocated space suitable for use as an XSizeHints structure.

XSizeHints *
XAllocWMHints(void)

XAllocStandardColormap
Returns allocated space suitable for use as an XStandardColormap structure.

XStandardColormap *
XAllocStandardColormap(void)

XAllocWMHints -
Returns allocated space suitable for use as a XWMHints structure.

XWMHints *
XAllocWMHints(void)

XAllowEvents
Controls keyboard and pointer events when they are grabbed.

void
XAllowEvensts(Display * display, int event_mode, Time time)

XAutoRepeatOff

Stops keyboard auto-repeat so that multiple press/release events will not occur
when a key is held down.

void
XAutoRepeatOffil Display * display)

XAutoRepeatOn 4
Restarts keyboard auto-repeat (opposite of XAutoRepeatOfT).

void
XAutoRepeatOn(Display * display)

XBell
Rings the keyboard bell at the specified volume.

void
XBell(Display * display, int percent)

XChangeActivePointer Grab
Alters the specified dynamic parameters of an active pointer grab.

Xlib Summary - ' 60

void
XChangeActivePointerGrab(Display * display, unsigned int event_mask,
Cursor cursor, Time time)

XChangeGC
Changes some or all of the components of the specified graphics context.

void
XChangeGC(Display * display GC gc, unsigned long valuemask,
XGCvalues * values)

X ChangeKeyboardControl
Sets the user keyboard preferences.

void
XChangeKeyboardControl(Display * display, unsigned long value_mask,
XKeyboardControl * values)

XChangeKeyboardMapping
Defines the key symbols allocated for the specified keycodes.

void
XChangeKeyboardMapping(Display * display, int first_keycode,
int keysyms_per_keycode, KeySym * keysyms, int num_keycodes)

XChangePointerControl
Sets the pointer preferences to define how the pointing device is to move.

void

XChangePointerControl(Display * display, Bool do_accel,
Bool do_threshold, int accel_numerator, int accel_denominator,
int threshold)

X ChangeProperty
Changes the specified property associated with the given window.
void '
XChangeProperty(Display * display, Window w, Atom property, Atom type,
int format, int mode, const unsigned char * data, int nelements)

XChangeSaveSet
Adds or removes a given window’s children from the client’s save set.

void
XChangeSaveSel(Display * display, Window w, int change_mode)

Xlib Summary 61

XChangeWindowAttributes
Changes some or all of the attributes of a given window.

void
XChangeWindowAttributes(Display * display, Window w,
unsigned long valuemask, XSetWindowAttributes * attributes)

XCheckIfEvent
Looks in the event queue for a matching event.

void
XCheckifEvent(Display * display, XEvent * event,
Bool (* predicate)(Display *, XEvent *, char *), char * args)

XCheckMaskEvent

Looks in the event queue and removes the next event to match the given event
mask.

void
XCheckMaskEveny(Display * display, unsigned long mask_event,
XEvent * event)

XCheckTypedEvent
Looks in the event queue and returns the next event to match the given event
type. :

void
XCheckTypedEveni(Display * display, int event_type, XEvent * report)

XCheckTypedWindowEvent

Looks in the event queue and returns the next event that matches the given
window and event type.

void
XCheckTypedWindowEveni(Display * display, Window w, int event_type,
XEvent * report)

XCheckWindowEvent
Looks in the event queue and removes the next event to match the given win-
dow and event type.

void
XCheckWindowEvent(Display * display, Window w, int event_mask,
XEvent * event)

Xlib Summary 62

XCirculateSubwindows
Cycles the given window’s children (subwindows) up or down in the stacking
order.

void
- XCirculateSubwindows(Display * display, Window w, int direction)

XCirculateSubwindowsDown
Lowers the highest obscured subwindow of the given window in the stacking
order and circulates the lowest subwindow to the top.

void
XCirculateSubwindowsDown(Display * display, Window w)

P XCirculateSubwindowsUp
Raises the lowest obscured subwindow of the given window in the stacking
order and circulates the top subwindow to the bottom.

void
XCirculateSubwindowsUp(Display * display, Window w)

XClearArea
Clears the specified rectangular area in the given window.

void
XClearArea(Display * display, Window w, int x, int y, unsigned int width,
 unsigned int height, Bool exposures)

XClearWindow
’\ Clears the given window.

void
XClearWindow(Display * display, Window w)

XClipBox
Returns the smallest rectangle that encloses the given region.

void
XClipBox(Regionr, XRectangle * rect_return)

XCloseDisplay
Closes the connection between the current client program and the specified X
server and display.

Xlib Summary 63

void
XCloseDisplay(Display * display)

XConfigureWindow
Changes the given window’s configuration (that is, its position, size, stacking
order, and so on).

void
XConfigureWindow(Display * display, Window w, unsigned int value_mask,
XWindowChanges * values)

XConvertSelection
Uses the value of a selection.

void
XConvertSelection(Display * display, Atom selection, Atom target,
Atom propriety, Window requestor, Time time)

XCopyArea
Copies the specified drawable area: combines its source and destination rect-
angles.

void

XCopyArea(Display * display, Drawable src, Drawable dest, GC gc,
int src_x, int src_y, unsigned int width, unsigned int height, int dest_x,
int dest_y)

XCopyColormapAndFree
Copies the given colormap, returning the new ID; used to obtain a new virtual
colormap. '

Colormap
XCopyColormapAndFree(Display * display, Colormap cmap)

XCopyGC :
Copies some or all of the components of one graphics context to another one.

void
XCopyGC(Display * display, GC src, unsigned long valuemask, GC dest)

XCopyPlane
Copies a single plane from the given source drawable into the entire depth of
the destination drawable.

Xlib Summary _ 64

void

XCopyPlane(Display * display, Drawable src, Drawable dest, GC gc,
int src_x, int src_y, unsigned int width, unsigned int height, int dest_x,
int dest_y, unsigned long plane)

XCreateBitmapFromData
Creates a single-plane pixmap from the glven X11-format bitmap data.

Pixmap
XCreateBitmapFromData(Display * display, Drawable drawable,
char * data, unsigned int width, unsigned int height)

XCreateColormap
Creates a colormap of the specified visual class.

Colormap
XCreateColormap(Display * display, Window w, Visual * vuual int alloc)

XCreateFontCursor
Creates a cursor using the standard X11 cursor font, the set of standard cursor
shapes or characters.

Cursor
XCreateFontCursor(Display * display, unsigned int shape)

XCreateGC
Creates a new graphics context according to the given specifications.

GC
a XCreateGC(Display * display, Drawable drawable,
unsigned long valuemask, XGCValues * values)

XCreateGlyphCursor
Creates a cursor from the indicated fonts.

Cursor

XCreateGlyphCursor(Display * display, Fors source_fons, Font mask_font,
unsigned int source_char, unsigned int mask_char,
XColor * foreground color, XColor * background color)

XCreateImage
Creates an image, allocating it sufficient memory.

Xlib Summary 65

Xilmage *

XCreatelmage(Display * display, Visual * visual, unsigned int depth,
int format, int offset, char * data, unsigned int width,
unsigned int height, int bitmap pad, int bytes_per line)

XCreateFontCursor
Creates a cursor using the cursor font.

Cursor :
XCreateFonsCursor(Display * display, unsigned int shape)

XCreatePixmap
Creates a pixmap.

Pixmap
XCreatePixmap(Display * display, Drawable * drawable,
unsigned int width, unsigned int height, unsigned int depth)

XCreatePixmapCursor
Creates a cursor.

Cursor

XCreatePixmapCursor(Display * display, Pixmap source, Pixmap mask,
XColor * foreground_color, XColor * background_color,
unsigned int x_hot, unsigned int y_hot)

XCreatePixmapFromBitmapData
Creates a pixmap of the specified depth using bitmap information.

Pixmap

XCreatePixmapFromBitmapData(Display * display, Drawable * drawable,
char * data, unsigned int width, unsigned int height, unsigned long fg,
unsigned long bg, unsigned int depth)

XCreateRegion
Creates a new empty region of undefined size (see XPolygonRegion).

Region
XCreateRegion(void)

XCreateSimpleWindow

Creates a simple unmapped I/O subwindow of the given parent window ac-
cording to the specified size, background and border.

Xlib Summary 66

Window

XCreateSimpleWindow(Display * display, Window parent, int x, int y,
unsigned int width, unsigned int height, unsigned int border width,
unsigned long border, unsigned long background)

XCreateWindow
Creates an unmapped subwindow of the given I/O window, parent, and sets
the specified attributes.

void

XCreateWindow(Display * display, Window parent, int x, int y,
unsigned int width, unsigned int height, unsigned int border_width,
int depth, unsigned int class, Visual * visual, unsigned long valuemask,
XSetWindowAttributes * attributes)

XDefineCursor
Assigns the specified cursor to a window.

void
XDefineCursor(Display * display, Window w, Cursor * cursor)

XDeleteContext
Deletes the context entry for a specified window and type.
int
XDeleteContext(Display * display, Window w, XContext context)

XDeleteModifiermapEntry
Deletes a modifier keymap entry.

XModifierKeymap *

XDeleteModifiermapEntry(XModifierKeymap * modmap
KeyCode keysym_entry, int modifier)

XDeleteProperty
Deletes a window property.

void
XDeleteProperty(Display * display, Window w, Atom property)

XDestroyImage

Removes the memory allocation that is currently associated with the given
image.

Xlib Summary 67

int
XDestroylmage(XImage * ximage)

XDestroyRegion
Removes the memory store allocation that is currently associated with the
given region.

void
XDestroyRegion(Regionr)

XDestroySubwindows
Removes all the children of the given window, starting with the lowest sub-
window in the stack and ending with the top one.

void
XDestroySubwindows(Display * display, Window w)

XDestroyWindow
Unmaps the given window and destroys all its children.

void .
XDestroyWindow(Display * display, Window window)

XDisableAccessControl

Overrides the host access list and enables the clients of any host to access the
server.

void
XDisableAccessControl(Display * display)

XDisplayMotionBufferSize
Returns the size of the motion buffer on the given display.

unsigned long :
XDisplayMotionBufferSize(Display * display)

XDisplayName
Returns the name of the display that will be contacted by a call to XOpenDis-
play if passed the given string.

char *
XDisplayName(const char * string)

XDrawArc
Draws a circular or elliptical arc to fit within a defined rectangle.

Xlib Summary 68

void
XDrawArc(Display * display, Drawable drawable, GC gc, int x, int y,
unsigned int width, unsigned int height, int anglel, int angle)

XDrawArcs
Draws more than one arc; multiple version of XDrawArc.

void
XDrawArcs(Display * display, Drawable drawable, GC gc, XArc * arcs,
int narcs)

XDrawImageString
Draws a string of 8-bit image text characters, including the foreground and
background of these characters, according to the given graphics context.

void
XDrawlmageString(Display * display, Drawable drawable, GC gc, int x,
int y, const char * string, int length)

XDrawlImageString16
As DrawImageString, except that it draws 16-bit image text characters.

void
XDrawlmageString16(Display * display, Drawable drawable, GC gc, int x,
int y, const XChar2b * string, int length)

XDrawLine
Draws a line between two given points, using the components of the graphics
context.

void
XDrawLine(Display * display, Drawable drawable, GC gc, int x1, int y1,
int x2, int y2)

XDrawLines
Draws connected lines between given points, using the components of the
graphics context.

void
XDrawLines(Display * display, Drawable drawable, GC gc,
XPoint * points, int npoints, int mode)

XDrawPoint
~ Draws a single point within the specified drawable, using the foreground pixel
component of the given graphics context.

Xlib Summary 69

void
XDrawPoint(Display * display, Drawable drawable, GC gc, int x, int y)

XDrawPoints
Draws many points within the specified drawable, using the foreground pixel
component of the given graphics context.

void
XDrawPoints(Display * display, Drawable drawable, GC gc,
XPoint * points, int npoints, int mode)

XDrawRectangle
Draws the outline of a rectangle, according to the given dimensions and graph-
ics context.

void
XDrawRectangle(Display * display, Drawable drawable, GC gc, int x,
int y, unsigned int width, unsigned int height)

XDrawRectangles
Draws the outline of many rectangles.

void
XDrawRectangles(Display * display, Drawable drawable, GC gc,
XRectangle * rectangles, int nrectangles)

XDrawSegments
Draws many line segments which may be connected or unconnected (see XDraw-
Lines).

void
XDrawSegments(Display * display, Drawable drawable, GC gc,
XSegment * segments, int nsegments)

XDrawString
Draws the foreground of a 8-bit text string starting at a defined point within
the given drawable.

void
XDrawString(Display * display, Drawable drawable, GC gc, int x, int y,
const char * string, int length)

XDrawString16
Draws the foreground of a 2-byte text string starting at a defined point within
the given drawable.

Xlib Summary 70

void
XDrawStringl 6(Display * display, Drawable drawable, GC gc, int x, int y,
const XChar2b * string, int length)

XDrawText
Draws multiple 8-bit strings, which may contain different fonts, with the first
string starting at a defined point within the drawable.

void
XDrawText(Display * display, Drawable drawable, GC gc, int x, int y,
XTextltem * items, int nitems)

XDrawText16
As XDrawText, only using 16-bit text strings.

void
XDrawText16(Display * display, Drawable drawable, GC gc, int x, int y,
XTextlteml6 * items, int nitems)

XEHeadOfExtensionList
Returns a pointer to the head of the list of extsion data structures.

ExtData **
XEHeadOfExtensionList(XEDataObject)

XEmptyRegion
Checks to see if a given region is empty or not.

int
XEmptyRegion(Regionr)

XEnableA ccessControl
Prevents the clients of any host accessing the server by using the host access
control list to limit connection.

void
XEnableAccessControl(Display * display)

XEqualRegion
Compares two regions to see if they are the same in size, shape, and relative
location.

int
XEqualRegion(Regionrl, Regionr2)

Xlib Summary 71

XEventsQueued
Looks at the event queue to see if there are any events queued.

int
XEventsQueued(Display * display, int mode)

XFetchBuffer
Gets the data from a given communications cut buffer.

char * :
XFetchBuffer(Display * display, int * nbytes_return, int buffer)

XFetchBytes
Gets the data from cut buffer zero.

char *
XFetchBytes(Display * display, int * nbytes)

XFetchName
Returns the value of the name property of the given window.

Status
XFetchName(Display * display, Window w, char ** window_name_return)

XFillArc
Fills the specified arc according to the components of the graphics context.

void
XFillArc(Display * display, Drawable drawable, GC gc, int x, int y,
unsigned int width, unsigned int height, int anglel, int angle2)

XFillArcs
Fills multiple arcs according to the components of the graphics context.

void

XFillArces(Display * display, Drawable drawable, GC ge, XArc * arcs,
int narcs)

XFillPolygon
Fills the defined polygon using the components of the graphics context.
void

XFillPolygon(Display * display, Drawable drawable, GC gc,
XPoint * points, int npoints, int shape, int mode)

Xlib Summary 72

XFillRectangle
Fills a rectangular area within the specified drawable using the components of
the graphics context.

void
XFillRectangle(Display * display, Drawable drawable, GC gc, int x, int y,
unsigned int width, unsigned int height)

XFillRectangles ‘
Fills multiple rectangular areas within the specified drawable using the com-
ponents of the graphics context.

void
XFillRectangles(Display * display, Drawable drawable, GC gc,
XRectangle * rectangles, int nrectangles)

XFindContext
Gets data associated with the context manager, defined by the given context
ID, that is assigned to the specified window.

void
XFindContext(Display * display, Window w, XContext context,
caddr_t * data)

XFindOnExtensionList
Returns the extension data structure for the extension given.

ExtData *
XFindOnExtensionList(XExtData ** structure, int number)

XFlush
Flushes any queued output requests from buffer to display.

void
XFlush(Display * display)

XForceScreenSaver
Turns the screen saver on or off according to the specified mode (see XActi-
vateScreenSaver).

void
XForceScreenSaver(Display * display, int mode)

XFree
Frees data in memory allocated by Xlib call.

Xlib Summary 73

void
XFree(char * data)

XFreeColormap
Discards the specified colormap and installs the default colormap.

void
XFreeColormap(Display * display, Colormap cmap)

XFreeColors
Frees the colormap cells or planes.

void
XFreeColors(Display * display, Colormap cmap, unsigned long * pixels,
int npixels, unsigned long planes)

XFreeCursor
Disassociates the cursor ID from the specified cursor, destroying the cursor.

void
XFreeCursor(Display * display, Cursor cursor)

XFreeExtensionList
Frees the memory associated with the X extension list.

void .
XFreeExtensionList(char ** list)

XFreeFont

Frees any memory allocated to the specified font information structure and
unloads the font.

void :
XFreeFoni(Display * display, XFontStruct * font_struct)

XFreeFontInfo
Frees the specified Font information structures without unloading the fonts.

void
XFreeFontinfo(char ** names, XFoniStruct * info, int actual_count)

XFreeFontNames
Frees the font name strings in the specified array.

7,

Xlib Summary 74

void
XFreeFontNames(char ** list)

XFreeFontPath
Frees the data and memory allocation associated with the specified array (see

XGetFontPath).

void
XFreeFontPath(char ** list)

XFreeGC
Frees the memory associated with the specified graphics context, removing the
GC from the server and display.

void
XFreeGC(Display * display, GC gc)

XFreeModifiermap
Frees the specified modifier keymap structure and destroys it.

void
XFreeModifiermap(XModifierKeymap * modmap)

XFreePixmap
Disassociates the ID from the specified pixmap.

void ‘
XFreePixmap(Display * display, Pixmap pixmap)

XFreeStringList
Releases the storage used by a string array

void
XFreeStringList(char ** list)

XGCContextFromGC
Gets the resource ID from the specified graphics context structure,

GContext
XGContextFromGC(GC gc)

XGeometry
Calculates and returns the window geometry given the user geometry and de-
fault geometry.

Xlib Summary 75

int

XGeometry(Display * display, int screen, const char * user_geom,
const char * default_geom, unsigned int bwidth, unsigned int fwidsh,
unsigned int fheight, int xadder, int yadder, int * x_return,
int * y_return, int * width_return, int * height_return)

XGetAtomName
Returns the name string for the given atom.

char *
XGetAtomName(Display * display, Atom atom)

XGetClassHint
Returns the class property for the given window.

Status
XGetClassHiny(Display * display, Window w, XClassHint * class_hints)

XGetCommand .
Returns the WM_COMMAND property for the given window.

Status

XGetCommand(Display * display, Window w, char *** argv_return,
int * argc_return)

XGetDefault

Returns a character string containing the user’s preferences (defaults) for the
given program and option.

char *
XGetDefault(Display * display, const char * program, const char * option)

XGetErrorDatabaseText
Looks up and returns error messages from the error database.

void

XGetErrorDatabaseText(Display * display, const char * name,
const char * message, const char * default_string, char * buffer,
int length)

XGetErrorText

Gets a character string that describes the error associated with the given error
code.

Xlib Summary 76

void
XGetErrorText(Display * display, int code, char * buffer, int length)

XGetFontPath
Gets the search path string for the current font.

Char &k
XGetFontPath(Display * display, int * npaths_return)

XGetFontProperty
Gets the value of a font property given its identifying atom.

Bool
XGetFontProperty(XFormsStruct * font_struct, Atom atom,
unsigned long * value_return)

XGetGCValues
Returns the indicated values for the specified GC.

Bool
XGetGCValues(Display * display, GC gc, unsigned long valuemask,
XCGValues * values_return)

XGetGeometry
Gets the geometry of the specified drawableand any information about the root
window.

Status

XGetGeometry(Display * display, Drawable drawable,
Window * root_return, int * x_return, int * y_return,
unsigned int * width_return, unsigned int * height_return,
unsigned int * border_width_return, unsigned int * depth_return)

XGetlconName
Gets the icon name property of the specified window.

Status
XGetlconName(Display * display, Window w, char ** icon_name)

XGetIconSizes
Gets the size property set for the specified window.

void
XGetlconSizes(Display * display, Window w, XIconSize ** size_list,
int * count)

Xlib Summary 77

XGetImage
Returns the contents of the specified rectangle as an X image structure.

XImage

XGetlmage(Display * display, Drawable drawable, int x, int y,
unsigned int width, unsigned int height, unsigned long plane_mask,
int format)

XGetInputFocus
Gets the existing input focus window and the one it would revert to on becom-
ing invisible.
void
XGetlnpuwtFocus(Display * display, Window * focus, int * revert_to_return)

XGetKeyboardControl
Gets a list of the current keyboard control values.

void
XGetKeyboardControl(Display * display, XKeyboardState * values_return)

XGetKeyboardMapping
Obtains the key symbols that are currently mapped to the given keycodes.

KeySym *
XGetKeyboardMapping(Display * display, KeyCode first_keycode,
int keycode_count, int * keysyms_per_keycode_return)

XGetModifierMapping
Obtains the keycodes for the modifier keys (SHIFT, ALT, and so forth).

XModifierKeymap *
XGetModifierMapping(Display * display)

XGetMotionEvents

Returns any pointer motion events for the specified window that occurred be-
tween the given start and stop times.

XTimeCoord *

XGetMotionEvenis(Display * display, Window w, Time start, Time stop,
int * nevents_return)

XGetNormalHints

Returns the size hints property for the specified window in its normal state
(that is, not zoomed or iconified).

Xlib Summary

Status
XGetNormalHints(Display * display, Window w, XSizeHints * hints)

XGetPixel
Returns a single pixel value from an X image.

void
XGetPixel(XImage * ximage, int x, int y)

XGetPointerControl
Obtains the current pointer acceleration parameters.

void
XGetPointerControl(Display * display, int * accel_numerator_return,
- int * accel_denominalor_return, int * threshold_return)

XGetPointerMapping
Obtains the current mappings for the pointer buttons.

int
XGetPointerMapping(Display * display, unsigned char * map_return,
int nmap)

XGetRGBColormaps
Sets or resets a standard colourmap structure for a given window.

Status
XGetRGBColormaps(Display * display, Window w,
_ XStandardColormap ** std_colourmap_return, int *count_return,
S~ Atom property)

XGetScreenSaver
Obtains the current screen saver parameters (see XSetScreenSaver).

void :

XGetScreenSaver(Display * display, int * timeout_return,
int * interval_return, int * prefer_blanking_return,
int * allow_exposures_return)

XGetSelectionOwner
Gets the window ID of the current owner of the specified selection.

Window
XGetSelectionOwner(Display * display, Atom selection)

Xlib Summary 79

XGetSizeHints
Gets the size hints property for the specified window.

Status
XGetSizeHints(Display * display, Window w, XSizeHints * hints,
Atom property)

XGetStandardColormap
Obtains the standard colormap property for the specified window.

Status
XGetStandardColormap(Display * display, Window w,
XStandardColormap * colourmap_return, Atom property)

XGetSubImage
Gets a subimage from a defined area within the given drawable and copies it
to a pre-existing destination X image (see XGetImage, XSubImage).

Ximage *

XGetSublmage(Display * display, Drawable drawable, int x, int y,
unsigned int width, unsigned int height, unsigned long plane_mask,
int format, XImage * dest_image, int dest_x, int dest_y)

XGetTextProperty
Gets the indicated property (of type TEXT) from the indicated window.

Status
XGetTextProperty(Display * display, Window w,
XTextProperty * text_prop_return, Atom property)

XGetTransientForHint
Gets the transient property for the specified window.

Status
XGetTransientForHint(Display * display, Window w,
Window * prop_window_return)

XGetVisuallnfo

Returns a visual information structure that fits the attributes defined by the
specified template.

XVisuallnfo *
XGetVisuallnfo(Display * display, long vinfo_mask,
XVisuallnfo * vinfo_template_return, int * nitems_return)

N

Xlib Summary

XGetWindowAttributes
Gets the current attributes for the specified window.

Status
XGetWindowAttributes(Display * display, Window w,
XWindowAttributes * window_attributes_return)

XGetWindowProperty
Gets the value of the given property if it matches the specified atom type.

int o

XGetWindowProperty(Display * display, Window w, Atom property,
long long_offset, long long_length, Bool delete, Atom req_type,
Atom * actual_type_return, int * actual_format_return,
unsigned long * nitems_return, unsigned long * bytes_after_return,
unsigned char ** prop_return)

XGetWMClientMachine
Returns the WM_CLIENT_COMMAND property for the given window.

Status
XGetWMClientMachine(Display * display, Window w,
XTextProperty * text_prop_return)

XGetWMColormapWindows
Returns the WM_COLORMAP property for the given window.

Status
XGetWMColormapWindows(Display * display, Window w,
Window ** colourmaps_windows_return, int * count_return)

XGetWMHints
Gets the window manager hints property that is set for the given window.

XWMHinss *
XGetWMHints(Display * display, Window w)

XGetWMilconName
Returns the window’s WM_ICON_NAME property.

Status
XGetWMIconName(Display * display, Window w,
XTextProperty * text_prop_return)

Xlib Summary 81

XGetWMName
Returns the window’s WM_NAME property.

Status
XGetWMName(Display * display, Window w,
XTextProperty * text_prop_return)

XGetWMNormalHints
Returns the WM_NORMAL_HINTS property of the given window.

Status
XGetWMNormalHints(Display * display, Window w,
XSizeHints * hints_return, long * supplied_return)

XGetWMSizeHints
Returns the WM_SIZE_HINTS property of the given property on the given
window.

Status
XGetWMSizeHints(Display * display, Window w,
XSizeHints * hints_return, long * supplied_return, Atom property)

XGetWMProtocols

Returns a list of protocols supported by the current window manager on the
given top-level window

Status
XGetWMProtocols(Display * display, Window w,
Atom ** protocols_return, int * count_return)

Status XGetZoomHints
Gets the size hints property for the given zoomed window.

XWMHints
XGetZoomHints(Display * display, Window w, XSizeHints * zhints_return)

XGrabButton
Establishes a passive grab, allowing the calling client to grab control of the
pointer when the given button is pressed.

void

XGrabButton{ Display * display, unsigned int button,
unsigned int modifiers, Window grab_window, Bool owner_events,
unsigned int event_mask, int pointer_mode, int keyboard_mode,
Window confine_to, Cursor cursor)

Xlib Summary 82

XGrabKey
Establishes a passive grab, allowing the calling client to grab control of the
keyboard when the given key is pressed.

void

XGrabKey(Display * display, int keycode, unsigned int modifiers,
Window grab_window, Bool owner_events, int pointer_mode,
int keyboard_mode)

XGrabKeyboard
Makes an active grab of the keyboard.

int
XGrabKeyboard(Display * display, Window grab_window,
Bool owner_events, int pointer_mode, int keyboard_mode, Time time)

XGrabPointer
Makes an active grab of the pointer.

int
XGrabPointer(Display * display, Window grab_window,
Bool owner_events, unsigned int event_mask, int pointer_mode

int keyboard_mode, Window confine_to, Cursor cursor, Time time)

XGrabServer
Grabs the X server for the exclusive use of the calling client and queues re-
quests from other clients.

void
XGrabServer(Display * display)

XIconifyWindow
Sends a request that a top-level window be iconified.

Status
XlconifyWindow(Display * display, Window w, int screen_number)

XIfEvent
Looks for events on the queue that match the given predicate.

void
XIfEvent(Display * display, XEvent * event_return, Bool (* predicate){
Display *, XEvent *, char *), char * args)

Xlib Summary

XInitExtension
Initialises an extension to the X server

XExtCodes *
XinitExtension(Display * display, const char * extension_name)

XInsertModifiermapEntry
Inserts a new entry in the given modifier map.

XModifierKeymap
XinsertModifiermapEntry{ XModifierKeymap * modmap,
KeyCode keysym_entry, int modifier)

XInstallColormap
Sets up the given colormap.

void
XlinstallColormap(Display * display, Colormap cmap)

XInternAtom
Returns the atom ID for the named property, if it exists.

Atom
XinternAtom(Display * display, const char * property_name,
Bool only_if exists)

XIntersectRegion
Calculates and returns the intersection of the two specified regions.

void
XintersectRegion(Region sra, Region srb, Region dr_return)

XKeycodeToKeysym
Returns the corresponding key symbol for the given keycode.

KeySym
XKeycodeToKeysym(Display * display, KeyCode keycode, int index)

XKeysymToKeycode
Returns the corresponding keycode for the given keysym.

KeyCode
XKeysymToKeycode(Display * display, Keysym keysym)

83

Xlib Summary 84

XKeysymToString
Returns a character string version of the given keysym.

char *
XKeysymToString(Keysym keysym _str)

XKillClient
Closes the client that created the given resource, if already terminated, destroys
the remaining resource(s).

void
XKillClieny(Display * display, XID resource)

XListDepths
—~ Returns an array of depths that are supported on the specified screen.

im *
XListDepths(Display * display, int screen_number, int * count_return)

XListExtensions
Lists the current X extensions supported by the server.

char **
XListExtensions(Display * display, int * nextensions_return)

XListFonts
Lists the names of any available fonts that agree with the given pattemn.

char **
N XListFonts(Display * display, const char * pattern, int maxnames,
int * actual_count_return)

XListFontsWithInfo
As XListFonts, but also lists any associated information.

char **
XListFontsWithinfo(Display * display, const char * pattern, int maxnames,
int * count_return, XFontStruct ** info_return)

XListHosts
Lists all the hosts that can access the display (the current control access list).

XHostAddress *
XListHosts(Display * display, int * nhosts_return, Bool * state_return)

Xlib Summary 85

XListInstalledColormaps

Lists all the colormaps that are currently installed for the screen associated
with the given window.

Colormap *
XListinstalledColormaps(Display * display, Window w, int * num_return)

XListPixmapFormats
Lists all of the pixmap formats supported by a given display.

XPixmapF ormatValues *
XListPixmapFormats(Display * display, int * count_return)

XListProperties
Lists the properties that are set for the specified window.

Atom *
XListProperties(Display * display, Window w, int * num_prop_return)

XLoadFont
Loads the named font; if already loaded, returns its font ID.

Font
XLoadFoni(Display * display, const char * name)

XLoadQueryFont

Loads the named font and returns the associated font information (see XLoad-
Font, XQueryFont).

XFontStruct
XLoadQueryFoni(Display * display, const char * name)

XLookupColor

Finds and returns the RGB database value for the colorname and its closest
hardware equivalent.

Status

XLookupColor(Display * display, Colormap cmap, const char * colorname,
XColor * rgb_db_def, XColor * hardware_def)

XLookupKeysym

Returns a keysym from a list associated with the keycode for the given key-
board event.

Xlib Summary 86

Keysym
XLookupKeysym{ XKeyEvent * event, int index)

XLookupString
Looks for and returns the string and keysym associated with the given event.

int
XLookupString(XKeyEvent * event, char * buffer_return, int num_bytes,
KeySym * keysym_return, XComposeStatus * status)

XLowerWindow
Lowers the given window’s position in the stacking order in relation to its
siblings.

void
XLowerWindow(Display * display, Window w)

XMapRaised
Maps the given Window and raises it in the stacking order.

void
XMapRaised(Display * display, Window w)

XMapSubwindows
Maps the subwindows of the given window.

void
XMapSubwindows(Display * display, Window w)

XMapWindow
Maps the given window, allowing it to be displayed.

void
XMapWindow(Display * display, Window w)

‘XMaskEvent
Removes the next event in the input queue that matches the given event mask.

void
XMaskEvens(Display * display, unsigned long event_mask,
XEvent * event_return)

XMatchVisuallnfo
Gets the visual information that matches the given screen, depth and class.

Xlib Summary

void
XMatchVisuallnfo(Display * display, int screen, int depth, int class,
XVisuallnfo * vinfo)

XMaxRequestSize
Returns the maximum size of a single request supported by the X server.

long
XMaxRequestSize(Display * display)

XMoveResizeWindow
Changes the size and position of the given window.

void
XMoveResizeWindow(Display * display, Window w, int x, int y,
unsigned int width, unsigned int height)

XMoveWindow
Changes the position of the given window.

void
XMoveWindow(Display * display, Window w, int x, int y)

XNewModifiermap
Makes and returns a new modifier keymap structure.

XModifierKeymap *
XNewModifiermap(int max_keys_per_mod)

XNextEvent
Gets the next input event in the queue.

void

XNextEvent(Display * display, XEvent * event_return)
 XNoOp - |

Sends a No Operation request to the X server.

void :
XNoOp(Display * display)

XOffsetRegion
Alters the offset of the given region by the specified amount.

87

Xlib Summary 4 88

void
XOffsetRegion(Regionr, int dx, int dy)

XOpenDisplay
Opens the named display and enables the client program to communicate with
the server.

Display *
XOpenDisplay(const char * display name)

XParseColor
Returns the RGB values for the named colour or hexadecimal value.

Status
XParseColor(Display * display, Colormap colormap, const char * spec,
XColor * rgb_db_def return)

XParseGeometry
Calculates window size and position from the standard string.

im .
XParseGeometry(const_char * parsestring, int * x_return, int * y_return,
unsigned int * width_return, unsigned int * height_return)

XPeekEvent

Looks at the event at the top of the input queue and takes a copy of that event
while leaving the queue unchanged; if the queue is empty, it waits until an event
occurs.

void
XPeekEveni(Display * display, XEvent * event_return)

XPeekIfEvent
As XPeekEvent, only does not wait if the queue is empty.

void
XPeeklfEveny(Display * display, XEvent * event,
Bool (* predicate)(Display *, XEvent *, char *), char * arg)

XPending
Returns the number of events pending on the input queue.

int
XPending(Display * display)

Xlib Summary 89

Xpermalloc
Allocates size bytes of ‘permanent’ memory.

char
XPermalloc(unsigned int size)

XPointInRegion
Checks to see if the specified point is within the given region.

int
XPointInRegion(Regionr, int x, int y)

XPolygonRegion
Connects the given points to make a polygon and enables that region to be
referred to again later.

Region
XPolygonRegion(XPoint * points, int n, int fill_rule)

XPutBackEvent
Puts the given event back onto the input queue.

void
XPutBackEvent(Display * display, XEvent * event)

XPutImage
Draws a rectangular image, or a section of a rectangular image, in a window
or pixmap using the graphics context components.

void

XPutlmage(Display * display, Drawable drawable, GC gc,
XImage * image, int src_x, int src_y, int dst_x, int dst_y,
unsigned int width, unsigned int height)

XPutPixel
Changes the pixel value at the specified point in the X image for the given
pixel value.

int
XPutPixel(XImage * ximage, int x, int y, unsigned long pixel)

XQueryBestCursor

Gets the ‘best’ cursor whose size most closely corresponds to the given pa-
rameters.

Xlib Summary 90

Status

XQueryBestCursor(Display * display, Drawable drawable,
unsigned int width, unsigned int height, unsigned int width_return,
unsigned int height_return)

XQueryBestSize
Gets the ‘best’ supported size that most closely agrees with the given param-
eters.

Status

XQueryBestSize(Display * display, int class, Drawable drawable,
unsigned int width, unsigned int height, unsigned int rwidth,
unsigned int rheight)

XQueryBestStipple
Gets the ‘best’ supported stipple shape that most closely agrees with the given

parameters.

Status

XQueryBestStipple(Display * display, Drawable drawable,
unsigned int width, unsigned int height, unsigned int width_return,
unsigned int height_return)

XQueryBestTile
Gets the ‘best’ supported tile that most closely agrees with the given parame-
ters.

Status
XQueryBestTile(Display * display, Drawable drawable, unsigned int width,
- unsigned int height, unsigned int width_return,
unsigned int height_return)

XQueryColor
Finds and returns the RGB values and flags for a given pixel value.

void
XQueryColor(Display * display, Colormap cmap, XColor * colorcell_def)

XQueryColors
Finds and returns an array of RGB values.

void
XQueryColors(Display * display, Colormap cmap, XColor * colorcell_def,
int ncolors)

Xlib Summary 91

XQueryExtension
Finds out if the named extension is available.

Bool

XQueryExtension(Display * display, const char * name,
int * major_opcode_return, int * first_event_return,
int * first_error_return)

XQueryFont
Finds and returns information on the specified font.

XFontStruct *
XQueryFont(Display * display, XID fons_ID)

XQueryKeymap
Returns a bit vector that reflects the current logical state of the keyboard.

void
XQueryKeymap(Display * display, char keys[32])

XQueryPointer
Finds out if the pointer is in the same screen as the specified window.

Bool

XQueryPointer(Display * display, Window w, Window * root_return,
Window * child_return, int * root_x_return, int * root_y_return,
int * win_x_return, int * win_y_return, unsigned int * mask_return)

XQueryTextExtents
Finds and returns measurements for the specified string in the given font.

int
- XQueryTextExtents(Display * display, XID fors_ID, const char * string,
int nchars, int * direction_return, int * ascent_return,
int * descent_return, XCharStruct * overall_return)

XQueryTextExtents16

Finds and returns measurements for the specified 16-bit character string in the
given font.

int
XQueryTextExtents16(Display * display, XID fons_ID,
const XChar2b * string, int nchars, int * direction_return,
int * ascent_return, int * descens_return, XCharStruct * overall_return)

Xlib Summary _ 92

XQueryTree
Finds out about the given window’s hierarchy, returning its root ID, parent ID,
number of children and a pointer to a list of its children.

Status

XQueryTree(Display * display, Window w, Window * root_return,
Window * parent_return, Window ** children_return,
unsigned int * nchildren_return)

XRaiseWindow
Lifts the given window up to the top of the stacking order, while keeping it in
the same x/y position in the display.

void
XRaiseWindow(Display * display, Window w)

XReadBitmapFile
Reads the named file, which contains bitmap information, into a new pixmap
of the specified size.

int

XReadBitmapFile(Display * display, Drawable drawable,
const char * filename, unsigned int * width_return,
unsigned int * height_return, Pixmap * bitmap_return,
int * x_hot_return, int * y_hot_return)

XRebindKeysym
Rebinds the meaning of a keysym for a client; when the corresponding key is
pressed at the same time as the relevant modifier, keysym and string are returned.

void
XRebindKeysym(Display * display, KeySym keysym, KeySym * mod_list,
int mod_count, const unsigned char * string, int num_bytes)

XRecolorCursor
Changes the colour of the given cursor to the specified background and fore-
ground colours.

void
XRecolorCursor(Display * display, Cursor cursor,
XColor * foreground_color, XColor * background_color)

XReconfigureWMWindow
Sends a request that a top-level window be reconfigured.

Xlib Summary 93

Status
XRecoconfigureWindow(Display * display, Window w, int screen_number,
unsigned int value_mask, XWindowChanges * values)

XRectInRegion
Finds out if a given rectangle is within a particular region.

im .
XRectinRegion(Regionr, int x, int y, unsigned int width,
unsigned int height)

XRefreshKeyboardMapping
Updates the calling application’s stored keyboard information to reflect the
current mapping of keycodes to keysyms.

void
XRefreshKeyboardMapping(XMappingEvent * event)

XRemoveFromSaveSet
Removes the subwindows of the given window from the calling client’s save
set.

void
XRemoveFromSaveSet(Display * display, Window w)

XRemoveHost
Removes the specified host from the access control list.

void
XRemoveHost(Display * display, XHostAddress * host)

XRemoveHosts
Removes many hosts from the access control list.

void
XRemoveHosts(Display * display, XHostAddress * hosts, int num_hosis)

XReparentWindow
Reparents a window by inserting another window in the hierarchy, just below
its current parent.

void
XReparersWindow(Display * display, Window win, Window parent, int x,
inty)

Xlib Summary 94

XResetScreenSaver
Resets the screen saver: redisplays the screen if the screen saver is running.

void
XResetScreenSaver(Display * display)

XResizeWindow
Alters the size of the given window according to the specified width and height.

void
XResizeWindow(Display * display, Window w, unsigned int width,
unsigned int height)

XRestackWindow
Alters the stacking order of sibling windows.

void
XRestackWindow(Display * display, Window * windows, int nwindows)

XResourceManagerString
Returns the default string used by the resource manager on the given display.

char *
XResourceManagerString(Display * display)

XrmGetFileDatabase
Creates a resource database with information from the named ﬁle

XrmDatabase
XrmGetFileDatabase(const char * filename)

XrmDestroyDatabase
Destroys a resource database and frees any allocated memory used by that
database.

void
XrmDestroyDatabase(XrmDatabase database)

XrmGetResource
Looks for a resource of the given string name and class within the specified
resource database.

Bool

XrmGetResource(XrmDatabase database, const char * str_name,
const char * str_class, char ** sir_type_return,
XrmValue * value_return)

Xlib Summary 95

XrmGetStringDatabase
Creates a resource database with information from the given character string.

XrmDatabase
XrmGetStringDatabase(const char * data)

Xrmlnitialize
Initialises the resource manager.

void
Xrmlnitialize(void)

XrmMergeDatabases

Merges the contents of two existing databases 10 create one combined resource
database; the specified target database is modified with the contents of the original
source database, whereupon the source is then destroyed.

void XrmMergeDatabases(XrmDatabase source_db,
XrmDatabase * target_db)

XrmParseCommand

Parses the command line arguments and loads options into the specified re-
source database.

void
XrmParseCommand(XrmDatabase * db, XrmOptionList table,
int table_count, const char * name, int * argc, char ** argv)

XrmPutFileDatabase
Places a copy of the given database in the specified file.

void
XrmPutFileDatabase(XrmDatabase database, const char * stored_db)

XrmPutLineResource

Inserts a resource entry in the specified database, where the resource name and
value are given as a single character string.

void
XrmPutLineResource(XrmDatabase * database, const char * line)

XrmPutResource
Inserts information in the specified resource database.

Xlib Summary 96

void
XrmPutResource(XrmDatabase * database, const char * specifier,
const char * type, XrmValue * value)

erPutStringResource
Inserts a resource entry in the specified database, where the resource name and
value are given in separate character strings.

void
XrmPutStringResource(XrmDatabase * database, const char * resource,
const char * value)

XrmQGetResource

Finds and returns a resource in the specified database that matches the fully
qualified name, class and type arguments; it acts like XrmGetResource, except
the arguments here refer to quarks rather than to strings.

Bool

XrmQGetResource(XrmDatabase database, XrmNameList quark_name,
XrmClassList quark_class, XrmRepresentation * quark_type,
XrmValue * value)

XrmQGetSearchList
Searches a list of resource names and classes and returns a list of database
levels ordered by the likelihood of a match.

Bool

XrmQGetSearchList(XrmDatabase database, XrmNamelList names,
XrmClassList classes, XrmSearchList search_list_return,
int list_length_return)

XrmQGetSearchResource
Searches a list of ordered database levels for a specified resource.

Bool

XrmQGetSearchResource(XrmSearchList search_list, XrmName name,
XrmClass class, XrmRepresentation * type_return,
XrmValue * value_return)

XrmQPutResource
Places a resource entry in a database using the quarks argument.

void
XrmQPutResource(XrmDatabase * database, XrmBindingList bindings,
XrmQuarkList quarks, XrmRepresentation type, XrmValue * value)

Xlib Summary

XrmQPutStringResource
Places a string resource value in a database using the quarks argument.

void

XrmQPutStringResource(XrmDatabase * database,
XrmBindingList bindings, XrmQuarkList quarks, const char * value)

XrmQuarkToString
Converts the given quark to its equivalent character string.

XrmString
XrmQuarkToString(XrmQuark quark)

XrmStringToBindingQuarkList
Converts the given string to a binding list and a quark list.

void
XrmStringToBindingQuarkList(const char * string,
XrmBindingList bindings, XrmQuarkList quarks)

XrmStringToQuark
Converts the given string to a quark, binding the quark to that string.

XrmQuark :
XrmStringToQuark(const char * string)

XrmStringToQuarkList
Converts the given string to a quark list.
void
XrmStringToQuarkLisy(const char * string, XrmQuarkList quarks)

XrmUniqueQuark :
Allocates a new quark, one that has no string equivalent.

XrmQuark
XrmUniqueQuark(void)

XRotateBuffers
Cycles the cut buffers by a given number of positions.

void
XRotateBuffers(Display * display, int rotate)

97

N\

Xlib Summary 98

XRotateWindowProperties
Cycles the window properties in the property array of the specified window
according to the given amount and direction.

void
XRotateWindowProperties(Display * display, Window w,
Atom * properties, int num_prop, int npositions)

XSaveContext .
Saves a data value, which corresponds to the given window’s data and data
context type, in the context manager database.
int
XSaveContext(Display * display, Window w, XContext context,
const void * data)

XScreenNumberOfScreen
Returns the screen index of the specified screen

int
XScreenNumberOfScreen(Screen * screen)

XSelectInput
Selects an input event that matches the given mask and then sends it to the
specified window.

void
XSelectinpul(Display * display, Window w, unsigned long event_mask)

XSendEvent
Sends an event to the specified window.

Status
XSendEvent(Display * display, Window w, Bool propagate,
unsigned long event_mask, XEvent * event)

XSetAccessControl
Turns on or off access control checking.

void
XSetAccessControl(Display * display, int mode)

XSetAfterFunction
Sets a user-defined function to be called after all Xlib functions.

Xlib Summary 99

int(*
XSetAfierFunction(Display * display, int(* proc X Display *))X)

XSetArcMode
Sets the arc mode in the given graphics context to specify chords or pie-slices.

void XSetArcMode(Display * display, GC gc, int arc_mode)

XSetBackground

Sets or resets the background pixel value in the given graphics context.
void
XSetBackground(Display * display, GC gc, unsigned long background)

XSetClassHint
Sets or resets the class hint property of the specified window.

void
XSetClassHinl(Display * display, Window w, XClassHint * class_hints)

XSetClipMask
Sets the clip mask component of the given graphics context to the specified
pixmap.
void
XSeitClipMask(Display * display, GC gc, Pixmap clip_mask)

XSetClipOrigin
Sets or resets the clip origin in the given graphics context.

void
XSetClipOrigin{ Display * display, GC gc, int clip_x_orgin,
int clip_y_origin)
XSetClipRectangles
Sets the clip mask component of the given graphics context to a list of rectan-
gles whose position is relative to the specified origin.
void
XSeiClipRectangles(Display * display, GC gc, int clip_x_orgin,
int clip_y_origin, XRectangle * rectangles, int nrects, int ordering)

XSetCloseDownMode

Sets the close down mode for a client; that is, prescribes what will happen to
the dependent resources when a client is closed down.

Xlib Summary 100

void
XSetCloseDownMode(Display * display, int close_mode)

XSetCommand

Sets or resets the specified window’s command property atom according to the
values of the shell command line arguments.

void
XSetCommand(Display * display, Window w, char ** argv, int argc)

XSetDashes
Sets or resets the dash style in the given graphics context.

void
. XSetDashes(Display * display, GC gc, int dash_offset,
: const char * dash_list, int n)

XSetErrorHandler
Sets up a handler to handle non-fatal error events.

int (*
XSetErrorHandler(int(* handler X Display *, XErrorEvent *)))

Sets up the fill rule in the given graphics context to specify how a polygon is
to be filled when there are overlapping areas.

void XSetFillRule(Display * display, GC gc, int fill_rule)

XSetFillStyle
~ Sets the fill style in the given graphics context to be solid, tiled, or stippled.

void
XSetFiliStyle(Display * display, GC gc, int fill_style)

XSetFont
Sets the font in the given graphics context.

void
XSetFony(Display * display, GC gc, Font font)

XSetFontPath

Specifies the search path for font lookup. Directories are searched in the order
in which they are listed. There is only one search path for each X Server.

Xlib Summary 101

void
XSetFontPath(Display * display, char ** directories, int ndirs)

XSetForeground
Sets or resets the foreground pixel value in the given graphics context.

void
XSetForeground(Display * display, GC gc, unsigned long foreground)

XSetFunction
Sets the bitwise logical function in the given graphics context.

void
XSetFunction(Display * display, GC gc, int function)

XSetGraphicsExposures
Sets the graphics exposures in the given graphics context.
void

XSetGraphicsExposures(Display * display, GC gc,
Bool graphics_exposures)

XSetIconName
Sets the name to be displayed in the given wmdow s icon to the specified string.

void
XSetlconName(Display * display, Window w, const char * icon_name)

XSetIconSizes
Sets or resets the size preferences for icons associated with given window.

void
XSetlconSize(Display * display, Window w, XIconSize * size_list, int count)

XSetInputFocus
Sets or resets the keyboard focus window.

void

XSetInputFocus(Display * display, Window focus, int revert_to, Time time)
XSetIOErrorHandler
Sets up a handler to handle fatal I/O error events.

int (*

XSetlOErrorHandler(in(* handler) Display *)))

Xlib Summary 102

Sets up the line drawing attributes for the given graphics context to prescribe
the line width and style to be used.

void
XSetLineAttributes(Display * display, GC gc, unsigned int line_widih,
int line_style, int cap_style, int join_style)

XSetModifierMapping
Sets up which keycodes are to be used as modifiers (ALT, SHIFT, and so on).

void
XSetModifierMapping(Display * display, XModifierKeymap * mod_map)

XSetNormalHints
Sets or resets the size hints property of the given window in normal state (that
is, not zoomed or iconified).

void
XSetNormalHints(Display * display, Window w, XSizeHints * hints)

XSetPlaneMask
Sets the plane mask in the given graphics context.

void
XSetPlaneMask(Display * display, GC gc, unsigned long plane_mask)

XSetPointerMapping
Sets or resets the pointer button mapping.

int
XSetPointerMapping(Display * display, const unsigned char * map,
int nmap)

XSetRGBColormaps
Sets or resets a standard colourmap structure for a given window.

void
XSetRGBColormaps(Display * display, Window w,
XStandardColormap * std_colourmap, int count, Atom property)

XSetRegion
Sets the clip mask in the given graphics context to the specified region.

void
XSetRegion(Display * display, GC gc, Regionr)

Xlib Summary 103

XSetScreenSaver
Sets up parameters that specify the action of the screen saver.

void
XSetScreenSaver(Display * display, int timeout, int interval,
int prefer_blanking, int-allow_exposures)

XSetSelectionOwner
Specifies the owner of the selection property atom and the Time when a grab
should happen.

void
XSetSelectionOwner(Display * display, Atom selection, Window owner,
Time time)

XSetSizeHints
Sets or resets the size hints property for the given window.

void
XSetSizeHints(Display * display, Window w, XSizeHints * hints,
Atom property)

XSetStandardColormap
Sets or resets the standard colormap property associated with the given win-
dow.

void
XSetStandardColormap(Display * display, Window w,
XStandardColormap * cmap, Atom property)

XSetStandardProperties
Sets or resets the essential properties for the given window (that is, the mini-
mum set of properties required).

void
XSetStandardProperties(Display * display, Window w,
const char * window_name, const char * icon_name,
Pixmap * icon_pixmap, char ** argv, int argc, XSizeHints * hints)

XSetState
Sets or resets the foreground and background pixel values, the logical function
and the plane mask in the given graphics context.

Xlib Summary 104

void s : ‘ .
XSetState(Display * display, GC gc, unsigned long foreground,
unsigned long background, int function, unsigned long plane_mask)

XSetStipple
Specifies the stipple pixmap for the given graphics context.

void
XSetStipple(Display * display, GC gc, Pixmap * stipple)

XSetSubwindowMode
Sets or resets the subwindow mode for the given graphics context.

void .
XSetSubwindowMode(Display * display, GC gc, int subwindow_mode)

XSetTextProperty
Sets a specified property of type TEXT on the specified window
void
XSetTextProperty(Display * display, Window w, XTextProperty * text_prop,
Atom property)

XSetTile
Specifies the tile pixmap for the given graphics context.

void
XSetTile(Display * display, GC gc, Pixmap * tile)

XSetTransientForHint
Sets or resets the XA_WM_TRANSIENT_FOR property for the given win-
dow.

void
XSetTransientForHini(Display * display, GC gc, Window prop_window)

XSetTSOrigin
Sets or resets the origin of the tile or stipple fill pattern in the given graphics
context.

void
XSetTSOrigin(Display * display, GC gc, int1s_x_orgin, intts_y_origin)

XSetWindowBackground
Sets or resets the background pixel value that is to be used for background
filling in the given window.

X1ib Summary 105

void
XSetWindowBackground(Display * display, Window w,
unsigned long background_pixel)

XSetWindowBackgroundPixmap
Sets or resets the background tile pixmap for the given window.

void

XSetWindowBackgroundPixmap(Display * display, Window w,
Pixmap background_tile)

XSetWindowBorder

Sets or resets the given window’s border pixel value and redraws the border
accordingly.

void
XSetWindowBorder(Display * display, Window w,
unsigned long border pixel)

XSetWindowBorderPixmap

Sets or resets the given window’s border tile pixmap and redraws the border
accordingly.

void
XSetWindowBorderPixmap(Display * display, Window w,
Pixmap border _tile)

XSetWindowBorderWidth
Sets or resets the border width of the given window.
void
XSetWindowBorderWidth(Display * display, Window w,
unsigned int width)
XSetWindowColormap
Sets or resets the colormap for the specified window.

void
XSetWindowColormap(Display * display, Window w, Colormap cmap)

XsetWMClientMachine
Sets or resets the WM_CLIENT_COMMAND property for the given window.

void
XSetWMClientMachine(Display * display, Window w,
XTextProperty * text_prop)

Xlib Summary 106

XSetWMColormapWindows
Sets or resets the WM_COLORMAP_WINDOWS property for the specified
window.

void
XSetWMColormapWindows(Display * display, Window w,
Window * colourmap_windows, int count)

XSetWMHints
Sets or resets the window manager hints property for the given window.

void
XSetWMHints(Display * display, Window w, X\WMH ints * wmhints)

—_ XSetWMIconName
Sets the WM_ICON_NAME property for the given window
void
XSetWMIconName(Display * display, Window w,
XTextProperty * text_prop)
XSetWMName
Sets the WM_NAME property for the given window
void
XSetWMName(Display * display, Window w, XTextProperty * text_prop)
XSetWMNormalHints
Sets or resets the WM_NORMAL_HINTS property of the given window.
- void

XSetWMNormalHints(Display * display, Window w, XSizeHints * hints)

XSetWMProperties
Sets or resets the standard properties required by window managers for the
given window

void

XSetWMProperties(Display * display, Window w,
XTextProperty * window_name, X1extProperty * icon_name,
char ** argy, int argc, XSizeHints * normal_hints,
XWMHints * wm_hints, XClassHint * class_hint)

XSetWMProtocols
Sets the WM_PROTOCOLS property on the given window

Xlib Summary 107

void
XSetWMProtocols(Display * display, Window w, Atom * property,
int count)

XSetWMSizeHints
Sets or resets the WM_SIZE_HINTS property for the given property of the
given window.

void
XSetWMSizeHints(Display * display, Window w, XWMSizeHints * hints,
Atom property)

XSetZoomHints
Sets or resets the size hints property for the given window in zoomed state.

void
XSetZoomHints(Display * display, Window w, XSizeHints * zhints)

XShrinkRegion
Alters the dimensions of the given region by a specified amount, using positive
values to expand the region or negative values to contract it.

void
XShrinkRegion(Region r, int dx, int dy)

XStringListToTextProperty :
Converts a list of strings into a TextProperty structure.

Status
XStringListToTextProperty(char ** list, int count,
XTextProperty * text_prop_return)

XStoreBuffer
Stores information in one of the cut buffers.

void
XStoreBuffer(Display * display, const char * bytes, int nbytes, int buffer)

XStoreBytes
Stores the given information in cut buffer 0.

void
XStoreBytes(Display * display, const char * bytes, int nbytes)

Xlib Summary 108

XStoreColor ‘
Sets or resets the value of the specified colorcell in the given colormap to the
nearest equivalent hardware RGB values.

void
XStoreColor(Display * display, Colormap cmap, XColor * colorcell_def)

XStoreColors
Sets or resets the value of each of the colorcells in the given colormap to the
~ nearest equivalent hardware RGB values.

void
XStoreColors(Display * display, Colormap cmap, XColor * colorcell_def,
int ncolors)

XStoreName
- Sets the specified string as the name of the given window.

void
XStoreName(Display * display, Window w, char * window_name)

XStoreNamedColor
Looks for the colour name string and stores its value in the specified colormap
cell.

void
XStoreNamedColor(Display * display, Colormap cmap,
const char * colorname, unsigned long pixel, int flags)

XStringToKeysym
Converts the given string to its corresponding keysym.

KeySym
XStringToKeysym(const char * string)

XSubImage
Creates a subimage within the given X image according to the specified di-
mensions.

XImage
XSublmage(XImage * ximage, int x, int y, unsigned int subimage_width,
unsigned int subimage_height)

XSubtractRegion
Subtracts one region from another and returns the difference.

Xlib Summary 109

void
XSubtractRegion(Region sra, Region srb, Region dr_return)

XSync
Flushes the output buffer and waits for all outstanding events and errors to be
processed by the server.

void
XSync(Display * display, int discard)

XSynchronize

Turns synchronisation on or off for the purposes of debugging and returns the
previous After function.

iny *
XSynchronize(Display * display, Bool onoff))

Returns the measurements for the given string and font.
XTextExtents

Returns the measurements for the given 8-bit character string in the named
font,

void

XTexiExtents(XFontStruct * fons_struct, const_char * string, int nchars,
int * direction_return, int * ascent_return, int * descent_return,
XCharStruct * overall_return)

XTextExtents16

Returns the measurements for the given 16-bit character string in the named
font.

void

XTexiExtents16(XFontStruct * font_struct, const XChar2b * string,
int nchars, int * direction_return, int * ascens_return,
int * descent_return, XCharStruct * overall_return)

XTextPropertyToStringList
Converts an XTextProperty structure into an array of strings

Status
XTextPropriyToStringList(XTextProperty * text_prop, char *** list_return,
int * couns_return)

Xlib Summary 110

XTextWidth
Returns the width, in pixels, of an 8-bit character string of a given length and
font.

int
XTexaWidth(XFontStruct * font_struct, const char * string, int count)

XTextWidth16
Returns the width, in pixels, of a 16-bit character string of a given length and
font.

int -
XTextWidth16(XFontStruct * font_struct, const XChar2b * string,
int count)

XTranslateCoordinates '
Translates the coordinates in the source window to those in the destination
window, if possible.

Bool

XTranslateCoordinates(Display * display, Window src_w, Window dest_w,
int src_x, int src_y, int dest_x_return, int dest_y_return,
Window * child_return)

XUndefineCursor
Removes an association, defined previously with XDefineCursor, between a
cursor and the given window.

void
XUndefinedCursor(Display * display, Window w)

XUngrabButton
Releases an existing passive grab made by the callmg chent of a mouse button
or key combination on the glven window.

void
XUngrabButton(Display * display, unsigned int button,
unsigned int modifiers, Window w)

XUngrabKey
Releases a passive grab made by the calling client of the specified key or key
combination on the given window.

Xlib Summary 111

void
XUngrabKey(Display * display, unsigned int keycode,
unsigned int modifiers, Window w)

XUngrabKeyboard
Releases an active grab of the keyboard made by the calling client.

void
XUngrabKeyboard(Display * display, Time time)

XUngrabPointer
Releases an active grab of the pointer made by the calling client.

void
XUngrabPointer(Display * display, Time time)

XUngrabServer
Releases the server from a grab.

void
XUngrabServer(Display * display)

XUninstallColormap

Uninstalls the specified colormap and, if necessary, installs the default map
instead. »

void
XUninstaliColormap(Display * display, Colormap cmap)

XUnionRectWithRegion

Unions the given rectangle and source region to make the resulting destination
region.

void
XUnionRectWithRegion(XRectangle * rectangle, Region src_region,
Region dest_region_return)

XUnionRegion
- Unions the two specified regions and returns the resulting region.

void
XUnionRegion(Region sra, Region srb, Region dr_return)

XUniqueContext
Creates a new context resource ID.

Xlib Summary 112

XContext
XUniqueContext(void)

XUnloadFont
Unloads the given font.

void
XUnloadFoni(Display * display, Font font)

XUnmapSubwindows
Unmaps all the mapped children of the given window in stacking order, ending
with the top sibling.

void
XUnmapSubwindows(Display * display, Window w)

XUnmapWindow
Unmaps the given mapped, removing it and its children from the screen while
it remains unmapped.

void
XUrmapWindow(Display * display, Window w)

XVisuallDFromVisual
Returns the VisuallD of the given visual.

 void
XVisualIDFromVisual(Visual * visual)

XWarpPointer
Moves the pointer ‘instantaneously’ from one defined point on the screen to
another one.

void

XWarpPointer(Display * display, Window src_w, Window dest_w, int src_x,
int src_y, unsigned int src_width, unsinged int src_height, int dest_x,
int dest_y)

XWithdrawWindow
Unmaps a top-level window.

Status
XWithdrawWindow(Display * display, Window w, int screen_number)

Xlib Summary 113

XWindowEvent

Looks in the input event queue of the given window for the next event that
matches the event mask, and then removes that event.

void
XWindowEvent(Display * display, Window w, long event_mask,
XEvent * event_return)

XWMGeometry
Obtains the geomerty information for a given window.

int
XWMGeometry(Display * display, int screen_number,
const char * user_geom, const char * default_geom,
unsigned int_border_width, XSizeHints * size_hints, int * x_return,
int *y return, int * width_return, int * height_window,
int * gravity return)

XWriteBitmapFile
Writes the given bitmap to the named file.

void
XWriteBitmapFile(Display * display, const char * filename, Pixmap bitmap,
unsigned int width, unsigned int height, int x_hot, int'y_hot)

XXorRegion

Does an exclusive OR operation on the two source regions (by adding the total
area of the two regions together and then removing the area where they overlap)
to produce the resulting destination region.

void
XXorRegion(Region sra, Region srb, Region dr_return)

Appendix A

Bibliography

A full machine-readable version of the X reference manual can be obtained with
the X System V11.4 release tape from The X Consortium at MIT, Cambridge,
Mass., USA. Although this is ‘free’, it will take your printer, if you have one,
many hours to print out. This is the definitive version of the documentation and
forms the basis of all other X manuals.

A set of X manuals can be obtained from IXI Limited of Cambridge, England,
who specialise in X for Unix-based workstations. You can contact IXI on (0223)
462131 (or the international dialing code + 44 223 462131 if you are telephoning
- from outside the UK).

For a good coverage of all the features of X, look out for the series known as
The Definitive Guides to the X Window System by O’Reilly & Associates, Inc. This
is an American publication and so it may not be readily available in all European
bookshops.

Volume 0, X Protocol Reference Manual for X Version 11, Edited by Adrian
Nye, ISBN 0-937175-40-4

Volume 1, Xlib Programming Manual, Adrian Nye, ISBN 0-937175-26-9

Volume 2, Xlib Reference Manual, Edited by Adrian Nye, ISBN 0-937175-
277

Volume 3, X Window System User’s Guide, Tim O’Reilly et. al., ISBN 0-
937175-29-3

Volume 4, X Toolkit Intrinsics Programming Manual, Adrian Nye and Tim
O’Reilly, ISBN 0-937175-56-0

114

Bibliography 115

Volume 5, X Toolkit Intrinsics Reference Manual, Edired by Tim O’Reilly,
ISBN 0-937175-33-1

For a good tutorial introduction to X, look out for the Introduction to the X
Window System by Oliver Jones, published by Prentice Hall (ISBN 0-13-499997-
5).

Reference material about the C languge interface library (Xlib) and the X pro-
tocol specification is also provided by The X Window System, C Library and Proto-
col Reference, by R.W Sheifler et. al., published by Digital Press (ISBN 1-55558-
012-2). .

A good tutorial guide for X programmers is given by X-Window Applica-
tions Programming, by E.F Johnson and Kevin Johnson, published by MIS Press
(ISBN 1-55828-016-2).

A tutorial and reference manual on the X toolkit is given by The X Window
system Programming and Applications with Xt, by Douglas Young, published by
Prentice Hall. (ISBN 0-13-497074-8).

The following is a more complete list, broken down by subject.

A.1 Motif

Berlage, Thomas, OSF/Motif: Concepts and Programming, Addison-Wesley, UK,
1991. ISBN 0-201-55792-4.

Johnson, Eric F. and Kevin Reichard, Power Programming Motif, MIS: Press,
Portland, OR, 1991. ISBN 1-55828-059-6. Book with disk, ISBN 1-55828-061-8.

Nye, Adrian and Tim O’Reilly, X Toolkit Intrinsics Programming Manual,
Motif Edition, O’Reilly and Assoc., Sebastopol, CA, 1991. ISBN 0-937175-62-5.

Open Software Foundation, Application Environment Specification (AES): User
Environment Volume, Rev. B, Prentice Hall, Englewood Cliffs, NJ, 1991. ISBN
0-13-043530-9.

Open Software Foundation, OSF/Motif Programmer’s Reference, Revision 1.1,
Prentice Hall, Englewood Cliffs, NJ, 1991. ISBN 0-13-640681-5.

Open Software Foundation, OSF/Motif Style Guide, Revision 1.1, Prentice
Hall, Englewood Cliffs, NJ, 1991. ISBN 0-13-640616-5.

Open Software Foundation, OSF/Motif Programmer’s Guide, Revision 1.1,
Prentice Hall, Englewood Cliffs, NJ, 1991, ISBN 0-13-640673-4.

Young, Douglas A., The X Window System: Programming and Applications

with Xt, OSF/Motif Edition, Prentice Hall, Englewood Cliffs, NJ, 1990. ISBN
0-13-497074-8.

Bibliography 116
A.2 X Toolkit

Asente, Paul J. and Ralph R. Swick, X Window System Toolkit, Digital Press, Bed-
ford, MA, 1990 (distributed by Prentice Hall). ISBN (Digital Press) 1-55558-051-
3, (Prentice Hall) 0-13-972191-6.

Keller, Brian J., A Practical Guide to X Window Programming, CRC Press,
1990. ISBN 0-8493-7406-5.

McCormack, Joel, Paul Asente and Ralph R. Swick, X Toolkit Intrinsics: C
Language Interface, X11 Release 4 version, 1989, MIT X Consortium. This doc-
ument comes with the X Window System Release 4, from MIT.

Nye, Adrian and Tim O’Reilly, X Toolkit Intrinsics Programming Manual,
O’Reilly and Assoc., Sebastopol, CA, 1990. ISBN 0-937175-33-1.

O’Reilly, Tim (editor), X Toolkit Intrinsics Reference Manual, O’Reilly and
Assoc., Sebastopol, CA, 1990. ISBN 0-937175-35-8.

Smith, Jerry D., Object-Oriented Programming with the X Window System
Toolkits, John Wiley, New York, NY, 1991. ISBN 0-471-53259-2.

A.3 X Library

Barkakati, Nabajyoti, X Window System Programming, SAMS, 1991. ISBN 0-
672-22750-9. |

Johnson, Eric F. and Kevin Reichard, X Window Applications Programming,
MIS: Press, Portland, OR, 1989. ISBN 1-55828-016-2. Book with disk ISBN
1-55828-035-9.

Johnson, Eric F. and Kevin Reichard, Advanced X Window Applications Pro-
gramming, MIS: Press, Portland, OR, 1990. ISBN 1-55828-029-4. Book with
disk ISBN 1-55828-054-5.

Jones, Oliver, Introduction to the X Window System, Prentice Hall, Englewood
Cliffs, NJ, 1989. ISBN 0-13-499997-5.

Nye, Adrian, XIib Programming Manual, vol. 1, 2nd ed., O’Reilly and Assoc.,
Sebastopol, CA, 1990. ISBN 0-937175-11-0.

Nye, Adrian (editor), Xlib Reference Manual, vol. 2, 2nd ed., O’'Reilly and
Assoc., Sebastopol, CA, 1990. ISBN 0-937175-12-9.

Scheifler, Robert W. and James Gettys, with Jim Flowers, Ron Newman and
David Rosenthal, 2nd ed., X Window System: The Complete Reference to Xlib,
X Protocol, ICCCM, XLFD, Digital Press, Bedford, MA, 1990. ISBN (Digital
Press) 1-5558-050-5, (Prentice Hall) 0-13-972050-2.

Bibliography 117
A.4 Open Look

AT&T, UNIX System V Release 4 Programmer’s Guide: OPEN LOOK Graphical
User Interface, Prentice Hall, Englewood Cliffs, NJ, 1989. ISBN 0-13-931908-5.

Heller, Dan, XView Programming Manual, O’Reilly and Assoc., Sebastopol,
CA, 1990. ISBN 0-937175-52-8.

Miller, John David, An OPEN LOOK at UNIX: A Developer’s Guide to X,
M&T Books, 1990. ISBN 1-55-851057-5.

Sun Microsystems, OPEN LOOK : Graphical User Interface Fucntional Spec-
ification, Addison-Wesley, Reading, MA, 1990. ISBN 0-201-52365-5.

Sun Microsystems, OPEN LOOK : Graphical User Interface Application Style
Guidelines, Addison-Wesley, Reading, MA, 1990. ISBN 0-201-52364-7.

A.5 Quick Reference Guides

Mikes, Steven, X Window System Technical Reference, Addison-Wesley, Reading,
MA, 1990. ISBN 0-201-52370-1.

O’Reilly and Assoc., The X Window System in a Nutshell, O’Reilly and Asso-
ciates, 1990. ISBN 0-937175-24-2.

Rost, Randi J., X and Motif Quick Reference Guide, Digital Press, Bedford,
MA, 1990 (distributed by Prentice Hall). ISBN (Digital Press) 1-55558-052-1,
(Prentice Hall) 0-13-972209-2.

Young, Douglas A., OSF/Motif Reference Guide, Prentice Hall, Englewood
Cliffs, NJ, 1990. ISBN 0-13-642786-3.

A.6 X User Guides

Mansfield, Niall, The X Window System: A User's Guide, Addison-Wesley, Ams-
terdam, 1989. ISBN 0-201-51341-2,

Quiercia, Valerie and Tim O’Reilly, X Window System User’s Guide, O’Reilly
and Assoc., 1990. ISBN 0-937175-14-5.

Xdefaults, 23
_operate, 33

Accelerate, 33
AccelerateCode, 33
AllocColor, 58
AllPlanes, 49

ANSI, 31, 32

appres, 3

aquarium, 3

Athena Widget, 1
atobm, 3
auto_repeat_delay, 16
auto_repeat_filter, 16
auto_repeat_interval, 16

bdftosnf, 3

bitmap, 3
BitmapBitOrder, 49
BitmapPad, 50
BitmapUnit, 50
BlackPixel, 50
BlackPixelOfScreen, 50
bmtoa, 3

cc, 30
CellsOfScreen, 50
Clients, 3, 14

Index

118

clover, 3

Command not found, 25
Compiling, 30
Configuration, 15, 21
ConnectionNumber, 10, 50
ConnectionStream(), 10
CTRL-M, 26

DefaultColormap, 50
DefaultColormapOfScreen, 51
DefaultDepth, 51 '
DefaultDepthOfScreen, 51
DefaultGC, 51
DefaultGCOfScreen, 51
DefaultRootWindow, 51
DefaultScreen, 52
DefaultScreenOfDisplay, 52
DefaultVisual, 52
DefaultVisualOfScreen, 52
DevClose, 28

Device Drivers, §, 6, 10, 15, 19, 26
device.a, device.o, 6
DevOpen, 28

DevOperate, 29

Differences, 6

DISPLAY, 24

DisplayCells, 52
DisplayHeightMM, 52

INDEX

DisplayOfScreen, 52
DisplayPlanes, 53
DisplayString, 53
DisplayWidth, 53
DisplayWidthMM, 53
DoesBackingStore, 53
DoesSaveUnders, 53
100dpi, 13

75dpi, 13
DrawImageString, 68

Environment Variables, 16, 18, 24
EventMaskOfScreen, 53

exec, 32

Exec Format Error, 25
extensions, 1

FILESEARCHPATH, 25
fixed, 17

Fonts, 5,9, 13

Fork, 32, 33

fork, 32

frac, 3

gbench, 3
generic.c, 6

grab.c, 4, 34

hardware.h, 6
hardware_device, 16
harness, hamess.c, 6
Header Files, 4, 14
Header files, 6
HeightMMOfScreen, 54
HeightOfScreen, 54
Helios
1.2.1,1,2
Assembler, 2, 27, 30
Assembler Macro Pre-Processor,
2,27
C Compiler, 2, 8, 27, 29-31, 33

119
Compiler Driver, 2, 6, 27, 30,
31
Encyclopaedia, 30, 33
Ethernet Package, 2
helios.cf, 6
hello.c, 4

HOME, 16, 18, 24
host.con, 12, 17-19
hroot, 3

ico, 3
ImageByteOrder, 54
imake, 6
Imake.rules, 6
Imake.tmpl, 6
initrc.x, 4
Installation, 11, 13
IO Server, 17
ioevents.h, 4

keyboard.c, 6
keyboard.d, 5
keyboard.no, 5, 19
keyboard.yes, 5, 19
keyboard_device, 16

LANG, 24
LastKnownRequestProcessed, 54
Libraries, §, 6, 14
Library.Tmpl, 6
libX11.a,5,6
libXaw.a, 5
libXdmcp.a, 5
libXext.a, 5
libXmu.a, 5
libXta, 5

listres, 3

loadpac, 11

MaxCmapsOfScreen, 54
maze, 3

INDEX

md.h, 6

mdkeyboard.h, 6
mdmouse.h, 6
mdautils.h, 6
MinCmapsOfScreen, 54
misc, 13

Missing, 1

MITMISC, 1

mkfontdir, 3, 7, 13
Motif, 1

mouse.c, 6

mouse.d, 5
mouse_device, 16
mouse_divisor, 18
mouse_resolution, 18
MULTI_BUFFERING, 1
muncher, 3

new
ATWJ , 5
G300.c, 6
G300.d, 5
GDS.4,5
splash.d, 5
Xrc, 4,9, 15, 16, 18
Xrc.ATW, 4
Xrc.GDS, 4
Paratech.d, 5
NextRequest, 54

oclock, 3
OpenLook, 1

path, 21

perilogo, 3

plaid, 3
PlanesOfScreen, S5
Problems, 25
processor, 20
progname, 20
Programming, 30

Project.tmpl, 6
ProtocolRevision, 55
Protocol Version, 55
Provided, 3

psycho, 3

puzzle, 3

QLength, 55

2,13

Read(), 10

Requirements, 2

reset.c, 6

Resource Files, 3, 4, 15, 23
Resource files, 7

resource files, 4
RESOURCE_NAME, 24
rgb.dir, 5

rgb‘pago 5

rgb.txt, 5

RootWindow, 55
RootWindowOfScreen, 55
rose, 3

screen.c screen.h, 6
ScreenCount, 55
ScreenOfDisplay, 56
Server.tmpl, 6
Server_windows, 18, 19
ServerVendor, 56
setkeys, 3

setkeys.c,4

SHAPE, 1

showcols, 3

showkeys, 3

showsnf, 3

site.def, 6

Stack Size, 31

Starting X, 12, 19
startx, 3

Status XGetZoomHints, 81

120

INDEX 121

The X Window System Protocol, Ver- XAddPixel, 57
sion 11, i XAddToExtensionList, 57
Toolkits, 9 XAddToSaveSet, 57
tpseudo.dbk, 5 XAllocClassHint, 58
ttyserv.bak, 5 XAllocColor, 58
twm, 3, 14 XAllocColorCells, 58
twmrc,3 XAllocColorPlanes, 58
XAllocIconSize, 58
unix.lib, 5 XAllocNamedColor, 58
USER, 24 XAllocSizeHints, 59
uwm, 3 XAllocStandardColormap, 59
uwmrc, 3 XAllocWMHints, 59
XAllowEvents, 59
VendorRelease, 56 XAutoRepeatOff, 59
vfork, 32 XAutoRepeatOn, 59
VfOl'kO, 32 XBell, 59
. XChangeA ctivePointerGrab, 59
mxx:}bsfgcreen 56 XChangeGC, 60
WidthMMOf£Screen ? 56 XChangeKeyboardControl, 60
WidthOfScreen. 56 i XChangeKeyboardMapping, 60
window, 5 ’))ggmgeg)imerCoggo 1,60
Y geProperty,
‘VVV(Egl . XChangeSaveSet, 60
’ XChangeWindowAttributes, 61

X,5,6 XCheckIfEvent, 61

Sel’Vel’, 3’ 15’ 17 XCheCkMMkEvent, 61

Server haﬂgs up, 25 XCheCkTypedEVCnt, 61

toolkit, 1 X(Clheck’lypedWindowEvent,m

. XCheckWindowEvent, 61
ofas 32223 XCirculateSubwindows, 62
XEITOI'DB, 5 XCirculateSUbWindOWSDown, 62
Xhelios, 3 §g;rculateSug;vindowsUp, 62
. earArea,
ao XClearWindov, 62
ipBox,

iﬁiﬁ;ﬁfé 3 XCloseDisplay, 62

XActivateScreenSaver, 57, 72 XConfigureWindow, 63

X AddExtCHSion, 57 XCOmlertSelectlon, 63

XAddHost, 57 XCopyArea, 63

XAddHosts, 57 XCopyColormapAndFree, 63

INDEX

122

XCopyGC, 63 XDrawText16, 70
XCopyPlane, 63 XEHeadOfExtensionList, 70
XCreateBitmapFromData, 64 XEmptyRegion, 70
XCreateColormap, 64 XEnableAccessControl, 70
XCreateFontCursor, 64, 65 XEqualRegion, 70
XCreateGC, 64 XEventsQueued, 71
XCreateGlyphCursor, 64 XFetchBuffer, 71
XCreateImage, 64 XFetchBytes, 71
XCreatePixmap, 65 XFetchName, 71
XCreatePixmapCursor, 65 XFillArc, 71
XCreatePixmapFromBitmapData, XFillArcs, 71

65 XFillPolygon, 71
XCreateRegion, 65 XFillRectangle, 72
XCreateSimpleWindow, 65 XFillRectangles, 72
XCreateWindow, 66 XFindContext, 72
XDefineCursor, 66, 110 XFindOnExtensionList, 72
XDeleteContext, 66 XFlush, 72
XDeleteModifiermapEntry, 66 XForceScreenSaver, 72
XDeleteProperty, 66 - XFree, 72
XDestroyImage, 66 XFreeColormap, 73
XDestroyRegion, 67 XFreeColors, 73
XDestroySubwindows, 67 XFreeCursor, 73
XDestroy Window, 67 XFreeExtensionList, 73
XDisableAccessControl, 67 XFrecFont, 73
XDisplayMotionBufferSize, 67 XFreeFontlnfo, 73
XDisplayName, 67 XFreeFontNames, 73
XDrawArc, 67, 68 XFreeFontPath, 74
XDrawArcs, 68 XFreeGC, 74
XDrawImageString, 68 XFreeModifiermap, 74
XDrawImageString16, 68 XFreePixmap, 74
XDrawLine, 68 XFreeStringList, 74
XDrawLines, 68, 69 XGCContextFromGC, 74
XDrawPoint, 68 - XGeometry, 74
XDrawPoints, 69 XGetAtomName, 75
XDrawRectangle, 69 XGetClassHint, 75
XDrawRectangles, 69 XGetCommand, 75
XDrawSegments, 69 XGetDefault, 75
XDrawsString, 69 XGetEmrorDatabaseText, 75
XDrawString16, 69 XGetErrorText, 75

XDrawText, 70

XGetFontPath, 74, 76

INDEX

123

XGetFontProperty, 76
XGetGCValues, 76
XGetGeometry, 76
XGetlconName, 76
XGetlconSizes, 76
XGetImage, 77, 79
XGetnputFocus, 77
XGetKeyboardControl, 77
XGetKeyboardMapping, 77
XGetModifierMapping, 77
XGetMotionEvents, 77
XGetNormalHints, 77
XGetPixel, 78
XGetPointerControl, 78
XGetPointerMapping, 78
XGetRGBColormaps, 78
XGetScreenSaver, 78
XGetSelectionOwner, 78
XGetSizeHints, 79
XGetStandardColormap, 79
XGetSubImage, 79
XGetTextProperty, 79
XGetTransientForHint, 79
XGetVisuallnfo, 79
XGetWindowAttributes, 80
XGetWindowProperty, 80
XGetWMClientMachine, 80
XGetWMColormapWindows, 80
XGetWMHints, 80
XGetWMIconName, 80
XGetWMName, 81
XGetWMNormalHints, 81
XGetWMProtocols, 81
XGetWMSizeHints, 81
XGrabButton, 81
XGrabKey, 82
XGrabKeyboard, 82
XGrabPointer, 82
XGrabServer, 82
XIconifyWindow, 82

XIfEvent, 82
XInitExtension, 83
XlInsertModifiermapEntry, 83
XInstallColormap, 83
XIntemmAtom, 83
XIntersectRegion, 83
XKeycodeToKeysym, 83
XKeysymToKeycode, 83
XKeysymToString, 84
XKillClient, 84
XListDepths, 84
XListExtensions, 84
XListFonts, 84
XListFontsWithInfo, 84
XListHosts, 84
XListInstalledColormaps, 85
XListPixmapFormats, 85
XListProperties, 85
XLoadFont, 85
XLoadQueryFont, 85
XLookupColor, 85
XLookupKeysym, 85
XLookupString, 86
XLowerWindow, 86
XMapRaised, 86
XMapSubwindows, 86
XMapWindow, 86
XMaskEvent, 86
XMatchVisuallnfo, 86
XMaxRequestSize, 87
XMoveResizeWindow, 87
XMoveWindow, 87
XNewModifiermap, 87
XNextEvent, 87

XNoOp, 87
XOffsetRegion, 87
XOpenDisplay, 67, 88
XParseColor, 88
XParseGeometry, 88
XPeekEvent, 88

INDEX

124

XPeekIfEvent, 88 Xrmlnitialize, 95
XPending, 88 XrmMergeDatabases, 95
Xpermalloc, 89 XrmParseCommand, 95
XPointInRegion, 89 XrmPutFileDatabase, 95
XPolygonRegion, 65, 89 XrmPutLineResource, 95
XPutBackEvent, 89 XrmPutResource, 95
XPutImage, 89 XrmPutStringResource, 96
XPutPixel, 89 XrmQGetResource, 96

- XQueryBestCursor, 89 XrmQGetSearchList, 96
XQueryBestSize, 90 XrmQGetSearchResource, 96
XQueryBestStipple, 90 XrmQPutResource, 96
XQueryBestTile, 90 XrmQPutStringResource, 97
XQueryColor, 90 XrmQuarkToString, 97
XQueryColors, 90 XrmStringToBindingQuarkL ist,
XQueryExtension, 91 97
XQueryFont, 85,91 XrmStringToQuark, 97
XQueryKeymap, 91 XrmStringToQuarkList, 97
XQueryPointer, 91 XrmUniqueQuark, 97

- XQueryTextExtents, 91 XRotateBuffers, 97
XQueryTextExtents16, 91 XRotateWindowProperties, 98
XQueryTree, 92 XSaveContext, 98
XRaiseWindow, 92 XScreenNumberOfScreen, 98
XReadBitmapFile, 92 XSelectInput, 98
XRebindKeysym, 92 XSendEvent, 98
XRecolorCursor, 92 XSetAccessControl, 98
XReconfigureWMWindow, 92 XSetAfterFunction, 98
XRectInRegion, 93 XSetArcMode, 99
XRefreshKeyboardMapping, 93 XSetBackground, 99
XRemoveFromSaveSet, 93 XSetClassHint, 99
XRemoveHost, 93 XSetClipMask, 99
XRemoveHosts, 93 XSetClipOrigin, 99
XReparentWindow, 93 XSetClipRectangles, 99
XResetScreenSaver, 94 XSetCloseDownMode, 99
XResizeWindow, 94 XSetCommand, 100
XResourceManagerString, 94 XSetDashes, 100
XRestackWindow, 94 XSetErrorHandler, 100
XrmDestroyDatabase, 94 XSetFillStyle, 100
XrmGetFileDatabase, 94 XSetFont, 100
XrmGetResource, 94, 96 XSetFontPath, 100
XmmGetStringDatabase, 95 XSetForeground, 101

INDEX

125

XSetFunction, 101 XSetZoomHints, 107
XSetGraphicsExposures, 101 XShrinkRegion, 107
XSetlconName, 101 XStoreBuffer, 107
XSetIconSizes, 101 XStoreBytes, 107
XSetInputFocus, 101 XStoreColor, 108
XSetlOErrorHandler, 101 XStoreColors, 108
XSetModifierMapping, 102 XStoreName, 108
XSetNormalHints, 102 XStoreNamedColor, 108
XSetPlaneMask, 102 XStringListToTextProperty, 107
XSetPointerMapping, 102 XStringToKeysym, 108
XSetRegion, 102 XSublmage, 79, 108
XSetRGBColormaps, 102 XSubtractRegion, 108
XSetScreenSaver, 78, 103 XSync, 109
XSetSelectionOwner, 103 XSynchronize, 109
XSetSizeHints, 103 XTextExtents, 109
XSetStandardColormap, 103 XTextExtents16, 109
XSetStandardProperties, 103 XTextPropertyToStringList, 109
XSetState, 103 XTextWidth, 110
XSetStipple, 104 XTextWidth16, 110
XSetSubwindowMode, 104 XTranslateCoordinates, 110
XSetTextProperty, 104 XUndefineCursor, 110
XSetTile, 104 XUngrabButton, 110
XSetTransientForHint, 104 XUngrabKey, 110
XSetTSOrigin, 104 XUngrabKeyboard, 111
XSetWindowBackground, 104 XUngrabPointer, 111
XSetWindowBackgroundPixmap, XUngrabServer, 111

105 XUninstallColormap, 111
XSetWindowBorder, 105 XUnionRectWithRegion, 111
XSetWindowBorderPixmap, 105 XUnionRegion, 111
XSetWindowBorderWidth, 105 XUniqueContext, 111
XSetWindowColormap, 105 XUnloadFont, 112
XsetWMClientMachine, 105 XUnmapSubwindows, 112
XSetWMColormapWindows, 106 XUnmapWindow, 112
XSetWMHints, 106 XVisualIDFrom Visual, 112
XSetWMIconName, 106 XWarpPointer, 112
XSetWMName, 106 XWindowEvent, 113
XSetWMNormalHints, 106 XWithdrawWindow, 112
XSetWMProperties, 106 XWMGeometry, 113

XSetWMProtocols, 106
XSetWMSizeHints, 107

XWriteBitmapFile, 113
XXorRegion, 113

INDEX

x11perf, 3 xprop, 3
XAPPLRESDIR, 24 xrdb, 3

xauth, 3 xrefresh, 3
XAUTHORITY, 24 xscope, 3
xbench, 3 xset, 3, 14

xbiff, 3 xsetroot, 3
xcalc, 3 xstdcmap, 3 .
xclipboard, 3 Xsupport, 18, 25
xclock, 3 xterm, 3, 14
xcutsel, 3 Xterm does not start, 26
xditview, 1 XtOffsetOf, 8
xdm, 1 Xtrek, 13
xdpyinfo, 3 xtrek, 3

xedit, 3 xtrekd, 5
XENVIRONMENT, 24 XtResource, 8
xev, 3 XUSERFILESEARCHPATH, 24
xeyes, 3 xversion, 3
xfade, 3 xwd, 3

xfd, 3 xwininfo, 3
xfontsel, 3 xwud, 3

xgc, 3

xhost, 3

xinit, 1

xioevents.h, 4

xlatecr, 26

xlights, 3

xlights.c, 4

xload, 3

xlock, 3

xlogo, 3

xlsatoms, 3

xlIsclients, 3

xlsfonts, 3

xlswins, 3

xmag, 3

xman, 1

xmandel, 3

xmh, 1

xmodmap, 3

xpr, 3

126

READERS’ COMMENTS

Distributed Software Limited welcomes your comments about all of its documen-
tation. We would be particularly interested to hear your comments about this pub-
lication, and we hope that you will take the time to complete this section. Please
write your comments in the space provided on the reverse of this sheet, and return
this form (or a copy) to:

Distributed Software Limited,
The Maltings,

Charlton Road,

Shepton Mallet,

Somerset BA4 5QE.

United Kingdom.

Fax: 0749 344 977 (UK.)

Fax: +44 749 344 977 (Worldwide)

ooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooo
.......................................

.......................................

Countrxy:

Telephone:

ooooooooooooooooooooooooooooooooooooooo

Facsimile:

ooooooooooooooooooooooooooooooooooooooo

The X Window System Manual

YOUR COMMENTS:

FOR OFFICE USE ONLY
<=~ The X Window System Manual

Part number: DM5049

	Copyright
	Contents
	1 Introduction
	1.1 What is provided ?
	1.2 What is missing ?
	1.3 What is required ?
	1.4 What is on the discs ?
	1.5 What are the differences between X for Helios and X for Unix ?
	1.6 What are the differences between X for Helios release 4 and release 2 ?

	2 Installation and Configuration
	2.1 Installation
	2.2 Installing X in a restricted space
	2.3 Configuring the X server
	2.3.1 The X server resource file
	2.3.2 Command line options
	2.3.3 The Helios IO server resource file
	2.3.4 Environment variables
	2.3.5 Keyboard device driver

	2.4 Starting X
	2.4.1 Starting X automatically (the XlHelios window server)
	2.4.2 Starting X manually (the startx script)
	2.4.3 Starting multiple X servers
	2.4.4 Not starting any X servers

	2.5 Configuring X clients
	2.5.1 Shell parameters
	2.5.2 The Xdefaults file
	2.5.3 Host specific defaults
	2.5.4 Application specific defaults
	2.5.5 Window manager resource files
	2.5.6 Environment variables

	2.6 Problems starting X
	2.7 Making your own hardware device driver

	3 Programming With X Under Helios
	3.1 How to compile X clients
	3.2 Compiling Unix based X clients
	3.3 Compiling Helios based X clients
	3.4 Example program

	4 Xlib Summary
	4.1 Listing by Subject
	4.1.1 Buffers
	4.1.2 Client Connections
	4.1.3 Colorcells
	4.1.4 Colormaps
	4.1.5 Context Manager
	4.1.6 Cursors
	4.1.7 Display Specifications
	4.1.8 Drawing Primitives
	4.1.9 Errors
	4.1.10 Events
	4.1.11 Extensions
	4.1.12 Fonts
	4.1.13 Grabbing
	4.1.14 Graphics Context (GC)
	4.1.15 Host Access
	4.1.16 Housekeeping
	4.1.17 Images
	4.1.18 Keyboard
	4.1.19 Macros (Display)
	4.1.20 Macros (Image Format)
	4.1.21 Mapping
	4.1.22 Output Buffer
	4.1.23 Pointers
	4.1.24 Properties
	4.1.25 Regions
	4.1.26 Resource manager and database
	4.1.27 Save set
	4.1.28 Screen saver
	4.1.29 Selections
	4.1.30 Standard geometry
	4.1.31 Text
	4.1.32 Tile, pixmap, stipple and bitmap
	4.1.33 User preferences
	4.1.34 Visuals
	4.1.35 Window attributes
	4.1.36 Window configuration
	4.1.37 Window existence
	4.1.38 Window manager hints
	4.1.39 Window manipulation
	4.1.40 Window mapping

	4.2 Macros
	4.3 Functions

	A Bibliography
	A.1 Motif
	A.2 X Toolkit
	A.3 X Library
	A.4 Open Look
	A.5 Quick Reference Guides
	A.6 X User Guides

	Index

