
New York London Toronto Sydney Tokyo

First published 1988 by
Prentice Hall International (UK) Ltd,
66 Wood Lane End, Hemel Hempstead,
Hertfordshire, HP2 4RG
A division of
Siman & Schuster International Group

© 19881NMOS Limited

INMOS reserves the right to make changes in
specifications at any time and without notice. The
information furnished by INMOS in this publication is
believed to be accurate, however no responsibility is
assumed for its use, nor for any infringement of patents
or other rights of third parties resulting from its use. No
licence is granted under any patents, trademarks or
other rights of INMOS.

funmos, IMS and occam are trademarks
of the INMOS Group of Companies.

INMOS document number: 72 TRN 006 04

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the
prior permission, in writing, from the publisher.
For permission within the United States of America
contact Prentice Hall Inc., Englewood Cliffs, NJ 07632.

Printed and bound in Great Britain
at the University Press, Cambridge

CIP data are available

1 2 3 4 5 92 91 90 89 88

ISBN 0-13-929001-X

Contents

Preface

Notation and nomenclature

1 Transputer Architecture

v

Introduction 2
1.1 Overview 3

Transputers and occam 3
1.2 System design rationale 4

1.2.1 Programming 4
1.2.2 Hardware 5
1.2.3 Programmable components 5

1.3 Systems architecture rationale 5
1.3.1 Point to point communication links 5
1.3.2 Local memory 6

1.4 Communication 6

2 occam model 8
2.1 Overview 8
2.2 occam overview 9

2.2.1 Processes 9
Assignment 9
Input 9
Output 9

2.2.2 Constructions 10
Sequence 10
Parallel 10
Communication 11
Conditional 11
Alternation 11
Loop 12
Selection 12
Replication 12

2.2.3 Types 13
2.2.4 Declarations, arrays and subscripts 13
2.2.5 Procedures 14
2.2.6 Functions 14
2.2.7 Expressions 14
2.2.8 Timer 15
2.2.9 Peripheral access 15

2.3 Configuration 16
PLACED PAR 16
PRI PAR 16

2.3.1 INMOS standard links 16

3 Error handling 17

vi

4 Program development 18
4.1 Logical behaviour 18
4.2 Performance measurement 18
4.3 Separate compilation of occam and other languages 18
4.4 Memory map and placement 19

5 Physical architecture 20
5.1 INMOS serial links 20

5.1.1 Overview 20
5.1.2 Link electrical specification 20

5.2 System services 20
5.2.1 Powering up and down, running and stopping 20
5.2.2 Clock distribution 21

5.3 Bootstrapping from ROM or from a link 21
5.4 Peripheral interfacing 21

2 Transputer Overview 23

Introduction 25

2 The transputer: basic architecture and concepts 26
2.1 A programmable device 26
2.2 occam 26
2.3 VLSI technology 26
2.4 Simplified processor with micro-coded scheduler 27
2.5 Transputer products 27

3 Transputer internal architecture 28
3.1 Sequential processing 29
3.2 Instructions 29

3.2.1 Direct functions 30
3.2.2 Prefix functions 30
3.2.3 Indirect functions 31
3.2.4 Efficiency of encoding 31

3.3 Support for concurrency 31
3.4 Communications 33

3.4.1 Internal channel communication 33
3.4.2 External channel communication 35
3.4.3 Communication links 36

3.5 Timer 37
3.6 Alternative 37
3.7 Floating point instructions 37

3.7.1 Optimising use of the stack 38
3.7.2 Concurrent operation of FPU and CPU 38

3.8 Floating point unit design 39
3.9 Floating point performance 39
3.10 Graphics capability 41

3.10.1 Example - drawing coloured text 41

4 Conclusion 43

vii

3 IMS T800 Engineering Data 45

Introduction 46

2 Pin designations 48

3 Processor 49
3.1 Registers 49
3.2 Instructions 50

3.2.1 Direct functions 50
3.2.2 Prefix functions 50
3.2.3 Indirect functions 51
3.2.4 Expression evaluation 51
3.2.5 Efficiency of encoding 51

3.3 Processes and concurrency 52
3.4 Priority 53
3.5 Communications 54
3.6 Timers 54

4 Instruction set summary 56
4.1 Descheduling points 57
4.2 Error instructions 58
4.3 Floating point errors 58

5 Floating point unit 65

6 System services 67
6.1 Power 67
6.2 CapPlus, CapMinus 67
6.3 Clockln 67
6.4 ProcSpeedSelectO-2 68
6.5 Reset 69
6.6 Bootstrap 69
6.7 Peek and poke 71
6.8 Analyse 71
6.9 Error, Errorln 72

7 Memory 73

8 External memory interface 75
8.1 ProcClockOut 75
8.2 Tstates 75
8.3 Internal access 76
8.4 MemAD2-31 77
8.5 MemnotWrDO 77
8.6 MemnotRfD1 77
8.7 notMemRd 77
8.8 notMemSO-4 77
8.9 notMemWrBO-3 81
8.10 MemConfig 84

8.10.1 Internal configuration 84
8.10.2 External configuration 85

viii

8.11 notMemRf 90
8.12 MemWait 91
8.13 MemReq, MemGranted 93

9 Events 95

10 Links 96

11 Electrical specifications 99
11.1 DC electrical characteristics 99
11.2 Equivalent circuits 100
11.3 AC timing characteristics 101
11.4 Power rating 102

12 Package specifications 104
12.1 84 pin grid array package 104

4 IMS 1414 Engineering Data 107

Introduction 108

2 Pin designations 110

3 Processor 111
3.1 Registers 111
3.2 Instructions 112

3.2.1 Direct functions 112
3.2.2 Prefix functions 112
3.2.3 Indirect functions 113
3.2.4 Expression evaluation 113
3.2.5 Efficiency of encoding 113

3.3 Processes and concurrency 114
3.4 Priority 115
3.5 Communications 116
3.6 Timers 116

4 Instruction set summary 118
4.1 Descheduling points 119
4.2 Error instructions 119

5 System services 124
5.1 Power 124
5.2 CapPlus, CapMinus 124
5.3 Clockln 124
5.4 Reset 126
5.5 Bootstrap 126
5.6 Peek and poke 128
5.7 Analyse 128
5.8 Error 129

6 Memory 130

ix

7 External memory interface 132
7.1 ProcClockOut 132
7.2 Tstates 132
7.3 Internal access 133
7.4 MemAD2-31 134
7.5 MemnotWrDO 134
7.6 MemnotRfD1 134
7.7 notMemRd 134
7.8 notMemSO-4 134
7.9 notMemWrBO-3 138
7.10 MemConfig 141

7.10.1 Internal configuration 141
7.10.2 External configuration 142

7.11 notMemRf 147
7.12 MemWait 148
7.13 MemReq, MemGranted 150

8 Events 152

9 Links 153

10 Electrical specifications 156
10.1 DC electrical characteristics 156
10.2 Equivalent circuits 157
10.3 AC timing characteristics 158
10.4 Power rating 159

11 Package specifications 160
11.1 84 pin grid array package 160

11.1.1 84 pin PLCC J-bend package 162

5 IMS T212 Engineering Data 165

Introduction 166

2 Pin designations 168

3 Processor 169
3.1 Registers 169
3.2 Instructions 170

3.2.1 Direct functions 170
3.2.2 Prefix functions 170
3.2.3 Indirect functions 171
3.2.4 Expression evaluation 171
3.2.5 Efficiency of encoding 171

3.3 Processes and concurrency 172
3.4 Priority 173
3.5 Communications 174
3.6 Timers 174

x

4 Instruction set summary 176
4.1 Descheduling points 177
4.2 Error instructions 177

5 System services 182
5.1 Power 182
5.2 CapPlus, CapMinus 182
5.3 Clockln 182
5.4 Reset 183
5.5 Bootstrap 183
5.6 Peek and poke 185
5.7 Analyse 185
5.8 Error 186

6 Memory 187

7 External memory interface 189
7.1 ProcClockOut 189
7.2 Tstates 190
7.3 Internal access 190
7.4 MemAO-15 190
7.5 MemDO-15 190
7.6 notMemWrBO-1 191
7.7 notMemCE 193
7.8 MemBAcc 195
7.9 MemWait 196
7.10 MemReq, MemGranted 198

8 Events 200

9 Links 201

10 Electrical specifications 204
10.1 DC electrical characteristics 204
10.2 Equivalent circuits 205
10.3 AC timing characteristics 206
10.4 Power rating 207

11 Package specifications 208
11.1 68 pin grid array package 208
11.2 68 pin PLCC J-bend package 210

6 IMS M212 Preview 213

Introduction 214
1.1 IMS M212 peripheral processor 215

1.1.1 Central processor 215
1.1.2 Peripheral interface 215
1.1.3 Disk controller 215
1.1.4 Links 216
1.1.5 Memory system 216
1.1.6 Error handling 216

xi

2 Operation 217
2.1 Mode 1 217
2.2 Mode 2 218

3 Applications 219

4 Package specifications 223
4.1 68 pin grid array package 223
4.2 68 pin PLCC J-bend package 225

7 IMS C004 Engineering Data 227

Introduction 228

2 Pin designations 230

3 System services 231
3.1 Power 231
3.2 CapPlus, CapMinus 231
3.3 Clockln 231
3.4 Reset 233

4 Links 234

5 Switch implementation 237

6 Applications 238
6.1 Link switching 238
6.2 Multiple IMS C004 control 238
6.3 Bidirectional exchange 238
6.4 Bus systems 238

7 Electrical specifications 242
7.1 DC electrical characteristics 242
7.2 Equivalent circuits 243
7.3 AC timing characteristics 244
7.4 Power rating 244

8 Package specifications 245
8.1 84 pin grid array package 245

9 IMS COO4-A 247

249

Introduction 250

2 Pin designations 252

xii

3 System services 253
3.1 Power 253
3.2 CapMinus 253
3.3 Clockln 253
3.4 SeparatelQ 254
3.5 Reset 255

4 Links 256

5 Mode 1 parallel interface 259
5.1 Input port 259
5.2 Output port 260

6 Mode 2 parallel interface 261
6.1 DO-7 261
6.2 notCS 261
6.3 RnotW 261
6.4 RSO-1 261

6.4.1 Input Data Register 261
6.4.2 Input Status Register 264

6.5 Inputlnt 264
6.5.1 Output Data Register 264
6.5.2 Output Status Register 264

6.6 Outputlnt 265
6.7 Data read 265
6.8 Data write 265

7 Electrical specifications 266
7.1 DC electrical characteristics 266
7.2 Equivalent circuits 267
7.3 AC timing characteristics 268
7.4 Power rating 269

8 Package specifications 270
8.1 28 pin plastic dual-in-line package 270
8.2 28 pin ceramic dual-in-line package 271
8.3 Pinout 272

Introduction 274

2 Pin designations 276

3 System services 277
3.1 Power 277
3.2 CapMinus 277
3.3 Clockln 277
3.4 Reset 279

4 Links 280

xiii

5 Parallel interface 283
5.1 DO-7 283
5.2 notCS 283
5.3 RnotW 283
5.4 RSO-1 283

5.4.1 Input Data Register 283
5.4.2 Input Status Register 286

5.5 Inputlnt 286
5.5.1 Output Data Register 286
5.5.2 Output Status Register 286

5.6 Outputlnt 287
5.7 Data read 287
5.8 Data write 287

6 Electrical specifications 288
6.1 DC electrical characteristics 288
6.2 Equivalent circuits 289
6.3 AC timing characteristics 290
6.4 Power rating 291

7 Package specifications 292
7.1 24 pin plastic dual-in-line package 292
7.2 Pinout 293

A Performance 295
A.1 Performance overview 297
A.2 Fast multiply, TIMES 299
A.3 Arithmetic 300
A.4 IMS· T212, IMS T414 floating point operations 300
A.5 IMS T800 floating point operations 301

A.5.1 IMS T800 floating point functions 302
A.5.2 IMS T800 special purpose functions and procedures 302

A.6 Effect of external memory 303
A.7 Interrupt latency 304

305

C Bibliography 315
C.1 INMOS publications 317
C.2 INMOS technical notes 318
C.3 Papers and extracts by INMOS authors 319
C.4 Papers and extracts by other authors 320
C.5 Books and monographs 323
C.6 References 324

D Index 325

XIV

xv

Preface

This reference manual describes the architecture of the transputer family of products and details some of
the devices which make up that family. Items described include the 32 bit and 16 bit transputer products
IMS TaOO, IMS T414 and IMS T212; the peripheral controller IMS M212; and the communications devices
IMS C004, IMS C011 and IMS C012.

The manual first describes the transputer architecture and general features of transputer family devices. It
then continues with the various product data sheets, followed by comparative performance details.

A transputer is a single VLSI device with processor, memory and communications links for direct connection
to other transputers. Concurrent systems can be constructed from a collection of transputers operating
concurrently and communicating through links. The transputer can be used as a building block for concurrent
processing systems, with occam as the associated design formalism.

Current transputer products include the 16 bit IMS T212, the 32 bit IMS T414 and the IMS TaOO, a 32 bit
transputer similar to the IMS T414 but with an integral high speed floating point processor.

The IMS M212 is an intelligent peripheral controller. It contains a 16 bit processor, on-chip memory and
communications links. It contains hardware and interface logic to control disk drives and can be used as a
programmable disk controller or as a general purpose peripheral interface.

The INMOS serial communication link is a high speed system interconnect which provides full duplex com
munication between members of the transputer family. It can also be used as a general purpose interconnect
even where transputers are not used. The IMS C011 and IMS C012 link adaptors are communications de
vices enabling the INMOS serial communication link to be connected to parallel data ports and microprocessor
buses. Ths IMS C004 is a programmable link switch. It provides a full crossbar switch between 32 link inputs
and 32 link outputs.

The transputer development system referred to in this manual comprises an integrated editor, compiler and
debugging system which enables transputers to be programmed in occam and in industry standard lan
guages. The Transputer Development System Manual is supplied with the transputer development system.

Other information relevant to all transputer products is contained in the occam Reference Manual, supplied
with INMOS software products and available as a separate publication. Where access to transputers at
machine instruction set level is necessary, the document The Transputer Instruction Set - A Compiler Writers'
Guide is available.

Various application and technical notes are also available from INMOS.

Software and hardware examples given in this manual are outline design studies and are included to illustrate
various ways in which transputers can be used. The examples are not intended to provide accurate application
designs.

Notation and nomenclature

The nomenclature and notation in general use throughout this manual is described below.

Significance

The bits in a byte are numbered 0 to 7, with bit 0 least significant. The bytes in words are numbered from 0,
with byte 0 least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address. Similarly, components of arrays are numbered starting from 0 and stored in
memory with component 0 at the lowest address.

Transputer memory is byte addressed, with words aligned on four-byte boundaries for 32 bit devices and on
two-byte boundaries for 16 bit devices.

Hexadecimal values are prefixed with #, as in #10F.

Where a byte is transmitted serially, it is always transmitted least significant bit (0) first. In general, wherever
a value is transmitted as a number of component values, the least significant component is transmitted first.
Where an array is transmitted serially, component 0 is transmitted first. Consequently, block transfers to and
from memory are performed starting with the lowest (most negative) address and ending with the highest
(most positive) one.

In diagrams, the least significant component of a value is to the right hand side of the diagram. Component 0
of an array is at the bottom of a diagram, as are the most negative memory locations.

Signal naming conventions

Signal names identifying individual pins of a transputer chip have been chosen to avoid being cryptic, giving
as much information as possible. The majority of transputer signals are active high. Those which are active
low have names commencing with not; names such as RnotW imply that the first component of the name
refers to its active high state and the second to its active low state. Capitals are used to introduce new
components of a name, as in ProcClockOut.

All transputer signals described in the text of this manual are printed in bold. Registers and flags internal to
a device are printed in italics, as are instruction operation codes. Italics are also used for emphasis. occam
program notation is printed in a fixed space teletype style.

References

The manual is divided into several chapters, each chapter having a number of sections and subsections.
Figures and tables have reference numbers tied to relevant sections of a particular chapter of the manual.
Unless otherwise stated, all references refer to those within the current chapter of the manual.

xvii

Transputer product numbers

All INMOS products, both memories and transputers, have a part number of the general form

IMS abbbc-xyyz

Field a identifies the product group. This is a digit for memory products and a letter for other devices, the
particular letter indicating the type of product (table .1). Field bbb identifies the product within that group
and field c is its revision code. Field x denotes the package type, whilst field yy indicates speed variants
etc. The final field z indicates to which specification the component is qualified; standard, military etc. Where
appropriate some identifiers may be omitted, depending on the device.

A typical product part would be IMS T414B-G15S.

Table .1: Transputer products

IMS 1 .

IMSA .

IMS B .

IMS C .

IMS D .

IMS G .

IMS L. ..

IMS M .

IMS P .

IMS S .

IMS T .

Static RAM products

Digital signal processors

PC boards and modular hardware

Communications adaptors

Development system

Graphics products

Literature

Peripheral control transputers

occam programming system

Software product

Transputers

2

1 Introduction

Reset
Analyse
Error
BootFromROM
Clockln
VCC
GND

System
services

On-chip
RAM

Application specific Interface

Processor

Li nk
Interface

•
•

Linkln
LinkOut

Figure 1.1: Transputer architecture

Introduction

1.1 Overview

3

A transputer is a microcomputer with its own local memory and with links for connecting one transputer to
another transputer.

The transputer architecture defines a family of programmable VLSI components. The definition of the ar
chitecture falls naturally into the logical aspects which define how a system of interconnected transputers is
designed and programmed, and the physical aspects which define how transputers, as VLSI components,
are interconnected and controlled.

A typical member of the transputer product family is a single chip containing processor, memory, and com
munication links which provide point to point connection between transputers. In addition, each transputer
product contains special circuitry and interfaces adapting it to a particular use. For example, a peripheral
control transputer, such as a graphics or disk controller, has interfaces tailored to the requirements of a
specific device.

A transputer can be used in a single processor system or in networks to build high performance concur
rent systems. A network of transputers and peripheral controllers is easily constructed using point-to-point
communication.

Figure 1.2: Transputer network

Transputers and occam

Transputers can be programmed in most high level languages, and are designed to ensure that compiled
programs will be efficient. Where it is required to exploit concurrency, but still to use standard languages,
occam can be used as a harness to link modules written in the selected languages.

To gain most benefit from the transputer architecture, the whole system can be programmed in occam
(pages 8, 26). This provides all the advantages of a high level language, the maximum program efficiency
and the ability to use the special features of the transputer.

occam provides a framework for designing concurrent systems using transputers in just the same way
that boolean algebra provides a framework for designing electronic systems from logic gates. The system
designer's task is eased because of the architectural relationship between occam and the transputer. A
program running in a transputer is formally equivalent to an occam process, so that a network of transputers
can be described directly as an occam program.

4

Transputer

transputer architecture

Transputer

Transputer

Transputer

Figure 1.3: A node of four transputers

1.2 System design rationale

The transputer architecture simplifies system design by the use of processes as standard software and
hardware building blocks.

An entire system can be designed and programmed in occam, from system configuration down to low level
I/O and real time interrupts.

1.2.1 Programming

The software building block is the process. A system is designed in terms of an interconnected set of
processes. Each process can be regarded as an independent unit of design. It communicates with other
processes along point-to-point channels. Its internal design is hidden, and it is completely specified by the
messages it sends and receives. Communication between processes is synchronized, removing the need for
any separate synchronisation mechanism.

Internally, each process can be designed as a set of communicating processes. The system design is
therefore hierarchically structured. At any level of design, the designer is concerned only with a small and
manageable set of processes.

occam is based on these concepts, and provides the definition of the transputer architecture from the logical
point of view (pages 8, 26).

Introduction

1.2.2 Hardware

5

Processes can be implemented in hardware. A transputer, executing an occam program, is a hardware
process. The process can be independently designed and compiled. Its internal structure is hidden and it
communicates and synchronizes with other transputers via its links, which implement occam channels.

Other hardware implementations of the process are possible. For example, a transputer with a different
instruction set may be used to provide a different cost/performance trade-off. Alternatively, an implementation
of the process may be designed in terms of hard-wired logic for enhanced performance.

The ability to specify a hard-wired function as an occam process provides the architectural framework for
transputers with specialized capabilities (e.g., graphics). The required function (e.g., a graphics drawing and
display engine) is defined as an occam process, and implemented in hardware with a standard occam
channel interface. It can be simulated by an occam implementation, which in turn can be used to test the
application on a development system.

1.2.3 Programmable components

A transputer can be programmed to perform a specialized function, and be regarded as a 'black box' thereafter.
Some processes can be hard-wired for enhanced performance.

A system, perhaps constructed on a single chip, can be built from a combination of software processes, pre
programmed transputers and hardware processes. Such a system can, itself, be regarded as a component
in a larger system.

The architecture has been designed to permit a network of programmable components to have any desired
topology, limited only by the number of links on each transputer. The architecture minimizes the constraints
on the size of such a system, and the hierarchical structuring provided by occam simplifies the task of
system design and programming.

The result is to provide new orders of magnitude of performance for any given application, which can now
exploit the concurrency provided by a large number of programmable components.

1.3 Systems architecture rationale

1.3.1 Point to point communication links

The transputer architecture simplifies system design by using point to point communication links. Every
member of the transputer family has one or more standard links, each of which can be connected to a link
of some other component. This allows transputer networks of arbitrary size and topology to be constructed.

Point to point communication links have many advantages over multi-processor buses:

There is no contention for the communication mechanism, regardless of the number of
transputers in the system.

There is no capacitive load penalty as transputers are added to a system.

The communications bandwidth does not saturate as the size of the system increases.
Rather, the larger the number of transputers in the system, the higher the total communi
cations bandwidth of the system. However large the system, all the connections between
transputers can be short and local.

6 transputer architecture

1.3.2 Local memory

Each transputer in a system uses its own local memory. Overall memory bandwidth is proportional to the
number of transputers in the system, in contrast to a large global memory, where the additional processors
must share the memory bandwidth.

Because memory interfaces are not shared, and are separate from the communications interfaces, they can
be individually optimized on different transputer products to provide high bandwidth with the minimum of
external components.

1.4 Communication

To provide synchronised communication, each message must be acknowledged. Consequently, a link requires
at least one signal wire in each direction.

Transputer 1

process w

process y

Transputer 2

process x

process z

Figure 1.4: Links communicating between processes

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer by two one-directional signal lines, along which data is transmitted serially.

The two signal wires of the link can be used to provide two occam channels, one in each direction. This
requires a simple protocol. Each signal line carries data and control information.

The link protocol provides the synchronized communication of occam. The use of a protocol providing for
the transmission of an arbitrary sequence of bytes allows transputers of different word length to be connected.

Each message is transmitted as a sequence of single byte communications, requiring only the presence of
a single byte buffer in the receiving transputer to ensure that no information is lost. Each byte is transmitted
as a start bit followed by a one bit followed by the eight data bits followed by a stop bit. After transmitting a
data byte, the sender waits until an acknowledge is received; this consists of a start bit followed by a zero
bit. The acknowledge signifies both that a process was able to receive the acknowledged byte, and that the
receiving link is able to receive another byte. The sending link reschedules the sending process only after
the acknowledge for the final byte of the message has been received.

Data bytes and acknowledges are multiplexed down each signal line. An acknowledge can be transmitted as
soon as reception of a data byte starts (if there is room to buffer another one). Consequently transmission
may be continuous, with no delays between data bytes.

Introduction

Data 0 1 2 3 4 5 6 7

Acknowledge

LE]
Figure 1.5: Link protocol

7

The links are designed to make the engineering of transputer systems straightforward. Board layout of two
wire connections is easy to design and area efficient. All transputers will support a standard communications
frequency of 10 Mbits/sec, regardless of processor performance. Thus transputers of different performance
can be directly connected and future transputer systems will directly communicate with those of today.

Transputer 1 Transputer 2 Transputer 1 Transputer 2

..,
........ • ~...., ,....

Common clock Clock 1 Clock 2

Figure 1.6: Clocking transputers

Link communication is not sensitive to clock phase. Thus, communication can be achieved between inde
pendently clocked systems as long as the communications frequency is the same.

The transputer family includes a number of link adaptor devices which provide a means of interfacing trans
puter links to non-transputer devices.

8

2 occam model

The programming model for transputers is defined by OCCam(page 26). The purpose of this section is to
describe how to access and control the resources of transputers using occam. A more detailed description
is available in the occam programming manual and the transputer development system manual (provided
with the development system).

The transputer development system will enable transputers to be programmed in other industry standard
languages. Where it is required to exploit concurrency, but still to use standard languages, occam can be
used as a harness to link modules written in the selected languages.

2.1 Overview

In occam processes are connected to form concurrent systems. Each process can be regarded as a black
box with internal state, which can communicate with other processes using point to point communication
channels. Processes can be used to represent the behaviour of many things, for example, a logic gate, a
microprocessor, a machine tool or an office.

The processes themselves are finite. Each process starts, performs a number of actions and then terminates.
An action may be a set of sequential processes performed one after another, as in a conventional programming
language, or a set of parallel processes to be performed at the same time as one another. Since a process
is itself composed of processes, some of which may be executed in parallel, a process may contain any
amount of internal concurrency, and this may change with time as processes start and terminate.

Ultimately, all processes are constructed from three primitive processes - assignment, input and output. An
assignment computes the value of an expression and sets a variable to the value. Input and output are
used for communicating between processes. A pair of concurrent processes communicate using a one way
channel connecting the two processes. One process outputs a message to the channel and the other process
inputs the message from the channel.

The key concept is that communication is synchronized and unbuffered. If a channel is used for input
in one process, and output in another, communication takes place when both processes are ready. The
value to be output is copied from the outputting process to the inputting process, and the inputting and
outputting processes then proceed. Thus communication between processes is like the handshake method
of communication used in hardware systems.

Since a process may have internal concurrency, it may have many input channels and output channels
performing communication at the same time.

Every transputer implements the occam concepts of concurrency and communication. As a result, occam
can be used to program an individual transputer or to program a network of transputers. When occam is
used to program an individual transputer, the transputer shares its time between the concurrent processes
and channel communication is implemented by moving data within the memory. When occam is used to
program a network of transputers, each transputer executes the process allocated to it. Communication
between occam processes on different transputers is implemented directly by transputer links. Thus the
same occam program can be implemented on a variety of transputer configurations, with one configuration
optimized for cost, another for performance, or another for an appropriate balance of cost and performance.

The transputer and occam were designed together. All transputers include special instructions and hardware
to provide maximum performance and optimal implementations of the occam model of concurrency and
communications.

All transputer instruction sets are designed to enable simple, direct and efficient compilation of occam.
Programming of I/O, interrupts and timing is standard on all transputers and conforms to the occam model.

Different transputer variants may have different instruction sets, depending on the desired balance of cost,
performance, internal concurrency and special hardware. The occam level interface will, however, remain
standard across all products.

2 occam model 9

Figure 2.1: Mapping processes onto one or several transputers

2.2 occam overview

2.2.1 Processes

After it starts execution, a process performs a number of actions, and then either stops or terminates. Each
action may be an assignment, an input, or an output. An assignment changes the value of a variable, an
input receives a value from a channel, and an output sends a value to a channel.

At any time between its start and termination, a process may be ready to communicate on one or more of
its channels. Each channel provides a one way connection between two concurrent processes; one of the
processes may only output to the channel, and the other may only input from it.

Assignment

An assignment is indicated by the symbol : =. The example

v := e

sets the value of the variable v to the value of the expression e and then terminates, for example:
x : = 0 sets x to zero, and x : = x + 1 increases the value of x by 1.

Input

An input is indicated by the symbol ? The example

c ? x

inputs a value from the channel c, assigns it to the variable x and then terminates.

Output

An output is indicated by the symbol The example

C ! e

outputs the value of the expression e to the channel c.

10 transputer architecture

2.2.2 Constructions

A number of processes can be combined to form a construct. A construct is itself a process and can therefore
be used as a component of another construct. Each component process of a construct is written two spaces
further from the left hand margin, to indicate that it is part of the construct. There are four classes of constructs
namely the sequential, parallel, conditional and the alternative construct.

Sequence

A sequential construct is represented by

SEQ
Pl
P2
P3

The component processes P 1, P 2, P 3 ... are executed one after another. Each component process starts
after the previous one terminates and the construct terminates after the last component process terminates.
For example

SEQ
cl ? x
x x + 1
c2 x

inputs a value, adds one to it, and then outputs the result.

Sequential constructs in occam are similar to programs written in conventional programming languages.
Note, however, that they provide the performance and efficiency equivalent to that of an assembler for a
conventional microprocessor.

Parallel

A parallel construct is represented by

PAR
Pl
P2
P3

The component processes P 1, P 2, P 3 ... are executed together, and are called concurrent processes. The
construct terminates after all of the component processes have terminated, for example:

PAR
cl ? x
c2 ! Y

allows the communications on channels cl and c2 to take place together.

The parallel construct is unique to occam. It provides a straightforward way of writing programs which directly
reflects the concurrency inherent in real systems. The implementation of parallelism on a single transputer
is highly optimized so as to incur minimal process scheduling overhead.

2 occam model

Communication

11

Concurrent processes communicate only by using channels, and communication is synchronized. If a channel
is used for input in one process, and output in another, communication takes place when both the inputting
and the outputting processes are ready. The value to be output is copied from the outputting process to the
inputting process, and the processes then proceed.

Communication between processes on a single transputer is via memory-to-memory data transfer. Between
processes on different transputers it is via standard links. In either case the occam program is identical.

Conditional

A conditional construct

IF
conditionl

Pl
condition2

P2

means that Pl is executed if conditionl is true, otherwise P2 is executed if condition2 is true, and
so on. Only one of the processes is executed, and then the construct terminates, for example:

IF
x = 0

y := y + 1
x <> 0

SKIP

increases y only if the value of x is O.

Alternation

An alternative construct

ALT
inputl

Pl
input2

P2
input3

P3

waits until one of inputl, input2, input3 .. , is ready. If inputl first becomes ready, inputl
is performed, and then process Pl is executed. Similarly, if input2 first becomes ready, input2 is
performed, and then process P2 is executed. Only one of the inputs is performed, then its corresponding
process is executed and then the construct terminates, for example:

ALT
count ? signal

counter := counter + 1
total ? signal

SEQ
out ! counter
counter := 0

either inputs a signal from the channel count, and increases the variable counter by 1, or alternatively
inputs from the channel total, outputs the current value of the counter, then resets it to zero.

12 transputer architecture

The ALT construct provides a formal language method of handling external and internal events that must be
handled by assembly level interrupt programming in conventional microprocessors.

Loop

WHILE condition
P

repeatedly executes the process P until the value of the condition is false, for example:

WHILE (x - 5) > 0
x := x - 5

leaves x holding the value of (x remainder 5) if x were positive.

Selection

A selection construct

CASE s
n

Pl
m,q

P2

means that Pl is executed if s has the same value as n, otherwise P2 is executed if s has the same value
as m or q, and so on, for example:

CASE direction
up

x := x + 1
down

x := x - 1

increases the value of x if direction is equal to up, otherwise if direction is equal to down the value
of x is decreased.

Replication

A replicator is used with a SEQ, PAR, IF or ALT construction to replicate the component process a number
of times. For example, a replicator can be used with SEQ to provide a conventional loop.

SEQ i = 0 FOR n
P

causes the process P to be executed n times.

A replicator may be used with PAR to construct an array of concurrent processes.

PAR i = 0 FOR n
Pi

constructs an array of n similar processes PO, Pl, ... , Pn-l. The index i takes the values 0, 1, ... , n-1, in
PO, Pl, ... , Pn-l respectively.

2 occam model

2.2.3 Types

13

Every variable, expression and value has a type, which may be a primitive type, array type, record type or
variant type. The type defines the length and interpretation of data.

All implementations provide the primitive types shown in table 2.1 .

Table 2.1: Types

CHAN OF protocol

TIMER

BOOL

BYTE

INT

INT16

INT32

INT64

REAL32

REAL 64

Each communication channel provides communication between
two concurrent processes. Each channel is of a type which
allows communication of data according to the specified protocol.

Each timer provides a clock which can be used by any number
of concurrent processes.

The values of type BOOL are true and false.

The values of type BYTE are unsigned numbers n
in the range 0 <=n< 256.

Signed integers n in the range _231 <=n< 231 .

Signed integers n in the range _215 <=n< 215 .

Signed integers n in the range _231 <=n< 231
.

Signed integers n in the range _263 <=n< 263 .

Floating point numbers stored using a sign bit, 8 bit exponent and
23 bit fraction in ANSI/IEEE Standard 754-1985 representation.

Floating point numbers stored using a sign bit, 11 bit exponent and
52 bit fraction in ANSI/IEEE Standard 754-1985 representation.

2.2.4 Declarations, arrays and subscripts

A declaration T x declares x as a new channel, variable, timer or array of type T, for example:

INT x:
p

declares x as an integer variable for use in process P.

Array types are constructed from component types. For example [n] T is an array type constructed from
n components of type T.

A component of an array may be selected by subscription, for example v [e] selects the e'th component of
v.

A set of components of an array may be selected by subscription, for example [v FROM e FOR c] selects
the c components v [e], v [e + 1], ... v [e + c - 1]. A set of components of an array may
be assigned, input or output.

14 transputer architecture

2.2.5 Procedures

A process may be given a name, for example:

PROC square (INT n)
n := n * n

defines the procedure square. The name may be used as an instance of the process, for example:

square (x)

is equivalent to

n IS x:
n n * n

2.2.6 Functions

A function can be defined in the same way as a procedure. For example:

INT FUNCTION factorial (VAL INT n)
INT product:
VALOF

IF
n >= 0

SEQ
product := 1
SEQ i = 1 FOR n

product product * i
RESULT product

defines the function factorial, which may appear in expressions such as

m := factorial (6)

2.2.7 Expressions

An expression is constructed from the operators given in table 2.2, from variables, numbers, the truth values
TRUE and FALSE, and the brackets (and) .

Table 2.2: Operators

Operator Operand types Description

+ - * / REM integer, real arithmetic operators

PLUS MINUS TIMES AFTER integer modulo arithmetic

= <> any primitive relational operators

> < >= <= integer, real relational operators

AND OR NOT boolean boolean operators

/\ \/ >< '" integers bitwise operators: and, or, xor, not

« » integer shift operators

occam model

For example, the expression

(5 + 7) / 2

evaluates to 6, and the expression

(#lDF /\ #FO) » 4

evaluates to #D (the character # introduces a hexadecimal constant).

15

A string is represented as a sequence of ASCII characters, enclosed in double quotation marks" If the
string has n characters, then it is an array of type [n] BYTE.

2.2.8 Timer

All transputers incorporate a timer. The implementation directly supports the occam model of time. Each
process can have its own independent timer, which can be used for internal measurement or for real time
scheduling.

A timer input sets a variable to a value of type INT representing the time. The value is derived from a clock,
which changes at regular intervals, for example:

tiro ? v

sets the variable v to the current value of a free running clock, declared as the timer tiro.

A delayed input takes the following form

tiro ? AFTER e

A delayed input is unable to proceed until the value of the timer satisfies (timer AFTER e). The comparison
performed is a modulo comparison. This provides the effect that, starting at any point in the timer's cycle,
the previous half cycle of the timer is considered as being before the current time, and the next half cycle is
considered as being after the current time.

2.2.9 Peripheral access

The implementation of occam provides for peripheral access by extending the input and output primitives
with a port input/output mechanism. A port is used like an occam channel, but has the effect of transferring
information to and from a block of addresses associated with a peripheral.

Ports behave like occam channels in that only one process may input from a port, and only one process
may output to a port. Thus ports provide a secure method of accessing external memory mapped status
registers etc.

Note that there is no synchronization mechanism associated with port input and output. Any timing constraints
which result from the use of asynchronous external hardware will have to be programmed explicitly. For
example, a value read by a port input may depend upon the time at which the input was executed, and
inputting at an invalid time would produce unusable data.

During applications development it is recommended that the peripheral is modelled by an occam process
connected via channels.

16 transputer architecture

2.3 Configuration

occam programs may be configured for execution on one or many transputers. The transputer development
system provides the necessary tools for correctly distributing a program configured for many transputers.

Conf.iguration does not affect the logical behaviour of a program (see section four, Program development).
However, it does enable the program to be arranged to ensure that performance requirements are met.

PLACED PAR

A parallel construct may be configured for a network of transputers by using the PLACED PAR construct.
Each component process (termed a placement) is executed by a separate transputer. The variables and
timers used in a placement must be declared within each placement process.

PRI PAR

On any individual transputer, the outermost parallel construct may be configured to prioritize its components.
Each process is executed at a separate priority. The first process has the highest priority, the last process
has the lowest priority. Lower priority components may only proceed when all higher priority components are
unable to proceed.

2.3.1 INMOS standard links

Each link provides one channel in each direction between two transputers.

A channel (which must already have been declared) is associated with a link by a channel association, for
example:

PLACE LinkOInput AT 4 :

17

3 Error handling

Errors in occam programs are either detected by the compiler or can be handled at runtime in one of three
ways.

Cause the process to STOP allowing other processes to continue.

2 Cause the whole system to halt.

3 Have an arbitrary (undefined) effect.

The occam process STOP starts but never terminates. In method 1, an errant process stops and in particular
cannot communicate erroneous data to other processes. Other processes will continue to execute until they
become dependent on data from the stopped process. It is therefore possible, for example, to write a
process which uses a timeout to warn of a stopped process, or to construct a redundant system in which
several processes performing the same task are used to enable the system to continue after one of them
has failed.

Method 1 is the preferred method of executing a program.

Method 2 is useful for program development and can be used to bring transputers to an immediate halt,
preventing execution of further instructions. The transputer Error output can be used to inform the transputer
development system that such an error has occurred. No variable local to the process can be overwritten
with erroneous data, facilitating analysis of the program and data which gave rise to the error.

Method 3 is useful only for optimising programs which are known to be correct!

When a system has stopped or halted as a result of an error, the state of all transputers in the system can
be analysed using the transputer development system.

For languages other than occam, the transputer provides facilities for handling individual errors by software.

18

4 Program development

The development of programs for multiple processor systems can involve experimentation. In some cases,
the most effective configuration is not always clear until a substantial amount of work has been done. For
this reason, it is desirable that most of the design and programming can be completed before hardware
construction is started.

4.1 Logical behaviour

An important property of occam in this context is that it provides a clear notion of 'logical behaviour'; this
relates to those aspects of a program not affected by real time effects.

It is guaranteed that the logical behaviour of a program is not altered by the way in which the processes
are mapped onto processors, or by the speed of processing and communication. Consequently a program
ultimately intended for a network of transputers can be compiled, executed and tested on a single computer
used for program development.

Even if the application uses only a single transputer, the program can be designed as a set of concurrent
processes which could run on a number of transputers. This design style follows the best traditions of
structured programming; the processes operate completely independently on their own variables except
where they explicitly interact, via channels. The set of concurrent processes can run on a single transputer
or, for a higher performance product, the processes can be partitioned amongst a number of transputers.

It is necessary to ensure, on the development system, that the logical behaviour satisfies the application
requirements. The only ways in which one execution of a program can differ from another in functional
terms result from dependencies upon input data and the selection of components of an ALT. Thus a simple
method of ensuring that the application can be distributed to achieve any desired performance is to design
the program to behave 'correctly' regardless of input data and ALT selection.

4.2 Performance measurement

Performance information is useful to gauge overall throughput of an application, and has to be considered
carefully in applications with real time constraints.

Prior to running in the target environment, an occam program should be relatively mature, and indeed should
be correct except for interactions which do not obey the occam synchronization rules. These are precisely
the external interactions of the program where the world will not wait to communicate with an occam process
which is not ready. Thus the set of interactions that need to be tested within the target environment are well
-identified.

Because, in occam, every program is a process, it is extremely easy to add monitor processes or simulation
processes to represent parts of the real time environment, and then to simulate and monitor the anticipated
real time interactions. The occam concept of time and its implementation in the transputer is important.
Every process can have an independent timer enabling, for example, all the real time interactions to be
modelled by separate processes and any time dependent features to be simulated.

4.3 Separate compilation of occam and other languages

A program portion which is separately compiled, and possibly written in a language other than occam, may
be executed on a single transputer.

If the program is written in occam, then it takes the form of a single PROe, with only channel parameters. If
the program is written in a language other than occam, then a run-time system is provided which provides
input/output to occam channels.

4 Program development 19

Such separately compiled program portions are linked together by a framework of channels, termed a harness.
The harness is written in occam. It includes all configuration information, and in particular specifies the
transputer configuration in which the separately compiled program portion is executed.

Transputers are designed to allow efficient implementations of high level languages, such as C, Pascal and
Fortran. Such languages will be available in addition to occam.

At runtime, a program written in such a language is treated as a single occam process. Facilities are
provided in the implementations of these languages to allow such a program to communicate on occam
channels. It can thus communicate with other such programs, or with programs written in occam. These
programs may reside on the same transputer, in which case the channels are implemented in store, or may
reside on different transputers, in which case the channels are implemented by transputer links.

It is therefore possible to implement occam processes in conventional high level languages, and arrange for
them to communicate. It is possible for different parts of the same application to be implemented in different
high level languages.

The standard input and output facilities provided within these languages are implemented by a well-defined
protocol of communications on occam channels.

The development system provides facilities for management of separately compiled occam.

4.4 Memory map and placement

The low level memory model is of a signed address space.

Memory is byte addressed, the lowest addressed byte occupying the least significant byte position within the
word.

The implementation of occam supports the allocation of the code and data areas of an occam process to
specific areas of memory. Such a process must be a separately compiled PROC, and must not reference any
variables and timers other than those declared within it.

20

5 Physical architecture

5.1 INMOS serial links

5.1 .1 Overview

All transputers have several links. The link protocol and electrical characteristics form a standard for all
INMOS transputer and peripheral products.

All transputers support a standard link communications frequency of 10 megabits per second. Some devices
also support other data rates. Maintaining a standard communications frequency means that devices of mixed
performance and type can intercommunicate easily.

Each link consists of two unidirectional signal wires carrying both data and control bits. The link signals are
TTL compatible so that their range can be easily extended by inserting buffers.

The INMOS communication links provide for communication between devices on the same printed circuit
board or between printed circuit boards via a back plane. They are intended to be used in electrically quiet
environments in the same way as logic signals between TTL gates.

The number of links, and any communication speeds in addition to the standard speed of 10 Mbits/sec, are
given in the product data for each product.

5.1.2 Link electrical specification

The quiescent state of the link signals is low, for a zero. The link input signals and output signals are standard
TTL compatible signals.

For correct functioning of the links the specifications for maximum variation in clock frequency between two
transputers joined by a link and maximum capacitive load must be met. Each transputer product also has
specified the maximum permissible variation in delay in buffering, and minimum permissible edge gradients.
Details of these specifications are provided in the product data.

Provided that these specifications are met then any buffering employed may introduce an arbitrary delay into
a link signal without affecting its correct operation.

5.2 System services

5.2.1 Powering up and down, running and stopping

At all times the specification of input voltages with respect to the GND and VCC pins must be met. This
includes the times when the VCC pins are ramping to 5 V, and also while they are ramping from 5 V down
to 0 V.

The system services comprise the clocks, power, and signals used for initialization.

The specification includes minimum times that VCC must be within specification, the input clock must be
oscillating, and the Reset signal must be high before Reset goes low. These specifications ensure that
internal clocks and logic have settled before the transputer starts.

When the transputer is reset the memory interface is initialised (if present and configurable).

The processor and INMOS serial links start after reset. The transputer obeys a bootstrap program which
can either be in off-chip ROM or can be received from one of the links. How to specify where the bootstrap
program is taken from depends upon the type of transputer being used. The program will normally load up
a larger program either from ROM or from a peripheral such as a disk.

During power down, as during power up, the input and output pins must remain within specification with
respect to both GND and VCC.

5 Ph'\1c:i~::I1 architecture 21

A software error, such as arithmetic overflow, array bounds violation or divide by zero, causes an error flag to
be set in the transputer processor. The flag is directly connected to the Error pin. Both the flag and the pin
can be ignored, or the transputer stopped. Stopping the transputer on an error means that the error cannot
cause further corruption.

As well as containing the error in this way it is possible to determine the state of the transputer and its memory
at the time the error occurred.

5.2.2 Clock distribution

All transputers operate from a standard 5MHz input clock. High speed clocks are derived internally from the
low frequency input to avoid the problems of distributing high frequency clocks. Within limits the mark-to
space ratio, the voltage levels and the transition times are immaterial. The limits on these are given in the
product data for each product. The asynchronous data reception of the links means that differences in the
clock phase between chips is unimportant.

The important characteristic of the transputer's input clock is its stability, such as is provided by a crystal
oscillator. An R-C oscillator is inadequate. The edges of the clock should be monotonic (without kinks), and
should not undershoot below -0.5 V.

5.3 Bootstrapping from ROM or from a link

The program which is executed after reset can either reside in ROM in the transputer's address space or it
can be loaded via anyone of the transputer's INMOS serial links.

The transputer bootstraps from ROM by transferring control to the top two bytes in memory, which will
invariably contain a backward jump into ROM.

If bootstrapping from a link, the transputer bootstraps from the first link to receive a message. The first byte
of the message is the count of the number of bytes of program which follow. The program is loaded into
memory starting at a product dependent location MemStart, and then control is transferred to this address.

Messages subsequently arriving on other links are not acknowledged until the transputer processor obeys
a process which inputs from them. The loading of a network of transputers is controlled by the transputer
development system, which ensures that the first message each transputer receives is the bootstrap program.

5.4 Peripheral interfacing

All transputers contain one or more INMOS serial links. Certain transputer products also have other application
specific interfaces. The peripheral control transputers contain specialized interfaces to control a specific
peripheral or peripheral family.

In general, a transputer based application will comprise a number of transputers which communicate using
INMOS links. There are three methods of communicating with peripherals.

The first is by employing peripheral control transputers (eg for graphics or disks), in which the transputer chip
connects directly to the peripheral concerned (figure 5.1). The interface to the peripheral is implemented by
special purpose hardware within the transputer. The application software in the transputer is implemented
as an occam process, and controls the interface via occam channels linking the processor to the special
purpose hardware.

The second method is by employing link adaptors (figure 5.2). These devices convert between a link and a
specialized interface. The link adaptor is connected to the link of an appropriate transputer, which contains
the application designer's peripheral device handler implemented as an occam process.

The third method is by memory mapping the peripheral onto the memory bus of a transputer (figure 5.3).
The peripheral is controlled by memory accesses issued as a result of PORT inputs and outputs. The
application designer's peripheral device handler provides a standard occam channel interface to the rest of

22

the application.

transputer architecture

The first transputers implement an event pin which provides a simple means for an external peripheral to
request attention from a transputer.

In all three methods, the peripheral driver interfaces to the rest of the application via occam channels.
Consequently, a peripheral device can be simulated by an occam process. This enables testing of all
aspects of a transputer system before the construction of hardware.

Transputer
Peripheral control

transputer
Peripheral control

transputer

Figure 5.1: Transputer with peripheral control transputers

Transputer

Figure 5.2: Transputer with link adaptors

transputer

Figure 5.3: Memory mapped peripherals

[m]mos Chapter 2

•

23

24 2 transputer overview

25

1 Introduction

The INMOS transputer family is a range of system components each of which combines processing, memory
and interconnect in a single VLSI chip. A concurrent system can be constructed from a collection of transputers
which operate concurrently and communicate through serial communication links. Such systems can be
designed and programmed in occam, a language based on communicating processes. Transputers have
been sucessfully used in application areas ranging from embedded systems to supercomputers.

The first member of the family, the IMS T414 32-bit transputer (Bibliography reference INMOS '84), was
introduced in September 1985, and has enabled concurrency to be applied in a wide variety of applications
such as simulation, robot control, image synthesis, and digital signal processing. Many computationally
intensive applications can exploit large arrays of transputers; the system performance depending on the
nunmber of transputers, the speed of inter-transputer communication and the performance of each transputer
processor.

Many important applications of transputers involve floating point arithmetic. The latest addition to the INMOS
transputer family, the IMS T800, can increase the performance of such systems by offering greatly improved
floating-point and communication performance. The IMS T800-20, available in the second half of 1987,
is capable of sustaining over one and a half million floating point operations per second; the IMS T800-30,
available in the first half of 1988, is capable of sustaining over two and a quarter million floating point operations
per second. The comparative figure for the IMS T414 transputer is somewhat less than one hundred thousand
floating point operations per second.

For publication references used in this chapter, see page 324.

26

2 basic architecture and cOlnc~eDlts

2.1 A programmable device

The transputer is a component designed to exploit the potential of VLSI. This technology allows large numbers
of identical devices to be manufactured cheaply. For this reason, it is attractive to implement a concurrent
system using a number of identical components, each of which is customised by an appropriate program.
The transputer is, therefore, a VLSI device with a processor, memory to store the program executed by
the processor, and communication links for direct connection to other transputers. Transputer systems can
be designed and programmed using occam which allows an application to be described as a collection of
processes which operate concurrently and communicate through channels. The transputer can therefore be
used as a building block for concurrent processing systems, with occam as the associated design formalism.

2.2 occam

occam enables a system to be described as a collection of concurrent processes, which communicate with
each other and with peripheral devices through channels. occam programs are built from three primitive
processes:

v := e
c ! e
c ? v

assign expression e to variable v
output expression e to channel c
input from channel c to variable v

The primitive processes are combined to form constructs:

SEQuential
PARallel
ALTernative

components executed one after another
components executed together
component first ready is executed

A construct is itself a process, and may be used as a component of another construct.

Conventional sequential programs can be expressed with variables and assignments, combined in sequential
constructs. IF and WHILE constructs are also provided.

Concurrent programs can be expressed with channels, inputs and outputs, which are combined in parallel
and alternative constructs.

Each occam channel provides a communication path between two concurrent processes. Communication
is synchronised and takes place when both the inputting process and the outputting process are ready. The
data to be output is then copied from the outputting process to the inputting process, and both processes
continue.

An alternative process may be ready for input from anyone of a number of channels. In this case, the input
is taken from the channel which is first used for output by another process.

2.3 VLSI technology

One important property of VLSI technology is that communication between devices is very much slower than
communication within a device. In a computer, almost every operation that the processor performs involves
the use of memory. For this reason a transputer includes both processor and memory in the same integrated
circuit device.

2 The transputer: basic architecture and concepts 27

In any system constructed from integrated circuit devices, much of the physical bulk arises from connections
between devices. The size of the package for an integrated circuit is determined more by the number of
connection pins than by the size of the device itself. In addition, connections between devices provided by
paths on a circuit board consume a considerable amount of space.

The speed of communication between electronic devices is optimised by the use of one-directional signal
wires, each connecting two devices. If many devices are connected by a shared bus, electrical problems of
driving the bus require that the speed is reduced. Also, additional control logic and wiring are required to
control sharing of the bus.

To provide maximum speed with minimal wiring, the transputer uses point-to-point serial communication links
for direct connection to other transputers. The protocols used on the transputer links are discussed later.

2.4 Simplified processor with micro-coded scheduler

The most effective implementation of simple programs by a programmable computer is provided by a se
quential processor. Consequently, the transputer has a fairly conventional microcoded processor. There is
a small core of about 32 instructions which are used to implement simple sequential programs. In addition
there are other, more specialised groups of instructions which provide facilities such as long arithmetic and
process scheduling.

As a process executed by a transputer may itself consist of a number of concurrent processes the transputer
has to support the occam programming model internally. The transputer, therefore, has a microcoded
scheduler which shares the processor time between the concurrent processes. The scheduler provides two
priority levels; any high priority process which can run will do so in preference to any low priority process.

2.5 Transputer products

The first transputer to become available was the INMOS IMS T414. This has a 32-bit processor, 2 Kbytes
of fast on-chip memory, a 32-bit external memory interface and 4 links for connection to other transputers.
The current fastest available version of this product, the IMS T414-20, has a 50 nS internal cycle time,
and achieves about 10 MIPS on sequential programs. The second transputer to become available was the
IMS T212; this is very similar to the IMS T414 but has a 16-bit processor and 16-bit external memory interface.
The remaining transputer in the family is the IMS M212 disk processor. This contains a 16-bit processor,
RAM, ROM, 2 inter-transputer links and special hardware to control both winchester and floppy disks.

In addition the transputer family includes a number of transputer link related products. There are the 'link
adaptors' which convert between handshaken 8-bit parallel data and INMOS link bit-serial data. These allow
transputers to be connected to conventional, bus-based systems, and also allow conventional microprocessors
to use transputer links as a system interconnect. In addition there is the IMS C004, which is a link exchange.

28

3 Transputer internal architecture

Internally, the IMS T414 consists of a memory, processor and communications system connected via a 32-bit
bus. The bus also connects to the external memory interface, enabling additional local memory to be used.
The processor, memory and communications system each occupy about 25% of the total silicon area, the
remainder being used for power distribution, clock generators and external connections.

The IMS T800, with its on-chip floating point unit, is only 20% larger in area than the IMS T414. The small
size and high performance come from a design which takes careful note of silicon economics. This contrasts
starkly with conventional co-processors, where the floating point unit typically occupies more area than a
complete micro-processor, and requires a second chip.

The block diagram 3.1 indicates the way in which the major blocks of the IMS T800 and IMS T414 are
interconnected.

RAM

CPU

RAM

LINKS

CPU

LINKS

IMS T800

Figure 3.1: Transputer interconnections

IMS T414

The CPU of the transputers contains three registers (A, B and C) used for integer and address arithmetic,
which form a hardware stack. Loading a value into the stack pushes B into C, and A into B, before loading A.
Storing a value from A pops B into A and C into B. Similarly, the FPU includes a three register floating-point
evaluation stack, containing the AF, BF, and CF registers. When values are loaded onto, or stored from the
stack the AF, BF and CF registers push and pop in the same way as the A, Band C registers.

The addresses of floating point values are formed on the CPU stack, and values are transferred between the
addressed memory locations and the FPU stack under the control of the CPU. As the CPU stack is used only
to hold the addresses of floating point values, the wordlength of the CPU is independent of that of the FPU.
Consequently, it would be possible to use the same FPU together with, for example, a 16-bit CPU such as
that used on the IMS T212 transputer.

The transputer scheduler provides two priority levels. The FPU register stack is duplicated so that when the
IMS T800 switches from low to high priority none of the state in the floating point unit is written to memory. This
results in a worst-case interrupt response of only 2.5 J1S (-30), or 3.7 J1S (-20). Furthermore, the duplication of
the register stack enables floating point arithmetic to be used in an interrupt routine without any performance
penalty.

3 Transputer internal architecture 29

3.1 Sequential processing

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; the CPU contains six registers which are used in the execution of a sequential process.
The small number of registers, together with the simplicity of the instruction set enables the processor to have
relatively simple (and fast) data-paths and control logic.

The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, Band C registers which form an evaluation stack, and are the sources and destinations for most
arithmetic and logical operations. Loading a value into the stack pushes B into C, and A into B, before
loading A. Storing a value from A, pops B into A and C into B.

ProgramLRegisters oca s

A

B

C

Workspace ~

Next inst

Operand

Figure 3.2: Registers

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this. never happens.

3.2 Instructions

It was a design decision that the transputer should be programmed in a high-level language. The instruction
set has, therefore, been designed for simple and efficient compilation. It contains a relatively small number
of instructions, all with the same format, chosen to give a compact representation of the operations most
frequently occuring in programs. The instruction set is independant of the processor wordlength, allowing the
same microcode to be used for transputers with different wordlengths. Each instruction consists of a single
byte divided into two 4-bit parts. The four most significant bits of the byte are a function code, and the four
least significant bits are a data value.

30

3.2.1 Direct functions

IFunction Data

743 0

Figure 3.3: Instruction format

2 transputer overview

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these are used to encode the most important functions performed by any computer. These include:

load constant
load local
load non-local
jump

add constant
store local
store non-local
conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values, and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of block structured programming languages such as occam.

3.2.2 Prefix functions

Two more of the function codes are used to allow the operand of any instruction to be extended in length.
These are:

prefix negative prefix

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the the instruction's operand. All instructions except the prefix instructions
end by clearing the operand register, ready for the next instruction.

Operand Register

Figure 3.4: Instruction operand register

The prefix instruction loads its four data bits into the operand register, and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

3 Transputer internal architecture 31

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation, by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

The encoding of the indirect functions is chosen so that the most frequently occuring operations are repre
sented without the use of a prefix instruction. These include arithmetic, logical and comparison operations
such as

add exclusive or greater than

Less frequently occuring operations have encodings which require a single prefix operation (the transputer
instruction set is not large enough to require more than 512 operations to be encoded!).

The IMS T800 has additional instructions which load into, operate on, and store from, the floating point
register stack. It also contains new instructions which support colour graphics, pattern recognition and the
implementation of error correcting codes. These instructions have been added whilst retaining the existing
IMS T414 instruction set. This has been possible because of the extensible instruction encoding used in
transputers.

3.2.4 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte (ie vvithout the use
of prefix instructions). Many of these instructions, such as load constant and add require just one processor
cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive several instructions for every fetch.

Short instructions also improve the effectiveness of instruction prefetch, which in turn improves processor
performance. There is an extra word of prefetch buffer so that the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is litt!e time penalty when a jump instruction causes
the buffer contents to be discarded.

3.3 Support for concurrency

The processor provides efficient support for the occam model of concurrency and communication. It has a
microcoded scheduler which enables any number of concurrent processes to be executed together, sharing
the processor time. This removes the need for a software kernel. The processor does not need to support the
dynamic allocation of storage as the occam compiler is able to perform the allocation of space to concurrent
processes.

32

At any time, a concurrent process may be

2 transputer overview

active

inactive

being executed
on a list waiting to be executed
ready to input
ready to output
waiting until a specified time

The scheduler operates in such a way that inactive processes do not consume any processor time. The active
processes waiting to be executed are held on a list. This is a linked list of process workspaces, implemented
using two registers, one of which points to the first process on the list, the other to the last. In figure 3.5, S is
executing, and P, Q and R are active, awaiting execution.

Registers

Front

Back

A

B

c

Workspace

Next Inst

Operand

Locals

P

Q

R

s

Program

Figure 3.5: Linked process list

A process is executed until it is unable to proceed because it is waiting to input or output, or waiting for the
timer. Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the next
process is taken from the list. Actual process switch times are very small as little state needs to be saved; it
is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model. These include

start process end process

When a parallel construct is executed, start process instructions are used to create the necessary concurrent
processes. A start process instruction creates a new process by adding a new workspace to the end of the
scheduling list, enabling the new concurrent process to be executed together with the ones already being
executed.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the components of the parallel construct which have still to terminate.
The counter is initialised to the number of components before the processes are 'started'. Each component
ends with an end process instruction which decrements and tests the counter. For all but the last component,
the counter is non zero and the component is descheduled. For the last component, the counter is zero and
the component continues.

3 Transputer internal architecture

3.4 Communications

33

Communication between processes is achieved by means of channels. occam communication is point-to
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being

input message output message

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. This means that the same instruction sequence can be used for both hard
and soft channels, allowing a process to be written and compiled without knowledge of where its channels
are connected.

As in the occam model, communication takes place when both the inputting and outputting processes are
ready. Consequently, the process which first becomes ready must wait until the second one is also ready.

A process performs an input or output by loading the evaluation stack with a pointer to a message, the
address of a channel, and a count of the number of bytes to be transferred, and then executing an input
message or an output message instruction.

3.4.1 Internal channel communication

At any time, an internal channel (a single word in memory) either holds the identity of a process, or holds the
special value empty. The channel is initialised to empty before it is used.

When a message is passed using the channel, the identity of the first process to become ready is stored
in the channel, and the processor starts to execute the next process from the scheduling list. When the
second process to use the channel becomes ready, the message is copied, the waiting process is added to
the scheduling list, and the channel reset to its initial state. It does not matter whether the inputting or the
outputting process becomes ready first.

In figure 3.6, a process P is about to execute an output instruction on an 'empty' channel C. The evaluation
stack holds a pointer to a message, the address of channel C, and a count of the number of bytes in the
message.

P

Registers

c

A: count

B: channel .J Empty I~I

c: Pointer

Figure 3.6: Output to empty channel

34 2 transputer overview

After executing the output instruction, the channel C holds the address of the workspace of P, and the address
of the message to be transferred is stored in the workspace of P. P is descheduled, and the process starts
to execute the next process from the scheduling list.

P

Workspace

Next Inst

Pointer

I
I

C

P

Figure 3.7:

The channel C and the process P remain in this state until a second process, Q executes an output instruction
on the channel.

P C Q

Workspace
A: Count

Next Inst I P I..... B: Channel.....,

I I~

Pointer C: Pointer

Figure 3.8:

The message is copied, the waiting process P is added to the scheduling list, and the channel C is reset to
its initial 'empty' state.

P C

Workspace

Next Inst 8
-. List --.

Figure 3.9:

3 Transputer internal architecture 35

3.4.2 External channel communication

When a message is passed via an external channel the processor delegates to an autonomous link interface
the job of transferring the message and deschedules the process. When the message has been transferred
the link interface causes the processor to reschedule the waiting process. This allows the processor to
continue the execution of other processes whilst the external message transfer is taking place.

Each link interface uses three registers:

a pointer to a process workspace
a pointer to a message
a count of bytes in the message

In figure 3.10 processes P and Q executed by different transputers communicate using a channel C imple
mented by a link connecting two transputers. P outputs, and Q inputs.

P C Q

RReglsters eglsters

Count Count

Channel Channel
111"'" --

Pointer
--()---()-

Pointer

Figure 3.10: Communication between transputers

Q

W k
CP

W kor space or space

Next Inst ... P Q ... Next Inst-- -
Pointer --()- Pointer

Count Count

Figure 3.11 :

When P executes its output instruction, the registers in the link interface of the transputer executing Pare
initialised, and P is descheduled. Similarly, when Q executes its input instruction, the registers in the link
interface of the process executing Q are initialised, and Q is descheduled (figure 3.11).

The message is now copied through the link, after which the workspaces of P and Q are returned to the
corresponding scheduling lists (figure 3.12). The protocol used on P and Q ensures that it does not matter
which of P and Q first becomes ready.

36 2 transputer overview

C Q
or space Workspace

Next Inst Next Inst

List ~ ~)- --. List

p

W k

Figure 3.12:

3.4.3 Communication links

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer by two one-directional signal wires, along which data is transmitted serially.
The two wires provide two occam channels, one in each direction. This requires a simple protocol to
multiplex data and control information. Messages are transmitted as a sequence of bytes, each of which
must be acknowledged before the next is transmitted. A byte of data is transmitted as a start bit followed by
a one bit followed by eight bits of data followed by a stop bit. An acknowledgement is transmitted as a start
bit followed by a stop bit. An acknowledgement indicates both that a process was able to receive the data
byte and that it is able to buffer another byte.

The protocol permits an acknowledgement to be generated as soon as the receiver has identified a data
packet. In this way the acknowledgement can be received by the transmitter before all of the data packet
has been transmitted and the transmitter can transmit the next data packet immediately. The IMS T414
transputer does not implement this overlapping and achieves a data rate of 0.8 Mbytes per second using
a link to transfer data in one direction. However, by implementing the overlapping and including sufficient
buffering in the link hardware, the IMS T800 more than doubles this data rate to 1.8 Mbytes per second in
one direction, and achieves 2.4 Mbytes per second when the link carries data in both directions. The diagram
below shows the signals that would be observed on the two link wires when a data packet is overlapped with
an acknowledgement.

EI D_at_a I~
Data byte

Acknowledge message

Figure 3.13: Link data and acknowledge formats

3 Transputer internal architecture 37

3.5 Timer

Input Link

Output Link

____[2]'-----_

time

Figure 3.14: Overlapped link acknowledge

The transputer has a clock which 'ticks' every microsecond. The current value of the processor clock can be
read by executing a read timer instruction.

A process can arrange to perform a timer input, in which case it will become ready to execute after a specified
time has been reached.

The timer input instruction requires a time to be specified. If this time is in the 'past' (i.e. ClockReg AFTER
SpecifiedTime) then the instruction has no effect. If the time is in the 'future' (i.e. SpecifiedTime AFTER
Clockreg or SpecifiedTime = ClockReg) then the process is descheduled. When the specified time is reached
the process is scheduled again.

3.6 Alternative

The occam alternative construct enables a process to wait for input from anyone of a number of channels,
or until a specific time occurs. This requires special instructions, as the normal input instruction deschedules
a process until a specific channel becomes ready, or until a specific time is reached. The instructions are:

enable channel
enable timer
alternative wait

disable channel
disable timer

The alternative is implemented by 'enabling' the channel input or timer input specified in each of its compo
nents. The 'alternative wait' is then used to deschedule the process if none of the channel or timer inputs is
ready; the process will be re-scheduled when anyone of them becomes ready. The channel and timer inputs
are then 'disabled'. The 'disable' instructions are also designed to select the component of the alternative to
be executed; the first component found to be ready is executed.

3.7 Floating point instructions

The core of the floating point instruction set was established fairly early in the design of the IMS T800. This
core includes simple load, store and arithmetic instructions. Examination of statistics derived from FORTRAN
programs suggested that the addition of some more complex instructions would improve performance and
code density. Proposed changes to the instruction set were assesed by examining their effect on a number of
numerical programs. For each proposed instruction set, a compiler was constructed, the programs compiled
with it, and the resulting code then run on a simulator. The resulting instruction set is now described.

In the IMS T800 operands are transferred between the transputer's memory and the floating point evaluation
stack by means of floating point load and store instructions. There are two groups of such instructions, one
for single length numbers, one for double length. In the description of the load and store instructions which
follow only the double length instructions are described. However, there are single length instructions which
correspond with each of the double length instructions.

38 2 transputer overview

The address of a floating point operand is computed on the CPU's stack and the operand is then loaded,
from the addressed memory location, onto the FPU's stack. Operands in the floating point stack are tagged
with their length. The operand's tag will be set when the operand is loaded or is computed. The tags allow
the number of instructions needed for floating point operations to be reduced; there is no need, for example,
to have both floating add single and floating add double instructions; a single floating add will suffice.

3.7.1 Optimising use of the stack

The depth of the register stacks in the CPU and FPU is carefully chosen. Floating point expressions commonly
have embedded address calculations, as the operands of floating point operators are often elements of one
dimensional or two dimensional arrays. The CPU stack is deep enough to allow most integer calculations
and address calculations to be performed within it. Similarly, the depth of the FPU stack allows most floating
point expressions to be evaluated within it, employing the CPU stack to form addresses for the operands.

No hardware is used to deal with stack overflow. A compiler can easily examine expressions and introduce
temporary variables in memory to avoid stack overflow. The number of such temporary variables can be
mininlised by careful choice of the evaluation order; an algorithm to perform this optimisation is given in
Bibliography reference INMOS '87. The algorithm, already used to optimise the use of the integer stack of
the IMS T414, is also used for the main CPU of the IMS T800.

3.7.2 Concurrent operation of FPU and CPU

In the IMS T800 the FPU operates concurrently with the CPU. This means that it is possible to perform
an address calculation in the CPU whilst the FPU performs a floating point calculation. This can lead to
significant performance improvements in real appiications which access arrays heavily. This aspect of the
IMS T800's performance was carefully assessed, partly through examination of the 'Livermore Loops' (Bib
liography reference McMahon). These are a collection of small kernels designed to represent the types of
calculation performed on super-computers. They are of interest because they contain constructs which occur
in real programs which are not represented in such programs as the Whetstone benchmark (see below).
In particular, they contain accesses to two and three-dimensional arrays, operations where the concurrency
within the Hv1S T800 is used to good effect. In some cases the compiler is able to choose the order of
performing address calculations so as to maximise overlapping; this involves a modification of the algorithm
mentioned earlier.

As a simple example of overlapping consider the implementation of Livermore Loop 7. The IMS T800-30
achieves a speed of 2.25 Mflops on this benchmark; for comparison the IMS T800-20 achieves 1.5 Mflops,
the IMS T414-20 achieves 0.09 Mflops and a VAX 11/780 (with floating point accelerator - fpa) achieves
0.54 Mflops. The occam program for loop 7 is as follows:

-- LIVERMORE LOOP 7
SEQ k = 0 FOR n

x[k]:= u[k] + «(r*(z[k] + (r*y[k]») +
(t*«u[k+3] + (r*(u[k+2] + (r*u[k+l]»»») +
(t*«u[k+6] + (r*(u[k+S] + (r*u[k+4]»»»)

The first stage in the computation of this is to load the value y [k]. This requires a sequence of four
instructions. A further three instructions cause r to be loaded and the FPU multiply to be initiated.

Although the floating point multiplication takes several cycles to complete, the CPU is able to continue exe
cuting instructions whilst the FPU performs the mUltiplication. Thus the CPU can execute the next segment
of code which computes the address of z [k] whilst the FPU perfroms the multiplication.

Finally, the value z [k] is pushed onto the floating point stack and added to the previously computed subex
pression r*y [k]. It is not until value z [k] is loaded that the CPU needs to synchronise with the FPU.

The computation of the remainder of the expression proceeds in the same way, and the FPU never has to
wait for the CPU to perform an address calculation.

3 Transputer internal architecture

3.8 Floating point unit design

39

In designing a concurrent systems component such as the IMS T800, it is important to maximise the per
formance obtained from a given area of silicon; many components can be used together to deliver more
performance. This contrasts with the design of a conventional co-processor where the aim is to maximise
the performance of a single processor by the use of a large area of silicon. As a result, in designing the
IMS T800, the performance benefits of silicon hungry devices such as barrel shifters and flash multipliers
were carefully examined.

A flash multiplier is too large to fit on chip together with the processor, and would therefore necessitate the
use of a separate co-processor chip. The introduction of a co-processor interface to a separate chip slows
down the rate at which operands can be transferred to and from the floating point unit. Higher performance
can, therefore, be obtained from a slow multiplier on the same chip as the processor than from a fast one
on a separate chip. This leads to an important conclusion: a separate co-processor chip is not appropriate
for scalar floating point arithmetic. A separate co-processor would be effective where a large amount of
work can be handed to the co-processor by transferring a small amount of information; for example a vector
co-processor would require only the addresses of its vector operands to be transferred via the co-processor
interface.

It turns out that a flash multiplier also operates much more quickly than is necessary. Only a pipelined vector
processor can deliver operands at a rate consistent with the use of such devices. In fact, any useful floating
point calculation involves more operand accesses than operations. As an example consider the assignment
y [i] : = y [i] + (t * x [i]) which constitutes the core of the LINPACK floating point benchmark.
To perform this it is necessary to load three operands, perform two operations and to store a result. If we
assume that it takes twice as long to perform a floating point operation as to load or store a floating point
number then the execution time of this example would be evenly split between operand access time and
operation time. This means that there would be at most a factor of two available in performance improvement
from the use of an infinitely fast floating point unit!

Unlike a flash multiplier, a fast normalising shifter is important for fast floating point operation. When imple
menting IEEE arithmetic it may be necessary to perform a long shift on every floating point operation and
unless a fast shifter is incorporated into the floating point unit the maximum operation time can become very
long. Fortunately, unlike a flash multiplier, it is possible to design a fast shifter in a reasonable area of silicon.
The shifter used in the IMS T800 is designed to perform a shift in a single cycle and to normalise in two
cycles.

Consequently, the floating point unit of the IMS T800 contains a fast normalising shifter but not a flash
multiplier. However there is a certain amount of logic devoted to multiplication and division. Multiplication is
performed three-bits per cycle, and division is performed two-bits per cycle. This gives rise to a single length
multiplication time of 13 cycles (433 nS (-30), or 650 nS (-20)) and a double length divide time of 34 cycles
(1.13/1-S (-30), or 1.7 /1-S (-20)).

Figure 3.15 illustrates the physical layout of the floating point unit.

The data'paths contain registers and shift paths. The fraction datapath is 59 bits wide, and the exponent
data path is 13 bits wide. The normalising shifter interfaces to both the fraction data path and the exponent
datapath. This is because the data to be shifted will come from the fraction datapath whilst the magnitude
of the shift is associated with the exponent datapath. One further interesting aspect of the design is the
microcode ROM. Although the diagram shows two RaMs, they are both part of the same logical ROM. This
has been split in two so that control signals do not need to be bussed through the datapaths.

3.9 Floating point performance

The IMS T414 has microcode support for 32-bit floating point arithmetic which gives it performance com
parable with the current generation of floating point co-processors. It achieves an operation time of about
10 microseconds on single length IEEE 754 floating point numbers. The IMS T800-20 betters the floating
point operation speed of the IMS T414 by more than an order of magnitude; its operation times are shown
in table 3.1 .

40 2 transputer overview

ALU ALU

ROM Fraction Exponent ROM
Datapath Datapath

Normalising Shifter

Interface

Block diagram of floating point unit

Figure 3.15: Floating point unit block diagram

Table 3.1: Floating point performance

IMS T800-30 IMS T800-20 IMS T414-20
Operation Single Double Single Double Single Double
add 233 nS 233 nS 350 nS 350 nS 11.5 {LS 28.3 {LS
subtract 233 nS 233 nS 350 nS 350 nS 11.5 {LS 28.3 {LS
multiply 367 nS 667 nS 550 nS 1000 nS 10.0 {LS 38.0 {LS
divide 567 nS 1067 nS 850 nS 1600 nS 12.3 {LS 55.75 {LS

The operation time is not a reliable measure of performance on real numerical programs. For this reason,
floating point performance is often measured by the Whetstone benchmark. The ,Whetstone benchmark
provides a good mix of floating point operations, and also includes procedure calls, array indexing and
transcendental functions. It is, in some sense, a 'typical' scientific program.

The performance of the IMS T414 and IMS T800 as measured by the Whetstone benchmark is shown in
table 3.2.

Another important measure is the performance obtained from a given area of silicon - or the performance of a
single chip. The IMS T800 requires negligible support circuitry and can even be used without external memory.
Consequently, the circuit board area needed for a typical microprocessor with co-processor, memory and
support circuitry can instead be used for several IMS T800 devices, providing several times the performance
in any concurrent application.

Table 3.2: Floating point performance

Whetstones/second
Processor single length

VAX 11/780 FPA UNIX 4.3 BSD 1083K
IMS T414-20 20 MHz 663K
IMS T800-20 20 MHz 4000K
IMS T800-30 30 MHz 6000K

3 Transputer internal architecture

3.10 Graphics capability

41

The 'bit-bit' operations of a conventional graphics processor no longer seem appropriate in these days of
byte (or greater) per pixel colour displays. The fast block move of the IMS T414 make it suitable for use in
graphics applications using byte-per-pixel colour displays.

The block move on the IMS T414 is designed to saturate the memory bandwidth, moving any number of bytes
from any byte boundary in memory to any other byte boundary using the smallest possible number of word
read and write operations. Using the transputer's internal memory the block move sustains a transfer rate of
60 Mbytes per second (-30), or 40 Mbytes per second (-20); using the fastest possible external memory the
block move sustains 20 Mbytes per second (-30) or 13.3 Mbytes per second (-20).

The IMS T800 extends this capability by incorporation of a two-dimensional version of the block move
(Move2d) which can move windows around a screen at full memory bandwidth, and conditional versions
of the same block move which can be used to place templates and text into windows. One of these oper
ations (Draw2d) copies bytes from source to destination, writing only non-zero bytes to the destination. A
new object of any shape can therefore be drawn on top of the current image. A further operation (Clip2d)
copies only zero bytes in the source. All of these instructions achieve the speed of the simple IMS T414
move instruction, enabling a 1 million pixel screen to be drawn 13 times per second. Unlike the conventional
'bit-bit' instruction, it is never necessary to read the destination data.

3.10.1 Example - drawing coloured text

Drawing proportional spaced text provides a simple example of the use of the IMS T800 instructions. The
font is stored in a two dimensional array Font; the height of Font is the fixed character height, and the
start of each character is defined by an array start. The textures of the character and its background are
selected from an array of textures; the textures providing a range of colours or even stripes and tartans!

An occam procedure to perform such drawing is given below and the effect of each stage in the drawing
process is illustrated by the diagrams on the final-page of this document. First, (1) the texture for the character
is selected and copied to a temporary area and (2) the ·character in the font is used to clip this texture to the
appropriate shape. Then (3) the background texture is selected and copied to the screen, and (4) the new
character drawn on top of it.

-- Draw character ch in texture F on background texture B
PROC DrawChar(VAL INT Ch, F, B)

SEQ
IF

(x + width[ch]) > screenwidth
SEQ

x := °
y := y + height

(x + width[ch]) <= screenwidth
SKIP

[height] [maxwidth] BYTE Temp :
SEQ

Move2d(Texture[F],O,O, Temp,O,O, width[ch],height)
Clip2d(Font[ch],start[ch],O, Temp,O,O, width[ch],height)
Move2d(Texture[B],O,O, Screen,x,y, width[ch],height»
Draw2d(Temp,O,O, Screen,x,y, width[ch],height)
x := x + width[ch]

This procedure will fill a 1 million pixel screen with proportionally spaced characters in about 1/6 second.
Obviously, a simpler and faster version could be used if the character colour or background colour was
restricted. The operation of this procedure is illustrated in figure 3.16.

42 2 transputer overview

1)

Move2d •

temp
texture #1

D
temp

2)

[g •Clip2d

character temp

temp

3)

Move2d

texture #2

screen

4)

Draw2d

temp

Figure 3.16: Use of enhanced graphics instructions

43

4 Conclusion

The INMOS transputer family is a range of system components which can be used to construct high per
formance concurrent systems. As all members of the family incorporate INMOS communications links, a
system may be constructed from different members of the family. All transputers provide hardware support
for concurrency and offer exceptional performance on process scheduling, inter-process communication and
inter-transputer communication.

The design of the transputers takes careful note of silicon economics. The central processor used in the
transputer offers a performance comparable with that of other VLSI processors several times larger. The
small size of the processor allows a memory and communications system to be integrated on to the same
VLSI device. This level of integration allows very fast access to memory and very fast inter-transputer
communication. Similarly, the transputer floating point unit is integrated into the same device as the central
processor, eliminating the delays inherent in communicating data between devices.

44 2 transputer overview

45

46

1 Introduction

32 bit
Processor

Li nk
Services

Link LinklnO
Interface LinkOutO

Link Linkln1
Interface LinkOut1

Link Linkln2
Interface LinkOut2

Link Linkln3
Interface LinkOut3

Event
EventReq
EventAck

MemAD2-31
32 MemnotRfD1

MemnotWrDO

Timers

Floating Point Unit

External
Memory
Interface

System
Services

4 Kbytes
of

On-chip
RAM

VCC
GND

CapPIu-s
CapMinus

Reset
Analyse
Errorln

Error
BootFromROM

Clockln
ProcSpeed

SelectO-2

ProcClockOut
notMemSO-4

notMemWrBO-3
notMemRd
notMemRf

MemWait
MemConfig

MemReq
MemGranted

Figure 1.1: IMS T800 block diagram

Introduction 47

The IMS T800 transputer is a 32 bit CMOS microcomputer with a 64 bit floating point unit and graphics support.
It has 4 Kbytes on-chip RAM for high speed processing, a configurable memory interface and four standard
INMOS communication links. The instruction set achieves efficient implementation of high level languages
and provides direct support for the occam model of concurrency when using either a single transputer or a
network. Procedure calls, process switching and typical interrupt latency are sub-microsecond.

The processor speed of a device can be pin-selected in stages from 17.5 MHz up to the maximum allowed
for the part. A device running at 30 MHz achieves an instruction throughput of 15 MIPS.

The IMS T800 provides high performance arithmetic and floating point operations. The 64 bit floating point unit
provides single and double length operation to the ANSI-IEEE 754-1985 standard for floating point arithmetic.
It is able to perform floating point operations concurrently with the processor, sustaining a rate of 1.5 Mflops
at a processor speed of 20 MHz and 2.25 Mflops at 30 MHz.

High performance graphics support is provided by microcoded block move instructions which operate at the
speed of memory. The two-dimensional block move instructions provide for contiguous block moves as well
as block copying of either non-zero bytes of data only or zero bytes only. Block move instructions can be used
to provide graphics operations such as text manipulation, windowing, panning, scrolling and screen updating.

Cyclic redundancy checking (CRC) instructions are available for use on arbitrary length serial data streams,
to provide error detection where data integrity is critical. Another feature of the IMS T800, useful for pattern
recognition, is the facility to count bits set in a word.

The IMS T800 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface
uses multiplexed data and address lines and provides a data rate of up to 4 bytes every 100 nanoseconds
(40 Mbytes/sec) for a 30 MHz device. A configurable memory controller provides all timing, control and DRAM
refresh signals for a wide variety of mixed memory systems.

System Services include processor reset and bootstrap control, together with facilities for error analysis. Error
signals may be daisy-chained in multi-transputer systems.

The standard INMOS communication links allow networks of transputer family products to be constructed by
direct point to point connections with no external logic. The IMS T800 links support the standard operating
speed of 10 Mbits per second, but also operate at 5 or 20 Mbits per second. Each link can transfer data
bi-directionally at up to 2.35 Mbytes/sec.

The IMS T800-20 is pin compatible with the IMS T414-20, as the extra inputs used are all held to ground on
the IMS T414. The IMS T800-20 can thus be plugged directly into a circuit designed for a 20 MHz version of
the IMS T414. Software should be recompiled, although no changes to the source code are necessary.

The transputer is designed to implement the occam language, detailed in the occam Reference Manual,
but also efficiently supports other languages such as C, Pascal and Fortran. Access to specific features of
the IMS T800is described in the relevant system development manual. Access to the transputer at machine
level is seldom required, but if necessary refer to The Transputer Instruction Set A Compiler Writers' Guide.

This data sheet supplies hardware implementation and characterisation details for the IMS T800. It is intended
to be read in conjunction with the Transputer Reference Manual, which details the architecture of the transputer
and gives an overview of occam.

For convenience of description, the IMS T800 operation is split into the basic blocks shown in figure 1.1.

48

2

Pin

Table 2.1: IMS T800 system services

In/Out Function
Power supply and return
External capacitor for internal clock power supply

in Input clock
in Processor speed selectors
in System reset

out Error indicator
in Error daisychain input
in Error analysis
in Boot from external ROM or from link

Must be connected to
Must not be wired

Table 2.2: IMS T800 external memory interface

In/Out Function
ProcClockOut out Processor clock
MemnotWrDO in/out Multiplexed data bit 0 and write cycle warning
MemnotRfD1 in/out Multiplexed data bit 1 and refresh warning
MemAD2-31 in/out Multiplexed data and address bus
notMemRd out Read strobe
notMemWrBO-3 out Four byte-addressing write strobes
notMemSO-4 out Five general purpose strobes
notMemRf out Dynamic memory refresh indicator
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted
IVIs::ll - :111 in Memory configuration data input...,

Table 2.3: IMS T800 event

In/Out Function
..- - in Event request:: A out Event request acknowledge

Table 2.4: IMS T800 link

Pin In/Out Function
LinklnO-3 in Four serial data input channels
LinkOutO-3 out Four serial data output channels
I -- in Select non-standard speed as 5 or 20 Mbits/sec
I

in Select special speed for Link 0--- in Select special speed for Links 1,2,3,1111\

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 160.

49

3 Processor

The 32 bit processor. contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes
of memory via the External Memory Interface (EMI).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, Band C registers which form an evaluation stack.

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in The Transputer Instruction Set - A Compiler Writers' Guide.

ProgramLRegisters oca s

A

8

C

Workspace ~

Next inst

Operand

Figure 3.1: Registers

50

3.2 Instructions

3 IMS T800 engineering data

The instruction set has been designed for simple and efficient compilation of high-level languages. All in
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

Operand

Figure 3.2: Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these, shown in table 3.1, are used to encode the most important functions.

Table 3.1: Direct functions

load constant

load local

load non-local

jump

add constant

store local

store non-local

conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C, Fortran, Pascal or ADA.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

3 Processor 51

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2: Expression evaluation

Program

x := 0

x := #24

x := y + Z

Mnemonic

Idc 0
stl x

pfix 2
Idc 4
stl x

Idl y
Idl z
add
stl x

3.2.5 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

52

3.3 Processes and concurrency

3 IMS T800 en~~lnleerlna data

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 53).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active Being executed.
On a list waiting to be executed.

Inactive - Ready to input.
Ready to output.
Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 53). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Registers

FPtr1 (Front)

BPtr1 (Back)

A

B

c

Workspace

Next Inst

Operand

Locals

P

Q

R

s

Program

Figure 3.3: Linked process list

Table 3.3: Priority queue control registers

Function High Priority Low Priority
Pointer to front of active process list FptrO Fptr1
Pointer to back of active process list BptrO Bptr1

3 Processor 53

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 57). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1ms apart.

A process can only be descheduled on certain instructions, known as descheduling points (page 57). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 /-ls, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T800 supports two levels of priority. Priority 1 (Iow priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer's time; i.e. it has a distribution of descheduling points (page 57).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 millisecond at
the standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 78 cycles (assuming use of on-chip RAM).
If the floating point unit is not being used at the time then the maximum interrupt latency is only 58 cycles.
To ensure this latency, certain instructions are interruptable.

54

3.5 Communications

3 IMS T800 engineering data

Communication between processes is achieved by means of channels. Process communication is point-to
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Timers

The transputer has two 32 bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com
pletely in approximately 4295 milliseconds. The other is accessible only to low priority processes and is
incremented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approx
imately 76 hours.

Table 3.4: Timer registers

ClockO
Clock1
TNextRegO
TNextReg1

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

3 Processor 55

Workspaces Program

TimerO

Alarm

21
TNextRegO

TPtrLocO Empty

31

Figure 3.4: Timer registers

56

4 Instruction set summary

The Function Codes table 4.8. gives the basic function code set (page 50). Where the operand is less than 16,
a single byte encodes the complete instruction. If the operand is greater than 15, one prefix instruction (pfix)
is required for each additional four bits of the operand. If the operand is negative the first prefix instruction
will be nfix.

Table 4.1: prefix coding

Function Memory
Mnemonic code code

Ide #3 #4 #43

Ide #35
is coded as

pfix #3 #2 #23
Ide #5 #4 #45

Ide #987
is coded as

pfix #9 #2 #29
pfix #8 #2 #28
Ide #7, #4 #47

Ide -31 (Ide #FFFFFFE1)
is coded as

nfix #1 #6 #61
Ide #1 #4 #41

Tables 4.9 to 4.1 3 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2: operate coding

Function Memory
Mnemonic code code

add (op. code #5) #F5
is coded as

opr add #F #F5

ladd (op. code #16) #21F6
is coded as

pfix #1 #2 #21
opr #6 #F #F6

In the Floating Point Operation Codes tables 4.21 to 4.27, a selector sequence code (page 65) is indicated
in the Memory Code column by s. The code given in the Operation Code column is the indirection code, the
operand for the Ide instruction.

The FPU and processor operate concurrently, so the actual throughput of floating point instructions is better
than that implied by simply adding up the instruction times. For full details see The Transputer Instruction Set
- A Compiler Writers' Guide.

4 Instruction set summary 57

The Processor Cycles column refers to the number of periods TPClPCl taken by an instruction executing in
internal memory. The number of cycles is given for the basic operation only; where relevant the time for the
prefix function (one cycle) should be added. For a 20 MHz transputer one cycle is 50ns. Some instruction
times vary. Where a letter is included in the cycles column it is interpreted from table 4.3.

Table 4.3: Instruction set interpretation

Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

m Bit number of the highest bit set in the absolute value of register A.
Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

p Number of words per row.

r Number of rows.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4: Instruction features

Ident Feature See page:

D The instruction is a descheduling point 57

E The instruction will affect the Error flag 58, 72

F The instruction will affect the FP_Error flag 65, 58

4.1 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 52). They are
also the ones at which the processor will halt if the Analyse pin is asserted. (page 71).

Table 4.5: Descheduling point instructions

input message
timer alt wait
jump

output message
timer input
loop end

output byte
stop on error
end process

output word
alt wait
stop process

58

4.2 Error instructions

3 IMS T800 engineering data

The instructions in table 4.6 are the only ones which can affect the Error flag (page 72) directly. Note,
however, that the floating point unit error flag FP_Error is set by certain floating point instructions (page 58),
and that Error can be set from this flag by fpcheckerror.

Table 4.6: Error setting instructions

add
multiply
long add
set error
check word

add constant
fractional multiply
long subtract
testerr
check subscript from 0

subtract
divide
long divide
fpcheckerror
check single

remainder

check count from 1

4.3 Floating point errors

The instructions in table 4.7 are the only ones which can affect the floating point error flag FP_Error (page 65).
Error is set from this flag by fpcheckerror if FP_Error is set.

Table 4.7: Floating point error setting instructions

fpadd
fpldnladdsn
fpremfirs t
fpuseterror
fpuexpincby32
fpur32tor64
fprtoi32

fpsub
fpldnladddb
fpusqrtfirst
fpuclearerror
fpuexpdecby32
fpur64tor32
fpuabs

fpmul
fpldnlmulsn
fpgt
fptesterror
fpumulby2
fpucki32
fpint

fpdiv
fpldnlmuldb
fpeq

fpudivby2
fpucki64

4 Instruction set summary

Table 4.8: IMS T800 function codes

59

Function Memory Processor D
Code Code Mnemonic Cycles Name E

0 OX j I, 3 jump 0
1 1X ldlp 1 load local pointer
2 2X pfix 1 prefix
3 3X ldnl 2 load non-local
4 4X ldc 1 load constant
5 5X ldnlp 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X ldl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)

4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
0 OX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

Table 4.9: IMS T800 arithmetic/logical operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24FO shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 38 fractional multiply (no rounding) E
72 27F2 fmul 35 fractional multiply (rounding) E

40 multiply E
2C 22FC div 39 divide E
1F 21FF rem 37 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product for positive register A

m+5 product for negative register A

60 3 IMS T800 engineering data

Table 4.10: IMS T800 long arithmetic operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

16 21F6 ladd 2 long add E

38 23F8 Isub 2 long subtract E

37 23F7 Isum 2 long sum
4F 24FF Idiff 2 long diff
31 23F1 Imul 33 long multiply
1A 21FA Idiv 35 long divide E

36 23F6 Ishl n+3 long shift left (n<32)
n-28 long shift left(n232)

35 23F5 Ishr n+3 long shift right (n<32)
n-28 long shift right (n232)

19 21F9 norm n+5 normalise (n<32)
n-26 normalise (n232)

3 normalise (n=64)

Table 4.11: IMS T800 general operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

00 FO rev 1 reverse

3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
10 21FO xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer

Table 4.12: IMS T800 block move operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

58 25F8 move2dinit 8 initialise data for 20 block move
5C 25FC move2dall (2p+23)*r 20 block copy
50 25FO move2dnonzero (2p+23)*r 20 block copy non-zero bytes
5E 25FE move2dzero (2p+23)*r 20 block copy zero bytes

Table 4.13: IMS T800 CRC and bit operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

74 27F4 crcword 35 calculate crc on word
75 27F5 crcbyte 11 calculate crc on byte

76 27F6 bitcnt b+2 count bits set in word
77 27F7 bitrevword 36 reverse bits in word
78 27F8 bitrevnbits n+4 reverse bottom n bits in byte

4 Instruction set summary

Table 4.14: IMS T800 indexing/array operation codes

61

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

02 F2 bsub 1 byte subscript
OA FA wsub 2 word subscript
81 28F1 wsubdb 3 form double word subscript
34 23F4 bcnt 2 byte count
3F 23FF wcnt 5 word count
01 F1 Ib 5 load byte
3B 23FB sb 4 store byte

4A 24FA move 2w+8 move message

Table 4.15: IMS T800 timer handling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) 0

4 timer input (time past) 0
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) 0

48 timer alt wait (time future) 0
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer

Table 4.16: IMS T800 input/output operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

07 F7 in 2w+19 input message 0
OB FB out 2w+19 output message 0
OF FF outword 23 output word 0
DE FE outbyte 23 output byte 0

12 21F2 resetch 3 reset channel

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) 0

17 alt wait (channel not ready) 0
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip
30 23FO diss 4 disable skip

48 24F8 enbc 7 enable channel (ready)
5 enable channel (not ready)

2F 22FF disc 8 disable channel

62 3 IMS T800 engineering data

Table 4.17: IMS T800 control operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

20 22FO ret 5 return
18 21F8 Idpi L load pointer to instruction

3C 23FC gajw 2 general adjust workspace
5A 25FA dup 1 duplicate top of stack
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) 0

5 loop end (exit) 0

Table 4.18: IMS T800 scheduling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

00 FO startp 12 start process 0

03 F3 endp 13 end process 0

39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority

Table 4.19: IMS T800 error handling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

13 21F3 csubO 2 check subscript from 0 E

40 24FO ccnt1 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21FO seterr 1 set error E

55 25F5 stoperr 2 stop on error (no error) 0

57 25F7 c1rhalterr 1 clear halt-on-error

58 25F8 sethalterr 1 set halt-on-error

59 25F9 testhalterr 2 test halt-on-error

Table 4.20: IMS T800 processor initialisation operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FO savel 4 save low priority queue registers

18 21F8 sthf 1 store high priority front pointer

50 25FO sthb 1 store high priority back pointer

1C 21FC stlf 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer

4 Instruction set summary

Table 4.21: IMS T800 floating point load/store operation codes

63

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

8E
r-

28FE fpl~nlsn 2 fp load non-local single
8A 28FA fpldnldb 3 fp load non-local double
86 2rffF6 fpldnlsni 4 fp load non-local indexed single
82 28F2_ fpldnldbi 6 fp load non-local indexed double

9F 29FF fpldzerosn 2 load zero single
AO 2AFO fpldzerodb 2 load zero double

AA 2AFA fpldnladdsn 8/11 fp load non local & add single F
A6 2AF6 fpldnladddb 9/12 fp load non local & add double F
AC 2AFC fpldnlmulsn 13/20 fp load non local & multiply single F
A8 2AF8 fpldnlmuldb 21/30 fp load non local & multiply double F

-

88 28F8 fpstnlsn 2 fp store non-local single
84 28F4 fpstnldb 3 fp store non-local double
9E 29FE fpstnli32 4 store non-local int32

Processor cycles are shown as Typical/Maximum cycles.

Table 4.22: IMS T800 floating point general operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

AB 2AFB fpentry 1 floating point unit entry
A4 2AF4 fprev 1 fp reverse
A3 2AF3 fpdup 1 fp duplicate

Table 4.23: IMS T800 floating point rounding operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

22 s fpurn 1 set rounding mode to round nearest
06 s fpurz 1 set rounding mode to round zero
04 s fpurp 1 set rounding mode to round positive
05 s fpurm 1 set rounding mode to round minus

Table 4.24: IMS T800 floating point error operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

83 28F3 fpchkerror 1 check fp error E
9C 29FC fptesterror 2 test fp error false and clear F
23 s fpuseterror 1 set fp error ,F

9C s fpuclearerror 1 clear fp error F

64 3 IMS T800 engineering data

Table 4.25: IMS T800 floating point comparison operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

94 29F4 fpgt 4/6 fp greater than F
95 29F5 fpeq 3/5 fp equality F
92 29F2 fpordered 3/4 fp orderability
91 29F1 fpnan 2/3 fp NaN

93 29F3 fpnotfinite 2/2 fp not finite

OE s fpuchki32 3/4 check in range of type int32 F
OF s fpuchki64 3/4 check in range of type int64 F

Processor cycles are shown as Typical/Maximum cycles.

Table 4.26: IMS T800 floating point conversion operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

07 s fpur32tor64 3/4 real32 to real64 F

08 s fpur64tor32 6/9 real64 to real32 F
90 29FO fprtoi32 7/9 real to int32 F

96 29F6 fpi32tor32 8/10 int32 to real32
98 29F8 fpi32tor64 8/10 int32 to real64
9A 29FA fpb32tor64 8/8 bit32 to real64
00 s fpunoround 2/2 real64 to real32, no round
A1 2AF1 fpint 5/6 round to floating integer F

Processor cycles are shown as Typical/Maximum cycles.

Table 4.27: IMS T800 floating point arithmetic operation codes

Operation Memory Processor cycles D
Code Code Mnemonic Single Double Name E

87 28F7 fpadd 6/9 6/9 fp add F

89 28F9 fpsub 6/9 6/9 fp subtract F
8B 28FB fpmul 11/18 18/27 fp multiply F

8C 28FC fpdiv 16/28 31/43 fp divide F
OB s fpuabs 2/2 2/2 fp absolute F
8F 28FF fpremfirst 36/46 36/46 fp remainder first step F
90 29FO fpremstep 32/36 32/36 fp remainder iteration
01 s fpusqrtfirst 27/29 27/29 fp square root first step F
02 s fpusqrtstep 42/42 42/42 fp square root step
03 s fpusqrtlast 8/9 8/9 fp square root end

OA s fpuexpinc32 6/9 6/9 multiply by 232 F

09 s fpuexpdec32 6/9 6/9 divide by 232 F
12 s fpumulby2 6/9 6/9 multiply by 2.0 F
11 s fpudivby2 6/9 6/9 divide by 2.0 F

Processor cycles are shown as Typical/Maximum cycles.

5 unit

65

The 64 bit FPU provides single and double length arithmetic to floating point standard ANSI-IEEE 754-1985.
It is able to perform floating point arithmetic concurrently with the central processor unit (CPU), sustaining in
excess of 2.25 Mflops on a 30 MHz device. All data communication between memory and the FPU occurs
under control of the CPU.

The FPU consists of a microcoded computing engine with a three deep floating point evaluation stack for
manipulation of floating point numbers. These stack registers are FA, FB and Fe, each of which can hold
either 32 bit or 64 bit data; an associated flag, set when a floating point value is loaded, indicates which. The
stack behaves in a similar manner to the CPU stack (page 49).

As with the CPU stack, the FPU stack is not saved when rescheduling (page 52) occurs. The FPU can
be used in both low and high priority processes. When a high priority process interrupts a low priority one
the FPU state is saved inside the FPU. The CPU will service the interrupt immediately on completing its
current operation. The high priority process will not start, however, before the FPU has completed its current
operation.

Points in an instruction stream where data need to be transferred to or from the FPU are called synchronisation
points. At a synchronisation point the first processing unit to become ready will wait until the other is ready.
The data transfer will then occur and both processors will proceed concurrently again. In order to make
full use of concurrency, floating point data source and destination addresses can be calculated by the CPU
whilst the FPU is performing operations on a previous set of data. Device performance is thus optimised by
minimising the CPU and FPU idle times.

The FPU has been designed to operate on both single length (32 bit) and double length (64 bit) floating
point numbers, and returns results which fully conform to the ANSI-IEEE 754-1985floating point arithmetic
standard. Denormalised numbers are fully supported in the hardware. All rounding modes defined by the
standard are implemented, with the default being round to nearest.

The basic addition, subtraction, multiplication and division operations are performed by single instructions.
However, certain less frequently used floating point instructions are selected by a value in register A (when
allocating registers, this should be taken into account). A load constant instruction Idc is used to load
register A; the floating point entry instruction fpentry then uses this value to select the floating point operation.
This pair of instructions is termed a selector sequence.

Names of operations which use fpentry begin with fpu. A typical usage, returning the absolute value of a
floating point number, would be

Idc fpuabs; fpentry;

Since the indirection code for fpuabs is OB, it would be encoded as

Table 5.1: fpentry coding

Function Memory
Mnemonic code code

Idc fpuabs #4 #4B

fpentry (op. code #AB) #2AFB
is coded as

pfix #A #2 #2A
opr #B #F #FB

66 3 IMS TSOO engineering data

The remainder and square root instructions take considerably longer than other instructions to complete. In
order to minimise the interrupt latency period of the transputer they are split up to form instruction sequences.
As an example, the instruction sequence for a single length square root is

fpusqrtfirst; fpusqrtstep; fpusqrtstep; fpusqrtlast;

The FPU has its own error flag FP_Error. This reflects the state of evaluation within the FPU and is
set in circumstances where invalid operations, division by zero or overflow exceptions to the ANSI-IEEE
754-1985standard would be flagged (page 58). FP_Error is also set if an input to a floating point operation is
infinite or is not a number (NaN). The FP_Error flag can be set, tested and cleared without affecting the main
Error flag, but can also set Error when required (page 58). Depending on how a program is compiled, it is
possible for both unchecked and fully checked floating point arithmetic to be performed.

Further details on the operation of the ITPU can be found in The Transputer Instruction Set - A Compiler
Writers' Guide.

Table 5.2: Typijal floating point operation times for IMS T800

(rSOO-20 TSOO-30
Operation Single length Double length Single length Double length

add 350 n! 350 ns 233 ns 233 ns
subtract 350 ~k 350 ns 233 ns 233 ns
multiply 550 QS 1000 ns 367 ns 667 ns
divide 850 ~s 1600 ns 567 ns 1067 ns

Timing is for operations where both operands are normalised fp numbers.

6 ~v'stE~m services

67

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

6.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power
down ramping, otherwise /atchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

6.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1J.lF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the nega
tive terminal should be connected to CapMinus. Total PCS track length should be less than 50mm. The
connections must not touch power supplies or other noise sources.

CapPlus

CapMinus

P.C.B. track

P.C.B. track

Decoupling
Capacitor

1/-lF

6.3 Clockln

Figure 6.1: Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

68 3 IMS T800 engineering data

Table 6.1: Input clock

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (page 99).

10% - -

TDCf TDCr

Figure 6.2: Clockln timing

6.4 ProcSpeedSelectO-2

Processor speed of the IMS T800 is variable in discrete steps. The desired speed can be selected, up to the
maximum rated for a particular component, by the three speed select lines ProcSpeedSelectO-2. The pins
are tied high or low, according to the table below, Jor the various speeds. The ProcSpeedSelectO-2 pins
are designated HoldToGND on the IMS T414, and coding is so arranged that the IMS T800 can be plugged
directly into a board designed for a 20MHz IMS T414.

Only six of the possible speed select combinations are currently used; the other two are not valid speed
selectors. The frequency of Clockln for the speeds given in the table is 5 MHz.

6 System services

Table 6.2: Processor speed selection

Proc Proc Proc Processor Processor
Speed Speed Speed Clock Cycle
Select2 Select1 SelectO Speed MHz Time nS Notes

0 0 0 20.0 50.0
0 0 1 22.5 44.4
0 1 0 25.0 40.0
0 1 1 30.0 33.3
1 0 0 35.0 28.6
1 0 1 Invalid
1 1 0 17.5 57.1
1 1 1 Invalid

Note: Inclusion of a speed selection in this table does not imply immediate availability.

6.5 Reset

69

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC is
valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge of
Reset initialises the transputer, triggers the memory configuration sequence and starts the bootstrap routine.
Link outputs are forced low during reset; link inputs and EventReq should be held low. Memory request
(DMA) must not occur whilst Reset is high but can occur before bootstrap (page 93).

After the end of Reset there will be a delay of 144 periods of Clockln (figure 6.3). Following this, the
MemWrDO, MemRfD1 and MemAD2-31 pins will be scanned to check for the existence of a pre-programmed
memory interface configuration (page 84). This lasts for a further 144 periods of Clockln. Regardless of
whether a configuration was found, 36 configuration read cycles will then be performed on external memory
using the default memory configuration (page 85), in an attempt to access the external configuration ROM.
A delay will then occur, its period depending on the actual configuration. Finally eight complete and con
secutive refresh cycles will initialise any dynamic RAM, using the new memory configuration. If the memory
configuration does not enable refresh of dynamic RAM the refresh cycles will be replaced by an equivalent
delay with no external memory activity.

If BootFromRom is high bootstrapping will then take place immediately, using data from external memory;
otherwise the transputer will await an input from any link. The processor will be in the low priority state.

Reset 11.- _
Action

Figure 6.3: IMS T800 post-reset sequence

6.6 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot
FromRom may be dynamically changed but must obey the specified timing restrictions.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in
ROM. The processor is in the low priority state, and the W register points to MemStart (page 73).

70

Table 6.3: Reset and Analyse

3 IMS T800 engineering data

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 ns
TBRVRL BootFrom Rom setup 0 ms
TRLBRX BootFrom Rom hold after Reset 50 ms
TALBRX BootFromRom hold after Analyse 50 ms

Notes

Full periods of Clockln TDCLDCL required.

2 At power-on reset.

Clockln

VCC

TPVRH

Reset

BootFromRom -.; /- _

Figure 6.4: Transputer reset timing with Analyse low

TRHRL

Reset

TAHRH
Analyse

BootFromRom-----------'

TRLAL

Figure 6.5: Transputer reset and analyse timing

6 System services 71

If BootFromRom'is connected low (e.g. to the transputer will wait for the first bootstrap message to
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPClPCl after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process. The
memory space immediately above the loaded code is used as work space. Messages arriving on other links
after the control byte has been received and on the bootstrapping link after the last bootstrap byte will be
retained until a process inputs from them.

6.7 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The
first four byte word is taken as an internal or external memory address at which to poke (write) the second
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read)

, a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

6.8 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling
point (page 57). From Analyse being asserted, the processor will halt within three time slice periods plus
the time taken for any high priority process to complete. As much of the transputer status is maintained as
is necessary to permit analysis of the halted machine .. Memory refresh continues.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh
cycles will occur; the previous memory configuration will be used for any external memory accesses. If
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 6.4.

Table 6.4: Register values after analyse

MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of I when the processor halted.

B The value of W when the processor halted, together with the priority of the process
when the transputer was halted (Le. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.

72

6.9 Errorln

3 IMS T800 engineering data

The Error pin carries the OR'ed output of the internal Error flag and the input. If is high
it indicates either that Errorln is high or that an error was detected in one of the processes. An internal
error can be caused, for example, by arithmetic overflow, divide by zero, array bounds violation or software
setting the flag directly (page 58). It can also be set from the floating point unit under certain circumstances
(page 58, 65). Once set, the Error flag is only cleared by executing the instruction testerr (page 56). The
error is not cleared by processor reset, in order that analysis can identify any errant transputer (page 71).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data. does
not directly affect the status of a processor in any way.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnError has been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers
to halt. This can be done by 'daisy-chaining' the and Error pins of a number of processors and
applying the final Error output signal to the EventReq pin of a suitably programmed master transputer. Since
the process state is preserved when stopped by an error, the master transputer can then use the analyse
function to debug the fault. When using such a circuit, note that the Error flag is in an indeterminate state on
power up; the circuit and software should be designed with this in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved for
the duration of the high priority process and restored at the conclusion of it. Status of both flags is transmitted
to the high priority process. Either flag can be altered in the process without upsetting the error status of any
complex operation being carried out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data. Memory refresh will continue to take place.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes
past the instruction which set Error. After halting due to the pin being taken high, register I points
one byte past the instruction being executed. In both cases I will copied to register A.

Master
Transputer

Event

uter links not shown

Figure 6.6: Error handling in a multi-transputer system

T800
slave n

Errorln Error

73

7

The IMS T800 has 4 Kbytes of fast internal static memory for high rates of data throughput. Each inter
nal memory access takes one processor cycle ProcClockOut (page 75). The transputer can also access
4 Gbytes of external memory space. Internal and external memory are part of the same linear address space.

IMS T800 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #80000000 and extends to #80000FFF. User memory
begins at #80000070; this location is given the name MemStart.

A reserved area at the bottom of internal memory is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one. Other locations are reserved for extended
features such as block moves and floating point operations.

External memory space starts at #80001000 and extends up through #00000000 to #7FFFFFFF. Memory
configuration data and ROM bootstrapping code must be in the most positive address space, starting at
#7FFFFF6C and #7FFFFFFE respectively. Address space immediately below this is conventionally used for
ROM based code.

74 3 IMS T800 engineering data

hi Machine Map 10 Byte address Word offsets Occam Map

IReset Inst I
I

#7FFFFFFE

I

#7FFFFFF81Memory configuration

1
#7FFFFF6C

#0

1 I #80001000 - Start of external memory - #0400 1

Note 1

#08
#07
#06

#05
#04
#03
#02

)
#01

(Base of memory) #00

Event
Link 3 Input
Link 2 Input

Link 1 Inout
Link 0 Input

Link 3 Output
Link 2 Output
Link 1 Output
Link 0 Output

MemStart #1CN #80000070 MemStart
#8000006C
#80000048
#80000044

#80000040

#8000003C
#80000038
#80000034
#80000030
#8000002C
#80000028
#80000024
#80000020
#8000001C
#80000018

#80000014
#80000010
#8000000C
#80000008
#80000004
#80000000

Reserved for
Extended Functions

Ereg IntSaveLoc

ST ATU SIntSave Loc
CreglntSaveLoc
BreglntSaveLoc
Areg IntSaveLoc
IptrlntSaveLoc

WdesclntSaveLoc
TPtrLoc1

TPtrLocO
Event

Link 3 Input
Link 2 Input

Link 1 Input
Link 0 Input

Link 3 Output
Link 2 Output
Link 1 Output
Link 0 Output

Figure 7.1: IMS T800 memory map

These locations are used as auxiliary processor registers and should not be manipulated by the user.
Like processor registers, their contents may be useful for implementing debugging tools (Analyse,
page 71). For details see The Transputer Instruction Set - A Compiler Writers' Guide.

75

8 External memory interface

The External Memory Interface (EMI) allows access to a 32 bit address space, supporting dynamic and static
RAM as well as ROM and EPROM. EMI timing can be configured at Reset to cater for most memory types
and speeds, and a program is supplied with the Transputer Development System to aid in this configuration.

There are 13 internal configurations which can be selected by a single pin connection (page 84). If none are
suitable the user can configure the interface to specific requirements, as shown in page 85.

8.1 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL I PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering appendix).

The time value Tm is used to define the duration of Tstates and, hence, the length of external memory cycles;
its value is exactly half the period of one ProcClockOut cycle (0.5*TPCLPCL), regardless of mark/space
ratio of ProcClockOut.

Edges of the various external memory strobes coincide with rising or falling edges of ProcClockOut. It should
be noted, however, that there is a skew associated with each coincidence. The value of skew depends on
whether coincidence occurs when the ProcClockOut edge and strobe edge are both rising, when both are
falling or if either is rising when the other is falling. Timing values given in the strobe tables show the best
and worst cases. If a more accurate timing relationship is required, the exact Tstate timing and strobe edge
to ProcClockOut relationships should be calculated and the correct skew factors applied from the edge skew
timing table 8.4.

8.2 Tstates

The external memory cycle is divided into six Tstates with the following functions:

T1 Address setup time before address valid strobe.

T2 Address hold time after address valid strobe.

T3 Read cycle tristate or write cy-cle data setup.

T4 Extendable data setup time.

T5 Read or write data.

T6 Data hold.

Under normal conditions each Tstate may be from one to four periods Tm long, the duration being set during
memory configuration. The default condition on Reset is that all Tstates are the maximum four periods Tm
long to allow external initialisation cycles to read slow ROM.

Period T4 can be extended indefinitely by adding externally generated wait states.

An external memory cycle is always an even number of periods Tm in length and the start of T1 always
coincides with a rising edge of ProcClockOut. If the total configured quantity of periods Tm is an odd
number, one extra period Tm will be added at the end of T6 to force the start of the next T1 to coincide with
a rising edge of ProcClockOut. This period is designated E in configuration diagrams (page 85).

76 3 IMS T800 engineering data

Table 8.1: ProcClockOut

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE

TPCLPCL ProcClockOut period a-1 a a+1 ns 1
TPCHPCL ProcClockOut pulse width high b-2.5 b b+2.5 ns 2
TPCLPCH ProcClockOut pulse width low c ns 3
Tm ProcClockOut half cycle b-O.5 b b+O.5 ns 2
TPCstab ProcClockOut stability 4 0/0 4

Notes

a is TDClDCl/Pllx.

2 b is 0.5*TPClPCl (half the processor clock period).

3 c is TPClPCl-TPCHPCl.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

1.5v ---------

~--TPCLPCH

TPCLPCL

TPCHPCL

Figure 8.1: IMS T800 ProcClockOut timing

8.3 Internal access

During an internal memory access cycle the external memory interface bus MemAD2-31 reflects the word
address used to access internal RAM, MemnotWrDO reflects the read/write operation and MemnotRfD1 is
high; all control strobes are inactive. This is true unless and until a memory refresh cycle or DMA (memory
request) activity takes place, when the bus will carry the appropriate external address or data.

The bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 71).

Read '<---
'<----

X__A_d_d_f_es_s__X _
y
=X__A_d_d_f_e_ss__X Ad dfe ssMemAD2-31

MemnotRfD1

ProcClockOut

MemnotWrDO~__W_f_it_e__/ Read

Figure 8.2: IMS T800 bus activity for internal memory cycle

8 External rnlO.rnl'·U·u interface

8.4 MemAD2-31

77

External memory addresses and data are multiplexed on one bus. Only the top 30 bits of address are
output on the external memory interface, using pins MemAD2-31. They are normally output only during
Tstates and T2, and should be latched during this time. Byte addressing is carried out internally by the

for read cycles. For write cycles the relevant bytes in memory are addressed by the write strobes

The data bus is 32 bits wide. It uses MemAD2-31 for the top 30 bits and MemnotRfD1 and MemnotWrDO
for the lower two bits. Read cycle data may be set up on the bus at any time after the start of T3, but must
be valid when the transputer reads it at the end of T5. Data may be removed any time during T6, but must
be off the bus no later than the end of that period.

Write data is placed on the bus at the start of and removed at the end of T6. If T6 is extended to force the
next cycle Tmx (page 77) to start on a rising edge of ProcClockOut, data will be valid during this time also.

8.5 MemnotWrDO

During T1 and T2 this pin will be low if the cycle is a write cycle, otherwise it will be
to T6 it becomes bit 0 of the data bus. In both cases it follows the general timing of IIfI"-I.Ia-lllJ&.,

8.6 MemnotRfD1

Tstates T3

During T1 and T2, this pin is low if the address on MemAD2-31 is a refresh address, otherwise it is high.
Tstates T3 to T6 it becomes bit 1 of the data bus. In both cases it follows the general timing of

8.7 notMemRd

For a read cycle the read strobe notMemRd is low during and T5. Data is read by the transputer on the
rising edge of this strobe, and may be removed immediately afterward. If the strobe duration is insufficient it
may be extended by adding extra periods Tm to either or both of the Tstates and T5. Further extension
may be obtained by inserting wait states at the end of

In the read cycle timing diagrams ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm.

8.8 notMemSO-4

To facilitate control of different types of memory and devices, the EMI is provided with five strobe outputs,
four of which can be configured by the user. The strobes are conventionally assigned the functions shown in
the read and write cycle diagrams, although there is no compulsion to retain these designations.

notMemSO is a fixed format strob~. Its leading edge is always coincident with the start of T2 and its trailing
edge always coincident with the end of T5.

The leading edge of notMemS1 is always coincident with the start of T2, but its duration may be configured
to be from zero to 31 periods Regardless of the configured duration, the strobe will terminate no later
than the end of T6. The strobe is sometimes programmed to extend beyond the normal end of Tmx. When
wait states are inserted into an EMI cycle the end of Tmx is delayed, but the potential active duration of the
strobe is not altered. Thus the strobe can be configured to terminate relatively early under certain conditions
(page 91). If notMemS1 is configured to be zero it will never go low.

notMemS2, notMemS3 and notMemS4 are identical in operation. They all terminate at the end of T5, but
the start of each can be delayed from one to 31 periods Tm beyond the start of T2. If the duration of one of
these strobes would take it past the end of T5 it will stay high. This can be used to cause a strobe to become

78 3 IMS T800 engineering data

active only when wait states are inserted. If one of these strobes is configured to zero it will never go high.
Figure 8.5 shows the effect of Wait on strobes in more detail; each division on the scale is one period Tm.

Table 8.2: Read

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TaZdV Address tristate to data valid 0 ns
TdVRCfH Data setup before read 20 ns
TRdHdX Data hold after read 0 ns
TSOLRdL notMemSO before start of read a-2 a a+2 ns 1
TSOHRdH End of read from end of notMemSO -1 1 ns
TRdLRdH Read period b b+6 ns 2

Notes

a is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

2 b is total of T4+Twait+T5 where T4, T5 can be- from one to four periods Tm -each in length and Twait may be
any number of periods Tm in length.

Tstate T1 T2 T3 T4 T5 I T6 T1

ProcClockOut

MemnotWrDO

MemnotRfD1

MemAD2-31

notMemRd

notMemSO
(CE)

notMemS1
(ALE)

TdVRdH ~~""'iP"ITRdHdX

-I~I--TSOHRdH

TSOLSOH

Figure 8.3: IMS T800 external read cycle: static memory

8 External memory interface 79

Tstate T1 T2 T3 I T4 T5 T6 T1

ProcClockOut

Tmx

-~~--TSOHRdH

-~IIt--TSOHS2H @

-~---TSOHS3H QJ)

TRdLRdH

CDTSO LS4H 1"lU----------~
(DTSOLS4L ~--------... -~---TSOHS4H0

MemnotWrDO

MemAD2-31

MemnotRfD1

TaVSOL~-~~--~

notMemRd

notMemSO
(RAS)

notMemS1
(ALE)

notMemS2
(AMUX)

notMemS3
(CAS)

notMemS4
(Wait state,l)

Figure 8.4: IMS T800 external read cycle: dynamic memory

80 3 IMS T800 engineering data

Table 8.3: IMS T800 strobe timing

er]) nA-"-TER NOM UNITS NOTE~YIVII:'U

TaVSOL Address setup before notMemSO a ns 1
TSOLaX Address hold after notMemSO b ns 2
TSOLSOH notMemSO pulse width low c c+6 ns 3
TSOLS1L 1 notMemS1 from notMemSO 0 2 ns
TSOLS1H 5 notMemS1 end from notMemSO d d+6 ns 4,6
TSOHS1H 9 notMemS1 end from notMemSO end e-1 e+4 ns 5,6
TSOLS2L 2 notMemS2 delayed after notMemSO f-1 f+4 ns 7
TSOLS2H 6 notMemS2 end from notMemSO c+4 c+8 ns 3
TSOHS2H 10 notMemS2 end from notMemSO end 0 2 ns
TSOLS3L 3 notMemS3 delayed after notMemSO f-1 f+3 ns 7
TSOLS3H 7 notMemS3 end from notMemSO c+4 c+8 ns 3
TSOHS3H 11 notMemS3 end from notMemSO end 0 2 ns
TSOLS4L 4 notMemS4 delayed after notMemSO f-1 f+2 ns 7
TSOLS4H 8 notMemS4 end from notMemSO c+4 c+8 ns 3
TSOHS4H 12 notMemS4 end from notMemSO end 0 2 ns
Tmx Complete external memory cycle g 8

Notes

1 a is T1 where T1can be from one to four periods Tm in length.

2 b is T2 where T2 can be from one to four periods Tm in length.

3 c is total of T2+T3+T4+Twait+T5 where T2, T3, T4, T5 can be from one to four periods Tm each in length and
Twait may be any number of periods Tm in length.

4 d can be from zero to 31 periods Tm in length.

5 e can be from -27 to +4 periods Tm in length.

6 If the configuration would cause the strobe to remain active past the end of T6 it will go high at the end of T6.
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx.

7 f can be from zero to 31 periods Tm in length. If this length would cause the strobe to remain active past the
end of T5 it will go high at the end of T5. If the strobe value is zero periods Tm it will remain low throughout
the complete cycle Tmx.

8 9 is one complete external memory cycle comprising the total of T1 +T2+T3+T4+Twait+T5+T6 where T1, T2,
T3, 14, T5 can be from one to four periods Tm each in length, T6 can be from one to five periods Tm in length
and Twait may be zero or any number of periods Tm in length.

Tstate 1T11T21T31 T41T51T61T1 1

notMemS1 I I
Tstate IT11T21T31T41W IW IT51T61T11

notMemS1

notMemS2 notMemS2

No wait states "Vait states inserted

Figure 8.5: IMS T800 effect of wait states on strobes

8 External memory interface

Table 8.4: Strobe SO to ProcClockOut skew

81

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHSOH Strobe rising from ProcClockOut rising 0 3 ns
TPCLSOH Strobe rising from ProcClockOut falling 1 4 ns
TPCHSOL Strobe falling from ProcClockOut rising -3 0 ns
TPCLSOL Strobe falling from ProcClockOut falling -1 2 ns

ProcClockOut

notMemSO
):eSOL

Figure 8.6: IMS T800 skew of notMemSO to ProcClockOut

8.9 notMemWrBO-3

Because the transputer uses word addressing, four write strobes are provided; one to write each byte of the
word. notMemWrBO addresses the least significant byte.

The transputer has both early and late write cycle modes. For a late write cycle the relevant write strobes
notMemWrBO-3 are low during T4 and T5; for an early write they are also low during T3. Data should be
latched into memory on the rising edge of the strobes in both cases, although it is valid until the end of T6.
If the strobe duration is insufficient, it may be extended at configuration time by adding extra periods Tm to
either or both of Tstates T4 and T5 for both early and late modes. For an early cycle they may also be added
to T3. Further extension may- be obtained by inserting wait states at the eA:d of T4. If the data hold time is
insufficient, extra periods Tm may be added to T6 to extend it.

Table 8.5: Write

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TdVWrH Data setup before write d ns 1,5
TWrHdX Data hold after write a ns 1,2
TSOLWrL notMemSO before start of early write b-3 b+2 ns 1,3

notMemSO before start of late write c-3 c+2 ns 1,4
TSOHWrH End of write from end of notMemSO -2 2 ns 1
TWrLWrH Early write pulse width d d+6 ns 1,5

Late write pulse width e e+6 ns 1,6

Notes

1 Timing is for all write strobes notMemWrBO-3.

2 a is T6 where T6 can be from one to five periods Tm in length.

3 b is T2 where T2 can be from one to four periods Tm in length.

4 c is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

5 d is total of T3+T4+Twait+T5 where T3, T4, T5 can be from one to four periods Tm each in length and Twait
may be zero or any number of periods Tm in length.

6 e is total of T4+Twait+T5 where T4, T5 can be from one to four periods Tm each in length and Twait may be
zero or any number of periods Tm in length.

82 3 IMS T800 engineering data

Tstate T1 T2 T3 T4 T5 I T6 T1

ProcClockOut

Data

Data

Data

TWrLWrH

TdVWrH

TSOLSOH

TSOLWrL

Address

(DTSOLS1 L-~
CD TSO LS 1H...--------------~

TSO LWrL~ ~ T_W_r_L_W_r_H__~

notMemSO
(CE)

notMemS1
(ALE)

TaVSOL~----II~

MemAD2-31

MemnotRfD1

MemnotWrDO

notMemWrBO-B3
(late write)

notMemWrBO-B3
(early write)

Figure 8.7: IMS T800 external write cycle

In the write cycle timing diagram ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm. The strobe is inactive during internal memory cycles.

C
V

)

co

C
lo

c
k
ln

(5
M

H
z)

C
a

p
P

lu
s

,
,

,
C

a
p

M
in

u
s

cocriCD:J0
>

u:: co.
~

.
~

Q
.

Q
.

enooco~(f)

~

G
N

D
•
•
•
•
•

V
C

C
•

•
•

•
•

0
')I

C
\I

C<CEQ
)

:E

,...I

o,...C<CEQ
)

:E

IM
S

T
8

0
0

As
LinkO

lin
k
O

O
u

t

RM RM

L
ink31n

-J
A

s
Link2

I
lin

k
3

0
u

tM
e

m
C

o
n

fig

lin
k
1

1
n

lin
k
1

0
u

t

lin
k
2

1
n

lin
k
2

0
u

t
-
-
-
-
r
-
-
'
!
-
_

I

lin
k
O

ln

Q
)

ooSl-Q
)

];~I
-

oEQ
)

E(ijc:l-Q
)

><weX
)

84

8.10 MemConfig

3 IMS T800 engineering data

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI)
characteristics. It is read by the processor on two occasions after Reset goes low; first to check if one of the
preset internal configurations is required, then to determine a possible external configuration.

8.10.1 Internal configuration

The internal configuration scan comprises 64 periods TDClDCl of Clockln during the internal scan period
of 144 Clockln periods. MemnotWrDO, MemnotRfDl and MemAD2-32 are all high at the beginning of the
scan. Starting with MemnotWrDO, each of these lines goes low successively at intervals of two Clockln
periods and stays low until the end of the scan. If one of these lines is connected to MemConfig the preset
internal configuration mode associated with that line will be used as the EMI configuration. The default
configuration is that defined in the table for MemAD31 ; connecting MemConfig to VCC will also produce this
default configuration. Note that only 13 of the possible configurations are valid.

Table 8.6: IMS T800 internal configuration coding

Duration of each Tstate Strobe Write Refresh Cycle Extra
periods Tm coefficient cycle interval time cycles

Clockln Proc
Pin T1 T2 T3 T4 T5 T6 s1 s2 s3 s4 type cycles cycles e

MemnotWrDO 1 1 1 1 1 1 30 1 3 5 late 72 3 2
MemnotRfD1 1 2 1 1 1 2 30 1 2 7 late 72 4 3
MemAD2 1 2 1 1 2 3 30 1 2 7 late 72 5 4
MemAD3

~
2 3 1 1 2 3 30 1 3 8 late 72 6 5

MemAD4 1 '1 1 ~ 1 1 3 1 2 3 early 72 3 2
MemAD5 1 1 2 1 2 1 5 1 2 3 early 72 4 3
MemAD6 2 1 2 1 3 1 6 1 2 3 early 72 5 4
MemAD7 :~: 2 2 2 1 3 2 7 1 3 4 early 72 6 5
MemAD8 1 1 1 1 1 1 30 1 2 3 early - 3 2
MemAD9 1 1 2 1 2 1 30 2 5 9 early - 4 3
MemAD10 2 2 2 2 4 2 30 2 3 8 late 72 7 6
MemAD11 3 3 3 3 3 3 30 2 4 13 late 72 9 8
MemAD31 4 4 4 4 4 4 31 30 30 18 late 72 12 11

Table 8.7: IMS T800 internal configuration description

Pin Configuration
MemnotWrDO Dynamic RAM in 3 processor cycles
MemnotRfD1 Dynamic RAM in 4 processor cycles
MemAD2 Dynamic RAM in 5 processor cycles
MemAD3 Dynamic RAM in 6 cycles
MemAD4 Multiplexed address dynamic RAM in 3 processor cycles
MemAD5 Multiplexed address dynamic RAM in 4 processor cycles
MemAD6 Multiplexed address dynamic RAM in 5 processor cycles
MemAD7 Multiplexed address dynamic RAM in 6 processor cycles
MemAD8 Fast static RAM in 3 processor cycles
MemAD9 Static RAM in 4 cycles with wait generator
MemAD10 General purpose configuration in 7 processor cycles
MemAD11 General purpose configuration in 9 processor cycles
MemAD31 General purpose configuration in 12 processor cycles

lI"lI"!IA!:llll"ll"!lt'\II"\' interface 85

Tstate 1112131415161112131415161112

notMemSO

notMemS1 ~ 30 n IL

:::::::: -
notMemRd

notMemWr

Tstatel1121121314151616111212131415

notMemSO 1-- r-IL.... _
notMemS1 I 30 ~L.... _
notMemS2~
notMemS3 ~ L-
notMemS4 _~ _

notMem U L
notMemWr late U L

Tstate 11 11 121212131415,51/616161112

notMelnSO I 1

notMemS1 I 30 I

notMemS2=~ :
notMemS3 3 .

notMem S4 =-=-~ -_-..8-_-_-_-_-_-_-_

Tstate 11 11 12 12 13 I 31 415 , 5I 516 ,611 ,1

notMemSOI I
not MemS 1 11.---__7__---'

notMemS2 --P,1_.
notMemS3 -- 3 ~-...-_-_.....
notMemS4 -- 4 . ,--I__......

notMemRd I ...----
notMemRd

notMemWr late notMemWr early

MemConfig=MemAD7

Figure 8.9: IMS T8DD internal configuration

8.10.2 External configuration

If MemConfig is held low until MemnotWrDO goes low the internal configuration is ignored and an external
configuration will be loaded instead. An external configuration scan always follows an internal one, but if an
internal configuration occurs any external configuration is ignored.

comprises 36 successive external read cycles, using the default EMI con
However, instead of data being read on the data bus as for a normal read

cycle, only a single read on MemConfig at each cycle. Addresses put out on the bus for each
read cycle are shown in table 8.8, and are designed to address ROM at the of the map. The
table shows the data to be held in

MemConfig is typically connected via an inverter to MemnotWrDO. Data bit zero of the least significant byte
of each ROM word then provides the configuration data stream. By switching between various
data bus lines up to 32 configurations can be stored in ROM, one per bit of the data bus. can be
permanently connected to a data line or to GND. Connecting MemConfig to GND gives all Tstates configured
to four periods; notMemS1 pulse of maximum duration; notMemS2-4 delayed by maximum; refresh interval
72 periods of Clockln; refresh enabled; late write.

The external memory configuration table 8.8 shows the contribution of each memory address to the 13 con
figuration fields. The lowest 12 words (#7FFFFF6C to #7FFFFF98, fields 1 to 6) define the number of extra
periods Tm to be added to each Tstate. If field 2 is 3 then three extra periods will be added to T2 to extend
it to the maximum of four periods.

86

Dela

MemnotWrDO
----I

MemnotRfD1

MemAD2

MemAD3

MemAD31

MemConfig CD
Memconfig@

Internal confi uration

3 IMS T800 engineering data

External confi uration

1 Internal configuration: MemConfig connected to MemAD2.
2 External configuration: MemConfig connected to inverse of MemAD3.

Figure 8.10: IMS T800 internal configuration scan

The next five addresses (field 7) define the duration of notMemS1 and the following fifteen (fields 8 to 10)
define the delays before strobes notMemS2-4 become active. The five bits allocated to each strobe allow
durations of from 0 to 31 periods Tm, as described in strobes page 77.

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11 and 12) define the refresh interval and whether refresh is to
be used, whilst the final address (field 13) supplies a high bit to MemConfig if a late write cycle is required.

The columns to the right of the coding table show the values of each configuration bit for the four sample
external configuration diagrams. Note the inclusion of period E at the end of T6 in some diagrams. This is
inserted to bring the start of the next Tstate T1 to coincide with a rising edge of ProcClockOut (page 75).

Wait states W have been added to show the effect of them on strobe timing; they are not part of a configuration.
In each case which includes wait states, two wait periods are defined. This shows that if a wait state would
cause the start of T5 to coincide with a falling edge of ProcClockOut, another period Tm is generated by
the EMI to force it to coincide with a rising edge of ProcClockOut. This coincidence is only necessary if wait
states are added, otherwise coincidence with a falling edge is permitted.

8 External memory interface 87

__ -0 _

2

Tstate 11 1213, 3141 w,w,W I sl6111213, 3
notMemSO

notMemS1

notMemS2

notMemS3

notMemS4
--..;..--

notMemRd

notMemWr late

(g)MemWait

CDMemWait~

Tstate 1112,2 13,31 41 si 61.6,E11I 2, 21 3
notMemSO I 'L-
notMemS1 1...-__81

notMernS2 ~
notMemS3 11 I L
notMemS4 4 U
notMemRd Ur------
notMemWr~ I L

(Q) MemWait - - - - - - - - - - - - - -

CD MemWait - - - - - - - - - - - - - -

Example 1 Example 2

Tstate 111213,314Iw,w,wlsI6,6,EI112
notMemSO I I L
notMemS1 lJJ L

~::~:::: ~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
notMemS4 h=l I
notMemRd , .-,---

notMemWr late' ,

@)MemWait

G)MemWait~

Tstate 1112,213, 31 ~ W,W Is16, 6, E11 12
notMemSO I L
notMemS1 W---------...,L
notMemS2=~7
notMemS3 S

notMemS4 3

notMemRd

notMemWr ~L- --I

CD MemWait __-----111...... _
cv MemWait 11...... _

Example 3 Example 4

o No wait states inserted.
1 One wait state inserted.
2 Two wait states inserted.
3 Three wait states inserted.

Figure 8.11: IMS T800 external configuration

88 3 IMS 1800 engineering data

Internal configuration External configuration

Address C> -q-. co 0 C> -q-
l'- l'- l'- W LL LL
LL LL LL LL LL LL
LL LL LL LL LL LL
LL LL LL LL LL LL
LL LL LL LL LL LL
LL LL LL LL LL LL
l'- l'- l'- l'- l'- l'-

MemnotWrDO

MemnotRfD1

MemAD2

MemAD3

MemAD31

MemcOnfig CD
notMemRd

CD CD
1 MemConfig connected to inverse of MemnotWrDO.
2 Configuration field 1; 11 configured for 2 periods 1m.
3 Configuration field 2; 12 configured for 3 periods 1m.
4 Configuration field 10; most significant bit of notMemS4 configured high.
S Configuration field 11; refresh interval configured for 36 periods Clockln.
6 Configuration field 12; refresh enabled.
7 Configuration field 13; early write cycle.

Figure 8.12: IMS T800 external configuration scan

Delay

8 External memory interface

Table 8.8: IMS T800 external configuration coding

Scan MemAD Example diagram
cycle address Field Function 1 2 3 4

1 7FFFFF6C 1 T1 least significant bit 0 0 0 0
2 7FFFFF70 1 T1 most significant bit 0 0 0 0
3 7FFFFF74 2 T2 least significant bit 1 0 0 1
4 7FFFFF78 2 T2 most significant bit 0 0 0 0
5 7FFFFF7C 3 T3 least significant bit 1 1 1 1
6 7FFFFF80 3 T3 most significant bit 0 0 0 0
7 7FFFFF84 4 T4 least significant bit 0 0 0 0
H 7FFFFF88 4 T4 most significant bit 0 0 0 0

9 7FFFFF8C 5 T5 least significant bit 0 0 0 0
10 7FFFFF90 5 T5 most significant bit 0 0 0 0
11 7FFFFF94 6 T6 least significant bit 1 0 1 1
12 7FFFFF98 6 T6 most significant bit 0 0 0 0
13 7FFFFF9C 7 notMemS1 least significant bit 0 0 1 1
14 7FFFFFAO 7 0 0 0 0
15 7FFFFFA4 7 -U- -U- 0 0 0 0

7FFFFFA8 7 1 0 0 0
7FFFFFAC 7 notMemS1 most significant bit 0 0 0 0

18 7FFFFFBO 8 notMemS2 least significant bit 1 0 0 1
19 7FFFFFB4 8 1 1 0 1
20 7FFFFFB8 8 -U- -U- 0 0 0 1
21 7FFFFFBC 8 0 0 0 0
22 7FFFFFCO 8 notMemS2 most significant bit 0 0 0 0
23 7FFFFFC4 9 notMemS3 least significant bit 1 1 1 1

7FFFFFC8 9 0 1 0 0
7FFFFFCC 9 -U- -U- 0 1 0 1

26 7FFFFFDO 9 0 0 1 0
27 7FFFFFD4 9 notMemS3 most significant bit 0 0 0 0

28 7FFFFFD8 10 notMemS4 least significant bit 0 0 0 1
29 7FFFFFDC 10 0 1 1 1
30 7FFFFFEO 10 -U- -U- 1 1 0 0
31 7FFFFFE4 10 0 0 0 0

c"_3g__ 7FFFFFE8 10 notMemS4 most significant bit 0 0 0 0
33 7FFFFFEC 11 Refresh Interval least significant bit - - - -
34 7FFFFFFO 11 Refresh Interval most significant bit - - - -
35 7FFFFFF4 12 Refresh Enable - - - -
36 7FFFFFF8 13 Late Write 0 1 1 0

Table 8.9: IMS T800 memory refresh configuration coding

Refresh Interval Field 11 Complete
interval in J-ls encoding cycle (mS)

18 3.6 00 0.922
36 7.2 01 1.843
54 10.8 10 2.765
72 14.4 11 3.686

Refresh intervals are in periods of Clockln and Clockln frequency is 5MHz:

Interval = 18 * 200 = 3600ns

Refresh interval is between successive incremental refresh addresses.
Complete cycles are shown for 256 row DRAMS.

89

90 3 IMS T800 engineering data

Table 8.10: Memory configuration

MemnotWrDO J

MemnotRfD1 --./

Tstate I T1 T2
Tm I I I I I I

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMCVRdH Memory configuration data setup 20 ns
TRdHMCX Memory configuration data hold 0 ns
TSOLRdH notMemSO to configuration data read a a+6 ns 1

Notes

a is 16 periods Tm.

I T3 I T4 I T5 I T6 I T1 L
I I I I I I I I I I I I I I 11-

,««««««<oata»»-/

'««<<<<<<<<<oata»»-/

MemAD2-31 ~_~A_dd_re_ss~ o~a~_~

notMemSO

TSOLRdH~-----------~

notMemRd

MemConfig

TMCVRdH~
TRdHMCX--------c««««r<oam ~-

Figure 8.13: IMS T800 external configuration read cycle timing

8.11 notMemRf

The IMS T800 can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh interval is also determined. Refresh cycles do not interrupt internal
memory accesses, although the internal addresses cannot be reflected on the external bus during refresh.

When refresh is disabled no refresh cycles occur. During the post-Reset period eight dummy refresh cycles
will occur with the appropriate timing but with no bus or strobe activity.

A refresh cycle uses the same basic external memory timing as a normal external memory cycle, except that
it starts two periods Tm before the start of T1. If a refresh cycle is due during an external memory access,
it will be delayed until the end of that external cycle. Two extra periods Tm (periods R in the diagram) will
then be inserted between the end of T6 of the external memory cycle and the start of T1 of the refresh cycle
itself. The refresh address and various external strobes become active approximately one period Tm before
T1. Bus signals are active until the end of T2, whilst notMemRf remains active until the end of T6.

For a refresh cycle, MemnotRfD1 goes low before notMemRf goes low and MemnotWrDO goes high with
the same timing as MemnotRfD1. All the address lines share the same) timing, but only MemAD2-11 give
the refresh address. MemAD12-30 stay high during the address period, whilst MemAD31 remains low.
Refresh cycles generate strobes notMemSO-4 with timing as for a normal external cycle, but notMemRd and
notMemWrBO-3 remain high. MemWait operates normally during refresh cycles.

8 External memory interface 91

Table 8.11: Memory refresh

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TRfLRfH Refresh pulse width low a a+6 ns 1
TRaVSOL Refresh address setup before notMemSO b ns 2
TRfLSOL Refresh indicator setup before notMemSO b ns 2

Notes

a is total Tmx+(2 periods Tm).

2 b is total T1 +(2 periods Tm) where T1 can be from one to four periods Tm in length.

Tstate T6 I R I R I T1 I T2 I T3 I T4 I T5 I T6 I T1 I

~O;~~Di_C~~ X.--- X Address X'-- D_at_a---><= I
MemAD2-11

notMemSO

MemnotWrDO

notMemRf

MemnotRfD1

MemAD31

MemAD12-30

Figure 8.14: IMS T800 refresh cycle timing

8.12 MemWait

Taking MemWait high with the timing shown will extend the duration of T4. MemWait is sampled near to, but
independent of, the falling edge of ProcClockOut, and should not change state in this region. By convention,
notMemS4 is used to synchronize wait state insertion. If this or another strobe is used, its delay should be
such as to take the strobe low an even number of periods Tm after the start of T1, to coincide with a rising
edge of ProcClockOut.

MemWait may be kept high indefinitely, although if dynamic memory refresh is used it should not be kept
high long enough to interfere with refresh timing. MemWait operates normally during all cycles, including
refresh and configuration cycles.

If the start of T5 would coincide with a falling edge of ProcClockOut an extra wait period Tm (EW) is
generated by the EMI to force coincidence with a rising edge. Rising edge coincidence is only forced if wait
states are added, otherwise coincidence with a falling edge is permitted.

92 3 IMS TaOO engineering data

Table 8.12: Memory wait

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHWtH Wait setup -(a)+3 ns 1,4
TPCHWtL Wait hold b+3 ns 2,3,4
TWtLWtH Delay before re-assertion of Wait 2 Tm

Notes

1 a is 0.5 periods Tm.

2 b is 1.5 periods Tm.

3 If wait period exceeds refresh interval, refresh cycles will be lost.

4 Wait timing is independent of falling edge of ProcClockOut.

Tstate

ProcClockOut

MemWait

T2 T4

TWtLWtH

w T5 T1

MemADO-31

notMemRd

Tstate

ProcClockOut

MemWait

_A_dd_re_ss---l>-««««««««< Data »< Add re ss

" /

Tstate

ProcClockOut

MemWait

T3 T4 T4 W EW W EW T5

Figure 8.15: IMS T800 memory wait timing

8 External memory interface

8.13 MemReq, MemGranted

93

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
The transputer samples MemReq during the final period Tm of T6 of both refresh and external memory
cycles. To guarantee taking over the bus immediately following either, MemReq must be set up at least two
periods Tm before the end of T6. In the absence of an external memory cycle, MemReq is sampled during
every low period of ProcClockOut. The address bus is tristated two periods Tm after the ProcClockOut
rising edge which follows the sample. MemGranted is asserted one period Tm after that.

Removal of MemReq is sampled during each low period of ProcClockOut and MemGranted is removed
synchronously with the next falling edge of ProcClockOut. If accurate timing of DMA is required, MemReq
should be set low coincident with a falling edge of ProcClockOut. Further external bus activity, either refresh,
external cycles or reflection of internal cycles, will commence at the next rising edge of ProcClockOut.

Strobes are left in their inactive states during DMA. DMA cannot interrupt a refresh or external memory cycle,
and outstanding refresh cycles will occur before the bus is released to DMA. DMA does not interfere with
internal memory cycles in any way, although a program running in internal memory would have to wait for the
end of DMA before accessing external memory. DMA cannot access internal memory. If DMA extends longer
than one refresh interval (Memory Refresh Configuration Coding table, page 85), the DMA user becomes
responsible for refresh. DMA may also inhibit an internally running program from accessing external memory.

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 8.13: Memory request

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMRHMGH Memory request response time 4 6 Tm 1
TMRLMGL Memory request end response time 2 4 Tm
TADZMGH Bus tristate before memory granted 1 Tm
TMGLADV Bus active after end of memory granted 1 Tm

Notes

These values assume no external memory cycle is in progress. If an external cycle is active, maximum time
could be (1 EMI cycle Tmx)+(1 refresh cycle TRflRfH)+(6 periods Tm).

ProcClockOut

MemReq

MemGranted

MemnotWrpO
MemnotRfD1 -----------~-.~__----I /-- --(:

MemAD2-31

Figure 8.16: IMS T8DD memory request timing

94 3 IMS T800 engineering data

MemReq

MemGranted

Reset

Configuration
sequence

D Pre- and post-configuration delays (figure 6.3)
I Internal configuration sequence.
E External configuration sequence.
R Initial refresh sequence.
S Bootstrap sequence.

Figure 8.17: IMS T800 DMA sequence at reset

,,-----
Read or Write r-c=
,,-------

---------«--------

>----------«---------

Figure 8.18: IMS T800 operation of MemReq, MemGranted with external, refresh memory cycles

MemReq /7///////7 " /7 "----Internal Memory Cycles

External Memory
Interface activity

MemGranted ~ / "----
MemnotWrDO

) (CMemnotRfD1 >
MemAD2-31

Figure 8.19: IMS T800 operation of MemReq, MemGranted with external, internal memory cycles

95

9 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described
on page 53. Setting a high priority task to wait for an event input is a way of interrupting a transputer program.

Table 9.1: Event

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a ns 1
TKLVH Delay before re-assertion of event request 0 ns

Notes

a is TPCLPCL (2 periods Tm).

EventReq

EventAck

Figure 9.1: IMS TaOO event timing

96

10 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

Link performance is improved over previous transputers by allowing an acknowledge packet to be sent before
the data packet has been fully received. This overlapped acknowledge technique is fully compatible with all
other INMOS transputer links.

The IMS T800 links support the standard INMOS communication speed of 10 Mbits per second. In addition
they can be used at 5 or 20 Mbits per second. Links are not synchronised with Clockln or ProcClockOut and
are insensitive to their phases. Thus links from independently clocked systems may communicate, providing
only that the clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LinkSpecial, LinkOSpecial and Link123Special. The link 0 speed can be set
independently. Table 10.1 shows uni-directional and bi-directional data rates in Kbytes/second for each link
speed; LinknSpecial is to be read as LinkOSpecial when selecting link 0 speed and as Link123Special for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 10.1: Speed Settings for Transputer Links

Link Linkn .Kbytes/sec
Special Special Mbits/sec Uni Si

0 0 10 910 1250
0 1 5 450 670
1 0 10 910 1250
1 1 20 1740 2350

Data

L JHl..........L,'____

IAck I

Figure 10.1: IMS T800 link data and acknowledge packets

10 links

Table 10.2: Link

97

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf Linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
5 Mbits/s 30 ns 1

CLlZ Linkln capacitance @ f=1MHz 7 pF
Cll LinkOut load capacitance 50 pF
RM Series resistor for 1000 transmission line 56 ohms

Notes

This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90 0/0
linkOut

10 0/0

linkln
10%

-----21 ~-----.-------- -
TJDr TJDf

Figure 10.2: IMS T800 link timing

linkOut

Latest TJQJ 0

Earliest TJQJD

linkln

Figure 10.3: IMS T800 buffered link timing

98 3 IMS TaOO engineering data

Transputer family device A

LinkOut Linkln-
Linkln ... linkOut~

Transputer family device B

Figure 10.4: Links directly connected

linkln
Zo =100 ohms

Link0 u t .---- .-----~-. J'\0&.- __

Transputer family

Linkln linkOut

Zo =100 ohms RM
Transputer family device B

Figure 10.5: Links connected by transmission line

Transputer family device A

LinkOut >------._----1 Li nkl n

buffers
linkln !------"II!IIlIII__----< LinkOut

Transputer family device B

Figure 10.6: Links connected by buffers

1

99

11.1 DC electrical characteristics

Table 11.1: Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
II Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 QC 2
TA Ambient temperature under bias -55 125 QC 2
PDmax Maximum allowable dissipation 2 W

Notes

1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 11.2: Operating conditions

SYMBOL PARAMETER MIN UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 50 pF
TA Operating temperature range 0 70 QC 3

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.

100 3 IMS T800 engineering data

Table 11.3: DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
VIL Low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 /-lA 1,2
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOL Output low voltage @ IOL=4mA 0.4 V 1,2
108 Output short circuit current @ GND<VO<VCC 50 mA 1,2,4

75 mA 1,2,5
10Z Tristate output current @ GND<VO<VCC ±10 /-lA 1,2
PD Power dissipation 1.2 W 2,3,6
CIN Input capacitance @ f=1MHz 7 pF
COZ Output capacitance @ f=1MHz 10 pF

Notes

All voltages are with respect to GND.

2 Parameters measured at 4.75V<VCC<5.25V and O°C<TA<70°C. Input clock frequency = 5MHz.

3 Power dissipation varies with output loading and program ·execution.

4 Current sourced from non-link outputs.

5 Current sourced from link outputs.

6 Power dissipation for processor operating at 20MHz.

11.2 Equivalent circuits

Output - ----IIIII....-__t--_

30pF

GND - ----llllll---__-

Load for: R1 R2 Equivalent load:

Link outputs 1k96 47k 1 Schottky TTL input
Other outputs 970R 24k 2 Schottky TTL inputs

Diodes are 1N916

Figure 11.1: Load circuit for AC measurements

11 Electrical specifications

Test point
Output under test ---IlIIIIIIII-------l__---1

GND -----~

VCC

101

Figure 11.2: Tristate load circuit for AC measurements

11.3 AC timing characteristics

Table 11.4: Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TOr Input rising edges 2 20 ns 1,2
TOf Input falling edges 2 20 ns 1,2
TOr Output rising edges 25 ns 1
TOf Output falling edges 15 ns 1
TSOLaHZ Address high to tristate a a+6 ns 3
TSOLaLZ Address low to tristate a a+6 ns 3

Notes

Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

3 a is T2 where T2 can be from one to four periods Tm in length.
Address lines include MemnotWrDO, MemnotRfD1, MemAD2-31.

90% - --

10%----

TOf

90% _

Figure 11.3: IMS T800 input and output edge timing

1.5V - - - - 1.5V ----

Figure 11.4: IMS T800 tristate timing relative to notMemSO

102

30
Time

ns
20

10

Rise time

Fall time

30
Time

ns
20

10

3 IMS T800 engineering data

40 60 80 100

Load Capacitance pF

Link

40 60 80 100

Load Capacitance pF

EMI

Notes
Figure 11.5: Typical rise/fall times

Skew is measured between notMemSO with a standard load (2 Schottky TTL inputs and 30pF) and
notMemSO with a load of 2 Schottky TTL inputs and varying capacitance.

11.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 11.6.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in QC and eJA is the junction-to-ambient thermal resistance in
QC/W. eJA for each package is given in the Packaging Specifications section.

800 T800B-25.0
T800B-22.5

700 T800B-20.0

Power
T800B-17.5

PINT 600
mW

500

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 11.6: IMS T800 internal power dissipation vs VCC

11 Electrical specifications 103

-
650 -

-
Power 600 -

PD
mW 550 -

-
500 -

I

15

+
+

+
+

I I I I I I I I I I I I I I

20 25 30
Processor frequency MHz

Figure 11.7: IMS T800 typical power dissipation with processor speed

104

12.1 84

1

grid array palCkalQle

3 4 8 1

Figure' 12.1: IMS T800 84 pin grid array package pinout

12 Package specifications

K

10 9 8 7 6 5 4 3 2 1

0000000000 A
0000000000 B
0000000000 C
000 000 D
000 000 E
000 000 F
000 000 G
0000000000 H
0000000000 J
0000000000 K

K

105

Figure 12.2: 84 pin grid array package dimensions

Table 12.1: 84 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.005
C 2.456 ±0.278 0.097 ±0.011
0 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.025 0.018 ±0.001 Pin diameter
G 1.143 ±0.127 0.045 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 7.2 grams

Table 12.2: 84 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow

106 3 IMS T800 engineering data

Chapter 4

• •

107

108

Reset
Analyse

Error 32 bit
BootFromROM System Processor

Clockln Services
VCC
GND Li nk lE LinkSpecial

CapPlus Services
linkOSpecial

CapMinus link123Special

Link linklnO
Timers Interface linkOutO

Link linkln1
2k bytes Interface linkOut1

of
On-chip Link linkln2

RAM Interface linkOut2

LinkProcClockOut linkln3
notMemSO-4 Interface linkOut3

notMemWrBO-3
notMemRd External ~ EventReq

Memory Event
notMemRf EventAck

MemWait Interface
MemAD2-31

32 MemnotRfD1
MemnotWrDO

Figure 1.1: IMS T414 block diagram

109

The IMS T414 transputer is a 32 bit CMOS microcomputer with 2 Kbytes on-chip RAM for high speed
processing, a configurable memory interface and four standard INMOS communication links. The instruction
set achieves efficient implementation of high level languages and provides direct support for the occam
model of concurrency when using either a single transputer or a network. Procedure calls, process switching
and typical interrupt latency are sub-microsecond. The IMS T414 provides high performance arithmetic
and microcode support for floating point operations. A device running at 20 MHz achieves an instruction
throughput of 10 MIPS.

The IMS T414 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface
uses multiplexed data and address lines and provides a data rate of up to 4 bytes every 150 nanoseconds
(26.6 Mbytes/sec) for a 20 MHz device. A configurable memory controller provides all timing, control and
DRAM refresh signals for a wide variety of mixed memory systems.

System Services include processor reset and bootstrap control, together with facilities for error analysis.

The INMOS communication links allow networks of transputer family products to be constructed by direct
point to point connections with no external logic. The IMS T414 links support the standard operating speed
of 10 Mbits per second, but also operate at 5 or 20 Mbits per second.

The IMS T414 is designed to implement the occam language, detailed in the occam Reference Manual,
but also efficiently supports other languages such as C, Pascal and Fortran. Access to specific features of
the IMS T414is described in the relevant system development manual. Access to the transputer at machine
level is seldom required, but if necessary refer to The Transputer Instruction Set A Compiler Writers' Guide.

This data sheet supplies hardware implementation and characterisation details for the IMS T414. It is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam. For convenience of description, the IMS T414 operation is split
into the basic blocks shown in figure 1.1.

110

2 Pin designations

Table 2.1: IMS T414 system services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset
Error out Error indicator
Analyse in Error analysis
BootFromRom in Bootstrap from external ROM or from link
HoldToGND Must be connected to GND
DoNotWire Must not be wired

Table 2.2: IMS T414 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemnotWrDO in/out Multiplexed data bit 0 and write cycle warning
MemnotRfD1 in/out Multiplexed data bit 1 and refresh warning
MemAD2..31 in/out Multiplexed data and address bus
notMemRd out Read strobe
notMemWrBO..3 out Four byte-addressing write strobes
notMemSO..4 out Five general purpose strobes
notMemRf out Dynamic memory refresh indicator
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted
MemConfig in Memory configuration data input

Table 2.3: IMS T414 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge

Table 2.4: IMS T414 link

Pin In/Out Function
LinklnO..3 ,in Four serial data input channels
LinkOutO..3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
LinkOSpecial in Select special speed for Link 0
Link123Special in Select special speed for Links 1,2,3

Signal names are prefixed by not if they are active lowi otherwise they are active high.
Pinout details for various packages are given on page 160.

111

3 Processor

The 32 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 2 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes
of memory via the External Memory Interface (EMI).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, Band C registers which form an evaluation stack.

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in The Transputer Instruction Set - A Compiler Writers' Guide.

ProgramLRegisters oca s

A

B

C

Workspace ~

Next inst

Operand

Figure 3.1: Registers

112

3.2 Instructions

4 IMS T414 engineering data

The instruction set has been designed for simple and efficient compilation of high-level languages. All in
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

Operand

Figure 3.2: Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these, shown in table 3.1, are used to encode the most important functions.

Table 3.1: Direct functions

load constant

load local

load non-local

jump

add constant

store local

store non-local

conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C, Fortran, Pascal or ADA.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

3 Processor 113

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2: Expression evaluation

Program

x := 0

x := #24

x := y + Z

Mnemonic

Idc 0
stl x

pfix 2
Idc 4
stl x

Idl y
Idl z
add
stl x

3.2.5 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

114

3.3 Processes and concurrency

4 IMS T414 engineering data

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 115).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active Being executed.
On a list waiting to be executed.

Inactive - Ready to input.
Ready to output.
Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 115). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Registers

FPtr1 (Front)

BPtr1 (Back)

A

B

c

Workspace

Next Inst

Operand

Locals

P

Q

R

s

Program

Figure 3.3: Linked process list

Table 3.3: Priority queue control registers

Function High Priority low Priority
Pointer to front of active process list FptrO Fptr1
Pointer to back of active process list BptrO Bptr1

3 Processor 115

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 119). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1ms apart.

A process can only be descheduled on certain instructions, known as descheduling points (page 119). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 j1s, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to swpport the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T414 supports two levels of priority. Priority 1 (Iow priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer's time; i.e. it has a distribution of descheduling points (page 119).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 millisecond at
the standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 58 cycles (assuming use of on-chip RAM).

116

3.5 Communications

4 IMS T414 engineering data

Communication between processes is achieved by means of channels. Process communication is point-to
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Timers

The transputer has two 32 bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com
pletely in approximately 4295 milliseconds. The other is accessible only to low priority processes and is
incremented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approx
imately 76 hours.

Table 3.4: Timer registers

ClockO
Clock 1
TNextRegO
TNextReg1

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

3 Processor 117

Workspaces Program

TimerO

Alarm

21
TNextRegO

TPtrLocO Empty

31

Figure 3.4: Timer registers

118

4 Instruction set summary

The Function Codes table 4.7. gives the basic function code set (page 112). Where the operand is less
than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative the first
prefix instruction will be nfix.

Table 4.1 :. prefix coding

Function Memory
Mnemonic code code

Ide #3 #4 #43

Ide #35
is coded as

pfix #3 #2 #23
Ide #5 #4 #45

Ide #987
is coded as

pfix #9 #2 #29
pfix #8 #2 #28
Ide #7 #4 #47

Ide -31 (Ide #FFFFFFE1)
is coded as

nfix #1 #6 #61
Ide #1 #4 #41

Tables 4.8 to 4.18 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2: operate coding

Function Memory
Mnemonic code code

add (op. code #5) #F5
is coded as

opr add #F #F5

ladd (op. code #16) #21F6
is coded as

pfix #1 #2 #21
opr #6 #F #F6

4 Instruction set summary 119

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing in
internal memory. The number of cycles is given for the basic operation only; where relevant the time for the
prefix function (one cycle) should be added. For a 20 MHz transputer one cycle is Sans. Some instruction
times vary. Where a letter is included in the cycles column it is interpreted from table 4.3.

Table 4.3: Instruction set interpretation

Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4: Instruction features

Ident Feature See page:

D The instruction is a descheduling point 119

E The instruction will affect the Error flag 119,129

4.1 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 114). They are
also the ones at which the processor will halt if the Analyse pin is asserted (page 128).

Table 4.5: Descheduling point instructions

input message
timer alt wait
jump

4.2 Error instructions

output message
timer input
loop end

output byte
stop on error
end process

output word
alt wait
stop process

The instructions in table 4.6 are the only ones which can affect the Error flag (page 129) directly.

Table 4.6: Error setting instructions

add
multiply
long add
set error
check word

add constant
fractional multiply
long subtract
testerr
check subscript from 0

subtract
divide
long divide

check single

remainder

cflerr
check count from 1

120 4 IMS T414 engineering data

Table 4.7: IMS T414 function codes

Function Memory Processor 0
Code Code Mnemonic Cycles Name E

0 OX j 3 jump 0
1 1X Idlp 1 load local pointer
2 2X pfix 1 prefix

3 3X Idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnlp 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)

4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
0 OX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

Table 4.8: IMS T414 arithmetic/logical operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24FO shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 38 fractional multiply (no rounding) E
72 27F2 fmul 35 fractional multiply (rounding) E

40 multiply E
2C 22FC div 39 divide E
1F 21FF rem 37 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product

4 Instruction set summary

Table 4.9: IMS T414 long arithmetic operation codes

121

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 2 long sum
4F 24FF Idiff 2 long diff
31 23F1 Imul 33 long multiply
1A 21FA Idiv 35 long divide E
36 23F6 Ishl n+3 long shift left (n<32)

n-28 long shift left(n~32)

35 23F5 Ishr n+3 long shift right (n<32)
n-28 long shift right (n~32)

19 21F9 norm n+5 normalise (n<32)
n-26 normalise (n~32)

3 normalise (n=64)

Table 4.10: IMS T414 floating point support operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

73 27F3 cflerr 3 check floating point error E
63 26F3 unpacksn 15 unpack single length fp number
6D 26FD roundsn 12/15 round single length fp number
6C 26FC postnormsn 5/30 post-normalise correction of

single length fp number

71 27F1 Idinf 1 load single length infinity

Processor cycles are shown as Typical/Maximum cycles.

Table 4.11: IMS T414 general operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

00 FO rev 1 reverse

3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
1D 21FD xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer

122 4 IMS 1414 engineering data

Table 4.12: IMS T414 indexing/array operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

02 F2 bsub 1 byte subscript
OA FA wsub 2 word subscript
34 23F4 bcnt 2 byte count
3F 23FF wcnt 5 word count
01 F1 Ib 5 load byte
3B 23FB sb 4 store byte

4A 24FA move 2w+8 move message

Table 4.13: IMS T414 timer handling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) D

4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D

48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer

Table 4.14: IMS T414 input/output operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

07 F7 in 2w+19 input message D
OB FB out 2w+19 output message D
OF FF outword 23 output word D
OE FE outbyte 23 output byte D

12 21F2 resetch 3 reset channel

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D

17 alt wait (channel not ready) D
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip

30 23FO diss 4 disable skip

48 24F8 enbc 7 enable channel (ready)
5 enable channel (not ready)

2F 22FF disc 8 disable channel

4 Instruction set summary

Table 4.15: IMS T414 control operation codes

123

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

20 22FO ret 5 return
1B 21FB Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) 0

5 loop end (exit) 0

Table 4.16: IMS T414 scheduling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

00 FO startp 12 start process 0
03 F3 endp 13 end process 0
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority

Table 4.17: IMS T414 error handling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

13 21F3 csubO 2 check subscript from 0 E
40 24FO ccnt1 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21FO seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) 0
57 25F7 c1rhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error

Table 4.18: IMS T414 processor initialisation operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FO savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25FO sthb 1 store high priority back pointer
1C 21FC stlf 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer

124

5 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

5.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

5.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 11-lF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 ohms between 100 KHz and 20 MHz. If a polarised capacitor is used the nega
tive terminal should be connected to CapMinus. Total PCS track length should be less than 50mm. The
connections must not touch power supplies or other noise sources.

CapPlus

CapMinus

P.C. 8. track

P.C.8. track

Decoupling
Capacitor

1~F

5.3 Clockln

Figure 5.1: Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

5 System services

Table 5.1: Input clock

125

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (page 156).

2.av
1.5v
a.8v

TDCHDCL

Figure 5.2: Clockln timing

126

5.4 Reset

4 IMS T414 engineering data

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC is
valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge of
Reset initialises the transputer, triggers the memory configuration sequence and starts the bootstrap routine.
Link outputs are forced low during reset; link inputs and EventReq should be held low. Memory request
(DMA) must not occur whilst Reset is high but can occur before bootstrap (page 150).

After the end of Reset there will be a delay of 144 periods of Clockln (figure 5.3). Following this, the
MemWrDO, MemRfD1 and MemAD2-31 pins will be scanned to check for the existence of a pre-programmed
memory interface configuration (page 141). This lasts for a further 144 periods of Clockln. Regardless of
whether a configuration was found, 36 configuration read cycles will then be performed on external memory
using the default memory configuration (page 142), in an attempt to access the external configuration ROM.
A delay will then occur, its period depending on the actual configuration. Finally eight complete and con
secutive refresh cycles will initialise any dynamic RAM, using the new memory configuration. If the memory
configuration does not enable refresh of dynamic RAM the refresh cycles will be replaced by an equivalent
delay with no external memory activity.

If BootFromRom is high bootstrapping will then take place immediately, using data from external memory;
otherwise the transputer will await an input from any link. The processor will be in the low priority state.

Reset 1"-- _
Action I~.I-----I....I·.I--I-nt-er-na-I-tI.....t.---E-xt-er-na-I--III.~t.----.....lI*"Ilt.-----...IDt"iIII.IIIIIIt---~~

Delay Delay Refresh Boot
configuration configuration

Figure 5.3: IMS T414 post-reset sequence

5.5 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot
FromRom may be dynamically changed but must obey the specified timing restrictions.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in
ROM. The processor is in the low priority state, and the W register points to MemStart (page 130).

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process. The
memory space immediately above the loaded code is used as work space. Messages arriving on other links
after the control byte has been received and on the bootstrapping link after the last bootstrap byte will be
retained until a process inputs from them.

5 System services

Table 5.2: Reset and Analyse

127

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TOCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 ns
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFrom Rom hold after Reset 50 ms
TALBRX BootFromRom hold after Analyse 50 ms

Notes

Full periods of Clockln TDCLDCL required.

2 At power-on reset.

Clockln

VCC

TPVRH

Reset

BootFromRom -' /- _

Figure 5.4: Transputer reset timing with Analyse low

TRHRL

Reset

TAHRH
Analyse

BootFromRom----------

TRLAL

a....---------I I----~TAL BR X

Figure 5.5: Transputer reset and analyse timing

128

5.6 Peek and poke

4 IMS T414 engineering data

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The
first four byte word is taken as an internal or external memory address at which to poke (write) the second
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

5.7 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling point
(page 119). From Analyse being asserted, the processor will halt within three time slice periods plus the
time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Memory refresh continues.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh
cycles will occur; the previous memory configuration will be used for any external memory accesses. If
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 5.3.

Table 5.3: Register values after analyse

MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of I when the processor halted.

B The value of W when the processor halted, together with the priority of the process
when the transputer was halted (i.e. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.

5 System services

5.8 Error

129

The Error pin is connected directly to the internal Error flag and follows the state of that flag. If Error is high
it indicates an error in one of the processes caused, for example, by arithmetic overflow, divide by zero, array
bounds violation or software setting the flag directly (page 119). Once set, the Error flag is only cleared by
executing the instruction testerr (page 118). The error is not cleared by processor reset, in order that analysis
can identify any errant transputer (page 128).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnError has been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset a~d analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers to
halt. This can be done by applying the Error output signal of the errant transputer to the EventReq pin of a
suitably programmed master transputer. Since the process state is preserved when stopped by an error, the
master transputer can then use the analyse function to debug the fault. When using such a circuit, note that
the Error flag is in an indeterminate state on power up; the circuit and software should be designed with this
in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved
for the duration of the high priority process and restored at the conclusion of it. Status of the Error flag is
transmitted to the high priority process but the HaltOnError flag is cleared before the process starts. Either
flag can be altered in the process without upsetting the error status of any complex operation being carried
out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data. Memory refresh will continue to take place.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I points
one byte past the instruction being executed. In both cases I will be copied to register A.

~
Analyse~ Slave SlaveMaster Latch

'lI'"

Transputer~
~

Transputer Transputer

Reset
'lI'" 0 1

4~ I Error[O] IError[1]
Event

I- Slave
~

Slave
(transputer links not shown) Transputer Transputer

I---

2 I--- 3

--- Error[2] I
Error[3] II

\
\

Figure 5.6: Error handling in a multi-transputer system

130

6

The IMS T414 has 2 Kbytes of fast internal static memory for high rates of data throughput. Each internal
memory access takes one processor cycle ProcClockOut (page 132). The transputer can also access
4 Gbytes of external memory space. Internal and external memory are part of the same linear address
space.

IMS T414 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least-1significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #80000000 and extends to #800007FF. User memory
begins at #80000048; this location is given the name MemStart.

A reserved area at the bottom of internal memory is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one.

External memory space starts at #80000800 and extends up through #00000000 to #7FFFFFFF. Memory
configuration data and ROM bootstrapping code must be in the most positive address space, starting at
#7FFFFF6C and #7FFFFFFE respectively. Address space immediately below this is conventionally used for
ROM based code.

6 Memory 131

hi
Machine Map

10 Byte address Word offsets
Occam Map

IReset Inst I
I

#7FFFFFFE (ResetCode Ptr)

I

IMemory configuration

1
#7FFFFF6C to #7FFFFFF8

#0

1 I
#80000800 - Start of external memory - #0200

I

#OA

#09

#08
#07

#06

#05
#04

#03
#02
#01

(Base of memory) #00

EreglntSaveLoc

STATUSlntSaveLoc

CreQ IntSaveLoc
BreglntSaveLoc
Areq IntSave Loc
IptrlntSaveLoc

Wdesc IntSave Loc
TPtrLoc1

TPtrLocO
Event

Link 3 Input
Link 2 Input

Link 1 Input
Link 0 Input

Link 3 Output
Link 2 Output

Link 1 Output
Link 0 Output

#80000048

#80000044

#80000040
#8000003C
#80000038
#80000034

#80000030
#8000002C
#80000028
#80000024
#80000020
#8000001C
#80000018

#80000014
#80000010
#8000000C
#80000008
#80000004
#80000000

MemStart

Note 1

MemStart #12

TPtrLoc1

TPtrLocO
Event

Link 3 Input

Link 2 Input

Link 1 Input
Link 0 Input

Link 3 Output
Link 2 Output
Link 1 Output
Link 0 Output

Figure 6.1: IMS T414 memory map

These locations are used as auxiliary processor registers and should not be manipulated by the user.
Like processor registers, their contents may be useful for implementing debugging tools (Analyse,
page 128). For details see The Transputer Instruction Set - A Compiler Writers' Guide.

132

7 External memory interface

The External Memory Interface (EMI) allows access to a 32 bit address space, supporting dynamic and static
RAM as well as ROM and EPROM. EMI timing can be configured at Reset to cater for most memory types
and speeds, and a program is supplied with the Transputer Development System to aid in this configuration.

There are 13 internal configurations which can be selected by a single pin connection (page 141). If none
are suitable the user can configure the interface to specific requirements, as shown in page 142.

7.1 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering appendix).

The time value Tm is used to define the duration of Tstates and, hence, the length of external memory cycles;
its value is exactly half the period of one ProcClockOut cycle (0.5*TPCLPCL), regardless of mark/space
ratio of ProcClockOut.

Edges of the various external memory strobes coincide with rising or falling edges of ProcClockOut. It should
be noted, however, that there is a skew associated with each coincidence. The value of skew depends on
whether coincidence occurs when the ProcClockOut edge and strobe edge are both rising, when both are
falling or if either is rising when the other is falling. Timing values given in the strobe tables show the best
and worst cases. If a more accurate timing relationship is required, the exact Tstate timing and strobe edge
to ProcClockOut relationships should be calculated and the correct skew factors applied from the edge skew
timing table 7.4.

7.2 Tstates

The external memory cycle is divided into six Tstates with the following functions:

T1 Address setup time before address valid strobe.

T2 Address hold time after address valid strobe.

T3 Read cycle tristate or vvrite cycle data setup.

T4 Extendable data setup time.

T5 Read or write data.

T6 Data hold.

Under normal conditions each Tstate may be from one to four periods Tm long, the duration being set during
memory configuration. The default condition on Reset is that all Tstates are the maximum four periods Tm
long to allow external initialisation cycles to read slow ROM.

Period T4 can be extended indefinitely by adding externally generated wait states.

An external memory cycle is always an even number of periods Tm in length and the start of T1 always
coincides with a rising edge of ProcClockOut. If the total configured quantity of periods Tm is an odd
number, one extra period Tm will be added at the end of T6 to force the start of the next T1 to coincide with
a rising edge of ProcClockOut. This period is designated E in configuration diagrams (page 142).

7 External memory interface 133

Table 7.1: ProcClockOut

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCLPCL ProcClockOut period a-1 a a+1 ns 1
TPCHPCL ProcClockOut pulse width high b-2.5 b b+2.5 ns 2
TPCLPCH ProcClockOut pulse width low c ns 3
Tm ProcClockOut half cycle b-O.5 b b+O.5 ns 2
TPCstab ProcClockOut stability 4 % 4

Notes

a is TDCLDCL/PLLx.

2 b is 0.5*TPCLPCL (half the processor clock period).

3 c is TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

1.5v ---------

1..--- TPCLPCH TPCHPCL

TPCL PCL -------EI"I

Figure 7.1: IMS T414 ProcClockOut timing

7.3 Internal access

During an internal memory access cycle the external memory interface bus MemAD2-31 reflects the word
address used to access internal RAM, MemnotWrDO reflects the read/write operation and MemnotRfD1 is
high; all control strobes are inactive. This is true unless and until a memory refresh cycle or DMA (memory
request) activity takes place, when the bus will carry the appropriate external address or data.

The bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 128).

Read '<--
'<---

X__A_dd_re_s_s_X _
y
=><__A_d_d_r_e_ss__X Ad dre ssMemAD2-31

MemnotRfD1

ProcClockOut

MemnotWr D0~ w_r_it_e_---J/ Read

Figure 7.2: IMS T414 bus activity for internal memory cycle

134

7.4 MemAD2-31

4 IMS T414 engineering data

External memory addresses and data are multiplexed on one bus. Only the top 30 bits of address are
output on the external memory interface, using pins MemAD2-31. They are normally output only during
Tstates T1 and T2, and should be latched during this time. Byte addressing is carried out internally by the
transputer for read cycles. For write cycles the relevant bytes in memory are addressed by the write strobes
notMemWrBO-3.

The data bus is 32 bits wide. It uses MemAD2-31 for the top 30 bits and MemnotRfD1 and MemnotWrDO
for the lower two bits. Read cycle data may be set up on the bus at any time after the start of T3, but must
be valid when the transputer reads it at the end of T5. Data may be removed any time during T6, but must
be off the bus no later than the end of that period.

Write data is placed on the bus at the start of T3 and removed at the end of T6. If T6 is extended to force
the next cycle Tmx (page 134) to start on a rising edge of ProcClockOut, data will be valid during this time
also.

7.5 MemnotWrDO

During T1 and T2 this pin will be low if the cycle is a write cycle, otherwise it will be high. During Tstates T3
to T6 it becomes bit 0 of the data bus. In both cases it follows the general timing of MemAD2-31.

7.6 MemnotRfD1

During T1 and T2, this pin is low if the address on MemAD2-31 is a refresh address, otherwise it is high.
During Tstates T3 to T6 it becomes bit 1 of the data bus. In both cases it follows the general timing of
MemAD2-31.

7.7 notMemRd

For a read cycle the read strobe notMemRd is low during T4 and T5. Data is read by the transputer on the
rising edge of this strobe, and may be removed immediately afterward. If the strobe duration is insufficient it
may be extended by adding extra periods Tm to either or both of the Tstates T4 and T5. Further extension
may be obtained by inserting wait states at the end of T4.

In the read cycle timing diagrams ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm.

7.8 notMemSO-4

To facilitate control of different types of memory and devices, the EMI is provided with five strobe outputs,
four of which can be configured by the user. The strobes are conventionally assigned the functions shown in
the read and write cycle diagrams, although there is no compulsion to retain these designations.

notMemSO is a fixed format strobe. Its leading edge is always coincident with the start of T2 and its trailing
edge always coincident with the end of T5.

The leading edge of notMemS1 is always coincident with the start of T2, but its duration may be configured
to be from zero to 31 periods Tm. Regardless of the configured duration, the strobe will terminate no later
than the end of T6. The strobe is sometimes programmed to extend beyond the normal end of Tmx. When
wait states are inserted into an EMI cycle the end of Tmx is delayed, but the potential active duration of the
strobe is not altered. Thus the strobe can be configured to terminate relatively early under certain conditions
(page 148). If notMemS1 is configured to be zero it will never go low.

notMemS2, notMemS3 and notMemS4 are identical in operation. They all terminate at the end of T5, but
the start of each can be delayed from one to 31 periods Tm beyond the start of T2. If the duration of one of

7 External memory interface 135

these strobes would take it past the end of T5 it will stay high. This can be used to cause a strobe to become
active only when wait states are inserted. If one of these strobes is configured to zero it will never go high.
Figure 7.5 shows the effect of Wait on strobes in more detail; each division on the scale is one period Tm.

Table 7.2: Read

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TaZdV Address tristate to data valid 0 ns
TdVRdH Data setup before read 20 ns
TRdHdX Data hold after read 0 ns
TSOLRdL notMemSO before start of read a-2 a a+2 ns 1
TSOHRdH End of read from end of notMemSO -1 1 ns
TRdLRdH Read period b b+6 ns 2

Notes

a is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

2 b is total of T4+Twait+T5 where T4, T5 can be from one to four periods Tm each in length and Twait may be
any number of periods Tm in length.

Tstate T1 T2 T3 T4 T5 I T6 T1

ProcClockOut

MemnotWrDO

MemnotRfD1

MemAD2-31

notMemRd

notMemSO
(CE)

notMemS1
(ALE)

Figure 7.3: IMS T414 external read cycle: static memory

136 4 IMS T414 engineering data

Tstate T1 T2 T3 I T4 T5 T6 T1

ProcClockOut

Tmx

MemnotWrDO

MemnotRfD1

MemAD2-31

notMemRd

notMemSO
(RAS)

notMemS1
(ALE)

notMemS2
(AMUX)

notMemS3
(CAS)

notMemS4
(Wait state)

TSOLSOH ~-----------

~~~ TSOHS1 H <D

-~~-TSOHS2H @

--~---TSOHS3H(D

(DTSO LS4H ~------------...".

(DTSOLS4L --~---TSOHS4HCD

Figure 7.4: IMS T414 external read cycle: dynamic memory



7 External memory interface

Table 7.3: IMS T414 strobe timing

137

SYMBOL Cri) PARAMETER MIN NOM MAX UNITS NOTE
TaVSOL Address setup before notMemSO a ns 1
TSOLaX Address hold after notMemSO b ns 2
TSOLSOH notMemSO pulse width low c c+6 ns 3
TSOLS1L 1 notMemS1 from notMemSO 0 2 ns
TSOLS1H 5 notMemS1 end from notMemSO d d+6 ns 4,6
TSOHS1H 9 notMemS1 end from notMemSO end e-1 e+4 ns 5,6
TSOLS2L 2 notMemS2 delayed after notMemSO f-1 1+4 ns 7
TSOLS2H 6 notMemS2 end from notMemSO c+4 c+8 ns 3
TSOHS2H 10 notMemS2 end from notMemSO end 0 2 ns
TSOLS3L 3 notMemS3 delayed after notMemSO f-1 1+3 ns 7
TSOLS3H 7 notMemS3 end from notMemSO c+4 c+8 ns 3
TSOHS3H 11 notMemS3 end from notMemSO end 0 2 ns
TSOLS4L 4 notMemS4 delayed after notMemSO f-1 1+2 ns 7
TSOLS4H 8 notMemS4 end from notMemSO c+4 c+8 ns 3
TSOHS4H 12 notMemS4 end from notMemSO end 0 2 ns
Tmx Complete external memory cycle 9 8

Notes

1 a is T1 where T1 can be from one to four periods Tm in length.

2 b is T2 where T2 can be from one to four periods Tm in length.

3 c is total of T2+T3+T4+Twait+T5 where T2, T3, T4, T5 can be from one to four periods Tm each in length and
Twait may be any number of periods Tm in length.

4 d can be from zero to 31 periods Tm in length.

5 e can be from -27 to +4 periods Tm in length.

6 If the configuration would cause the strobe to remain active past the end of T6 it will go high at the end of T6.
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx.

7 f can be from zero to .31 periods Tm in length. If this length would cause the strobe to remain active past the
end of T5 it will go high at the end of T5. If the strobe value is zero periods Tm it will remain low throughout
the complete cycle Tmx.

8 9 is one complete external memory cycle comprising the total of T1 +T2+T3+T4+Twait+T5+T6 where T1, T2,
T3, T4, T5 can be from one to four periods Tm each in length, T6 can be from one to five periods Tm in length
and Twait may be zero or any number of periods Tm in length.

Tstate IT11T21T31T41T51T61T11

notMemS1 I I
Tstate IT11T21T31T41W IW IT51T61T11

notMemS1 I 1

notMemS2 notMemS2

No wait states Wait states inserted

Figure 7.5: IMS T414 effect of wait states on strobes



138 4 IMS T414 engineering data

Table 7.4: Strobe SO to ProcClockOut skew

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHSOH Strobe rising from ProcClockOut rising 0 3 ns
TPCLSOH Strobe rising from ProcClockOut falling 1 4 ns
TPCHSOL Strobe falling from ProcClockOut rising -3 0 ns
TPCLSOL Strobe falling from ProcClockOut falling -1 2 ns

ProcClockOut

notMemSO

j;OH
:Y ):CSOL

Figure 7.6: IMS T414 skew of notMemSO to ProcClockOut

7.9 notMemWrBO-3

Because the transputer uses word addressing, four write strobes are provided; one to write each byte of the
word. notMemWrBO addresses the least significant byte.

The transputer has both early and late write cycle modes. For a late write cycle the relevant write strobes
notMemWrBO-3 are low during T4 and T5; for an early write they are also low during T3. Data should be
latched into memory on the rising edge of the strobes in both cases, although it is valid until the end of T6.
If the strobe duration is insufficient, it may be extended at configuration time by adding extra periods Tm to
either or both of Tstates T4 and T5 for both early and late modes. For an early cycle they may also be added
to T3. Further extension may be obtained by inserting wait states at the end of T4. If the data hold time is
insufficient, extra periods Tm may be added to T6 to extend it.

Table 7.5: Write

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TdVWrH Data setup before write d ns 1,5
TWrHdX Data hold after write a ns 1,2
TSOLWrL notMemSO before start of early write b-3 b+2 ns 1,3

notMemSO before start of late write c-3 c+2 ns 1,4
TSOHWrH End of write from end of notMemSO -2 2 ns 1
TWrLWrH Early write pulse width d d+6 ns 1,5

Late write puIse width e e+6 ns 1,6

Notes

1 Timing is for all write strobes notMemWrBO-3.

2 a is T6 where T6 can be from one to five periods Tm in length.

3 b is T2 where T2 can be from one to four periods Tm in length.

4 c is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

5 d is total of T3+T4+Twait+T5 where T3, T4, T5 can be from one to four periods Tm each in length and Twait
may be zero or any number of periods Tm'in length.

6 e is total of T4+Twait+T5 where T4, T5 can be from one to four periods Tm each in length and Twait may be
zero or any number of periods Tm in length.



7 External memory interface 139

Tstate T1 T2 T3 T4 T5 I T6 T1

ProcClockOut

MemnotWrDO

MemnotRfD1

MemAD2-31

notMemWrBO-B3
(early write)

notMemWrBO-B3
(late write)

TSOLWrL

Data

Data

Data

TdVWrH

TWrLWrH

TWrLWrH

TSOLSOH

(DTSOLS1 L_~
CD TSOLS1 H~------------....

notMemSO
(CE)

notMemS1
(ALE)

Figure 7.7: IMS T414 external write cycle

In the write cycle timing diagram ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm. The strobe is inactive during internal memory cycles.



cor----:

~::::J
0

>
i.L co.-§.S2Q

.
a.ctS
~'r

-

~I-C
l)

2

K
*4

am
ic

AM
K

*4

G
N

D
-

~
-

V
C

C
~

~
----a

-

notE
rrorW

iredO
r

en.C
\I

c«EQ
)

:a:

,...o,..c«EQ
)

:a:

n
o

tM
e

m
W

rB
3

G
N

D
n

o
t
M

e
m

W
r
B

2
-
-
-
-
-
-
-
-


n
o

t
M

e
m

W
r
B

1
-
-
-
-
-
-
-
-


n
o

t
M

e
m

W
r
B

O
-
-
-
-
-
-
-


n
o

t
M

e
m

R
d

-
-
-
-
-
-
-
-
-

n
o

tM
e

m
S

3
~

n
o

tM
e

m
S

2
1

1
'

n
o

tM
e

m
S

1
1

1
n

o
tM

e
m

S
O

-
-
-
-
-
-
-
'

n
o

tO
E

C
olum

n
address

latch

IM
S

T
4

1
4

E
rro

r

C
a

p
P

lu
s

,
,

,C
a

p
M

in
u

s

As
LinkO

As
Link2

R
M

R
M

L
in

k
O

O
u

t

L
in

kO
ln

L
in

k3
1

n
L

in
k
3

0
u

tM
e

m
C

o
n

fig

C
lo

c
k
ln

(5
M

H
z)

L
in

k1
1

n
L

in
k
1

0
u

t

L
in

k2
1

n
L

in
k
2

0
u

t
..----.

I

~ tUca"'C0
')

.=Q)Q
)

.=0
')

cQ
)

~,..~t-(J)

:a:o~



7 External IMI"IlCIIMl"llI"U'U interface 141

7.10

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI)
characteristics" It is read by the processor on two occasions after Reset goes low; first to check if one of the
preset internal configurations is required, then to determine a possible external configuration.

7.10.1 Internal configuration

The internal configuration scan comprises 64 periods TDCLDCL of Clockln during the internal scan period
of 144 Clockln periods. MemnotWrDO, MemnotRfD1 and MemAD2-32 are all high at the beginning of the
scan. Starting with MemnotWrDO, each of these lines goes low successively at intervals of two Clockln
periods and stays low until the end of the scan. If one of these lines is connected to MemConfig the preset
internal configuration mode associated with that line will be used as the EMI configuration. The default
configuration is that defined in the table for MemAD31 ; connecting MemConfig to VCC will also produce this
default configuration. Note that only 13 of the possible configurations are valid.

Table 7.6: IMS T414 internal configuration coding

Duration of each Tstate Strobe Write Refresh Cycle Extra
periods Tm coefficient cycle interval time cycles

Clockln Proc
Pin T1 T2 T3 T4 T5 T6 s1 s2 s3 s4 type cycles cycles e

MemnotWrDO 1 1 1 1 1 1 30 1 3 5 late 72 3 2
MemnotRfD1 1 2 1 1 1 2 30 1 2 7 late 72 4 3
MemAD2 1 2 1 1 2 3 30 1 2 7 late 72 5 4
MemAD3 2 3 1 1 2 3 30 1 3 8 late 72 6 5
MemAD4 1 1 1 1 1 1 3 1 2 3 early 72 3 2
MemAD5 1 1 2 1 2 1 5 1 2 3 early 72 4 3
MemAD6 2 1 2 1 3 1 6 1 2 3 early 72 5 4
MemAD7 2 2 2 1 3 2 7 1 3 4 early 72 6 5
MemAD8 1 1 1 1 1 1 30 1 2 3 early - 3 2
MemAD9 1 1 2 1 2 1 30 2 5 9 early - 4 3
MemAD10 2 2 2 2 4 2 30 2 3 8 late 72 7 6
MemAD11 3 3 3 3 3 3 30 2 4 13 late 72 9 8
MemAD31 4 4 4 4 4 4 31 30 30 18 late 72 12 11

Table 7.7: IMS T414 internal configuration description

Pin Configuration
MemnotWrDO Dynamic RAM in 3 processor cycles
MemnotRfD1 Dynamic RAM in 4 processor cycles
MemAD2 Dynamic RAM in 5 processor cycles
MemAD3 Dynamic RAM in 6 cycles
MemAD4 Multiplexed address dynamic RAM in 3 processor cycles
MemAD5 Multiplexed address dynamic RAM in 4 processor cycles
MemAD6 Multiplexed address dynamic RAM in 5 processor cycles
MemAD7 Multiplexed address dynamic RAM in 6 processor cycles
MemAD8 Fast static RAM in 3 processor cycles
MemAD9 Static RAM in 4 cycles with wait generator
MemAD10 General purpose configuration in 7 processor cycles
MemAD11 General purpose configuration in 9 processor cycles
MemAD31 General purpose configuration in 12 processor cycles



142

Tstate 11121314151611121314151611 12
notMemSO

notMemS1 I ~o n IL
notMemS2-~

~:::::::_~
notMemRd

notMemWr

MemConfig=MemnotWrDO

4 IMS T414 engineering data

Tstate 1112121314151616111212131415
notMemSO I 111....- _
notMemS1 I ~o nl....- _
notMemS2wnotMemS3 ~ L-
notMemS4 _~ _

notMemRd U L
notMemWr late U L

MemConfig=MemnotRfD1

Tstate 1111 1212121314/515161616/112

notMemSO I I
notMemS1 I 30 I

notMemS2 =~3 :
notMemS3 .

notMemS4 =-=-~ -_-.13-_-_-_-_-_-_-_

Tstate 1111121213131415151516161111
notMemSOI I
notMemS 1 1&.....-__7__-1

notMemS2 --P,1~
notMemS3 -- 3

---_.....
notMemS4 -- 4

notMemRdnotMemRd

notMemWr late notMemWr early

MemConfig=MemAD3 MemConfig=MemAD7

Figure 7.9: IMS T414 internal configuration

7.10.2 External configuration

If MemConfig is held low until MemnotWrDO goes low the internal configuration is ignored and an external
configuration will be loaded instead. An external configuration scan always follows an internal one, but if an
internal configuration occurs any external configuration is ignored.

The external configuration scan comprises 36 successive external read cycles, using the default EMI con
figuration preset by MemAD31. However, instead of data being read on the data bus as for a normal read
cycle, only a single bit of data is read on MemConfig at each cycle. Addresses put out on the bus for each
read cycle are shown in table 7.8, and are designed to address ROM at the top of the memory map. The
table shows the data to be held in ROM; data required at the MemConfig pin is the inverse of this.

MemConfig is typically connected via an inverter to MemnotWrDO. Data bit zero of the least significant byte
of each ROM word then provides the configuration data stream. By switching MemConfig between various
data bus lines up to 32 configurations can be stored in ROM, one per bit of the data bus. MemConfig can be
permanently connected to a data line or to GND. Connecting MemConfig to GND gives all Tstates configured
to four periods; notMemS1 pulse of maximum duration; notMemS2-4 delayed by maximum; refresh interval
72 periods of Clockln; refresh enabled; late write.

The external memory configuration table 7.8 shows the contribution of each memory address to the 13 con
figuration fields. The lowest 12 words (#7FFFFF6C to #7FFFFF98, fields 1 to 6) define the number of extra
periods Tm to be added to each Tstate. If field 2 is 3 then three extra periods will be added to T2 to extend
it to the maximum of four periods.



7 External memory interface

Dela

64
of

MemnotWrDO

MemnotRfD1

MemAD2

MemAD3

MemAD31

MemConfig CD
MemConfig@

Internal confi uration External confi uration

143

1 Internal configuration: MemConfig connected to MemAD2.
2 External configuration: MemConfig connected to inverse of MemAD3.

Figure 7.10: IMS T414 internal configuration scan

The next five addresses (field 7) define the duration of notMemS1 and the following fifteen (fields 8 to 10)
define the delays before strobes notMemS2-4 become active. The five bits allocated to each strobe allow
durations of from 0 to 31 periods Tm, as described in strobes page 134.

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11 and 12) define the refresh interval and whether refresh is to
be used, whilst the final address (field 13) supplies a high bit to MemConfig if a late write cycle is required.

The columns to the right of the coding table show the values of each configuration bit for the four sample
external configuration diagrams. Note the inclusion of period E at the end of T6 in some diagrams. This is
inserted to bring the start of the next Tstate T1 to coincide with a rising edge of ProcClockOut (page 132).

Wait states W have been added to show the effect of them on strobe timing; they are not part of a configuration.
In each case which includes wait states, two wait periods are defined. This shows that if a wait state would
cause the start of T5 to coincide with a falling edge of ProcClockOut, another period Tm is generated by
the EMI to force it to coincide with a rising edge of ProcClockOut. This coincidence is only necessary if wait
states are added, otherwise coincidence with a falling edge is permitted.



144 4 IMS T414 en~~inleerinQ data

"-- --11

__ ...0 _

2

Tstate 11 12131 3 141 WIWIWI51611 12131 3

notMemSO

notMemS1

notMemS2

notMemS3

notMemS4

notMemRd

notMemWr late

CDMemWait

(DMemWait~

Example 2

Tstate 11 12 I2 13 I 31 41 51 616lE 11I21 21 3

notMemSO I I L-
notMemS1 81...- --'

notMemS2 ~
notMemS3 11 I L
notMemS4 4 U
notMemRd U .....-----
notMemWr eaJiYl , L

(Q) MemWait - - - - - - - - - - - - - -

CD MemWait - - - - - - - - - - - - - -

Example 1

Tstate 11 1213131 41 W1WIW151 616 I E1112

notMemSO I I L
notMemS1 LJJ L
notMemS2 =-~~----0 -- -- ---
notMemS3 _ _ . 9.. _

notMemS4 2. I
notMemRd , ....., ---

notMemWr late I I
~MemWait

G)MemWait~

Tstate 11121213131 ~WIW1516161E1112

notMemSO I L
notMe mS 1 1Jjr-------------.L

notMemS2=~7
notMemS3 5

notMemS4 3

notMemRd

notMemWr ~r..... --I

CD MemWait __----JIlr..... _
(g)MemWait IIL-- _

Example 3 Example 4

o No wait states inserted.
1 One wait state inserted.
2 Two wait states inserted.
3 Three wait states inserted.

Figure 7.11: IMS T414 external configuration



7 External nnClnnl,,\ru interface

Internal configuration

Address

MemnotWrDO

MemnotRfD1

MemAD2

MemAD3

MemAD31

Memconfig CD
notMemRd

External configuration

-.::::t co 0 -.::::t
I"- l"- LL LL
LL LL LL LL
LL LL LL LL
LL LL LL LL
LL LL LL LL
LL LL LL LL
I"- "I"- I"- I"-

Delay

145

1 MemConfig connected to inverse of MemnotWrDO.
2 Configuration field 1; T1 configured for 2 periods Tm.
3 Configuration field 2; T2 configured for 3 periods Tm.
4 Configuration field 10; most significant bit of notMemS4 configured high.
S Configuration field 11; refresh interval configured for 36 periods Clockln.
G Configuration field 12; refresh enabled.
7 Configuration field 13; early write cycle.

Figure 7.12: IMS T414 external configuration scan



146 4 IMS T414 engineering data

Table 7.8: IMS T414 external configuration coding

Scan MemAD Example diagram
cycle address Field Function 1 2 3 4

1 7FFFFF6C 1 T1 least significant bit 0 0 0 0
2 7FFFFF70 1 T1 most significant bit 0 0 0 0
3 7FFFFF74 2 T2 least significant bit 1 0 0 1
4 7FFFFF78 2 T2 most significant bit 0 0 0 0
5 7FFFFF7C 3 T3 least significant bit 1 1 1 1
6 7FFFFF80 3 T3 most significant bit 0 0 0 0
7 7FFFFF84 4 T4 least significant bit 0 0 0 0
8 7FFFFF88 4 T4 most significant bit 0 0 0 0
9 7FFFFF8C 5 T5 least significant bit 0 0 0 0
10 7FFFFF90 5 T5 most significant bit 0 0 0 0
11 7FFFFF94 6 T6 least significant bit 1 0 1 1
12 7FFFFF98 6 T6 most significant bit 0 0 0 0
13 7FFFFF9C 7 notMemS1 least significant bit 0 0 1 1
14 7FFFFFAO 7 0 0 0 0
15 7FFFFFA4 7 ~ ~ 0 0 0 0
16 7FFFFFA8 7 1 0 0 0
17 7FFFFFAC 7 notMemS1 most significant bit 0 0 0 0
18 7FFFFFBO 8 notMemS2 least significant bit 1 0 0 1
19 7FFFFFB4 8 1 1 0 1
20 7FFFFFB8 8 ~ ~ 0 0 0 1
21 7FFFFFBC 8 0 0 0 0
22 7FFFFFCO 8 notMemS2 most significant bit 0 0 0 0
23 7FFFFFC4 9 notMemS3 least significant bit 1 1 1 1
24 7FFFFFC8 9 0 1 0 0
25 7FFFFFCC 9 ~ ~ 0 1 0 1
26 7FFFFFDO 9 0 0 1 0
27 7FFFFFD4 9 notMemS3 most significant bit 0 0 0 0
28 7FFFFFD8 10 notMemS4 least significant bit 0 0 0 1
29 7FFFFFDC 10 0 1 1 1
30 7FFFFFEO 10 ~ ~ 1 1 0 0
31 7FFFFFE4 10 0 0 0 0
32 7FFFFFE8 10 notMemS4 most significant bit 0 0 0 0
33 7FFFFFEC 11 Refresh Interval least significant bit - - - -

34 7FFFFFFO 11 Refresh Interval most significant bit - - - -
35 7FFFFFF4 12 Refresh Enable - - - -
36 7FFFFFF8 13 Late Write 0 1 1 0

Table 7.9: IMS T414 memory refresh configuration coding

Refresh Interval Field 11 Complete
interval in /-is encoding cycle (mS)

18 3.6 00 0.922
36 7.2 01 1.843
54 10.8 10 2.765
72 14.4 11 3.686

Refresh intervals are in periods of Clockln and Clockln frequency is 5MHz:

Interval = 18 * 200 = 3600ns

Refresh interval is between successive incremental refresh addresses.
Complete cycles are shown for 256 row DRAMS.



7 External memory interface 147

Table 7.10: Memory configuration

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMCVRdH Memory configuration data setup 20 ns
TRdHMCX Memory configuration data hold 0 ns
TSOLRdH notMemSO to configuration data read a a+6 ns 1

Notes

a is 16 periods Tm.

T2

I I I
Tstate I T1
Tm I I I

MemnotRfD1 --./

MemnotWrDO J

I T3 I T4 I T5 I T6 I T1 L
11111 I I11 I1I11 I r

<oata»)Y

'«««<<<<<<<oata»>y

MemAD2-31 ~~~A_dd_re_ss~ o~a~_~

notMemSO

T80 LRdH~-----------~

notMemRd

MemConfig

Figure 7.13: IMS T414 external configuration read cycle timing

7.11 notMemRf

The IMS T414 can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh interval is also determined. Refresh cycles do not interrupt internal
memory accesses, although the internal addresses cannot be reflected on the external bus during refresh.

When refresh is disabled no refresh cycles occur. During the post-Reset period eight dummy refresh cycles
will occur with the appropriate timing but with no bus or strobe activity.

A refresh cycle uses the same basic external memory timing as a normal external memory cycle, except that
it starts two periods Tm before the start of T1. If a refresh cycle is due during an external memory access,
it will be delayed until the end of that external cycle. Two extra periods Tm (periods R in the diagram) will
then be inserted between the end of T6 of the external memory cycle and the start of T1 of the refresh cycle
itself. The refresh address and various external strobes become active approximately one period Tm before
T1. Bus signals are active until the end of T2, whilst notMemRf remains active until the end of T6.

For a refresh cycle, MemnotRfD1 goes low before notMemRf goes low and MemnotWrDO goes high with
the same timing as MemnotRfD1. All the address lines share the same timing, but only MemAD2-11 give
the refresh address. MemAD12-30 stay high during the address period, whilst MemAD31 remains low.
Refresh cycles generate strobes notMemSO-4 with timing as for a normal external cycle, but notMemRd and
notMemWrBO-3 remain high. MemWait operates normally during refresh cycles.



148 4 IMS T414 eng~neering data

Table 7.11: Memory refresh

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TRfLRfH Refresh pulse width low a a+6 ns 1
TRaVSOL Refresh address setup before notMemSO b ns 2
TRfLSOL Refresh indicator setup before notMemSO b ns 2

Notes

a is total Tmx+(2 periods Tm).

2 b is total T1 +(2 periods Tm) where T1 can be from one to four periods Tm in length.

Tstate T6 I R I R I T1 I T2 I T3 I T4 I T5 I T6 I T1 I

~O:~~Di_C~~ __...&.X~ X Address X....... D_at_a >C I
MemAD2-11

notMemSO

notMemRf

MemnotWrDO

MemnotRfD1

MemAD12-30

MemAD31

Figure 7.14: IMS T414 refresh cycle timing

7.12 MemWait

Taking MemWait high with the timing shown will extend the duration of T4. MemWait is sampled near to, but
independent of, the falling edge of ProcClockOut, and should not change state in this region. By convention,
notMemS4 is used to synchronize wait state insertion. If this or another strobe is used, its delay should be
such as to take the strobe low an even number of periods Tm after the start of T1, to coincide with a rising
edge of ProcClockOut.

MemWait may be kept high indefinitely, although if dynamic memory refresh is used it should not be kept
high long enough to interfere with refresh timing. MemWait operates normally during all cycles, including
refresh and configuration cycles.

If the start of T5 would coincide with a falling edge of ProcClockOut an extra wait period Tm (EW) is
generated by the EMI to force coincidence with a rising edge. Rising edge coincidence is only forced if wait
states are added, otherwise coincidence with a falling edge is permitted.



7 External n"'IlOlrnrul"'U interface

Table 7.12: Memory wait

149

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHWtH Wait setup -(a)+3 ns 1,4
TPCHWtL Wait hold b+3 ns 2,3,4
TWtLWtH Delay before re-assertion of Wait 2 Tm

Notes

1 a is 0.5 periods Tm.

2 b is 1.5 periods Tm.

3 If wait period exceeds refresh interval, refresh cycles will be lost.

4 Wait timing is independent of falling edge of ProcClockOut.

Tstate

ProcClockOut

MemWait

T2 I T3 T4 W T6 I T1

MemADO-31

notMemRd

Tstate

ProcClockOut

MemWait

_A_dd_re_ss >-« <<<<<< Data »< Address

" /

Tstate

ProcClockOut

MemWait

T3 T4 T4 W EW W EW T5

Figure 7.15: IMS T414 memory wait timing



150

7.13 MemReq, MemGranted

4 IMS T414 engineering data

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
The transputer samples MemReq during the final period Tm of T6 of both refresh and external memory
cycles. To guarantee taking over the bus immediately following either, MemReq must be set up at least two
periods Tm before the end of T6. In the absence of an external memory cycle, MemReq is sampled during
every low period of ProcClockOut. The address bus is tristated two periods Tm after the ProcClockOut
rising edge which follows the sample. MemGranted is asserted one period Tm after that.

Removal of MemReq is sampled during each low period of ProcClockOut and MemGranted is removed
synchronously with the next falling edge of ProcClockOut. If accurate timing of DMA is required, MemReq
should be set low coincident with a falling edge of ProcClockOut. Further external bus activity, either refresh,
external cycles or reflection of internal cycles, will commence at the next rising edge of ProcClockOut.

Strobes are left in their inactive states during DMA. DMA cannot interrupt a refresh or external memory cycle,
and outstanding refresh cycles will occur before the bus is released to DMA. DMA does not interfere with
internal memory cycles in any way, although a program running in internal memory would have to wait for the
end of DMA before accessing external memory. DMA cannot access internal memory. If DMA extends longer
than one refresh interval (Memory Refresh Configuration Coding table, page 142), the DMA user becomes
responsible for refresh. DMA may also inhibit an internally running program from accessing external memory.

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 7.13: Memory request

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMRHMGH Memory request response time 4 6 Tm 1
TMRLMGL Memory request end response time 2 4 Tm
TADZMGH Bus tristate before memory granted 1 Tm
TMGLADV Bus active after end of memory granted 1 Tm

Notes

These values assume no external memory cycle is in progress. If an external cycle is active, maximum time
could be (1 EMI cycle Tmx)+(1 refresh cycle TRfLRfH)+(6 periods Tm).

ProcClockOut

MemReq

MemGranted

MemnotWrDO
MemnotRfD1 -----------"ll:""""IIl:~11----11--------------1(
MemAD2-31

Figure 7.16: IMS T414 memory request timing



7 External memory interface 151

MemReq

MemGranted

Reset

Configuration
sequence

D Pre- and post-configuration delays (figure 5.3)
I Internal configuration sequence.
E External configuration sequence.
R Initial refresh sequence.
S Bootstrap sequence.

Figure 7.17: IMS T414 DMA sequence at reset

,-----
Read or Write I-C

,,-------
_--------c( _

)---------c( _

Figure 7.18: IMS T414 operation of MemReq, MemGranted with external, refresh memory cycles

tJlem Req ///////7/7 " /7 "---Internal Memory Cycles

External rv1emory
Interface activity

fvlemGranted ~ / "---
MemnotWrDO

> CIVlemnotRfD1 ) <
MemAD2-31

Figure 7.19: IMS T414 operation of MemReq, tv1emGranted with external, internal memory cycles



152

8 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described on
page 115. Setting a high priority task to wait for an event input is a way of interrupting a transputer program.

Table 8.1: Event

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a ns 1
TKLVH Delay before re-assertion of event request 0 ns

Notes

a is TPCLPCL (2 periods Tm).

EventReq

EventAck

~---fII!IlIPITKLVH

Figure 8.1: IMS T414 event timing



153

9 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T414 links support the standard INMOS communication speed of 10 Mbits per second. In addition
they can be used at 5 or 20 Mbits per second. Links are not synchronised with Clockln or ProcClockOut and
are insensitive to their phases. Thus links from independently clocked systems may communicate, providing
only that the clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LinkSpecial, LinkOSpecial and Link123Special. The link 0 speed can be set
independently. Table 9.1 shows uni-directional and bi-directional data rates in Kbytes/second for each link
speed; LinknSpecial is to be read as LinkOSpecial when selecting link 0 speed and as Link123Special for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 9.1: Speed Settings for Transputer Links

Link Linkn Kbytes/sec
Special Special Mbits/sec Uni Si

0 0 10 400 800
0 1 5 200 400
1 0 10 400 800
1 1 20 800 1600

Data

L JHl...........L,_

IAck I

Figure 9.1: IMS T414 link data and acknowledge packets



154 4 IMS T414 engineering data

Table 9.2: Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf Linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
5 Mbits/s 30 ns 1

CLlZ Linkln capacitance @ f=1MHz 7 pF
Cll LinkOut load capacitance 50 pF
RM Series resistor for 1000 transmission line 56 ohms

Notes

This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LinkOut

10%

90%
Linkln

10%
-----21 ~----- ------- -

TJOr TJOf

Figure 9.2: IMS T414 link timing

LinkOut

Latest TJOJ 0

Earliest TJOJ 0

Linkln

Figure 9.3: IMS T414 buffered link timing



9 Links 155

Transputer family device A

LinkOut .. Linkln.....

Linkln ..... LinkOut......,

Transputer family device B

Figure 9.4: Links directly connected

Linkln
Zo =100 ohms

Link0 ut .---~_.-----.- J""--------

Transputer family

Linkln LinkOut

Zo =100 ohms RM
Transputer family device B

Figure 9.5: Links connected by transmission line

Transputer family device A

LinkOut :>-----....----1 Li nkl n

buffers
Li nkl n t------"'IlIlIIIII-------C LinkOut

Transputer family device B

Figure 9.6: Links connected by buffers



156

Electrical sp~eCl'nCc:ltl()ns

10.1 DC electrical characteristics

Table 10.1: Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE

VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
11 Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 QC 2
TA Ambient temperature under bias -55 125 QC 2
PDmax Maximum allowable dissipation 2 W

Notes

1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 10.2: Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE

VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 50 pF
TA Operating temperature range 0 70 QC 3

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.



10 Electrical specifications

Table 10.3: DC characteristics

157

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
VIL Low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 /-lA 1,2,6

±50 /-lA 1,2,7
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOL Output low voltage @ IOL=4mA 0.4 V 1,2
10S Output short circuit current @ GND<VO<VCC 50 mA 1,2,4

75 mA 1,2,5
10Z Tristate output current @ GND<VO<VCC ±10 /-lA 1,2
PD Power dissipation 900 mW 2,3
CIN Input capacitance @ f=1MHz 7 pF
COZ Output capacitance @ f=1 MHz 10 pF

Notes

All voltages are with respect to GND.

2 Parameters measured at 4.75V<VCC<5.25V and O°C<TA<70°C. Input clock frequency = 5MHz.

3 Power dissipation varies with output loading and program execution.

4 Current sourced from non-link outputs.

5 Current sourced from link outputs.

6 For inputs other than those in Note 7.

7 For MemReq, MemWait, MemConfig, Analyse, Reset, Clockln, EventReq, LinklnO-3,
LinkSpecial, LinkOSpecial, Link123Special, BootFromRom, HoldToGND.

10.2 Equivalent circuits

Output - ~ __

30pF

GN D - ~III\II----__-

Load for: R1 R2 Equivalent load:

Link outputs 1k96 47k 1 Schottky TTL input
Other outputs 970R 24k 2 Schottky TTL inputs

Diodes are 1N916

Figure 10.1: Load circuit for AC measurements



158 4 IMS T414 engineering data

Test point

Output under test ------------«

GND ------

VCC

Figure 10.2: Tristate load circuit for AC measurements

10.3 AC timing characteristics

Table 10.4: Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TOr Input rising edges 2 20 ns 1,2
TOf Input falling edges 2 20 ns 1,2
TOr Output rising edges 25 ns 1
TOf Output falling edges 15 ns 1
TSOLaHZ Address high to tristate a a+6 ns 3
TSOLaLZ Address low to tristate a a+6 ns 3

Notes

Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

3 a is T2 where T2 can be from one to four periods Tm in length.
Address lines include MemnotWrDO, MemnotRfD1, MemAD2-31.

90% - - --

TOf

90%-----

10% - -
TOr

Figure 10.3: IMS T414 input and output edge timing

1.5V ---- 1.5V - - - -

Figure 10.4: IMS T414 tristate timing relative to notMemSO



10 Electrical specifications 159

30
Time

ns
20

10

30 Rise time
Time

Rise time ns
20 Fall time

Fall time 10

40 60 80 100

Load Capacitance pF

Link

40 60 80 100

Load Capacitance pF

EMI

Notes
Figure 10.5: Typical rise/fall times

Skew is measured between notMemSO with a standard load (2 Schottky TTL inputs and 30pF) and
notMemSO with a load of 2 Schottky TTL inputs and varying capacitance.

10.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 10.6.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

P D = PINT + PlO

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature T J of the chip is

where TA is the external ambient temperature in QC and GJA is the junction-ta-ambient thermal resistance in
QC/W. GJA for each package is given in the Packaging Specifications section.

Power
PINT
mW

600

500

400

300

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 10.6: IMS T414 internal power dissipation vs VCC



160

11

11.1 84 pin grid array package

1 2 3 4 5 6 7 8 9 10

Figure 11.1: IMS T414 84 pin grid array package pinout



11 Package specifications 161

index

....--- B ----I~

A ------11..

10 9 876 5 432 1

0088000088 A
0000000000 B
0000000000 C
000 000 0

K
000 000 E
000 000 F
000 000 G
0000000000 H
0000000000 J
0000000000 K

K

Figure 11.2: 84 pin grid array package dimensions

Table 11.1: 84 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.005
C 2.456 ±0.278 0.097 ±0.011
0 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.025 0.018 ±0.001 Pin diameter
G 1.143 ±0.127 0.045 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 7.2 grams

Table 11.2: 84 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow



162

11.1.1 84 pin PLCC J-bend package

4 IMS T414 engineering data

~~N~omOO~~~~~N~omoo~~~~

oooooooooo~~~~~~~~~~~~~~~~

CapMinus 1
VCC 2

HoldToGND 3
GND 4

HoldToGND 5
HoldToGND 6

Error 7
BootFromROM 8

Reset 9
HoldToGND 10
HoldToGND 11

Analyse 12
MemAD31 13
MemAD30 14
MemAD29 15

GND 16
MemAD28 17
MemAD27 18
MemAD26 19
MemAD25 20
MemAD24 21

IMS T414
84 pin J-Bend
Chip Carrier
Top View

63 MemReq
62 MemGranted
61 MemWait
60 notMemRf
59 notMemWrB3
58 notMemWrB2
57 notMemWrB1
56 notMemWrBO
55 notMemRd
54 notMemSO
53 VCC
52 notMemS4
51 notMemS3
50 notMemS2
49 notMemS1
48 GND
47 MemnotWrDO
46 MemnotRfD1
45 MemAD2
44 MemAD3
43 MemAD4

N~~~~~oomo~N~~~~~oomo~N

NNNNNNNN~~~~~~~~~~~~~

MN~oum~~~~~MN~ocm~~~~

NNNNU~~~~~~~~~~zccccc

cccc>cccccccccc~««<

«« ««««« EEEEE
E E E E E E E E E E E E E E ~ ~ ~ ~ ~
~~~~ ~~~~~~~~~~ ~~~~~

~~~~ ~~~~~~~~~~

Figure 11.3: IMS T414 84 pin PLCC J-bend package pinout



11 Package specifications

index

A B

D

163

Figure 11.4: 84 pin PLCC J-bend package dimensions

Table 11.3: 84 pin PLCC J-bend package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 30.226 ±0.127 1.190 ±0.005
B 29.312 ±0.127 1.154 ±0.005
C 3.810 ±0.127 0.150 ±0.005
0 0.508 ±0.127 0.020 ±0.005
F 1.270 ±0.127 0.050 ±0.005
G 0.457 ±0.127 0.018 ±0.005
J 0.000 ±0.051 0.000 ±0.002
K 0.457 ±0.127 0.018 ±0.005
L 0.762 ±0.127 0.030 ±0.005

Package weight is approximately 7.0 grams

Table 11.4: 84 pin PLCC J-bend package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow



164 4 IMS T414 en~:unleerlna data



165



I\IlemDO-1516

166

1 Introduction

Reset
Analyse

Error 16 bit
BootFromROM System Processor

Clockln Services
VCC
GND Li nk

CapPlus Services
CapMinus

Link LinklnO
Timers Interface LinkOutO

Link Linkln1
2k bytes Interface LinkOut1

of
On-chip Link Linkln2

RAM Interface LinkOut2

Link Linkln3

ProcCloc~(Out
Interface LinkOut3

notMemCE External ~ EventReq
notMemWrBO-1 Memory Event

EventAck
MemBAcc Interface
MemWait 16 MemAO-15

MemReq
MemGranted

Figure 1.1: IMS T212 block diagram



Introduction 167

The IMS T212 transputer is a 16 bit CMOS microcomputer with 2 Kbytes on-chip RAM for high speed
processing, an external memory interface and four standard INMOS communication links. The instruction set
achieves efficient implementation of high level languages and provides direct support for the occam model
of concurrency when using either a single transputer or a network. Procedure calls, process switching and
typical interrupt latency are sUb-microsecond. A device running at 20 MHz achieves an instruction throughput
of 10 MIPS.

The IMS T212 can directly access a linear address space of 64 Kbytes. The 16 bit wide non-multiplexed
external memory interface provides a data rate of up to 2 bytes every 100 nanoseconds (20 Mbytes/sec) for
a 20 MHz device. System Services include processor reset and bootstrap control, together with facilities for
error analysis.

The INMOS communication links allow networks of transputers to be constructed by direct point to point
connections with no external logic. The links support the standard operating speed of 10 Mbits per second,
but also operate at 5 or 20 Mbits per second.

The IMS T212 is designed to implement the occam language, detailed in the occam Reference Manual, but
also efficiently supports other languages such as C and Pascal. Access to specific features of the IMS T212is
described in the relevant system development manual. Access to the transputer at machine level is seldom
required, but if necessary refer to The Transputer Instruction Set - A Compiler Writers' Guide.

This data sheet supplies hardware implementation and characterisation details for the IMS T212. It is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam. For convenience of description, the IMS T212 operation is split
into the basic blocks shown in figure 1.1.



168

2

Table 2.1: IMS T212 system services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset
Error out Error indicator
An~1 r~o in Error analysis-':1-- - - in Bootstraps from external ROM or from linkIIJUU '-# 1'-#

HoldToGND Must be connected to GND

Table 2.2: IMS T212 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemAO-15 out Sixteen address lines
MemDO-15 in/out Sixteen data lines
notMemWrBO-1 out Two byte-addressing write strobes
notMemCE out Chip enable
MemBAcc in Byte access mode selector
MemWait in Memory cycle extender.... - in Direct memory access requestIII;r 11I;r'1

MemGranted out Direct memory access granted

Table 2.3: IMS T212 event

Pin In/Out Function
.... - in Event request... ,,"'" .. l""''1
11'"", out Event request acknowledge

Table 2.4: IMS T212 link

Pin In/Out Function
LinklnO-3 in Four serial data input channels
LinkOutO-3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
LinkOSpecial in Select special speed for Link 0
Link123Special in Select special speed for Links 1,2,3

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 208.



169

3

The 16 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 2 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 64 Kbytes
of memory via the External Memory Interface (EM I).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, Band C registers which form an evaluation stack.

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in The Transputer Instruction Set - A Compiler Writers' Guide.

ProgramLRegisters oca s

A

B

C

Workspace ~

Next inst .......

Operand

Figure 3.1: Registers



170

3.2 Instructions

5 IMS T212 engineering data

The instruction set has been designed for simple and efficient compilation of high-level languages. All in
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are adata value.

Operand

Figure 3.2: Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these, shown in table 3.1, are used to encode the most important functions.

Table 3.1: Direct functions

load constant

load local

load non-local

jump

add constant

store local

store non-local

conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C or Pascal.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.



3 Processor 171

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2: Expression evaluation

Program

x := 0

x := #24

x := y + Z

Mnemonic

Idc 0
stl x

pfix 2
Idc 4
stl x

Idl y
Idl z
add
stl x

3.2.5 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive two instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.



172

3.3 Processes and concurrency

5 IMS 1212 engineering data

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 173).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active Being executed.
On a list waiting to be executed.

Inactive - Ready to input.
Ready to output.
Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 173). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Registers Locals Program

FPtr1 (Front) ~ ..
liI""

P
BPtr1 (Back) ...- I I I

....
.-J liI""

Q I I

I I I
A ....--. R ~

liI""

B
I I

C U S

Workspace

....
Next Inst -
Operand

Figure 3.3: Linked process list

Table 3.3: Priority queue control registers

Function High Priority Low Priority
Pointer to front of active process list FptrO Fptr1
Pointer to back of active process list BptrO Bptr1



3 Processor 173

Each process runs until. it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 177). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1ms apart.

A process can only be descheduled on certain instructions, known as descheduling points (page 177). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 J.1s, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T212 supports two levels of priority. Priority 1 (Iow priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transpl,.lter's time; i.e. it has a distribution of descheduling points (page 177).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 millisecond at
the standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 53 cycles (assuming use of on-chip RAM).



174

3.5 Communications

5 IMS T212 engineering data

Communication between processes is achieved by means of channels. Process communication is point-to
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Timers

The transputer has two 16 bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com
pletely in approximately 65 milliseconds. The other is accessible only to low priority processes and is incre
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
four seconds.

Table 3.4: Timer registers

ClockO
Clock1
TNextRegO
TNextReg1

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
tirne is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.



3 Processor 175

Workspaces Program

TimerO

Alarm

21
TNextRegO

TPtrLocO Empty

31

Figure 3.4: Timer registers



176

4 Instruction set summary

The Function Codes table 4.7. gives the basic function code set (page 170). Where the operand is less
than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative the first
prefix instruction will be nfix.

Table 4.1: prefix coding

Function Memory
Mnemonic code code

Ide #3 #4 #43

Ide #35
is coded as

pfix #3 #2 #23
Ide #5 #4 #45

Ide #987
is coded as

pfix #9 #2 #29
pfix #8 #2 #28
Ide #7 #4 #47

Ide -31 (Idc #FFE1 )
is coded as

nfix #1 #6 #61
Ide #1 #4 #41

Tables 4.8 to 4.17 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2: operate coding

Function Memory
Mnemonic code code

add (op. code #5) #F5
is coded as

opr add #F #F5

ladd (op. code #16) #21F6
is coded as

pfix #1 #2 #21
opr #6 #F #F6



4 Instruction set summary 177

The Processor Cycles column refers to the number of periods TPClPCl taken by an instruction executing in
internal memory. The number of cycles is given for the basic operation only; where relevant the time for the
prefix function (one cycle) should be added. For a 20 MHz transputer one cycle is 50ns. Some instruction
times vary. Where a letter is included in the cycles column it is interpreted from table 4.3.

Table 4.3: Instruction set interpretation

Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4: Instruction features

Ident Feature See page:

D The instruction is a descheduling point 177

E The instruction will affect the Error flag 177, 186

4.1 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 172). They are
also the ones at which the processor will halt if the Analyse pin is asserted (page 185).

Table 4.5: Descheduling point instructions

input message
timer alt wait
jump

4.2 Error instructions

output message
timer input
loop end

output byte
stop on error
end process

output word
alt wait
stop process

The instructions in table 4.6 are the only ones which can affect the Error flag (page 186) directly.

Table 4.6: Error setting instructions

add
multiply
long add
set error
check word

add constant

long subtract
testerr
check subscript trom 0

subtract
divide
long divide

check single

remainder

check count from 1



178 5 IMS T212 engineering data

Table 4.7: IMS T212 function codes

Function Memory Processor D
Code Code Mnemonic Cycles Name E

0 OX j 3 jump D
1 1X Idlp 1 load local pointer
2 2X pfix 1 prefix

3 3X Idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnlp 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)

4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
D DX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

Table 4.8: IMS T212 arithmetic/logical operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24FO shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 26 multiply E
2C 22FC div 23 divide E
1F 21FF rem 21 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product



4 Instruction set summary

Table 4.9: IMS T212 long arithmetic operation codes

179

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 2 long sum
4F 24FF Idiff 2 long diff

31 23F1 Imul 17 long multiply
1A 21 FA Idiv 19 long divide E
36 23F6 Ishl n+3 long shift left (n< 16)

n-12 long shift left(n~16)
35 23F5 Ishr n+3 long shift right (n< 16)

n-12 long shift right (n~16)
19 21F9 norm n+5 normalise (n< 16)

n-10 normalise (n~16)

3 normalise (n=32)

Table 4.10: IMS T212 general operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

00 FO rev 1 reverse

3A 23FA xword 4 extend to word

56 25F6 cword 5 check word E
10 21FO xdble 2 extend to double
4C 24FC csngl 3 check single E

42 24F2 mint 1 minimum integer



180 5 IMS T212 engineering data

Table 4.11: IMS T212 indexing/array operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

02 F2 bsub 1 byte subscript
OA FA wsub 2 word subscript
34 23F4 bcnt 2 byte count
3F 23FF wcnt 4 word count
01 F1 Ib 5 load byte
3B 23FB sb 4 store byte

4A 24FA move 2w+8 move message

Table 4.12: IMS T212 timer handling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) 0

4 timer input (time past) 0
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) 0

48 timer alt wait (time future) 0
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer

Table 4.13: IMS T212 input/output operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

07 F7 in 2w+19 input message 0
OB FB out 2w+19 output message 0
OF FF outword 23 output word 0
OE FE outbyte 23 output byte 0

12 21F2 resetch 3 reset channel

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) 0

17 alt wait (channel not ready) 0
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip
30 23FO diss 4 disable skip

48 24F8 enbc 7 enable channel (ready)
5 enable channel (not ready)

2F 22FF disc 8 disable channel



4 Instruction set summary

Table 4.14: IMS T212 control operation codes

181

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

20 22FO ret 5 return
1B 21FB Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace

06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) D

5 loop end (exit) D

Table 4.15: IMS T212 scheduling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

OD FD startp 12 start process D
03 F3 endp 13 end process D
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority

Table 4.16: IMS T212 error handling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

13 21F3 csubO 2 check subscript from 0 E
4D 24FD ccnt1 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21FO seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) D
57 25F7 c1rhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error

Table 4.17: IMS T212 processor initialisation operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25FO sthb 1 store high priority back pointer
1C 21FC stlf 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer



182

5 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

5.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

5.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 11lF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 ohms between 100 KHz and 20 MHz. If a polarised capacitor is used the nega
tive terminal should be connected to CapMinus. Total PCS track length should be less than 50mm. The
connections must not touch power supplies or other noise sources.

CapPlus

CapMinus

P.C.B. track

P.C.B. track

Decoupling
Capacitor

1~F

5.3 Clockln

Figure 5.1: Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.



5 System services

Table 5.1: Input clock

183

SYMBOL PARAMETER MIN NOrvi MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 ns 1,3
TDCerror Clockln timing error ±O.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (page 204).

2.av
1.5v
a.8v

~~~~TDCerror

TDCr

Figure 5.2: Clockln timing

5.4 Reset

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC
is valid Clockln should be running for a minimum period TOCVRL before the end of Reset. The falling edge
of Reset initialises the transputer and starts the bootstrap routine. Link outputs are forced low during reset;
link inputs and EventReq should be held low. Memory request (DMA) must not occur whilst Reset is high but
can occur before bootstrap (page 198). If BootFromRom is high bootstrapping will take place immediately
after Reset goes low, using data from external memory; otherwise the transputer will await an input from any
link. The processor will be in the low priority state.

5.5 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot
FromRom may be dynamically changed but must obey the specified timing restrictions.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two
bytes in external memory, at address #7FFE. This location should contain a backward jump to a program in
ROM. The processor is in the low priority state, and the W register points to MemStart (page 187).

184

Table 5.2: Reset and Analyse

5 IMS T212 engineering data

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 ns
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFrom Rom hold after Reset 50 ms
TALBRX BootFrom Rom hold after Analyse 50 ms

Notes

Full periods of Clockln TDCLDCL required.

2 At power-on reset.

Clockln

VCC

TPVRH

Reset

BootFromRom -,

Figure 5.3: Transputer reset timing with Analyse low

TRHRL

Reset

TAHRH
Analyse

BootFromRom----------

TRLAL

Figure 5.4: Transputer reset and analyse timing

5 System services 185

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process. The
memory space immediately above the loaded code is used as work space. Messages arriving on other links
after the control byte has been received and on the bootstrapping link after the last bootstrap byte will be
retained until a process inputs from them.

5.6 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then four more bytes are expected on the same link. The
first two byte word is taken as an internal or external memory address at which to poke (write) the second
two byte word. If the control byte is 1 the next two bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

5.7 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling point
(page 177). From Analyse being asserted, the processor will halt within three time slice periods plus the
time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. If BootFrom
Rom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a control
byte on any link. If Analyse is taken low without Reset going high the transputer state and operation are
undefined. After the end of a valid Analyse sequence the registers have the values given in table 5.3.

Table 5.3: Register values after analyse

MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of I when the processor halted.

B The value of W when the processor halted, together with the priority of the process
when the transputer was halted (Le. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.

186

5.8 Error

5 IMS T212 engineering data

The Error pin is connected directly to the internal Error flag and follows the state of that flag. If Error is high
it indicates an error in one of the processes caused, for example, by arithmetic overflow, divide by zero, array
bounds violation or software setting the flag directly (page 177). Once set, the Error flag is only cleared by
executing the instruction testerr (page 176). The error is not cleared by processor reset, in order that analysis
can identify any errant transputer (page 185).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnError has been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers to
halt. This can be done by applying the Error output signal of the errant transputer to the EventReq pin of a
suitably programmed master transputer. Since the process state is preserved when stopped by an error, the
master transputer can then use the analyse function to debug the fault. When using such a circuit, note that
the Error flag is in an indeterminate state on power up; the circuit and software should be designed with this
in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved
for the duration of the high priority process and restored at the conclusion of it. Status of the Error flag is
transmitted to the high priority process but the HaltOnError flag is cleared before the process starts. Either
flag can be altered in the process without upsetting the error status of any complex operation being carried
out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I points
one byte past the instruction being executed. In both cases I will be copied to register A.

It-" Analyse ... Slave SlaveMaster ,....
Latch Transputer TransputerTransputer~ ...

Reset
,.... 0 1

A~ I Error[O] IError[1]
Event

- Slave - Slave
(transputer links not shown) Transputer Transputer

f---

2 - 3

--- Error[2] I
Error[3] I

,,
\

Figure 5.5: Error handling in a multi-transputer system

187

6 Memory

The IMS T212 has 2 Kbytes of fast internal static memory for high rates of data throughput. Each internal
memory access takes one processor cycle ProcClockOut (page 189). The transputer can also access an
additional 62 Kbytes of external memory space. Internal and external memory are part of the same linear
address space.

IMS T212 memory is byte addressed, with words aligned on two-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #8000 and extends to #87FF. User memory begins at
#8024; this location is given the name MemStart.

A reserved area at the bottom of internal memory is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one.

External memory space starts at #8800 and extends up through #0000 to #7FFF. ROM bootstrapping code
must be in the most positive address space, starting at #7FFE. Address space immediately below this is
conventionally used for ROM based code.

188 5 IMS T212 engineering data

- Start of external memory -

Byte address

#7FFE

#08
#07

#06

#05
#04

#03
#02
#01

(Base of memory) #00

Occam Map

Event
Link 3 Input

Link 2 Input

Link 1 Input
Link 0 Input

Link 3 Output
Link 2 Output
Link 1 Output

Link 0 Output

Word offsets

I I

#0400 I~ I
MemStart #12

Note 1

MemStart

#0000

#8800

#8024

#8022

#8020
#801E

#801C
#801A
#8018
#8016
#8014
#8012
#8010
#800E

#800C

#800A
#8008
#8006
#8004

#8002

#8000

EreglntSaveLac

STATUSlntSaveLoc
CreqlntSaveLoc
BreqlntSaveLoc

Areg IntSave Loc
IptrlntSaveLoc

WdesclntSaveLoc
TPtrLoc1

TPtrLocO
Event

Link 3 Input

Link 2 Input

Link 1 Input
Link 0 Input

Link 3 Output
Link 2 Output
Link 1 Output

Link 0 Output

hi
Machine Map

10

I Reset Inst I
I

I I

Figure 6.1: IMS T212 memory map

These locations are used as auxiliary processor registers and should not be manipulated by the user.
Like processor registers, their contents may be useful for implementing debugging tools (Analyse,
page 185). For details see The Transputer Instruction Set - A Compiler Writers' Guide.

189

7 External memory interface

The IMS T212 External Memory Interface (EMI) allows access to a 16 bit address space via separate address
and data buses. The data bus can be configured for either 16 bit or 8 bit memory access, allowing the use of
a single bank of byte-wide memory. Both word-wide and byte-wide access may be mixed in a single memory
system (page 195).

7.1 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering appendix).

Edges of the various external memory strobes are synchronised by, but do not all coincide with, rising or
falling edges of ProcClockOut.

Table 7.1: ProcClockOut

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCLPCL ProcClockOut period a-1 a a+1 ns 1
TPCHPCL ProcClockOut pulse width high b-2.5 b b+2.5 ns 2
TPCLPCH ProcClockOut pulse width low c ns 3
TPCstab ProcClockOut stability 4 % 4

Notes

a is TDCLDCL/PLLx.

2 b is 0.5*TPCLPCL (half the processor clock period).

3 c is TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

1.5v - - - - - - - --

~--TPCLPCH TPCHPCL

TPCLPCL ------~

Figure 7.1: IMS T212 ProcClockOut timing

190

7.2 1states

5 IMS 1212 engineering data

The external memory cycle is divided into four 1states with the following functions:

11 Address and control setup time.

12 Data setup time.

13 Data read/write.

14 Data and address hold after access.

Each 1state is half a processor cycle 1PCLPCL long, displaced by approximately one fourth of a cycle from
ProcClockOut edges. 12 can be extended indefinitely by adding externally generated wait states of one
complete processor cycle each.

An external memory cycle is always a complete number of cycles 1PCLPCL in length. The start of 11 always
coincides with the low phase of ProcClockOut.

7.3 Internal access

During an internal memory access cycle the external memory interface address bus MemAO-15 reflects
the word address used to access internal RAM, notMemWrBO-1 reflect the internal read/write operation,
notMemCE is inactive and the data bus MemDO-15 is tristated. This is true unless and until a DMA (memory
request) activity takes place, when the lines will be placed in a high impedance state by the transputer.

Bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 185).

7.4 MemAO-15

External memory addresses are output on a non-multiplexed 16 bit bus. The address is valid at the start of
11 and remains so until the end of 14, with the timing shown. Byte addressing is carried out internally by the
IMS T212 for read cycles. For write cycles the relevant bytes in memory are addressed by the write enables
notMemWrBO-1.

The transputer places the address bus in a high impedance state during DMA.

7.5 MemDO-15

The non-multiplexed data bus is 16 bits wide. Read cycle data may be set up on the bus at any time after the
start of 11, but must be valid when the IMS T212 reads it during 13. Data can be removed any time during
14, but must be off the bus no later than the end of that period.

Write data is placed on the bus at the start of 12 and removed at the end of T4. It is normally written into
memory in synchronism with notMemCE going high.

The data bus is high impedance except when the transputer is writing data. If only one byte is being written,
the unused 8 bits of the bus are high impedance at that time. In byte access mode MemD8-15 are high
impedance during the external memory cycle which writes the most significant (second) byte (page 195).

If the data setup time for read or write is too short it can be extended by inserting wait states at the end of
12 (page 196).

7 External memory interface

Table 7.2: Read

191

T212-20 T212-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TAVEL Address valid before chip enable low 13 16 15 19 ns
TELEH Chip enable low 56 63 65 72 ns
TEHEL Delay before chip enable re-assertion 35 46 40 51 ns 1
TEHAX Address hold after chip enable high 20 24 21 27 ns
TELDrV Data valid from chip enable low 40 43 ns
TDrVEH Data setup before chip enable high 11 15 ns
TEHDrZ Data hold after chip enable high 0 0 ns
TWEHEL Write enable setup before chip enable low 14 18 ns 2

Notes

These values assume back-ta-back external memory accesses.

2 Timing is for both write enables notMemWrBO-1.

Tstate T1 T2 T3 T4 T1 I T2

ProcClockOut

MemAO-15

notMemCE

MemDO-15

notMemWrBO-1

Figure 7.2: IMS T212 external read cycle

7.6 notMemWrBO-1

Two write enables are provided, one to write each byte of the word. When writing a word, both write enables
are asserted; when writing a byte only the appropriate write enable is asserted. notMemWrBO addresses
the least significant byte. The write enables are active before the chip enable signal notMemCE becomes
active, thus reducing memory access time and the risk of bus contention.

Data must be strobed into memory by, or in conjunction with, notMemCE, as the write enables are not
guaranteed to go high between consecutive write cycles. The write enables are placed in a high impedance
state during DMA.

192 5 IMS T212 engineering data

Table 7.3: Write

T212-20 T212-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TDwVEH Data setup before chip enable high 36 42 ns
TEHDwZ Data hold after write 22 30 24 32 ns
TWELEL Write enable setup before chip enable low 4 20 4 24 ns 1
TEHWEH Write enable hold after chip enable high 17 25 18 27 ns 1

Notes

1 Timing is for both write enables notMemWrBO-1.

Tstate T1 T2 T3 T4 T1 I T2

ProcClockOut

MemAO-15 =>< A_dd_r_es_s --'X _
notMemCE

TDwVEH

MemDO-15 Data

TWELEL TEHWEH ~--tP'I

notMemWrBO-1

Figure 7.3: IMS T212 external write cycle

ProcClockOut

notMemWrBO-1 ~ Write / Read Read '<
notMemCE y '<
MemAO-15 X Address X Address X Address X
MemDO-15 => <

Figure 7.4: IMS T212 typical bus activity for internal memory cycles

7 External rn~lmnlr\l interface 193

7.7 notMemCE

The active low signal notMemCE is used to enable external memory on both read and write cycles. It must
be used, in conjunction with the write enables notMemWrBO-1, to write data into memory; the write enable
lines only select the byte of memory to be written.

Table 7.4: notMemCE to ProcClockOut skew

T212-20 T212-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TPCHEL notMemCe falling from ProcClockOut rising 1 5 2 8 ns
TEHPCL notMemCe rising to ProcClockOut falling 8 14 10 15 ns

ProcClockOut

notMemCE

Figure 7.5: IMS T212 skew of notMemCE to ProcClockOut

MemGranted

CapPlus
CapMinus

Error VCC

100K GND GND

GND notMemCE
IMS notMemWrB1

RM
T212 notMemWrBO

As LinkO MemD12-15

MemD8-11

MemD4-7
RM

MemDO-3
As Link2

linkOOut

linkOln

Clockln
(5 MHz)

link11n
link10ut

link21n
link20ut

link31n
link30ut -~----f

Reset
Analyse
MemWait --------t
MemReq

MemAO-15

Figure 7.6: IMS T212 application

194 5 IMS T212 engineering data

Figure 7.7: IMS T212 Least significant byte write in word access mode

Tstate T1 I T2 I T3 I T4 I T1 T2 I T3 T4 I T1

ProcClockOut

MemA1-15 =><""--- A_d_d_re_ss >C
MemAO =-"'" / "'=
notMemCE "'- / "'- /

//////7

~~------------~~~amo~ significant b~~

~~---«Data most significant byte»)--------------c(

,, r_
notMemWrB 1 _=--""_--:Il1o- / "----

~~~ ~~

MemDO-7

MemBacc

notMemWrBO

MemD8-15

Figure 7.8: IMS T212 Most significant byte write to byte-wide memory



7 External memory interface

7.8 MemBAcc

195

The IMS T212 will, by default, perform word access at even memory locations. Access to byte-wide memory
can be achieved by taking MemBAcc high with the timing shown. Where all external memory operations are
to byte-wide memory, MemBAcc may be wired permanently high. The state of this signal is latched during
T2.

If MemBAcc is low then a full word will be accessed in one external memory cycle, otherwise the high and
low bytes of the word will be separately accessed during two consecutive cycles. The first' (least significant)
byte is accessed at the word address (MemAO is low). The second (most significant) byte is accessed at the
word address +1 (MemAO is high).

With MemBAcc high, the first cycle is identical with a normal word access cycle. However, it will be im
mediately followed by another memory cycle, which will use MemDO-7 to read or write the second (most
significant) byte of data. During this second cycle notMemWrB1 remains high, both for read and write, and
MemD8-15 are high impedance. When writing a single byte with MemBAcc high, both the first and second
cycles are performed with notMemWrBO asserted in the appropriate cycle.

Table 7.5: Byte-wide memory access

T212-20 T212-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TELBAH MemBAcc high from chip enable 12 15 ns
TELBAL MemBAcc low from chip enable 26 29 ns

Tstate T1 T2 T3 T4 T1 T2 T3 T4 I T1

ProcClockOut

MemA 1-15 ==>< A_d_d_re_s_s >C
MemAO _-=-"'_--:a... / 'C
notMemCE

MemDO-7

MemD8-15

notMemWrBO

>---1--<' Data least significant byte ~---< Data most significant byte

>------11---< Data most significant byte >-----------------<

notMemWrB1

MemBacc

Figure 7.9: IMS T212 word write to byte-wide memory



196

7.9 MemWait

5 IMS T212 engineering data

Taking MemWait high with the timing shown in the diagram will extend the duration of T2 by one processor
cycle TPCLPCL. One wait state comprises the pair W1 and W2. MemWait is sampled near the falling edge of
ProcClockOut during T2, and should not change state in this region. If MemWait is still high when sampled
near the falling edge of ProcClockOut in W2 then another wait period will be inserted. This can continue
indefinitely.

The wait state generator can be a simple digital "delay line, synchronised to notMemCE. The Single Wait
State Generator circuit in figure 7.11 can be extended to provide two or more wait states, as shown in
figure 7.12.

The Programmable Wait State Generator circuit in figure 7.13 is designed to be interfaced directly to any
memory or peripheral enable signal; 'F' series devices should be employed to ensure minimum delay between
notMemCE and a valid notWaitX input. Only one wait select input line should be low at anyone time; for
zero wait states notWaitO must be asserted.

Table 7.6: Memory wait

T212-20 T212-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TELWtH MemWait asserted after chip enable low 13 13 ns
TELWtL Wait hold after chip enable low 23 a+13 23 a+13 ns 1

Notes

a is w*c where w is the number of wait states and c is the toleranced clock period of 49 ns for IMS T212-20,
56 ns for IMS T212-17.

Tstate T1 T2 W1 W2 T3 I T4 T1 I T2

ProcClockOut

MemAO-15 =>< A_d_d_re_S_s ---JX _
notMemCE

MemWait

TELWtH

Me m 00-15 ==>)-------('- ..;;;.-Da;;.;.;;,t..;;.;...a --IX'- _
notMemWrBO-1 =""". ~

Figure 7.10: IMS T212 memory wait timing



7 External memory interface 197

notMemCE

GND

VCC

S
R

...------1 0 0 I-------tl~ MemWait
CP

ProcClockOut ---.....I 1/2 74F74

Figure 7.11: Single wait state generator

--------------1---------...:..-'-------..&.--VCC

notMemCE

GND

S S
R R

,------1 0 0 t------I.------I 0 0 ...-.-----III~ MemWait
CP CP

1/2 74F74 1/2 74F74 '
ProcClockOut -----tIIIt-------r--.....-------:-,-

,------------_ ..

Figure 7.12: Extendable wait state generator

GND

notMemCE S
11a lOa 11b lOb 11c 10c 11d 10d

74F298

ProcClockOut CP Oa Ob Oc Od

n/c n/c

n/c n/c n/cVCC - ..~.........It--

4K7 n/c n/c

- __~-------- ____l__- GN0

notWait8 --+-+-+-+-+-+--It-+-.._LA 17 EO GS PL TC RC
notWait7 16
notWait6 15 CP 00 n/c
notWait5 14 74F 74F 01 n/c
notWait4 13 148 AO DO 191 02 n/c
notWait3 12 A1 01 03 t-----~ MemWait
notWait2 11 A2 lJ-------t 02
notWait1 10 El 03 CE U/O

notWaitO -----------+-------'

Figure 7.13: Programmable wait state generator



198 5 IMS T212 engineering data

7.10 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
For external memory cycles, the IMS T212 samples MemReq during the first high phase of ProcClockOut
after notMemCE goes low. In the absence of an external memory cycle, MemReq is sampled during every
high phase of ProcClockOut. MemAO-15, MemDO-15, notMemWrBO-1 and notMemCE are tristated before
f\t1ernGranted is asserted.

Renloval of ~J1emReq is sampled during each high phase of ProcClockOut and MemGranted removed with
the timing shown. Further external bus activity, either external cycles or reflection of internal cycles, will
comfTlence during the next low phase of ProcClockOut.

Chip enable, write enables, address bus and data bus are in a high impedance state during DMA. External
circuitry must ensure that notrVlemCE and notMemWrBO-1 do not become active whilst control is being
transferred; it is recommended that a 10K resistor is connected from VCC to each pin. DMA cannot interrupt
an external memory cycle. DMA does not interfere with internal memory cycles in any way, although a program
running in internal memory would have to wait for the end of DMA before accessing external memory. DMA
cannot access internai memory.

MemReq

MemGranted

Reset

Bootstrap activity ----/I------------~1---

B Bootstrap sequence.

Figure 7.14: IMS T212 DMA sequence at reset

MemReq //////7 " "----
Memory Cycles

External Memory
Interface activity

MemGranted / " / "---
notMemWrBO-1 ) 0< ) <><=
notfv1emCE ~,

1\ilemAO-15 ) 0< ) <><=
MemDO-15 -<<<<<<< » ({«{((( »

Figure 7.15: IMS T212 operation of MemReq and MemGranted with external and internal memory cycles



7 External memory interface 199

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDClDCl of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 7.7: Memory request

T212-20 T212-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE

TMRHMGH Memory request response time 85 a 100 a ns 1
TMRLMGL Memory request end response time 90 100 100 114 ns
TAZMGH Addr. bus tristate before MemGranted 0 0 ns
TAVMGL Addr. bus active after M~mGranted end 0 0 ns
TDZMGH Data bus tristate before MemGranted 0 0 ns
TEZMGH notMemCE tristate before MemGranted 0 0 ns
TEVMGL notMemCE active after MemGranted end 0 0 ns
TWEZMGH Write enable tristate before MemGranted 0 0 ns
TWEVMGL Write enable active after MemGranted end 0 0 ns

Notes

Maximum response time a depends on whether an external memory cycle is in progress and whether byte
access is active. Maximum time is (2 processor cycles) + (number of wait state cycles) for word access; in byte
access mode this time is doubled.

Tstate

ProcClockOut

MemReq

MemGranted

MemAO-15

MemDO-15

notMemCE

notMemWrBO-1

I T1 I T2 I T3 I T4 I

TAVMGL

TEVMGL

I T1

Figure 7.16: IMS T212 memory request timing



200

8 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never'be,taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed"before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described on
page 173. Setting a high priority task to wait for an event input is a way of interrupting a transputer program.

Table 8.1: Event

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a ns 1
TKLVH Delay before re-assertion of event request 0 ns

Notes

a is TPCLPCL (2 periods Tm).

EventReq

TVHKH

EventAck

Figure 8.1: IMS T212 event timing



201

9 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T212 links support the standard INMOS communication speed of 10 Mbits per second. In addition
they can be used at 5 or 20 Mbits per second. Links are not synchronised with Clockln or ProcClockOut and
are insensitive to their phases. Thus links from independently clocked systems may communicate, providing
only that the clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LinkSpecial, LinkOSpecial and Link123Special. The link 0 speed can be set
independently. Table 9.1 shows uni-directional and bi-directional data rates in Kbytes/second for each link
speed; LinknSpecial is to be read as LinkOSpecial when selecting link 0 speed and as Link123Special for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 9.1: Speed Settings for Transputer Links

Link Linkn Kbytes/sec
Special Special Mbits/sec Uni Si

0 0 10 400 800
0 1 5 200 400
1 0 10 400 800
1 1 20 800 1600

Data

L JHl----llL,_
IAck I

Figure 9.1: IMS T212 link data and acknowledge packets



202 5 IMS T212 engineering data

Table 9.2: Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf Linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
5 Mbits/s 30 ns 1

CLlZ Linkln capacitance @ f=1MHz 7 pF
Cll LinkOut load capacitance 50 pF
RM Series resistor for 1000 transmission line 56 ohms

Notes

This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
linkOut

10%

90%
linkln

10%
-----~ lli:=
----- -------- -

TJDr TJDf

Figure 9.2: IMS T212 link timing

linkOut

Latest TJQJD

Earliest TJQJD

linkln

Figure 9.3: IMS T212 buffered link timing



9 Links 203

Transputer family device A

LinkOut ..... Linkln,....

Linkln ... LinkOut.....,

Transputer family device B

Figure 9.4: Links directly connected

Linkln
Zo =100 ohms

L ink0 ut .--- c----r-,'-&.-_----

Transputer family

Linkln LinkOut

Zo =100 ohms RM
Transputer family device B

Figure 9.5: Links connected by transmission line

Transputer family device A

LinkOut ;>--------l1lI..-----1 LinkIn

buffers
Li nkl n 1-----4t-----< LinkOut

Transputer family device B

Figure 9.6: Links connected by buffers



204

10 Electrical specifications

10.1 DC electrical characteristics

Table 10.1: Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
II Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 QC 2
TA Ambient temperature under bias -55 125 QC 2
PDmax Maximum allowable dissipation 2 W

Notes

1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 10.2: Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 50 pF
TA Operating temperature range 0 70 QC 3

Notes

1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.



10 Electrical specifications

Table 10.3: DC characteristics

205

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
VIL Low level input voltage -0.5 0.8 V 1,2
1I Input current @ GND<VI<VCC ±10 j.lA 1,2
VOH Output high voltage @ IOH=2mA VCC:..1 V 1,2
VOL Output low voltage @ IOL=4mA 0.4 V 1,2
108 Output short circuit current @ GND<VO<VCC 50 mA 1,2,4

75 mA 1,2,5
10Z Tristate output current @ GND<VO<VCC ±10 j.lA 1,2
PO Power dissipation 700 mW 2,3
CIN Input capacitance @ f=1MHz 7 pF
COZ Output capacitance @ f=1 MHz 10 pF

Notes

All voltages are with respect to GND.

2 Parameters measured at 4.75V<VCC<5.25V and O°C<TA<70°C. Input clock frequency = 5MHz.

3 Power dissipation varies with output loading and program execution.

4 Current sourced from non-link outputs.

5 Current sourced from link outputs.

10.2 Equivalent circuits

Out put - ....~III-- __

30pF

GND - __---tIlt----__

Load for: R1 R2 Equivalent load:

Link outputs 1k96 47k 1 Schottky TTL input
Other outputs 970R 24k 2 Schottky TTL inputs

Diodes are 1N916

Figure 10.1: Load circuit for AC measurements



206 5 IMS T212 engineering data

Test point
Output under test -----.IIIIIIIP-------l__--!

GND -----___

VCC

Figure 10.2: Tristate load circuit for AC measurements

10.3 AC timing characteristics

Table 10.4: Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TOr Input rising edges 2 20 ns 1,2
TOf Input falling edges 2 20 ns 1,2
TOr Output rising edges 25 ns 1
TOf Output falling edges 15 ns 1

Notes

Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

90% - - -

10%----

TOt

Figure 10.3: IMS T212 input and output edge timing



10 Electrical specifications 207

30
Time

ns
20

10

30 Rise time
Time

Rise time ns
20 Fall time

Fall time 10

40 60 80 100

Load Capacitance pF

Link

40 60 80 100

Load Capacitance pF

EMI

Notes
Figure 10.4: Typical rise/fall times

Skew is measured between notMemCE with a standard load (2 Schottky TTL inputs and 30pF) and
notMemCE with a load of 2 Schottky TTL inputs and varying capacitance.

10.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 10.5.
PINT is substantially independent of temperature.

Total power dissipation Pn of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature T J of the chip is

where TA is the external ambient temperature in QC and eJA is the junction-to-ambient thermal resistance in
QC/W. eJA for each package is given in the Packaging Specifications section.

500
Power
PINT 400
mW

300

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 10.5: IMS T212 internal power dissipation vs VCC



208

11 Package SP~~CI1nCcltlc.ns

11.1 68 pin grid array package

1 2 3 4 5 6 7 8 9 10

A

B

c

D

E

F

G

H

J

K

Figure 11.1: IMS T212 68 pin grid array package pinout



11 Package specifications 209

index M ~Er- 10 9 8 7 6 5 4 3 2 1

0088000088 A
0000000000 B
000 000 c
00 00 0

AB K
00 00 E
00 00 F
GG 00 G
000 000 H

.IJ~~
0000000000 J
0000000000 K

B

A K

Figure 11 .2: 68 pin grid array package dimensions

Table 11.1: 68 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.008
C 2.466 ±0.279 0.097 ±0.011
D 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.051 0.018 ±0.002 Pin diameter
G 1.270 ±0.127 0.050 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 6.8 grams

Table 11.2: 68 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow



210

11.2 68 pin PlCC J-bend package

5 IMS T212 engineering data

HoldToGND 1
BootFromROM 2

Reset 3
Error 4

HoldToGND 5
MemDO 6
MemD1 7
MemD2 8
MemD3 9
MemD4 10
MemD5 11

GND 12
Mem6 13
Mem7 14
Mem8 15

MemD9 16
Mem10 17

OO~~~~~N~omOO~~~~~N

~~~~~~~~~~~~~~~~~

IMS T212
68 pin J-Bend
Chip Carrier
Top View

oomO~N~~~~~oomO~N~~

~~NNNNNNNNNN~~~~~

51 HoldToGND
50 EventAck
49 HoldToGND
48 Analyse
47 MemBAcc
46 MemWait
45 MemReq
44 MemGranted
43 GND
42 notMemCE
41 notMemWrBO
40 notMemWrB1
39 MemAO
38 MemA1
37 MemA2
36 MemA3
35 MemA4

Figure 11.3: IMS T212 68 pin PLCC J-bend package pinout

11 Package specifications

index

c

II

211

Figure 11.4: 68 pin PLCC J-bend package dimensions

Table 11.3: 68 pin PLCC J-bend package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 25.146 ±0.127 0.990 ±0.005
B 24.232 ±0.127 0.954 ±0.005
C 3.810 ±0.127 0.150 ±0.OO5
0 0.508 ±0.127 0.020 ±0.005
F 1.270 ±0.127 0.050 ±0.005
G 0.457 ±0.127 0.018 ±0.005
J 0.000 ±0.051 0.000 ±0.002
K 0.457 ±0.127 0.018 ±0.005
L 0.762 ±0.127 0.030 ±0.005

Package weight is approximately 5.0 grams

Table 11.4: 68 pin PLCC J-bend package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow

212 5 IMS T212 engineering data

O[Jl)mos

213

1 Introduction

Reset
Analyse
Error
BootFromROM
LinkSpeed
Clockln
VCC
GND
HoldToGND
CapPlus
CapMinu5

2
2
2

System
services

16 bit
Processor

notlndex
notWriteGate
Early
Late
notWriteData
PhaseUp
PhaseDn
Vln
ReadData
WriteClock

LinklnO
LinkOutO

Linkln1
LinkOut1

Event

Li nk
Interface

Li nk
Interface

Peripheral
Ports and
Disk
Control
Log ic

~
• EventReq

EventAck
'-------4k bytes

of
On-chip
ROM

2k bytes
of

On-chip
RAM

External
Memory
Interface

notCE
ALE
RnotW
Wait
ProcClockOut
DislntROM

ADO-? AO-? PAO-? PBO-?

Figure 1.1: IMS M212 block diagram

Introduction 215

The IMS M212 peripheral processor is an intelligent peripheral controller of the INMOS transputer family,
configured for connection to soft sectored vvinchester and floppy disk drives. It satisfies the demand for
increasing intelligence in peripheral controllers and maintains a high degree of flexibility, allowing designers
to modify the controller function without altering the hardware.

The disk control function has been designed to provide easy connection, with minimal external hardware,
to a standard winchester and/or floppy disk interface. Two byte-wide programmable bidirectional ports are
provided to control and monitor disk functions such as head position, drive selection and disk status. A
dedicated port is provided for serial data interfaces and critical timing signals.

The IMS M212 is programmed as a normal transputer, permitting extremely powerful peripheral control facil
ities to be built into the device and thus reducing the load on the traditional central processor of a computer.
Full details are given in the IMS M212 Disk Processor Product Data manual.

1.1 IMS M212 peripheral processor

1.1.1 Central processor

At the heart of the IMS M212 is the processor from the IMS T212 transputer. Its design achieves compact
programs, efficient high level language implementation and provides direct support for the occam model of
concurrency. The processor shares its time between any number of concurrent processes. A process waiting
for communication or a timer does not consume any processor time. Two levels of process priority enable
fast interrupt response to be achieved.

The IMS M212 has been designed so that the on-chip processor performs as many functions as possible,
providing flexible operation and minimising on-chip disk-specific hardvvare.

1.1.2 Peripheral interface

The two 8 bit data ports PAO-7 and PBO-7 are controlled by the processor via a pair of channels. This allows
the programmer to modify the function of these ports in order to implement a wide variety of applications.

The peripheral interface includes data output registers and TTL compatible input ports, as well as facilities
for defining the direction of the pins on a bit-selectable basis. The interface contains logic to detect a change
of state on the input pins and to store this change for interrogation by the program.

In addition to this, the external memory interface can support memory mapped peripherals on its byte-wide
data bus. An event pin is also provided, so that peripherals can request attention.

1.1.3 Disk controUer

The disk interface provides a sinlple interconnection lo ST506/ST412 and SA400/SA450 compatible disk
drives via ten dedicated disk control lines and the tvvo general purpose 8 bit bidirectional data ports PAO-7
and PBO-7. Aithough the on-chip disk control hardware handles much ot the specialised data conversion,
as many disk operations as possible are controlled by the processor, using sequences of control and data
information.

The processor can program and interrogate all the registers controlling the disk functions and data ports, and
thereby control the external interface lines. As a result of this versatility, the IMS M212 can also be used in
applications other than disk control ones.

A versatile hardware 32 bit Error Correcting Codes (ECC) and 16 bit Cyclic Redundancy Codes (eRC)
generator is included to check data integrity. ECC's allow certain classes of errors to be corrected as well as
detected, whilst CRC's only allow detection.

When writing data to the disk the hardware serialises the data and encodes it into a Frequency Modulated
(FM) or Modified Frequency Modulated (MFtv1) data stream. Any necessary precompensation is performed
internally before outputting the data together with the necessary control signals. Any necessary rnodification

216 6 IMS M212 preview

of the data, for instance writing the Address Marks (AM) or inserting the CRC/ECC bytes, is automatically
performed by the hardware.

When reading data from disk the raw read data is input and the function known as data separation is performed
internally. The hardware examines the data stream for an Address Mark to achieve byte synchronisation and
then searches for the desired sector information. When the required data is located it is decoded and a serial
to parallel conversion is performed before the data is transferred to the processor.

1.1.4 Links

The IMS M212 uses a DMA block transfer mechanism to transfer messages between memory and another
transputer product via the INMOS links. The link interfaces and the processor all operate concurrently,
allowing processing to continue while data is being transferred on all of the links.

The host interface of the IMS M212 is via two INMOS standard links, providin,g simple connection to any
transputer based system or, via a link adaptor, to a conventional microprocessor system. Link speeds of
10 Mbits/sec and 20 Mbits/sec are available, making the device compatible with all other INMOS transputer
products.

The on-chip disk control logic is controlled by the processor, using simple command sequences, via two
channels which appear to the processor as a normal pair of hardware channels.

1.1.5 Memory system

The 2 Kbytes of on-chip static RAM can be used for program or data storage, as a sector buffer or to store
parameter and format information. It can be extended off chip, via the external memory interface, to provide
a total of 64 Kbytes. Internal and external memory appear as a single contiguous address space.

Software contained in 4 Kbytes of internal ROM enables the IMS M212 to be used as a stand alone disk
processor. The ROM can be disabled to free the address space for external memory.

1.1.6 Error handling

High level language execution is made secure with array bounds checking, arithmetic overflow detection etc.
A flag is set when an error is detected, and the error can be handled internally by software or externally by
sensing the error pin. System state is preserved for subsequent analysis.

217

2 Operation

The IMS M212 can be used in two modes: Mode 1, which uses the software in the internal ROM, and Mode 2,
which relies upon custom designed software.

2.1 Mode 1

Mode 1 operation uses code in the on-chip ROM to control the disk controller hardware, and little knowledge
of the hardware is required to implement winchester and floppy disk drivers. The programming interface to
all drive types is identical, and there is sufficient flexibility to allow a wide variety of formats and drive types
to be used.

Both ST506/412 compatible winchester and SA400/450 compatible floppy drives are supported in standard
double density formats; this includes common 5.25 and 3.5 inch drives. Up to 4096 cylinders are allowed.
Floppy drives can have up to 8 heads and winchesters up to 16 heads. There can be between 1 and 256
sectors per track, with sector sizes of 128 to 16384 bytes in powers of 2. Drives with or without 'seek complete'
and 'ready' lines are supported, and step rates can be from 6411s to 16ms. A range of non-standard formats
can also be set up for user-specific requirements.

As with transputers, the IMS M212 can be bootstrapped from ROM or via a link. In addition, the Mode 1
monitor process also provides a facility whereby the disk processor can bootstrap itself with code read from
a disk; this code runs instead of the Mode 1 process. Another option sends a standard bootstrap message,
read from a disk, out of link 0; the Mode 1 process then continues as normal. It is also possible in Mode 1
to send a command, at any time, to bootstrap from code in the sector buffer.

General workspace for Mode 1 is contained in on-chip RAM, which also provides 1280 bytes of sector buffer.
Contiguous external RAM immediately past the internal RAM will automatically be used to extend the size of
the sector buffer. As many sectors as will fit into the sector buffer can be stored in it at the same time.

In Mode 1 a separate data area, in on-chip RAM, contains all the required control information (parameters)
for each of the four possible drives. Parameters may be read from or written to via the links, and contain such
information as the capacity of the disk, current position of the heads, desired sector for reading or writing,
drive type, timing details etc.

Command and data bytes are accepted down either of the IMS M212 links; an interlock system prevents
conflict between commands received on both links simultaneously. Any results are returned on the link which
received the command. Available commands are

EndOfSequence
ReadBuffer
Restore
Pol/Drives

Initialise
WriteBuffer
Seek
FormatTrack

ReadParameter
ReadSector
SelectHead
Boot

WriteParameter
WriteSector
SelectDrive

Disk access commands implicitly select the drive, perform a seek and select the head. If an ECC or CRC
error is found when reading a sector, a programmable number of automatic retries are performed and a
subsequent correction attempted if possible. Mode 1 supports two of the four IMS M212 ECC/CRC modes
ECC and CRC. Either CRC or ECC can be specified in either of the ID or Data fields, making it possible to
have floppies with correctable Data fields.

All appropriate parameters are checked to ensure that, for example, an attempt is not made to access a
non-existent sector, relieving the host processor of such checking. Another feature which reduces the load
on the host processor is the logical sector mode, in which all the sectors are specified as a single linear
address space rather than physical cylinder/head/sector.

The logical address can also be auto-incremented if desired, as can the sector buffer. This allows a number
of consecutive sectors to be read from or written to the disk with little overhead. As a sticky status checking
technique is used, the status only has to be checked once at the end of a stream of commands; if an error
occurred then reading and writing is inhibited, so that the logical address can be inspected to find where the
error occurred.

218

2.2 Mode 2

6 IMS M212

In Mode 2 operation the internal ROM is bypassed, allowing the device to utilise user-defined software. This
software can be held in external ROM, bootstrapped from a floppy or winchester disk, or loaded from the
host processor via a link into internal or external RAM.

In this mode the user services the disk control hardware via a pair of on-chip high bandwidth channels. Using
these channels the processor has access to the 49 registers which control the operation of the disk controller.
Sequences of control codes and data bytes are sent by the processor to the disk controller logic via one of
the hardware channels and data returned to the IMS M212 processor via the other. Each control code is a
single byte, and may be followed by one or more data bytes.

In Mode 2 the designer can define new commands which are more complex than otherwise available. Exam
ples include a Format Disk command as an extension to the Format Track; an application-specific directory
structure; a software interface to optimise a particular file structure. Mode 2 also allows the user to optimise
data transfer; thus, data could be read from a disk with no interleave, or data transfers could be re-ordered
to minimise head movement. Disk searches can be arranged such that data transfer back to the host is
minimised, as data comparisons can be performed by the on-chip processor.

PAO-7

PBD-?

notlndex

notWriteGate

Start

Databus

Codebus

Timeout
logic

I Timeout error

Bus I/F
timing

WriteDataEarly
Late

notWriteData

Selected
write clock

PhaseUp
PhaseDn

Vln
ReadData

WriteClock

Precomp.

Data sep.
ReadClock

Parallel/
Serial

Serial/
Parallel AMfound

Read/Write
control logic

ID/Data
Compare

ID/Data
compare
error

Figure 2.1: Disk controller interface

219

3 Applications

VCC GND Vcc

2~~ 2t 22011111'1111010 K

Error -------163
Analyse ---11 66
Reset 68
Vcc 67

-62

LinkSReed ----+----155
LinklnO 58
LinkOutO 59
Linkln1 56
LinkOut1 57

n/c
- 53

----+-----11 54

34 way
St 506
Winchester
Control
Connector

20 way
St 506
Winchester
Data
Connector

Data
separation
and
precompensation
filters

34 6n8 lr

24~ ~L-
27 ---.. - 11

26 10n

notDS135 1-I-+-4--1-I--+-~-~-----t 26
notDS236 28
notDS3

37 nntnS4 30
38 32

notHSO39 14
notHS140 18
notHS241 4

42 n/c
. 44 notRWC 2

45 nntStAn 24
46 notDir 34
47 ... notSeekComplete 8
48· notTrackO 10
49 ... notReady 22
50 notWriteFault 12
51 III-I-~-I---f-_V Cc
25 notWriteGate 6
30 la notlndex 20

11 lrllll1330 SN7'i179R :rr-
~ r[> 14

28 <J=~ 17
29 ~18

920 ~

31 H:::J 11_

32~ ~15~nl ~
310 15 11

3n3 1f

11

PortB

M212

PortA

1 14
43 33

EMI pins

15 2
to to
22 9

64

65

52
61

n/c
n/c
n/c
n/c

- 10
-11
- 12
- 60

----+----1 13
----1---1 23

Gnd

Gnd

Gnd
Gnd

n/c n/c

XO-430 P

5MHz I Xtal I 20MHz
I oscillator r

M212 Pin Numbers
as for J-bend package

Figure 3.1: Winchester disk controller

220 6 IMS M212 preview

The IMS M212 can interface to a floppy or winchester disk with very little external circuitry when used in
Mode 1 or if a program is bootstrapped from a link. A typical arrangement is shown in figure 3.1. Note the
absence of any control port buffers; this is possible provided the drive characteristics are not infringed.

Additional external memory can easily be added to the IMS M212. In both Modes 1 and 2, external RAM can
be added for extra sector storage, whilst in Mode 2 extra RAM or ROM can be provided for program storage.

With the addition of control buffers and suitable clocks, a single IMS M212 can interface to both floppy and
winchester drives. Link adaptors provide a means of interfacing to conventional microprocessors.

The IMS B005 evaluation board is an example of an application with control for both types of drive. The
board also has a fully populated memory interface.

Host
interface(s)

5 MHz

1------fllPI System
~----1 Services

and
Li nks

Li nks

Services ~--:JIflo---fllPl

M212

Disc
Interface

MHz
MHz

ST506
and

SA400
compatible

disk
drives

Data separation
and

precompensation
filters

Alternative
host

interface

EMI interface

External memory
and

memory mapped peripherals

Figure 3.2: Enhanced disk controller interface

The IMS M212 can interface with both floppy and winchester disk drives, and the data rate to and from the
disk can be selected by software. As a result the device is suitable for interfacing to the new generation of
floppy disk drives which use vertical recording. These drives have an increased data rate of 1 Mbit/sec, and
quadruple the capacity of existing floppy disk drives to 4 Mbytes. A single IMS M212 can be used to control
a mixture of standard floppy drives, winchester drives and the new high speed high capacity drives. This
eases compatibility and portability problems, and provides a simple upgrade path from standard floppies to
high capacity floppies to winchesters.

3 Applications 221

The IMS M212 provides a very simple and compact disk controller solution, making it very easy to replace
a single large disk drive with an array of IMS M212's, each controlling a single smaller disk drive. This
has several advantages: cheaper drives can be used; overall available disk bandwidth is increased; local
processing is provided by a high performance processor at each disk node; fault tolerant operation. The
latter can be achieved by holding duplicated data on several drives. This prevents the whole system from
stopping, as would be the case if the single large drive failed.

These advantages are particularly applicable when transputers are connected in arrays to provide high per
formance concurrent systems (figure 3.3). The IMS M212's can be directly connected to the array via INMOS
links and the spare link used to communicate with the adjacent IMS M212 to provide the fault tolerant oper
ation.

Figure 3.3: Transputer network with disk processors

A high performance processor allows many operations to be performed locally to the disk. This not only
frees the host processor for other work but also removes the need for large amounts of data to be needlessly
transferred to the host. Operations which can be performed by the IMS M212 include: file management
with directory management and pre-reading; data manipulation such as compression/de-compression and
encryption/de-cryption; data search such as database key searching; performance optimisation such as head
scheduling and cacheing.

The IMS M212 external memory interface can be used to connect to memory mapped peripherals. One
application of this is interfacing to a SCSI bus controller, permitting direct connection to the SCSI bus in a
low part count system. The processor is used to control the SCSI bus controller and implements the required
command interface, as well as controlling the disk or other peripheral.

This arrangement allows floppy and winchester disks to be simply connected to a SCSI bus. Because the
command interface is controlled by a process running in the IMS M212, any future command upgrades can
easily be incorporated.

222 6 IMS M212 preview

The design can be used both as a target and an initiator interface, again controlled by the process running
in the IMS M212. It provides a means of implementing a link to SCSI interface, as well as a SCSI controlled
disk.

U erMemAddr
M212 LowerMemAddr

SCSI
bus

NCR
5380

ALE !'"-----fi!iP'1

AD-7 !--...........,]..........A_O_-_1.....5_

notCE 1--......--fIIlII"I

Rn 0 tW I--Sit---~

ADO-? ~""""---l~

Wa it 1..-+---------1

ProcClockOut I

I

Figure 3.4: SCSI interface

4 Package specifications

4.1 68 pin grid array package

223

A

B

c

D

E

F

H

J

K

1 2 3 4 5 6 7 8 9 10

Figure 4.1: IMS M212 68 pin grid array package pinout

224 6 IMS M212 preview

index M ~Er- 10 9 8 7 6 5 4 3 2 1

8888888888 A
0000000000 B
000 000 C
00 00 0

K
00 00 E

AB 00 00 F
00 00 G
000 000 H

.IJ~l!
0000000000 J
0000000000 K

I. B

A K

Figure 4.2: 68 pin grid array package dimensions

Table 4.1: 68 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes
A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.008
C 2.466 ±0.279 0.097 ±0.011
0 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.051 0.018 ±0.002 Pin diameter
G 1.270 ±0.127 0.050 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0·508 0.020 Chamfer

Package weight is approximately 6.8 grams

Table 4.2: 68 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow

4 Package sp'ecifications

4.2 68 pin PLCC J-bend package

OO~~~~~N~omOO~~~~~N

~~~~~~~~~~~~~~~~~

225

VCC 1
AD7 2
AD6 3
ADS 4
AD4 5
AD3 6
AD2 7
AD1 8
ADO 9
notCE 10
ALE 11
RnotW 12
Wait 13
GND 14
A7 15
A6 16
AS 17

IMS M212
68 pin J lead
chip carrier
Top view

~~~~~~~~~~~~wwwww

oo~o~~w~~m~oo~o~~w~

51 PB7
50 PB6
49 PBS
48 PB4
47 PB3
46 PB2
45 PB 1
44 PBO
43 VCC
42 PA7
41 PA6
40 PAS
39 PA4
38 PA3
37 PA2
36 PA 1
35 PAO

Figure 4.3: IMS M212 68 pin PLCC J-bend package pinout

226

index D--e,

6 IMS M212 preview

c

I

Figure 4.4: 68 pin PLCC J-bend package dimensions

Table 4.3: 68 pin PLCC J-bend package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 25.146 ±0.127 0.990 ±0.005
B 24.232 ±0.127 0.954 ±0.005
C 3.810 ±0.127 0.150 ±0.005
0 0.508 ±0.127 0.020 ±0.005
F 1.270 ±0.127 0.050 ±0.005
G 0.457 ±0.127 0.018 ±0.005
J 0.000 ±0.051 0.000 ±0.002
K 0.457 ±0.127 0.018 ±0.005
L 0.762 ±0.127 0.030 ±0.005

Package weight is approximately 5.0 grams

Table 4.4: 68 pin PLCC J-bend package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow

[rumos

227

228

1 Introduction

LinklnO-31

synchronisation LinkOutO

Control
Logic

synchronisation LinkOut31

ConfigLinkOut
ConfigLinkln
LinkSpeed

VCC
GND

Clockln
Reset

~ System

--~',---__s_e_rV_ic_e_s__'-----------

Figure 1.1: IMS C004 block diagram

CapPlus
CapMinus

Introduction 229

ThelNMOS communication link is a high speed system interconnect which provides full duplex communication
between members of the INMOS transputer family, according to the INMOS serial link protocol. The IMS C004,
a member of this family, is a transparent programmable link switch designed to provide a full crossbar switch
between 32 link inputs and 32 link outputs.

The IMS C004 will switch links running at either the standard speed of 10 Mbits/sec or at the higher speed
of 20 Mbit/sec. It introduces, on average, only a 1.75 bit time delay on the signal. Link switches can be
cascaded to any depth without loss of signal integrity and can be used to construct reconfigurable networks
of arbitrary size. The switch is programmed via a separate serial link called the configuration link.

All INMOS products which use communication links, regardless of device type, support a standard commu
nications frequency of 10 Mbits/sec; most products also support 20 Mbits/sec. Products of different type
or performance can, therefore, be interconnected directly and future systems will be able to communicate
directly with those of today.

230

2 Pin designations

Table 2.1: IMS C004 services services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset
DoNotWire Must not be wi red

Table 2.2: iMS C004 configuration

Pin In/Out Function
ConfigLinkln in INMOS configuration link input
ConfigLinkOut out INMOS configuration link output

Table 2.3: IMS C004 link

Pin In/Out Function
LinklnO-31 in INMOS link inputs to the switch
LinkOutO-31 out INMOS link outputs from the switch
LinkSpeed in Link speed selection

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 245.

231

3 System services

System services include all the necessary logic to start up and maintain the IMS C004.

3.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

3.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1J..lF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the nega
tive terminal should be connected to CapMinus. Total PCS track length should be less than 50mm. The
connections must not touch power supplies or other noise sources.

CapPlus

CapMinus

P.C.B. track

P.C.B. track

Decoupling
Capacitor

1JlF

3.3 Clockln

Figure 3.1: Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nOrTJinal frequency of this clock for all transputer family components is 5MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer family devices may be connected to a common clock, or may have individual clocks
providing each one meets the specified stability criteria. In a multi-clock system the relative phasing of
Clockln clocks is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant
provided the specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

232 7 IMS C004 engineering data

Table 3.1: Input clock

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

1 Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (page 242).

2.0v
1.5v
O.Bv

10%- -

TOCf TOCr

Figure 3.2: Clockln timing

3 System services

3.4 Reset

233

The Reset pin can go high with VCC, but must at no time exceed the maximum specified voltage for VIH.
After VCC is valid Clockln should be running for a minimum period TOCVRL before the end of Reset.

Reset initialises the IMS C004 to a state where all link outputs from the switch are disconnected and held
low; the control link is then ready to receive a configuration message.

Table 3.2: Reset

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TOCVRL Clockln running before Reset end 10 ms 2

Notes

Full periods of Clockln TDCLDCL required.

2 At power-on reset.

Clockln

VCC

Reset

Figure 3.3: Reset timing

234

4 Links

INMOS bi-directional serial links provide synchronized communication between INMOS products and with
the outside world. Each link comprises an input channel and output channel. A link between two devices is
implemented by connecting a link interface on one device to a link interface on the other device. Every byte
of data sent on a link is acknowledged on the input of the same link, thus each signal line carries both data
and control information.

A receiver can transmit an acknowledge as soon as it starts to receive a data byte. In this way the transmission
of an acknowledge can be overlapped with receipt of a data byte to provide continuous transmission of data.
This technique is fully compatible with all other INMOS transputer family links.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies that the receiving link is able to receive another byte.

Links are not synchronised with Clockln and are insensitive to its phase. Thus links from independently
clocked systems may communicate, providing only that the clocks are nominally identical and within specifi
cation.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

The IMS C004 links support the standard INMOS communication speed of 10 Mbits per second. In addition
they can be used at 20 Mbits per second. When the LinkSpeed pin is low, all links operate at the standard
10 Mbits/sec; when high they operate at 20 Mbits/sec.

A single IMS C004 inserted between two transputers which fully impelement overlapped acknowledges causes
no reduction in data bandwidth, the delay through the switch being hidden by the overlapped acknowledge.

Data

L JHl..........L,______

I Ack I

Figure 4.1: IMS C004 link data and acknowledge packets

4 Links

Table 4.1: Link

235

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf Linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
eLlz Linkln capacitance @ f=1MHz 7 pF
ell LinkOut load capacitance 50 pF
RM Series resistor for 1000 transmission line 56 ohms

Notes

This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LinkOut

10%

Linkln
10%

-----21 ~-----. - ---- - - -
TJOr TJOf

Figure 4.2: IMS e004 link timing

LinkOut

Latest TJQJO

Earliest TJQJ 0

Linkln

Figure 4.3: IMS e004 buffered link timing

236 7 IMS C004 engineering data

Transputer family device A

LinkOut .. Linkln....

Linkln ... LinkOut.....,

Transputer family device B

Figure 4.4: Links directly connected

Linkln
Zo =100 ohms

L ink0 ut .------............-.----.-.'-&--_---

Transputer family

Linkln LinkOut

Zo =100 ohms RM
Transputer family device B

Figure 4.5: Links connected by transmission line

Transputer family device A

LinkOut :>--------flllllIIIP'-----f L in kl n

buffers
L in kl n t---.........I-----< LinkOut

Transputer family device B

Figure 4.6: Links connected by buffers

237

5 Switch implementation

The IMS C004 is internally organised as a set of thirtytwo 32-to-1 multiplexors. Each multiplexor has asso
ciated with it a six bit latch, five bits of which select one input as the source of data for the corresponding
output. The sixth bit is used to connect and disconnect the output. These latches can be read and written
by messages sent on the configuration link via Configlinkln and ConfiglinkOut.

The output of each multiplexor is synchronised with an internal high speed clock and regenerated at the
output pad. This synchronisation introduces, on average, a 1.75 bit time delay on the signal. As the signal is
not electrically degraded in passing through the switch, it is possible to form links through an arbitrary number
of link switches.

Each input and output is identified by a number in the range 0 to 31. A configuration message consisting
of one, two or three bytes is transmitted on the configuration link. The configuration messages sent to the
switch on this link are shown in table 5.1. If an unspecified configuration message is used, the effect of it is
undefined. A subset of table 5.1 is implemented on the IMS C004-A; see page 247.

Table 5.1: IMS C004 configuration messages

Configuration Message Function
[0] [input] [output] Connects input to output.

[1] [link1] [link2] Connects link1 to Iink2 by connecting the input of Iink1 to the output of
Iink2 and the input of link2 to the output of Iink1.

[2] [output] Enquires which input the output is connected to. The IMS C004 responds
with the input. The most signifigant bit of this byte indicates whether the
output is connected (bit set high) or disconnected (bit set low).

[3] This command byte must be sent at the end of every configuration
sequence which sets up a connection. The IMS C004 is then ready to
accept data on the connected inputs.

[4] Resets the switch. All outputs are disconnected and held low. This also
happens when Reset is applied to the IMS COO4.

[5] [output] Output output is disconnected and held low.

[6] [link1] [link2] Disconnects the output of link1 and the output of link2.

238

6 Applications

6.1 Link switching

The IMS C004 provides full switching capabilities between 32 INMOS links. It can also be used as a compo
nent of a larger link switch. For example, three IMS C004's can be connected together to produce a 48 way
switch, as shown in figure 6.1. This technique can be extended to the switch shown in figure 6.2.

A fully connected network of 32 INMOS transputers (one in which all four links are used on every transputer)
can be completely configured using just four IMS C004's. Figure 6.5 shows the connected transputer network.

In these diagrams each link line shown represents a unidirectional link; Le. one output to one input. Where
a number is also given, that denotes the number of lines.

6.2 Multiple IMS C004 control

Many systems require a number of IMS C004's, each configured via its own configuration link. A simple
method of implementing this uses a master IMS C004, as shown in figure 6.3. One of the transputer links is
used to configure the master link switch, whilst another transputer link is multiplexed via the master to send
configuration messages to any of the other 31 IMS C004 links.

6.3 Bidirectional exchange

Use of the IMS C004 is not restricted to computer configuration applications. The ability to change the switch
setting dynamically enables it to be used as a general purpose message router. This may, of course, also
find applications in computing with the emergence of the new generation of supercomputers, but a more
widespread use may be found as a communication exchange.

In the application shown in figure 6.4, a message into the exchange must be preceded by a destination
token dest. When this message is passed, the destination token is replaced with a source token so that
the receiver knows where the message has come from. The in.out device in the diagram and the controller
can be implemented easily with a transputer, and the link protocol for establishing communication with these
devices can be interfaced with INMOS link adaptors. All messages from rx[i] are preceded by the destination
output dest. On receipt of such a message the in.out device requests the controller to connect a bidirectional
link path to dest. The controller determines what is currently connected to each end of the proposed link.
When both ends are free it sets up the IMS C004 and informs both ends of the new link. Note that in this
network two channels are placed on each IMS C004 link, one for each direction.

6.4 Bus systems

The IMS C004 can be used in conjunction with the INMOS IMS C011 /C012 link adaptors to provide a flexible
means of connecting conventional bus based microprocessor systems.

6 Applications

32

32

32

C004

C004

C004

Figure 6.1: 48 way link switch

Figure 6.2: Generalised link switch

C004

C004

C004

32

32

32

239

240 7 IMS C004 engineering data

LinklnO ConfigLinkOut linkln1 ConfigLinkOut
C004[1]

LinkOutO ConfigLinkln LinkOut1 ConfigLinkln

Transputer COO4

Linkln1 LinkOutO linkln31 ConfigLinkOut
LinkOut1 LinklnO LinkOut31 ConfigLinkln COO4[31]

Figure 6.3: Multiple IMS C004 controller

up[32]

..dIIII!l C.out
Control

....
c.in

A~

,~

up[O]

rx ro1 cross.inro1,.....
in.out

,.....

.......a tx f01
0

.......a cross.outr01
'"""

up[1]

rx f11 ... cross.inf11 ,.....

.......a tx f11 in.out ... cross.outr11..... 1 """fIll

t up[2] COO4

I

I

rx f311
I up[31]

cross.inf31l
,.....

in.out
....

.......a tx f311a cross.outr311
"""fIll 31

~

Figure 6.4: 32 way bidirectional exchange

6 Applications

o
o
o
,.J:::.

•

241

o
o
o
,.J:::.

..

..
•

o
o
o
,.J:::.

o
o
o
,.J:::.

Figure 6.5: Complete connectivity of a transputer network using four IMS C004's

242

7 Electrical specifications

7.1 DC electrical characteristics

Table 7.1: Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
11 Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 QC 2
TA Ambient temperature under bias -55 125 QC 2
PDmax Maximum allowable dissipation 2 W

Notes

1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 7.2: Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 50 pF
TA Operating temperature range 0 70 QC 3

Notes

1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.

7 Electrical specifications

Table 7.3: DC characteristics

243

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
VIL Low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 /-lA 1,2
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOL Output low voltage @ IOL=4mA 0.4 V 1,2
108 Output short circuit current @ GND<VO<VCC 50 mA 1,2,4

75 mA 1,2,5
PO Power dissipation 1.5 W 2,3
CIN Input capacitance @ f=1MHz 7 pF
CO2 Output capacitance @ f=1 MHz 10 pF

Notes

All voltages are with respect to GND.

2 Parameters measured at 4.75V<VCC<5.25V and O°C<TA<70°C. Input clock frequency = 5MHz.

3 Power dissipation varies with output loading and with the number of links active.

4 Current sourced from non-link outputs.

5 Current sourced from link outputs.

7.2 Equivalent circuits

Output - ~ IIIIIt___

30pF

GN D -.._-4111__--.......-

Load for:

Link outputs

Diodes are 1N916

Equivalent load:

1 Schottky TTL input

Figure 7.1: Load circuit for AC measurements

244

7.3 AC timing characteristics

30
Time

ns
20

10

7 IMS C004 engineering data

Rise time

Fall time

40 60 80 100

Load Capacitance pF

Figure 7.2: Typical link rise/fall times

7.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 7.3.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in QC and eJA is the junction-to-ambient thermal resistance in
QC/W. eJA for each package is given in the Packaging Specifications section.

800

Power 700
PINT

mW 600

500

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 7.3: IMS C004 internal power dissipation vs VCC

8 Package specifications

8.1 84 pin grid array package

245

1 2 3 4 5 6 7 8 9 10

A

B

c

D

E

F

G

H

J

K

Figure 8.1: IMS C004 84 pin grid array package pinout

246

A B K

7 IMS C004 engineering data

10 9 8 7 6 5 4 3 2 1

GG88GGGG88 A
0000000000 B
0000000000 C
000 000 0
000 000 E
000 000 F
000 000 G
0000000000 H
0000000000 J
0000000000 K

~--- K -----4I1111111P1

Figure 8.2: 84 pin grid array package dimensions

Table 8.1: 84 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.005
C 2.456 ±0.278 0.097 ±0.011
0 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.025 0.018 ±0.001 Pin diameter
G 1.143 ±0.127 0.045 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 7.2 grams

Table 8.2: 84 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow

247

9 IMS C004-A

The IMS C004-A implements a subset of the configuration messages.

Table 9.1: IMS C004 configuration messages

Configuration Message Function
[0] [input] [output] Connects input to output.

[1] [link1] [link2] Connects link1 to Iink2 by connecting the input of Iink1 to the output of
Iink2 and the input of Iink2 to the output of link1.

[2] [output] Enquires which input the output is connected to. The IMS C004 responds
with the input.

[3] This command byte must be sent at the end of every configuration
sequence which sets up a connection. The IMS C004 is then ready to
accept data on the connected inputs.

[4] Resets the switch. All outputs are disconnected and held low.

When Reset is applied to the IMS C004-A the outputs are not disconnected. After power is applied and
before any configuration message is transmitted to the IMS C004-A, a software reset byte (control byte [4])
must be sent. This has the effect of disconnecting all the outputs.

248 7 IMS C004 engineering data

•
I

249

250

1 Introduction

VCC
GNO

CapMinus
Clockln

Reset
SeparatelQ

linkOut
linkln

System
Services

Input
Interface

Output
Interface

8

10-7

lAck
IValid

QO-7

Qack
QValid

Figure 1.1: IMS C011 Mode 1 block diagram

System
Services

00-7

Inputlnt
Outputlnt

RSO
RS1
RnotW
notCS

Data and
Status

Registers
linkOut

linkln

VCC
GNO

CapMinus
Clockln

Reset
SeparatelQ
linkSpeed

Figure 1.2: IMS C011 Mode 2 block diagram

Introduction 251

The INMOS communication link is a high speed system interconnect which provides full duplex communication
between members of the INMOS transputer family, according to the INMOS serial link protocol. The IMS C011 ,
a member of this family, provides for full duplex transputer link communication with standard microprocessor
and sub-system architectures, by converting bi-directional serial link data into parallel data streams.

All INMOS products'which use communication links, regardless of device type, support a standard commu
nications frequency of 10 Mbits/sec; most products also support 20 Mbits/sec. Products of different type
or performance can, therefore, be interconnected directly and future systems will be able to communicate
directly with those of today. The IMS C011 link will run at either the standard speed of 10 Mbits/sec or at the
higher speed of 20 Mbit/sec. Data reception is asynchronous, allowing communication to be independent of
clock phase.

The link adaptor can be operated in one of two modes. In Mode 1 the IMS C011 converts between a link
and two independent fully handshaken byte-wide interfaces, one input and one output. It can be used by a
peripheral device to communicate with a transputer, an INMOS peripheral processor or another link adaptor,
or it can provide programmable input and output pins for a transputer. Two IMS C011 devices in this mode
can be connected back to back via the parallel ports and used as a frequency changer between different
speed links.

In Mode 2 the IMS C011 provides an interface between an INMOS serial link and a microprocessor system
bus. Status and data registers for both input and output ports can be accessed across the byte-wide bi
directional interface. Two interrupt outputs are provided, one to indicate input data available and one for
output buffer empty.

252

2 Pin designations

Table 2.1: IMS C011 services and link

Pin In/Out Function
VCC,GNO Power supply and return
CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset

SeparatelO in Select mode and Mode 1 link speed
Linkln in Serial data input channel
LinkOut out Serial data output channel

Table 2.2: IMS C011 Mode 1 parallel interface

Pin In/Out Function
10-7 in Parallel input bus
IValid in Data on 10-7 is valid
lAck out Acknowledge 10-7 data received by other link

00-7 out Parallel output bus.
OValid out Data on 00-7 is valid
OAck in Acknowledge from device: data 00-7 was read

Table 2.3: IMS C011 Mode 2 parallel interface

Pin In/Out Function
00-7 in/out Bi-directional data bus
notCS in Chip select
RSO-1 in Register select
RnotW in Read/write control signal

Inputlnt out Interrupt on link receive buffer full
Outputlnt out Interrupt on link transmit buffer empty
LinkSpeed in Select link speed as 10 or 20 Mbits/sec

HoldToGNO Must be connected to GNO
OoNotWire Must not be wired

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 270.

253

3 System services

System services include all the necessary logic to start up and maintain the IMS C011.

3.1 Power

Power is supplied to the device via the VCC and GND pins. The supply must be decoupled close to the chip
by at least one 100nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer boards
are recommended; if two layer boards are used, extra care should be taken in decoupling.

AC noise between VCC and GND must be kept below 200 mV peak to peak at all frequencies above 100 KHz.
AC noise between VCC and the ground reference of load capacitances must be kept below 200 mV peak to
peak at all frequencies above 30 MHz. Input voltages must not exceed specification with respect to VCC and
GND, even during power-up and power-down ramping, otherwise latchup can occur. CMOS devices can be
permanently damaged by excessive periods of latchup.

3.2 CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1J.lF
capacitor to be connected between VCC and CapMinus. A ceramic capacitor is preferred, with an impedance
less than 3 ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative terminal should
be connected to CapMinus. Total PCS track length should be less than 50mm. The positive connection of
the capacitor must be connected directly to VCC. Connections must not otherwise touch power supplies or
other noise sources.

Decoupling
Capacitor

1J.lF

P.C.B. track

P.C.B. trackCapMinus

~---VCC

Figure 3.1: Recommended PLL decoupling

3.3 Clockln

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer family devices may be connected to a common clock, or may have individual clocks
providing each one meets the specified stability criteria. In a multi-clock system the relative phasing of
Clockln clocks is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant
provided the specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

254 8 IMS C011 engineering data

Table 3.1: Input clock

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 400 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (page 266).

2.0v
1.5v
o.8v

90%---

10%--

TDCf TDCr

Figure 3.2: Clockln timing

3.4 SeparatelQ

The IMS C011 link adaptor has two different modes of operation. Mode 1 is basically a link to peripheral
adaptor, whilst Mode 2 interfaces between a link and a microprocessor bus system.

Moge 1 can be selected for one of two link speeds by connecting SeparatelQ to VCC (10 Mbits/sec) or to
Clockln (20 Mbits/sec).

Mode 2 is selected by connecting SeparatelQ to GND; in this mode 10 Mbits/sec or 20 Mbits/sec is selected
by LinkSpeed. Link speeds are specified for a Clockln frequency of 5 MHz.

In order to select the link speed, SeparatelQ may be changed dynamically providing the link is in a quiescent
state and no input or output is required. Reset must be applied subsequent to the selection to initialise
the device. If Clockln is gated to achieve this, its skew must be limited to the value TDCHSIQH shown in
tab~e 3.2. The mode of operation (Mode 1, Mode 2) must not be changed dynamically.

3 System services

Table 3.2: SeparatelQ mode selection

SeparatelQ Mode link Speed Mbits/sec
VCC 1 10
Clockln 1 20
GND 2 10 or 20

Table 3.3: SeparatelQ

255

PARAMETER
Skew from Clockln to Clockln

Notes

Skew between Clockln arriving on the Clockln pin and on the SeparatelQ pin.

3.5 Reset

The Reset pin can go high with VCC, but must at no time exceed the maximum specified voltage for VlbI.
After VCC is valid Clockln should be running for a minimum period TDCVRl before the end of Reset. linkln
must be held low during Reset.

Reset initialises the IMS ~011 to the following state: linkOut is held low; the control outputs (lAck and
QValid in Mode 1, Inputlnt and Outputlnt in Mode 2) are held low; interrupts (Mode 2) are disabled; the
states of QO-7 in Mode '1 are unspecified; DO-7 in Mode 2 are high impedance.

Table 3.4: Reset

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TOCVRL Clockln running before Reset end 10 ms 2

Notes

Full periods of JClockln TDCLDCL required.

2 At power-on reset.

Clockln

VCC

Reset

Figure 3.3: Reset timing

256

4 Links

INMOS bi-directional serial links provide synchronized communiGation betwee~ INMOS products and with
the outside world. Each link comprises an input channel and output channel. A link between two -devices is
implemented by connecting a link interface on one device to a link interface on the other device. Every byte
of data sent on a link is acknowledged on the input of the same link, thus each signal line carries both data
and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a
one bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted
first. After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit
followed by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged
data byte and that the receiving link is able to receive another byte.

Links are not synchronised with Clockln and are insensitive to its phase. Thus links from independently
clocked systems may commUt9icate, providing only that the clocks are nominally identical and within specifi
cation.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 O,hm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sen-t~

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

The IMS C011 link supports the standard INMOS communication speed of 10 Mbits per second. In additi9n it
can be used at 20 Mbits per second. Link speed can be selected in one of two ways. In Mode 1 it is altered
by SeparatelQ (page 254). In Mode 2 it is selected by linkSpeed; when the linkSpeed pin is low, the link
operates at the standard 10 Mbits/sec; when high it operates at 20 Mbits/sec.

Data

L JHl----lL',---
I Ack I

Figure 4.1: IMS C011 link data and acknowledge packets

4 Links

Table 4.1: Link

257

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf Linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
eLlz Linkln capacitance @ f=1 MHz 7 pF
ell LinkOut load capacitance 50 pF
RM Series resistor for 1000 transmission line 56 ohms

Notes

This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LinkOut

10%

90%
Linkln

10% -----

TJOr TJOf

Figure 4.2: IMS e011 link timing

1.5v - -
LinkOut

Latest TJQJO

Earliest TJQJO

Linkln

Figure 4.3: IMS e011 buffered link timing

258 8 IMS C011 engineering data

Transputer family device A

LinkOut Linkln.....

Linkln LinkOut.....,

Transputer family device B

Figure 4.4: Links directly connected

Linkln
Zo =100 ohms

LinkOut .-------~_.-------_.-J""""-----

Transputer family

Linkln LinkOut

Zo =100 ohms RM
Transputer family device B

Figure 4.5: Links connected by transmission line

Transputer family device A

LinkOut >--------IIIIpo.....------t Li nkln

buffers
Li nkl n 1----......1-----<: LinkOut

Transputer family device B

Figure 4.6: Links connected by buffers

259

5 Mode 1 parallel interface

In Mode 1 the IMS C011 link adaptor is configured as a parallel peripheral interface with handshake lines.
Communication with a transputer family device is via the serial link. The parallel interface comprises an input
port and an output port, both with handshake.

5.1 Input port

The eight bit parallel input port 10-7 can be read by a transputer family device via the serial link. IValid and
lAck provide a simple two-wire handshake for this port. When data is valid on 10-7, IValid is taken high by
the peripheral device to commence the handshake. The link adaptor transmits data presented on 10-7 out
through the serial link. When the acknowledge packet is received on the input link, the IMS C011 sets lAck
high. To complete the handshake, the peripheral device must return IValid low. The link adaptor will then
set lAck low. New data should not be put onto 10-7 until lAck is returned low.

Table 5.1: Mode 1 parallel data output

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TLdVQvH Start of link data to QValid 11.5 bits 1
TQdVQvH Data setup 15 ns 2
TQvHQaH QAck setup time from QValid high 0 ns
TQaHQvL QAck high to QValid low 1.8 bits 1
TQaHLaV QAck high to Ack on link 0.8 2 bits 1,3
TQvLQaL QAck hold after QValid low 0 ns
TQvLQdX Data hold 11 bits 1,4

Notes

Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 nS.

2 Where an existing data output bit is re-written with the same level there will be no glitch in the output level.

3 Maximum time assumes there is no data packet already on the link. Maximum time with data on the link is
extended by 11 bits.

4 Data output remains valid until overwritten by new data.

Li nkln =:=J__D_a_ta_---'- -'---_D_a_t_a_--'-- _

QO-7

TLdVQvH

QValid

QAck ------------

LinkOut

TQvLQaL

Figure 5.1: IMS C011 Mode 1 parallel data output from link adaptor

260

5.2 port

8 IMS C011 engineering data

The eight bit parallel output port 00-7 can be controlled by a transputer family device via the serial link.
OValid and OAck provide a simple two-wire handshake for this port.

A data packet received on the input link is presented on 00-7; the link adaptor then takes OValid high to
initiate the handshake. After reading data from 00-7, the peripheral device sets OAck high. The IMS C011
will then send an acknowledge packet out of the serial link to indicate a completed transaction and set OValid
low to complete the handshake.

Table 5.2: Mode 1 parallel data input

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TldVlvH Data setup 5 ns
TlvHLdV IValid high to link data output 0.8 2 bits 1,2
TLaVlaH Link acknowledge start to lAck high 3 bits 1
TlaHldX Data hold after lAck high 0 ns
TlaHlvL IValid hold after lAck high 0 ns
TlvLlaL lAck hold after IValid low 1 4 bits 1
TlaLlvH Delay before next IValid high 0 ns

Notes

Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 nS.

2 Maximum time assumes there is no acknowledge packet already on the link. Maximum time with acknowledge
on the link is extended by 2 bits.

10-7

'-TldVlvH

IValid

lAck ----+---------

LinkOut

Linkln

Figure 5.2: IMS C011 Mode 1 parallel data input to link adaptor

261

6 Mode 2 parallel interface

The IMS C011 provides an interface between a link and a microprocessor style bus. Operation of the link
adaptor is controlled through the parallel interface bus lines 00-7 by reading and writing various registers in
the link adaptor. Registers are selected by RSO-1 and RnotW, and the chip enabled with notCS.

For convenience of description, the device connected to the parallel side of the link adaptor is presumed to
be a microprocessor, although this will not always be the case.

6.1 00-7

Data is communicated between a microprocessor bus and the link adaptor via the bidirectional bus lines 00-7.
The bus is high impedance unless the link adaptor chip is selected and the RnotW line is high. The bus is
used by the microprocessor to access status and data registers.

6.2 notCS

The link adaptor chip is selected when notCS is low. Register selectors RSO-1 and RnotW must be valid
before noteS goes low; 00-7 must also be valid if writing to the chip (RnotW low). Data is read by the link
adaptor on the rising edge of notCS.

6.3 RnotW

RnotW, in conjunction with notCS, selects the link adaptor registers for read or write mode. When RnotW
is high, the contents of an addressed register appear on the data bus 00-7; when RnotW is low the data
on 00-7 is written into the addressed register. The state of RnotW is latched into the link adaptor by notCS
going low; it may be changed before notCS returns high, within the timing restrictions given.

6.4 RSO-1

One of four registers is selected by RSO-1. A register is addressed by setting up RSO-1 and then taking
notCS low; the state of RnotW when notCS goes low determines whether the register will be read or written.
The state of RSO-1 is latched into the link adaptor by notCS going low; it may be changed before notCS
returns high, within the timing restrictions given. The register set comprises a read-only data input register,
a write-only data output register and a read/write status register for each.

Table 6.1: IMS C011 Mode 2 register selection

RS1 RSO RnotW Register
0 0 1 Read data
0 0 0 Invalid
0 1 0 Invalid
0 1 0 Write data
1 0 1 Read input status
1 0 0 Write input status
1 1 1 Read output status
1 1 0 Write output status

6.4.1 Input Oata Register

This register holds the last data packet received from the serial link. It never contains acknowledge packets.
It contains valid data only whilst the data present flag is set in the input status register. It cannot be assumed
to contain valid data after it has been read; a double read mayor may not return valid data on the second
read. If data present is valid on a subsequent read it indicates new data is in the buffer. Writing to this register
will have no effect.

262 8 IMS C011 engineering data

Table 6.2: IMS C011 Mode 2 parallel interface control

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TRSVCSL Register select setup 5 ns
TCSLRSX Register select hold 5 ns
TRWVCSL Read/write strobe setup 5 ns
TCSLRWX Read/write strobe hold 5 ns
TCSLCSH Chip select active 50 ns
TCSHCSL Delay before re-assertion of chip select 50 ns

Table 6.3: IMS C011 Mode 2 parallel interface read

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TLdVllH Start of link data to Inputlnt high 13 bits 1
TCSLIIL Chip select to Inputlnt low 30 ns
TCSLDrX Chip select to bus active 5 ns
TCSLDrV Chip select to data valid 40 ns
TCSHDrZ Chip select high to bus tristate 25 ns
TCSHDrX Data hold after chip select high 5 ns
TCSHLaV Chip de-select to start of Ack 0.8 2 bits 1,2

Notes

1 Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 nS.

2 Maximum time assumes there is no data packet already on the link. Maximum time with data on the link is
extended by 11 bits.

Linkln] Data Data C

TRSVCSL~--"~-..t

TCSLDrV ~--------IIIII"

TCSLDrX~-......
.--7f~--k-r-.

00-7

TRWVCSL~--tIIIIIIIIII~--48I"I

RSO-1

notCS

RnotW

Inputlnt _

LinkOut

Figure 6.1: IMS C011 Mode 2 read parallel data from link adaptor

6 Mode 2 parallel interface 263

Table 6.4: IMS C011 Mode 2 parallel interface write

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TCSHDwV Data setup 15 ns
TCSHDwX Data hold 5 ns
TCSLOIL Chip select to Outputlnt low 30 ns
TCSHLdV Chip select high to start of link data 0.8 2 bits 1,2
TLaVOIH Start of link Ack to Outputlnt high 3 bits 1,3
TLdVOIH Start of link data to Outputlnt high 13 bits 1,3

Notes

Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 nS.

2 Maximum time assumes there is no acknowledge packet already on the link. Maximum time with acknowledge
on the link is extended by 2 bits.

3 Both data transmission and the returned acknowledge must be completed before Outputlnt can go high.

~-------t~ TLa V0 IH

RSO-1

TRSVCSL~---~~

Linkln ~'__ _

DO-7

TRWVCSL 1~--IIIII~t---tlpt

TCSLOIL

noteS

RnotW

LinkOut

Outputlnt

Figure 6.2: IMS C011 Mode 2 write parallel data to link adaptor

264

6.4.2 Input Status Register

8 IMS C011 engineering data

This register contains the data present flag and the interrupt enable control bit for Inputlnt. The data present
flag is set to indicate that data in the data input buffer is valid. It is reset low only when the data input buffer
is read, or by Reset. When writing to this register, the data present bit must be written as zero.

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low re
spectively. When the interrupt enable and data present flags are both high, the Inputlnt output will be high
(page 264). Resetting interrupt enable will take Inputlnt low; setting it again before reading the data input
register will set Inputlnt high again. The interrupt enable bit can be read to determine its status.

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the
register is read. Failure to write zeroes to these bits may result in undefined data being returned by these
bits during a status register read.

7 6 5 4 3 2 o

Figure 6.3: IMS C011 Mode 2 input status register

6.5 Inputlnt

The Inputlnt output is set high to indicate that a data packet has been received from the serial link. It is
inhibited from going high when the interrupt enable bit in the input status register is low (page 264). Inputlnt
is reset low when data is read from the input data register (page 261) and by Reset (page 255).

6.5.1 Output Data Register

Data written to this link adaptor register is transmitted out of the serial link as a data packet. Data should
only be written to this register when the output ready bit in the output status register is high, otherwise data
already being transmitted may be corrupted. Reading this register will result in undefined data being read.

6.5.2 Output Status Register

This register contains the output ready flag and the interrupt enable control bit for Outputlnt. The output
ready flag is set to indicate that the data output buffer is empty. It is reset low only when data is written to the
data output buffer; it is set high by Reset. When writing to this register, the output ready bit must be written
as zero.

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low respec
tively. When the interrupt enable and output ready flags are both high, the Outputlnt output will be high
(page 265). Resetting interrupt enable will take Outputlnt low; setting it again whilst the data output register
is empty will set Outputlnt high again. The interrupt enable bit can be read to determine it's status.

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the
register is read. Failure to write zeroes to these bits may result in undefined data being returned by these
bits during a status register read.

6 Mode 2 parallel interface 265

7 6 5 4 3 2 o

Figure 6.4: IMS C011 Mode 2 output status register

6.6 Outputlnt

The Outputlnt output is set high to indicate that the link is free to receive data from the microprocessor for
transmission as a data packet out of the serial link. It is inhibited from going high when the interrupt enable
bit in the output status register is low (page 264). Outputlnt is reset low when data is written to the data
output register (page 264); it is set high by Reset (page 255).

6.7 Data read

A data packet received on the input link sets the data present flag in the input status register. If the interrupt
enable bit in the status register is set, the Inputlnt output pin will be set high. The microprocessor will either
respond to the interrupt (if the interrupt enable bit is set) or will periodically read the input status register until
the data present bit is high.

When data is available from the link, the microprocessor reads the data packet from the data input register.
This will reset the data present flag and cause the link adaptor to transmit an acknowledge packet out of the
serial link output. Inputlnt is automatically reset by reading the data input register; it is not necessary to read
or write the input status register.

6.8 Data write

When the data output buffer is empty the output ready flag in the output status register is set high. If
the interrupt enable bit in the status register is set, the Outputlnt output pin will also be set high. The
microprocessor will either respond to the interrupt (if the interrupt enable bit is set) or will periodically read
the output status register until the output ready bit is high.

When the output ready flag is high, the microprocessor can write data to the data output buffer. This will
result in the link adaptor resetting the output ready flag and commencing transmission of the data packet out
of the serial link. The output ready status bit will remain low until an acknowledge packet is received by the
input link. This will set the output ready flag high; if the interrupt enable bit is set, Outputlnt will also be set
high.

266

7 Electrical SD4~CllnccltlcDnS

7.1 DC electrical characteristics

Table 7.1: Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
11 Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 QC 2
TA Ambient temperature under bias -55 125 QC 2
PDmax Maximum allowable dissipation 600 mW

Notes

1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 7.2: Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 50 pF
TA Operating temperature range 0 70 QC 3

Notes

1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.

7 Electrical specifications

Table 7.3: DC characteristics

267

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
VIL Low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 j.LA 1,2,6

±200 j.LA 1,2,7
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOL Output low voltage @ IOL=4mA 0.4 V 1,2
108 Output short circuit current @ GND<VO<VCC 50 mA 1,2,4

75 mA 1,2,5
10Z Tristate output current @ GND<VO<VCC ±10 j.LA 1,2
PD Power dissipation 120 mW 2,3
CIN Input capacitance @ f=1MHz 7 pF
COZ Output capacitance @ f=1MHz 10 pF

Notes

All voltages are with respect to GND.

2 Parameters measured at 4.75V<VCC<5.25V and O°C<TA<70°C. Input clock frequency = 5MHz.

3 Power dissipation varies with output loading.

4 Current sourced from non-link outputs.

5 Current sourced from link outputs.

6 For inputs other than those in Note 7.

7 For pins 2, 3, 5, 6, 7, 9, 11, 13, 15, 16, 25.

7.2 Equivalent circuits

Output - __---tlf--.....I--.

30pF

GND - __--tlf----__

Load for: R1 R2 Equivalent load:

Link outputs 1k96 47k 1 Schottky TTL input
Other outputs 970R 24k 2 Schottky TTL inputs

Diodes are 1N916

Figure 7.1: Load circuit for AC measurements

268 8 IMS C011 engineering data

Test point
Output under test ----4I111111P--~__-_I

GND -----~

VCC

Figure 7.2: Tristate load circuit for AC measurements

7.3 AC timing characteristics

Table 7.4: Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TOr Input rising edges 2 20 ns 1,2
TOt Input falling edges 2 20 ns 1,2
TOr Output rising edges 25 ns 1
TOt Output falling edges 15 ns 1
CSLaHZ Chip select high to tristate 25 ns
CSLaLZ Chip select low to tristate 25 ns

Notes

Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

90% - - -

10% - ---

TOf

Figure 7.3: IMS C011 input and output edge timing

1.5V ----

Figure 7.4: IMS C011 tristate timing relative to notCS

7 Electrical specifications 269

30
Time

ns
20

10

30 Rise time
Time

Rise time ns
20 Fall time

Fall time 10

40 60 80 100

Load Capacitance pF

link

40 60 80 100

Load Capacitance pF

Interface

Notes
Figure 7.5: Typical rise/fall times

Skew is measured between notCS with a standard load (2 Schottky TTL inputs and 30pF) and
notCS with a load of 2 Schottky TTL inputs and varying capacitance.

7.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 7.6.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature T] of the chip is

where TA is the external ambient temperature in GC and eJA is the junction-to-ambient thermal resistance in
GC/W. eJA for each package is given in the Packaging Specifications section.

200

Power 150
PINT

mW 100

50

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 7.6: IMS C011 internal power dissipation vs VCC

270

8

8.1 28 pin plastic dual-in-line package

A-----IJ

L

Figure 8.1: 28 pin plastic dual-in-line package dimensions

Table 8.1: 28 pin plastic dual-in-line package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 36.830 +0.508 1.450 +0.020
-0.254 -0.010

B 13.716 ±0.051 0.540 ±0.002
C 3.810 ±0.254 0.150 ±0.010
0 15.240 ±0.076 0.600 ±0.003
E 1.905 ±0.051 0.075 ±0.002
F 2.540 ±0.051 0.100 ±0.002
G 1.524 ±0.051 0.060 ±0.002
H 0.457 ±0.051 0.018 ±0.002
J 16.256 0.508 0.640 0.020
K 0.254 ±0.025 0.010 ±0.001
L 0.58 0.020 Minimum
M 3.429 0.135 Maximum

Package weight is approximately 4 grams

Table 8.2: 28 pin plastic dual-in-line package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow

8 Package specifications

8.2 28 pin ceramic dual-in-line package

A--~

Figure 8.2: 28 pin ceramic dual-in-line package dimensions

Table 8.3: 28 pin ceramic dual-in-line package dimensions

I
o

L
~

271

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 35.560 ±0.406 1.400 ±0.016
B 15.113 ±0.254 0.595 ±0.010
C· 2.159 ±0.254 0.085 ±0.010
0 15.113 +0.762 0.595 +0.030

-0.000 -0.000
E 2.032 0.080 Maximum
F 2.540 ±0.127 0.100 ±0.005
G 1.270 ±0.152 0.050 ±0.006
H 0.457 +0.102 0.018 +0.004

-0.051 -0.002
K 0.254 +0.076 0.010 +0.003

-0.025 -0.001
L 1.270 ±0.381 0.050 ±0.015
M 3.683 ±0.508 0.145 ±0.020
p 13.208 ±0.229 0.520 ±0.009 Square
Q 12.827 ±0.127 0.505 ±0.005 Square
R 0.3175 ±0.0635 0.0125 ±0.0025

Package weight is approximately 5 grams

272 8 IMS C011 engineering data

Table 8.4: 28 pin ceramic dual-in-line package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow

8.3 Pinout

LinkOut 1
Linkln 2
IValid 3

lAck 4
10 5
11 6
12 7
13 8
14 9
15 1 0
16 11
17 1 2

Reset 1 3
GNO 14

28 VCC
27 CapMinus
26 OValid
25 OAck
24 00
23 01
22 02
21 03
20 04
19 05
18 06
17 07
1 6 SeparatelO
15 Clockln

Figure 8.3: IMS C011 Mode 1 pinout

LinkOut 1
Linkln 2

RnotW 3
Outputlnt 4

RSO 5
RS1 6

OoNotWire 7
03 8

OoNotWire 9
05 10

HoldToGNO 11
07 12

Reset 1 3
GNO 14

28 VCC
27 CapMinus
26 Inputlnt
25 notCS
24 00
23 01
22 02
21 OoNotWire
20 04
1 9 OoNotWire
18 06
17 LinkSpeed
1 6 SeparatelO
15 Clockln

Figure 8.4: IMS C011 Mode 2 pinout

O[TI)mos Chapter 9

et IMS
• •engl I

data

273

274

1 Introduction

VCC
GNO

CapMinus
Clockln

Reset
linkSpeed

linkOut
linkln

System
Services

Link

Interrupt Inputlnt
Control Outputlnt

RSO
Register RS1
Select RnotW

notCS

Data and
Status 00-7

Registers

Figure 1.1: IMS C012 block diagram

Introduction 275

The INMOS communication link is a high speed system interconnect which provides full duplex communication
between members of the INMOS transputer family, according to the INMOS serial link protocol. The IMS C012,
a member of this family, provides for full duplex transputer link communication with standard microprocessor
and sub-system architectures, by converting bi-directional serial link data into parallel data streams.

All INMOS products which use communication links, regardless of device type, support a standard commu
nications frequency of 10 Mbits/sec; most products also support 20 Mbits/sec. Products of different type
or performance can, therefore, be interconnected directly and future systems will be able to communicate
directly with those of today. The IMS C012 link will run at either the standard speed of 10 Mbits/sec or at the
higher speed of 20 Mbit/sec. Data reception is asynchronous, allowing communication to be independent of
clock phase.

The IMS C012 provides an interface between an INMOS serial link and a microprocessor system bus. Status
and data registers for both input and output ports can be accessed across the byte-wide bi-directional interface.
Two interrupt outputs are provided, one to indicate input data available and one for output buffer empty.

276

2 Pin designations

Table 2.1: IMS C012 services and link

Pin In/Out Function
VCC,GNO Power supply and return
CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset

Linkln in Serial data input channel
LinkOut out Serial data output channel

Table 2.2: IMS C012 parallel interface

Pin In/Out Function
00-7 in/out Si-directional data bus
notCS in Chip select
RSO-1 in Register select
RnotW in Read/write control signal

Inputlnt out Interrupt on link receive buffer full
Outputlnt out Interrupt on link transmit buffer empty
LinkSpeed in Select link speed as 10 or 20 Mbits/sec

HoldToGNO Must be connected to GND

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 292.

277

3 System services

System services include all the necessary logic to start up and maintain the IMS C012.

3.1 Power

Power is supplied to the device via the VCC and GND pins. The supply must be decoupled close to the chip
by at least one 100nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer boards
are recommended; if two layer boards are used, extra care should be taken in decoupling.

AC noise between VCC and GND must be kept below 200 mV peak to peak at all frequencies above 100 KHz.
AC noise between VCC and the ground reference of load capacitances must be kept below 200 mV peak to
peak at all frequencies above 30 MHz. Input voltages must not exceed specification with respect to VCC and
GND, even during power-up and power-down ramping, otherwise latchup can occur. CMOS devices can be
permanently damaged by excessive periods of latchup.

3.2 CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 11lF
capacitor to be connected between VCC and CapMinus. A ceramic capacitor is preferred, with an impedance
less than 3 ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative terminal should
be connected to CapMinus. Total pes track length should be less than 50mm. The positive connection of
the capacitor must be connected directly to VCC. Connections must not otherwise touch power supplies or
other noise sources.

~---VCC

VCCpin

CapMinus

P.C. 8. track

P.C.8. track

Decoupling
Capacitor

1JlF

3.3 Clockln

Figure 3.1: Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer family devices may be connected to a common clock, or may have individual clocks
providing each one meets the specified stability criteria. In a multi-clock system the relative phasing of
Clockln clocks is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant
provided the specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

278 9 IMS C012 engineering data

Table 3.1: Input clock

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 400 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

1 Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (page 288).

2.0v
1.5v
0.8v

90%---

10%- - -

TDCr

Figure 3.2: Clockln timing

3 System services

3.4 Reset

279

The Reset pin can go high with VCC, but must at no time exceed the maximum specified voltage for VIH.
After VCC is valid Clockln should be running for a minimum period TDCVRL before the end of Reset. Linkln
must be held low during Reset.

Reset initialises the 1M3 C012 to the following state: LinkOut is held low; the interrupt outputs Inputlnt and
Outputlnt are held low; interrupts are disabled; DO-7 are high impedance.

Table 3.2: Reset

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2

Notes

Full periods of Clockln TDCLDCL required.

2 At power-on reset.

Clockln

VCC

Reset

Figure 3.3: Reset timing

280

4 Links

INMOS bi-directional serial links provide synchronized communication between INMOS products and with
the outside world. Each link comprises an input channel and output channel. A link between two devices is
implemented by connecting a link interface on one device to a link interface on the other device. Every byte
of data sent on a link is acknowledged on the input of the same link, thus each signal line carries both data
and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a
one bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted
first. After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit
followed by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged
data byte and that the receiving link is able to receive another byte.

Links are not synchronised with Clockln and are insensitive to its phase. Thus links from independently
clocked systems may communicate, providing only that the clocks are nominally identical and within specifi
cation.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

The IMS C012 link supports the standard INMOS communication speed of 10 Mbits per second. In addition
it can be used at 20 Mbits per second. Link speed is selected by LinkSpeed; when the LinkSpeed pin is
low, the link operates at the standard 10 Mbits/sec; when high it operates at 20 Mbits/sec.

Data

L JHl"--L.......,__
I Ack I

Figure 4.1: IMS C012 link data and acknowledge packets

4 Links

Table 4.1: Link

281

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf Linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
eLlz Linkln capacitance @ f=1MHz 7 pF
ell LinkOut load capacitance 50 pF
RM Series resistor for 1000 transmission line 56 ohms

Notes

This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90 %

LinkOut
10%

90%
Linkln

10%
-----61 ~-----. - ---- - -

TJOr TJOf

Figure 4.2: IMS e012 link timing

LinkOut

Latest TJOJ 0

Earliest TJOJO

Linkln

Figure 4.3: IMS e012 buffered link timing

282 9 IMS C012 engineering data

Transputer family device A

LinkOut Linkln
"""

Linkln LinkOut....,

Transputer family device B

Figure 4.4: Links directly connected

Linkln
Zo =100 ohms

LinkOut .-----~_.------rl""------

Transputer family

Linkln LinkOut

Zo =100 ohms RM
Transputer family device B

Figure 4.5: Links connected by transmission line

Transputer family device A

LinkOut >---------IIIIiIIlP"-----t Li nkl n

buffers
LinkIn t----...II------<. LinkOut

Transputer family device B

Figure 4.6: Links connected by buffers

283

5 Parallel interface

The IMS C012 provides an interface between a link and a microprocessor style bus. Operation of the link
adaptor is controlled through the parallel interface bus lines 00-7 by reading and writing various registers in
the link adaptor. Registers are selected by RSO-1 and RnotW, and the chip enabled with notCS.

For convenience of description, the device connected to the parallel side of the link adaptor is presumed to
be a microprocessor, although this will not always be the case.

5.1 00-7

Data is communicated between a microprocessor bus and the link adaptor via the bidirectional bus lines 00-7.
The bus is high impedance unless the link adaptor chip is selected and the RnotW line is high. The bus is
used by the microprocessor to access status and data registers.

5.2 notCS

The link adaptor chip is selected when notCS is low. Register selectors RSO-1 and RnotW must be valid
before notCS goes low; 00-7 must also be valid if writing to the chip (RnotW low). Data is read by the link
adaptor on the rising edge of notCS.

5.3 RnotW

RnotW, in conjunction with notCS, selects the link adaptor registers for read or write mode. When RnotW
is high, the contents of an addressed register appear on the data bus 00-7; when RnotW is low the data
on 00-7 is written into the addressed register. The state of RnotW is latched into the link adaptor by notCS
going low; it may be changed before notCS returns high, within the timing restrictions given.

5.4 RSO-1

One of four registers is selected by RSO-1. A register is addressed by setting up RSO-1 and then taking
notCS low; the state of RnotW when notCS goes low determines whether the register will be read or written.
The state of RSO-1 is latched into the link adaptor by notCS going low; it may be changed before notCS
returns high, within the timing restrictions given. The register set comprises a read-only data input register,
a write-only data output register and a read/write status register for each.

Table 5.1: IMS C012 register selection

RS1 RSO RnotW Register
0 0 1 Read data
0 0 0 Invalid
0 1 0 Invalid
0 1 0 Write data
1 0 1 Read input status
1 0 0 Write input status
1 1 1 Read output status
1 1 0 Write output status

5.4.1 Input Data Register

This register holds the last data packet received from the serial link. It never contains acknowledge packets.
It contains valid data only whilst the data present flag is set in the input status register. It cannot be assumed
to contain valid data after it has been read; a double read mayor may not return valid data on the second
read. If data present is valid on a subsequent read it indicates new data is in the buffer. Writing to this register
will have no effect.

284 9 IMS C012 engineering data

Table 5.2: IMS C012 parallel interface control

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TRSVCSL Register select setup 5 ns
TCSLRSX Register select hold 5 ns
TRWVCSL Read/write strobe setup 5 ns
TCSLRWX Read/write strobe hold 5 ns
TCSLCSH Chip select active 50 ns
TCSHCSL Delay before re-assertion of chip select 50 ns

Table 5.3: IMS C012 parallel interface read

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TLdVllH Start of link data to Inputlnt high 13 bits 1
TCSLIIL Chip select to Inputlnt low 30 ns
TCSLDrX Chip select to bus active 5 ns
TCSLDrV Chip select to data valid 40 ns
TCSHDrZ Chip select high to bus tristate 25 ns
TCSHDrX Data hold after chip select high 5 ns
TCSHLaV Chip de-select to start of Ack 0.8 2 bits 1,2

Notes

Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 nS.

2 Maximum time assumes there is no data packet already on the link. Maximum time with data on the link is
extended by 11 bits.

"'----_D_a_ta_---'-- ---'--__D_a_ta__C

Inputlnt _

RSO-1

RnotW

notCS

00-7

LinkOut

Figure 5.1: IMS C012 read parallel data from link adaptor

5 Parallel interface 285

Table 5.4: IMS C012 parallel interface write

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TCSHDwV Data setup 15 ns
TCSHDwX Data hold 5 ns
TCSLOIL Chip select to Outputlnt low 30 ns
TCSHLdV Chip select high to start of link data 0.8 2 bits 1,2
TLaVOIH Start of link Ack to Outputlnt high 3 bits 1,3
TLdVOIH Start of link data to Outputlnt high 13 bits 1,3

Notes

Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 nS.

2 Maximum time assumes there is no acknowledge packet already on the link. Maximum time with acknowledge
on the link is extended by 2 bits.

3 Both data transmission and the returned acknowledge must be completed before Outputlnt can go high.

~------tl ... TLaV0 IH

Linkln EJ _

RSO-1

TRSVCSL~--"""'~

00-7

TRWVCSL I~~t...-~

TCSLOIL

notes

RnotW

LinkOut

Outputlnt

Figure 5.2: IMS C012 write parallel data to link adaptor

286

5.4.2 Input Status Register

9 IMS C012 engineering data

This register contains the data present flag and the interrupt enable control bit for Inputlnt. The data present
flag is set to indicate that data in the data input buffer is valid. It is reset low only when the data input buffer
is read, or by Reset. When writing to this register, the data present bit must be written as zero.

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low re
spectively. When the interrupt enable and data present flags are both high, the Inputlnt output will be high
(page 286). Resetting interrupt enable will take Inputlnt low; setting it again before reading the data input
register will set Inputlnt high again. The interrupt enable bit can be read to determine its status.

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the
register is read. Failure to write zeroes to these bits may result in undefined. data being returned by these
bits during a status register read.

7 6 5 4 3 2 o

Figure 5.3: IMS C012 input status register

5.5 Inputlnt

The Inputlnt output is set high to indicate that a data packet has been received from the serial link. It is
inhibited from going high when the interrupt enable bit in the input status register is low (page 286). Inputlnt
is reset low when data is read from the input data register (page 283) and by Reset (page 279).

5.5.1 Output Data Register

Data written to this link adaptor register is transmitted out of the serial link as a data packet. Data should
only be written to this register when the output ready bit in the output status register is high, otherwise data
already being transmitted may be corrupted. Reading this register will result in undefined data being read.

5.5.2 Output Status Register

This register contains the output ready flag and the interrupt enable control bit for Outputlnt. The output
ready flag is set to indicate that the data output buffer is empty. It is reset low only when data is written to the
data output buffer; it is set high by Reset. When writing to this register, the output ready bit must be written
as zero.

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low respec
tively. When the interrupt enable and output ready flags are both high, the Outputlnt output will be high
(page 287). Resetting interrupt enable will take Outputlnt low; setting it again whilst the data output register
is empty will set Outputlnt high again. The interrupt enable bit can be read to determine it's status.

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the
register is read. Failure to write zeroes to these bits may result in undefined data being returned by these
bits during a status register read.

5 Parallel interface 287

7 6 5 4 3 2 o

Figure 5.4: IMS C012 output status register

5.6 Outputlnt

The Outputlnt output is set high to indicate that the link is free to receive data from the microprocessor for
transmission as a data packet out of the serial link. It is inhibited from going high when the interrupt enable
bit in the output status register is low (page 286). Outputlnt is reset low when data is written to the data
output register (page 286); it is set high by Reset (page 279).

5.7 Data read

A data packet received on the input link sets the data present flag in the input status register. If the interrupt
enable bit in the status register is set, the Inputlnt output pin will be set high. The microprocessor will either
respond to the interrupt (if the interrupt enable bit is set) or will periodically read the input status register until
the data present bit is high.

When data is available from the link, the microprocessor reads the data packet from the data input register.
This will reset the data present flag and cause the link adaptor to transmit an acknowledge packet out of the
serial link output. Inputlnt is automatically reset by reading the data input register; it is not necessary to read
or write the input status register.

5.8 Data write

When the data output buffer is empty the output ready flag in the output status register is set high. If
the interrupt enable bit in the status register is set, the Outputlnt output pin will also be set high. The
microprocessor will either respond to the interrupt (if the interrupt enable bit is set) or will periodically read
the output status register until the output ready bit is high.

When the output ready flag is high, the microprocessor can write data to the data output buffer. This will
result in the link adaptor resetting the output ready flag and commencing transmission of the data packet out
of the serial link. The output ready status bit will remain low until an acknowledge packet is received by the
input link. This will set the output ready flag high; if the interrupt enable bit is set, Outputlnt will also be set
high.

288

6 Electrical sp~eCllnccitlc~ns

6.1 DC electrical characteristics

Table 6.1: Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
II Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 QC 2
TA Ambient temperature under bias -55 125 QC 2
PDmax Maximum allowable dissipation 600 mW

Notes

1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as vee or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and vee.

Table 6.2: Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 50 pF
TA Operating temperature range 0 70 QC 3

Notes

1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ftlmin transverse air flow.

6 Electrical specifications

Table 6.3: DC characteristics

289

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
VIL Low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 /-lA 1,2,6

±200 /-lA 1,2,7
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOL Output low voltage @ IOL=4mA 0.4 V 1,2
108 Output short circuit current @ GND<VO<VCC 50 mA 1,2,4

75 mA 1,2,5
10Z Tristate output current @ GND<VO<VCC ±10 /-lA 1,2
PO Power dissipation 120 mW 2,3
CIN 1nput capacitance @ f=1 MHz 7 pF
COZ Output capacitance @ f=1MHz 10 pF

Notes

All voltages are with respect to GND.

2 Parameters measured at 4.75V<VCC<5.25V and O°C<TA<70°C. Input clock frequency = 5MHz.

3 Power dissipation varies with output loading.

4 Current sourced from non-link outputs.

5 Current sourced from link outputs.

6 For inputs other than those in Note 7.

7 For pins 2, 3, 5, 6, 7, 9, 11, 13, 14, 21.

6.2 Equivalent circuits

Output - ~ IIIIII-__

30pF

GND - ----4I11III----__-

Load for: R1 R2 Equivalent load:

Link outputs 1k96 47k 1 Schottky TTL input
Other outputs 970R 24k 2 Schottky TTL inputs

Diodes are 1N916

Figure 6.1: Load circuit for AC measurements

290 9 IMS C012 en~lIne'erlrlg data

Test point
Output under test -----l�J__-__--!

GND _

VCC

Figure 6.2: Tristate load circuit for AC measurements

6.3 AC timing characteristics

Table 6.4: Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TOr Input rising edges 2 20 ns 1,2
TOf Input falling edges 2 20 ns 1,2
TOr Output rising edges 25 ns 1
TOf Output falling edges 15 ns 1
CSLaHZ Chip select high to tristate 25 ns
CSLaLZ Chip select low to tristate 25 ns

Notes

Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

90%-----

10% - -
TOr

Figure 6.3: IMS C012 input and output edge timing

1.5V ---- 1.5V ----

Figure 6.4: IMS C012 tristate timing relative to notCS

6 Electrical specifications 291

30
Time

ns
20

10

30 Rise time
Time

Rise time ns
20 Fall time

Fall time 10

40 60 80 100

Load Capacitance pF

Link

40 60 80 100

Load Capacitance pF

Interface

Notes
Figure 6.5: Typical rise/fall times

Skew is measured between notCS with a standard load (2 Schottky TTL inputs and 30pF) and
notCS with a load of 2 Schottky TTL inputs and varying capacitance.

6.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 6.6.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in QC and eJA is the junction-to-ambient thermal resistance in
QC/W. eJA for each package is given in the Packaging Specifications section.

200

Power 150
PINT

mW 100

50

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 6.6: IMS C012 internal power dissipation vs VCC

292

7

7.1 24 pin plastic dual-in-line package

Figure 7.1: 24 pin plastic dual-in-line package dimensions

Table 7.1: 24 pin plastic dual-in-line package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 31.242 +0.508 1.230 +0.020
-0.254 -0.010

8 6.604 ±0.127 0.260 ±0.005
C 3.302 ±0.381 0.130 ±0.015
D 7.620 ±0.127 0.300 ±0.005
E 1.651 ±0.127 0.065 ±0.005
F 2.540 ±0.127 0.100 ±0.005
G 1.524 ±0.127 0.060 ±0.005
H 0.457 ±0.127 0.018 ±0.005
J 8.382 ±0.508 0.330 ±0.020
K 0.254 ±0.025 0.010 ±O.001
L 0.508 ±0.127 0.020 ±0.005
M 3.048 0.120 Minimum

Package weight is approximately 2 grams

Table 7.2: 24 pin plastic dual-in-line package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow

7 Package specifications

7.2 Pinout

293

LinkOut 1
Linkln 2
RnotW 3

Outputlnt 4
RSO 5
RS1 6

03 7
05 8

HoldToGNO 9
07 10

Reset 11
GNO 12

24 VCC
23 CapMinus
22 Inputlnt
21 notCS
20 00
19 01
18 02
17 04
16 06
15 LinkSpeed
1 4 HoldToGNO
13 Clockln

Figure 7.2: IMS C012 pinout

294 IMS C012 engineering data

Appendix A

295

296 A performance

297

A Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to occam
programs. For the same function, other languages should achieve approximately the same performance as
occam. Unless otherwise stated, the IMS M212 characteristics are similar to those of the IMS T212.

With transputers incorporating an FPU, this type of performance calculation is straight forward when consider
ing only integer data types. However, when floating point calculations using the REAL32 and REAL64 data
types are present in the program, complications arise due to the concurrency inherent in the transputer's de
sign whereby integer calculations can be overlapped with floating point calculations. A more comprehensive
guide to the impact of this concurrency on transputer performance can be found in The Transputer Instruction
Set - A Compiler Writers' Guide.

A.1 Performance overview

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type INT. The abbreviations in table A.1 are used to represent the quantities
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table A.1: Key to performance table

np number of component processes
ne number of processes earlier in queue
r 1 if INT parameter or array parameter, 0 if not
ts number of table entries (table size)
w width of constant in nibbles
p number of places to shift
Eg expression used in a guard
Et timer expression used in a guard
Tb most significant bit set of multiplier ((-1) if the multiplier is 0)
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0)
Tbc most significant bit set in the two's complement of a negative multiplier
nsp Number of scalar parameters in a procedure
nap Number of array parameters in a procedure

298

Table A.2: Performance

Size (bytes)

A performance

Time (cycles)

Names
variables

in expression
assigned to or input to
in PROC or FUNCTION call,

corresponding to an INT parameter
channels

Array Variables (for single dimension arrays)
constant subscript
variable subscript
expression subscript

Declarations
CHAN OF protocol
[size] CHAN OF protocol
PROC

Primitives
assignment
input
output
STOP
SKIP

Arithmetic operators
+ -
*
*
/
/
REM
REM
» «

Modulo Arithmetic operators
PLUS
MINUS
TIMES (fast multiply)
TIMES (fast multiply, positive operand)
TIMES (fast multiply, negative operand)

Boolean operators
OR
AND NOT

Comparison operators
= constant
= variable
<> constant
<> variable
> <
>= <=

Bit operators
/\ \/ >< ~

T2 only
T4, T8
T2 only
T4, T8
T2 only
T4, T8

T2, T4
T8 only
T8 only

1.1 +r
1.1 +r

1.1 +r
1.1

o
5.3
5.3

3.1
9.4

body+2

o
4
1
2
o

1
2
2
2
2
2
2
2

2
1
1
1
1

4
1

o
2
1
3
1
2

2

2.1+2(r)
1.1 +(r)

1.1 +(r)
2.1

o
7.3
7.3

3.1
2.2 + 20.2*size

o

o
26.5
26
25
o

1
23
39
24
40
22
38

3+p

2
1

4+Tb
4+Tbp
5+Tbc

8
2

1
3
3
5
2
4

2

A Performance

Table A.3: Performance

299

Size (bytes) Time (cycles)

Expressions
constant in expression w w
check if error 4 6

Timers
timer input 2 3
timer AFTER

if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+ne*9

ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+ne*9
timer alt guard 8+2Eg+2Et 34+2Eg+2Et

Constructs
SEQ 0 0
IF 1.3 1.4

if guard 3 4.3
ALT (non timer) 6 26

alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg

PAR 11.5+(np-1)*7.5 19.5+(np-1)*30.5
WHILE 4 12

Procedure or function call
3.5+(nsp-2)*1.1 16.5+(nsp-2)*1.1

+nap*2.3 +nap*2.3

Replicators
repl icated SEQ 7.3{+5.1} (-3.8)+15.1 *count{+7.1}
replicated IF 12.3{+5.1} (-2.6)+19.4*count{+7.1}
replicated ALT 24.8{+10.2} 25.4+33.4*count{+14.2}
replicated timer ALT 24.8{+10.2} 62.4+33.4*count{+14.2}
replicated PAR 39.1{+5.1} (-6.4)+70.9*count{+7.1}

A.2 Fast multiply, TIMES

Transputers have a fast integer multiplication instruction product. In the IMS T212 and IMS T414, if Tb is the
position of the most significant bit set in the multiplier, then the time taken for a fast multiply is 4+Tb. The
time taken for a multiplication by zero is 3 cycles. For example, if the multiplier is 1 the time taken is 4 cycles,
if the multiplier is -1 (all bits set) the time taken is 19 cycles for the IMS T212 and 35 cycles for the IMS T414.

The IMS T800 has an improved performance for product over the IMS T212 and IMS T414. For a positive
multiplier its execution time is 4+Tbp cycles, and for a negative multiplier 5+Tbc cycles (table A.1). The time
taken for a multiplication by zero is 3 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the occam modulo arithmetic operator TIMES is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.

300

A.3 Arithmetic

A performance

A set of functions are provided within the development system to support the efficient implementation of
multiple length and floating point arithmetic where relevant (in the IMS T800, floating point arithmetic is taken
care of by the FPU). In table A.4 n gives the number of places shifted and all arguments and results are
assumed to be local. Full details of these functions are provided in the occam reference manual, supplied
as part of the development system and available as a separate publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling
overhead. These functions are compiled directly into special purpose instructions which are designed to
support the efficient implementation of multiple length and floating point arithmetic.

Table A.4: Arithmetic performance

+ cycles for
Function Cycles parameter access t

LONGADD 2 7
LONGSUM 3 8
LONGSUB 2 7
LONGDIFF 3 8
LONGPROD T212 only 18 8

T414, T800 34 8
LONGDIV T212 only 20 8

T414, T800 36 8
SHIFTRIGHT (n<16) T212 only 4+n 8

(n>=16) T212 only n-11 8
(n<32) T414, T800 4+n 8
(n>=32) T414, T800 n-27

SHIFTLEFT (n<16) T212 only 4+n 8
(n>=16) T212 only n-11 8
(n<32) T414, T800 4+n 8
(n>=32) T414, T800 n-27

NORMALISE (n<16) T212 only n+6 7
(n>=16) T212 only n-9 7
(n=32) T212 only 4 7
(n<32) T414, T800 n+6 7
(n>=32) T414, T800 n-25
(n=64) T414, T800 4

ASHIFTRIGHT SHIFTRIGHT+2 5
ASHIFTLEFT SHIFTLEFT+4 5
ROTATERIGHT SHIFTRIGHT 7
ROTATELEFT SHIFTLEFT 7
FRACMUL T414, T800 LONGPROD+4 5

t Assuming local variables.

A.4 IMS T212, IMS T414 floating point operations

Floating point operations for IMS T212 and IMS T414 are provided by a run-time package. For the IMS T212
this requires approximately 2000 bytes of memory for the double length arithmetic operations, and 2500
bytes for the quadruple length arithmetic operations. For the IMS T212 it requires approximately 400 bytes of
memory for the single length arithmetic operations, and 2500 bytes for the double length arithmetic operations.
Table A.5 summarizes the estimated performance of the packaae.

A Performance

Table A.5: IMS T212, IMS T414 floating point operations performance

301

Processor cycles
IMS T212 IMS T414

Typical Worst Typical Worst
REAL32 + - 530 705 230 300

* 650 705 200 240

/ 1000 1410 245 280
< > = >= <= <> 60 60 60 60

REAL 64 + - 875 1190 565 700

* 1490 1950 760 940

/ 2355 3255 1115 1420
< > = >= <= <> 60 60 60 60

A.5 IMS T800 floating point operations

All references to REAL32 or REAL64 operands within programs compiled for the IMS T800 should produce
the following performance figures.

Table A.6: Floating point performance

Size (bytes) REAL32 Time (cycles) REAL64 Time (cycles)

Names
variables

in expression 3.1 3 5
assigned to or input to 3.1 3 5
in PROC or FUNCTION call,

corresponding to a REAL
parameter 1.1 +r 1.1 +r 1.1 +r

Arithmetic operators
+ - 2 7 7

* 2 11 20
/ 2 17 32
REM 11 19 34

Comparison operators
= 2 4 4
<> 3 6 6
> < 2 5 5
>= <= 3 7 7

Conversions
REAL32 to - 2 3
REAL64 to - 2 6
To INT32 from - 5 9 9
To INT64 from - 18 32 32
INT32 to - 3 7 7
INT64 to - 14 24 22

302

A.5.1 IMS TaOO floating point functions

A performance

These functions are provided by the development system. They are compiled directly into special purpose
instructions designed to support the efficient implementation of some of the common mathematical functions
of other languages. The functions provide ABS and SQRT for both REAL32 and REAL64 operand types.

Table A.7: IMS T800 floating point arithmetic performance

+ cycles for parameter access t
Function Cycles REAL32 REAL 64
ABS 2 8
SQRT 118 8
DABS 2 12
DSQRT 244 12

t Assuming local variables.

A.5.2 IMS TaOO special purpose functions and procedures

The functions and procedures given in tables A.9 and A.1 0 are provided by the development system to give
access to the special instructions available on the IMS T800. Table A.8 shows the key to the table.

Table A.8: Key to special performance table

Tb most significant bit set in the word counting from zero
n number of words per row (consecutive memory locations)
r number of rows in the two dimensional move
nr number of bits to reverse

Table A.9: Special purpose functions performance

+ cycles for
Function Cycles parameter access t

BITCOUNT 2+Tb 2
CRCBYTE 11 8
CRCWORD 35 8
BITREVNBIT 5+nr 4
BITREVWORD 36 2

t Assuming local variables.

Table A.1 0: Special purpose procedures performance

+ cycles for
Procedure Cycles parameter access t

MOVE2D 8+(2n+23)*r 8
DRAW2D 8+(2n+23)*r 8
CLIP2D 8+(2n+23)*r 8

t Assuming local variables.

A Performance

A.6 Effect of external memory

303

Extra processor cycles may be needed when program and/or data are held in external memory, depending
both on the operation being performed, and on the speed of the external memory. After a processor cycle
which initiates a write to memory, the processor continues execution at full speed until at least the next
memory access.

In the IMS M212 the on-chip ROM also requires extra processor cycles, as the access time of this memory
is equivalent to three processor cycles for each word accessed.

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will
depend upon the exact nature of the given sequence of operations.

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted
as e. The value of e for the IMS T212 and IMS M212 with no wait states is 1 and 4 respectively. For the
IMS T414 and IMS T800, with the fastest external memory the value of e is 2; a typical value for a large
external memory is 5. For the IMS M212, the value of e for the on chip ROM is 2.

If program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated for
linear code sequences. For larger values of e, the number of extra cycles required for linear code sequences
may be estimated at (2e-1)/4 per byte of program for IMS T212 and (e-3)/4 for the IMS T414 and IMS T800.
A transfer of control may be estimated as requiring e+3 cycles.

These estimates may be refined for various constructs. In table A.11 n denotes the number of components in
a construct. In the case of IF, the n'th conditional is the first to evaluate to TRUE, and the costs include the
costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted
by b.

Table A.11: External memory performance

IMS 1212 IMS 1414, IMS 1800
Program off chip Data off chip Program off chip Data off chip

Boolean expressions e-1 0 e-2 0
IF 3en-1 en 3en-8 en
Replicated IF 6en+ge-12 (5e-2)n+6 (6e-4)n+7 (5e-2)n+8
Replicated SEQ (4e-3)n+3e (4e-2)n+3-e (3e-3)n+2 (4e-2)n
PAR 4en 3en (3e-1)n+8 3en+4
Replicated PAR (17e-12)n+9 16en (10e-8)n+8 16en-12
ALT (4e-1)n+ge-4 (4e-1)n+ge-3 (2e-4)n+6e (2e-2)n+1Oe-8
Array assignment and 0 max (2e, eb) 0 max (2e, e(b/2))

communication in
one transputer

For the IMS T212 and IMS T414, the effective rate of INMOS links is slowed down on output from external
memory by e cycles per word output, and on input to external memory at 10 Mbits/sec by e-6 cycles per word
if e~6.

The following simulation results illustrate the effect of storing program and/or data in external memory. The
results are normalized to 1 for both program and data on chip. The first program (Sieve of Erastosthenes)
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency,
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton
Raphson square root computation.

304

Table A.12: IMS T212 external memory performance

A performance

Program e=1 e=2 e=3 e=4 On chip
Program off chip 1 1.2 1.4 1.8 2.1 1

2 1.1 1.2 1.4 1.6 1

Data off chip 1 1.2 1.5 1.8 2.1 1
2 1.1 1.3 1.4 1.6 1

Program and data off chip 1 1.4 1.9 2.5 3.0 1
2 1.2 1.5 1.8 2.1 1

Table A.13: IMS T414, IMS T800 external memory performance

Program e=2 e=3 e=4 e=5 On chip
Program off chip 1 1.3 1.5 1.7 1.9 1

2 1.1 1.2 1.2 1.3 1

Data off chip 1 1.5 1.8 2.1 2.3 1
2 1.2 1.4 1.6 1.7 1

Program and data off chip 1 1.8 2.2 2.7 3.2 1
2 1.3 1.6 1.8 2.0 1

Table A.14: IMS M212 external memory performance

Program e=4 On chip
Program off chip 1 2.1 1

2 1.6 1

Data off chip 1 2.1 1
2 1.6 1

Program and data off chip 1 3.0 1
2 2.1 1

A.7 Interrupt latency

If the process is a high priority one and no other high priority process is running, the latency is as described
in table A.15. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also given
where relevant. Maximum latency assumes all memory accesses are internal ones.

Table A.15: Interrupt latency

Typical Maximum
TPCLPCL Tm TPCLPCL Tm

IMS T212, IMS M212 19 53
IMS T414' 19 38 58 116
IMS T800 with FPU in use 19 38 78 156
IMS T800 with FPU not in use 19 38 58 116

O[fDmos ADloenlOIX B

305

306 8 instruction set summary

307

Instruction set summary

The following tables give a comparison of the execution times of functions and operations for each transputer.

Where applicable, the FPU and processor operate concurrently, so the actual throughput of floating point
instructions is better than that implied by simply adding up instruction times. For full details see The Transputer
Instruction Set - A Compiler Writers' Guide.

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where relevant the time for
the prefix function (one cycle) should be added. For a 20 MHz transputer one cycle is SOns.

Some instruction times vary. Where a letter is included in the cycles or notes column it is interpreted from
table B.1.

Table B.1: Instruction set interpretation

Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

m Bit number of the highest bit set in the absolute value of register A.
Bit 0 is the least significant bit.

n Number of places shifted.

nla Not applicable to this transputer.

p Number of words per row.

r Number of rows.

s For 16 bit transputers this value is 16, for 32 bit transputers it is 32.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

Table B.2: Function codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

j 3 3 3
Idlp 1 1 1
pfix 1 1 1
Idnl 2 2 2
Idc 1 1 1
Idnlp 1 1 1
nfix 1 1 1
Idl 2 2 2
adc 1 1 1
call 7 7 7
cj 2 2 2 jump not taken

4 4 4 jump taken
ajw 1 1 1
eqc 2 2 2
stl 1 1 1
stnl 2 2 2
opr - - -

308

Table B.3: Arithmetic/logical operation codes

8 instruction set summary

Processor Cycles
Mnemonic T212 T414 T800 Notes

and 1 1 1
or 1 1 1
xor 1 1 1
not 1 1 1
shl n+2 n+2 n+2
shr n+2 n+2 n+2

add 1 1 1
sub 1 1 1
mul 26 38 38
fmul n/a 35 35 no rounding

n/a 40 40 rounding
div 23 39 39
rem 21 37 37
gt 2 2 2
diff 1 1 1
sum 1 1 1
prod b+4 b+4 b+4 positive register A

b+4 b+4 m+5 negative register A

Table B.4: Long arithmetic operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

ladd 2 2 2
Isub 2 2 2
Isum 2 2 2
Idiff 2 2 2
Imul 17 33 33
Idiv 19 35 35
Ishl n+3 n+3 n+3 n<s

n-12 n-28 n-28 n~s

Ishr n+3 n+3 n+3 n<s
n-12 n-28 n-28 n~s

norm n+5 n+5 n+5 n<s
n-10 n-26 n-26 n~s

3 3 3 n=2*s

Table B.5: General operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

rev 1 1 1
xword 4 4 4
cword 5 5 5
xdble 2 2 .2
csngl 3 3 3
mint 1 1 1

B Instruction set summary

Table B.6: Indexing/array operation codes

309

Processor Cycles
Mnemonic T212 T414 T800 Notes

bsub 1 1 1
wsub 2 2 2
wsubdb n/a n/a 3
bcnt 2 2 2
wcnt 4 5 5
Ib 5 5 5
sb 4 4 4

move 2w+8 2w+8 2w+8

Table B.7: Timer handling operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

Idtimer 2 2 2
tin 30 30 30 time future

3 3 3 time past
talt 4 4 4
taltwt 15 15 15 time past

48 48 48 time future
enbt 8 8 8
dist 23 23 23

Table B.8: Input/output operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

in 2w+19 2w+19 2w+19
out 2w+19 2w+19 2w+19
outword 23 23 23
outbyte 23 23 23

resetch 3 3 3

alt 2 2 2
altwt 5 5 5 channel ready

17 17 17 channel not ready
altend 4 4 4

enbs 3 3 3
diss 4 4 4

enbc 7 7 7 channel ready
5 5 5 channel not ready

disc 8 8 8

310 B instruction set summary

Table 8.9: Control operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

ret 5 5 5
Idpi 2 2 2
gajw 2 2 2
dup nla nla 1
gcall 4 4 4
lend 10 10 10 loop

5 5 5 exit

Table 8.10: Scheduling operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

startp 12 12 12
endp 13 13 13
runp 10 10 10
stopp 11 11 11
Idpri 1 1 1

Table 8.11: Error handling operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

csubO 2 2 2
ccnt1 3 3 3
testerr 2 2 2 no error

3 3 3 error
seterr 1 1 1
stoperr 2 2 2 no error
c1rhalterr 1 1 1
sethalterr 1 1 1
testhalterr 2 2 2

Table 8.12: Processor initialisation operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

testpranal 2 2 2
saveh 4 4 4
savel 4 4 4
sthf 1 1 1
sthb 1 1 1
'stlf 1 1 1
stlb 1 1 1
sttimer 1 1 1

B Instruction set summary

Table 8.13: Floating point support operation codes

311

Processor Cycles
Mnemonic T212 T414 T800 Notes

cflerr n/a 3 n/a
unpacksn n/a 15 n/a
roundsn n/a 12/15 n/a
postnormsn n/a 5/30 n/a

Idinf n/a 1 n/a

Processor cycles are shown as Typical/Maximum cycles.

Table 8.14: Floating point load/store operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

fpldnlsn n/a n/a 2
fpldnldb n/a n/a 3
fpldnlsni n/a n/a 4
fpldnldbi n/a n/a 6

fpldzerosn n/a n/a 2
fpldzerodb n/a n/a 2

fpldnladdsn n/a n/a 8/11
fpldnladddb n/a n/a 9/12
fpldnlmulsn n/a n/a 13/20
fpldnlmuldb n/a n/a 21/30

fpstnlsn n/a n/a 2
fpstnldb n/a n/a 3
fpstnli32 n/a n/a 4

Processor cycles are shown as Typical/Maximum cycles.

Table 8.15: Floating point general operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

fpentry n/a n/a 1
fprev n/a n/a 1
fpdup n/a n/a 1

Table 8.16: Floating point rounding operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

fpurn n/a n/a 1
fpurz n/a n/a 1
fpurp n/a n/a 1
fpurm n/a n/a 1

312 B instruction set summary

Table 8.17: Floating point comparison operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

fpgt n/a n/a 4/6
fpeq n/a n/a 3/5
fpordered n/a n/a 3/4
fpnan n/a n/a 2/3
fpnotfinite n/a n/a 2/2

fpuchki32 n/a n/a 3/4
fpuchki64 n/a n/a 3/4

Processor cycles are shown as Typical/Maximum cycles.

Table 8.18: Floating point conversion operation codes

Processor Cycles
Mnemonic T212 T414 T800 Notes

fpu r32tor64 n/a n/a 3/4
fpur64tor32 n/a n/a 6/9
fprtoi32 n/a n/a 7/9
fpi32tor32 n/a n/a 8/10
fpi32tor64 n/a n/a 8/10
fpb32tor64 n/a n/a 8/8
fpunoround n/a n/a 2/2
fpint n/a n/a 5/6

Processor cycles are shown as Typical/Maximum cycles.

Table 8.19: Floating point arithmetic operation codes

Processor Cycles
T212 T414 T800

Mnemonic Single Double Single Double Single Double Notes
fpadd n/a n/a n/a n/a 6/9 6/9
fpsub n/a n/a n/a n/a 6/9 6/9
fpmul n/a n/a n/a n/a 11/18 18/27
fpdiv n/a n/a n/a n/a 16/28 31/43
fpuabs n/a n/a n/a n/a 2/2 2/2
fpremfirst n/a n/a n/a n/a 36/46 36/46
fpremstep n/a n/a n/a n/a 32/36 32/36
fpusqrtfirst n/a n/a n/a n/a 27/29 27/29
fpusqrtstep n/a n/a n/a n/a 42/42 42/42
fpusqrtlast n/a n/a n/a n/a 8/9 8/9

fpuexpinc32 n/a n/a n/a n/a 6/9 6/9
fpuexpdec32 n/a n/a n/a n/a 6/9 6/9
fpumulby2 n/a n/a n/a n/a 6/9 6/9
fpudivby2 n/a n/a n/a n/a 6/9 6/9

Processor cycles are shown as Typical/Maximum cycles.

B Instruction set summary

Table B.20: Floating point error operation codes

313

Processor Cycles
Mnemonic 1212 1414 1800 Notes

fpchkerror nla n/a 1
fptesterror n/a nla 2
fpuseterror nla nla 1
fpuclearerror nla nla 1

Table B.21: Block move operation codes

Processor Cycles
Mnemonic 1212 1414 1800 Notes

move2dinit n/a n/a 8
move2dall n/a n/a (2p+23)*r
move2dnonzero n/a n/a (2p+23)*r
move2dzero n/a n/a (2p+23)*r

Table B.22: GRG and bit operation codes

Processor Cycles
Mnemonic 1212 1414 1800 Notes

crcword nla nla 35
crcbyte n/a n/a 11

bitcnt n/a n/a b+2
bitrevword n/a n/a 36
bitrevnbits n/a n/a n+4

314 B instruction set summary

DITDmos Appendix C

li

315

316 C bibliography

317

C Bibliography

This appendix contains a list of some transputer-related publications and journal or magazine articles which
may be of interest to the reader. The References section details publications referred to in this manual,
other than the standard INMOS documents detailed below. The INMOS Authors and Other Authors sections
contain only a small sample of published articles concerning the Transputer and occam during the past two
years.

INMOS publish manuals and data sheets pertaining to transputer based products and to occam. Apart
from items detailed below, INMOS produce an Engineering Data Sheet for each product, as well as Product
Information Guides detailing the INMOS range of products. There are also a number of Technical Notes and
Application Notes available from INMOS, covering a wide range of topics in both the hardware and software
areas.

C.1 INMOS publications

INMOS
occam Programming Manual
72 OCC 040

INMOS
occam 2 Language Definition
72 OCC 044

INMOS
Transputer Development System Manual
72 TDS 141

INMOS
IMS M212 Product Data manual
72 TRN 103

INMOS
The Transputer Instruction Set - A Compiler Writers' Guide
72 TRN 119

INMOS
occam 2 Reference Manual
Prentice Hall
ISBN 0-13-629312-3

INMOS
occam
Keigaku Shuppan Publishing Company
ISBN 4-7665-0133-0
(In Japanese)

318

C.2 INMOS technical notes

C bibliography

A wide range of technical and application notes are published by INMOS. Some of these are listed in this
section.

INMOS
IMS TBDD Architecture
Technical note 6
72 TCH 006

o May
Communicating processes and occam
Technical note 20
72 TCH 020

o May and R Shepherd
The transputer implementation of occam
Technical note 21
72 TCH 021

o May and R Shepherd
Communicating Process Computers
Technical note22
72 TCH 022

o May and C Keane
Compiling occam into silicon
Technical note23
72 TCH 023

N Miller
Exploring Multiple Transputer Arrays
Technical note24
72 TCH 024

S Ericsson Zenith
occam 2: aspects of the language and its development
Technical note25
72 TCH 025

G Harriman
Notes on Graphics Support and Performance Improvements on the IMS TBDD
Technical note26
72 TCH 026

C Bibliography

C.3 Papers and extracts by INMOS authors

I M Barron
The transputer and occam
Information Processing 86 (IFIP congress)
(Dublin, Ireland, 1-5 September 1986)
pp 259-265

M Homewood, D May, D Shepherd, R Shepherd
The IMS TBDD transputer
IEEE Micro
Vol 7 No 5, pp 10-26, October 1987

D May, R Shepherd and C Keane
Communicating Process Architecture: Transputers and occam
Lecture Notes in Computer Science: Future Parallel Computers
(Pisa Summer School June 1986)
Springer-Verlag
272 pp 35-81 June 1986
ISBN 3-540-18203-9, ISBN 0-387-18203-9
(Also published as INMOS Technical Notes 20, 21, 22)

D May and D Shepherd
Formal verification of the IMS TBDD microprocessor
Electronic Design Automation Conference
(Wembley, 13-16 July 1987)
pp 605-615

D May and R Shepherd
The INMOS transputer
Parallel processing: state of the art report
Pergamon Infotech Ltd
ISBN 0-08-034113-6

P Walker
The transputer: a building block for parallel processing
Byte
Vol 10 No 5, pp 219-235, May 1985

319

320

C.4

H Aiso

Papers and extracts other authors

C bibliography

Parallelism in new generation computing
ICOT Journal
7, pp 12-35, March 1985

C R Askew et al
Simulation of statistical mechanical systems on transputer arrays
Computer Physics Communications
42, pp 21-26, 1986

M J P Bolton and 0 A Cowling
Real-time flight simulation with transputers
Modeling and Simulation. Sixteen Annual Pittsburgh Conference
(Pittsburgh, PA, USA. 25-26 April 1985)
pp911-916

o S Broomhead et al
A practical comparison of the systolic and wavefront array processing architectures
ICASSP 85, IEEE International Conference on Acoustics Speach and Signal Processing
(Tampa, Florida, 26-29 March 1985)
1, pp 296-9

R A Browse and 0 B Skillicorn
An implementation of the parallelism in visual object interpretation
PCCC86, Fifth Annual International Pheonix Conference on Computers and Communications
(Scotsdale, AZ, 26-28 March 1986)
pp 487-490

R S Cok
Case study: multiprocessing with transputers
Electronic Engineering Times
373, T15-T16, 17 March 1986

P Eckelmann
Transputer der 2. Generation (1. Teil)
Elektronik
H. 18, S. 61-70 1987

P Eckelmann
Transputer der 2. Generation (2. Teil)
Elektronik
H. 19, S. 129-136 1987

A J Fisher
A multi-processor implementation of occam
Software - Practice and Experience
Vol 16 No 10, pp 875-892, October 1986

B M Forrest et al
Implementing neural netWork models on parallel computers
The Computer Journal
Vol 30 No 5, pp 413-419, October 1987

J G Harp et al
Signal processing with transputer arrays (TRAPS)
Computer Physics Communications
37(1-3), pp 77-86, July 1985

C Bibliography 321

A J G Hey and J SWard
Design ofa high performance multiprocesor machine based on transputers with applications to Monte
Carlo simulations
Paris Conf on Advances on Reactor Physics, Mathematics and Computation 1987

A J G Hey et al
High performance simulation of lattice physics using transputer arrays
Computing in High Energy Physics
North Holland, 1986
ISBN 0-444-87973-0

S Y Kung
On programming languages for VLSI array processors
Conference on Highly Parallel Signal Processing Architectures
(Los Angeles, CA, 21-22 January 1986)
Proceedings of SPIE - International Society of Optical Engineering
614, pp 118-133, 1986

K Leppala
Utilization of parallelism in transputer-based real-time control systems
Microprocessing and Microprogramming
21 (1-5), pp 629-636, 1987

T Mano et al
occam to CMOS: experimental logic design support system
IFIP 7th International Symposium on Computer Hardware Description Languages
(Tokyo, 29-31 August 1985)
pp 301-390

T Manuel and S Rogerson
The transputer finally starts living up to its claims
Electronics
60(17), pp 78-80, 20 August 1987

T Manuel and S Rogerson
INMOS puts transputers into its own CAD system
Electronics
60(17), pp 81-82, 20 August 1987

R M Marshall
Automatic generation of controller systems from control software
ICCAD '86, IEEE International Conference on Computer-Aided Design
(Santa Clara, CA, 11-13 November 1986)
pp 256-9

D L McBurney and M R Sleep
Transputer-based experiments with ZAPP architecture
Lecture Notes in Computer Science: PARLE. Parallel Architectures and Languages
(Eindhoven June 1987)
Springer-Verlag
258 Vol 1 pp 242-259 June 1987
ISBN 3-540-17943-7, ISBN 0-387-17943-7

G Mclntire et al
Design of a neural network simulator on a transputer array
Space Operations - Automation and Robotics Workshop 87
(NASA/Johnson Space Centre, Houston, TX, 5-7 August 1987)

322

J R Newport
The INMOS transputer
32-bit microprocessors (edited by H J Mitchell)
Collins, 1986
pp 93-129 ISBN 0-00-383067-5

C bibliography

D Pountain
Turbocharging Mandlebrot
Byte
Vol 11 No 9, pp 359-366, September 1986

D J Pritchard, C R Askew, D B Carpenter, I Glendinning, A J G Hey, D A Nicole
Practical parallelism using transputer arrays
Lecture Notes in Computer Science: PARLE. Parallel Architectures and Languages
(Eindhoven June 1987)
Springer-Verlag
258 Vol 1 pp 278-294 June 1987
ISBN 3-540-17943-7, ISBN 0-387-17943-7

M Schindler
An der Schwelle zur 2. Computer-Ara
Elektronik
H. 10, S. 73-80 1987

J Stender
Parallele prolog implementierung auf transputer
Hard and Soft
pp 20-23, September 1987
(In German)

K Uedu
Parallel programming languages
Information Processing Society of Japan (Joho Shori)
27(9), pp 995-1004, 1986
(In Japanese)

P H Welch
Emulating digital logic using transputer networks
Lecture Notes in Computer Science: PARLE. Parallel Architectures and Languages
(Eindhoven June 1987)
Springer-Verlag
258 Vol 1 pp 357-373 June 1987
ISBN 3-540-17943-7, ISBN 0-387-17943-7

D Wilson (editor)
Transputer spawns a new class of applications
Digital Design
16(12), pp 34-44, November 1986

C Bibliography

C.5 Books and monographs

G Barrett
Formal methods applied to a floating point number system
Oxford University Computing Laboratory Programming Research Group
Technical Monograph PRG-58

INMOS
occam 2 reference manual
Prentice Hall
ISBN 0-13-629312-3

INMOS
occam
Keigaku Shuppan Publishing Company
ISBN 4-7665-0133-0
(In Japanese)

C Jesshope, R J O'Gorman, J M Stewart (editors)
Parallel processing: state of the art report
Pergamon Infotech Ltd
ISBN 0-08-034113-6

G Jones
Programming in occam
Prentice Hall
ISBN 13-729773-4

J Kerridge
occam programming: a practical approach
Blackwell Scientific Publications
ISBN 0-632-01659-0

Onai
occam and transputer
Kyoshin Publishing Co.
ISBN 4-320-02269-6
(In Japanese)

D Pountain and D May
A tutorial introduction to occam programming
Blackwell Scientific Publications/McGraw-Hill
ISBN 0-632-01847-X, ISBN 0-07-050606-X

D Pountain and R Rudolph
occam, das Handbuch
Verlag Heinz Heise GmbH
ISBN 3-88229-001-3
(In German)

A W Roscoe and CAR Hoare
The laws of occam programming
Oxford University Computing Laboratory Programming Research Group
Technical Monograph PRG-53

A W Roscoe and N Dathi
The pursuit of deadlock freedom
Oxford University Computing Laboratory Programming Research Group
Technical Monograph PRG-57

323

324

T A Theoharsis
Exploiting parallelism in the graphics pipeline
Oxford University Computing Laboratory Programming Research Group
Technical Monograph PRG-54

C.S References

C bibliography

This section details publications referred to in the TRANSPUTER OVERVIEW chapter of this document.

Harp
Phase 1 of the development and application of a low cost, high performance multiprocessor machine
J G Harp et al
ESPRIT '86: Results and Achievements, Elsevier Science Publishers B.V.
pp 551-562

IEEE
IEEE Standard for Binary Floating-Point Arithmetic
ANSI/IEEE Std 754-1985.

INMOS '84
IMS T414 reference manual
INMOS Limited 1984

INMOS '87
The Transputer Instruction Set - A Compiler Writers' Guide
INMOS Ltd 72 TRN 119

McMahon
The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range
F H McMahon
Lawrence Livermore National Laboratory
UCRL-53745

325

326 D index

D Index

! 9
" 15
() 14
* 14, 298, 301
+ 14, 298, 301
- 14, 298, 301
/ 14, 298, 301
/\ 14, 298
:= 9
< 14, 298, 301
« 14, 298
<= 14, 298, 301
<> 14, 298, 301
= 14, 298, 301
> 14, 298, 301
>< 14, 298
>= 14, 298, 301
» 14, 298
? 9
\/ 14, 298
,., 14

ABS 302
Absolute maximum ratings

IMS C004 242
IMS C011 266
IMS C012 288
IMS T212 204
IMS T414 156
IMS T800 99

Access
byte-wide IMS C011 251
byte-wide IMS C012 275

Acknowledge
link 36
link IMS C004 234
link IMS C011 256
link IMS C012 280
link IMS T212 201
link IMS T414 153
link IMS T800 96

Address
bus IMS T212 190
bus IMS T414 134
bus IMS T800 77
byte IMS T212 187
byte IMS T414 130
byte IMS T800 73
mark IMS M212 215
refresh IMS T414 147
refresh IMS T800 90
space IMS T212 167, 169
space IMS T414 109,111
space IMS T800 47,49

AFTER 14,15,37,299

ALT 11, 12, 18,26,299,303
Alternation construction 10, 11, 12, 26, 37
Analyse

IMS T212 185, 186
IMS T414 128,129
IMS T800 71, 72

AND 14,298
ANSI-IEEE 754-1985 13,39

IMS T800 47, 65
Application

bidirectional exchange IMS C004 238
bus systems IMS C004 238
drawing coloured text 41
enhanced controller IMS M212 220
IMS T212 193
IMS T414 140
IMS T800 83
link switching IMS C004 238
multiple control IMS C004 238
winchester controller IMS M212 219, 220

Arch itecture 25, 26
internal 28
rationale 5

Arithmetic
multiple length 300
operation IMS T212 169
operation IMS T414 111
operation IMS T800 49
operator 298, 301

Array 13
assignment 303
byte 15
of disk controllers IMS M212 221
of processes 12
of transputers IMS M212 221
type 13
variable 298

ASCII 15
ASHIFTLEFT 300
ASHIFTRIGHT 300
Assignment 9, 26, 298, 301

array 303
process 8,9

Bandwidth
memory 41
memory IMS T212 171
memory IMS T414 113
memory IMS T800 51

Barrel shifter 39
Behaviour

logical 3, 16, 18
physical 3

Benchmark
LINPACK 39

327

328

speed 38
Whetstone 38, 39

Bit
counting performance 302
data 36
operator 298
reversal performance 302
start 36
stop 36

Bit-bit 41
BITCOUNT 302
BITREVNBIT 302
BITREVWORD 302
Block move 41

conditional 41
IMS T800 47
performance 302
two-dimensional 41

BOOL 13
Boolean

expression 303
operator 298

BootFromRom
IMS T212 183, 185
IMS T414 126,128
IMS T800 69, 71

Bootstrap 20, 21
address IMS T212 185
address IMS T414 128
address IMS T800 71
code IMS T212 187
code IMS T414 130
code IMS T800 73
IMS M212 217
IMS T212 183, 185
IMS T414 126,128,150
IMS T800 69, 71, 93
program IMS T212 199

Brackets 14
Buffer

input IMS C011 264
input IMS C012 286
link 20
output IMS C011 264
output IMS C012 286

Bus 28
IMS C011 261
IMS C012 283

Byte
access IMS C011 251
access IMS C012 275
access IMS T212 190, 195
address IMS T212 187, 190
address IMS T414 130
address IMS T800 73

BYTE 13

C 19
Capacitive load 5

D index

CapMinus
IMS C004 231
IMS C011 253
IMS C012 277
IMST212 182
IMS T414 124
IMS T800 67

CapPlus
IMS C004 231
IMS T212 182
IMS T414 124
IMS T800 67

CASE 12
CHAN OF 13

protocol 298
Channel 4, 8, 9, 11, 13, 16, 19, 26, 298

communication 33, 35
disk hardware IMS M212 216
empty 33
event IMS T212 200
eventlMST414 152
event IMS T800 95
external 33
externallMS T212 174
external IMS T414 116
external IMS T800 54
IMS T212 174
IMS T414 116
IMS T800 54
input 26
internal 33
internal IMS T212 174
internal IMS T414 116
internal IMS T800 54
link 19
link IMS C004 234
link IMS C011 256
link IMS C012 280
link IMS T212 201
link IMS T414 153
link IMS T800 96
memory 19
occam 19
output 26
process 26

Characteristics
AC timing IMS C004 244
AC timing IMS C011 268
AC timing IMS C012 290
AC timing IMS T212 206
AC timing IMS T414 158
AC timing IMS T800 101
DC electrical IMS C004 242, 243
DC electrical IMS C011 266, 267
DC electrical IMS C012 288, 289
DC electrical IMS T212 204, 205
DC electrical IMS T414 156, 157
DC electrical IMS T800 99, 100

CLIP2D 41, 302
Clock 13, 21

input 20, 21
input, internal IMS C004 231
input, internal IMS C011 253
input, internal IMS C012 277
input, internal IMS T212 182
input, internal IMS T414 124
input, internal IMS T800 67
internal 20
link 21
link IMS C004 234
link IMS C011 256
link IMS C012 280
link IMS T212 201
link IMS T414 153
link IMS T800 96
multiple IMS C004 231
multiple IMS C011 253
multiple IMS C012 277
multiple IMS T212 182
multiple IMS T414 124
multiple IMS T800 67
phase 7
processor 37
processor IMS T212 174
processor IMS T414 116
processor IMS T800 54
stability IMS C004 231
stability IMS C011 253
stability IMS C012 277
stability IMS T212 182
stability IMS T414 124
stability IMS T800 67
timer 15
timer IMS T212 174
timer IMS T414 116
timer IMS T800 54
transputer 7

Clockln
IMS C004 231
IMS C011 253
IMS C012 277
IMST212 182
IMS T414 124
IMS T800 67
period IMS T212 189
period IMS T414 132
period IMS T800 75
skew IMS C011 254

Code
function/operation IMS T212 176
function/operation IMS T414 118
function/operation IMS T800 56

Coding efficiency
IMS T212 171
IMS T414 113
IMS T800 51

Colour
display 41
graphics 31
text example 41

329

Communication 4, 5, 6, 25, 28, 33
bandwidth 5
channel 8, 33, 35
construction 8, 11
contention 5
external 35
frequency 7, 20
IMS T212 173
IMS T414 115
IMS T800 53
interface 6
internal 33
language 19
link 5,36
parallel IMS C011 251
parallel IMS C012 275
process IMS T212 174
process IMS T414 116
process IMS T800 54
speed 27

Comparison operator 298, 301
Compatibility

IMS T800 47
Concept 26
Concurrency 3, 8, 25

IMS T212 172
IMS T414 114
IMS T800 52
internal 8
support 31

Concurrent
FPU/CPU operation 38
process 8,10,11,18,26
systems 8

Conditional construction 10, 11
Configuration

coding IMS T414 146
coding IMS T800 89
memory IMS T212 185
memory IMS T414 128, 132, 141
memory IMS T800 71, 75, 84
memory, external IMS T414 .141,142, 143,

144, 145, 147
memory, external IMS T800 84, 85, 86, 87,

88, 90
memory, internal IMS T414 141
memory, internal IMS T800 84
program 16
refresh coding IMS T414 146
refresh coding IMS T800 89

Connection
link IMS C004 234
link IMS C011 256
link IMS C012 280
link IMS T212 201
link IMS T414 153
link IMS T800 96

Constant 299
subscript 298
value 30

330

Construction 10, 26, 299
alternation 10, 11, 12, 26, 37
communication 11
conditional 10, 11
parallel 8, 10, 16, 26, 32
parallel IMS T212 173
parallellMS T414 115
parallel IMS T800 53
performance 303
repetition 12
replication 12
selection 12
sequential 8, 10, 11, 26

Control
byte IMS T212 185
byte IMS T414 126,128
byte IMS T800 71
link IMS C004 233
logic IMS M212 216

Conversion
INT, REAL 301
REAL, INT 301

CPU 28
concurrent operation 38
register 28, 29

CRC
IMS M212 215,217
IMS T800 47
performance 302

CRCBYTE 302
CRCWORD 302
Cyclic redundancy

IMS M212 215,217
IMS T800 47
performance 302

DO-7
IMS C011 255, 261
IMS C012 279, 283

DABS 302
Data

bit 36
bus IMS T212 189, 190
bus IMS T414 134
bus IMS T800 77
link 36
link IMS C004 234
link IMS C011 256
link IMS C012 280
link IMS T212 201
link IMS T414 153
link IMS T80G 96
rate 20, 36
rate IMS T212 167
rate IMS T414 109
rate IMS T800 47
rate link IMS T212 201
ratelinklMST414 153
rate link IMS T800 96
read IMS C011 265

D index

read IMS C012 287
separation IMS M212 216
serial 36
structure 30
structure IMS T212 170
structure IMS T414 112
structure IMS T800 50
transfer 11
value 29
value IMS T212 170
value IMS T414 112
value IMS T800 50
write IMS C011 265
write IMS C012 287

Data Present
IMS C011 261, 264, 265
IMS C012 283, 286, 287

Declaration 13, 298
Decoupling

IMS C004 231
IMS C011 253
IMS C012 277
IMST212 182
IMS T414 124
IMS T800 67

Delay
input 15
timer 15

Deschedule 32, 34, 35
IMS T212 172,173,174
IMS T414 114,115,116
IMS T800 52, 53, 54
point IMS T212 173, 177, 185
point IMS T414 115,119,128
point IMS T800 53, 57, 71

Device 26
Direct function 30

IMST212 170
IMS T414 112
IMS T800 50

Direct memory access
IMS T212 190
IMS T414 133
IMS T800 76

Disk
command IMS M212 217, 218
compression/decompression IMS M212 221
controller IMS M212 215
cylinder IMS M212 217
drive selection IMS M212 215
encryption/decryption IMS M212 221
floppy IMS M212 215, 217
format IMS M212 217
head IMS M212 217
head position IMS M212 215
interleave IMS M212 218
management IMS M212 221
parameter IMS M212 217
port IMS M212 215
programming interface IMS M212 217

SA400/450 IMS M212 215, 217
sector IMS M212 217
ST506/412 IMS M212 215,217
status IMS M212 215
winchester IMS M212 215, 217

DMA
at reset IMS T212 198, 199
atresetlMST414 151
at reset IMS T800 94
IMS T212 190,191,198
IMS T414 133,150
IMS T800 76, 93
operation IMS T212 198
operation IMS T414 151
operation IMS T800 94

DRAW2D 41, 302
DSQRT 302

ECC
IMS M212 215, 217

Efficiency 31
Electrical

AC timing characteristics IMS C004 244
AC timing characteristics IMS C011 268
AC timing characteristics IMS C012 290
AC timing characteristics IMS T212 206
AC timing characteristics IMS T414 158
AC timing characteristics IMS T800 101
DC characteristics IMS C004 242, 243
DC characteristics IMS C011 266, 267
DC characteristics IMS C012 288, 289
DC characteristics IMS T212 204, 205
DC characteristics IMS T414 156,157
DC characteristics IMS T800 99, 100
operating conditions IMS C004 242
operating conditions IMS C011 266
operating conditions IMS C012 288
operating conditions IMS T212 204
operating conditions IMS T414 156
operating conditions IMS T800 99
specification 20

EMI
IMS T212 189
IMS T414 132
IMS T800 75

Equivalent circuit
IMS C004 243
IMS C011 267
IMS C012 289
IMS T212 205
IMS T414 157
IMS T800 100

Erastosthenes 303
Error 21

IMS T212 186
IMS T414 129
IMS T800 72

Error 21
IMS T212 186
IMS T414 129

IMS T800 72
power up IMS T212 186
power up IMS T414 129
power up IMS T800 72

Error 21
analysis 17
analysis IMS T212 186
analysis IMS T414 129
analysis IMS T800 72
circuit IMS T212 186
circuit IMS T414 129
circuit IMS T800 72
correcting code 31
correcting code IMS M212 215, 217
expression check 299
floating point IMS T800 66
handling 17
.IMS M212 217
languages 17
reset IMS T212 186
reset IMS T414 129
reset IMS T800 72

Errorln
IMS T800 72

Evaluation
expression IMS T212 169, 171
expression IMS T414 111, 113
expression IMS T800 49, 51
stack 28, 29, 33
stack IMS T212 169,173,174
stack IMS T414 111, 115, 116
stack IMS T800 49, 53, 54

Event 12, 22
IMS T212 200
IMS T414 152
IMS T800 95

EventAck
IMS T212 200
IMS T414 152
IMS T800 95

EventReq
IMS T212 186, 200
IMS T414 129,152
IMS T800 72, 95

Example
drawing coloured text 41
instruction set IMS T212 176
instruction set IMS T414 118
instruction set IMS T800 56

Execution
instruction IMS T212 170
instruction IMS T414 112
instruction IMS T800 50

Expression 8, 14, 26, 298, 299, 301
evaluation IMS T212 169, 171
evaluation IMS T414 111,113
evaluation IMS T800 49, 51
subscript 298

External
memory interface IMS T212 189

331

332

memory interface IMS T414 132
memory interface IMS T800 75
memory performance 303
registers 15

Factorial 14
FALSE 14
Flash multiplier 39
Floating point 25, 37

address 37
arithmetic 39
co-processor 39
comparison 39
concurrency IMS T800 65
concurrent operation 38
datapath 39
design 37, 39
division 39
double length IMS T800 65
error IMS T800 66
functions 302
instruction 31, 37
microcode 39
multiplication 38, 39
normalise IMS T800 65
operand 37
performance 39, 297, 300, 301
processor 28, 37
processor IMS T800 47, 65
register 28
rounding IMS T800 65
selector sequence IMS T800 56, 65
single length IMS T800 65
speed 39
stack IMS T800 65
standard 39

Floating point numbers 13
FM

IMS M212 215
FOR 12
Fortran 19
FPU (see Floating point) 28, 65
FP "Error

IMS T800 66
FRACMUL 300
Frequency

changer IMS C011 251
Clockln IMS C004 231
Clockln IMS C011 253
Clockln IMS C012 277
Clockln IMS T212 182
Clockln IMS T414 124
Clockln IMS T800 67
link 20
modulation IMS M212 215

Function 14, 299
code 29
code IMS T212 170, 176
code IMS T414 112,118
code IMS T800 50, 56

direct 30
direct IMS T212 170
direct IMS T414 112
direct IMS T800 50
indirect 31
indirect IMS T212 171
indirect IMS T414 113
indirect IMS T800 51
prefix 30, 31
prefix IMS T212 170
prefix IMS T414 112
prefix IMS T800 50

FUNCTION 14, 298, 301

GND 20
IMS C004 231
IMS C011 253
IMS C012 277
IMST212 182
IMS T414 124
IMS T800 67

Graphics 41
support IMS T800 47

Halt 17
IMS T212 185,186
IMS T414 128, 129
IMS T800 71, 72

HaltOnError
IMST212 186
IMS T414 129
IMS T800 72

Handshake 8
event IMS T212 200
event IMS T414 152
event IMS T800 95
parallel IMS C011 251, 259, 260

Hardware 5
channel IMS M212 216
IMS M212 215,218

Harness 8, 19

10-7
IMS C011 259

lAck
IMS C011 255, 259

IF 11,12,26,299,303
Implementation

hard-wired 5
hardware 5
link 6
occam 5
program 8

IMS BOOS 220
IMS C004 229
IMS C011 251
IMS C012 275
IMS M212 215
IMS T212 167
IMST41439,41,109

D

link 36
IMS T800 38, 39, 41, 47

block move 41
floating point 37, 39
link 36

Indirect function 31
IMS T212 171
IMS T414 113
IMS T800 51

Indirection code
instruction IMS T800 65

Input 8, 9, 15, 21, 26, 298, 301
buffer IMS C011 264
buffer IMS C012 286
channel 26
clock 20, 21
clock IMS C004 231
clock IMS C011 253
clock IMS C012 277
clock IMS T212 182
clock IMS T414 124
clock IMS T800 67
link IMS C004 234
link IMS C011 256
link IMS C012 280
link IMS T212 185, 201
link IMS T414 128,153
link IMS T800 71, 96
pins 20
port IMS C011 259
process 8, 9, 11
process IMS T212 174
process IMS T414 116
process IMS T800 54
register IMS C011 261, 264
register IMS C012 283, 286
timer 299
voltage 20

Inputlnt
IMS C011 255, 264, 265
IMS C012 279, 286, 287

Instruction
arithmetic IMS T212 171
arithmetic IMS T414 113
arithmetic IMS T800 51
comparison IMS T212 171
comparison IMS T414 113
comparison IMS T800 51
descheduling IMS T212 177
descheduling IMS T414 119
descheduling IMS T800 57
description 29, 30, 31, 32, 33, 37
description IMS T212 169,170,171,173,174
description IMS T414 111,112,113,115,116
description IMS T800 49, 50, 51, 53, 54, 56,

65, 66
error IMS T212 177
error IMS T414 119
error IMS T800 58
execution IMS T212 170

execution IMS T414 112
execution IMS T800 50
floating point 37
floating point error IMS T800 58
format IMS T212 170
format IMS T414 112
format IMS T800 50
IMS T212 169
IMS T414 111
IMS T800 49
indirection code IMS T800 65
logical IMS T212 171
logical IMS T414 113
logical IMS T800 51
memory relative IMS T212 170
memory relative IMS T414 112
memory relative IMS T800 50
operation 30
pointer 32
pointer IMS T212 173
pointer IMS T414 115
pointer IMS T800 53
prefetch 31
single byte IMS T212 170
single byte IMS T414 112
single byte IMS T800 50
workspace IMS T212 173
workspace IMS T414 115
workspace IMS T800 53

Instruction set 8, 29, 178
comparison 307
design 29
example IMS T212 176
example IMS T414 118
example IMS T800 56
IMS T212 169,170,171,176
IMS T414 111,112,113,118,120
IMS T800 49, 50, 51, 56, 59

INT 13,298
INT16 13
INT32 13

conversion 301
INT64 13

conversion 301
Integer performance 297
Integrated memory 26
Interface

application specific 21
communication 6
disk controller IMS M212 218
disk programming IMS M212 217
link 7,36
link IMS C004 234
link IMS C011 256
link IMS C012 280
link IMS T212 201
linklMST414 153
link IMS T800 96
memory 6,20
memory IMS T212 169, 185, 189

333

334

memory IMS T414 111, 128, 132
memory IMS T800 49, 71, 75
parallel IMS C011 261
parallel IMS C012 283
peripheral IMS M212 215
SCSI IMS M212 222
serial data IMS M212 215

Interrupt 8, 12, 28
IMS C011 251,255
IMS C012 275
latency IMS T212 173
latency IMS T414 115
latency IMS T800 53
latency performance 304

Interrupt Enable
IMS C011 264,265
IMS C012 286, 287

IntSaveLoc
IMS T212 187
IMS T414 130
IMS T800 73

IS 14
IValid

IMS C011 259

Language 3, 8, 18, 19
communication 19
error 17
IMS T212 170,171
IMS T414 112,113
IMS T800 50, 51

Latency 304
interrupt IMS T212 173
interrupt IMS T414 115
interrupt IMS T800 53
process IMS T212 173
process IMS T414 115
process IMS T800 53

Link 6, 20, 21
acknowledge 6, 36
acknowledge IMS C011 260, 265
acknowledge IMS C012 287
acknowlege overlap 36
adaptor 7, 21, 27
adaptor IMS C011 251
adaptor IMS C012 275
bootstrap ID IMS T212 185
bootstrap ID IMS T414 128
bootstrap ID IMS T800 71
bootstrap IMS T212 183, 185
bootstrap IMS T414 126
bootstrap IMS T800 69, 71
buffer 20
buffer delays 20
buffer IMS T212 185
buffer IMS T414 128
buffer IMS T800 71
channel 19
clock 21
communication 5, 36

D index

control IMS C004 233
crossbar switch IMS C004 229
data 6,36
data IMS C011 260, 261, 264, 265
data IMS C012 283, 286, 287
disk IMS M212 216
frequency 20
implementation 6
IMS C004 234
IMS C011 251, 256
IMS C012 275, 280
IMS T212 174, 185, 201
IMS T414 116,128,153
IMS T800 54,71,96
input IMS C011 265
input IMS C012 287
input IMS T212 185
inputlMST414 128
input IMS T800 71
interface 35, 36
interface register 35
message 6
Mode 1 IMS C011 254, 259
Mode 2 IMS C011 254, 261
mode select IMS C011 254
output IMS T212 185
output IMS T414 128
output IMS T800 71
packet 36
parallel adaptor IMS C011 251
parallel adaptor IMS C012 275
peek IMS T212 185
peek IMS T414 128
peek IMS T800 71
performance 303
poke IMS T212 185
poke IMS T414 128
poke IMS T800 71
programmable switch IMS C004 229
protocol 6, 7, 36
signal 20
speed 36
speed IMS C011 251
speed IMS C012 275
speed select IMS CO11 254
standard 16, 20
start bit 6
static IMS T212 170
static IMS T414 112
static IMS T800 50
stop bit 6
transfer IMS T212 185
transfer IMS T414 128
transfer IMS T800 71
transmission 36
transputer 8
wiring 27

Link switch
bit time delay IMS C004 237
configuration IMS C004 229, 237

configuration message IMS C004 237, 247
implementation IMS C004 237
multiplexors IMS C004 237

Linked list 32
IMST212 172
IMS T414 114
IMS T800 52

linkln
IMS C004 234
IMS C011 255, 256
IMS C012 279, 280
IMS T212 201
IMS T414 153
IMS T800 96

linkOut
IMS C004 234
IMS C011 255, 256
IMS C012 279,280
IMS T212 201
IMS T414 153
IMS T800 96

linkSpecial
IMS T212 201
IMS T414 153
IMS T800 96

LINPACK benchmark 39
List

linked IMS T212 172
linked IMS T414 114
linked IMS T800 52
process IMS T212 172,173
process IMS T414 114,115
process IMS T800 52,53

Literal value 30
IMS T212 170
IMS T414 112
IMS T800 50

Livermore loop 38
Load

capacitive 5
instruction IMS T212 170
instruction IMS T414 112
instruction IMS T800 50

Logical
address IMS M212 217
behaviour 18
operation IMS T212 169
operation IMS T414 111
operation IMS T800 49

LONGADD 300
LONGDIFF 300
LONGDIV 300
LONGPROD 300
LONGSUB 300
LONGSUM 300
Loop 12

Map
memory 19, 21
process 8

MemAO-15
IMS T212 190, 198

MemAD2-31
IMS T414 133,134,141,147
IMS T800 76, 77, 84, 90

MemBAcc
IMS T212 195

MemConfig
IMS T414 141,142
IMS T800 84, 85

MemDO-15
IMS T212 190,195,198

MemGranted
IMST212 198
IMS T414 150
IMS T800 93

MemnotRfD1
IMS T414 133,134,141,147
IMS T800 76, 77, 84, 90

MemnotWrDO
IMS T414 133,134,141,142,147
IMS T800 76, 77, 84, 85, 90

Memory 28
access IMS T212 169
access IMS T414 111
access IMS T800 49
address IMS T414 134
address IMS T800 77
bandwidth 6, 41
bandwidth IMS T212 171
bandwidth IMS T414 113
bandwidth IMS T800 51
channel 19
configuration IMS T212 185
configuration IMS T414 128,132,141
configuration IMS T800 71, 75, 84
configuration, externallMS T414 141,142
configuration, external IMS T800 84, 85
configuration, internal IMS T414 141
configuration, internal IMS T800 84
data IMS T414 134
data IMS T800 77
direct access IMS T414 150
direct access IMS T800 93
dynamic IMS T414 132
dynamic IMS T800 75
external IMS T212 187, 190
external IMS T414 130
external IMS T800 73
global 6
IMS M212 216, 221
IMS T212 187
IMS T414 130
IMS T800 73
integrated 26
interface 6, 20
interface IMS T212 169, 185, 189
interface IMS T414 111, 128,132
interface IMS T800 49, 71, 75
internallMS T212 187,190

335

336

internallMS T414 130,133
internal IMS T800 73, 76
local 6
map 19,21
maplMST212188
map IMS T414 131
map IMS T800 74
on-chip IMS T212 169
on-chip IMS T414 111
on-chip IMS T800 49
performance 303
read IMS T414 136
read IMS T800 79
refresh IMS T414 128,133,142,143,147,

148,150
refresh IMS T800 71, 76, 85, 86, 90, 91, 93
strobe IMS T212 189
strobe IMS T414 132,134,137,148,150
strobe IMS T800 75, 77, 80, 91, 93
wait IMS T212 190,196
wait IMS T414 132,137,148,149
wait IMS T800 75, 80, 91, 92

MemReq
IMS T212 198
IMS T414 150
IMS T800 93

MemStart 21
IMS T212 183, 185, 187
IMS T414 126,128,130
IMS T800 69, 71,73

MemWait
IMS T212 196
IMS T414 148
IMS T800 91

Message 6,8
IMS T212 174
IMS T414 116
IMS T800 54
pointer 33
transfer 35

Microcode 29
computing engine IMS T800 65
cycle IMS T212 189
cycle IMS T414 132
cycle IMS T800 75
scheduler 27, 31
scheduler IMS T212 172
scheduler IMS T414 114
scheduler IMS T800 52

Microprocessor
bus IMS C011 251
bus IMS C012 275
connection 27
IMS C011 261
IMS C012 283

MINUS 14, 298
Mode 1

IMS C011 251, 259
IMS M212 217
link IMS C011 254, 259

Mode 2
IMS C011 251, 261
IMS M212 217, 218
link IMS C011 254, 261

Modulo operator 298
MOVE2D 41, 302
Multiple length arithmetic 300
Multiple processor 18
Multiplication performance 299

Name 301
NaN

IMS T800 66
Network 3, 5, 8, 16, 18, 21

disk processor IMS M212 221
Node 4
NORMALISE 300
NOT 14,298
notCS

IMS C011 261
IMS C012 283

notMemCE
IMS T212 190,191,193,196,198

notMemRd
IMS T414 134
IMS T800 77

notMemRf
IMS T414 147
IMS T800 90

notMemSO-4
IMS T414 134, 142, 143, 147, 148
IMS T800 77, 85, 86, 90, 91

notMemWrBO-1
IMS T212 190,191,193,195,198

notMemWrBO-3
IMS T414 138,147
IMS T800 81,90

occam 3, 4, 8, 25, 26
channel 6, 19
communication 8
concurrency 8
model 8,27
process 3, 17, 18, 19
program 3, 8, 16, 18
synchronism 18

Operand 29
IMS T212 169, 170, 176
IMS T414 111,112,118
IMS T800 49, 50, 56
register 30
types 14

Operating conditions
IMS C004 242
IMS C011 266
IMS C012 288
IMS T212 204
IMS T414 156
IMS T800 99

D index

Operation
arithmetic IMS T212 169
arithmetic IMS T414 111
arithmetic IMS T800 49
code IMS T212 176
code IMS T414 118
code IMS T800 56
logicallMS T212 169
logical IMS T414 111
logical IMS T800 49

Operator 14
arithmetic 14, 298, 301
bit 14, 298
boolean 14, 298
comparison 298, 301
modulo 14, 298
relational 14
shift 14

Optimisation
IMS T212 186
IMS T414 129
IMS T800 72
program 17

OR 14,298
Ordering details 345
Output 8, 9, 15, 21, 26, 298

buffer IMS C011 264
buffer IMS C012 286
channel 26
link IMS C004 234
link IMS C011 256
link IMS C012 280
link IMS T212 185, 201
link IMS T414 128,153
link IMS T800 71, 96
pins 20
port IMS C011 260
process 8, 9, 11
process IMS T212 174
process IMS T414 116
process IMS T800 54
register IMS C011 264
register IMS C012 286

Output Ready
IMS C011 264, 265
IMS C012 286, 287

Outputlnt
IMS C011 255, 264, 265
IMS C012 279, 286, 287

Overflow
stack IMS T212 169
stack IMS T414 111
stack IMS T800 49

Packet
link 36

PAR 10, 12,26,299,303
Parallel

communication IMS C011 251
communication IMS C012 275

construction 8, 10, 16, 26, 32
construction IMS T212 173
construction IMS T414 115
construction IMS T800 53
interface IMS C011 261
interface IMS C012 283
port IMS C011 259
process IMS T212 172
process IMS T414 114
process IMS T800 52

Part program 18
Pascal 19
Pattern recognition 31
Peek

IMS T212 185
IMS T414 128
IMS T800 71

Performance 8, 25, 31, 297
bit counting 302
bit reversal 302
block move 302
construction 303
CRC 302
Cyclic Redundancy Checking 302
estimation 297
external memory 303
external RAM 303
floating point 39, 297, 300, 301
Floating point processor 38
IMS T212 171
IMS T414 113
IMS T800 51
integer 297
interrupt latency 304
link 303
link IMS C004 234
link IMS C011 256
link IMS C012 280
link IMS T212 201
link IMS T414 153
link IMS T800 96
measurement 18
multiple length arithmetic 300
multiplication 299
predefined maths 300
priority 304
product 299
special purpose functions 302
square root 302, 303
TIMES 299
wait states 303

Peripheral 21
access 15
control transputer 21
device 26
interface IMS M212 215
memory mapping 21

Phase lock loop
IMS C004 231
IMS C011 253

337

338

IMS C012 277
IMS T212 182
IMS T414 124
IMS T800 67

Pipelined vector processor 39
PLACE 16
PLACED PAR 16
Placement 16, 19
PLLx 341

IMS T212 189
IMS T414 132
IMS T800 75

PLUS 14, 298
Pointer

IMS T212 169
IMS T414 111
IMS T800 49
instruction 32
instruction IMS T212 173
instruction IMS T414 115
instruction IMS T800 53
message 33
workspace 30

Poke
IMST212 185
IMS T414 128
IMS T800 71

Port 15
asynchronism 15
disk IMS M212 215
input IMS C011 259
output IMS C011 260
parallel IMS C011 259
synchronism 15

PORT 21
Power 20

IMS C004 231
IMS C011 253
IMS C012 277
IMST212 182
IMS T414 124
IMS T800 67
rating IMS C004 244
rating IMS C011 269
rating IMS C012 291
rating IMS T212 207
rating IMS T414 159
rating IMS T800 102

Prefetch 31
Prefix function 30, 31

IMS T212 170
IMS T414 112
IMS T800 50

PRI PAR 16
Primitive 298
Primitive type 13
Priority 16

bootstrap IMS T212 185
bootstrap IMS T414 126
bootstrap IMS T800 71

floating point IMS T800 65
IMS T212 172,173,185
IMS T414 114,115,128
IMS T800 52, 53, 71
level 27,28
performance 304
timer IMS T212 174
timer IMS T414 116
timer IMS T800 54

PROC 14, 18, 19,298,301
ProcClockOut

IMS T212 189
IMS T414 132
IMS T800 75

Procedure 299
Procedures 14
Process 4, 5, 8, 9, 10, 14

active/inactive 32
active/inactive IMS T212 172, 173
active/inactive IMS T414 114,115
active/inactive IMS T800 52, 53
assignment 8, 9
channel 26
communication IMS T212 174
communication IMS T414 116
communication IMS T800 54
concurrent 10, 18, 26
deschedule 35
execution 32, 33, 34
hardware 5
high priority IMS T212 186
high priority IMS T414 129
high priority IMS T800 72
IMS T212 172, 186
IMS T414 114, 129
IMS T800 52, 72
input 8, 9, 11
input IMS T212 174
inputlMST414 116
input IMS T800 54
latency IMS T212 173
latency IMS T414 115
latency IMS T800 53
list 32
list IMS T212 172, 173
list IMS T414 114, 115
list IMS T800 52, 53
low priority IMS T212 186
low priority IMS T414 129
low priority IMS T800 72
mapping 8
monitor 18
new 32
occam 18,19
output 8, 9, 11
output IMS T212 174
output IMS T414 116
output IMS T800 54
parallel IMS T212 172
parallellMS T414 114

D index

parallel IMS T800 52
primitive 26
queue IMS T212 172
queue IMS T414 114
queue IMS T800 52
reschedule 35
sequential IMS T212 169
sequential IMS T414 111
sequential IMS T800 49
simulation 18
software 4
switch time 32
switch time IMS T212 173

'switch time IMS T414 115
switch time IMS T800 53
timing IMS T212 174
timing IMS T414 116
timing IMS T800 54

Processor 20, 28
clock IMS T212 174
clock IMS T414 116
clock IMS T800 54
IMS M212 215, 217
IMS T212 169
IMS T414 111
IMS T800 49
multiple 18
speed IMS T800 47
speed select IMS T800 68

ProcSpeedSelectO-2
IMS T800 68

Product performance 299
Program

bootstrap IMS T212 199
configuration 16
development 18
occam 18
optimisation 17
part 18

Programmable
components 5
device 26
i/o IMS C011 251

Programming 4
model 8
structu re 30

protocol
CHAN OF 298

Protocol
link 36

QO-7
IMS C011 255, 260

QAck
IMS C011 260

Queue 33
priority IMS T212 172
priority IMS T414 114
priority IMS T800 52
process IMS T212 174

339

process IMS T414 116
process IMS T800 54
timer IMS T212 174
timer IMS T414 116
timer IMS T800 54

QValid
IMS C011 255,260

RAM 303
IMS T212 187
IMS T414 126,130
IMS T800 69, 73

Read
cycle IMS T212 190
cycle IMS T414 134, 135
cycle IMS T800 77, 78
data IMS C011 265
data IMS C012 287
dynamic memory cycle IMS T414 136
dynamic memory cycle IMS T800 79
external cycle IMS T414 135, 136
external cycle IMS T800 78, 79

REAL 301
Real time 18
REAL32 13, 301,302

conversion 301
REAL64 13, 301, 302

conversion 301
Refresh

memory IMS T414 128,133,142,143,146,
147,148,150

memory IMS T800 71, 76, 85, 86, 89, 90, 91,
93

Register
AIMS T212 169,170,186
AIMS T414 111,112,129
AIMS TBOO 49, 50, 72
aiMS T212 169
alMST414111'
aiMS TBOO 49
elMS T212 169
elMS T414 111
elMS TBOO 49
CPU 28,29
data input IMS C011 261
data input IMS C012 283
FA IMS TBOO 65
Fa IMS TBOO 65
Fe IMS TBOO 65
Floating point 28
IIMST212186
IIMS T414 129
IIMS TBOO 72
IMS C011 261
IMS C012 283
IMS M212 215
IMS T212 169, 172, 185
IMS T414 111, 114, 128
IMS T800 49, 52, 71
input data IMS C011 261, 265

340

input data IMS C012 283, 287
input status IMS C011 261, 264, 265
input status IMS C012 283, 286, 287
link interface 35
operand 30
operand IMS T212 170
operand IMS T414 112
operand IMS T800 50
output data IMS C011 261, 264, 265
output data IMS C012 283,286, 287
output status IMS C011 261, 264, 265
output status IMS C012 283, 286, 287
process list 32
timer IMS T212 174
timer IMS T414 116
timer IMS T800 54
WIMST212183
W IMS T414 126
W IMS T8DD 69
workspace IMS T212 170
workspace IMS T414 112
workspace IMS T800 50

REM 14, 298, 301
Repetition construction 12
Replication construction 12
Replication performance 299, 303
Reschedule 32, 35, 37
Reset 20

IMS C004 233, 247
IMS C011 255
IMS C012 279
IMS T212 183, 185, 186
IMS T414 126,128,129
IMS T800 69, 71, 72

RnotW
IMS C011 261
IMS C012 283

ROM 21
bootstrap code IMS T212 187
bootstrap code IMS T414 130
bootstrap code IMS T800 73
IMS M212 216
IMS T212 183
IMS T414 126
IMS T800 69

ROTATELEFT 300
ROTATERIGHT 300
RSO-1

IMS C011 261
IMS C012 283

Run time 19

SA400/450
IMS M212 215,217

Scheduler 27, 31, 32
IMS T212 172, 173, 174
IMS T414 114,115,116
IMS T800 52, 53, 54
list 33
operation 32

SCSI
bus IMS M212 221
interface IMS M212 222

Selection construction 12
Selector sequence

floating point IMS T800 56, 65
SeparatelQ

IMS C011 254
SEQ 10, 11, 12,26,299,303
Sequential

construction 8, 10, 11, 26
process IMS T212 169
process IMS T414 111
process IMS T800 49
processing 29

Serial
data 36
protocol 36

SHIFTLEFT 300
SHIFTRIGHT 300
Sieve of Erastosthenes 303
Silicon 28, 40, 43
Single byte instruction

IMS T212 170
IMS T414 112
IMS T800 50

Skew
strobe IMS T414 132, 138
strobe IMS T800 75, 81

SKIP 298
Software

IMS M212 218
kernel 31
kernel IMS T212 172
kernel IMS T414 114
kernel IMS T800 52

Special purpose functions 302
Speed

benchmark 38
communication 27
link 36
processor 38
processor IMS T800 47
select IMS T800 68

SQRT 302
Square 14
Square root 302

performance 303
ST506/412

IMS M212 215,217
Stability

clock IMS C004 231
clock IMS C011 253
clock IMS C012 277
clock IMS T212 182
clock IMS T414 124
clock IMS T800 67

Stack
evaluation 28, 29, 33
evaluation IMS T212 169,173,174

D index

evaluation IMS T414 111,115,116
evaluation IMS T800 49, 53, 54
floating point IMS T800 65
optimise 38
overflow 29, 38
overflow IMS T212 169
overflow IMS T414 111
overflow IMS T800 49

Start
bit 36

Status
IMS T212 185
IMS T414 128
IMS T800 71
register IMS C011 261
register IMS C012 283

Stop
bit 36

STOP 17,298
Store

instruction IMS T212 170
instruction IMS T414 112
instruction IMS T800 50

String 15
Strobe

memory IMS T212 189
memory IMS T414 132,134, 137, 148, 150
memory IMS T800 75, 77, 80, 91, 93
skew IMS T414 132,138
skew IMS T800 75, 81
timing IMS T414 137
timing IMS T800 80
write IMS T414 138
write IMS T800 81

Structure
data IMS T212 170
data IMS T414 112
data IMS T800 50

Subscript 13
constant 298
expression 298
variable 298

Synchronisation
link IMS C004 234
link IMS C011 256
link IMS C012 280
link IMS T212 201
link IMS T414 153
link IMS T800 96
point IMS T800 65

System services 20
IMS C004 231
IMS C011 253
IMS C012 277
IMS T212 182
IMS T414 124
IMS T800 67

testerr
IMS T212 186

IMS T414 129
IMS T800 72

tiro 15
Time 15

delay IMS T212 172
delay IMS T414 114
delay IMS T800 52
process switch IMS T212 173
process switch IMS T414 115
process switch IMS T800 53
real 18
slice IMS T212 172, 173
slice IMS T414 114,115
slice IMS T800 52, 53
slice period IMS T212 173
slice period IMS T414 115
slice period IMS T800 53

Timeout 17
Timer 13,15, 18,37,299

AFTER 299
clock 15
clock IMS T212 174
clock IMS T414 116
clock IMS T800 54
delay 15
IMS T212 173
IMS T414 115
IMS T800 53
input 299
processor 37
queue IMS T212 174
queue IMS T414 116
queue IMS T800 54
register IMS T212 174
register IMS T414 116
register IMS T800 54

TIMER 13
TIMES 14, 298

performance 299
Timing 8

strobe IMS T414 137
strobe IMS T800 80

Tm
IMS T414 132
IMS T800 75

TPtrLoc 1} TPtrLoc2
IMS T212 187
IMS T414 130
IMS T800 73

Transcendental function 39
Transfer message 35
Transmission link 36
Transputer

array IMS M212 221
clock 7
development system 8, 16, 17, 21
development system IMS T414 132
development system IMS T800 75
family 27
interconnection 28

341

342

products 27
TRUE 14
Tstate

IMST212 190
IMS T414 132,134,142
IMS T800 75, 77, 85

TTl compatibility
link IMS C004 234
link IMS C011 256
link IMS C012 280
link IMS T212 201
link IMS T414 153
link IMS T800 96

Type 13
array 13
BOOL 13
BYTE 13
CHAN OF 13
floating point 13
INT 13
INT16 13
INT32 13
INT64 13
primitive 13
REAL32 13
REAL64 13
record 13
TIMER 13
variant 13

Value
constant 30
data 29
literal 30

Variable 8, 9, 13, 14, 26, 298, 301
array 298
IMS T212 170
IMS T414 112
IMS T800 50
subscript 298
temporary IMS T212 171
temporary IMS T414 113
temporary IMS T800 51

VCC 20
IMS C004 231
IMS C011 253
IMS C012 277
IMS T212 182
IMS T414 124
IMS T800 67

VlSI 26, 43

Wait
IMS T212 196
IMS T414 132, 137, 143, 148, 149
IMS T800 75, 80, 86, 91, 92
state generator IMS T212 196
state IMS T212 190

Whetstone benchmark 38, 39
WHILE 12, 26, 299

Word
access IMS T212 195
length 28, 29, 31

Workspace 32, 34
disk IMS M212 217
IMS T212 169,173, 185
IMS T414 111,115,126
IMS T800 49, 53, 71
instruction IMS T212 173
instruction IMS T414 115
instruction IMS T800 53
pointer 30
register IMS T212 170
register IMS T414 112
register IMS T800 50

Write
cycle IMS T212 190, 191
cycle IMS T414 134,138
cycle IMS T800 77, 81
data IMS C011 265
data IMS C012 287
early IMS T414 142
early IMS T800 85
late IMS T414 142
late IMS T800 85
strobe IMS T212 191
strobe IMS T414 138
strobe IMS T800 81

D index

O[fTImos Appendix E

343

•rl

344 E ordering

E

345

The following tables indicate the designation of speed and package selections for the various devices.
Speed of Clockln is 5MHz for all parts. For transputers, processor cycle time is nominal; it can be
calculated more exactly using the phase lock loop faotor Pllx, as detailed in the external memory sections
in the Family Characteristics part.

Table E.1: IMS T212 ordering details

INMOS Instruction Processor Processor
designation throughput clock speed cycle time Pllx Package

IMS T212A-G17S 8.75 MIPS 17.5 MHz 57 ns 3.5 Ceramic Pin Grid
IMS T212A-G20S 10.00 MIPS 20.0 MHz 50 ns 4.0 Ceramic Pin Grid

IMS T212A-J17S 8.75 MIPS 17.5 MHz 57 ns 3.5 Plastic J-Bend
IMS T212A-J20S 10.00 MIPS 20.0 MHz 50 ns 4.0 Plastic J-Bend

Table E.2: IMS T414 ordering details

INMOS Instruction Processor Processor
designation throughput clock speed cycle time Pllx Package

IMS T414B-G15S 7.5 MIPS 15 MHz 67 ns 3.0 Ceramic Pin Grid
IMS T414B-G20S 10.0 MIPS 20 MHz 50 ns 4.0 Ceramic Pin Grid

IMS T414B-J15S 7.5 MIPS 15 MHz 67 ns 3.0 Plastic PLCC J-Bend
IMS T414B-J20S 10.0 MIPS 20 MHz 50 ns 4.0 Plastic PLCC J-Bend

Table E.3: IMS T800 ordering details

INMOS Instruction Processor Processor
designation throughput clock speed cycle time Pllx Package

IMS T800C-G17S 8.75 MIPS 17.5 MHz 57 ns 3.5 Ceramic Pin Grid

IMS T800C-G20S 10.00 MIPS 20.0 MHz 50 ns 4.0 Ceramic Pin Grid
IMS T800C-G30S 15.00 MIPS 30.0 MHz 33 ns 6.0 Ceramic Pin Grid

Table E.4: IMS M212 ordering details

INMOS Instruction Processor Processor
designation throughput clock speed cycle time Pllx Package

IMS M212B-G15S 7.5 MIPS 15 MHz 67 ns 3.0 Ceramic Pin Grid
IMS M212B-G20S 10.0 MIPS 20 MHz 50 ns 4.0 Ceramic Pin Grid

IMS M212B-J15S 7.5 MIPS 15 MHz 67 ns 3.0 Plastic PLCC J-Bend
IMS M212B-J20S 10.0 MIPS 20 MHz 50 ns 4.0 Plastic PLCC J-Bend

346

Table E.5: IMS C004 ordering details

E ordering

INMOS designation
IMS C004B-G20S

Package
Ceramic Pin Grid Array

Table E.6: IMS C011 ordering details

INMOS designation Package
IMSC011 A-P20S 28 pin plastic dual-in-Iine
IMS C011 A-S20S 28 pin ceramic sidebraze

Table E.7: IMS C012 ordering details

INMOS designation
IMS C012A-P20S

Package
24 pin plastic dual-in-line

	Contents
	Preface
	Notation and nomenclature
	1 Transputer architecture
	1 Introduction
	1.1 Overview
	Transputers and occam

	1.2 System design rationale
	1.2.1 Programming
	1.2.2 Hardware
	1.2.3 Programmable components

	1.3 Systems architecture rationale
	1.3.1 Point to point communication links
	1.3.2 Local memory

	1.4 Communication

	2 occam model
	2.1 Overview
	2.2 occam overview
	2.2.1 Processes
	Assignment
	Input
	Output

	2.2.2 Constructions
	Sequence
	Parallel
	Communication
	Conditional
	Alternation
	Loop
	Selection
	Replication

	2.2.3 Types
	2.2.4 Declarations, arrays and subscripts
	2.2.5 Procedures
	2.2.6 Functions
	2.2.7 Expressions
	2.2.8 Timer
	2.2.9 Peripheral access

	2.3 Configuration
	PLACED PAR
	PRI PAR
	2.3.1 INMOS standard links

	3 Error handling
	4 Program development
	4.1 Logical behaviour
	4.2 Performance measurement
	4.3 Separate compilation of occam and other languages
	4.4 Memory map and placement

	5 Physical architecture
	5.1 INMOS serial links
	5.1.1 Overview
	5.1.2 Link electrical specification

	5.2 System services
	5.2.1 Powering up and down, running and stopping
	5.2.2 Clock distribution

	5.3 Bootstrapping from ROM or from a link
	5.4 Peripheral interfacing

	2 Transputer overview
	1 Introduction
	2 The transputer: basic architecture and concepts
	2.1 A programmable device
	2.2 occam
	2.3 VLSI technology
	2.4 Simplified processor with micro-coded scheduler
	2.5 Transputer products

	3 Transputer internal architecture
	3.1 Sequential processing
	3.2 Instructions
	3.2.1 Direct functions
	3.2.2 Prefix functions
	3.2.3 Indirect functions
	3.2.4 Efficiency of encoding

	3.3 Support for concurrency
	3.4 Communications
	3.4.1 Internal channel communication
	3.4.2 External channel communication
	3.4.3 Communication links

	3.5 Timer
	3.6 Alternative
	3.7 Floating point instructions
	3.7.1 Optimising use of the stack
	3.7.2 Concurrent operation of FPU and CPU

	3.8 Floating point unit design
	3.9 Floating point performance
	3.10 Graphics capability
	3.10.1 Example - drawing coloured text

	4 Conclusion

	3 IMS T800 - engineering data
	1 Introduction
	2 Pin designations
	3 Processor
	3.1 Registers
	3.2 Instructions
	3.2.1 Direct functions
	3.2.2 Prefix functions
	3.2.3 Indirect functions
	3.2.4 Expression evaluation
	3.2.5 Efficiency of encoding

	3.3 Processes and concurrency
	3.4 Priority
	3.5 Communications
	3.6 Timers

	4 Instruction set summary
	4.1 Descheduling points
	4.2 Error instructions
	4.3 Floating point errors

	5 Floating point unit
	6 System services
	6.1 Power
	6.2 CapPlus, CapMinus
	6.3 ClockIn
	6.4 ProcSpeedSelect0-2
	6.5 Reset
	6.6 Bootstrap
	6.7 Peek and poke
	6.8 Analyse
	6.9 Error, ErrorIn

	7 Memory
	8 External memory interface
	8.1 ProcClockOut
	8.2 Tstates
	8.3 Internal access
	8.4 MemAD2-31
	8.5 MemnotWrD0
	8.6 MemnotRfD1
	8.7 notMemRd
	8.8 notMemS0-4
	8.9 notMemWrB0-3
	8.10 MemConfig
	8.10.1 Internal configuration
	8.10.2 External configuration

	8.11 notMemRf
	8.12 MemWait
	8.13 MemReq, MemGranted

	9 Events
	10 Links
	11 Electrical specification
	11.1 DC electrical characteristics
	11.2 Equivalent circuits
	11.3 AC timing characteristics
	11.4 Power rating

	12 Package specification
	12.1 84 pin grid array package

	4 IMS T414 - engineering data
	1 Introduction
	2 Pin designations
	3 Processor
	3.1 Registers
	3.2 Instructions
	3.2.1 Direct functions
	3.2.2 Prefix functions
	3.2.3 Indirect functions
	3.2.4 Expression evaluation
	3.2.5 Efficiency of encoding

	3.3 Processes and concurrency
	3.4 Priority
	3.5 Communications
	3.6 Timers

	4 Instruction set summary
	4.1 Descheduling points
	4.2 Error instructions

	5 System services
	5.1 Power
	5.2 CapPlus, CapMinus
	5.3 Clockln
	5.4 Reset
	5.5 Bootstrap
	5.6 Peek and poke
	5.7 Analyse
	5.8 Error

	6 Memory
	7 External memory interface
	7.1 ProcClockOut
	7.2 Tstates
	7.3 Internal access
	7.4 MemAD2-31
	7.5 MemnotWrD0
	7.6 MemnotRfD1
	7.7 notMemRd
	7.8 notMemS0-4
	7.9 notMemWrB0-3
	7.10 MemConfig
	7.10.1 Internal configuration
	7.10.2 External configuration

	7.11 notMemRf
	7.12 MemWait
	7.13 MemReq, MemGranted

	8 Events
	9 Links
	10 Electrical specification
	10.1 DC electrical characteristics
	10.2 Equivalent circuits
	10.3 AC timing characteristics
	10.4 Power rating

	11 Package specification
	11.1 84 pin grid array package
	11.2 84 pin PLCC J-bend package

	5 IMS T212 - engineering data
	1 Introduction
	2 Pin designations
	3 Processor
	3.1 Registers
	3.2 Instructions
	3.2.1 Direct functions
	3.2.2 Prefix functions
	3.2.3 Indirect functions
	3.2.4 Expression evaluation
	3.2.5 Efficiency of encoding

	3.3 Processes and concurrency
	3.4 Priority
	3.5 Communications
	3.6 Timers

	4 Instruction set summary
	4.1 Descheduling points
	4.2 Error instructions

	5 System services
	5.1 Power
	5.2 CapPlus, CapMinus
	5.3 Clockln
	5.4 Reset
	5.5 Bootstrap
	5.6 Peek and poke
	5.7 Analyse
	5.8 Error

	6 Memory
	7 External memory interface
	7.1 ProcClockOut
	7.2 Tstates
	7.3 Internal access
	7.4 MemA0-15
	7.5 MemD0-15
	7.6 notMemWrB0-1
	7.7 notMemCE
	7.8 MemBAcc
	7.9 MemWait
	7.10 MemReq, MemGranted

	8 Events
	9 Links
	10 Electrical specifications
	10.1 DC electrical characteristics
	10.2 Equivalent circuits
	10.3 AC timing characteristics
	10.4 Power rating

	11 Package specifications
	11.1 68 pin grid array package
	11.2 68 pin PLCC J-bend package

	6 IMS M212 - preview
	1 Introduction
	1.1 IMS M212 peripheral processor
	1.1.1 Central processor
	1.1.2 Peripheral interface
	1.1.3 Disk controller
	1.1.4 Links
	1.1.5 Memory system
	1.1.6 Error handling

	2 Operation
	2.1 Mode 1
	2.2 Mode 2

	3 Applications
	4 Package specifications
	4.1 68 pin grid array package
	4.2 68 pin PLCC J-bend package

	7 IMS C004 - engineering data
	1 Introduction
	2 Pin designations
	3 System services
	3.1 Power
	3.2 CapPlus, CapMinus
	3.3 ClockIn
	3.4 Reset

	4 Links
	5 Switch implementation
	6 Applications
	6.1 Link switching
	6.2 Multiple IMS C004 control
	6.3 Bidirectional exchange
	6.4 Bus systems

	7 Electrical specifications
	7.1 DC electrical characteristics
	7.2 Equivalent circuits
	7.3 AC timing characteristics
	7.4 Power rating

	8 Package specifications
	8.1 84 pin grid array package

	9 IMS C004-A

	8 IMS C011 - engineering data
	1 Introduction
	2 Pin designations
	3 System services
	3.1 Power
	3.2 CapMinus
	3.3 ClockIn
	3.4 SeparatelQ
	3.5 Reset

	4 Links
	5 Mode 1 parallel interface
	5.1 Input port
	5.2 Output port

	6 Mode 2 parallel interface
	6.1 D0-7
	6.2 notCS
	6.3 RnotW
	6.4 RS0-1
	6.4.1 Input Data Register
	6.4.2 Input Status Register

	6.5 InputInt
	6.5.1 Output Data Register
	6.5.2 Output Status Register

	6.6 Outputlnt
	6.7 Data read
	6.8 Data write

	7 Electrical specifications
	7.1 DC electrical characteristics
	7.2 Equivalent circuits
	7.3 AC timing characteristics
	7.4 Power rating

	8 Package specifications
	8.1 28 pin plastic dual-in-line package
	8.2 28 pin ceramic dual-in-line package
	8.3 Pinout

	9 IMS C012 - engineeing data
	1 Introduction
	2 Pin designations
	3 System services
	3.1 Power
	3.2 CapMinus
	3.3 ClockIn
	3.4 Reset

	4 Links
	5 Parallel interface
	5.1 D0-7
	5.2 notCS
	5.3 RnotW
	5.4 RS0-1
	5.4.1 Input Data Register
	5.4.2 Input Status Register

	5.5 Inputlnt
	5.5.1 Output Data Register
	5.5.2 Output Status Register

	5.6 Outputlnt
	5.7 Data read
	5.8 Data write

	6 Electrical specifications
	6.1 DC electrical characteristics
	6.2 Equivalent circuits
	6.3 AC timing characteristics
	6.4 Power rating

	7 Package specifications
	7.1 24 pin plastic dual-in-line package
	7.2 Pinout

	A Performance
	A.1 Performance overview
	A.2 Fast multiply, TIMES
	A.3 Arithmetic
	A.4 IMS T212, IMS T414 floating point operations
	A.5 IMS T800 floating point operations
	A.5.1 IMS T800 floating point functions
	A.5.2 IMS T800 special purpose functions and procedures

	A.6 Effect of external memory
	A.7 Interrupt latency

	B Instruction set summary
	C Bibliography
	C.1 INMOS publications
	C.2 INMOS technical notes
	C.3 Papers and extracts by INMOS authors
	C.4 Papers and extracts by other authors
	C.5 Books and monographs
	C.6 References

	D Index
	E Ordering

