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Preface

This databook describes the architecture of the transputer family of products and details some of the devices
which make up that family. Items described include the 32 bit and 16 bit transputer products IMS T800,
IMS T425, IMS T414, IMS T212 and IMS T222; the peripheral controller IMS M212; and the communications
devices IMS C004, IMS C011 and IMS C012. Details of the military version of a device are included where
relevant. For further information concerning military devices contact INMOS. The military version of a device
complies with MIL-STD-833C (refer to appendix A).

The databook first describes the transputer architecture and general features of transputer family devices. It
then continues with the various product data sheets,followed by comparative performance details.

A transputer is a single VLSI device with processor, memory and communications links for direct connection
to other transputers. An example is the IMS T800 transputer shown opposite. Concurrent systems can be
constructed from a collection of transputers operating concurrently and communicating through links. The
transputer can be used as a building block for concurrent processing systems, with occam as the associated
design formalism.

Current transputer products include the 16 bit IMS T212 and IMS T222, the 32 bit IMS T414 and IMS T425,
and the IMS T800, a 32 bit transputer with an integral high speed floating point processor.

The IMS M212 is an intelligent peripheral controller. It contains a 16 bit processor, on-ehip memory and
communications links. It contains hardware and interface logic to control disk drives and can be used as a
programmable disk controller or as a general purpose peripheral interface.

The INMOS serial communication link is a high speed system interconnect which provides full duplex com
munication between members of the transputer family. It can also be used as a general purpose interconnect
even where transputers are not used. The IMS C011 and IMS C012 link adaptors are communications de
vices enaQling the INMOS serial communication link to be connected to parallel data ports and microprocessor
buses. Ths IMS C004 is a programmable link switch. It provides a full crossbar switch between 32 link inputs
and 32 link outputs.

The transputer development system referred to in this manual comprises an integrated editor, compiler and
debugging system which enables transputers to be programmed in occam and in industry standard lan
guages, for example, C, Fortran, Pascal. The Transputer Development System Manual is supplied with the
transputer development system and is available as a separate publication.

Other information relevant to all transputer products is contained in the occam Reference Manual, supplied
with INMOS software products and available as a separate publication. If more detail on the machine level
operation is required, refer to The Transputer Instruction Set - A Compiler lM"iters' Guide, which is available
as a separate publication.

Various application and technical notes are also available from INMOS.

Software and hardware examples given in this manual are outline design studies and are included to illustrate
various ways in which transputers can be used. The examples are not intended to provide accurate application
designs.
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Notation and nomenclature

The nomenclature and notation in general use throughout this manual is described below.

Significance

The bits in a byte are numbered 0 to 7, with bit 0 least significant. The bytes in words are numbered from 0,
with byte 0 least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Similarly, components of arrays are numbered starting from 0 and stored in memory with component 0 at the
lowest address.

Transputer memory is byte addressed, with words aligned on four-byte boundaries for 32 bit devices and on
two-byte boundaries for 16 bit devices.

Hexadecimal values are prefixed with #, as in #1DF.

Where a byte is transmitted serially, it is always transmitted least significant bit (0) first. In general, wherever
a value is transmitted as a number of component values, the least significant component is transmitted first.
Where an array is transmitted serially, component 0 is transmitted first. Consequently, block transfers to and
from memory are performed starting with the lowest (most negative) address and ending with the highest
(most positive) one.

In diagrams, the least significant component of a value is to the right hand side of the diagram. Component 0
of an array is at the bottom of a diagram, as are the most negative memory locations.

Signal naming conventions

Signal names identifying individual pins of a transputer chip have been chosen to avoid being cryptic, giving
as much information as possible. The majority of transputer signals are active high. Those which are active
low have names commencing with not; names such as RnotW imply that the first component of the name
refers to its active high state and the second to its active low state. Capitals are used to introduce new
components of a name, as in ProcClockOut.

All transputer signals described in the text of this manual are printed in bold. Registers and flags internal to
a device are printed in italics, as are instruction operation codes. Italics are also used for emphasis. occam
program notation is printed in a fixed space te1etype style.

References

The manual is divided into several chapters, each chapter having a number of sections and subsections.
Figures and tables have reference numbers tied to relevant sections of a particular chapter of the manual.
Unless otherwise stated, all references refer to those within the current chapter of the manual.
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Transputer product numbers

All INMOS products, both memories and transputers, have a part number of the general form

IMS abbbc-xyyz

Field a identifies the product group. This is a digit for memory products and a letter for other devices, the
particular letter indicating the type of product (table 1). Field bbb identifies the product within that group and
field c is its revision code. Field x denotes the package type, whilst field yy indicates speed variants etc.
The final field z indicates to which specification the component is qualified; standard, military etc. Where
appropriate some identifiers may be omitted, depending on the device.

A typical product part would be IMS T800C-G20S.

Table 1 INMOS products

IMS 1 .

IMSA .

IMSB .

IMSC .

IMSD .

IMSG .

IMSL .

IMSM .

IMSP .

IMSS .

IMST .

Static RAM products

Digital signal processors

PC boards and modular hardware

Communications adaptors

Development system

Graphics products

Literature

Peripheral control transputers

occam programming system

Software product

Transputers
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1 Introduction

Application specific Interface

Figure 1.1 Transputer architecture



Introduction

1.1 Overview

3

A transputer is a microcomputer with its own local memory and with links for connecting one transputer to
another transputer.

The transputer architecture defines a family of programmable VLSI components. The definition of the ar
chitecture falls naturally into the logical aspects which define how a system of interconnected transputers is
designed and programmed, and the physical aspects which define how transputers, as VLSI components,
are interconnected and controlled.

A typical member of the transputer product family is a single chip containing processor, memory, and com
munication links which provide point to point connection between transputers. In addition, each transputer
product contains special circuitry and interfaces adapting it to a particular use. For example, a peripheral
control transputer, such as a graphics or disk controller, has interfaces tailored to the requirements of a
specific device.

A transputer can be used in a single processor system or in networks to build high performance concur
rent systems. A network of transputers and peripheral controllers is easily constructed using point-ta-point
communication.

Figure 1.2 Transputer network

Transputers and occam

Transputers can be programmed in most high level languages, and are designed to ensure that compiled
programs will be efficient. Where it is required to exploit concurrency, but still to use standard languages,
occam can be used as a harness to link modules written in the selected languages.

To gain most benefit from the transputer architecture, the whole system can be programmed in occam
(pages 8, 25). This provides all the advantages of a high level language, the maximum program efficiency
and the ability to use the special features of the transputer.

occam provides a framework for designing concurrent systems using transputers in just the same way
that boolean algebra provides a framework for designing electronic systems from logic gates. The system
designer's task is eased because of the architectural relationship between occam and the transputer. A
program running in a transputer is formally equivalent to an occam process, so that a network of transputers
can be described directly as an occam program.
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Transputer

Transputer

Transputer

Transputer

Figure 1.3 A node of four transputers

1.2 System design rationale

The transputer architecture simplifies system design by the use of processes as standard software and
hardware building blocks.

An entire system can be designed and programmed in occam, from system configuration down to low level
I/O and real time interrupts.

1.2.1 Programming

The software building block is the process. A system is designed in terms of an interconnected set of
processes. Each process can be regarded as an independent unit of design. It communicates with other
processes along point-to-point channels. Its internal design is hidden, and it is completely specified by the
messages it sends and receives. Communication between processes is synchronized, removing the need for
any separate synchronisation mechanism.

Internally, each process can be designed as a set of communicating processes. The system design is
therefore hierarchically structured. At any level of design, the designer is concerned only with a small and
manageable set of processes.

occam is based on these concepts, and provides the definition of the transputer architecture from the logical
point of view (pages 8, 25).
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1.2.2 Hardware

Processes can be implemented in hardware. A transputer, executing an occam program, is a hardware
process. The process can be independently designed and compiled. Its internal structure is hidden and it
communicates and synchronizes with other transputers via its links, which implement occam channels.

Other hardware implementations of the process are possible. For example, a transputer with a different
instruction set may be used to provide a different cost/performance trade-off. Alternatively, an implementation
of the process may be designed in terms of hard-wired logic for enhanced performance.

The ability to specify a hard-wired function as an occam process provides the architectural framework for
transputers with specialized capabilities (e.g., graphics). The required function (e.g., a graphics drawing and
display engine) is defined as an occam process, and implemented in hardware with a standard occam
channel interface. It can be simulated by an occam implementation, which in turn can be used to test the
application on a development system.

1.2.3 Programmable components

A transputer can be programmed to perform a specialized function, and be regarded as a 'black box' thereafter.
Some processes can be hard-wired for enhanced performance.

A system, perhaps constructed on a single chip, can be built from a combination of software processes, pre
programmed transputers and hardware processes. Such a system can, itself, be regarded as a component
in a larger system.

The architecture has been designed to permit a network of programmable components to have any desired
topology, limited only by the number of links on each transputer. The architecture minimizes the constraints
on the size of such a system, and the hierarchical structuring provided by occam simplifies the task of
system design and programming.

The result is to provide new orders of magnitude of performance for any given application, which can now
exploit the concurrency provided by a large number of programmable components.

1.3 Systems architecture rationale

1.3.1 Point to point communication links

The transputer architecture simplifies system design by using point to point communication links. Every
member of the transputer family has one or more standard links, each of which can be connected to a link
of some other component. This allows transputer networks of arbitrary size and topology to be constructed.

Point to point communication links have many advantages over multi-processor buses:

There is no contention for the communication mechanism, regardless of the number of
transputers in the system.

There is no capacitive load penalty as transputers are added to a system.

The communications bandwidth does not saturate as the size of the system increases.
Rather, the larger the number of transputers in the system, the higher the total communi
cations bandwidth of the system. However large the system, all the connections between
transputers can be short and local.
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1.3.2 Local memory

Each transputer in a system uses its own local memory. Overall memory bandwidth is proportional to the
number of transputers in the system, in contrast to a large global memory, where the additional processors
must share the memory bandwidth.

Because memory interfaces are not shared, and are separate from the communications interfaces, they can
be individually optimized on different transputer products to provide high bandwidth with the minimum of
external components.

1.4 Communication

To provide synchronised communication, each message must be acknowledged. Consequently, a link requires
at least one signal wire in each direction.

Transputer

process w

process y

Transputer 2

process x

process z

Figure 1.4 Links communicating between processes

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer by two one-directional signal lines, along which data is transmitted serially.

The two signal wires of the link can be used to provide two occam channels, one in each direction. This
requires a simple protocol. Each signal line carries data and control information.

The link protocol provides the synchronized communication of occam. The use of a protocol providing for
the transmission of an arbitrary sequence of bytes allows transputers of different word length to be connected.

Each message is transmitted as a sequence of single byte communications, requiring only the presence of
a single byte buffer in the receiving transputer to ensure that no information is lost. Each byte is transmitted
as a start bit followed by a one bit followed by the eight data bits followed by a stop bit. After transmitting a
data byte, the sender waits until an acknowledge is received; this consists of a start bit followed by a zero
bit. The acknowledge signifies both that a process was able to receive the acknowledged byte, and that the
receiving link is able to receive another byte. The sending link reschedules the sending process only after
the acknowledge for the final byte of the message has been received.

Data bytes and acknowledges are multiplexed down each signal line. An acknowledge can be transmitted as
soon as reception of a data byte starts (if there is room to buffer another one). Consequently transmission
may be continuous, with no delays between data bytes.
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The links are designed to make the engineering of transputer systems straightforward. Board layout of two
wire connections is easy to design and area efficient. All transputers will support a standard communications
frequency of 10 Mbits/sec, regardless of processor performance. Thus transputers of different performance
can be directly connected and future transputer systems will directly communicate with those of today.

Transputer 1 Transputer 2 Transputer 1 Transputer 2

.... ....... ...
...... ........... -.....
..... ....

~ •...... -
Common clock Clock 1 Clock 2

Figure 1.6 Clocking transputers

Link communication is not sensitive to clock phase. Thus, communication can be achieved between inde
pendently clocked systems as long as the communications frequency is the same.

The transputer family includes a number of link adaptor devices which provide a means of interfacing trans
puter links to non-transputer devices.
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2 occam model

The programming model for transputers is defined by occam (page 25). The purpose of this section is to
describe how to access and control the resources of transputers using occam. A more detailed description
is available in the occam programming manual and the transputer development system manual (provided
with the development system).

The transputer development system will enable transputers to be programmed in other industry standard
languages. Where it is required to exploit concurrency, but still to use standard languages, occam can be
used as a harness to link modules written in the selected languages.

2.1 Overview

In occam processes are connected to form concurrent systems. Each process can be regarded as a black
box with internal state, which can communicate with other processes using point to point communication
channels. Processes can be used to represent the behaviour of many things, for example, a logic gate, a
microprocessor, a machine tool or an office.

The processes themselves are finite. Each process starts, performs a number of actions and then terminates.
An action may be a set of sequential processes performed one after another, as in a conventional programming
language, or a set of parallel processes to be performed at the same time as one another. Since a process
is itself composed of processes, some of which may be executed in parallel, a process may contain any
amount of internal concurrency, and this may change with time as processes start and terminate.

Ultimately, all processes are constructed from three primitive processes - assignment, input and output. An
assignment computes the value of an expression and sets a variable to the value. Input and output are
used for communicating between processes. A pair of concurrent processes communicate using a one way
channel connecting the two processes. One process outputs a message to the channel and the other process
inputs the. message from the channel.

The key concept is that communication is synchronized and unbuffered. If a channel is used for input
in one process, and output in another, communication takes place when both processes are ready. The
value to be output is copied from the outputting process to the inputting process, and the inputting and
outputting processes then proceed. Thus communication between processes is like the handshake method
of communication used in hardware systems.

Since a process may have internal concurrency, it may have many input channels and output channels
performing communication at the same time.

Every transputer implements the oecam concepts of concurrency and communication. As a result, occam
can be used to program an individual transputer or to program a network of transputers. When oceam is
used to program an individual transputer, the transputer shares its time between the concurrent processes
and channel communication is implemented by moving data within the memory. When occam is used to
program a network of transputers, each transputer executes the process allocated to it. Communication
between occam processes on different transputers is implemented directly by transputer links. Thus the
same oeeam program can be implemented on a variety of transputer configurations, with one configuration
optimized for cost, another for performance, or another for an appropriate balance of cost and performance.

The transputer and oecam were designed together. All transputers include special instructions and hardware
to provide maximum performance and optimal implementations of the occam model of concurrency and
communications.

All transputer instruction sets are designed to enable simple, direct and efficient compilation of occam.
Programming of I/O, interrupts and timing is standard on all transputers and conforms to the occam model.

Different transputer variants may have different instruction sets, depending on the desired balance of cost,
performance, internal concurrency and special hardware. The oeeam level interface will, however, remain
standard across all products.
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Figure 2.1 Mapping processes onto one or several transputers

2.2 occam overview

2.2.1 Processes

After it starts execution, a process performs a number of actions, and then either stops or terminates. Each
action may be an assignment, an input, or an output. An assignment changes the value of a variable, an
input receives a value from a channel, and an output sends a value to a channel.

At any time between its start and termination, a process may be ready to communicate on one or more of
its channels. Each channel provides a one way connection between two concurrent processes; one of the
processes may only output to the channel, and the other may only input from it.

Assignment

An assignment is indicated by the symbol : =. The example

v := e

sets the value of the variable v to the value of the expression e and then terminates, for example:
x := 0 sets x to zero, and x := x + 1 increases the value of x by 1.

Input

An input is indicated by the symbol ? The example

c ? x

inputs a value from the channel c, assigns it to the variable x and then terminates.

Output

An output is indicated by the symbol ! The example

C ! e

outputs the value of the expression • to the channel c.
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2.2.2 Constructions

A number of processes can be combined to form a construct. A construct is itself a process and can therefore
be used as a component of another construct. Each component process of a construct is written two spaces
further from the left hand margin, to indicate that it is part of the construct. There are four classes of constructs
namely the sequential, parallel, conditional and the alternative construct.

Sequence

A sequential construct is represented by

SEQ
Pl
P2
P3

The component processes Pl, P2, P3 ... are executed one after another. Each component process starts
after the previous one terminates and the construct terminates after the last component process terminates.
For example

x
.- x + 1

x

SEQ
cl ?
x
c2

inputs a value, adds one to it, and then outputs the result.

Sequential constructs in occam are similar to programs written in conventional programming languages.
Note, however, that they provide the performance and efficiency equivalent to that of an assembler for a
conventional microprocessor.

Parallel

A parallel construct is represented by

PAR
Pl
P2
P3

The component processes Pl, P2, P3 ... are executed together, and are called concurrent processes. The
construct terminates after all of the component processes have terminated, for example:

PAR
cl ? x
c2 ! y

allows the communications on channels cl and c2 to take place together.

The parallel construct is unique to occam. It provides a straightforward way of writing programs which directly
reflects the concurrency inherent in real systems. The implementation of parallelism on a single transputer
is highly optimized so as to incur minimal process scheduling overhead.
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Communication

11

Concurrent processes communicate only by using channels, and communication is synchronized. If a channel
is used for input in one process, and output in another, communication takes place when both the inputting
and the outputting processes are ready. The value to be output is copied from the outputting process to the
inputting process, and the processes then proceed.

Communication between processes on a single transputer is via memory-to-memory data transfer. Between
processes on different transputers it is via standard links. In either case the occam program is identical.

Conditional

A conditional construct

IF
conditionl

Pl
condition2

P2

means that Pl is executed if conditionl is true, otherwise P2 is executed if condition2 is true, and
so on. Only one of the processes is executed, and then the construct terminates, for example:

IF
x = 0

y := y + 1
x <> 0

. SKIP

increases y only if the value of x is O.

Alternation

An alternative construct

ALT
input1

Pl
input2

P2
input3

P3

waits until one of inputl, input2, input3... is ready. If inputl first becomes ready, inputl
is performed, and then process Pl is executed. Similarly, if input2 first becomes ready, input2 is
performed, and then process P2 is executed. Only one of the inputs is performed, then its corresponding
process is executed and then the construct terminates, for example:

ALT
count ? signal.

counter := counter + 1
total. ? signal.

SEQ
out ! counter
counter := 0

either inputs a signal from the channel count, and increases the variable counter by 1, or alternatively
inputs from the channel total., outputs the current value of the counter, then resets it to zero.
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The AL'l' construct provides a formal language method of handling external and internal events that must be
handled by assembly level interrupt programming in conventional microprocessors.

Loop

WHILE condition
P

repeatedly executes the process P until the value of the condition is false, for example:

WHILE (x - 5) > 0
x := x - 5

leaves x holding the value of (x remainder 5) if x were positive.

Selection

A selection construct

CASE s
n

Pl
m,q

P2

means that Pl is executed if s has the same value as n, otherwise P2 is executed if s has the same value
as m or q, and so on, for example:

CASE direction
up

x := x + 1
down

x := x - 1

increases the value of x if direction is equal to up, otherwise if direction is equal to down the value
of x is decreased.

Replication

A replicator is used with a SEQ, PAR, IF or ALT construction to replicate the component process a number
of times. For example, a replicator can be used with SEQ to provide a conventional loop.

SEQ i = 0 FOR n
P

causes the process P to be executed n times.

A replicator may be used with PAR to construct an array of concurrent processes.

PAR i = 0 FOR n
Pi

constructs an array of n similar processes PO, Pl, ... , Pn-l. The index i takes the values 0, 1, ... , n-1, in
PO, Pl, ... , Pn-l respectively.
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2.2.3 Types

Iv

Every variable, expression and value has a type, which may be a primitive type, array type, record type or
variant type. The type defines the length and interpretation of data.

All implementations provide the primitive types shown in table 2.1.

Table 2.1 Types

CHAN OF protocol

TIMER

BOOL

BYTE

INT

INT16

INT32

INT64
REAL32

REAL64

Each communication channel provides communication between
two concurrent processes. Each channel is of a type which
allows communication of data according to the specified protocol.

Each timer provides a clock which can be used by any number
of concurrent processes.

The values of type BOOL are true and false.

The values of type BYTE are unsigned numbers n
in the range 0 <=n< 256.

Signed integers n in the range _231 <=n< 231 •

Signed integers n in the range _215 <=n< 215•

Signed integers n in the range _231 <=n< 231 •

Signed integers n in the range _263 <=n< 263 •

Floating point numbers stored using a sign bit, 8 bit exponent and
23 bit fraction in ANSI/IEEE Standard 754-1985 representation.

Floating point numbers stored using a sign bit, 11 bit exponent and
52 bit fraction in ANSI/IEEE Standard 754-1985 ·representation.

2.2.4 Declarations, arrays and subscripts

A declaration T x declares x as a new channel, variable, timer or array of type T, for example:

INT x:
p

declares x as an integer variable for use in process P.

Array types are constructed from component types. For example [ n ] T is an array type constructed from
n components of type T.

A component of an array may be selected by subscription, for example v [e] selects the e'th component of
v.

A set of components of an array may be selected by subscription, for example [v FROM e FOR c] selects
the c components v [e], v [e + 1], ... v [e + c - 1]. A set of components of an array may
be assigned, input or output.
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2.2.5 Procedures

A process may be given a name, for example:

PROC square (INT n)
n := n * n

defines the procedure square. The name may be used as an instance of the process, for example:

square (x)

is equivalent to

n IS x:
n := n * n

2.2.6 Functions

A function can be defined in the sarne way as a procedure. For example:

INT FUNCTION factoria1 (VAL INT n)
INT product:
VALOF

IF
n >= 0

SEQ
product := 1
SEQ i = 1 FOR n

product := product * i
RESULT product

defines the function factoria1, which may appear in expressions such as

m := factoria1 (6)

2.2.7 Expressions

An expression is constructed from the operators given in table 2.2, from variables, numbers, the truth values
TRUE and FALSE, and the brackets ( and ) .

Table 2.2 Operators

Operator Operand types Description

+ - * / REM integer, real arithmetic operators

PLOS MINUS TIMES AFTER integer modulo arithmetic

= <> any primitive relational operators

> < >= <= integer, real relationaloperato'rs

AND OR NOT boolean boolean operators

/\ \/ >< - integers bitwise operators: and, or, xor, not

« » integer shift operators
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For example, the expression

(5 + 7) / 2

evaluates to 6, and the expression

(#lDF /\ #FO) » 4

10

evaluates to #D (the character # introduces a hexadecimal constant).

A string is represented as a sequence of ASCII characters, enclosed in double quotation marks ". If the
string has n characters, then it is an array of type [n] BYTE.

2.2.8 Timer

All transputers incorporate a timer. The implementation directly supports the occam model of time. Each
process can have its own independent timer, which can be used for internal measurement or for real time
scheduling.

A timer input sets a variable to a value of type INT representing the time. The value is derived from a clock,
which changes at regular intervals, for example:

tim ? v

sets the variable v to the current value of a free running clock, declared as the timer tim.

A delayed input takes the following form

tim ? AFTER e

A delayed input is unable to proceed until the value of the timer satisfies (timer AFTER e). The comparison
performed is a modulo comparison. This provides the effect that, starting at any point in the timer's cycle,
the previous half cycle of the timer is considered as being before the current time, and the next half cycle is
considered as being after the current time.

2.2.9 Peripheral access

The implementation of occam provides for peripheral access by extending the input and output primitives
with a port input/output mechanism. A port is used like an occam channel, but has the effect of transferring
information to and from a block of addresses associated with a peripheral.

Ports behave like occam channels in that only one process may input from a port, and only one process
may output to a port. Thus ports provide a secure method of accessing external memory mapped status
registers etc.

Note that there is no synchronization mechanism associated with port input and output. Any timing constraints
which result from the use of asynchronous external hardware will have to be programmed explicitly. For
example, a value read by a port input may depend upon the time at which the input was executed, and
inputting at an invalid time would produce unusable data.

During applications development it is recommended that the peripheral is modelled by an occam process
connected via channels.
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2.3 Configuration

occam programs may be configured for execution on one or many transputers. The transputer development
system provides the necessary tools for correctly distributing a program configured for many transputers.

Configuration does not affect the logical behaviour of a program (see section four, Program development).
However, it does enable the program to be arranged to ensure that performance requirements are met.

PLACED PAR

A parallel construct may be configured for a network of transputers by using the PLACED PAR construct.
Each component process (termed a placement) is executed by a separate transputer. The variables and
timers used in a placement must be declared within each placement process.

PRI: PAR

On any individual transputer, the outermost parallel construct may be configured to prioritize its components.
Each process is executed at a separate priority. The first process has the highest priority, the last process
has the lowest priority. Lower priority components may only proceed when all higher priority components are
unable to proceed.

2.3.1 INMOS standard links

Each link provides one channel in each direction between two transputers.

A channel (which must already have been declared) is associated with a link by a channel association, for
example:

PLACE LinkOInput AT 4 :



3 Error handling

Errors in occam programs are either detected by the compiler or can be handled at runtime in one of three
ways.

1 Cause the process to STOP allowing other processes to continue.

2 Cause the whole system to halt.

3 Have an arbitrary (undefined) effect.

The occam process STOP starts but never terminates. In method 1, an errant process stops and in particular
cannot communicate erroneous data to other processes. Other processes will continue to execute until they
become dependent on data from the stopped process. It is therefore possible, for example, to write a
process which uses a timeout to warn of a stopped process, or to construct a redundant system in which
several processes performing the same task are used to enable the system to continue after one of them
has failed.

Method 1 is the preferred method of executing a program.

Method 2 is useful for program development and can be used to bring transputers to an immediate halt,
preventing execution of further instructions. The transputer Error output can be used to inform the transputer
development system that such an error has occurred. No variable local to the process can be overwritten
with erroneous data, facilitating analysis of the program and data which gave rise to the error.

Method 3 is useful only for optimising programs which are known to be correctJ

When a system has stopped or halted as a result of an error, the state of all transputers in the system can
be analysed using the transputer development system.

For languages other than occam, the transputer provides facilities for handling individual errors by software.
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4 Program development

The development of programs for multiple processor systems can involve experimentation. In some cases,
the most effective configuration is not always clear until a substantial amount of work has been done. For
this reason, it is desirable that most of the design and programming can be completed before hardware
construction is started.

4.1 Logical behaviour

An important property of occam in this context is that it provides a clear notion of 'logical behaviour'; this
relates to those aspects of a program not affected by real time effects.

It is guaranteed that the logical behaviour of a program is not altered by the way in which the processes
are mapped onto processors, or by the speed of processing and communication. Consequently a program
ultimately intended for a network of transputers can be compiled, executed and tested on a single computer
used for program development.

Even if the application uses only a single transputer, the program can be designed as a set of concurrent
processes which could run on a number of transputers. This design style follows the best traditions of
structured programming; the processes operate completely independently on their own variables except
where they explicitly interact, via channels. The set of concurrent processes can run on a single transputer
or, for a higher performance product, the processes can be partitioned amongst a number of transputers.

It is necessary to ensure, on the development system, that the logical behaviour satisfies the application
requirements. The only ways in which one execution of a program can differ from another in functional
terms result from dependencies upon input data and the selection of components of an ALT. Thus a simple
method of ensuring that the application can be distributed to achieve any desired performance is to design
the program to behave 'correctly' regardless of input data and ALT selection.

4.2 Performance measurement

Performance information is useful to gauge overall throughput of an application, and has to be considered
carefully in applications with real time constraints.

Prior to running in the target environment, an occam program should be relatively mature, and indeed should
be correct except for interactions which do not obey the occam synchronization rules. These are precisely
the external interactions of the program where the world will not wait to communicate with an occam process
which is not ready. Thus the set of interactions that need to be tested within the target environment are well
identified.

Because, in occam, every program is a process, it is extremely easy to add monitor processes or simulation
processes to represent parts of the real time environment, and then to simulate and monitor the anticipated
real time interactions. The occam concept of time and its implementation in the transputer is important.
Every process can have an independent timer enabling, for example, all the real time interactions to be
modelled by separate processes and any time dependent features to be simulated.

4.3 Separate compilation of occam and other languages

A program portion which is separately compiled, and possibly written in a language other than occam, may
be executed on a single transputer.

If the program is written in occam, then it takes the form of a single PROC, with only channel parameters. If
the program is written in a language other than occam, then a run-time system is provided which provides
inpUt/output to occam channels.
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Such separately compiled program portions are linked together by a framework of channels, termed a harness.
The harness is written in occam. It includes all configuration information, and in particular specifies the
transputer configuration in which the separately compiled program portion is executed.

Transputers are designed to allow efficient implementations of high level languages, such as C, Pascal and
Fortran. Such languages will be available in addition to occam.

At runtime, a program written in such a language is treated as a single occam process. Facilities are
provided in the implementations of these languages to allow such a program to communicate on occam
channels. It can thus communicate with other such programs, or with programs written in occam. These
programs may reside on the same transputer, in which case the channels are implemented in store, or may
reside on different transputers, in which case the channels are implemented by transputer links.

It is therefore possible to implement occam processes in conventional high level languages, and arrange for
them to communicate. It is possible for different parts of the same application to be implemented in different
high level languages.

The standard input and output facilities provided within these languages are implemented by a well-defined
protocol of communications on occam channels.

The development system provides facilities for management of separately compiled occam.

4.4 Memory map and placement

The low level memory model is of a signed address space.

Memory is byte addressed, the lowest addressed byte occupying the least significant byte position within the
word.

The implementation of occam supports the allocation of the code and data areas of an occam process to
specific areas of memory. Such a process must be a separately compiled PROC, and must not reference any
variables and timers other than those declared within it.



5 Physical architecture

5.1 INMOS serial links

5.1.1 Overview

All transputers have several links. The link protocol and electrical characteristics form a standard for all
INMOS transputer and peripheral products.

All transputers support a standard link communications frequency of 10 Mbitslsec. Some devices also support
other data rates. Maintaining a standard communications frequency means that devices of mixed performance
and type can intercommunicate easily.

Each link consists of two unidirectional signal wires carrying both data and control bits. The link signals are
TTL compatible so that their range can be easily extended by inserting buffers.

The INMOS communication links provide for communication between devices on the same printed circuit
board or between printed circuit boards via a back plane. They are intended to be used in electrically quiet
environments in the same way as logic signals between TTL gates.

The number of links, and any communication speeds in addition to the standard speed of 10 Mbitslsec, are
given in the product data for each product.

5.1.2 Link electrical specification

The quiescent state of the link signals is low, for a zero. The link input signals and output signals are standard
TTL compatible signals.

For correct functioning of the links the specifications for maximum variation in clock frequency between two
transputers joined by a link and maximum capacitive load must be met. Each transputer product also has
specified the maximum permissible variation in delay in buffering, and minimum permissible edge gradients.
Details of these specifications are provided in the product data.

Provided that these specifications are met then any buffering employed may introduce an arbitrary delay into
a link signal without affecting its correct operation.

5.2 System services

5.2.1 Powering up and down, running and stopping

At all times the specification of input voltages with respect to the GND and VCC pins must be met. This
includes the times when the VCC pins are ramping to 5 V, and also while they are ramping from 5 V down
to 0 V.

The system services comprise the clocks, power, and signals used for initialization.

The specification includes minimum times that VCC must be within specification, the input clock must be
oscillating, and the Reset signal must be high before Reset goes low. These specifications ensure that
internal clocks and logic have settled before the transputer starts.

When the transputer is reset the memory interface is initialised (if present and configurable).

The processor and INMOS serial links start after reset. The transputer obeys a bootstrap program which
can either be in off-chip ROM or can be received from one of the links. How to specify where the bootstrap
program is taken from depends upon the type of transputer being used. The program will normally load up
a larger program either from ROM or from a peripheral such as a disk.

During power down. as during power up. the input and output pins must remain within specification with
respect to both GND and VCC.
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A software error, such as arithmetic overflow, array bounds violation or divide by zero, causes an error flag to
be set in the transputer processor. The flag is directly connected to the Error pin. Both the flag and the pin
can be ignored, or the transputer stopped. Stopping the transputer on an error means that the error cannot
cause further corruption.

As well as containing the error in this way it is possible to determine the state of the transputer and its memory
at the time the error occurred.

5.2.2 Clock distribution

All transputers operate from a standard 5MHz input clock. High speed clocks are derived internally from the
low frequency input to avoid the problems of distributing high frequency clocks. Within limits the mark-to
space ratio, the voltage levels and the transition times are immaterial. The limits on these are given in the
product data for each product. The asynchronous data reception of the links means that differences in the
clock phase between chips is unimportant.

The important characteristic of the transputer's input clock is its stability, such as is prOVided by a crystal
oscillator. An R-C oscillator is inadequate. The edges of the clock should be monotonic (without kinks), and
should not undershoot below -0.5 V.

5.3 Bootstrapping from ROM or from a link

The program which is executed after reset can either reside in ROM in the transputer's address space or it
can be loaded via anyone of the transputer's INMOS serial links.

The transputer bootstraps from ROM by transferring control to the top two bytes in memory, which will
invariably contain a backward jump into ROM.

If bootstrapping from a link, the transputer bootstraps from the first link to receive a message. The first byte
of the message is the count of the number of bytes of program which follow. The program is loaded into
memory starting at a product dependent location MemStart, and then control is transferred to this address.

Messages subsequently arriving on other links are not acknowledged until the transputer processor obeys
a process which inputs from them. The loading of a network of transputers is controlled by the transputer
development system, which ensures that the first message each transputer receives is the bootstrap program.

5.4 Peripheral interfacing

All transputers contain one or more INMOS serial links. Certain transputer products also have other application
specific interfaces. The peripheral control transputers contain specialized interfaces to control a specific
peripheral or peripheral family.

In general, a transputer based application will comprise a number of transputers which communicate using
INMOS links. There are three methods of communicating with peripherals.

The first is by employing peripheral control transputers (eg for graphics or disks), in which the transputer chip
connects directly to the peripheral concerned (figure 5.1). The interface to the peripheral is implemented by
special purpose hardware within the transputer. The application software in the transputer is implemented
as an occam process, and controls the interface via occam channels linking the processor to the special
purpose hardware.

The second method is by employing link adaptors (figure 5.2). These devices convert between a link and a
specialized interface. The link adaptor is connected to the link of an appropriate transputer, which contains
the application designer's peripheral device handler implemented as an occam process.

The third method is by memory mapping the peripheral onto the memory bus of a transputer (figure 5.3).
The peripheral is controlled by memory accesses issued as a result of PORT inputs and outputs. The
application designer's peripheral device handler provides a standard occam channel interface to the rest of
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the application.

The first transputers implement an event pin which provides a simple means for an external peripheral to
request attention from a transputer.

In all three methods, the peripheral driver interfaces to the rest of the application via occam channels.
Consequently, a peripheral device can be simulated by an occam process. This enables testing of all
aspects of a transputer system before the construction of hardware.

Transputer
Peripheral control

transputer
Peripheral control

transputer

Figure 5.1 Transputer with peripheral control transputers

Transputer

Figure 5.2 Transputer with link adaptors

transputer

Figure 5.3 Memory mapped peripherals
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1 Introduction

The INMOS transputer family is a range of system components each of which combines processing, memory
and interconnect in a single VLSI chip. A concurrent system can be constructed from a collection of transputers
which operate concurrently and communicate through serial communication links. Such systems can be
designed and programmed in occam, a language based on communicating processes, and in other industry
standard languages. Transputers have been sucessfully used in application areas ranging from embedded
systems to supercomputers.

The first member of the family, the IMS T414 32-bit transputer (Bibliography reference INMOS '84), was
introduced in September 1985, and has enabled concurrency to be applied in a wide variety of applications
such as simulation, robot control, image synthesis, and digital signal processing. Many computationally
intensive applications can exploit large arrays of transputers; the system performance depending on the
number of transputers, the speed of inter-transputer communication and the performance of each transputer
processor.

The power of transputer based systems lies in the smoothly scaleable performance offered by adding more
transputers. The transputer embodies the concepts required for effective parallel processing.

Further transputer products are continually being developed which increase the memory, processing perfor
mance and communications performance. An important example is the floating point transputer first intro
duced in 1987.

For publication references used in this chapter, see page 453.



2 The transputer: basic architecture and concepts

2.1 A programmable device

The transputer is a component designed to exploit the potential of VLSI. This technology allows large numbers
of identical devices to be manufactured cheaply. For this reason, it is attractive to implement a concurrent
system using a number of identical components, each of which is customised by an appropriate program.
The transputer is, therefore, a VLSI device with a processor, memory to store the program executed by
the processor, and communication links for direct connection to other transputers. Transputer systems can
be designed and programmed using occam which allows an application to be described as a collection of
processes which operate concurrently and communicate through channels. The transputer can therefore be
used as a building block for concurrent processing systems, with occam as the associated design formalism.

2.2 occam

occam enables a system to be described as a collection of concurrent processes, which communicate with
each other and with peripheral devices through channels. occam programs are built from three primitive
processes:

v := e
c ! e
c ? v

assign expression e to variable v
output expression e to channel c
input from channel c to variable v

The primitive processes are combined to form constructs:

SEQuential
PARallel
ALTernative

components executed one after another
components executed together
component first ready is executed

A construct is itself a process, and may be used as a component of another construct.

Conventional sequential programs can be expressed with variables and assignments, combined in sequential
constructs. IF and WHILE constructs are also provided.

Concurrent programs can be expressed with channels, inputs and outputs, which are combined in parallel
and alternative constructs.

Each occam channel provides a communication path between two concurrent processes. Communication
is synchronised and takes place when both the inputting process and the outputting process are ready. The
data to be output is then copied from the outputting process to the inputting process, and both processes
continue.

An alternative process may be ready for input from anyone of a number of channels. In this case, the input
is taken from the channel which is first used for output by another process.

2.3 VLSI technology

One important property of VLSI technology is that communication between devices is very much slower than
communication within a device. In a computer, almost every operation that the processor performs involves
the use of memory. For this reason a transputer includes both processor and memory in the same integrated
circuit device.
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In any system constructed from integrated qircuit devices, much of the physical bulk arises from connections
between devices. The size of the package for an integrated circuit is determined more by the number of
connection pins than by the size of the device itself. In addition, connections between devices provided by
paths on a circuit board consume a considerable amount of space.

The speed of communication between electronic devices is optimised by the use of one-directional signal
wires, each connecting two devices. If many devices are connected by a shared bus, electrical problems of
driving the bus require that the speed is reduced. Also, additional control logic and wiring are required to
control sharing of the bus.

To provide maximum speed with minimal wiring, the transputer uses point-to-point serial communication links
for direct connection to other transputers. The protocols used on the transputer links are discussed later.

2.4 Simplified processor with micro-coded scheduler

The most effective implementation of simple programs by a programmable computer is provided by a se
quential processor. Consequently, the transputer has a fairly conventional microcoded processor. There is
a small core of about 32 instructions which are used to implement simple sequential programs. In addition
there are other, more specialised groups of instructions which provide facilities such as long arithmetic and
process scheduling.

As a process executed by a transputer may itself consist of a number of concurrent processes the transputer
has to support the occam programming model internally. The transputer, therefore, has a microcoded
scheduler which shares the processor time between the concurrent processes. The scheduler provides two
priority levels; any high priority process which can run will do so in preference to any low priority process.



3 Transputer internal architecture

Internally, a transputer consists of a memory, processor and communications system connected via a 32-bit
bus. The bus also connects to the external memory interface, enabling additional local memory to be used.
The processor, memory and communications system each occupy about 25% of the total silicon area, the
remainder being used for power distribution, clock generators and external connections.

The floating point transputers each have an on-chip floating point unit. The small size and high performance
of this unit come from a design which takes careful note of silicon economics. This contrasts starkly with
conventional co-processors, where the floating point unit typically occupies more area than a complete micro
processor, and requires a second chip.

The block diagram 3.1 indicates the way in which the major blocks of the transputer are interconnected.

FPU

Floating Point Transputer Transputer

Figure 3.1 Transputer interconnections

The CPU of the transputers contains three registers (A, B and C) used for integer and address arithmetic,
which form a hardware stack. Loading a value into the stack pushes B into C, and A into B, before loading A.
Storing a value from A pops B into A and C into B. Similarly, the FPU includes a three register floating-point
evaluation stack, containing the AF, BF, and CF registers. When values are loaded onto, or stored from the
stack the AF, BF and CF registers push and pop in the same way as the A, Band C registers.

The addresses of floating point values are formed on the CPU stack, and values are transferred between the
addressed memory locations and the FPU stack under the control of the CPU. As the CPU stack is used only
to hold the addresses of floating point values, the wordlength of the CPU is independent of that of the FPU.
Consequently, it would be possible to use the same FPU together with a 16-bit CPU.

The transputer scheduler provides two priority levels. The FPU register stack is duplicated so that when the
floating point transputer switches from low to high priority none of the state in the floating point unit is written
to memory. This results in a worst-case interrupt response of about 3 JJs. Furthermore, the duplication of
the register stack enables floating point arithmetic to be used in an interrupt routine without any performance
penalty.
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3.1 Sequential processing

The design of the transputer processor exploits the availability of fast on-ehip memory by having only a small
number of registers; the CPU contains six registers which are used in the execution of a sequential process.
The small number of registers, together with the simplicity of the instruction set enables the processor to have
relatively simple (and fast) data-paths and control logic.

The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, Band C registers which form an evaluation stack, and are the sources and destinations for most
arithmetic and logical operations. Loading a value into the stack pushes B into C, and A into B, before
loading A. Storing a value from A, pops B into A and C into B.

ProgramLRegisters oca s

A

B

C

Workspace ---.
Next inst ....

.....

Operand

Figure 3.2 Registers

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

3.2 Instructions

It was a design decision that the transputer should be programmed in a high-level language. The instruction
set has, therefore, been designed for simple and efficient compilation. It contains a relatively small number
of instructions, all with the same format, chosen to give a compact representation of the operations most
frequently occuring in programs. The instruction set is independant of the processor wordlength, allowing the
same microcode to be used for transputers with different wordlengths. Each instruction consists of a single
byte divided into two 4-bit parts. The four most significant bits of the byte are a function code, and the four
least significant bits are a data value.



IFunction Data

7 4 3 0

Figure 3.3 Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these are used to encode the most important functions performed by any computer. These include:

load constant add constant
load local store local load local pointer
load non-local store non-local
jump conditional jump call

The most common operations in a program are the loading of small literal values, and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of block structured programming languages such as occam.

3.2.2 Prefix functions

Two more of the function codes are used to allow the operand of any instruction to be extended in length.
These are:

prefix negative prefix

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the the instruction's operand. All instructions except the prefix instructions
end by clearing the operand register, ready for the next instruction.

Operand

Figure 3.4 Instruction operand register

The prefix instruction loads its four data bits into the operand register, and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.



The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation, by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.~ Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

The encoding of the indirect functions is chosen so that the most frequently occuring operations are repre
sented without the use of a prefix instruction. These include arithmetic, logical and comparison operations
such as

add exclusive or greater than

Less frequently occuring operations have encodings which require a single prefix operation (the transputer
instruction set is not large enough to require more than 512 operations to be encoded!).

The IMS T800 has additional instructions which load into, operate on, and store from, the floating point
register stack. It also contains new instructions which support colour graphics, pattern recognition and the
implementation of error correcting codes. These instructions have been added whilst retaining the existing
IMS T414 instruction set. This has been possible because of the extensible instruction encoding used in
transputers.

3.2.4 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte (ie without the use
of prefix instructions). Many of these instructions, such as load constant and add require just one processor
cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive several instructions for every fetch.

Short instructions also improve the effectiveness of instruction prefetch, which in turn improves processor
performance. There is an extra word of prefetch buffer so that the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

3.3 Support for concurrency

The processor provides efficient support for the occam model of concurrency and communication. It has a
microcoded scheduler which enables any number of concurrent processes to be executed together, sharing
the processor time. This removes the need for a software kernel. The processor does not need to support the
dynamic allocation of storage as the occam compiler is able to perform the allocation of space to concurrent
processes.
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At any time, a concurrent process may be

active - being executed
- on a list waiting to be executed

inactive - ready to input
- ready to output
- waiting until a specified time

The scheduler operates in such a way that inactive processes do not consume any processor time. The active
processes waiting to be executed are held on a list. This is a linked list of process workspaces, implemented
using two registers, one of which points to the first process on the list, the other to the last. In figure 3.5, S is
executing, and P, a and R are active, awaiting execution.

Registers

Front

Back

A

B

c

Workspace

Next Inst

Operand

Locals

P

Q

R

s

Program

Figure 3.5 Linked process list

A process is executed until it is unable to proceed because it is waiting to input or output, or waiting for the
timer. Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the next
process is taken from the list. Actual process switch times are very small as little state needs to be saved; it
is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model. These include

start process end process

When a parallel construct is executed, start process instructions are used to create the necessary concurrent
processes. A start process instruction creates a new process by adding a new workspace to the end of the
scheduling list, enabling the new concurrent process to be executed together with the ones already being
executed.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the components of the parallel construct which have still to terminate.
The counter is initialised to the number of components before the processes are 'started'. Each component
ends with an end process instruction which decrements and tests the counter. For all but the last component,
the counter is non zero and the component is descheduled. For the last component, the counter is zero and
the component continues.
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3.4 Communications

2 transputer overview

Communication between processes is achieved by means of channels. occam communication is point-to
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being

input message output message

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. This means that the same instruction sequence can be used for both hard
and soft channels, allowing a process to be written and compiled without knowledge of where its channels
are connected.

As in the occam model, communication takes place when both the inputting and outputting processes are
ready. Consequently, the process which first becomes ready must wait until the second one is also ready.

A process performs an input or output by loading the evaluation stack with a pointer to a message, the
address of a channel, and a count of the number of bytes to be transferred, and then executing an input
message or an output message instruction.

3.4.1 Internal channel communication

At any time, an internal channel (a single word in memory) either holds the identity of a process, or holds the
special value empty. The channel is initialised to empty before it is used.

When a message is passed using the channel, the identity of the first process to become ready is stored
in the channel, and the processor starts to execute the next process from the scheduling list. When the
second process to use the channel becomes ready, the message is copied, the waiting process is added to
the scheduling list, and the channel reset to its initial state. It does not matter whether the inputting or the
outputting process becomes ready first.

In figure 3.6, a process P is about to execute an output instruction on an 'empty' channel C. The evaluation
stack holds a pointer to a message, the address of channel C, and a count of the number of bytes in the
message.

P C

Registers

A: count

B: channel ~ Empty I-I

c: Pointer

Figure 3.6 Output to empty channel
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After executing the output instruction, the channel C holds the address of the workspace of P, and the address
of the message to be transferred is stored in the workspace of P. P is descheduled, and the process starts
to execute the next process from the scheduling list.

P C

Workspace

Next Inst ~ I P I~

I
Pointer

Figure 3.7

The channel C and the process P remain in this state until a second process, Q executes an output instruction
on the channel.

P c a
Workspace

A: Count

Next Inst ....... I P
,~

B: Channel".

I I'"
Pointer C: Pointer

Figure 3.8

The message is copied, the waiting process P is added to the scheduling list, and the channel C is reset to
its initial 'empty' state.

P C

Workspace

Next Inst B
--. List --.

Figure 3.9
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3.4.2 External channel communication

When a message is passed via an external channel the processor delegates to an autonomous link interface
the job of transferring the message and deschedules the process. When the message has been transferred
the link interface causes the processor to reschedule the waiting process. This allows the processor to
continue the execution of other processes whilst the external message transfer is taking place.

Each link interface uses three registers:

a pointer to a process workspace
a pointer to a message
a count of bytes in the message

In figure 3.10 processes P and Q executed by different transputers communicate using a channel C imple
mented by a link connecting two transputers. P outputs. and Q inputs.

P C a
RReglsters eQlslers

Count Count

Channel
~

~ Channel
......

Pointer Pointer- - ~

Figure 3.10 Communication between transputers

a
W k

CP
W kor space or space

Next Inst ~ P Q .... Next Inst-
Pointer - - - Pointer

Count Count

Figure 3.11

When P executes its output instruction. the registers in the link interface of the transputer executing Pare
initialised. and P is descheduled. Similarly. when Q executes its input instruction. the registers in the link
interface of the process executing Q are initialised. and Q is descheduled (figure 3.11).

The message is now copied through the link. after which the workspaces of P and Q are returned to the
corresponding scheduling lists (figure 3.12). The protocol used on P and Q ensures that it does not matter
which of P and Q first becomes ready.
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a
W k

c
Workspace or space

Next Inst Next Inst

List ~ - - - --. List

p

Figure 3.12

3.4.3 Communication links

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer by two one-directional signal wires, along which data is transmitted serially.
The two wires provide two occam channels, one in each direction. This requires a simple protocol to
multiplex data and control information. Messages are transmitted as a sequence of bytes, each of which
must be acknowledged before the next is transmitted. A byte of data is transmitted as a start bit followed by
a one bit followed by eight bits of data followed by a stop bit. An ,acknowledgement is transmitted as a start
bit followed by a stop bit. An acknowledgement indicates both that a process was able to receive the data
byte and that it is able to buffer another byte.

The protocol permits an acknowledgement to be generated as soon as the receiver has identified a data
packet. In this way the acknowledgement can be received by the transmitter before all of the data packet has
been transmitted and the transmitter can transmit the next data packet immediately. Some transputers do
not implement this overlapping and achieve a data rate of 0.8 Mbytes/sec using a link to transfer data in one
direction. However, by implementing the overlapping and including sufficient buffering in the link hardware,
the rate can be more than doubled to achieve 1.8 Mbytes/sec in one direction, and 2.4 Mbyteslsec when the
link carries data in both directions. The diagram below shows the signals that would be observed on the two
link wires when a data packet is overlapped with an acknowledgement.

CIJ oa_t_a 8
Data byte

Acknowledge message

Figure 3.13 Link data and acknowledge formats
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Figure 3.14 Overlapped link acknowledge

The transputer has a clock which 'ticks' every microsecond. The current value of the processor clock can be
read by executing a read timer instruction.

A process can arrange to perform a timer input, in which case it will become ready to ·execute after a specified
time has been reached.

The timer input instruction requires a time to be specified. If this time is in the 'past' (Le. ClockReg AFTER
SpecifiedTime) then the instruction has no effect. If the time is in the 'future' (Le. SpecifiedTime AFTER
Clockreg or SpecifiedTime = ClockReg) then the process is descheduled. When the specified time is reached
the process is scheduled again.

3.6 Alternative

The occam alternative construct enables a process to wait for input from anyone of a number of channels,
or until a specific time occurs. This requires special instructions, as the normal input instruction deschedules
a process until a specific channel becomes ready, or until a specific time is reached. The instructions are:

enable channel
enable timer
alternative wait

disable channel
disable timer

The alternative is implemented by 'enabling' the channel input or timer input specified in each of its compo
nents. The 'alternative wait' is then used to deschedule the process if none of the channel or timer inputs is
ready; the process will be re-scheduled when anyone of them becomes ready. The channel and timer inputs
are then 'disabled'. The 'disable' instructions are also designed to select the component of the alternative to
be executed; the first component found to be ready is executed.

3.7 Floating point instructions

The core of the floating point instruction set was established fairly early in the design of the floating point
transputer. This core includes simple load, store and arithmetic instructions. Examination of statistics derived
from FORTRAN programs suggested that the addition of some more complex instructions would improve
performance and code density. Proposed changes to the instruction set were assesed by examining their
effect on a number of numerical programs. For each proposed instruction set, a compiler was constructed,
the programs compiled with it, and the resulting code then run on a simulator. The resulting instruction set is
now described.

In the floating point transputer operands are transferred between the transputer's memory and the floating
point evaluation stack by means of floating point load and store instructions. There are two groups of such
instructions, one for single length numbers, one for double length. In the description of the load and store
instructions which follow only the double length instructions are described. However, there are single length
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instructions which correspond with each of the double length instructions.

The address of a floating point operand is computed on the CPU's stack and the operand is then loaded,
from the addressed memory location, onto the FPU's stack. Operands in the floating point stack are tagged
with their length. The operand's tag will be set when the operand is loaded or is computed. The tags allow
the number of instructions needed for floating point operations to be reduced; there is no need, for example,
to have both floating add single and floating add double instructions; a single floating add will suffice.

3.7.1 Optimislng use of the stack

The depth of the register stacks in the CPU and FPU is carefully chosen. Floating point expressions commonly
have embedded address calculations, as the operands of floating point operators are often elements of one
dimensional or two dimensional arrays. The CPU stack is deep enough to allow most integer calculations
and address calculations to be performed within it. Similarly, the depth of the FPU stack allows most floating
point expressions to be evaluated within it, employing the CPU stack to form addresses for the operands.

No hardware is used to deal with stack overflow. A compiler can easily examine expressions and introduce
temporary variables in memory to avoid stack overflow. The number of such temporary variables can be
minimised by careful choice of the evaluation order; an algorithm to perform this optimisation is given in
Bibliography reference INMOS '88. The algorithm is used to optimise the use of the integer stack of the
transputer CPU.

3.7.2 Concurrent operation of FPU and CPU

In the floating point transputer the FPU operates concurrently with the CPU. This means that it is possible to
perform an address calculation in the CPU whilst the FPU performs a floating point calculation. This can lead
to significant performance improvements in real applications which access arrays heavily. This aspect of the
floating point transputer's performance was carefully assessed, partly through examination of the 'Livermore
Loops' (Bibliography reference McMahon). These are a collection of small kernels designed to represent the
types of calculation performed on super-computers. They are of interest because they contain constructs
which occur in real programs which are not represented in such programs as the Whetstone benchmark
(see below). In particular, they contain accesses to two and three-dimensional arrays, operations where
the concurrency within the floating point transputer is used to good effect. In some cases the compiler is
able to choose the order of performing address calculations so as to maximise overlapping; this involves a
modification of the algorithm mentioned earlier.

As a simple example of overlapping consider the implementation of Livermore Loop 7. The occam program
for loop 7 is as follows:

-- L:IVERMORE LOOP 7
SEQ k = 0 FOR n

x[k]:= u[k] + «( r*(z[k] + (r*y[k]») +
(t*«u[k+3] + (r*(u[k+2] + (r*u[k+l]»»») +
(t*«u[k+6] + (r*(u[k+S] + (r*u[k+4]»»»)

The first stage in the computation of this is to load the value y [k]. This requires a sequence of four
instructions. A further three instructions cause r to be loaded and the FPU multiply to be initiated.

Although the floating point multiplication takes several cycles to complete, the CPU is able to continue exe
cuting instructions whilst the FPU performs the multiplication. Thus the CPU can execute the next segment
of code which computes the address of z [k] whilst the FPU perfroms the multiplication.

Finally,' the value z [k] is pushed onto the floating point stack and added to the previously computed subex
pression r*y [k]. It is not until value z [k] is loaded that the CPU needs to synchronise with the FPU.

The computation of the remainder of the expression proceeds in the same way, and the FPU never has to
wait for the CPU to perform an address calculation.
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3.8 Floating point unit design

In designing a concurrent systems component such as a transputer, it is important to maximise the per
formance obtained from a given area of silicon; many components can be used together to deliver more
performance. This contrasts with the design of a conventional co-processor where the aim is to maximise
the performance of a single processor by the use of a large area of silicon. As a result, in designing the
floating point transputer, the performance benefits of silicon hungry devices such as barrel shifters and flash
multipliers were carefully examined.

A flash multiplier is too large to fit on chip together with the processor, and would therefore necessitate the
use of a separate co-processor chip. The introduction of a co-processor interface to a separate chip slows
down the rate at which operands can be transferred to and from the floating point unit. Higher performance
can, therefore, be obtained from a slow multiplier on the same chip as the processor than from a fast one
on a separate chip. This leads to an important conclusion: a separate co-processor chip is not appropriate
for scalar floating point arithmetic. A separate co-processor would be effective where a large amount of
work can be handed to the co-processor by transferring a small amount of information; for example a vector
co-processor would require only the addresses of its vector operands to be transferred via the co-processor
interface.

It turns out that a flash multiplier also operates much more quickly than is necessary. Only a pipelined vector
processor can deliver operands at a rate consistent with the use of such devices. In fact, any useful floating
point calculation involves more operand accesses than operations. As an example consider the assignment
y [i] : = y [i] + (t * x [i]) which constitutes the core of the LINPACK floating point benchmark.
To perform this it is necessary to load three operands, perform two operations and to store a result. If we
assume that it takes twice as long to perform a floating point operation as to load or store a floating point
number then the execution time of this example would be evenly split between operand access time and
operation time. This means that there would be at most a factor of two available in performance improvement
from the use of an infinitely fast floating point unit!

Unlike a flash multiplier, a fast normalising shifter is important for fast floating point operation. When imple
menting IEEE arithmetic it may be necessary to perform a long shift on every floating point operation and
unless a fast shifter is incorporated into the floating point unit the maximum operation time can become very
long. Fortunately, unlike a flash multiplier, it is possible to design a fast shifter in a reasonable area of silicon.
The shifter used is designed to perform a shift in a single cycle and to normalise in two cycles.

Consequently, the floating point unit contains a fast normalising shifter but not a flash multiplier. However
there is a certain amount of logic devoted to multiplication and division. Multiplication is performed three 4 bits
per cycle, and division is performed two-bits per cycle. Figure 3.15 illustrates the physical layout of the floating
point unit.

ALU ALU

ROM Fraction Exponent ROM
Datapath Datapath

Normalising Shifter

Interface

Block diagram of floating point unit

Figure 3.15 Floating point unit block diagram

The datapaths contain registers and shift paths. The fraction datapath is 59 bits wide, and the exponent
data path is 13 bits wide. The normalising shifter interfaces to both the fraction data path and the exponent
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datapath. This is because the data to be shifted will come from the fraction datapath whilst the magnitude
of the shift is associated with the exponent datapath. One further interesting aspect of the design is the
microcode ROM. Although the diagram shows two ROMs, they are both part of the same logical ROM. This
has been split in two so that control signals do not need to be bussed through the datapaths.

3.9 Graphics capability

The fast block move instructions of the transputers make them suitable for use in graphics applications
using byte-per-pixel colour displays. The block move on the transputer is designed to saturate the memory
bandwidth, moving any number of bytes from any byte boundary in memory to any other byte boundary using
the smallest possible number of word read and write operations.

Some transputers extend this capability by incorporation of a two-dimensional version of the block move
(Move2d) which can move windows around a screen at full memory bandwidth, and conditional versions of
the same block move which can be used to place templates and text into windows. One of these operations
(Draw2d) copies bytes from source to destination, writing only'non-zero bytes to the destination. A new object
of any shape can therefore be drawn on top of the current image. A further operation (CJ.ip2d) copies only
zero bytes in the source. All of these instructions achieve the speed of the simple move instruction, enabling
a 1 million pixel screen to be drawn many times per second. Unlike the conventional 'bit-bit' instruction, it is
never necessary to read the destination data.

3.9.1 Example • drawing coloured text

Drawing proportic;>nal spaced text provides a simple example of the use of the two-dimensional move instruc
tions. The font is stored in a two dimensional array Font; the height of Font is the fixed character height,
and the start of each character is defined by an array start. The textures of the character and its back
ground are selected from an array of textures; the textures providing a range of colours or even stripes and
tartans!

An occam procedure to perform such drawing is given below and the effect of each stage in the drawing
process is illustrated by the diagrams on the final page of this document. First, (1) the texture for the character
is selected and copied to a temporary area and (2) the character in the font is used to clip this texture to the
appropriate shape. Then (3) the background texture is selected and copied to the screen, and (4) the new
character drawn on top of it.

-- Draw character ch in texture F on background texture B
PROC DrawChar(VAL XNT Ch, F, B)

SEQ
XF

(x + width[ch]) > screenwidth
SEQ

x := 0
y := y + height

(x + width[ch]) <= screenwidth
SIUP

[height] [maxwidth] BYTE Temp :
SEQ

Move2d(Texture[F],O,O, Temp,O,O, width[ch],height)
CJ.ip2d(Font[ch],start[ch],O, Temp,O,O, width[ch],height)
Move2d(Texture[B],O,O, Screen,x,y, width[ch],height»
Draw2d(Temp,O,O, Screen,x,y, width[ch],height)
x := x + width[ch]

This procedure will fill a 1 million pixel screen with proportionally spaced characters in about 1/6 second.
Obviously, a simpler and faster version could be used if the character colour or background colour was
restricted. The operation of this procedure is illustrated in figure 3.16.
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4 Conclusion

The INMOS transputer family is a range of system components which can be used to construct high per
formance concurrent systems. As all members of the family incorporate INMOS communications links, a
system may be oonstructed from different members of the family. All transputers provide hardware support
for concurrency and offer exceptional performance on process scheduling, inter-process communication and
inter-transputer communication.

The design of the transputers takes careful note of silicon economics. The central processor used in the
transputer offers a performance comparable with that of other VLSI processors several times larger. The
small size of the processor allows a memory and communications system to be integrated on to the same
VLSI device. This level of integration allows very fast access to memory and very fast inter-transputer
communication. Similarly, the transputer floating point unit is integrated into the same device as the central
processor, eliminating the delays inherent in communicating data between devices.
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32 bit architecture
33 ns internal cycle time
30 MIPS (peak) instruction rate
4.3 Mflops (peak) instruction rate
64 bit on-chip floating point unit which conforms to
IEEE 754
4 Kbytes on-chip static RAM
120 Mbytes/sec sustained data rate to internal memory
4 Gbytes directly addressable external memory
40 Mbytes/sec sustained data rate to internal memory
630 ns response to interrupts
Four INMOS serial links 5/10/20 Mbits/sec
Si-directional data rate of 2.4 Mbytes/sec per link
High performance graphics support with block move
instructions
Soot from ROM or communication links
Single 5 MHz clock input
Single +5V ±5% power supply
MIL-STD-883C processing will be available

APPLICATIONS

Scientific and mathematical applications
High speed multi processor systems
High performance graphics processing
Supercomputers
Workstations and workstation clusters
Digital signal processing
Accelerator processors
Distributed databases
System simulation
Telecommunications
Robotics
Fault tolerant systems
Image processing
Pattern recognition
Artificial intelligence
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1 Introduction

The IMS T800 transputer is a 32 bit CMOS microcomputer with a 64 bit floating point unit and graphics support.
It has 4 Kbytes on-chip RAM for high speed processing, a configurable memory interface and four standard
INMOS communication links. The instruction set achieves efficient implementation of high level languages
and provides direct support for the occam model of concurrency when using either a single transputer or a
network. Procedure calls, process switching and typical interrupt latency are sub-microsecond.

For convenience of description, the IMS T800 operation is split into the basic blocks shown in figure 1.1.

4k bytes
of 32

On-chip
RAM

System
services

LinkSpecial
LinkOSpecial
Link123Special

LinklnO
LinkOutO

Linkln1
LinkOut1

Linkln2
LinkOut2

MemnotWrDO
MemnotRfD1
MemAD2-31

Event

32

Floating Point Unit

External
Memory
Interface

ProcClockOut
notMemSQ-4

notMemWrBQ-3
notMemRd
notMemRf

DisablelntRam

MemWait
MemConfig

MemReq
MemGranted

VCC
GND

CapPlus
CapMinus

Reset
Analyse
Errorln

Error
BootFromROM

Clockln
ProcSpeedSelectO-2

Figure 1.1 IMS T800 block diagram

The processor speed of a device can be pin-selected in stages from 17.5 MHz up to the maximum allowed
for the part. A device running at 30 MHz achieves an instruction throughput of 30 MIPS peak and 15 MIPS
sustained. The extended temperature version of the device complies with MIL-STD-883C.

The IMS T800 provides high performance arithmetic and floating point operations. The 64 bit floating point unit
provides single and double length operation to the ANSI-IEEE 754-1985 standard for floating point arithmetic.
It is able to perform floating point operations concurrently with the processor. sustaining a rate of 1.5 Mflops
at a processor speed of 20 MHz and 2.25 Mflops at 30 MHz.
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High performance graphics support is provided by microcoded block move instructions which operate at the
speed of memory. The two-dimensional block move instructions provide for contiguous block moves as well
as block copying of either non-zero bytes of data only or zero bytes only. Block move instructions can be used
to provide graphics operations such as text manipulation, windowing, panning, scrolling and screen updating.

Cyclic redundancy checking (CRC) instructions are available for use on arbitrary length serial data streams,
to provide error detection where data integrity is critical. Another feature of the IMS T800, useful for pattern
recognition, is the facility to count bits set in a word.

The IMS T800 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface
uses multiplexed data and address lines and provides a data rate of up to 4 bytes every 100 nanoseconds
(40 Mbytes/sec) for a 30 MHz device. A configurable memory controller provides all timing, control and DRAM
refresh signals for a wide variety of mixed memory systems.

System Services include processor reset and bootstrap control, together with facilities for error analysis. Error
signals may be daisy-chained in multi-transputer systems.

The standard INMOS communication links allow networks of transputer family products to be constructed by
direct point to point connections with no external logic. The IMS T800 links support the standard operating
speed of 10 Mbits/sec, but also operate at 5 or 20 Mbitslsec. Each link can transfer data bi-directionally at
up to 2.35 Mbytes/sec.

The transputer is designed to implement the occam language, detailed in the occam Reference Manual, but
also efficiently supports other languages such as C, Pascal and Fortran. Access to the transputer at machine
level is seldom required, but if necessary refer to The Transputer Instruction Set - A Compiler Writers' Guide.

This data sheet supplies hardware implementation and characterisation details for the IMS T800. It is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam.



2 Pin designations

Table 2.1 IMS T800 system services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
ProcSpeedSelectO-2 in Processor speed selectors
Reset in System reset
Error out Error indicator
Errorln in Error daisychain input
Analyse in Error analysis
BootFromRom in Boot from external ROM or from link
DisablelntRAM in Disable internal RAM
DoNotWire Must not be wired

Table 2.2 IMS T800 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemnotWrDO in/out Multiplexed data bit 0 and write cycle warning
MemnotRfD1 in/out Multiplexed data bit 1 and refresh warning
MemAD2-31 in/out Multiplexed data and address bus
notMemRd out Read strobe
notMemWrBO-3 out Four byte-addressing write strobes
notMemSO-4 out Five general purpose strobes
notMemRf out Dynamic memory refresh indicator
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted
MemConfig in Memory configuration data input

Table 2.3 IMS T800 event

Pin In/Out Function I
EventReq in Event request I

EventAck out Event request acknowledge

Table 2.4 IMS T800 link

Pin In/Out Function
LinklnO-3 in Four serial data input channels
LinkOutO-3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
LinkOSpecial in Select special speed for Link 0
Link123Special in Select special speed for Links 1,2,3

Signal names are prefixed by not if they are active low. otherwise they are active high.
Pinout details for various packages are given on page 238.
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3 Processor

The 32 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes
of memory via the External Memory Interface (EMI).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are k~pt.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, Band C registers which form an evaluation stack.

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in The Transputer Instruction Set - A Compiler Writers' Guide.
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Figure 3.1 Registers
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3.2 Instructions
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The instruction set has been designed for simple and efficient compilation of high-level languages. All in
structions have the same format, designed to give a compact representation ,of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

Operand Register

Figure 3.2 Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these,
shown in table 3.1, are used to encode the most important functions.

Table 3.1 Direct functions

load constant

load local

load non-local

jump

add constant

store local

store non-local

conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C, Fortran, Pascal or ADA.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.
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The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2 Expression evaluation

Program Mnemonic

x:= 0 Idc 0
stl x

x := #24 pfix 2
Idc 4
stl x

x := y + z Idl y
Idl z
add
stl x

3.2.5 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.
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3.3 Processes and concurrency
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A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 51).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active Being executed.
On a list waiting to be executed.

Inactive - Ready to input.
Ready to output.
Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 51). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Figure 3.3 Linked process list

Table 3.3 Priority queue control registers

Function High Priority Low Priority
Pointer to front of active process list FptrO Fptr1
Pointer to back of active process list BptrO Bptr1

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 54). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1 ms apart.
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A process can only be descheduled on certain instructions, known as descheduling points (page 54). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 p,s, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T80D supports two levels of priority. Priority 1 (Iow priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer's time; Le. it has a distribution of descheduling points (page 54).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the
standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 78 cycles (assuming use of on-chip RAM).
If the floating point unit is not being used at the time then the maximum interrupt latency is only 58 cycles.
To ensure this latency, certain instructions are interruptable.

3.5 Communications

Communication between processes is achieved by means of channels. Process communication is point-to
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.
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A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Timers

The transputer has two 32 bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com
pletely in approximately 4295 seconds. The other is accessible only to low priority processes and is incre
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
76 hours.

Table 3.4 Tim~r registers

ClockO
Clock1
TNextRegO
TNextReg1

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21 , the other for time 31.

TimerO

TNextRegO L..-__--I

Workspaces

Alarm

21

Program

TPtrLoc Empty

31

Figure 3.4 Timer registers
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The Function Codes table.4.8. gives the basic function code set (page 48). Where the operand is less than 16,
a single byte encodes the complete instruction. If the operand is greater than 15, one prefix instruction (pfix)
is required for each additional four bits of the operand. If the operand is negative the first prefix instruction
will be nfix.

Table 4.1 prefix coding

Function Memory
Mnemonic code code

Ide #3 #4 #43

Ide #35
is coded as

pfix #3 #2 #23
Ide #5 #4 #45

Ide #987
is coded as

pfix #9 #2 #29
pfix #8 #2 #28
Ide #7 #4 #47

Ide -31 (Ide #FFFFFFE1)
is coded as

nfix #1 #6 #61
Ide #1 #4 #41

Tables 4.9 to 4.27 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2 operate coding

Function Memory
Mnemonic code code

add (op. code #5) #F5
Is coded as

opr add #F #F5

ladd (op. code #16) #21F6
is coded as

pfix #1 #2 #21
opr #6 #F #F6

In the Floating Point Operation Codes tables 4.21 to 4.27, a selector sequence code (page 62) is indicated
in the Memory Code column by s. The code given in the Operation Code column is the indirection code, the
operand for the Ide instruction.

The FPU and processor operate concurrently, so the actual throughput of floating point instructions is better
than that implied by simply adding up the instruction times. For full details see The Transputer Instruction Set
- A Compiler Writers' Guide.
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The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where the memory code
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it
is interpreted from table 4.3.

Table 4.3 Instruction set interpretation

Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

m Bit number of the highest bit set in the absolute value of register A.
Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

p Number of words per row.

r Number of rows.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4 Instruction features

Ident Feature See page:

D The instruction is cl descheduling point 54

E The instruction will affect the Error flag 55, 69

F The instruction will affect the FP_Error flag 62,55

4.1 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 50). They are
also the ones at which the processor will halt if the Analyse pin is asserted (page 68).

Table 4.5 Descheduling point instructions

input message
timer alt wait
jump

output message
timer input !"
loop end v'

output byte
stop on error
end process j

output word
alt wait v

stop process
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4.2 Error instructions

The instructions in table 4.6 are the only ones which can affect the Error flag (page 69) directly. Note,
however, that the floating point unit error flag FP_Error is set by certain floating point instructions (page 55),
and that Error can be set from this flag by fpcheckerror.

Table 4.6 Error setting instructions

add
multiply
long add v

set error 0/

check word \i

add constant subtract
fractional multiply ,-" divide
long subtract .... long divide \..1
testerr ? fpcheckerror -"
check subscript from 0, check single v

remainder 'v'

check count from 1

4.3 Floating point errors

The instructions in table 4.7 are the only ones which can affect the floating point error flag FP_Error (page 62).
Error is set from this flag by fpcheckerror if FP_Error is set.

Table 4.7 Floating point error setting instructions

fpadd
fpldnladdsn
fpremfirst
fpuseterror
fpuexpincby32
fpur32tor64
fprtoi32

fpsub
fpldnladddb
fpusqrtfirst
fpuclearerror
fpuexpdecby32
fpur64tor32
fpuabs

fpmul
fpldnlmulsn
fpgt
fptesterror
fpumulby2
fpucki32
fpint

fpdiv
fpldnlmuldb
fpeq

fpudivby2
fpucki64
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Table 4.8 IMS T800 function codes

Function Memory Processor D
Code Code Mnemonic Cycles Name E

0 OX j 3 jump D
1 1X Idlp 1 load local pointer
2 2X pfix 1 prefix
3 3X Idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnlp 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)

4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
D DX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

Table 4.9 IMS T800 arithmetic/logical operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24FO shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 38 multiply E
72 27F2 fmul 35 fractional multiply (no rounding) E

40 fractional multiply (rounding) E
2C 22FC div 39 divide E
1F 21FF rem 37 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product for positive register A

m+5 product for negative register A
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Table 4.10 IMS T800 long arithmetic operation codes

01

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 3 long sum
4F 24FF Idiff 3 long diff
31 23F1 Imul 33 long multiply
1A 21 FA Idiv 35 long divide E
36 23F6 Ishl n+3 long shift left (n<32)

n-28 long shift left(n~32)

35 23F5 Ishr n+3 long shift right (n<32)
n-28 long shift right (n~32)

19 21F9 norm n+5 normalise (n<32)
n-26 normalise (n~32)

3 normalise (n=64)

Table 4.11 IMS T800 general operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

00 FO rev 1 reverse
3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
10 21FO xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer
5A 25FA dup 1 duplicate top of stack

Table 4.12 IMS T800 20 block move operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

58 25F8 move2dinit 8 initialise data for 20 block move
5C 25FC move2dall (2p+23)*r 20 block copy
50 25FO move2dnonzero (2p+23)*r 20 block copy non-zero bytes
5E 25FE move2dzero (2p+23)*r 20 block copy zero bytes

Table 4.13 IMS T800 eRC and bit operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

74 27F4 crcword 35 calculate crc on word
75 27F5 crcbyte 11 calculate crc on byte

76 27F6 bitcnt b+2 count bits set in word
77 27F7 bitrevword 36 reverse bits in word
78 27F8 bitrevnbits n+4- reverse bottom n bits in word
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Table 4.14 IMS T800 indexing/array operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

02 F2 bsub 1 byte subscript
OA FA wsub 2 word subscript
81 28F1 wsubdb 3 form double word subscript
34 23F4 bcnt 2 byte count
3F 23FF wcnt 5 word count
01 F1 Ib 5 load byte
3B 23FB sb 4 store byte

4A 24FA move 2w+8 move message

Table 4.15 IMS T800 timer handling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) D

4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D

48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer

Table 4.16 IMS T800 inpuVoutput operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

07 F7 in 2w+19 input message D
OB FB out 2w+19 output message D
OF FF outword 23 output word D
OE FE outbyte 23 output byte D

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D

17 alt wait (channel not ready) D
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip
30 23FO diss 4 disable skip

12 21F2 resetch 3 reset channel
48 24F8 enbc 7 enable channel (ready)

5 enable channel (not ready)
2F 22FF disc 8 disable channel



Table 4.17 IMS T800 control operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

20 22FO ret 5 return
18 21F8 Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) D

5 loop end (exit) D

Table 4.18 IMS T800 scheduling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

OD FD startp 12 start process D
03 F3 endp 13 end process D
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority

Table 4.19 IMS T800 error handling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

13 21F3 csubO 2 check subscript from 0 E
4D 24FD ccnt1 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21FO seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) D
57 25F7 clrhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error

Table 4.20 IMS T800 processor initialisation operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25FO sthb 1 store high priority back pointer
1C 21FC stlf 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer
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Table 4.21 IMS T800 floating point load/store operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

8E 28FE fpldnlsn 2 fp load non-local single
8A 28FA fpldnldb 3 fp load non-local double
86 28F6 fpldnlsni 4 fp load non-local indexed single
82 28F2 fpldnldbi 6 fp load non-local indexed double
9F 29FF fpldzerosn 2 load zero single
AO 2AFO fpldzerodb 2 load zero double
AA 2AFA fpldnladdsn 8/11 fp load non local & add single F
A6 2AF6 fpldnladddb 9/12 fp load non local & add double F
AC 2AFC fpldnlmulsn 13/20 fp load non local & multiply single F
A8 2AF8 fpldnlmuldb 21/30 fp load non local & multiply double F
88 28F8 fpstnlsn 2 fp store non-local single
84 28F4 fpstnldb 3 fp store non-local double
9E 29FE fpstnli32 4 store non-local int32

Processor cycles are shown as Typical/Maximum cycles.

Table 4.22 IMS T800 floating point general operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

AB 2AFB fpentry 1 floating point unit entry
A4 2AF4 fprev 1 fp reverse
A3 2AF3 fpdup 1 fp duplicate

Table 4.23 IMS T800 floating point rounding operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

22 s fpurn 1 set rounding mode to round nearest
06 s fpurz 1 set rounding mode to round zero
04 s fpurp 1 set rounding mode to round positive
05 s fpurm 1 set rounding mode to round minus

Table 4.24 IMS T800 floating point error operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

83 28F3 fpchkerror 1 check fp error E
9C 29FC fptesterror 2 test fp error false and clear F
23 s fpuseterror 1 set fp error F
9C s fpuclearerror 1 clear fp error F
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Table 4.25 IMS T800 floating point comparison operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

94 29F4 fpgt 4/6 fp greater than F
95 29F5 fpeq 3/5 fp equality F
92 29F2 fpordered 3/4 fp orderability
91 29F1 fpnan 2/3 fp NaN
93 29F3 fpnotfinite 2/2 fp not finite
OE s fpuchki32 3/4 check in range of type int32 F
OF s fpuchki64 3/4 check in range of type int64 F

Processor cycles are shown as Typical/Maximum cycles.

Table 4.26 IMS T800 floating point conversion operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

07 s fpur32tor64 3/4 real32 to real64 F
08 s fpur64tor32 6/9 real64 to real32 F
90 29FO fprtoi32 7/9 real to int32 F
96 29F6 fpi32tor32 8/10 int32 to real32
98 29F8 fpi32tor64 8/10 int32 to real64
9A 29FA fpb32tor64 8/8 bit32 to real64
00 s fpunoround 2/2 real64 to real32, no round
A1 2AF1 fpint 5/6 round to floating integer F

Processor cycles are shown as TyplcallMaxlmum cycles.

Table 4.27 IMS T800 floating point arithmetic operation codes

Operation Memory Processor cycles D
Code Code Mnemonic Single Double Name E

87 28F7 fpadd 6/9 6/9 fp add F
89 28F9 fpsub 6/9 6/9 fp subtract F
8B 28FB fpmul 11/18 18/27 fp multiply F
8C 28FC fpdiv 16/28 31/43 fp divide F
OB s fpuabs 2/2 2/2 fp absolute F
8F 28FF fpremfirst 36/46 36/46 fp remainder first step F
90 29FO fpremstep 32/36 32/36 fp remainder iteration
01 s fpusqrtfi rst 27/29 27/29 fp square root first step F
02 s fpusqrtstep 42/42 42/42 fp square root step
03 s fpusqrtlast 8/9 8/9 fp square root end

OA s fpuexpinc32 6/9 6/9 multiply by 232 F

09 s fpuexpdec32 6/9 6/9 divide by 232 F
12 s fpumulby2 6/9 6/9 multiply by 2.0 F
11 s fpudivby2 6/9 6/9 divide by 2.0 F

Processor cycles are shown as TyplcallMaxlmum cycles.
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The 64 bit FPU provides single and double length arithmetic to floating point standard ANSI-IEEE 754-1985.
It is able to perform floating point arithmetic concurrently with the central processor unit (CPU) I sustaining in
excess of 2.25 Mflops on a 30 MHz device. All data communication between memory and the FPU occurs
under control of the CPU.

The FPU consists of a microcoded computing engine with a three deep floating point evaluation stack for
manipulation of floating point numbers. These stack registers are FA, FB and Fe, each of which can hold
either 32 bit or 64 bit data; an associated flag, set when a floating point value is loaded, indicates which. The
stack behaves in a similar manner to the CPU stack (page 47).

As with the CPU stack, the FPU stack is not saved when rescheduling (page 50) occurs. The FPU can
be used in both low and high priority processes. When a high priority process interrupts a low priority one
the FPU state is saved inside the FPU. The CPU will service the interrupt immediately on completing its
current operation. The high priority process will not start, however, before the FPU has completed its current
operation.

Points in an instruction stream where data need to be transferred to or from the FPU are called synchronisation
points. At a synchronisation point the first processing unit to become ready will wait until the other is ready.
The data transfer will then occur and both processors will proceed concurrently again. In order to make
full use of concurrency, floating point data source and destination addresses can be calculated by the CPU
whilst the FPU is performing operations on a previous set of data. Device performance is thus optimised by
minimising the CPU and FPU idle times.

The FPU has been designed to operate on both single length (32 bit) and double length (64 bit) floating
point numbers, and returns results which fully conform to the ANSI-IEEE 754-1985 floating point arithmetic
standard. Denormalised numbers are fully supported in the hardware. All rounding modes defined by the
standard are implemented, with the default being round to nearest.

The basic addition, subtraction, multiplication and division operations are performed· by single instructions.
However, certain less frequently used floating point instructions are selected by a value in register A (when
allocating registers, this should be taken into account). A load constant instruction Idc is used to load
register A; the floating point entry instruction fpentry then uses this value to select the floating point operation.
This pair of instructions is termed a selector sequence.

Names of operations which use tpentry begin with fpu. A typical usage, returning the absolute value of a
floating point number, would be

Idc fpuabs; fpentry;

Since the indirection code for fpuabs is OB, it would be encoded as

Table 5.1 fpentry coding

Function Memory
Mnemonic code code

Idc fpuabs #4 #4B

fpentry (op. code #AB) #2AFB
is coded as

pfix #A #2 #2A
opr #B #F #FB



5 Floating point unit

The remainder and square root instructions take considerably longer than other instructions to complete. In
order to minimise the interrupt latency period of the transputer they are split up to form instruction sequences.
As an example, the instruction sequence for a single length square root is

fpusqrtfirst; fpusqrtstep; fpusqrtstep; fpusqrtlast;

The FPU has its own error flag FP_Error. This reflects the state of evaluation within the FPU and is set in
circumstances where invalid operations, division by zero or overflow exceptions to the ANSI-IEEE 754-1985
standard would be flagged (page 55). FP_Error is also set if an input to a floating point operation is infinite
or is not a number (NaN). The FP_Error flag can be set, tested and cleared without affecting the main Error
flag, but can also set Errorwhen required (page 55). Depending on how a program is compiled, it is possible
for both unchecked and fully checked floating point arithmetic to be performed.

Further details on the operation of the FPU can be found in The Transputer Instruction Set - A Compiler
Writers' Guide.

Table 5.2 Typical floating point operation times for IMS T800

T800·20 T800·30
Operation Single length Double length Sing le length Double length

add 350 ns 350 ns 233 ns 233 ns
subtract 350 ns 350 ns 233 ns 233 ns
multiply 550 ns 1000 ns 367 ns 667 ns
divide 850 ns 1600 ns 567 ns 1067 ns

Timing is for operations where both operands are normalised fp numbers.
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6 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

6.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

6.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1JLF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

CapPlus

CapMinus

P.C.B. track

P.C.B. track

Decoupling
capacitor

1JLF

6.3 Clockln

Figure 6.1 Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the speCl:ified voltage and time limits.
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Table 6.1 Input clock
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SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TOCLDCH Clockln pulse width low 40 ns
TOCHOCL Clockln pulse width high 40 ns
TOCLOCL Clockln period 200 ns 1.3
TOCerror Clockln timing error ±O.5 ns 2
TOC10C2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TOCf Clockln fall time a ns 4

Note.

Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VlL (table 11.3).

90% K--
10%- .:.... - - - --TOC' -

TOCerror

2.0v- - 
1.5vO.8v: : : : -

TDCerror

TDCLDCH TDCHDCL

TOCLOCL

90%- - - -A
10%- - - -- - -TDC;- -

Figure 6.2 Clockln timing

6.4 ProcSpeedSelectD-2

Processor speed of the IMS TaOO is variable in discrete steps. The desired speed can be selected. up to the
maximum rated for a particular component. by the three speed select lines ProcSpeedSelectO-2. The pins
are tied high or low. according to the table below. for the various speeds. The ProcSpeedSelectO-2 pins
are designated HoldToGND on the IMS T414. and coding is so arranged that the IMS T800 can be plugged
directly into a board designed for a 20 MHz IMS T414.

Only six of the possible speed select combinations are currently used; the other two are not valid speed
selectors. The frequency of Clockln for the speeds given in the table is 5 MHz.
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Table 6.2 Processor speed selection

Proc Proc Proc Processor Processor
Speed Speed Speed Clock Cycle
Select2 Select1 SelectO Speed MHz Time nS Notes

0 0 0 20.0 50.0
0 0 1 22.5 44.4
0 1 0 25.0 40.0
0 1 1 30.0 33.3
1 0 0 35.0 28.6
1 0 1 Invalid
1 1 0 17.5 57.1
1 1 1 Invalid

Note: Inclusion of a speed selection in this table does not imply immediate availability.

6.5 Reset

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC is
valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge of
Reset initialises the transputer, triggers the memory configuration sequence and starts the bootstrap routine.
Link outputs are forced low during reset; link inputs and EventReq should be held low. Memory request
(DMA) must not occur whilst Reset is high but can occur before bootstrap (page 91).

After the end of Reset there will be a delay of 144 periods of Clockln (figure 6.3). Following this, the
MemWrDO, MemRfD1 and MemAD2-31 pins will be scanned to check for the existence of a pre-programmed
memory interface configuration (page 81). This lasts for a further 144 periods of Clockln. Regardless of
whether a configuration was found, 36 configuration read cycles will then be performed on external memory
using the default memory configuration (page 82), in an attempt to access the external configuration ROM.
A delay will then occur, its period depending on the actual configuration. Finally eight complete and con
secutive refresh cycles will initialise any dynamic RAM, using the new memory configuration. If the memory
configuration does not enable refresh of dynamic RAM the refresh cycles will be replaced by an equivalent
delay with no external memory activity.

If BootFromRom is high bootstrapping will then take place immediately, using data from external memory;
otherwise the transputer will await an input from any link. The processor will be in the low priority state.

BootDelay

Reset 1'--- _
Action I......f--------.*I...-.-----:3·~I .....·f----·----·*I..·----3·~I .....·f-------·*'I··----3·~1

Internal External
configuration configuration Delay Refresh

Figure 6.3 IMS T800 post-reset sequence

6.6 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once
only by the transputer, before the first instruction is executed after Reset is taken low.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in
ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low priority
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state, and the W register points to MemStart (page 70).

Table 6.3 Reset and Analyse
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SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 Clockln 1
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFromRom hold after Reset 0 ms 3
TALBRX BootFromRom hold after Analyse 3

Notes

1 Full periods of Clockln TDCLDCL required.

2 At power-on reset.

3 Must be stable until after end of bootstrap period. See Bootstrap section.

Clockln

VCC

Reset

BootFromRom

TRLBRX

Figure 6.4 Transputer reset timing with Analyse low

TRHRL

Reset

TAHRH

Analyse

BootFromRom

Figure 6.5 Transputer reset and analyse timing
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If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process.
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately
above the loaded code is used as work space. Messages arriving on other links after the control byte has
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs
from them.

6.7 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The
first four byte word is taken as an internal or external memory address at which to poke (write) the second
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

6.8 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling
point (page 54). From Analyse being asserted, the processor will halt within three time slice periods plus
the time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Processor flags Error and HaltOnError are not altered
at reset, whether Analyse is asserted or not. Memory refresh continues.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh
cycles will occur; the previous memory configuration will be used for any external memory accesses. If
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 6.4.

Table 6.4 Register values after Analyse

MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of I when the processor halted.

B The value of Wwhen the processor halted, together with the priority of the process
when the transputer was halted (Le. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.
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6.9 Error, Errorln
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The Error pin carries the OR'ed output of the internal Error flag and the Errorln input. If Error is high
it indicates either that Errorln is high or that an error was detected in one of the processes. An internal
error can be caused, for example, by arithmetic overflow, divide by zero, array bounds violation or software
setting the flag directly (page 55). It can also be set from the floating point unit under certain circumstances
(page 55, 62). Once set, the Error flag is only cleared by executing the instruction testerr. The error is not
cleared by processor reset, in order that analysis can identify any errant transputer (page 68).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data. Errorln does
not directly affect the status of a processor in any way.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnError has been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers
to halt. This can be done by 'daisy-chaining' the Errorln and Error pins of a number of processors and
applying the final Error output signal to the EventReq pin of a suitably programmed master transputer. Since
the process state is preserved when stopped by an error, the master transputer can then use the analyse
function to debug the fault. When using such a circuit, note that the Error flag is in an indeterminate state on
power up; the circuit and software should be designed with this in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved for
the duration of the high priority process and restored at the conclusion of it. Status of both flags is transmitted
to the high priority process. Either flag can be altered in the process without upsetting the error status of any
complex operation being carried out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data. Memory refresh will continue to take place.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I points
one byte past the instruction being executed. In both cases I will be copied to register A.

Master
Transputer

T800
Event slave 0

GND Errorln Error
(transputer links not shown)

T425 T800
slave 1 slave n

Errorln Error _.- Errorln Error

Figure 6.6 Error handling in a multi-transputer system
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7 Memory

The IMS T800 has 4 Kbytes of fast internal static memory for high rates of data throughput. Each inter
nal memory access takes one processor cycle ProcClockOut (page 72). The transputer can also access
4 Gbytes of external memory space. Internal and external memory are part of the same linear address space.
Internal RAM can be disabled by holding DisablelntRAM high. All internal addresses are then mapped to
external RAM. This pin should not be altered after Reset has been taken low.

IMS T800 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #80000000 and extends to #80000FFF. User memory
begins at #80000070; this location is given the name MemStart.

A reserved area at the bottom of internal memory is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one. Other locations are reserved for extended
features such as block moves and floating point operations.

External memory space starts at #80001000 and extends up through #00000000 to #7FFFFFFF. Memory
configuration data and ROM bootstrapping code must be in the most positive address space, starting at
#7FFFFF6C and #7FFFFFFE respectively. Address space immediately below this is conventionally used for
ROM based code.
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Event

Link 3 Input

Link 2 Input

Link 1 Input

Link 0 Input

Link 3 Output

Link 2 Output

Link 1 Output

Link 0 Output

#08

#07

#06

#05

#04

#03

#02

#01

#00(Base of memory)

Note 1

Reserved for
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Ereg IntSaveLoc

STATUSlntSaveLoc

CregIntSaveLoc

Breg IntSaveLoc

Areg IntSaveLoc

IptrlntSaveLoc

WdesclntSaveLoc

TPtrLoc1

TPtrLocO

Event

Link 3 Input

Link 2 Input

Link 1 Input

Link 0 Input

Link 3 Output

Link 2 Output

Link 1 Output

Link 0 Output

hi Machine map 10 Byte address Word offsets ~_o_c_c_a_m_m_a-:,p_-----'I

_IReset Inst I I#7FFFFFFE I
- #7FFFFFF8

Memory configuration #7FFFFF6C
1-----------4
- -#0 --

_, I #80001000 - Start of external memory - #0400 1 ---1_,
- #80000070 MemStart MemStart #1 C -

#8000006C
#80000048

#80000044

#80000040

#8000003C

#80000038

#80000034

#80000030

#8000002C

#80000028

#80000024

#80000020

#8000001C

#80000018

#80000014

#80000010

#8000000C

#80000008

#80000004

#80000000

Figure 7.1 IMS T800 memory map

These locations are used as auxiliary processor registers and should not be manipulated by the user.
Like processor registers, their contents may be useful for implementing debugging tools (Analyse,
page 68). For details see The Transputer Instruction Set - A Compiler Writers' Guide.
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8 External memory interface

The External Memory Interface (EMI) allows access to a 32 bit address space, supporting dynamic and static
RAM as well as ROM and EPROM. EMI timing can be configured at Reset to cater for most memory types
and speeds, and a program is supplied with the Transputer Development System to aid in this configuration.

There are 13 internal configurations which can be selected by a single pin connection (page 81). If none are
suitable the user can configure the interface to specific requirements, as shown in page 82.

8.1 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (ordering section).

The time value Tm is used to define the duration of Tstates and, hence, the length of external memory cycles;
its value is exactly half the period of one ProcClockOut cycle (0.5*TPCLPCL), regardless of mark/space
ratio of ProcClockOut.

Edges of the various external memory strobes coincide with rising or falling edges of ProcClockOut. It should
be noted, however, that there is a skew associated with each coincidence. The value of skew depends on
whether coincidence occurs when the ProcClockOut edge and strobe edge are both rising, when both are
falling or if either is rising when the other is falling. Timing values given in the strobe tables show the best
and worst cases. If a more accurate timing relationship is required, the exact Tstate timing and strobe edge
to ProcClockOut relationships should be calculated and the correct skew factors applied from the edge skew
timing table 8.4.

The timing parameters in the following tables are based on full characterisation of the 17 MHz and 20 MHz
parts. Data for higher speeds is based on tests on a limited number of samples and may change when full
characterisation is completed.

8.2 Tstates

The external memory cycle is divided into six Tstates with the following functions:

T1 Address setup time before address valid strobe.

T2 Address hold time after address valid strobe.

T3 Read cycle tristate or write cycle data setup.

T4 Extendable data setup time.

T5 Read or write data.

T6 Data hold.

Under normal conditions each Tstate may be from one to four periods Tm long, the duration being set during
memory configuration. The default condition on Reset is that all Tstates are the maximum four periods Tm
long to allow external initialisation cycles to read slow ROM.

Period T4 can be extended indefinitely by adding externally generated wait states.

An external memory cycle is always an even number of periods Tm in length and the start of T1 always
coincides with a rising edge of ProcClockOut. If the total configured quantity of periods Tm is an odd
number, one extra period Tm will be added at the end of T6 to force the start of the next T1 to coincide with
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a rising edge of ProcClockOut. This period is designated E in configuration diagrams (figure 8.11).

Table 8.1 ProcClockOut

73

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCLPCL ProcClockOut period 8-1 8 8+1 ns 1
TPCHPCL ProcClockOut pulse width high b-2.5 b b+2.5 ns 2
TPCLPCH ProcClockOut pulse width low c ns 3
Tm ProcClockOut half cycle b-O.5 b b+O.5 ns 2
TPCstab ProcClockOut stability 4 0/0 4

Notes

1 a is TDCLDCLlPLLx.

2 b is 0.5*TPCLPCL (half the processor clock period).

3 c is TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

1.5v - - - - - - - - - -

TPCLPCH TPCHPCL

TPCLPCL

Figure 8.1 IMS T800 ProcClockOut timing

8.3 Internal access

During an internal memory access cycle the external memory interface bus MemAD2·31 reflects the word
address used to access internal RAM, MemnotWrDO reflects the read/write operation and MemnotRfD1 is
high; all control strobes are inactive. This is true unless and until a memory refresh cycle or DMA (memory
request) activity takes place, when the bus will carry the appropriate external address or data.

The bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 68).

ProcClockOut

MemnotWrDO~ Write / Read Read "<
MemnotRfD1 y "<
MemAD2-31 =>< Address X Address X Address X

Figure 8.2 IMS T800 bus activity for internal memory cycle
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8.4 MemAD2-31

3 IMS TaOO engineering data

External memory addresses and data are· multiplexed on one bus. Only the top 30 bits of address are
output on the external memory interface, using pins MemAD2-31. They are normally output only during
Tstates T1 and T2. and should be latched during this time. Byte addressing is carried out internally by the
transputer for read cycles. For write cycles the relevant bytes in memory are addressed by the write strobes
notMemWrBO-3.

The data bus is 32 bits wide. It uses MemAD2-31 for the top 30 bits and MemnotRfD1 and MemnotWrDO
for the lower two bits. Read cycle data may be set up on the bus at any time after the start of T3, but must
be valid when the transputer reads it at the end of T5. Data may be removed any time during T6, but must
be off the bus no later than the end of that period.

Write data is placed on the bus at the start of T3 and removed at the end of T6. If T6 is extended to force the
next cycle Tmx (page 74) to start on a rising edge of ProcClockOut, data will be valid during this time also.

8.5 MemnotWrDO

During T1 and T2 this pin will be low if the cycle is a write cycle, otherwise it will be high. During Tstates T3
to T6 it becomes bit 0 of the data bus. In both cases it follows the general timing of MemAD2-31.

8.6 MemnotRfD1

During T1 and T2, this pin is low if the address on MemAD2-31 is a refresh address. otherwise it is high.
During Tstates T3 to T6 it becomes bit 1 of the data bus. In both cases it follows the general timing of
MemAD2-31.

8.7 notMemRd

For a read cycle the read strobe notMemRd is low during T4 and T5. Data is read by the tra,nsputer on the
rising edge of this strobe, and may be removed immediately afterward. If the strobe duration is insufficient it
may be extended by adding extra periods Tm to either or both of the Tstates T4 and T5. Further extension
may be obtained by inserting wait states at the end of T4.

In the read cycle timing diagrams ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm.

8.8 notMemSO-4

To facilitate control of different types of memory and devices, the EMI is provided with five strobe outputs,
four of which can be configured by the user. The strobes are conventionally assigned the functions shown in
the read and write cycle diagrams, although there is no compulsion to retain these designations.

notMemSO is a fixed format strobe. Its leading edge is always coincident with the start of T2 and its trailing
edge always coincident with the end of T5.

The leading edge of notMemS1 is always coincident with the start of T2, but its duration may be configured
to be from zero to 31 periods Tm. Regardress of the configured duration, the strobe will terminate no later
than the end of T6. The strobe is sometimes programmed to extend beyond the normal end of Tmx. When
wait states are inserted into an EMI cycle the end of Tmx is delayed. but the potential active duration of the
strobe is not altered. Thus the strobe can be configured to terminate relatively early under certain conditions
(page 89). If notMemS1 is configured to be zero it will never go low.
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notMemS2, notMemS3 and notMemS4 are identical in operation. They all terminate at the end of T5, but
the start of each can be delayed from one to 31 periods Tm beyond the start of T2. If the duration of one of
these strobes would take it past the end of T5 it will stay high. This can be used to cause a strobe to become
active only when wait states are inserted. If one of these strobes is configured to zero it will never go low.
Figure 8.5 shows the effect of Wait on strobes in more detail; each division on the scale is one period Tm.

Table 8.2 Read

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TaZdV Address tristate to data valid 0 ns
TdVRdH Data setup before read 20 ns
TRdHdX Data hold after read 0 ns
TSOLRdL notMemSO before start of read a-2 a a+2 ns 1
TSOHRdH End of read from end of notMemSO -1 1 ns
TRdLRdH Read period b b+6 ns 2

Notes

1 a is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

2 b is total of T4+Twalt+TS where T4, TS can be from one to four periods Tm each in length and Twalt may be
any number of periods Tm in length.

Tstate I T1 I T2 I T3 I T4 I T5 I T6 I T1 I
ProcClockOut

Tmx

MemnotWrDO

MemnotRfD1

MemAD2-31

notMemRd

notMemSO
(CE)

notMemS1
(ALE)

Address

TaVSOL

TSOLRdL

TSOLSOH

TSOLS1L(D
TSOLS1H 5

Figure 8.3 IMS T800 external read cycle: static memory
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Tstate I T1 I T2 I T3 I T4 I T5 I T6 I T1 I
ProcClockOut

Tmx

MemnotWrDO

MemnotRfD1

MemAD2-31

TaVSOL

notMemRd

TSOLSOH

notMemSO
(RAS)

notMemS1
(ALE)

notMemS2
(AMUX)

notMemS3
(CAS)

notMemS4
(Wait state)

TSOLS1LQ) ®
TSOLS1H 5

TSOLS2H@

TSOLS2L®

TSOLS3H0

TSOLS3L@

TSOLS4H@

TSOLS4L@

TSOHS1H ®

TSOHS2H@

TSOHS3H@

TSOHS4H@

Figure 8.4 IMS T800 external read cycle: dynamic memory



8 External memory Interface

Table 8.3 IMS T800 strobe timing

11

SYMBOL en) PARAMETER MIN NOM MAX UNITS NOTE
TaVSOL Address setup before notMemSO a ns 1
TSOLaX Address hold after notMemSO b ns 2
TSOLSOH notMemSO pulse width low c c+6 ns 3
TSOLS1L 1 notMemS1 from notMemSO 0 2 ns
TSOLS1H 5 notMemS1 end from notMemSO d d+6 ns 4,6
TSOHS1H 9 notMemS1 end from notMemSO end e-1 e+4 ns S,6
TSOLS2L 2 notMemS2 delayed after notMemSO 1-1 1+4 ns 7
TSOLS2H 6 notMemS2 end from notMemSO c+4 c+8 ns 3
TSOHS2H 10 notMemS2 end from notMemSO end 0 2 ns
TSOLS3L 3 notMemS3 delayed after notMemSO 1-1 1+3 ns 7
TSOLS3H 7 notMemS3 end from notMemSO c+4 c+8 ns 3
TSOHS3H 11 notMemS3 end from notMemSO end 0 2 ns
TSOLS4L 4 notMemS4 delayed after notMemSO 1-1 1+2 ns 7
TSOLS4H 8 notMemS4 end from notMemSO c+4 c+8 ns 3
TSOHS4H 12 notMemS4 end from notMemSO end 0 2 ns
Tmx Complete external memory cycle g 8

Note.

8 is T1 where T1 can be from one to four periods Tm in length.

2 b is T2 where T2 can be from one to four periods Tm in length.

3 c is total of T2+T3+T4+Twalt+TS where T2, T3, T4, T5 can be from one to four periods Tm each in length and
Twalt may be any number of periods Tm in length.

4 d can be from zero to 31 periods Tm in length.

S 8 can be from -27 to +4 periods Tm in length.

6 If the configuration would cause the strobe to remain active past the end of T6 it will go high at the end of T6.
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx.

7 f can be from zero to 31 periods Tm in length. If this length would cause the strobe to remain active past the
end of T5 it will go high at the end of TS. If the strobe value is zero periods Tm it will remain low throughout
the complete cycle Tmx.

8 g is one complete external memory cycle comprising the total of T1+T2+T3+T4+Twalt+TS+T6 where T1, T2,
T3, T4, TS can be from one to four periods Tm each in length, T6 can be from one to five periods Tm in length
and Twalt may be zero or any number of periods Tm in length.

TstatelT1IT21T31T41TSITSIT1I

notMemS1 \ I
notMemS2

No wait states

Tstate IT11T21T31T41 W I W ITSITSIT11

notMemS1 -. I
notMemS2

Wait states inserted

Figure 8.S IMS T800 effect of wait states on strobes
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Table 8.4 Strobe SO to ProcClockOut skew

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHSOH Strobe rising from ProcClockOut rising 0 3 ns
TPCLSOH Strobe rising from ProcClockOut falling 1 4 ns
TPCHSOL Strobe falling from ProcClockOut rising -3 0 ns
TPCLSOL Strobe falling from ProcClockOut falling -1 2 ns

ProcClockOut~ ~ ~ ~

:J r-TPCHSOH:J r- TPCHSOL J 1-TPCLSOH J r-TPCLSOL

NotMemSO --T ~ --T ~

Figure 8.6 IMS T800 skew of notMemSO to ProcClockOut

8.9 notMemWrBO-3

Because the transputer uses word addressing, four write strobes are provided; one to write each byte of the
word. notMemWrBO addresses the least significant byte.

The transputer has both early and late write cycle modes. For a late write cycle the relevant write strobes
notMemWrBO-3 are low during T4 and T5; for an early write they are also low during T3. Data should be
latched into memory on the rising edge of the strobes in both cases, although it is valid until the end of T6.
If the strobe duration is insufficient, it may be extended at configuration time by adding extra periods Tm to
either or both of Tstates T4 and T5 for both early and late modes. For an early cycle they may also be added
to T3. Further extension may be obtained by inserting wait states at the end of T4. If the data hold time is
insufficient, extra periods Tm may be added to T6 to extend it.

Table 8.5 Write

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TdVWrH Data setup before write d ns 1,5
TWrHdX Data hold after write a ns 1,2
TSOLWrL notMemSO before start of early write b-3 b+2 ns 1,3

notMemSO before start of late write c-3 c+2 ns 1,4
TSOHWrH End of write from end of notMemSO -2 2 ns 1
TWrLWrH Early write pulse width d d+6 ns 1,5

Late write pulse width e e+6 ns 1,6

Notes

Timing is for all write strobes notMemWrBO-3.

2 a is T6 where T6 can be from one to five periods Tm in length.

3 b is T2 where T2 can be from one to four periods Tm in length.

4 c is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

S d is total of T3+T4+Twait+T5 where T3, T4, T5 can be from one to four periods Tm each in length and Twalt
may be zero or any number of periods Tm in length.

6 e is total of T4+Twalt+T5 where T4, T5 can be from one to four periods Tm each in length and Twalt may be
zero or any number of periods Tm in length.
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Tstate I T1 I T2 I T3 I T4 I T5 I .T6 I T1 I
ProcClockOut

Tmx

79

DataMemnotWrDO

MemnotRfD1

MemAD2-31

notMemWrBo-B3
(early write)

Address

TaVSOL TSOLaX

TSOLWrL

TSOLWrL

Data

Data

TdVWrH

TWrLWrH

TWrLWrH

TWrHdX

notMemWrBo-B3
(late write)

notMemSO
(CE)

notMemS1
(ALE)

TSOLSOH

TSOLS1L CD
TSOLS1H ®

TSOHWrH

TSOHS1H ®

Figure 8.7 IMS T800 external write cycle

In the write cycle timing diagram ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm. The strobe is inactive during internal memory cycles.
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Figure 8.8 IMS T800 dynamic RAM application
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8.10 MemConfig

01

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI)
characteristics. It is read by the processor on two occasions after Reset goes low; first to check if one of the
preset internal configurations is required, then to determine a possible external configuration.

8.10.1 Internal configuration

The internal configuration scan comprises 64 periods TDCLDCL of Clockln during the internal scan period
of 144 Clockln periods. MemnotWrDO, MemnotRfD1 and MemAD2·32 are all high at the beginning of the
scan. Starting with MemnotWrDO, each of these lines goes low successively at intervals of two Clockln
periods and stays low until the end of the scan. If one of these lines is connected to MemConfig the preset
internal configuration mode associated with that line will be used as the EMI configuration. The default
configuration is that defined in the table for MemAD31; connecting MemConfig to VCC will also produce
this default configuration. Note that only 17 of the possible configurations are valid, all others remain at the
default configuration.

Table 8.6 IMS T800 internal configuration coding

Duration of each Tstate Strobe Write Refresh Cycle
periods Tm coefficient cycle interval time

Clockln Proc
Pin T1 T2 T3 T4 T5 T6 s1 s2 s3 s4 type cycles cycles

MemnotWrDO 1 1 1 1 1 1 30 1 3 5 late 72 3
MemnotRfD1 1 2 1 1 1 2 30 1 2 7 late 72 4
MemAD2 1 2 1 1 2 3 30 1 2 7 late 72 5
MemAD3 2 3 1 1 2 3 30 1 3 8 late 72 6
MemAD4 1 1 1 1 1 1 3 1 2 3 early 72 3
MemAD5 1 1 2 1 2 1 5 1 2 3 early 72 4
MemAD6 2 1 2 1 3 1 6 1 2 3 early 72 5
MemAD7 2 2 2 1 3 2 7 1 3 4 early 72 6
MemAD8 1 1 1 1 1 1 30 1 2 3 early t 3
MemAD9 1 1 2 1 2 1 30 2 5 9 early t 4
MemAD10 2 2 2 2 4 2 30 2 3 8 late 72 7
MemAD11 3 3 3 3 3 3 30 2 4 13 late 72 9
MemAD12 1 1 2 1 2 1 4 1 2 3 early 72 4
MemAD13 2 1 2 1 2 2 5 1 2 3 early 72 5
MemAD14 2 2 2 1 3 2 6 1 3 4 early 72 6
MemAD15 2 1 2 3 3 3 8 1 2 3 early 72 7
MemAD31 4 4 4 4 4 4 31 30 30 18 late 72 12

t Provided for static RAM only.
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Tstate 11 121314151s11 121314151s11 12

notMemSO

notMemS1 I!-.----.-;;__......
notMemS2 11
notMemS3 i 3 U U--

i

MemConfig=MemnotWrDO

Tstate 11 1112 12 12 131415 15 1s 1s I sl1 12

notMemSOI I
notMemS1 I 30 I
notMemS2 ---rn'------.......
notMemS3 1 3 ,..------

notMemS4 __ ~ ~ _

notMemRd L-J
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MemConfig=MemAD3
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notMemSO I IIL- _
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notMemS1 I 7 ,....----

notMemS2 ---rn'--------ll
notMemS3 31....----
notMemS4 4 L-J
notMemRd L-J

I

MemConfig=MemAD7

Figure 8.9 IMS T8DD internal configuration

8.10.2 External configuration

If MemConfig is held low until MemnotWrDO goes low the internal configuration is ignored and an external
configuration will be loaded instead. An external configuration scan always follows an internal one, but if an
internal configuration occurs any external configuration is ignored.

The external configuration scan comprises 3S successive external read cycles, using the default EMI con
figuration preset by MemAD31. However, instead of data being read on the data bus as for a normal read
cycle, only a single bit of data is read on MemConfig at each cycle. Addresses put out on the bus for each
read cycle are shown in table 8.7, and are designed to address ROM at the top of the memory map. The
table shows the data to be held in ROM; data required at the MemConfig pin is the inverse of this.

MemConfig is typically connected via an inverter to MemnotWrDO. Data bit zero of the least significant byte
of each ROM word then provides the configuration data stream. By switching MemConfig between various
data bus lines up to 32 configurations can be stored in ROM, one per bit of the data bus. MemConfig can be
permanently connected to a data line or to GND. Connecting MemConfig to GND gives all Tstates configured
to four periods; notMemS1 pulse of maximum duration; notMemS2·4 delayed by maximum; refresh interval
72 periods of Clockln; refresh enabled; late write.

The external memory configuration table 8.7 shows the contribution of each memory address to the 13 con
figuration fields. The lowest 12 words (#7FFFFFSC to #7FFFFF98, fields 1 to S) define the number of extra
periods Tm to be added to each Tstate. If field 2 is 3 then three extra periods will be added to T2 to extend
it to the maximum of four periods.
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Delay Internal configuration External configuration

Ov

MemnotWrDO

MemnotRfD1

MemAD2

MemAD3,
MemAD31

MemConfig G)

MemConfig ®

CD Internal configuration: MemConfig connected to MemAD2
® External configuration: MemConfig connected to inverse of MemAD3

Figure 8.10 IMS T800 internal configuration scan

The next five addresses (field 7) define the duration of notMemS1 and the following fifteen (fields 8 to 10)
define the delays before strobes notMemS2·4 become active. The five bits allocated to each strobe allow
durations of from 0 to 31 periods Tm, as described in strobes page 74.

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11 and 12) define the refresh interval and whether refresh is to
be used, whilst the final address (field 13) supplies a high bit to MemConfig if a late write cycle is required.

The columns to the right of the coding table show the values of each configuration bit for the four sample
external configuration diagrams. Note the inclusion of period E at the end of T6 in some diagrams. This is
inserted to bring the start of the next Tstate T1 to coincide with a rising edge of ProcClockOut (page 72).

Wait states W have been added to show the effect of them on strobe timing; they are not part of a configuration.
In each case which includes wait states, two wait periods are defined. This shows that if a wait state would
cause the start of T5 to coincide with a falling edge of ProcClockOut, another period Tm is generated by
the EMI to force it to coincide with a rising edge of ProcClockOut. This coincidence is only necessary if wait
states are added, otherwise coincidence with a falling edge is permitted. Any configuration memory access
is only permitted to be extended using wait, up to a total of 14 Clockln periods.
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Figure 8.11 IMS T8DD external configuration
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5 Configuration field 11 ; refresh interval configured for 36 periods Clockln
6 Configuration field 12; refresh enabled
7 Configuration field 13; early write cycle

Figure 8.12 IMS T800 external configuration scan
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Table 8.7 IMS T800 external configuration coding

Scan MemAD Example diagram
cycle address Field Function 1 2 3 4

1 7FFFFF6C 1 T1 least significant bit 0 0 0 0
2 7FFFFF70 1 T1 most significant bit 0 0 0 0
3 7FFFFF74 2 T2 least significant bit 1 0 0 1
4 7FFFFF78 2 T2 most significant bit 0 0 0 0
5 7FFFFF7C 3 T3 least significant bit 1 1 1 1
6 7FFFFF80 3 T3 most significant bit 0 0 0 0
7 7FFFFF84 4 T4 least significant bit 0 0 0 0
8 7FFFFF88 4 T4 most significant bit 0 0 0 0
9 7FFFFF8C 5 T5 least significant bit 0 0 0 0
10 7FFFFF90 5 T5 most significant bit 0 0 0 0
11 7FFFFF94 6 T6 least significant bit 1 0 1 1
12 7FFFFF98 6 T6 most significant bit 0 0 0 0
13 7FFFFF9C 7 notMemS1 least significant bit 0 0 1 1
14 7FFFFFAO 7 0 0 0 0
15 7FFFFFA4 7 .lJ. .lJ. 0 0 0 0
16 7FFFFFA8 7 1 0 0 0
17 7FFFFFAC 7 notMemS1 most significant bit 0 0 0 0
18 7FFFFFBO 8 notMemS2 least significant bit 1 0 0 1
19 7FFFFFB4 8 1 1 0 1
20 7FFFFFB8 8 .lJ. .lJ. 0 0 0 1
21 7FFFFFBC 8 0 0 0 0
22 7FFFFFCO 8 notMemS2 most significant bit 0 0 0 0
23 7FFFFFC4 9 notMemS3 least significant bit 1 1 1 1
24 7FFFFFC8 9 0 1 0 0
25 7FFFFFCC 9 .lJ. .lJ. 0 1 0 1
26 7FFFFFDO 9 0 0 1 0
27 7FFFFFD4 9 notMemS3 most significant bit 0 0 0 0
28 7FFFFFD8 10 notMemS4 least significant bit 0 0 0 1
29 7FFFFFDC 10 0 1 1 1
30 7FFFFFEO 10 .lJ. .lJ. 1 1 0 0
31 7FFFFFE4 10 0 0 0 0
32 7FFFFFE8 10 notMemS4 most significant bit 0 0 0 0
33 7FFFFFEC 11 Refresh Interval least significant bit - - - -
34 7FFFFFFO 11 Refresh Interval most significant bit - - - -
35 7FFFFFF4 12 Refresh Enable - - - -
36 7FFFFFF8 13 Late Write 0 1 1 0
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Table 8.8 IMS T800 memory refresh configuration coding

Refresh Interval Field 11 Complete
interval in JlS encoding cycle (mS)

18 3.6 00 0.922
36 7.2 01 1.843
54 10.8 10 2.765
72 14.4 11 3.686

Refresh intervals are in periods of Clockln and Clockln frequency is 5 MHz:

Interval = 18 * 200 =3600 ns

Refresh interval is between successive incremental refresh addresses.
Complete cycles are shown for 256 row DRAMS.

Table 8.9 Memory configuration

01

MemnotRfD1 --./

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMCVRdH Memory configuration data setup 30 ns
TRdHMCX Memory configuration data hold 0 ns
TSOLRdH notMemSO to configuration data read 8 8+6 ns 1

Notes

1 a is 16 periods Tm.

_T~_~_t_e-+I~IT-r11_j~""'I_T-r-12"""'I--+-1 -r1--,~r--3"T'""j-+I--r-IT"""'1
4
--r-1-+-1--'Ir--T"T""15--rI--+--rj_Tr-16""'1-+-"T""--r--r-1---M1

MemnotWrDO -./ ~<<<<<<<<<<< Data »)>-_----Jr

Data »)>-_~r-

MemAD2-31 -<,,-_A_dd_re_s_s---'>-««««««< Data »)>---....(C

notMemSO
TSOLSOH

notMemRd

MemConfig

Figure 8.13 IMS T800 external configuration read cycle timing
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8.11 notMemRf

The IMS T800 can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh interval is also determined. Refresh cycles do not interrupt internal
memory accesses, although the internal addresses cannot be reflected on the external bus during refresh.

When refresh is disabled no refresh cycles occur. During the post-Reset period eight dummy refresh cycles
will occur with the appropriate timing but with no bus or strobe activity.

A refresh cycle uses the same basic external memory timing as a normal external memory cycle, except that
it starts two periods Tm before the start of T1. If a refresh cycle is due during an external memory access,
it will be delayed until the end of that external cycle. Two extra periods Tm (periods R in the diagram) will
then be inserted between the end of T6 of the external memory cycle and the start of T1 of the refresh cycle
itself. The refresh address and various external strobes become active approximately one period Tm before
T1. Bus signals are active until the end of T2, whilst notMemRf remains active until the end of T6.

For a refresh cycle, MemnotRfD1 goes low before notMemRf goes low and MemnotWrDO goes high with
the same timing as MemnotRfD1. All the address lines share the same timing, but only MemAD2-11 give
the refresh address. MemAD12-30 stay high during the address period, whilst MemAD31 remains low.
Refresh cycles generate strobes notMemSO-4 with timing as for a normal external cycle, but notMemRd and
notMemWrBO-3 remain high. MemWait operates normally during refresh cycles.
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Table 8.10 Memory refresh

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TRfLRfH Refresh pulse width low a a+6 ns 1
TRaVSOL Refresh address setup before notMemSO b ns 2
TRfLSOL Refresh indicator setup before notMemSO b ns 2

Notes

a is total Tmx+Tm.

2 b is total T1+Tm where T1 can be from one to four periods Tm in length.

Tstate I T6 I R I R I T1 I T2 I Ta I T4 I T5 I T6 I T1 I

MemAD2-11

notMemSO

notMemRf

MemnotWrDO

MemnotRfD1

MemAD12-30
----~

MemAD31

Figure 8.14 IMS T800 refresh cycle timing

8.12 MemWait

Taking MemWait high with the timing shown will extend the duration of T4. MemWait is sampled relative
to the falling edge of ProcClockOut during a T3 period, and should not change state in this region. By
convention, notMemS4 is used to synchronize wait state insertion. If this or another strobe is used, its delay
should be such as to take the strobe low an even number of periods Tm after the start of T1, to coincide with
a rising edge of ProcClockOut.

MemWait may be kept high indefinitely, although if dynamic memory refresh is used it should not be kept
high long enough to interfere with refresh timing. MemWait operates normally during all cycles, including
refresh and configuration cycles. It does not affect internal memory access in any way.

If the start of T5 would coincide with a falling edge of ProcClockOut an extra wait period Tm (EW) is
generated by the EMI to force coincidence with a rising edge. Rising edge coincidence is only forced if wait
states are added, otherwise coincidence with a falling edge is permitted.
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Table 8.11 Memory wait

3 IMS TaOO engineering data

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHWtH Wait setup O.5Tm+3 ns 1,2
TPCHWtL Wait hold O.5Tm+3. ns 1,2
TWtLWtH Delay before re-assertion of Wait 2Tm ns

Notes

1 ProcClockOut load should not exceed 50pf.

2 If wait period exceeds refresh interval, refresh cycles will be lost.

Tstate I T2

ProcClockOut

MemWait

T3 T4 w T6 T1

MemADD-31

notMemRd

Address >-«««««««««< Data >X Address

" /

n~1 TI I ~ ~ I w I ~ I~
ProcClockOut~_ _

MemWait

TS.W I T5

ProcClockOut

MemWait

Figure 8.15 IMS T800 memory wait timing
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8.13 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
The transputer samples MemReq during the final period Tm of T6 of both refresh and external memory
cycles. To guarantee taking over the bus immediately following either, MemReq must be set up at least two
periods Tm before the end of T6. In the absence of an external memory cycle, MemReq is sampled during
every low period of ProcClockOut. The address bus is tristated two periods Tm after the ProcClockOut
rising edge which follows the sample. MemGranted is asserted one period Tm after that.

Removal of MemReq is sampled during each low period of ProcClockOut and MemGranted is removed
synchronously with the next falling edge of ProcClockOut. If accurate timing of DMA is required, MemReq
should be set low coincident with a falling edge of ProcClockOut. Further external bus activity, either refresh,
external cycles or reflection of internal cycles, will commence at the next rising edge of ProcClockOut.

Strobes are left in their inactive states during DMA. DMA cannot interrupt a refresh or external memory cycle,
and outstanding refresh cycles will occur before the bus is released to DMA. DMA does not interfere with
internal memory cycles in any way, although a program running in internal memory would have to wait for
the end of DMA before accessing external memory. DMA cannot access internal memory. If DMA extends
longer than one refresh interval (Memory Refresh Configuration Coding, table 8.8), the DMA user becomes
responsible for refresh. DMA may also inhibit an internally running program from accessing external memory.

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 8.12 Memory request

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMRHMGH Memory request response time 4 7 Tm 1
TMRLMGL Memory request end response time 2 5 Tm
TADZMGH Bus tristate before memory granted 1 Tm
TMGLADV Bus active after end of memory granted 1 Tm

Notes

These values assume no external memory cycle is in progress. If an external cycle is active, maximum time
could be (1 EMI cycle Tmx)+(1 refresh cycle TRfLRfH)+(6 periods Tm).

ProcClockOut

MemReq

MemGranted

MemnotWrDO
MemnotRfD1
MemAD2-31

T6

TMRHMGH TMRLMGL

TMGLADV

Figure 8.16 IMS T800 memory request timing
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MemReq

MemGranted

Reset

Configuration
sequence

o Pre- and post-configuration delays (figure 6.3)
I Internal configuration sequence
E External configuration seq~ence

R Initial refresh sequence
B Bootstrap sequence

Figure 8.17 IMS T800 DMA sequence at reset

MemReq //////7 "''---------
External Memory---U . H I ~Interface cycles --Sl Read or Wnte __R_e_fr_e_sh__f------- Read or Write rl-

MemGranted ______---J/ ,,'------
MemnotRfD1

MemnotWrDO
MemAD2-31

-------"'~---'/,---------«"---------

--------.....,)>---------«"---------

Figure 8.18 IMS T800 operation of MemReq, MemGranted with external, refresh memory cycles

MemReq //////////// " /7 "----
Internal Memory Cycles

External Memory
Interface activity

MemGranted / " / "---
MemnotWrDO

) ) CMemnotRfD1 (
MemAD2-31

Figure 8.19 IMS T800 operation of MemReq, MemGranted with external, internal memory cycles
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EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described
on page 51. Setting a high priority task to wait for an event input is a way of interrupting a transputer program.

Table 9.1 Event

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a ns 1
TKLVH Delay before re-assertion of event request 0 ns
TKHEWL Event acknowledge to end of event waiting 0 ns
TKLEWH End of event acknowledge to event waiting 0 ns

Notes

a is 3 processor cycles TPCLPCL.

EventReq

EventAck

TVHKH

TKHVL

TVLKL

TKLVH

Figure 9.1 IMS T800 event timing
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Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T800 links allow an acknowledge packet to be sent before the data packet has been fully received.
This overlapped acknowledge technique is fully compatible with all other INMOS transputer links.

The IMS T800 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can
be used at 5 or 20 Mbits/sec. Links are not synchronised with Clockln or ProcClockOut and are insensitive
to their phases. Thus links from independently clocked systems may communicate, providing only that the
clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LinkSpecial, LinkOSpecial and Link123Special. The link 0 speed can be set
independently. Table 10.1 shows uni-directional and bi-directional data rates in Kbytes/sec for each link
speed; LinknSpecial is to be read as LinkOSpecial when selecting link 0 speed and as Link123Special for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 10.1 Speed Settings for Transputer Links

Link Linkn Kbytes/sec
Special Special Mbits/sec Uni Si

0 0 10 910 1250
0 1 5 450 670
1 0 10 910 1250
1 1 20 1740 2350

~,-
I Ack I

Figure 10.1 IMS T800 link data and acknowledge packets
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Table 10.2 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr linkOut rise time 20 ns
TJQf linkOut fall time 10 ns
TJDr linkln rise time 20 ns
TJDf linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
5 Mbits/s 30 ns 1

CllZ Linkln capacitance @ f=1MHz 7 pF
Cll LinkOut load capacitance 50 pF
RM Series resistor for 100n transmission line 56 ohms

Notes

This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

900k
LinkOut

100/0

90% - - - - - - -
Linkln

100/0 - - - - -

- - --
TJQf

Figure 10.2 IMS T800 link timing

TJBskew

1.5v- - - - -

LinkO:ate~;~~ ------
Earliest TJQJD

Linkln

Figure 10.3 IMS T800 buffered link timing
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Transputer family device A

LlnkOut I 10 I Llnkln

____L_i_n_kl_n_,-----.~-------1_L_i_n_kO_u_t _
Transputer family device B

Figure 10.4 IMS T800 Links directly connected

Transputer family device A Zo=100ohms

LinkOut~>riLinkln

Linkin~ LinkOut
------- Zo=100ohms RM Transputer family device B

Figure 10.5 IMS T800 Links connected by transmission line

Transputer family device A

LinkOut ~----~----4 Linkln

buffers
Linkln 1----4-------<. LinkOut

Transputer family device B

Figure 10.6 IMS T800 Links connected by buffers
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11 Electrical specifications

11.1 DC electrical characteristics

Table 11.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
11 Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 2 W

Notes

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 11.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 60 pF
TA Operating temperature range IMS T800-S 0 70 °C 3
TA Operating temperature range IMS T800-M -55 125 °C 3

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.
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Table 11.3 DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
VIL Low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 IJ-A 1,2
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOl Output low voltage @ IOL=4mA 0.4 V 1,2
10S Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3,7

65 100 mA 1,2,4,7
25 90 mA 1,2,3,8
50 130 mA 1,2,4,8

10Z Tristate output current @ GND<VO<VCC ±10 IJ-A 1,2
PD Power dissipation 1.2 W 2,5
CIN Input capacitance @ f=1MHz 7 pF 6
COZ Output capacitance @ f=1MHz 10 pF 6

Notes

1 All voltages are with respect to GND.

2 Parameters for IMS T800-S measured at 4.75V<VCC<5.25V and O°C<TA<70°C.
Parameters for IMS T800-M measured at 4.75V<VCC<5.25V and -55°C<TA<125°C.
Input clock frequency == 5MHz.

3 Current sourced from non-link outputs.

4 Current sourced from link outputs.

5 Power dissipation varies with output loading and program execution.
Power dissipation for processor operating at 20MHz.

6 This parameter is sampled and not 1000/0 tested.

7 Parameter for IMS T800-S.

8 Parameter for IMS T800-M.

11.2 Equivalent circuits

Output

50pF

GND -.----+-----4~

load for: R1 R2 Equivalent load:

Link outputs 1K96 47K 1 Schottky TTl input
Other outputs 970R 24K 2 Schottky TTL inputs

Diodes are 1N916

Figure 11.1 load circuit for AC measurements
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Test point
Output under test

GND ---- --L

VCC

Figure 11.2 Tristate load circuit for AC measurements

11.3 AC timing characteristics

Table 11.4 Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TDr Input rising edges 2 20 ns 1,2
TDf Input falling edges 2 20 ns 1,2
Tar Output rising edges 25 ns 1
Tat Output falling edges 15 ns 1
TSOLaHZ Address high to tristate a a+6 ns 3
TSOLaLZ Address low to tristate a a+6 ns 3

Notes

1 Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

3 a is T2 where T2 can be from one to four periods Tm in length.
Address lines include MemnotWrDO, MemnotRfD1, MemAD2-31.

Taf

Figure 11.3 IMS T800 input and output edge timing

1.5V _ 1.5V _

TSOLaLZ

10% ------~-0--
Figure 11.4 IMS T800 tristate timing relative to notMemSO
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30 30
Time Time

ns Rise time ns
20 20 Fall time

10 Fall time 10

40 60 80 100

Load Capacitance pF

Link

40 60 80 100

Load Capacitance pF

EMI

Notes
Figure 11.5 Typical rise/fall tim'es

Skew is measured between notMemSO with a standard load (2 Schottky TTL inputs and 30pF) and
notMemSO with a load of 2 Schottky TTL inputs and varying capacitance.

11.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 11.6.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in °C and 8JA is the junction-to-ambient thermal resistance in
°CIW. 8JA for each package is given in the Packaging Specifications section.

800 T800-25

700
Power
PINT 600
mW

500

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 11.6 IMS T800 internal power dissipation vs VCC
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+
+

I I I I I ~ ~ TT T I III
20 25 30

Processor frequency MHz

Figure 11.7 IMS T8DD typical power dissipation with processor speed
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12 Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to occam
programs. For the same function, other languages should achieve approximately the same performance as
occam.

With transputers incorporating an FPU, this type of performance calculation is straight forward when consider
ing only integer data types. However, when floating point calculations using the REAL32 and REAL64 data
types are present in the program, complications arise due to the concurrency inherent in the transputer's de
sign whereby integer calculations can be overlapped with floating point calculations. A more comprehensive
guide to the impact of this concurrency on transputer performance can be found in The Transputer Instruction
Set - A Compiler Writers' Guide.

12.1 Performance overview

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type INT. The abbreviations in table 12.1 are used to represent the quantities
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table 12.1 Key to performance table

np number of component processes
ne number of processes earlier in queue
r 1 if INT parameter or array parameter, 0 if not
ts number of table entries (table size)
w width of constant in nibbles
p number of places to shift

.Eg expression used in a guard
Et timer expression used in a guard
Tb most significant bit set of multiplier ((-1) if the multiplier is 0)
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0)
Tbc most significant bit set in the two's complement of a negative multiplier
nsp Number of scalar parameters in a procedure
nap Number of array parameters in a procedure
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Table 12.2 Performance

Size (bytes) Time (cycles)

Names
variables

in expression
assigned to or input to
in PROC or FUNCTION call,

corresponding to an INT parameter
channels

Array Variables (for single dimension arrays)
constant subscript
variable subscript
expression subscript

Declarations
CHAN OF protocol
[size]CHAN OF protocol

PROC

Primitives
assignment
input
output
STOP
SKIP

Arithmetic operators
+ -
*
/
REM
» «

Modulo Arithmetic operators
PLUS
MINUS
TIMES (fast multiply, positive operand)
TIMES (fast multiply, negative operand)

Boolean operators
OR
AND NOT

Comparison operators
= constant
= variable
<> constant
<> variable
> <
>= <=

Bit operators
/\ \/ >< -

Expressions
constant in expression
check if error

1.1 +r
1.1+r

1.1 +r
1.1

o
5.3
5.3

3.1
9.4

body+2

o
4
1
2
o

1
2
2
2
2

2
1
1
1

4
1

o
2
1
3
1
2

2

w
4

2.1 +2(r)
1.1 +(r)

1.1 +(r)
2.1

o
7.3
7.3

3.1
2.2 + 20.2*size

o

o
26.5
26
25
o

1
39
40
38

3+p

2
1

4+Tbp
5+Tbc

8
2

1
3
3
5
2
4

2

w
6
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Table 12.3 Performance
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Size (bytes) Time (cycles)

Timers
timer input 2 3
timer AFTER

if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+ne*9

ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+ne*9
timer alt guard 8+2Eg+2Et 34+2Eg+2Et

Constructs
SEQ 0 0
:IF 1.3 1.4

if guard 3 4.3
ALT (non timer) 6 26

alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg

PAR 11.5+(np-1)*7.5 19.5+(np-1 )*30.5
WB:ILE 4 12

Procedure or function call
3.5+(nsp-2)*1.1 16.5+(nsp-2)*1.1

+nap*2.3 +nap*2.3
Replicators

repl icated SEQ 7.3{+5.1} (-3.8)+15.1 *count{+7.1}
repl icated :IF 12.3{+5.1 } (-2.6)+19.4*count{+7.1}
replicated ALT 24.8{+10.2} 25.4+33.4*count{+14.2}
replicated timer ALT 24.8{+1 0.2} 62.4+33.4*count{+14.2}
replicated PAR 39.f{+5.1f (-6.4)+70.9*count{+7.1}

12.2 Fast multiply, T:IMES

The IMS T800 has a fast integer multiplication instruction product. For a positive multiplier its execution time
is 4+Tbp cycles, and for a negative multiplier 5+Tbc cycles (table 12.1). The time taken for a multiplication
by zero is 3 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the occam modulo arithmetic operator T:IMES is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.
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12.3 Arithmetic

lU~

A set of functions are provided within the development system to support the efficient implementation of
multiple length integer arithmetic. In the IMS T800, floating point arithmetic is taken care of by the FPU. In
table 12.4 n gives the number of places shifted and all arguments and results are assumed to be local. Full
details of these functions are provided in the occam reference manual, supplied as part of the development
system and available as a separate publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling
overhead. These functions are compiled directly into special purpose instructions which are designed to
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic.

Table 12.4 Arithmetic performance

+ cycles for
Function Cycles parameter access t

LONGADD 2 7
LONGSUM 3 8
LONGSUB 2 7
LONGDIFF 3 8
LONGPROD 34 8
LONGDIV 36 8
SBIFTRIGBT (n<32) 4+n 8

(n>=32) n-27
SBIFTLEFT (n<32) 4+n 8

(n>=32) n-27
NORMALISE (n<32) n+6 7

(n>=32) n-25
(n=64) 4

ASBIFTRIGBT SBIFTRIGBT+2 5
ASBIFTLEFT SBIFTLEFT+4 5
ROTA'l'ERIGBT SHIFTRIGBT 7
ROTA'l'ELEFT SBIFTLEFT 7
FRACMOL LONGPROD+4 5

t Assuming local variables.
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12.4 IMS T800 floating point operations

All references to REAL32 or REAL64 operands within programs compiled for the IMS T800 normally produce
the following performance figures.

Table 12.5 Floating point performance

Size (bytes) REAL32 Time (cycles) REAL64 Time (cycles)

Names
variables

in expression 3.1 3 5
assigned to or input to 3.1 3 5
in PROC or FUNCTION call,

corresponding to a REAL
parameter 1.1+r 1.1 +r 1.1 +r

Arithmetic operators
+ - 2 7 7

* 2 11 20
/ 2 17 32
REM 11 19 34

Comparison operators
= 2 4 4
<> 3 6 6
> < 2 5 5
>= <= 3 7 7

Conversions
REAL32 to- 2 3
REAL64 to- 2 6
To INT32 from - 5 9 9
To J:NT64 from - 18 32 32
J:NT32 to- 3 7 7
INT64 to - 14 24 22

12.4.1 IMS T800 floating point functions

These functions are provided by the development system. They are compiled directly into special purpose
instructions designed to support the efficient implementation of some of the common mathematical functions
of other languages. The functions provide ABS and SQRT for both REAL32 and REAL64 operand types.

Table 12.6 IMS T800 floating point arithmetic performance

+ cycles for parameter access t
Function Cycles REAL32 REAL64
ABS 2 8
SQRT 118 8
DABS 2 12
DSQRT 244 12

t Assuming local variables.
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12.4.2 IMS T800 speci~1 purpose functions and procedures

The functions and procedures given in tables 12.8 and 12.9 are provided by the development system to give
access to the special instructions available on the IMS T800. Table 12.7 shows the key to the table.

Table 12.7 Key to special performance table

Tb most significant bit set in the word counting from zero
n number of words per row (consecutive memory locations)
r number of rows in the two dimensional move
nr number of bits to reverse

Table 12.8 Special purpose functions performance

+ cycles for
Function Cycles parameter access t

BITCOONT 2+Tb 2
CRCBYTE 11 8
CRCWORD 35 8
BITREVNBIT 5+nr 4
BITREVWORD 36 2

t Assum ing local variables.

Table 12.9 Special purpose procedures performance

+ cycles for
Procedure Cycles parameter access t

MOVE2D 8+(2n+23) * r 8
DRAW2D 8+(2n+23)*r 8
CLIP2D 8+(2n+23) *r 8

t Assuming local variables.

12.5 Effect of external memory

Extra processor cycles may be needed when program and/or data are held in external memory, depending
both on the operation being performed, and on the speed of the external memory. After a processor cycle
which initiates a write to memory, the processor continues execution at full speed until at least the next
memory access.

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will
depend upon the exact nature of the given sequence of operations.

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted
as e. For the IMS T800, with the fastest external memory the value of e is 2; a typical value for a large external
memory is 5.

If a program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated
for linear code sequences. For larger values of e, the number of extra cycles required for linear code
sequences may be estimated at (e-3)/4. A transfer of control may be estimated as requiring e+3 cycles.

These estimates may be refined for various constructs. In table 12.10 n denotes the number of components
in a construct. In the case of IF, the n'th conditional is the first to evaluate to TRUE, and the costs include the
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costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted
by b.

Table 12.10 External memory performance

IMS T800
Program off chip Data off chip

Boolean expressions e-2 0
IF 3en-8 en
Replicated IF (6e-4)n+7 (5e-2)n+8
Replicated SEQ (3e-3)n+2 (4e-2)n
PAR (3e-1)n+8 3en+4
Replicated PAR (10e-8)n+8 16en-12
ALT (2e-4)n+6e (2e-2)n+1Oe-8
Array assignment and 0 max (2e, e(b/2))

communication in
one transputer

The following simulation results illustrate the effect of storing program and/or data in external memory. The
results are normalized to 1 for both program and data on chip. The first program (Sieve of Erastosthenes)
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency,
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton
Raphson square root computation.

Table 12.11 IMS T800 external memory performance

Program e=2 e=3 e=4 e=5 On chip
Program off chip 1 1.3 1.5 1.7 1.9 1

2 1.1 1.2 1.2 1.3 1

Data off chip 1 1.5 1.8 2.1 2.3 1
2 1.2 1.4 1.6 1.7 1

Program and data off chip 1 1.8 2.2 2.7 3.2 1
2 1.3 1.6 1.8 2.0 1

12.6 Interrupt latency

If the process is a high priority one and no other high priority process is running, the latency is as described
in table 12.12. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also
given where relevant. Maximum latency assumes all memory accesses are internal ones.

Table 12.12 Interrupt latency

Typical Maximum
TPCLPCL Tm TPCLPCL Tm

IMS T800 with FPU in use 19 38 78 156

IMS T800 with FPU not in use 19 38 58 116
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13.1 84 pin grid array package
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Figure 13.1 IMS T800 84 pin grid array package pinout
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Figure 13.2 84 pin grid array package dimensions

Table 13.1 84 pin grid array package dimensions

Millimetres Inches
DIM NOM TOL NOM TOL Notes

A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.005
C 2.456 ±0.278 0.097 ±0.011
D 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.025 0.018 ±0.001 Pin diameter
G 1.143 ±0.127 0.045 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 7.2 grams

Table 13.2 84 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow
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14 Ordering

This section indicates the designation of speed and package selections for the various devices. Speed of
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor PLLx, as detailed in the external memory section.

For availability contact local INMOS sales office or authorised distributor.

Table 14.1 IMS T800 ordering details

INMOS Processor Processor
designation clock speed cycle time PLLx Package

IMS T800-G17S 17.5 MHz 57 ns 3.5 Ceramic Pin Grid
IMS T800-G20S 20.0 MHz 50 ns 4.0 Ceramic Pin Grid
IMS T800-G25S 25.0 MHz 40 ns 5.0 Ceramic Pin Grid
IMS T800-G30S 30.0 MHz 33 ns 6.0 Ceramic Pin Grid

IMS T800-G17M 17.5 MHz 57 ns 3.5 Ceramic Pin Grid MIL Spec
IMS T800-G20M 20.0 MHz 50 ns 4.0 Ceramic Pin Grid MIL Spec

The timing parameters in this datasheet are based on full characterisation of the 17 MHz and 20 MHz
parts. Data for higher speeds is based on tests on a limited number of samples and may change when full
characterisation is completed.
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IMS T425
transputer

Advance Data

32 bit architecture
33 ns internal cycle time
30 MIPS (peak) instruction rate
Pin compatible with IMS T800 and IMS T425
4 Kbytes on-chip static RAM
120 Mbytes/sec sustained data rate to internal memory
4 Gbytes directly addressable external memory
40 Mbytes/sec sustained data rate to external memory
630 ns response to interrupts
Four INMOS serial links 5/10/20 Mbits/sec
High performance graphics support with block move
instructions
Boot from ROM or communication links
Single 5 MHz clock input
Single +5V ±5% power supply
MIL-STD-883C processing will be available

APPLICATIONS

High speed multi processor systems
High performance graphics processing
Supercomputers
Workstations and workstation clusters
Digital signal processing
Accelerator processors
Distributed databases
System simulation
Telecommunications
Robotics
Fault tolerant systems
Image processing
Pattern recognition
Artificial intelligence

System
Services

4k bytes
of

On-chip
RAM

External
Memory
Interface

42 1426 01 October 1988
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1 Introduction

The IMS T425 transputer is a 32 bit CMOS microcomputer with graphics support. It has 4 Kbytes on-chip
RAM for high speed processing, a configurable memory interface and four standard INMOS communication
links. The instruction set achieves efficient implementation of high level languages and provides direct support
for the occam model of concurrency when using either a single transputer or a network. Procedure calls,
process switching and typical interrupt latency are sub-microsecond.

For convenience of description, the IMS T425 operation is split into the basic blocks shown in figure 1.1.

System
services

LinkSpecial
LinkOSpecial
Link123Special

LinklnO
LinkOutO

Linkln1
LinkOut1

Linkln2
LinkOut2

Linkln3
LinkOut3

E EventReq
Event EventAck

""----- EventWaitlng

MemnotWrDO
32 MemnotRfD1

MemAD2-31

4k bytes
of 32

On-chip
RAM

Fxternal
Memory
Interface

ProcClockOut
notMemSO-4

notMemWrBO-3
notMemRd
nOlMemnI

RefreshPending
MemWait

MemConfig
MemReq

MemGranted

DisablelntRam

VCC
GND

CapPlus
CapMinus

Reset
Analyse
Errorln

Error
BootFromROM

Clockln
ProcSpeedSelectO-2

Figure 1.1 IMS T425 block diagram

The processor speed of a device can be pin-selected in stages from 17.5 MHz up to the maximum allowed
for the part. A device running at 30 MHz achieves an instruction throughput of 30 MIPS peak and 15 MIPS
sustained. The extended temperature version of the device complies with MIL-STD-883C.

High performance graphics support is provided by microcoded block move instructions which operate at the
speed of memory. The two-dimensional block move instructions provide for contiguous block moves as well
as block copying of either non-zero bytes of data only or zero bytes only. Block move instructions can be used
to provide graphics operations such as text manipulation, windowing, panning, scrolling and screen updating.

Cyclic redundancy checking (CRC) instructions are available for use on arbitrary length serial data streams,
to provide error detection where data integrity is critical. Another feature of the IMS T425, useful for pattern
recognition, is the facility to count bits set in a word.
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The IMS T425 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface
uses multiplexed data and address lines and provides a data rate of up to 4 bytes every 100 nanoseconds
(40 Mbytes/sec) for a 30 MHz device. A configurable memory controller provides all timing, control and DRAM
refresh signals for a wide variety of mixed memory systems.

System Services include processor reset and bootstrap control, together with facilities for error analysis. Error
signals may be daisy-chained in multi-transputer systems.

The standard INMOS communication links allow networks of transputer family products to be constructed by
direct point to point connections with no external logic. The IMS T425 links support the standard operating
speed of 10 Mbits/sec, but also operate at 5 or 20 Mbitslsec. Each link can transfer data bi-directionally at
up to 2.35 Mbytes/sec.

The IMS T425 is pin compatible with the IMS T800 and can be plugged directly into a circuit designed for
that device. It has a number of additions to improve hardware interfacing and to facilitate software initialising
and debugging. The improvements have been made in an upwards-compatible manner. Software should be
recompiled, although no changes to the source code are necessary.

The IMS T425-20 is also pin compatible with the IMS T414-20, as the extra inputs used are all held to ground
on the IMS T414. The IMS T425-20 can thus be plugged directly into a circuit designed for a 20 MHz version
of the IMS T414.

The transputer is designed to implement the occam language, detailed in the occam Reference Manual, but
also efficiently supports other languages such as C, Pascal and Fortran. Access to the transputer at machine
level is seldom required, but if necessary refer to The Transputer Instruction Set - A Compiler Writers' Guide.
The instruction set of the IMS T425 is the same as that of the IMS T800, except that the IMS T800 floating
point instructions are replaced by the IMS T414 floating point support instructions.

This data sheet supplies hardware implementation and characterisation details for the IMS T425. It is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam.
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2 Pin designations

Table 2.1 IMS T425 system services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
ProcSpeedSelectO-2 in Processor speed selectors
Reset in System reset
Error out Error indicator
Errorln in Error daisychain input
Analyse in Error analysis
BootFromRom in Boot from external ROM or from link
DisablelntRAM in Disable internal RAM

Table 2.2 IMS T425 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemnotWrDO in/out Multiplexed data bit 0 and write cycle warning
MemnotRfD1 in/out Multiplexed data bit 1 and refresh warning
MemAD2-31 in/out Multiplexed data and address bus
notMemRd out Read strobe
notMemWrBD-3 out Four byte-addressing write strobes
notMemSO-4 out Five general purpose strobes
notMemRf out Dynamic memory refresh indicator
RefreshPending out Dynamic refresh is pending
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted
MemConfig in Memory configuration data input

Table 2.3 IMS T425 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge
EventWaitlng out Event input requested by software

Table 2.4 IMS T425 link

Pin In/Out Function
LinklnQ-3 in Four serial data input channels
LlnkOutQ-3 out Four serial data output channels
LlnkSpeclal in Select non-standard speed as 5 or 20 Mbits/sec
LinkOSpeclal in Select special speed for Link 0
Link123Special in Select special speed for Links 1,2,3

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 174.
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3 Processor

The 32 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes
of memory via the External Memory Interface (EMI).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-ehip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, B an,d C registers which form an evaluation stack.

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in The Transputer Instruction Set - A Compiler Writers' Guide.

pLR . tegls ers ocas rogram

A

B

C

Workspace -----..
Next Inst

Operand

Figure 3.1 Registers
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3.2 Instructions
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The instruction set has been designed for simple and efficient compilation of high-level languages. All in
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

I Function I Data I
743

I Operand Register I
~ 0

I

3.2.1 Direct functions

Figure 3.2 Instruction format

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these,
shown in table 3.1, are used to encode the most important functions.

Table 3.1 Direct functions

load constant

load local

load non-local

jump

add constant

store local

store non-local

conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
lo~ded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C, Fortran, Pascal or ADA.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.
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The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2 Expression evaluation

Program Mnemonic

x:= 0 Idc 0
stl x

x := #24 pfix 2
Idc 4
stl x

x := y + z Idl y
Idl z
add
stl x

3.2.5 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.



120 4 IMS T425 engineering data

3.3 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 121).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active Being executed.
- On a list waiting to be executed.

Inactive - Ready to input.
Ready to output.

- Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 121). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Figure 3.3 Linked process list

Table 3.3 Priority queue control registers

Function High Priority Low Priority
Pointer to front of active process list FptrO Fptr1
Pointer to back of active process list BptrO Bptr1

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 124). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1 ms apart.
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A process can only be descheduled on certain instructions, known as descheduling points (page 124). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 J.lS, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T425 supports two levels of priority. Priority 1 (Iow priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer's time; Le. it has a distribution of descheduling points (page 124).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the
standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 58 cycles (assuming use of on-chip RAM).

3.5 Communications

Communication between processes is achieved by means of channels. Process communication is point-to
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
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links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Timers

The transputer has two 32 bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes. and is incremented every microsecond, cycling com
pletely in approximately 4295 seconds. The other is accessible only to low priority processes and is incre
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
76 hours.

Table 3.4 Timer registers

ClockO
Clock1
TNextRegO
TNextReg1

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The· current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

TimerO

TNextRegO '---__~

Workspaces

Alarm

21

Program

TPtrLoc Empty

31

Figure 3.4 Timer registers
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4 Instruction set summary

The Function Codes table 4.7. gives the basic function code set (page 118). Where the operand is less
than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative the first
prefix instruction will be nfix.

Table 4.1 prefix coding

Function Memory
Mnemonic code code

Ide #3 #4 #43

Ide #35
is coded as

pfix #3 #2 #23
Ide #5 #4 #45

Ide #987
is coded as

pfix #9 #2 #29
pfix #8 #2 #28
Ide #7 #4 #47

Ide -31 (Ide #FFFFFFE1)
is coded as

nfix #1 #6 #61
Ide #1 #4 #41

Tables 4.8 to 4.21 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2 operate coding

Function Memory
Mnemonic code code

add (op. code #5) #F5
is coded as

opr add #F #F5

ladd (op. code #1 6) #21F6
is coded as

pfix #1 #2 #21
opr #6 #F #F6

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where the memory code
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it
is interpreted from table 4.3.
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Table 4.3 Instruction set interpretation

4 IMS T425 engineering data

Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

m Bit number of the highest bit set in the absolute value of register A.
Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

p Number of words per row.

r Number of rows.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4 Instruction features

Ident Feature See page:

D The instruction is a descheduling point 124

E The instruction wilf affect the Error flag 124, 135

4.1 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 120). They are
also the ones at which the processor will halt if the Analyse pin is asserted (page 134).

Table 4.5 Descheduling point instructions

input message
timer alt wait
jump

4.2 Error instructions

output message
timer input
loop end

output byte
stop on error
end process

output word
alt wait
stop process

The instructions in table 4.6 are the only ones which can affect the Error flag (page 135) directly.

Table 4.6 Error setting instructions

subtract
divide
long divide

add
multiply
long add
set error
check word

add constant
fractional mUltiply
long subtract
testerr
check subscript from 0 check single

remainder

cf/err
check count from 1
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Table 4.7 IMS T425 function codes

Function Memory Processor 0
Code Code Mnemonic Cycles Name E

0 OX j 3 jump D
1 1X Idlp 1 load local pointer
2 2X pfix 1 prefix
3 3X Idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnlp 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)

4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
D DX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

Table 4.8 IMS T425 arithmetic/logical operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24FO shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 38 multiply E
72 27F2 fmul 35 fractional multiply (no rounding) E

40 fractional multiply (rounding) E
2C 22FC div 39 divide E
1F 21FF rem 37 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product for positive register A

m+5 product for negative register A
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Table 4.9 IMS T425 long arithmetic operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 3 long sum
4F 24FF Idiff 3 long diff
31 23F1 Imul 33 long multiply
1A 21 FA Idiv 35 long divide E
36 23F6 Ishl n+3 long shift left (n<32)

n-28 long shift left{n~32)

35 23F5 Ishr n+3 long shift right (n<32)
n-28 long shift right (n~32)

19 21F9 norm n+5 normalise (n<32)
n-26 normalise (n~32)

3 normalise (n=64)

Table 4.10 IMS T425 general operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

00 FO rev 1 reverse
3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
1D 21FD xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer
5A 25FA dup 1 duplicate top of stack
79 27F9 pop 1 pop processor stack

Table 4.11 IMS T425 floating point support operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

73 27F3 cflerr 3 check floating point error E
9C 29FC fptesterr 1 load value true (FPU not present)
63 26F3 unpacksn 15 unpack single length fp number
60 26FD roundsn 12/15 round single length fp number
6C 26FC postnormsn 5/30 post-normalise correction of

single length fp number

71 27F1 Idinf 1 load single length infinity

Processor cycles are shown as Typical/Maximum cycles.
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Table 4.12 IMS T425 2D block move operation codes

121

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

58 25F8 move2dinit 8 initialise data for 2D block move
5C 25FC move2dall (2p+23)*r 2D block copy
5D 25FD move2dnonzero (2p+23)*r 2D block copy non-zero bytes
5E 25FE move2dzero (2p+23)*r 2D block copy zero bytes

Table 4.13 IMS T425 CRC and bit operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

74 27F4 crcword 35 calculate crc on word
75 27F5 crcbyte 11 calculate crc on byte

76 27F6 bitcnt b+2 count bits set in word
77 27F7 bitrevword 36 reverse bits in word
78 27F8 bitrevnbits n+4 reverse bottom n bits· in word

Table 4.14 IMS T425 indexing/array operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

02 F2 bsub 1 byte subscript
OA FA wsub 2 word subscript
81 28F1 wsubdb 3 form double word subscript
34 23F4 bcnt 2 byte count
3F 23FF wcnt 5 word count
01 F1 Ib 5 load byte
38 23F8 sb 4 store byte

4A 24FA move 2w+8 move message

Table 4.15 IMS T425 timer handling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

22 22F2 Idtimer 2 load timer
28 22F8 tin 30 timer input (time future) D

4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D

48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer
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Table 4.16 IMS T425 input/output operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

07 F7 in 2w+19 input message 0
OB FB out 2w+19 output message 0
OF FF outword 23 output word 0
OE FE outbyte 23 output byte 0

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) 0

17 alt wait (channel not ready) 0
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip
30 23FO diss 4 disable skip

12 21F2 resetch 3 reset channel
48 24F8 enbc 7 enable channel (ready)

5 enable channel (not ready)
2F 22FF disc 8 disable channel

Table 4.17 IMS T425 control operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

20 22FO ret 5 return
1B 21FB Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) 0

5 loop end (exit) 0

Table 4.18 IMS T425 scheduling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

OD FD startp 12 start process 0
03 F3 endp 13 end process 0
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority
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Table 4.19 IMS T425 error handling operation codes
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Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

13 21F3 csubO 2 check subscript from 0 E
40 24FO ccnt1 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21FO seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) 0
57 25F7 clrhalterr 1 clear halt-on-error

5~ 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error

Table 4.20 IMS T425 processor initialisation operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FO savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25FO sthb 1 store high priority back pointer
1C 21FC stlf 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer

17C 2127FC Iddevid 1 load device identity
7E 27FE ldmemstartval 1 load value of memstart address

Table 4.21 IMS T425 debugger support codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

0 00 jump 0 3 jump 0 (break not enabled) 0
11 jump 0 (break enabled. high priority)
13 jump 0 (break enabled. Iow priority)

81 2BF1 break 9 break (high priority)
11 break (Iow priority)

82 28F2 clrjObreak 1 clear jump 0 break enable flag
B3 2BF3 setjObreak 1 set jump 0 break enable flag
B4 28F4 testjObreak 2 test jump 0 break enable flag set
7A 27FA timerdisableh 1 disable high priority timer interrupt
78 27FB timerdisablel 1 disable low priority timer interrupt
7C 27FC timerenableh 6 enable high priority timer interrupt
70 27FO timerenablel 6 enable low priority timer interrupt
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5 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

5.1 Povver

Power is supplied .to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

5.2 CapPlus, CapMlnus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1~F
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative
terminal should be connected to CapMlnus. Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

CapPlus

CapMinus

P.C.B. track

P.C.B. track

Decoupling
capacitor

1~F

5.3 Clockln

Figure 5.1 Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks prOViding
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockln pulse vvidths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain vvithin the specified voltage and time limits.
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Table 5.1 Input clock

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (table 10.3).

90% K--
100/0- - - - - ~TDCf -

TDCerror

2.0v- -
1.5vO.8v====-

TDCerror

TDCLDCH TDCHDCL

TDCLDCL90%----A
100/0- - - -- - -TDC~ -

Figure 5.2 Clockln timing

5.4 ProcSpeedSelectO-2

Processor speed of the IMS T425 is variable in discrete steps. The desired speed can be selected, up to the
maximum rated for a particular component, by the three speed select lines ProcSpeedSelectO-2. The pins
are tied high or low, according to the table below, for the various speeds. The ProcSpeedSelectO-2 pins
are designated HoldToGND on the IMS T414, and coding is so arranged that the IMS T425 can be plugged
directly into a board designed for a 20 MHz IMS T414.

Only six of the possible speed select combinations are currently used; the other two are not valid speed
selectors. The frequency of Clockln for the speeds given in the table is 5 MHz.
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Table 5.2 Processor speed selection

Proc Proc Proc Processor Processor
Speed Speed Speed Clock Cycle
Select2 Select1 SelectO Speed MHz Time nS Notes

0 0 0 20.0 50.0
0 0 1 22.5 44.4
0 1 0 25.0 40.0
0 1 1 30.0 33.3
1 0 0 35.0 28.6
1 0 1 Invalid
1 1 0 17.5 57.1
1 1 1 Invalid

Note: Inclusion of a speed selection in this table does not imply immediate availability.

5.5 Reset

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC is
valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge of
Reset initialises the transputer, triggers the memory configuration sequence and starts the bootstrap routine.
Link outputs are forced low during reset; link inputs and EventReq should be held low. Memory request
(DMA) must not occur whilst Reset is high but can occur before bootstrap (page 157).

After the end of Reset there will be a delay of 144 periods of Clockln (figure 5.3). Following this, the
MemWrDO, MemRfD1 and MemAD2-31 pins will be scanned to check for the existence of a pre-programmed
memory interface configuration (page 147). This lasts for a further 144 periods of Clockln. Regardless of
whether a configuration was found, 36 configuration read cycles will then be performed on external memory
using the default memory configuration (page 148), in an attempt to access the external configuration ROM.
A delay will then occur, its period depending on the actual configuration. Finally eight complete and con
secutive refresh cycles will initialise any dynamic RAM, using the new memory configuration. If the memory
configuration does not enable refresh of dynamic RAM the refresh cycles will be replaced by an equivalent
delay with no external memory activity.

If BootFromRom is high bootstrapping will then take place immediately, using data from external memory;
otherwise the transputer will await an input from any link. The processor will be in the low priority state.

BootDelay

Reset IL..- _
Action 1......~---..........I....-------...~I...----i..~I......:-----.~I..I-----.*1.....----i..~1

Internal External
configuration configuration Delay Refresh

Figure 5.3 IMS T425 post-reset sequence

5.6 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once
only by the transputer, before the first instruction is executed after Reset is taken low.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in
ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low priority
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state, and the W register points to MemStart (page 136).

Table 5.3 Reset and Analyse

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 Clockln 1
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFromRom hold after Reset 0 ms 3
TALBRX BootFromRom hold after Analyse 3

Notes

1 Full periods of Clockln TDCLDCL required.

2 At power-on reset.

3 Must be stable until after end of bootstrap period. See Bootstrap section.

Clockln

VCC

Reset

BootFromRom

TRLBRX

Figure 5.4 Transputer reset timing with Analyse low

TRHRL

Reset

TAHRH

Analyse

BootFromRom

Figure 5.5 Transputer reset and analyse timing
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If BootFromRom is connected low (e.g. to' GND) the transputer will wait for the first bootstrap message to
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process.
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately
above the loaded code is used as work space. Messages arriving on other links after the control byte has
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs
from them.

5.7 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The
first four byte word is taken as an internal or external memory address at which to poke (write) the second
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

5.8 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling point
(page 124). From Analyse being asserted, the processor will halt within three time slice periods plus the
time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Processor flags Error, HaltOnError and EnableJOBreak
are normally cleared at reset on the IMS T425; however, if Analyse is asserted the flags are not altered.
Memory refresh continues.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh
cycles will occur; the previous memory configuration will be used for any external memory accesses. If
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 5.4.

Table 5.4 Register values after Analyse

MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of I when the processor halted.

B The value of W when the processor halted, together with the priority of the process
when the transputer was halted (Le. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.



5 System services

5.9 Error, Errorln
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The Error pin carries the OR'ed output of the internal Error flag and the Errorln input. If Error is high it
indicates either that Errorln is high or that an error was detected in one of the processes. An internal error
can be caused, for example, by arithmetic overflow, divide by zero, array bounds violation or software setting
the flag directly (page 124). Once set, the Errorflag is only cleared by executing the instruction testerr. The
error is not cleared by processor reset, in order that analysis can identify any errant transputer (page 134).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data. Errorln does
not directly affect the status of a processor in any way.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnErrorhas been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers
to halt. This can be done by 'daisy-chaining' the Errorln and Error pins of a number of processors and
applying the final Error output signal to the EventReq pin of a suitably programmed master transputer. Since
the process state is preserved when stopped by an error, the master transputer can then use the analyse
function to debug the fault. When using such a circuit, note that the Error flag is in an indeterminate state on
power up; the circuit and software should be designed with this in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved for
the duration of the high priority process and restored at the conclusion of it. Status of both flags is transmitted
to the high priority process. Either flag can be altered in the process without upsetting the error status of any
complex operation being carried out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data. Memory refresh will continue to take place.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I points
one byte past the instruction being executed. In both cases I will be copied to register A.

Master
Transputer

T800
Event slave 0

GND Errorln Error
(transputer links not shown)

T425 T800
slave 1 slave n

Errorln Error ._. Errorln Error

Figure 5.6 Error handling in a multi-transputer system
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6 Memory

The IMS T425 has 4 Kbytes of fast internal static memory for high rates of data throughput. Each internal
memory access takes one processor cycle ProcClockOut (page 138). The transputer can also access
4 Gbytes of external memory space. Internal and external memory are part of the same linear address
space. Internal RAM can be disabled by holding DisablelntRAM high. All internal addresses are then
mapped to external RAM. This pin should not be altered after Reset has been taken low.

IMS T425 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #80000000 and extends to #80000FFF. User memory
begins at #80000070; this location is given the name MemStart. An instruction Idmemstartval is provided to
obtain the value of MemStart.

The context of a process in the transputer model involves a workspace descriptor (WPtr) and an instruction
pointer (IPtr). WPtr is a word address pointer to a workspace in memory. IPtr points to the next instruction to
be executed for the process which is the currently executing process. The context switch performed by the
breakpoint instruction swaps the WPtr and IPtr of the currently executing process with the WPtr and IPtr held
above MemStart. Two contexts are held above MemStart, one for high priority and one for 'Iow priority; this
allows processes at both levels to have breakpoints. Note that on bootstrapping from a link, these contexts
are overwritten by the loaded code. If this is not acceptable, the values should be peeked from memory
before bootstrapping from a link.

A reserved area at the bottom of internal memory is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one. Other locations are reserved for extended
features such as block moves.

External memory space starts at #80001000 and extends up through #00000000 to #7FFFFFFF. Memory
configuration data and ROM bootstrapping code must be in the most positive address space, starting at
#7FFFFF6C and #7FFFFFFE respectively. Address space immediately below this is conventionally used for
ROM based code.
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Event
Link 3 Input
Link 2 Input
Link 1 Input

Link 0 Input

Link 3 Output
Link 2 Output

Link 1 Output
Link 0 Output

#08
#07

#06
#05
#04

#03
#02
#01

#00(Base of memory)

Note 1

Reserved for
Extended functions

Ereg IntSaveLoc

STATUSlntSaveLoc

CreglntSaveLoc
Breg IntSaveLoc

Areg IntSaveLoc

IptrlntSaveLoc

WdesclntSaveLoc

TPtrLoc1
TPtrLocO

Event
Link 3 Input
Link 2 Input
Link 1 Input

Link 0 Input

Link 3 Output
Link 2 Output

Link 1 Output
Link 0 Output

hi Machine map 10 Byte address Word offsets ~_o_c_c_a_m_m_a",;;,p__1

..IReset Inst I I#7FFFFFFE I
#7FFFFFF8

Memory configuration #7FFFFF6C

.. .. #0 ....

..I I#80001 000 - Start of external memory - #0400 I ..I
.. #80000070 MemStart MemStart #1 C ..

#8000006C
#80000048

#80000044

#80000040

#8000003C
#80000038

#80000034

#80000030

#8000002C
#80000028

#80000024

#80000020
#8000001C
#80000018
#80000014

#80000010

#8000000C
#80000008
#80000004

#80000000

Figure 6.1 IMS T425 memory map

These locations are used as auxiliary processor registers and should not be manipulated by the user.
Like processor registers, their contents may be useful for implementing debugging tools (Analyse,
page 134). For details see The Transputer Instruction Set - A Compiler Writers' Guide.
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7 External memory Interface

The External Memory Interface (EMI) allows access to a 32 bit address space, supporting dynamic and static
RAM as well as ROM and EPROM. EMI timing can be configured at Reset to cater for most memory types
and speeds, and a program is supplied with the Transputer Development System to aid in this configuration.

There are 13 internal configurations which can be selected by a single pin connection (page 147). If none
are suitable the user can configure the interface to specific requirements, as shown in page 148.

7.1 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (ordering section).

The time value Tm is used to define the duration of Tstates and, hence, the length of external memory cycles;
its value is exactly half the period of one ProcClockOut cycle (O.5*TPCLPCL), regardless of mark/space
ratio of ProcClockOut.

Edges of the various external memory strobes coincide with rising or falling edges of ProcClockOut. It should
be noted, however, that there is a skew associated with each coincidence. The value of skew depends on
whether coincidence occurs when the ProcClockOut edge and strobe edge are both rising, when both are
falling or if either is rising when the other is falling. Timing values given in the strobe tables show the best
and worst cases. If a more accurate timing relationship is required, the exact Tstate timing and strobe edge
to ProcClockOut relationships should be calculated and the correct skew factors applied from the edge skew
timing table 7.4.

The timing parameters in the following tables are based on full characterisation of the 17 MHz and 20 MHz
parts. Data for higher speeds is based on tests on a limited number of samples and may change when full
characterisation is completed.

7.2 Tstates

The external memory cycle is divided into six Tstates with the following functions:

T1 Address setup time before address valid strobe.

T2 Address hold time after address valid strobe.

T3 Read cycle tristate or write cycle data setup.

T4 Extendable data setup time.

TS Read or write data.

T6 Data hold.

Under normal conditions each Tstate may be from one to four periods Tm long, the duration being set during
memory configuration. The default condition on Reset is that all Tstates are the maximum four periods Tm
long to allow external initialisation cycles to read slow ROM.

Period T4 can be extended indefinitely by adding externally generated wait states.

An external memory cycle is always an even number of periods Tm in length and the start of T1 always
coincides with a rising edge of ProcClockOut. If the total configured quantity of periods Tm is an odd
number, one extra period Tm will be added at the end of T6 to force the start of the next T1 to coincide with
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a rising edge of ProcClockOut. This period is designated E in configuration diagrams (figure 7.11).

Table 7.1 ProcClockOut
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SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCLPCL ProcClockOut period a-1 a a+1 ns 1
TPCHPCL ProcClockOut pulse width high b-2.5 b b+2.5 ns 2
TPCLPCH ProcClockOut pulse width low c ns 3
Tm ProcClockOut half cycle b-O.5 b b+O.5 ns 2
TPCstab ProcClockOut stability 4 0/0 4

Notes

a is TDCLDCLlPLLx.

2 b is 0.5*TPCLPCL (half the processor clock period).

3 c is TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

1.5v - - - - - - - - - -

TPCLPCH TPCHPCL
TPCLPCL

Figure 7.1 IMS T425 ProcClockOut timing

7.3 Internal access

During an internal memory access cycle the external memory interface bus MemAD2·31 reflects the word
address used to access internal RAM, MemnotWrDO reflects the read/write operation and MemnotRfD1 is
high; all control strobes are inactive. This is true unless and until a memory refresh cycle or DMA (memory
request) activity takes place, when the bus will carry the appropriate external address or data.

The bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 134).

ProcClockOut

MemnotWrDO~ Write / Read Read "<
MemnotRfD1 y "<
MemAD2-31 ==x Address X Address X Address X

Figure 7.2 IMS T425 bus activity for internal memory cycle
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7.4 MemAD2-31

4 IM~ 142~ engineering aata

External memory addresses and data are multiplexed on one bus. Only the top 30 bits of address are
output on the external memory interface, using pins MemAD2-31. They are normally output only during
Tstates T1 and T2, and should be latched during this time. Byte addressing is carried out internally by the
transputer for read cycles. For write cycles the relevant bytes in memory are addressed by the write strobes
notMemWrBQ-3.

The data bus is 32 bits wide. It uses MemAD2-31 for the top 30 bits and MemnotRfD1 and MemnotWrDO
for the lower two bits. Read cycle data may be set up on the bus at any time after the start of T3, but must
be valid when the transputer reads it at the end of T5. Data may be removed any time during T6, but must
be off the bus no later than the end of that period.

Write data is placed on the bus at the start of T3 and removed at the end of T6. If T6 is extended to force
the next cycle Tmx (page 140) to start on a rising edge of ProcClockOut, data will be valid during this time
also.

7.5 MemnotWrDO

During T1 and T2 this pin will be low if the cycle is a write cycle, otherwise it will be high. During Tstates T3
to T6 it becomes bit 0 of the data bus. In both cases it follows the general timing of MemAD2-31.

7.6 MemnotRfD1

During T1 and T2, this pin is low if the address on MemAD2-31 is a refresh address, otherwise it is high.
During Tstates T3 to T6 it becomes bit 1 of the data bus. In both cases it follows the general timing of
MemAD2-31.

7.7 notMemRd

For a read cycle the read strobe notMemRd is low during T4 and T5. Data is read by the transputer on the
rising edge of this strobe, and may be removed immediately afterward. If the strobe duration is insufficient it
may be extended by adding extra periods Tm to either or both of the Tstates T4 and T5. Further extension
may be obtained by inserting wait states at the end of T4.

In the read cycle timing diagrams ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm.

7.8 notMemSO-4

To facilitate control of different types of memory and devices, the EMI is provided with five strobe outputs,
four of which can be configured by the user. The strobes are conventionally assigned the functions shown in
the read and write cycle diagrams, although there is no compulsion to retain these designations.

notMemSO is a fixed format strobe. Its leading edge is always coincident with the start of T2 and its trailing
edge always coincident with the end of T5.

The leading edge of notMemS1 is always coincident with the start of T2, but its duration may be configured
to be from zero to 31 periods Tm. Regardless of the configured duration, the strobe will terminate no later
than the end of T6. The strobe is sometimes programmed to extend beyond the normal end of Tmx. When
wait states are inserted into an EMI cycle the end of Tmx is delayed, but the potential active duration of the
strobe is not altered. Thus the strobe can be configured to terminate relatively early under certain conditions
(page 155). If notMemS1 is configured to be zero it will never go low.
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notMemS2, notMemS3 and notMemS4 are identical in operation. They all terminate at the end of T5, but
the start of each can be delayed from one to 31 periods Tm beyond the start of T2. If the duration of one of
these strobes would take it past the end of T5 it will stay high. This can be used to cause a strobe to become
active only when wait states are inserted. If one of these strobes is configured to zero it will never go low.
Figure 7.5 shows the effect of Wait on strobes in more detail; each division on the scale is one period Tm.

Table 7.2 Read

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TaZdV Address tristate to data valid 0 ns
TdVRdH Data setup before read 20 ns
TRdHdX Data hold after read 0 ns
TSOLRdL notMemSO before start of read a-2 8 8+2 ns 1
TSOHRdH End of read from end of notMemSO -1 1 ns
TRdLRdH Read period b b+6 ns 2

Notes

1 a is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

2 b is total of T4+Twalt+T5 where T4, T5 can be from one to four periods Tm each in length and Twalt may be
any number of periods Tm in length.

Tstate I T1 I T2 I T3 I T4 I T5 I T6 I T1 I
ProcClockOut

Tmx

Address

TSOLRdL

TSOLSOH

TSOLS1L(D
TSOLS1H 5

TaVSOL

MemnotWrDO

MemnotRfD1

MemAD2-31

notMemRd

notMemSO
(CE)

notMemS1
(ALE)

Figure 7.3 IMS T425 external read cycle: static memory



Tstate I T1 I T2 I T3 I T4 I T5 I T6 I T1 I
ProcClockOut

Tmx

MemnotWrDO

MemnotRfD1

MemAD2-31

notMemRd

Address

TaVSOL

TSOLRdL TRdLRdH

notMemSO
(RAS)

notMemS1
(ALE)

notMemS2
(AMUX)

notMemS3
(CAS)

notMemS4
(Wait state)

TSOLSOH

TSOLS1LCD ®
TSOLS1H 5

TSOLS2H@

TSOLS2L@

TSOLS3H0

TSOLS3L@

TSOLS4H@

TSOLS4L 4

TSOHS1H@

TSOHS2H@

TSOHS3H@

TSOHS4H@

Figure 7.4 IMS T425 external read cycle: dynamic memory
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Table 7.3 IMS T425 strobe timing

SYMBOL en) PARAMETER MIN NOM MAX UNITS NOTE
TaVSOL Address setup before notMemSO a ns 1
TSOLaX Address hold after notMemSO b ns 2
TSOLSOH notMemSO pulse width low c c+6 ns 3
TSOLS1L 1 notMemS1 from notMemSO 0 2 ns
TSOLS1H 5 notMemS1 end from notMemSO d d+6 ns 4,6
TSOHS1H 9 notMemS1 end from notMemSO end e-1 e+4 ns 5,6
TSOLS2L 2 notMemS2 delayed after notMemSO 1-1 1+4 ns 7
TSOLS2H 6 notMemS2 end from notMemSO c+4 c+8 ns 3
TSOHS2H 10 notMemS2 end from notMemSO end 0 2 ns
TSOLS3L 3 notMem~ delayed after notMemSO 1-1 1+3 ns 7
TSOLS3H 7 notMemS3 end from notMemSO c+4 c+8 ns 3
TSOHS3H 11 notMemS3 end from notMemSO end 0 2 ns
TSOLS4L 4 notMemS4 delayed after notMemSO 1-1 1+2 ns 7
TSOLS4H 8 notMemS4 end from notMemSO c+4 c+8 ns 3
TSOHS4H 12 notMemS4 end from notMemSO end 0 2 ns
Tmx Complete external memory cycle g 8

Notes

a is T1 where T1 can be from one to four periods Tm in length.

2 b is T2 where T2 can be from one to four periods Tm in length.

3 c is total of T2+T3+T4+Twalt+T5 where T2, T3, T4, T5 can be from one to four per!ods Tm each in length and
Twalt may be any number of periods Tm in length.

4 d can be from zero to 31 periods Tm in length.

S e can be from -27 to +4 periods Tm in length.

6 If the configuration would cause the strobe to remain active past the end of T6 it will go high at the end of T6.
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx.

7 f can be from zero to 31 periods Tm in length. If this length would cause the strobe to remain active past the
end of T5 it will go high at the end of T5. If the strobe value is zero periods Tm it will remain low throughout
the complete cycle Tmx.

8 g is one complete external memory cycle comprising the total of T1 +T2+T3+T4+Twalt+T5+T6 where T1, T2,
T3, T4, T5 can be from one to four periods Tm each in length, T6 can be from one to five periods Tm in length
and Twalt may be zero or any number of periods Tm in length.

TstatelT1IT21T31T41T51T61T1I

notMemS1 \ I
TstatelT11T21T31T41 W 1W IT51T61T11

notMemS1 --, 1

notMemS2 notMemS2

No wait states Wait states inserted

Figure 7.5 IMS T425 effect of wait states on strobes
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Table 7.4 Strobe SO to ProcClockOut skew

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHSOH Strobe rising from ProcClockOut rising 0 3 ns
TPCLSOH Strobe rising from ProcClockOut falling 1 4 ns
TPCHSOL Strobe falling from ProcClockOut rising -3 0 ns
TPCLSOL Strobe falling from ProcClockOut falling -1 2 ns

ProcClockOut~ ~ ~ ~

:J r-TPCHSOH:J r- TPCHSOL J 1-TPCLSOH J .1-TPCLSOL

NotMemSO ~ ~ ~ ~

Figure 7.6 IMS T425 skew of notMemSO to ProcClockOut

7.9 notMemWrBO-3

Because the transputer uses word addressing, four write strobes are provided; one to write each byte of the
word. notMemWrBO addresses the least significant byte.

The transputer has both early and late write cycle modes. For a late write cycle the relevant write strobes
notMemWrBO-3 are low during T4 and T5; for an early write they are also low during T3. Data should be
latched into memory on the rising edge of the strobes in both cases, although it is valid until the end of T6.
If the strobe duration is insufficient, it may be extended at configuration time by adding extra periods Tm to
either or both of Tstates T4 and T5 for both early and late modes. For an early cycle they may also be added
to T3. Further extension may be obtained by inserting wait states at the end of T4. If the data hold time is
insufficient, extra periods Tm may be added to T6 to extend it.

Table 7.5 Write

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TdVWrH Data setup before write d ns 1,5
TWrHdX Data hold after write a ns 1,2
TSOLWrL notMemSO before start of early write b-3 b+2 ns 1,3

notMemSO before start of late write c-3 c+2 ns 1,4
TSOHWrH End of write from end of notMemSO -2 2 ns 1
TWrLWrH Early write pulse width d d+6 ns 1,5

Late write pulse width e e+6 ns 1,6

Notes

Timing is for all write strobes notMemWrBQ-3.

2 a is T6 where T6 can be from one to five periods Tm in length.

3 b is T2 where T2 can be from one to four periods Tm in length.

4 c is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

S d is total of T3+T4+Twalt+T5 where T3, T4, T5 can be from one to four periods Tm each in length and Twalt
may be zero or any number of periods Tm in length.

6 e is total of T4+Twalt+T5 where T4, T5 can be from one to four periods Tm each in length and Twalt may be
zero or any number of periods Tm in length.
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Tstate I T1 I T2 I T3 I T4 I T5 I T6 I T1 I
ProcClockOut

Tmx

DataMemnotWrDO

MemnotRfD1

MemAD2-31 Address

Data

Data

TaVSOL TSOLaX 104-__T_d_V_W_r_H__~....TW~rH_d~XII-I

notMemWrBQ-B3
(early write)

TSOLWrL

TSOLWrL

TWrLWrH

TWrLWrH

notMemWrBQ-B3
(late write)

notMemSO
(CE)

notMemS1
(ALE)

TSOLSOH

TSOLS1L CD
TSOLS1H ®

TSOHWrH

TSOHS1H ®

Figure 7.7 IMS T425 external write cycle

In the write cycle timing diagram ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm. The strobe is inactive during internal memory cycles.
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Figure 7.8 IMS T425 dynamic RAM application



7.10 MemConfig

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI)
characteristics. It is read by the processor on two occasions after Reset goes low; first to check if one of the
preset internal configurations is required, then to determine a possible external configuration.

7.10.1 Internal configuration

The internal configuration scan comprises 64 periods TDCLDCL of Clockln during the internal scan period
of 144 Clockln periods. MemnotWrDO, MemnotRfD1 and MemAD2-32 are all high at the beginning of the
scan. Starting with MemnotWrDO, each of these lines goes low successively at intervals of two Clockln
periods and stays low until the end of the scan. If one of these lines is connected to MemConfig the preset
internal configuration mode associated with that line will be used as the EMI configuration. The default
configuration is that defined in the table for MemAD31; connecting MemConfig to VCC will also produce
this default configuration. Note that only 17 of the possible configurations are valid, all others remain at the
default configuration.

Table 7.6 IMS T425 internal configuration coding

Duration of each Tstate Strobe Write Refresh Cycle
periods Tm coefficient cycle interval time

Clockln Proc
Pin T1 T2 T3 T4 T5 T6 s1 s2 s3 s4 type cycles cycles

MemnotWrDO 1 1 1 1 1 1 30 1 3 5 late 72 3
MemnotRfD1 1 2 1 1 1 2 30 1 2 7 late 72 4
MemAD2 1 2 1 1 2 3 30 1 2 7 late 72 5
MemAD3 2 3 1 1 2 3 30 1 3 8 late 72 6
MemAD4 1 1 1 1 1 1 3 1 2 3 early 72 3
MemAD5 1 1 2 1 2 1 5 1 2 3 early 72 4
MemAD6 2 1 2 1 3 1 6 1 2 3 early 72 5
MemAD7 2 2 2 1 3 2 7 1 3 4 early 72 6
MemAD8 1 1 1 1 1 1 30 1 2 3 early t 3
MemAD9 1 1 2 1 2 1 30 2 5 9 early t 4
MemAD10 2 2 2 2 4 2 30 2 3 8 late 72 7
MemAD11 3 3 3 3 3 3 30 2 4 13 late 72 9
MemAD12 1 1 2 1 2 1 4 1 2 3 early 72 4
MemAD13 2 1 2 1 2 2 5 1 2 3 early 72 5
MemAD14 2 2 2 1 3 2 6 1 3 4 early 72 6
MemAD15 2 1 2 3 3 3 8 1 2 3 early 72 7
MemAD31 4 4 4 4 4 4 31 30 30 18 late 72 12

t Provided for static RAM only.
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MemConfig=MemAD3 MemConfig=MemAD7

Figure 7.9 IMS T425 internal configuration

7.10.2 External configuration

If MemConfig is held low until MemnotWrDO goes low the internal configuration is ignored and an external
configuration will be loaded instead. An external configuration scan always follows an internal one, but if an
internal configuration occurs any external configuration is ignored.

The external configuration scan comprises 36 successive external read cycles, using the default EMI con
figuration preset by MemAD31. However, instead of data being read on the data bus as for a normal read
cycle, only a single bit of data is read on MemConfig at each cycle. Addresses put out on the bus for each
read cycle are shown in table 7.7, and are designed to address ROM at the top of the memory map. The
table shows the data to be held in ROM; data required at the MemConfig pin is the inverse of this.

MemConfig is typically connected via an inverter to MemnotWrDO. Data bit zero of the least significant byte
of each ROM word then provides the configuration data stream. By switching MemConfig between various
data bus lines up to 32 configurations can be stored in ROM, one per bit of the data bus. MemConfig can be
permanently connected to a data line or to GND. Connecting MemConfig to GND gives all Tstates configured
to four periods; notMemS1 pulse of maximum duration; notMemS2·4 delayed by maximum; refresh interval
72 periods of Clockln; refresh enabled; late write.

The external memory configuration table 7.7 shows the contribution of each memory address to the 13 con
figuration fields. The lowest 12 words (#7FFFFF6C to #7FFFFF98, fields 1 to 6) define the number of extra
periods Tm to be added to each Tatate. If field 2 is 3 then three extra periods will be added to T2 to extend
it to the maximum of four periods.



Delay Internal configuration External configuration

MemnotWrDO

MemnotRfD1

MemAD2

MemAD3,
MemAD31

MemConfig CD
MemConfig ®

CD Internal configuration: MemConfig connected to MemAD2
® External configuration: MemConflg connected to inverse of MemAD3

Figure 7.10 IMS T425 internal configuration scan

The next five addresses (field 7) define the duration of notMemS1 and the following fifteen (fields 8 to 10)
define the delays before strobes notMemS2·4 become active. The five bits allocated to each strobe allow
durations of from 0 to 31 periods Tm, as described in strobes page 140.

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11 and 12) define the refresh interval and whether refresh is to
be used, whilst the final address (field 13) supplies a high bit to MemConfig if a late write cycle is required.

The columns to the right of the coding table show the values of each configuration bit for the four sample
external configuration diagrams. Note the inclusion of period E at the end of T6 in some diagrams. This is
inserted to bring the start of the next Tstate T1 to coincide with a rising edge of ProcClockOut (page 138).

Wait states W have been added to show the effect of them on strobe timing; they are not part of a configuration.
In each case which includes wait states, two wait periods are defined. This shows that if a wait state would
cause the start of T5 to coincide with a falling edge of ProcClockOut, another period Tm is generated by
the EMI to force it to coincide with a rising edge of ProcClockOut. This coincidence is only necessary if wait
states are added, otherwise coincidence with a falling edge is permitted. Any configuration memory access
is only permitted to be extended using wait, up to a total of 14 Clockln periods.



----- - --- _. ·G·· 1' --..,. ....

Tstate/112/3,3/4/W,W1W/5/sI1/213,3

notMemSO

notMemS1 _ L Q.. _ _ _ _ _ _ __

notMemS21n I L
notMemS3 i U
notMemS4 ! U...----
notMemRd I
notMemWr late r--I---

MemWait@

MemWait®~ I
Example 2

Tstate /1 /2, 2/3 I 31415/S ,S,E11 /2 I 213

notMemSOIlL-
notMemS1 8

notMemS2 3 L-J
notMemS3 --m -,----.L

i

Tstate/1/21 3 13 14Iw,wIW/5Is,SIEI1/2

notMemSO I I L
notMemS1 --uJ L
notMemS2 - r - - - - 0 - - - - - - -

notMemS3 _ L ~ _
notMemS4in I
notMemRd/......---

notMemWr I
MemWait@

MemWait®~

Tstate /1 12 I 2/3 I314lwlw/sls I 6 I E /1 /2

notMemSO, L
notMemS1 W L

i

Example 3

m
No wait states inserted

1 One wait state inserted
2 Two wait states inserted
3 Three wait states inserted

Figure 7.11 ,IMS T425 external configuration
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CD MemConfig connected to inverse of MemnotWrDO
® Configuration field 1; T1 configured for 2 periods Tm

I
Configuration field 2; T2 configured for 3 periods Tm

4 Configuration field 10; most significant bit of notMemS4 configured high
5 Configuration field 11 ; refresh interval configured for 36 periods Clockln
6 Configuration field 12; refresh enabled
7 Configuration field 13; early write cycle

Figure 7.12 IMS T425 external configuration scan



Table 7.7 IMS T425 external configuration coding
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Scan MemAD Example diagram
cycle address Field Function 1 2 3 4

1 7FFFFF6C 1 T1 least significant bit 0 0 0 0
2 7FFFFF70 1 T1 most significant bit 0 0 0 0
3 7FFFFF74 2 T2 least significant bit 1 0 0 1
4 7FFFFF78 2 T2 most significant bit 0 0 0 0
5 7FFFFF7C 3 T3 least significant bit 1 1 1 1
6 7FFFFF80 3 T3 most significant bit 0 0 0 0
7 7FFFFF84 4 T4 least significant bit 0 0 0 0
8 7FFFFF88 4 T4 most significant bit 0 0 0 0
9 7FFFFF8C 5 T5 least significant bit 0 0 0 0

10 7FFFFF90 5 T5 most significant bit 0 0 0 0
11 7FFFFF94 6 T6 least significant bit 1 0 1 1
12 7FFFFF98 6 T6 most significant bit 0 0 0 0
13 7FFFFF9C 7 notMemS1 least significant bit 0 0 1 1
14 7FFFFFAO 7 0 0 0 0
15 7FFFFFA4 7 .1J. .1J. 0 0 0 0
16 7FFFFFA8 7 1 0 0 0
17 7FFFFFAC 7 notMemS1 most significant bit 0 0 0 0
18 7FFFFFBO 8 notMemS2 least significant bit 1 0 0 1
19 7FFFFFB4 8 1 1 0 1
20 7FFFFFB8 8 .1J. .1J. 0 0 0 1
21 7FFFFFBC 8 0 0 0 0
22 7FFFFFCO 8 notMemS2 most significant bit 0 0 0 0
23 7FFFFFC4 9 notMemS3 least significant bit 1 1 1 1
24 7FFFFFC8 9 0 1 0 0
25 7FFFFFCC 9 .1J. .1J. 0 1 0 1
26 7FFFFFDO 9 0 0 1 0
27 7FFFFFD4 9 notMemS3 most significant bit 0 0 0 0
28 7FFFFFD8 10 notMemS4 least significant bit 0 0 0 1
29 7FFFFFDC 10 0 1 1 1
30 7FFFFFEO 10 .1J. .1J. 1 1 0 0
31 7FFFFFE4 10 0 0 0 0
32 7FFFFFE8 10 notMemS4 most significant bit 0 0 0 0
33 7FFFFFEC 11 Refresh Interval least significant bit - - - -
34 7FFFFFFO 11 Refresh Interval most significant bit - - - -
35 7FFFFFF4 12 Refresh Enable - - - -
36 7FFFFFF8 13 Late Write 0 1 1 0
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Table 7.8 IMS T425 memory refresh configuration coding

Refresh Interval Field 11 Complete
interval in J-Ls encoding cycle (mS)

18 3.6 00 0.922
36 7.2 01 1.843
54 10.8 10 2.765
72 14.4 11 3.686

Refresh intervals are in periods of Clockln and Clockln frequency is 5 MHz:

Interval = 18 • 200 = 3600 ns

Refresh interval is between successive incremental refresh addresses.
Complete cycles are shown for 256 row DRAMS.

Table 7.9 Memory configuration

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMCVRdH Memory configuration data setup 30 ns
TRdHMCX Memory configuration data hold 0 ns
TSOLRdH notMemSO to configuration data read a a+6 ns 1

Notes

1 a is 16 periods Tm.

T1 T2
I I I I I ITm

Tstate I

'--««««««< Data »)~_---,r

Data »)>-_-..Jr-

MemAD2-31 --<,,-_A_dd_re_s_s-" Data »)~---<C

MemnotWrDO --./

MemnotRfD1 --./

notMemSO
TSOLSOH

notMemRd-

MemConfig

Figure 7.13 IMS T425 external configuration read cycle timing
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7.11 RefreshPending

When high, this pin signals that a refresh cycle is pending. If no DMA is active then refresh will be performed
following the end of the current internal or external memory cycle. If DMA is active the transputer will wait
for DMA to terminate before commencing the refresh cycle. Unlike MemnotRfD1, RefreshPending is never
tristated and can thus be interrogated by the DMA device; the DMA cycle can then be suspended, at the
discretion of the DMA device, to allow refresh to take place.

The simple circuit of Figure 7.14 will suspend DMA requests from the external logic when RefreshPending
is asserted, so that a memory refresh cycle can be performed. DMA is restored on completion of the refresh
cycle. The transputer will not perform an external memory cycle other than a refresh cycle, using this method,
until the requesting device removes its DMA request.

RefreshPending can change state only on a rising edge of ProcClockOut. It remains high during the refresh
period. MemReq may be re-asserted any time after the commencement of the refresh cycle. This function
is not available on the IMS T414 and IMS T800.

7.12 notMemRf

Logic

Figure 7.14 IMS T425 refresh with DMA

IMS
T425

The IMS T425 can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh interval is also determined. Refresh cycles do not interrupt internal
memory accesses, although the internal addresses cannot be reflected on the external bus during refresh.

When refresh is disabled no refresh cycles occur. During the post-Reset period eight dummy refresh cycles
will occur with the appropriate timing"but with no bus or strobe activity.

A refresh cycle uses the same basic external memory timing as a normal external memory cycle, except that
it starts two periods Tm before the start of T1. If a refresh cycle is due during an external memory access,
it will be delayed until the end of that external cycle. Two extra periods· Tm (periods R in the diagram) will
then be inserted between the end of T6 of the external memory cycle and the start of T1 of the refresh cycle
itself. The refresh address and various external strobes become active approximately one period Tm before
T1. Bus signals are active until the end of T2, whilst notMemRf remains active until the end of T6.

For a refresh cycle, MemnotRfD1 goes low before notMemRf goes low and MemnotWrDO goes high with
the same timing as MemnotRfD1. All the address lines share the same timing, but only MemAD2·11 give
the refresh address. MemAD12·30 stay high during the address period, whilst MemAD31 remains low.
Refresh cycles generate strobes notMemSQ-4 with timing as for a normal external cycle, but notMemRd and
notMemWrSD-3 remain high. MemWait operates normally during refresh cycles.
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Table 7.10 Memory refresh

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TRfLRfH Refresh pulse width low a 8+6 ns 1
TRaVSOL Refresh address setup before notMemSO b ns 2
TRfLSOL Refresh indicator setup before notMemSO b ns 2

Notes

a is total Tmx+Tm.

2 b is total T1+Tm where T1 can be from one to four periods Tm in length.

Tstate I T6 I R R I T1 I T2 I T3 I T4 I T5 I T6 I T1 I

MemAD2-11

notMemSO

notMemRf

MemnotWrDO

MemnotRfD1

MemAD12-30

MemAD31

Figure 7.15 IMS T425 refresh cycle timing

7.13 MemWait

Taking MemWait high with the timing shown will extend the duration of T4. MemWait is sampled relative
to the falling edge of ProcClockOut during a T3 period, and should not change state in this region. By
convention, notMemS4 is used to synchronize wait state insertion. If this or another strobe is used, its delay
should be such as to take the strobe low an even number of periods Tm after the start of T1, to coincide with
a rising edge of ProcClockOut.

MemWait may be kept high indefinitely, although if dynamic memory refresh is used it should not be kept
high long enough to interfere with refresh timing. MemWait operates normally during all cycles, including
refresh and configuration cycles. It does not affect internal memory access in any way.

If the start of T5 would coincide with a falling edge of ProcClockOut an extra wait period Tm (EW) is
generated by the EMI to force coincidence with a rising edge. Rising edge coincidence is only forced if wait
states are added, otherwise coincidence with a falling edge is permitted.



IvU

Table 7.11 Memory wait

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHWtH Wait setup O.5Tm+3 ns 1,2
TPCHWtL Wait hold O.5Tm+3 ns 1,2
TWtLWtH Delay before re-assertion of Wait 2Tm ns

Notes

1 ProcClockOut load should not exceed 50pf.

2 If wait period exceeds refresh interval, refresh cycles will be lost.

Tstate I T2

ProcClockOut

MemWait

T3 T4 W T5 T6 T1

MemADQ-31

notMemRd

Address Data >X Address, /

Th~1 ~ I ~ ~ I w I ~ 1~6
ProcClockOut~_ _

MemWait

Ts 5

ProcClockOut

MemWait

Figure 7.16 IMS T425 memory wait timing
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7.14 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
The transputer samples MemReq during the final period Tm of T6 of both refresh and external memory
cycles. To guarantee taking over the bus immediately following either, MemReq must be set up at least two
periods Tm before the end of T6. In the absence of an external memory cycle, MemReq is sampled during
every low period of ProcClockOut. The address bus is tristated two periods Tm after the ProcClockOut
rising edge which follows the sample. MemGranted is asserted one period Tm after that.

Removal of MemReq is sampled during each low period of ProcClockOut and MemGranted is removed
synchronously with the next falling edge of ProcClockOut. If accurate timing of DMA is required, MemReq
should be set low coincident with a falling edge of ProcClockOut. Further external bus activity, either refresh,
external cycles or reflection of internal cycles, will commence at the next rising edge of ProcClockOut.

Strobes are left in their inactive states during DMA. DMA cannot interrupt a refresh or external memory cycle,
and outstanding refresh cycles will occur before the bus is released to DMA. DMA does not interfere with
internal memory cycles in any way, although a program running in internal memory would have to wait for
the end of DMA before accessing external memory. DMA cannot access internal memory. If DMA extends
longer than one refresh interval (Memory Refresh Configuration Coding, table 7.B), the DMA user becomes
responsible for refresh. DMA may also inhibit an internally running program from accessing external memory.

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 7.12 Memory request

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMRHMGH Memory request response time 4 7 Tm 1
TMRLMGL Memory request end response time 2 5 Tm
TADZMGH Bus tristate before memory granted 1 Tm
TMGLADV Bus active after end of memory granted 1 Tm

Notes

These values assume no external memory cycle is in progress. If an external cycle is active, maximum time
could be (1 EMI cycle Tmx)+(1 refresh cycle TRfLRfH)+(6 periods Tm).

ProcClockOut

MemReq

MemGranted

MemnotWrDO
MemnotRfD1
MemAD2-31

T6

TMRHMGH TMRLMGL

TMGLADV

Figure 7.17 IMS T425 memory request timing
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MemReq

MemGranted

Reset

Configuration
sequence

D Pre- and post-configuration delays (figure 5.3)
I Internal configuration sequence
E External configuration sequence
R Initial refresh sequence
B Bootstrap sequence

Figure 7.18 IMS T425 DMA sequence at reset

MemReq //////7 ~'-------
External Memory-, J • H I U--Interface cycles -Sl Read or Write R_e_fr_es_h__f--------- ~ead or Write fL-

MemGranted __________---J/ ~-----

MemnotRfD1

MemnotWrDO
MemAD2-31

_______"'~-----J/---------« _

________--J')>---------« _

Figure 7.19 IMS T425 operation of MemReq, MemGranted with external, refresh memory cycles

MemReq ///////////7 ~ /7 "---
Internal Memory Cycles

External Memory
Interface activity

MemGranted / ~ / "'---
MemnotWrDO

( ) CMemnotRfD1 )
MemAD2-31

Figure 7.20 IMS T425 operation of MemReq, MemGranted with external, internal memory cycles



8 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

EventWaiting is asserted by the transputer when a process executes an input on the event channel; typically
with the occam EVENT ? ANY instruction. It remains high whilst the transputer is waiting for or servicing
EventReq and is returned low when EventAck goes high. EventWaiting allows a process to control external
logic; for example, to clock a number of inputs into a memory mapped data latch so that the event request
type can be determined. This function is not available on the IMS T414 and IMS T800.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described on
page 121. Setting a high priority task to wait for an event input is a way of interrupting a transputer program.

Table 8.1 Event

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal ,of event acknowledge 0 a ns 1
TKLVH Delay before re-assertion of event request 0 ns
TKHEWL Event acknowledge to end of event waiting 0 ns
TKLEWH End of event acknowledge to event waiting 0 ns

Notes

a is 3 processor cycles TPCLPCL.

EventReq
TVHKH

TKHVL

EventAck

TKHEWL

EventWaiting t
Process waiting for Event

TVLKL

TKLVH

TKLEWH

t
Event waiting for Process

Figure 8.1 IMS T425 event timing
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9 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T425 links allow an acknowledge packet to be sent before the data packet has been fully received.
This overlapped acknowledge technique is fully compatible with all other INMOS transputer links.

The IMS T425 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can
be used at 5 or 20 Mbits/sec. Links are not synchronised with Clockln or ProcClockOut and are insensitive
to their phases. Thus links from independently clocked systems may communicate, providing only that the
clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used In electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LinkSpecial, LinkOSpecial and Link123Special. The link 0 speed can be
set independently. Table 9.1 shows uni-direetional and bi-directional data rates in Kbytes/sec for each link
speed; LlnknSpecial is to be read as LinkOSpecial when selecting link 0 speed and as Link123Special for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 9.1 Speed Settings for Transputer Links

Link Linkn Kbytes/sec
Special Special Mbits/sec Uni Bi

0 0 10 910 1250
0 1 5 450 670
1 0 10 910 1250
1 1 20 1740 2350

Figure 9.1 IMS T425 link data and acknowledge packets



Table 9.2 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf linkOut fall time 10 ns
TJDr linkln rise time 20 ns
TJDf linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbitsls 10 ns 1
5 Mbits/s 30 ns 1

CllZ Linkln capacitance @ f=1MHz 7 pF
Cll LinkOut load capacitance 50 pF
RM Series resistor for 1000 transmission line 56 ohms

Notes

1 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LlnkOut

90% -------
Llnkln

10% - - - - -

- - --
TJQf

TJDf

Figure 9.2 IMS T425 link timing

TJBskew

1.5v- - - - -

L1nkOut 1'5V~ - - - - -

latest TJQJD
Earliest TJQJD

linkln

Figure 9.3 IMS T425 buffered link timing



Transputer family device A

LinkOut I .. I Linkln

____L_I_n_kl_".._,------..------_L_i_n_k_O_u_t _
Transputer family device 8

Figure 9.4 IMS T425 Links directly connected

Transputer family device A 20=1000hms

LinkOut~»-iLinkln

L1nkln~ LinkOut
------- 20=1000hms RM Transputer family device 8

Figure 9.5 IMS T425 Links connected by transmission line

Transputer family device A

LinkOut ~----~-~ Linkln
buffers

Llnkln t---.....-----<. LinkOut
Transputer family device 8

Figure 9.6 IMS T425 Links connected by buffers



10 Electrical specifications

10.1 DC electrical characteristics

Table 10.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE

VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
11 Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 2 W

Note.

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to proted the inputs against damage caused by high static voltages or eledrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 10.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 60 pF
TA Operating temperature range IMS T425-S 0 70 °C 3
TA Operating temperature range IMS T425-M -55 125 °C 3

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ftlmin transverse air flow.
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Table 10.3 DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
Vll low level input voltage -0.5 0.8 V 1,2
11 Input current @ GNO<VI<VCC ±10 IJA 1,2
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOl Output low voltage @ IOl=4mA 0.4 V 1,2
10S Output short circuit current @ GNO<VO<VCC 36 65 mA 1,2,3,7

65 100 mA 1,2,4,7
25 90 mA 1,2,3,8
50 130 mA 1,2,4,8

10Z Tristate output current @ GNO<VO<VCC ±10 IJA 1,2
PO Power dissipation 1.0 W 2,5
CIN Input capacitance @ f=1MHz 7 pF 6
COZ Output capacitance @ f=1MHz 10 pF 6

Notes

All voltages are with respect to GND.

2 Parameters for IMS T425-S measured'at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Parameters for IMS T425-M measured at 4.75V<VCC<5.25V and -55°C<TA<125°C.
Input clock frequency - 5MHz.

3 Current sourced from non-link outputs.

4 Current sourced from link outputs.

5 Power dissipation varies with output loading and program execution.
Power dissipation for processor operating at 20MHz.

6 This parameter is sampled and not 1000/0 tested.

7 Parameter for IMS T425-S.

8 Parameter for IMS T425-M.

10.2 Equivalent circuits

Output

50pF

GND -t----+--~.....__

load for: R1 R2 Equivalent load:

Link outputs 1K96 47K 1 SChottky TTL input
Other outputs 970R 24K 2 SChottky TTL inputs

Diodes are 1N916

Figure 10.1 Load circuit for AC measurements



Test point
Output under test

GND ----

VCC

Figure 10.2 Tristate load circuit for AC measurements

10.3 AC timing characteristics

Table 10.4 Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TOr Input rising edges 2 20 ns 1,2
TOf Input falling edges 2 20 ns 1,2
TOr Output rising edges 25 ns 1
TOf Output falling edges 15 ns 1
TSOLaHZ Address high to tristate a 8+6 ns 3
TSOLaLZ Address low to tristate 8 8+6 ns 3

Notes

Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

3 a is T2 where T2 can be from one to four periods Tm in length.
Address lines include MemnotWrDO, MemnotRfD1, MemAD2·31.

Figure 10.3 IMS T425 input and output edge timing

1.5V _ 1.5V _

TSOLaLZ

10% ~ __~ __

Figure 10.4 IMS T425 tristate timing relative to notMemSO
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30 30 Rise time
Time Time

ns Rise time ns
20 20 Fall time

10 Fall time 10

40 60 80 100

Load Capacitance pF

Link

40 60 80 100

Load Capacitance pF

EMI

Notes
Figure 10.5 Typical rise/fall times

1 Skew is measured between notMemSO with a standard load (2 Schottky TTl inputs and 30pF) and
notMemSO with a load of 2 Schottky TTl inputs and varying capacitance.

10.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 10.6.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in ac and 8JA is the junction-to-ambient thermal resistance in
aclW. 8JA for each package is given in the Packaging Specifications section.

T425-25
600 T425-20

T425-17

Power 500
PINT
mW 400

300

4.4 4.6 4.8 5.0 5.2 5.4 5.6

VCC Volts

Figure 10.6 IMS T425 internal power dissipation vs VCC
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+
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15 20 25 30
Processor frequency MHz

Figure 10.7 IMS T425 typical power dissipation with processor speed



11 Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to occam
programs. For the same function, other languages should achieve approximately the same performance as
occam.

11.1 Performance overview

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type I:NT. The abbreviations in table 11.1 are used to represent the quantities
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table 11.1 Key to performance table

np number of component processes
ne number of processes earlier in queue
r 1 if I:NT parameter or array parameter, 0 if not
ts number of table entries (table size)
w width of constant in nibbles
p number of places to shift
Eg expression used in a guard
Et timer expression used in a guard
Tb most significant bit set of multiplier ((-1) if the multiplier is 0)
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0)
Tbc most significant bit set in the two's complement of a negative multiplier
nsp Number of scalar parameters in a procedure
nap Number of array parameters in a procedure
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Table 11.2 Performance

Size (bytes) Time (cycles)

Names
variables

in expression
assigned to or input to
in PROC or I'tJNCTION call,

corresponding to an INT parameter
channels

Array Variables (for single dimension arrays)
constant subscript
variable subscript
expression subscript

Declarations
CBAN OF protocol
[size] CBAN OF protocol
PROC

Primitives
assignment
input
output
STOP
SKIP

Arithmetic operators
+ -
*
/
REM
» «

Modulo Arithmetic operators
PLUS
MINUS
TIMES (fast multiply, positive operand)
TIMES (fast multiply, negative operand)

Boolean operators
OR
AND NOT

Comparison operators
= constant
= variable
<> constant
<> variable
> <
>= <=

Bit operators
/\ \/ >< -

Expressions
constant in expression
check if error

1.1+r
1.1+r

1.1 +r
1.1

o
5.3
5.3

3.1
9.4

body+2

o
4
1
2
o

1
2
2
2
2

2
1
1
1

4
1

o
2
1
3
1
2

2

w
4

2.1 +2(r)
1.1+(r)

1.1+(r)
2.1

o
7.3
7.3

3.1
2.2 + 20.2*size

o

o
26.5
26
25
o

1
39
40
38

3+p

2
1

4+Tbp
5+Tbc

8
2

1
3
3
5
2
4

2

w
6
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Table 11.3 Performance

Size (bytes) Time (cycles)

Timers
timer input 2 3
timer AFTER

if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+ne*9

ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+ne*9
timer alt guard 8+2Eg+2Et 34+2Eg+2Et

Constructs
SEQ 0 0
IF 1.3 1.4

if guard 3 4.3
ALT (non timer) 6 26

alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg

PAR 11.5+(np-1)*7.5 19.5+(np-1 )*30.5
WHILE 4 12

Procedure or function call
3.5+(nsp-2)*1.1 16.5+(nsp-2)*1.1

+nap*2.3 +nap*2.3

Replicators
repl icated SEQ 7.3{+5.1} (-3.8)+15.1 *count{+7.1}
repIicated IF 12.3{+5.1 } (-2.6)+19.4*count{+7.1}
replicated ALT 24.8{+10.2} 25.4+33.4*count{+14.2}
replicated timer ALT 24.8{+10.2} 62.4+33.4*count{+14.2}
replicated PAR 39.1{+5.1} (-6.4)+70.9*count{+7.1}

11.2 Fast multiply, TIMES

The IMS T425 has a fast integer multiplication instruction product. For a positive multiplier its' execution time
is 4+Tbp cycles, and for a negative multiplier 5+Tbc cycles (table 11.1). The time taken for a multiplication
by zero is 3 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the occam modulo arithmetic operator TIMES is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.

11.3 Arithmetic

A set of functions are provided within the development system to support the efficient implementation of
multiple length integer arithmetic and floating point arithmetic. In table 11.4 n gives the number of places
shifted and all arguments and results are assumed to be local. Full details of these functions are provided
in the occam reference manual, supplied as part of the development system and available as a separate
publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling
overhead. These functions are compiled directly into special purpose instructions which are designed to
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic.
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Table 11.4 Arithmetic performance

+ cycles for
Function Cycles parameter access t

LONGADD 2 7
LONGSUM 3 8
LONGSUB 2 7
LONGDIFF 3 8
LONGPROD 34 8
LONGDIV 36 8
SBIFTRIGHT (n<32) 4+n 8

(n>=32) n-27
SBIFTLEFT (n<32) 4+n 8

(n>=32) n-27
NORMALISE (n<32) n+6 7

(n>=32) n-25
(n=64) 4

ASHIFTRIGHT SHIFTRIGHT+2 5
ASHIFTLEFT SHIFTLEFT+4 5
ROTATERIGHT SHIFTRIGHT 7
ROTATELEFT SHIFTLEFT 7
FRACMOL LONGPROD+4 5

t Assuming local variables.

11.4 IMS T425 floating point operations

Floating point operations for the IMS T425 are provided by a run-time package. This requires approximately
400 bytes of memory for the single length arithmetic operations, and 2500 bytes for the double length arithmetic
operations. Table 11.5 summarizes the estimated performance of the package.

Table 11.5 IMS T425 floating point operations performance

Processor cycles
IMS T425

Typical Worst
REAL32 + - 230 300

* 200 240

/ 245 280
< > = >= <= <> 60 60

REAL64 + - 565 700

* 760 940

/ 1115 1420
< > = >= <= <> 60 60
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11.4.1 IMS T425 special purpose functions and procedures

The functions and procedures given in tables 11.7 and 11.8 are provided by the development system to give
access to the special instructions available on the IMS T425. Table 11.6 shows the key to the table.

Table 11.6 Key to special performance table

Tb most significant bit set in the word counting from zero
n number of words per row (consecutive memory locations)
r number of rows in the two dimensional move
nr number of bits to reverse

Table 11.7 Special purpose functions performance

+ cycles for
Function Cycles parameter access t

BITCOUNT 2+Tb 2
CRCBYTE 11 8
CRCWORD 35 8
BITREVNBIT 5+nr 4
BITREVWORD 36 2

t Assuming local variables.

Table 11.8 Special purpose procedures performance

+ cycles for
Procedure Cycles parameter access t

MOVE2D 8+{2n+23)*r 8
DRAW2D 8+(2n+23)*r 8
CLIP2D 8+(2n+23)*r 8

t Assuming local variables.

11.5 Effect of external memory

Extra processor cycles may be needed when program and/or data are held in external memory, depending
both on the operation being performed, and on the speed of the external memory. After a processor cycle
which initiates a write to memory, the processor continues execution at full speed until at least the next
memory access.

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will
depend upon the exact nature of the given sequence of operations.

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted
as e. For the IMS T425, with the fastest external memory the value of e is 2; a typical value for a large external
memory is 5.

If program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated for
linear code sequences. For larger values of e, the number of extra cycles required for linear code sequences
may be estimated at (e-3)/4. A transfer of control may be estimated as requiring e+3 cycles.
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These estimates may be refined for various constructs. In table 11.9 n denotes the number of components in
a construct. In the case of :IF, the n'th conditional is the first to evaluate to TRUE, and the costs include the
costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted
by b.

Table 11.9 External memory performance

IMS T425
Program off chip Data off chip

Boolean expressions 8-2 0
:II' 3en-8 en
Replicated :II' (6e-4)n+7 (5e-2)n+8
Replicated SEg (3e-3)n+2 (4e-2)n
PAR (3e-1)n+8 3en+4
Replicated PAR (10e-8)n+8 16en-12
ALT (2e-4)n+6e (2e-2)n+1Oe-8
Array assignment and 0 max (2e, e(b/2))

communication in
one transputer

For the IMS T425 the effective rate of INMOS links is slowed down on output from external memory by e
cycles per word output, and on input to external memory at 10 Mbitslsec by e-6 cycles per word if e~6.

The following simulation results illustrate the effect of storing program and/or data in external memory. The
results are normalized to 1 for both program and data on chip. The first program (Sieve of Erastosthenes)
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency,
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton
Raphson square root computation.

Table 11.10 IMS T425 external memory performance

Program e=2 e=3 e=4 e=5 On chip
Program off chip 1 1.3 1.5 1.7 1.9 1

2 1.1 1.2 1.2 1.3 1

Data off chip 1 1.5 1.8 2.1 2.3 1
2 1.2 1.4 1.6 1.7 1

Program and data off chip 1 1.8 2.2 2.7 3.2 1
2 1.3 1.6 1.8 2.0 1

11.6 Interrupt latency

If the process is a high priority one and no other high priority process is running, the latency is as described
in table 11 .11. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also
given where relevant. Maximum latency assumes all memory accesses are internal ones.

Table 11.11 Interrupt latency

Typical Maximum
TPCLPCL I Tm TPCLPCL I Tm

IMS T425 19 I 38 53 I 116
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12.1 84 pin grid array package

2 3 4 5 6 7 8 9 10
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H
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Refresh Link Proc Link Link Link Link Event MemClock 123 GNDPending Special Out Special InO Out1 In2 Ack Wait

Proc Event LinkO Link Link Link Event Mem not
Speed Clockln Waiting Special OutO Out2 Out3 Req Req Mem
SelectO WrB3

Cap Cap Link Link Mem Mem not
GND VCC VCC MemMinus Plus In1 In3 Config Granted WrB1

Proc
,

I" Index
not not not

Error Speed Errorln Mem Mem Mem
Select2 Rf WrB2 WrBO

Disable Boot 1 not not
Int From Reset

I
Mem Mem VCC

RAM ROM IMS T425 I Rd SO
84 pin grid array

Proc Mem top view not not not
Speed Analyse AD31 Mem Mem Mem
Select1 S3 S2 S4

/

Mem Mem I Mem
not

AD30 GND AD27 not GND Mem
WrDO S1

Mem Mem Mem Mem Mem Mem Mem Mem Mem
VCC notAD29 AD25 AD23 AD16 AD12 AD8 AD4 AD3 RfD1

Mem Mem Mem Mem Mem Mem GND Mem Mem Mem
AD28 AD24 AD22 AD19 AD17 AD13 AD6 AD5 AD2

Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem
AD26 AD21 AD20 AD18 AD15 AD14 AD11 AD10 AD9 AD7

Figure 12.1 IMS T425 84 pin grid array package pinout
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Figure 12.2 84 pin grid array package dimensions

Table 12.1 84 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes
A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.005
C 2.456 ±0.278 0.097 ±0.011
D 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.025 0.018 ±0.001 Pin diameter
G 1.143 ±0.127 0.045 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 7.2 grams

Table 12.2 84 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow
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12.2 84 PLCC J-bend package
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CapMinus 12
VCC 13

ProcSpeedSelectO 14
GND15

Errorln 16
ProcSpeedSelect2 17

Error 18
BootFromROM 19

Reset 20
DisablelntRAM 21

ProcSpeed1 22
Analyse 23

MemAD3124
MemAD3025
MemAD2926

GND 27
MemAD2828
MemAD2729
MemAD2630
MemAD2531
MemAD2432

IMS T425
84 pin J-bend
Chip Carrier

Top View

74 MemReq
73 MemGranted
72 MemWait
71 notMemRf
70 notMemWrB3
69 notMemWrB2
68 notemWrB1
67 notMemWrBO
66 notMemRd
65 notMemSO
64 VCC
63 notMemS4
62 notMemS3
61 notMemS2
60 notMemS1
59 GND
58 MemnotWrDO
57 MemADnotRfD1
56 MemAD2
55 MemAD3
54 MemAD4

Figure 12.3 IMS T425 84 PLCC J-bend package pinout
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Figure 12.4 84 PLCC J-bend package dimensions

Table 12.3 84 PLCC J-bend package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 30.226 ±0.127 1.190 ±0.005
B 29.312 ±0.127 1.154 ±0.005
C 3.810 ±0.127 0.150 ±0.005
D 0.508 ±0.127 0.020 ±0.005
F 1.270 ±0.127 0.050 ±0.005
G 0.457 ±0.127 0.018 ±0.005
J 0.000 ±0.051 0.000 ±0.002
K 0.457 ±0.127 0.018 ±0.005
L 0.762 ±0.127 0.030 ±0.005

Package weight is approximately 7.0 grams

Table 12.4 84 PLCC J-bend package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow
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13 Ordering

This section indicates the designation of speed and package selections for the various devices. Speed of
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor PLLx, as detailed in the external memory section.

For availability contact local INMOS sales office or authorised distributor.

Table 13.1 IMS T425 ordering details

INMOS Processor Processor
designation clock speed cycle time PLLx Package

IMS T425·G17S 17.5 MHz 57 ns 3.5 Ceramic Pin Grid
IMS T425·G20S 20.0 MHz 50 ns 4.0 Ceramic Pin Grid
IMS T425·G25S 25.0 MHz 40 ns 5.0 Ceramic Pin Grid

IMS T425·J17S 17.5 MHz 57 ns 3.5 Plastic PLCC J-Bend
IMS T425·J20S 20.0 MHz 50 ns 4.0 Plastic PLCC J-Bend

IMS T425·G17M 17.5 MHz 57 ns 3.5 Ceramic Pin Grid MIL Spec
IMS T425·G20M 20.0 MHz 50 ns 4.0 Ceramic Pin Grid MIL Spec

The timing parameters in this datasheet are based on full characterisation of the 17 MHz and 20 MHz
parts. Data for higher speeds is based on tests on a limited number of samples and may change when full
characterisation is completed.
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FEATURES

32 bit architecture
50 ns internal cycle time
20 MIPS (peak) instruction rate
Pin compatible with IMS T800 and IMS T425
2 Kbytes on-chip static RAM
80 Mbytes/sec sustained data rate to internal memory
4 Gbytes di rectly addressable external memory
26 Mbytes/sec sustained data rate to external memory
950 ns response to interrupts
Four INMOS serial links 5/10/20 Mbits/sec
Si-directional data rate of 1.6 Mbyteslsec per link
Internal timers of 1 p,s and 64 p,s
Boot from ROM or communication links
Single 5 MHz clock input
Single +5V ±5% power supply

APPLICATIONS

High speed multi processor systems
Real time processing
Microprocessor applications
Workstations and workstation clusters
Image processing
Graphics processing
Accelerator processors
Distributed databases
Supercomputers
System simulation
Digital signal processing
Telecommunications
Robotics
Fault tolerant systems
Medical instrumentation
Pattern recognition
Artificial intelligence

42 1403 04
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IMS T414
transputer
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is recommended
for new designs

Engineering Data

System
Services
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of
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External
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October 1988
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1 Introduction

The IMS T414 transputer is a 32 bit CMOS microcomputer with 2 Kbytes on-chip RAM for high speed
processing, a configurable memory interface and four standard INMOS communication links. The instruction
set achieves efficient implementation of high level languages and provides direct support for the occam
model of concurrency when using either a single transputer or a network. Procedure calls, process switching
and typical interrupt latency are sub-microsecond. The IMS T414 provides high performance arithmetic
and microcode support for floating point operations. A device running at 20 MHz achieves an instruction
throughput of 10 MIPS.

For convenience of description, the IMS T414 operation is split into the basic blocks shown in figure 1.1.

LinkSpecial
LinkOSpecial
Link123Special

LinklnO
LinkOutO

Linkln1
LinkOut1

Linkln2
LinkOut2

MemnotWrDO
MemnotRfD1
MemAD2-31

Event

32

VCC
GND

CapPlus
CapMinus

Reset
SystemAnalyse services

Error
BootFromROM

Clockln

I Timers I
2k bytes

DisablelntRam of 32
On-chip

RAM

ProcClockOut
notMemSO-4

notMemWrBO-3
notMemRd External
notMemRf Memory

Interface
MemWait

MemConfig
MemReq

MemGranted

Figure 1.1 IMS T414 block diagram
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The IMS T414 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface
uses multiplexed data and address lines and provides a data rate of up to 4 bytes every 150 nanoseconds
(26.6 Mbytes/sec) for a 20 MHz device. A configurable memory controller provides all timing, control and
DRAM refresh signals for a wide variety of mixed memory systems.

System Services include processor reset and bootstrap control, together with facilities for error analysis.

The INMOS communication links allow networks of transputer family products to be constructed by direct
point to point connections with no external logic. The IMS T414 links support the standard operating speed
of 10 Mbits/sec, but also operate at 5 or 20 Mbits/sec.

The IMS T414 is designed to implement the occam language, detailed in the occam Reference Manual, but
also efficiently supports other languages such as C, Pascal and Fortran. Access to the transputer at machine
level is seldom required, but if necessary refer to The Transputer Instruction Set - A Compiler Writers' Guide.

This data sheet supplies hardware implementation and characterisation details for the IMS T414. It is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam.



182

2 Pin designations

Table 2.1 IMS T414 system services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset
Error out Error indicator
Analyse in Error analysis
BootFromRom in Bootstrap from external ROM or from link
DisablelntRAM in Disable internal RAM
HoldToGND Must be connected to GND
DoNotWire Must not be wi red

Table 2.2 IMS T414 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemnotWrDO in/out Multiplexed data bit 0 and write cycle warning
MemnotRfD1 in/out Multiplexed data bit 1 and refresh warning
MemAD2·31 in/out Multiplexed data and address bus
notMemRd out Read strobe
notMemWrBO·3 out Four byte-addressing write strobes
notMemSO·4 out Five general purpose strobes
notMemRf out Dynamic memory refresh indicator
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted
MemConfig in Memory configuration data input

Table 2.3 IMS T414 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge

Table 2.4 IMS T414 link

Pin In/Out Function
LinklnQ.3 in Four serial data input channels
LinkOutQ.3 out Four serial data output channels
LlnkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
LlnkOSpeclal in Select special speed for Link 0
Llnk123Special in Select special speed for Links 1,2,3

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 238.
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3 Processor

The 32 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 2 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes
of memory via the External Memory Interface (EMI).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-ehip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, a and C registers which form an evaluation stack.

A, a and C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes a into C, and A into a, before loading A. Storing a value from A, pops a into A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in The Transputer Instruction Set - A Compiler Writers' Guide.

pLR 'tegls ers ocas rogram

A

B

C

Workspace ----..
Next Inst -
Operand

Figure 3.1 Registers
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3.2 Instructions

5 IMS T414 engineering data

The instruction set has been designed for simple and efficient compilation of high-level languages. All in
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

I Function I Data I
743

I Operand Register I
~ 0

I

3.2.1 Direct functions

Figure 3.2 Instruction format

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these,
shown in table 3.1, are used to encode the most important functions.

Table 3.1 Direct functions

load constant

load local

load non-local

jump

add constant

store local

store non-local

conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C, Fortran, Pascal or ADA.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.
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The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation" by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2 Expression evaluation

Program

x:= 0

Mnemonic

Idc 0
stl x

3.2.5 Efficiency of encoding

x := #24

x := y + Z

pfix
Idc
stl

Idl
Idl
add
stl

2
4
x

y
z

x

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.
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3.3 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 187).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active Being executed.
On a list waiting to be executed.

Inactive - Ready to input.
Ready to output.
Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 187). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, 0 and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Registers Locals

FPtr1 (Front) P
BPtr1 (Back)

Q
A

B R

C

Workspace S

Next Inst

Operand

Figure 3.3 Linked process list

Table 3.3 Priority queue control registers

Function High Priority Low Priority
Pointer to front of active process list FptrO Fptr1
Pointer to back of active process list BptrO Bptr1

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 190). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1 ms apart.



A process can only be descheduled on certain instructions, known as descheduling points (page 190). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 j.Ls, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T414 supports two levels of priority. Priority 1 (Iow priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer's time; Le. it has a distribution of descheduling points (page 190).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the
standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 58 cycles (assuming use of on-chip RAM).

3.5 Communications

Communication between processes is achieved by means of channels. Process communication is point-to
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
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links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Timers

The transputer has two 32 bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com
pletely in approximately 4295 seconds. The other is accessible only to low priority processes and is incre
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
76 hours.

Table 3.4 Timer registers

ClockO
Clock1
TNextRegO
TNextReg1

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

TimerO

TNextRegO _.�

Workspaces

Alarm

21

Program

TPtrLoc Empty

31

Figure 3.4 Timer registers
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4 Instruction set summary

The Function Codes table 4.7. gives the basic function code set (page 184). Where the operand is less
than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative the first
prefix instruction will be nfix.

Table 4.1 prefix coding

Function Memory
Mnemonic code code

Ide #3 #4 #43

Ide #35
is coded as

pfix #3 #2 #23
Ide #5 #4 #45

Ide #987
is coded as

pfix #9 #2 #29
pfix #8 #2 #28
Ide #7 #4 #47

Ide -31 (Ide #FFFFFFE1)
is coded as

nfix #1 #6 #61
Ide #1 #4 #41

Tables 4.8 to 4.18 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2 operate coding

Function Memory
Mnemonic code code

add (op. code #5) #F5
Is coded as

opr add #F #F5

ladd (op. code #16) #21F6
Is coded as

pfix #1 #2 #21
opr #6 #F #F6

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where the memory code
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it
is interpreted from table 4.3.
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Table 4.3 Instruction set interpretation
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Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

The DE column of the tables indicates th~ descheduling/error features of an instruction as described in
table 4.4.

Table 4.4 Instruction features

Ident Feature See page:

D The instruction is a descheduling point 190

E The instruction will affect the Error flag 190, 200

4.1 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 186). They are
also the ones at which the processor will halt if the Analyse pin is asserted (page 199).

Table 4.5 Descheduling point instructions

input message
timer alt wait
jump

4.2 Error instructions

output message
timer input
loop end

output byte
stop on error
end process

output word
alt wait
stop process

The instructions in table 4.6 are the only ones which can affect the Error flag (page 200) directly.

Table 4.6 Error setting instructions

subtract
divide
long divide

add
multiply
long add
set error
check word

add constant
fractional multiply
long subtract
testerr
check subscript from 0 check single

remainder

cf/err
check count from 1
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Table 4.7 IMS T414 function codes

I~I

Function Memory Processor D
Code Code Mnemonic Cycles Name E

0 OX j 3 jump 0
1 1X Idlp 1 load local pointer
2 2X pfix 1 prefix
3 3X Idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnlp 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)

4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
0 OX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

Table 4.8 IMS T414 arithmeticllogical operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24FO shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 38 multiply E
72 27F2 fmul 35 fractional multiply (no rounding) E

40 fractional multiply (rounding) E
2C 22FC div 39 divide E
1F 21FF rem 37 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product
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Table 4.9 IMS T414 long arithmetic operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 3 long sum
4F 24FF Idiff 3 long diff
31 23F1 Imul 33 long multiply
1A 21 FA Idiv 35 long divide E
36 23F6 Ishl n+3 long shift left (n<32)

n-28 long shift left(n~32)

35 23F5 Ishr n+3 long shift right (n<32)
n-28 long shift right (n~32)

19 21F9 norm n+5 normalise (n<32)
n-26 normalise (n~32)

3 normalise (n=64)

Table 4.1 0 IMS T414 floating point support operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

73 27F3 cflerr 3 check floating point error E
63 26F3 unpacksn 15 unpack single length fp number
60 26FO roundsn 12/15 round single length fp number
6C 26FC postnormsn 5/30 post-normalise correction of

single length fp number

71 27F1 Idinf 1 load single length infinity

Processor cycles are shown as Typical/Maximum cycles.

Table 4.11 IMS T414 general operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

00 Fa rev 1 reverse

3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
10 21FO xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer
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Table 4.12 IMS T414 indexing/array operation codes
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Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

02 F2 bsub 1 byte subscript
OA FA wsub 2 word subscript
34 23F4 bent 2 byte count
3F 23FF went 5 word count
01 F1 Ib 5 load byte
3B 23FB sb 4 store byte
4A 24FA move 2w+8 move message

Table 4.13 IMS T414 timer handling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) D

4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D

48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer

Table 4.14 IMS T414 input/output operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

07 F7 in 2w+19 input message D
OB FB out 2w+19 output message D
OF FF outword 23 output word 0
OE FE outbyte 23 output byte D

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D

17 alt wait (channel not ready) D
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip
30 23FO diss 4 disable skip

12 21F2 resetch 3 reset channel
48 24F8 enbc 7 enable channel (ready)

5 enable channel (not ready)
2F 22FF disc 8 disable channel
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Table 4.15 IMS T414 control operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

20 22FO ret 5 return
1B 21FB Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) 0

5 loop end (exit) 0

Table 4.16 IMS T414 scheduling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

00 FO startp 12 start process 0
03 F3 endp 13 end process 0
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority

Table 4.17 IMS T414 error handling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

13 21F3 csubO 2 check subscript from 0 E
40 24FO ccnt1 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21FO seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) 0
57 25F7 clrhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error

Table 4.18 IMS T414 processor initialisation operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25FO sthb 1 store high priority back pointer
1C 21FC stlf 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer
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5 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

5.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

5.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1J.LF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 20 MHz. If a polarised capacitor is used the negative
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

CapPlus

CapMinus

P.C.B. track

P.C.B. track

Decoupling
capacitor

1J.LF

5.3 Clockln

Figure 5.1 Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.
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Table 5.1 Input clock

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (table 10.3).

90% K--
100/0- - - - - :-TDCf -

TDCerror

2.0v- - 
1.5vO.8v====-

TDCerror

TDCLDCH TDCHDCL

TDCLDCL90%---A
100/0- - - -- - -TDc~ -

Figure 5.2 Clockln timing
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5.4 Reset

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC is
valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge of
Reset initialises the transputer, triggers the memory configuration sequence and starts the bootstrap routine.
Link outputs are forced low during reset; link inputs and EventReq should be held low. Memory request
(DMA) must not occur whilst Reset is high but can occur before bootstrap (page 222).

After the end of Reset there will be a delay of 144 periods of Clockln (figure 5.3). Following this, the
MemWrDO, MemRfD1 and MemAD2-31 pins will be scanned to check for the existence of a pre-programmed
memory interface configuration (page 212). This lasts for a further 144 periods of Clockln. Regardless of
whether a configuration was found, 36 configuration read cycles will then be performed on external memory
using the default memory configuration (page 213), in an attempt to access the external configuration ROM.
A delay will then occur, its period depending on the actual configuration. Finally eight complete and con
secutive refresh cycles will initialise any dynamic RAM, using the new memory configuration. If the memory
configuration does not enable refresh of dynamic RAM the refresh cycles will be replaced by an equivalent
delay with no external memory activity.

If BootFromRom is high bootstrapping will then take place immediately, using data from external memory;
otherwise the transputer will await an input from any link. The processor will be in the low priority state.

BootDelay

Reset I~ _
Action 1OIII1.t--------.,.....I..------II.,....I....-----3.,...IIoolI..i------......1~.----~.~I....----I...-fl

Internal External
configuration configuration Delay Refresh

Figure 5.3 IMS T414 post-reset sequence

5.5 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once
only by the transputer, before the first instruction is executed after Reset is taken low.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in
ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low priority
state, and the W register points to MemStart (page 201).

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process.
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately
above the loaded code is used as work space. Messages arriving on other links after the control byte has
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs
from them.
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Table 5.2 Reset and Analyse

5 IMS T414 engineering data

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 Clockln 1
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFromRom hold after Reset 0 ms 3
TALBRX BootFromRom hold after Analyse 3

Notes

1 Full periods of Clockln TDCLDCL required.

2 At power-on reset.

3 Must be stable until after end of bootstrap period. See Bootstrap section.

Clockln

VCC

Reset

BootFromRom

TRLBRX

Figure 5.4 Transputer reset timing with Analyse low

TRHRL

Reset

TAHRH

Analyse

BootFromRom

Figure 5.5 Transputer reset and analyse timing
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5.6 Peek and poke
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Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The
first four byte word is taken as an internal or external memory address at which to poke (write) the second
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

5.7 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling point
(page 190). From Analyse being asserted, the processor will halt within three time slice periods plus the
time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Processor flags Error and HaltOnError are not altered
at reset, whether Analyse is asserted or not. Memory refresh continues.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh
cycles will occur; the previous memory configuration will be used for any external memory accesses. If
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 5.3.

Table 5.3 Register values after Analyse

MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of I when the processor halted.

B The value of Wwhen the processor halted, together with the priority of the process
when the transputer was halted (Le. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.
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5.8 Error

5 IMS T414 engineering data

The Error pin is connected directly to the internal Error flag and follows the state of that flag. If Error is
high it indicates an error in one of the processes caused, for example, by arithmetic overflow, divide by zero,
array bounds violation or software setting the flag directly (page 190). Once set, the Error flag is only cleared
by executing the instruction testerr. The error is not cleared by processor reset, in order that analysis can
identify any errant transputer (page 199).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnError has been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers to
halt. This can be done by applying the Error output signal of the errant transputer to the EventReq pin of a
suitably programmed master transputer. Since the process state is preserved when stopped by an error, the
master transputer can then use the analyse function to debug the fault. When using such a circuit, note that
the Error flag is in an indeterminate state on power up; the circuit and software should be designed with this
in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved
for the duration of the high priority process and restored .at the conclusion of it. Status of the Error flag is
transmitted to the high priority process but the HaltOnError flag is cleared before the process starts. Either
flag can be altered in the process without upsetting the error status of any complex operation being carried
out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data. Memory refresh will continue to take place.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I points
one byte past the instruction being executed. In both cases I will be copied to register A.

Event

Anal se
Latch

Reset

Slave Slave
Transputer Transputero t--------,,...I-f 1

Error[O] Error[1]

(transputer links not shown)
Slave

Transputer
2

Error[2]

Slave
Transputer

3

Error[3]

Figure 5.6 Error handling in a multi-transputer system
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6 Memory

The IMS T414 has 2 Kbytes of fast internal static memory for high rates of data throughput. Each internal
memory access takes one processor cycle ProcClockOut (page 203). The transputer can also access
4 Gbytes of external memory space. Internal and external memory are part of the same linear address
space. Internal RAM can be disabled by holding DisablelntRAM high. All internal addresses are then
mapped to external RAM. This pin should not be altered after Reset has been taken low.

IMS T414 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #80000000 and extends to #800007FF. User memory
begins at #80000048; this location is given the name MemStart.

A reserved area at the bottom of internal memory is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one.

External memory space starts at #80000800 and extends up through #00000000 to #7FFFFFFF. Memory
configuration data and ROM bootstrapping code must be in the most positive address space, starting at
#7FFFFF6C and #7FFFFFFE respectively. Address space immediately below this is conventionally used for
ROM based code.
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hi Machine map 10 Byte address Word offsets ~_o_c_c_a_m_m_a-=-p__1

_IReset Inst I I#7FFFFFFE I
- #7FFFFFF8

Memory configuration #7FFFFF6C

- -#0 --

1 1#80000800 - Start of external memory - #0200 1 1

(Base of memory)

EreglntSaveLoc

STATUSlntSaveLoc
CreglntSaveLoc

Breg IntSaveLoc

Areg IntSaveLoc

IptrlntSaveLoc
WdesclntSaveLoc

TPtrLoc1

TPtrLocO

Event

Link 3 Input

Link 2 Input

Link 1 Input

Link 0 Input

Link 3 Output
Link 2 Output

Link 1 Output

Link 0 Output

#80000048

#80000044

#80000040

#8000003C
#80000038

#80000034

#80000030

#8000002C
#80000028

#80000024

#80000020

#8000001C

#80000018
#80000014

#80000010

#8000000C
#80000008
#80000004

#80000000

MemStart

Note 1

MemStart #12

#08
#07

#06

#05

#04

#03
#02
#01

#00

Event

Link 3 Input

Link 2 Input

Link 1 Input

Link 0 Input

Link 3 Output
Link 2 Output

Link 1 Output

Link 0 Output

Figure 6.1 IMS T414 memory map

These locations are used as auxiliary processor registers and should not be manipulated by the user.
Like processor registers, their contents may be useful for implementing debugging tools (Analyse,
page 199). For details see The Transputer Instruction Set - A Compiler Writers' Guide.
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The External Memory Interface (EMI) allows access to a 32 bit address space, supporting dynamic and static
RAM as well as ROM and EPROM. EMI timing can be configured at Reset to cater for most memory types
and speeds, and a program is supplied with the Transputer Development System to aid in this configuration.

There are 13 internal configurations which can be selected by a singl,e pin connection (page 212). If none
are suitable the user can configure the interface to specific requirements, as shown in page 213.

7.1 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (ordering section).

The time value Tm is used to define the duration of Tstates and, hence, the length of external memory cycles;
its value is exactly half the period of one ProcClockOut cycle (O.5*TPCLPCL), regardless of mark/space
ratio of ProcClockOut.

Edges of the various external memory strobes coincide with rising or falling edges of ProcClockOut. It should
be noted, however, that there is a skew associated with each coincidence. The value of skew depends on
whether coincidence occurs when the ProcClockOut edge and strobe edge are both rising, when both are
falling or if either is rising when the other is falling. Timing values given in the strobe tables show the best
and worst cases. If a more accurate timing relationship is required, the exact Tstate timing and strobe edge
to ProcClockOut relationships should be calculated and the correct skew factors applied from the edge skew
timing table 7.4.

7.2 Tstates

The external memory cycle is divided into six Tstates with the following functions:

T1 Address setup time before address valid strobe.

T2 Address hold time after address valid strobe.

T3 Read cycle tristate or write cycle data setup.

T4 Extendable data setup time.

T5 Read or write data.

T6 Data hold.

Under normal conditions each Tstate may be from one to four periods Tm long, the duration being set during
memory configuration. The default condition on Reset is that all Tstates are the maximum four periods Tm
long to allow external initialisation cycles to read slow ROM.

Period T4 can be extended indefinitely by adding externally generated wait states.

An external memory cycle is always an even number of periods Tm in length and the start of T1 always
coincides with a rising edge of ProcClockOut. If the total configured quantity of periods Tm is an odd
number, one extra period Tm will be added at the end of T6 to force the start of the next T1 to coincide with
a rising edge of ProcClockOut. This period is designated E in configuration diagrams (figure 7.11).
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Table 7.1 ProcClockOut

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCLPCL ProcClockOut period a-1 a a+1 ns 1
TPCHPCL ProcClockOut pulse width high b-2.5 b b+2.5 ns 2
TPCLPCH ProcClockOut pulse width low c ns 3
Tm ProcClockOut half cycle b-O.5 b b+O.5 ns 2
TPCstab ProcClockOut stability 4 0/0 4

Notes

a is TDCLDCLlPLLx.

2 b is 0.5*TPCLPCL (half the processor clock period).

3 c is TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

1.5v - - - - - - - - - -

TPCLPCH TPCHPCL
TPCLPCL

Figure 7.1 IMS T414 ProcClockOut timing

7.3 Internal access

During an internal memory access cycle the external memory interface bus MemAD2·31 reflects the word
address used to access internal RAM, MemnotWrDO reflects the read/write operation and MemnotRfD1 is
high; all control strobes are inactive. This is true unless and until a memory refresh cycle or DMA (memory
request) activity takes place, when the bus will carry the appropriate external address or data.

The bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 199).

ProcClockOut

MemnotWrDO~ Write / Read Read '<
MemnotRfD1 y '<
MemAD2-31 =>< Address X Address X Address X

Figure 7.2 IMS T414 bus activity for internal memory cycle
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7.4 MemAD2-31

External memory addresses and data are multiplexed on one bus. Only the top 30 bits of address are
output on the external memory interface, using pins MemAD2-31. They are normally output only during
Tstates T1 and T2, and should be latched during this time. Byte addressing is carried out internally by the
transputer for read cycles. For write cycles the relevant bytes in memory are addressed by the write strobes
notMemWrBQ-3.

The data bus is 32 bits wide. It uses MemAD2-31 for the top 30 bits and MemnotRfD1 and MemnotWrDO
for the lower two bits. Read cycle data may be set up on the bus at any time after the start of T3, but must
be valid when the transputer reads it at the end of T5. Data may be removed any time during T6, but must
be off the bus no later than the end of that period.

Write data is placed on the bus at the start of T3 and removed at the end of T6. If T6 is extended to force
the next cycle Tmx (page 205) to start on a rising edge of ProcClockOut, data will be valid during this time
also.

7.5 MemnotWrDO

During T1 and T2 this pin will be low if the cycle is a write cycle, otherwise it will be high. During Tstates T3
to T6 it becomes bit 0 of the data bus. In both cases it follows the general timing of MemAD2·31.

7.6 MemnotRfD1

During T1 and T2, this pin is low if the address on MemAD2-31 is a refresh address, otherwise it is high.
During Tstates T3 to T6 it becomes bit 1 of the data bus. In both cases it follows the general timing of
MemAD2-31.

7.7 notMemRd

For a read cycle the read strobe notMemRd is low during T4 and T5. Data is read by the transputer on the
rising edge of this strobe, and may be removed immediately afterward. If the strobe duration is insufficient it
may be extended by adding extra periods Tm to either or both of the Tstates T4 and T5. Further extension
may be obtained by inserting wait states at the end of T4.

In the read cycle timing diagrams ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm.

7.8 notMemSO-4

To facilitate control of different types of memory and devices, the EMI is provided with five strobe outputs,
four of which can be configured by the user. The strobes are conventionally assigned the functions shown in
the read and write cycle diagrams, although there is no compulsion to retain these designations.

notMemSO is a fixed format strobe. Its leading edge is always coincident with the start of T2 and its trailing
edge always coincident with the end of T5.

The leading edge of notMemS1 is always coincident with the start of T2, but its duration may be configured
to be from zero to 31 periods Tm. Regardless of the configured duration, the strobe will terminate no later
than the end of T6. The strobe is sometimes programmed to extend beyond the normal end of Tmx. When
wait states are inserted into an EMI cycle the end of Tmx is delayed, but the potential active duration of the
strobe is not altered. Thus the strobe can be configured to terminate relatively early under certain conditions
(page 220). If notMemS1 is configured to be zero it will never go low.
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notMemS2, notMemS3 and notMemS4 are identical in operation. They all terminate at the end of T5, but
the start of each can be delayed from one to 31 periods Tm beyond the start of T2. If the duration of one of
these strobes would take it past the end of T5 it will stay high. This can be used to cause a strobe to become
active only when wait states are inserted. If one of these strobes is configured to zero it will never go low.
Figure 7.5 shows the effect of Wait on strobes in more detail; each division on the scale is one period Tm.

Table 7.2 Read

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TaZdV Address tristate to data valid 0 ns
TdVRdH Data setup before read 20 ns
TRdHdX Data hold after read 0 ns
TSOLRdL notMemSO before start of read a-2 a a+2 ns 1
TSOHRdH End of read from end of notMemSO -1 1 ns
TRdLRdH Read period b b+6 ns 2

Notes

1 a is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

2 b is total of T4+Twalt+T5 where T4, T5 can be from one to four periods Tm each in length and Twalt may be
any number of periods Tm in length.

Tstate I T1 I T2 I T3 I T4 I T5 I T6 I T1 I
ProcClockOut

Tmx

Address

TSOLRdL

TSOLSOH

TSOLS1L(D
TSOLS1H 5

TaVSOL

MemnotRfD1

MemAD2-31

MemnotWrDO

notMemRd

notMemSO
(CE)

notMemS1
(ALE)

Figure 7.3 IMS T414 external read cycle: static memory
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Tstate I T1 I T2 I T3 I T4 I T5 I T6 I T1 I
ProcClockOut

Tmx

MemnotWrDO

MemnotRfD1

MemAD2-31

TaVSOL

notMemRd

TSOLSOH

notMemSO
(RAS)

notMemS1
(ALE)

notMemS2
(AMUX)

notMemS3
(CAS)

notMemS4
(Wait state)

TSOLS1LGD ~
TSOLS1H 0

TSOLS2H@

TSOLS2L@

TSOLS3HQ)

TSOLS3L@

TSOLS4H@

TSOLS4L@

TSOHS1H@

TSOHS2H@

TSOHS3H@

TSOHS4H@

Figure 7.4 IMS T414 external read cycle: dynamic memory
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Table 7.3 IMS T414 strobe timing

SYMBOL en) PARAMETER MIN NOM MAX UNITS NOTE
TaVSOL Address setup before notMemSO a ns 1
TSOLaX Address hold after notMemSO b ns 2
TSOLSOH notMemSO pulse width low c c+S ns 3
TSOLS1L 1 notMemS1 from notMemSO 0 2 ns
TSOLS1H 5 notMemS1 end from notMemSO d d+S ns 4,S
TSOHS1H 9 notMemS1 end from notMemSO end e-1 e+4 ns 5,S
TSOLS2L 2 notMemS2 delayed after notMemSO 1-1 1+4 ns 7
TSOLS2H S notMemS2 end from notMemSO c+4 c+8 ns 3
TSOHS2H 10 notMemS2 end from notMemSO end 0 2 ns
TSOLS3L 3 notMemS3 delayed after notMemSO 1-1 1+3 ns 7
TSOLS3H 7 notMemS3 end from notMemSO c+4 c+8 ns 3
TSOHS3H 11 notMemS3 end from notMemSO end 0 2 ns
TSOLS4L 4 notMemS4 delayed after notMemSO 1-1 1+2 ns 7
TSOLS4H 8 notMemS4 end from notMemSO c+4 c+8 ns 3
TSOHS4H 12 notMemS4 end from notMemSO end 0 2 ns
Tmx Complete external memory cycle g 8

Notes

a is T1 where T1 can be from one to four periods Tm in length.

2 b is T2 where T2 can be from one to four periods Tm in length.

3 c is total of T2+T3+T4+Twalt+T5 where T2, T3, T4, T5 can be from one to four periods Tm each in length and
Twalt may be any number of periods Tm in length.

4 d can be from zero to 31 periods Tm in length.

S e can be from -27 to +4 periods Tm in length.

6 If the configuration would cause the strobe to remain active past the end of T6 it will go high at the end of T6.
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx.

7 f can be from zero to 31 periods Tm in length. If this length would cause the strobe to remain active past the
end of T5 it will go high at the end of T5. If the strobe value is zero periods Tm it will remain low throughout
the complete cycle Tmx.

8 g is one complete external memory cycle comprising the total of T1 +T2+T3+T4+Twalt+T5+T6 where T1, T2,
T3, T4, T5 can be from one to four periods Tm each in length, T6 can be from one to five periods Tm in length
and Twalt may be zero or any number of periods Tm in length.

TstatelT1IT21T31T41T51TSIT1I

notMemS1 \ I
notMemS2 .. .. .._._... .. .. .._. __...._

No wait states

Tstate IT11T21T31T41 W I W ITSITSIT11

notMemS1 -. I
notMemS2

Wait states inserted

Figure 7.5 IMS T414 effed of wait states on strobes
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Table 7.4 Strobe SO to ProcClockOut skew

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHSOH Strobe rising from ProcClockOut rising 0 3 ns
TPCLSOH Strobe rising from ProcClockOut falling 1 4 ns
TPCHSOL Strobe falling from ProcClockOut rising -3 0 ns
TPCLSOL Strobe falling from ProcClockOut falling -1 2 ns

ProcClockOut~ ~ ~ ~

j I-TPCHSOH ..J I-TPCHSOl J ,....TPClSOH J r-TPClSOl

NotMemSO ~ ~ ~ ~

Figure 7.6 IMS T414 skew of notMemSO to ProcClockOut

7.9 notMemWrBO·3

Because the transputer uses word addressing, four write strobes are provided; one to write each byte of the
word. notMemWrBO addresses the least significant byte.

The transputer has both early and late write cycle modes. For a late write cycle the relevant write strobes
notMemWrBO·3 are low during T4 and T5; for an early write they are also low during T3. Data should be
latched into memory on the rising edge of the strobes in both cases, although it is valid until the end of T6.
If the strobe duration is insufficient, it may be extended at configuration time by adding extra periods Tm to
either or both of Tstates T4 and T5 for both early and late modes. For an early cycle they may also be added
to T3. Further extension may be obtained by inserting wait states at the end of T4. If the data hold time is
insufficient, extra periods Tm may be added to T6 to extend it.

Table 7.5 Write

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TdVWrH Data setup before write d ns 1,5
TWrHdX Data hold after write a ns 1,2
TSOLWrL notMemSO before start of early write b-3 b+2 ns 1,3

notMemSO before start of late write c-3 c+2 ns 1,4
TSOHWrH End of write from end of notMemSO -2 2 ns 1
TWrLWrH Early write pulse width d d+6 ns 1,5

Late write pulse width e e+6 ns 1,6

Notes

1 Timing is for all write strobes notMemWrBo-3.

2 a is T6 where T6 can be from one to five periods Tm in length.

3 b is T2 where T2 can be from one to four periods Tm in length.

4 c is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

S d is total of T3+T4+Twalt+T5 where T3, T4, T5 can be from one to four periods Tm each in length and Twalt
may be zero or any number of periods Tm in length.

6 • is total of T4+Twalt+T5 where T4, T5 can be from one to four periods Tm each in length and Twalt may be
zero or any number of periods Tm in length.
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Tstate I T1 I T2 I T3 I T4 I T5 I T6 I T1 I
ProcClockOut

Tmx

DataMemnotWrDO

MemnotRfD1

MemAD2-31

notMemWrBo-B3
(early write)

Address

TaVSOL TSOLaX

TSOLWrL

TSOLWrL

Data

Data

TdVWrH

TWrLWrH

TWrLWrH

TWrHdX

notMemWrBo-B3
(late write)

notMemSO
(CE)

notMemS1
(ALE)

TSOLSOH

TSOLS1L CD
TSOLS1H ®

TSOHWrH

TSOHS1H@

Figure 7:7 IMS T414 external write cycle

In the write cycle timing diagram ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm. The strobe is inactive during internal memory cycles.
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Figure 7.8 IMS T414 dynamic RAM application
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7.10 MemConfig

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI)
characteristics. It is read by the processor on two occasions after Reset goes low; first to check if one of the
preset internal configurations is required, then to determine a possible external configuration.

7.10.1 Internal configuration

The internal configuration scan comprises 64 periods TDCLDCL of Clockln during the internal scan period
of 144 Clockln periods. MemnotWrDO, MemnotRfD1 and MemAD2·32 are all high at the beginning of the
scan. Starting with MemnotWrDO, each of these lines goes low successively at intervals of two Clockln
periods and stays low until the end of the scan. If one of these lines is connected to MemConfig the preset
internal configuration mode associated with that line will be used as the EMI configuration. The default
configuration is that defined in the table for MemAD31; connecting MemConflg to VCC will also produce
this default configuration. Note that only 13 of the possible configurations are valid, all others remain at the
default configuration.

Table 7.6 IMS T414 internal configuration coding

Duration of each Tstate Strobe Write Refresh Cycle
periods Tm coefficient cycle interval time

Clockln Proc
Pin T1 T2 T3 T4 T5 T6 s1 s2 s3 s4 type cycles cycles

MemnotWrDO 1 1 1 1 1 1 30 1 3 5 late 72 3
MemnotRfD1 1 2 1 1 1 2 30 1 2 7 late 72 4
MemAD2 1 2 1 1 2 3 30 1 2 7 late 72 5
MemAD3 2 3 1 1 2 3 30 1 3 8 late 72 6
MemAD4 1 1 1 1 1 1 3 1 2 3 early 72 3
MemAD5 1 1 2 1 2 1 5 1 2 3 early 72 4
MemAD6 2 1 2 1 3 1 6 1 2 3 early 72 5
MemAD7 2 2 2 1 3 2 7 1 3 4 early 72 6
MemAD8 1 1 1 1 1 1 30 1 2 3 early t 3
MemAD9 1 1 2 1 2 1 30 2 5 9 early t 4
MemAD10 2 2 2 2 4 2 30 2 3 8 late 72 7
MemAD11 3 3 3 3 3 3 30 2 4 13 late 72 9
MemAD31 4 4 4 4 4 4 31 30 30 18 late 72 12

t Provided for static RAM only.
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Tstate 11 12 I 213141516 I 611 12 I 2131415

notMemSO I 110....- _
notMemS1 I 30 n'-- _
notMemS2 --m I .....1 __

notMemS3
;

notMemS4 _ ~ __ I. _
notMemRd LJ L
notMemWr late LJ L

Tstate 11 121314151611 121314151611 12

notMemSO

notMemS1 I~.---,.;;;;~_ ......
notMemS2 ~ 1

notMemS3 i 3 U u-
;

MemConflg=MemnotWrDO MemConfig=MemnotRfD1

Tstate 11 I 1 12 I2 I2131415 I516 I 6 I 611 I 2

notMemSOI I
notMemS1 I 30 I
notMemS2 ---tT1L-. --'

i ,..-----
notMemS3 : 3

i

Tstate 11 11 12 I213 131415 I5 1516 I 611 11

notMemSO~..... ......

nmMemS11 7 ~----

notMemS2 ---m I
i --------......,-----

notMemS3 : 3 I
i

notMemWr early

MemConfig=MemAD3 MemConfig=MemAD7

Figure 7.9 IMS T414 internal configuration

7.10.2 External configuration

If MemConfig is held low until MemnotWrDO goes low the internal configuration is ignored and an external
configuration will be loaded instead. An external configuration scan always follows an internal one, but if an
internal configuration occurs any external configuration is ignored.

The external configuration scan comprises 36 successive external read cycles, using the default EMI con
figuration preset by MemAD31. However, instead of data being read on the data bus as for a normal read
cycle, only a single bit of data is read on MemConfig at each cycle. Addresses put out on the bus for each
read cycle are shown in table 7.7, and are designed to address ROM at the top of the memory map. The
table shows the data to be held in ROM; data required at the MemConfig pin is the inverse of this.

MemConfig is typically connected via an inverter to MemnotWrDO. Data bit zero of the least significant byte
of each ROM word then provides the configuration data stream. By switching MemConfig between various
data bus lines up to 32 configurations can be stored in ROM, one per bit of the data bus. MemConfig can be
permanently connected to a data line or to GND. Connecting MemConfig to GND gives all Tstates configured
to four periods; notMemS1 pulse of maximum duration; notMemS2-4 delayed by maximum; refresh interval
72 periods of Clockln; refresh enabled; late write.

The external memory configuration table 7.7 shows the contribution of each memory address to the 13 con
figuration fields. The lowest 12 words (#7FFFFF6C to #7FFFFF98, fields 1 to 6) define the number of extra
periods Tm to be added to each Tstate. If field 2 is 3 then three extra periods will be added to T2 to extend
it to the maximum of four periods.
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Internal configuration External configuration

MemnotWrDO

MemnotRfD1

MemAD2

MemAD3,
MemAD31

MemConfig CD
MemConfig ®

CD Internal configuration: MemConfig connected to MemAD2
® External configuration: MemConfig connected to inverse of MemAD3

Figure 7.10 IMS T414 internal configuration scan

The next five addresses (field 7) define the duration of notMemS1 and the following fifteen (fields 8 to 10)
define the delays before strobes notMemS2·4 become active. The five bits allocated to each strobe allow
durations of from 0 to 31 periods Tm, as described in strobes page 205.

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11 and 12) define the refresh interval and whether refresh is to
be used, whilst the final address (field 13) supplies a high bit to MemConfig if a late write cycle is required.

The columns to the right of the coding table show the values of each configuration bit for the four sample
external configuration diagrams. Note the inclusion of period E at the end of T6 in some diagrams. This is
inserted to bring the start of the next Tstate T1 to coincide with a rising edge of ProcClockOut (page 203).

Wait states W have been added to show the effect of them on strobe timing; they are not part of a configuration.
In each case which includes wait states, two wait periods are defined. This shows that if a wait state would
cause the start of T5 to coincide with a falling edge of ProcClockOut, another period Tm is generated by
the EMI to force it to coincide with a rising edge of ProcClockOut. This coincidence is only necessary if wait
states are added, otherwise coincidence with a falling edge is permitted. Any configuration memory access
is only permitted to be extended using wait, up to a total of 14 Clockln periods.
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Tstate 11121313141wlwlwlslsI1121313

notMemSO

notMemS1 _ L CL _
notMemS2 ----t2l I L
notMemS3 ~ U
notMemS4 ! U,....---
notMemRd 1

notMemWr late 1.-----

MemWait®

MemWait®~ I
Example 2

Tstate 11 12 I 21·3 I3141sls IS I E 11 12 I213

notMemSO I I L-
notMemS1 8

notMemS2 3 L-J
notMemS3 --m I L

i

Tstatel1121 3 13 141w lwlwlslsI S IEI112

notMemSO I I L
notMemS1 --w L
notMemS2 - r - - - - 0 - - - - - - -

notMemS3 _ L ~ _
notMemS4-jn 1

notMemRd ,,-----

notMemWr I
MemWait®

MemWait®~

Tstate 11 12 1213 I3141w lwlsls I S IE 11 12

notMemSO/ L
notMemS1 W L

i

Example 3

m
No wait states inserted

1 One wait state inserted
2 Two wait states inserted
3 Three wait states inserted

Figure 7.11 IMS T414 external configuration
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Internal configuration

u
CDu.

Address l±:
u.u.
"

External configuration Delay

0 t! ex) u u 0 v ex)

" " " w u. u. u.
u. u. u. u. u. u. u. u.
u. u. u. u. u. u. u. u.
u. u. u. u. u. u. u. u.
u. u. u. u. u. u. u. u.
u. u. u. u. u. u. u. u.

" " " " " " " "
MemnotWrDO

MemnotRfD1

MemAD2

MemAD3,
MemAD31

MemConfig CD
notMemRd

I......f--------·*�·. ---~-~II· -I.® ® 0 ®
MemConfig connected to inverse of MemnotWrDO
Configuration field 1; T1 configured for 2 periods Tm
Configuration field 2; T2 configured for 3 periods Tm
Configuration field 10; most significant bit of notMemS4 configured high
Configuration field 11; refresh interval configured for 36 periods Clockln
Configuration field 12; refresh enabled
Configuration field 13; early write cycle

Figure 7.12 IMS T414 external configuration scan
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Table 7.7 IMS T414 external configuration coding

Scan MemAD Example diagram
cycle address Field Function 1 2 3 4

1 7FFFFF6C 1 T1 least significant bit 0 0 0 0
2 7FFFFF70 1 T1 most significant bit 0 0 0 0
3 7FFFFF74 2 T2 least significant bit 1 0 0 1
4 7FFFFF78 2 T2 most significant bit 0 0 0 0
5 7FFFFF7C 3 T3 least significant bit 1 1 1 1
6 7FFFFF80 3 T3 most significant bit 0 0 0 0
7 7FFFFF84 4 T4 least significant bit 0 0 0 0
8 7FFFFF88 4 T4 most significant bit 0 0 0 0
9 7FFFFF8C 5 T5 least significant bit 0 0 0 0
10 7FFFFF90 5 T5 most significant bit 0 0 0 0
11 7FFFFF94 6 T6 least significant bit 1 0 1 1
12 7FFFFF98 6 T6 most significant bit 0 0 0 0
13 7FFFFF9C 7 notMemS1 least significant bit 0 0 1 1
14 7FFFFFAO 7 0 0 0 0
15 7FFFFFA4 7 .(J. .(J. 0 0 0 0
16 7FFFFFA8 7 1 0 0 0
17 7FFFFFAC 7 notMemS1 most significant bit 0 0 0 0
18 7FFFFFBO 8 notMemS2 least significant bit 1 0 0 1
19 7FFFFFB4 8 1 1 0 1
20 7FFFFFB8 8 .(J. .(J. 0 0 0 1
21 7FFFFFBC 8 0 0 0 0
22 7FFFFFCO 8 notMemS2 most significant bit 0 0 0 0
23 7FFFFFC4 9 notMemS3 least significant bit 1 1 1 1
24 7FFFFFC8 9 0 1 0 0
25 7FFFFFCC 9 .(J. .(J. 0 1 0 1
26 7FFFFFDO 9 0 0 1 0
27 7FFFFFD4 9 notMemS3 most significant bit 0 0 0 0
28 7FFFFFD8 10 notMemS4 least significant bit 0 0 0 1
29 7FFFFFDC 10 0 1 1 1
30 7FFFFFEO 10 ~ .(J. 1 1 0 0
31 7FFFFFE4 10 0 0 0 0
32 7FFFFFE8 10 notMemS4 most significant bit 0 0 0 0
33 7FFFFFEC 11 Refresh Interval least significant bit - - - -
34 7FFFFFFO 11 Refresh Interval most significant bit - - - -
35 7FFFFFF4 12 Refresh Enable - - - -
36 7FFFFFF8 13 Late Write 0 1 1 0

£.11
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Table 7.8 IMS T414 memory refresh configuration coding

Refresh Interval Field 11 Complete
interval in Jls encoding cycle (mS)

18 3.6 00 0.922
36 7.2 01 1.843
54 10.8 10 2.765
72 14.4 11 3.686

Refresh intervals are in periods of Clockln and Clockln frequency is 5 MHz:

Interval = 18 * 200 = 3600 ns

Refresh interval is between successive incremental refresh addresses.
Complete cycles are shown for 256 row DRAMS.

Table 7.9 Memory configuration

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMCVRdH Memory configuration data setup 30 ns
TRdHMCX Memory configuration data hold 0 ns
TSOLRdH notMemSO to configuration data read a a+6 ns 1

Notes

1 a is 16 periods Tm.

_T_s_ta_te---iI~T-r-1""'T""""'--r-T'T""2-r-+I--r-T~3~I...,-Tr-4-r--+-I~Tr--5.,..--+-~T6-.,.---+---r~,---,l-I1
Tm I I I I I I I I I I I I I I I I I I rTl

MemnotWrDO ----./ '--««««««< Data »>~_-.Jr-

Data »)>--_~r-

MemAD2-31 --<",-_A_dd_re_s_s--' Data »)>------<C
notMemSO

TSOLSOH

notMemRd

MemConfig

Figure 7.13 IMS T414 external configuration read cycle timing



7.11 notMemRf

The IMS T414 can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh interval is also determined. Refresh cycles do not interrupt internal
memory accesses, although the internal addresses cannot be reflected on the external bus during refresh.

When refresh is disabled no refresh cycles occur. During the post-Reset period eight dummy refresh cycles
will occur with the appropriate timing but with no bus or strobe activity.

A refresh cycle uses the same basic external memory timing as a normal external memory cycle, except that
it starts two periods Tm before the start of T1. If a refresh cycle is due during an external memory access,
it will be delayed until the end of that external cycle. Two extra periods Tm (periods R in the diagram) will
then be inserted between the end of T6 of the external memory cycle and the start of T1 of the refresh cycle
itself. The refresh address and various external strobes become active approximately one period Tm before
T1. Bus signals are active until the end of T2, whilst notMemRf remains active until the end of T6.

For a refresh cycle, MemnotRfD1 goes low before notMemRf goes low and MemnotWrDO goes high with
the same timing as MemnotRfD1. All the address lines share the same timing, but only MemAD2·11 give
the refresh address. MemAD12·30 stay high during the address period, whilst MemAD31 remains low.
Refresh cycles generate strobes notMemSD-4 with timing as for a normal external cycle, but notMemRd and
notMemWrBO·3 remain high. MemWait operates normally during refresh cycles.
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Table 7.10 Memory refresh

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TRfLRfH Refresh pulse width low a a+6 ns 1
TRaVSOL Refresh address setup before notMemSO b ns 2
TRfLSOL Refresh indicator setup before notMemSO b ns 2

Notes

1 a is total Tmx+Tm.

2 b is total T1+Tm where T1 can be from one to four periods Tm in length.

Tstate I T6 I R I R I T1 I T2 I T3 I T4 I T5 I T6 I T1 I

~o~~~b~~~ _~X........Jllo.-__-JX Address X D_at_a >C I
MemAD2-11

notMemSO

notMemRf

MemnotWrDO

MemnotRfD1

MemAD12-30 ------'
MemAD31

Figure 7.14 IMS T414 refresh cycle timing

7.12 MemWait

Taking MemWait high with the timing shown will extend the duration of T4. MemWait is sampled relative
to the falling edge of ProcClockOut during a T3 period, and should not change state in this region. By
convention, notMemS4 is used to synchronize wait state insertion. If this or another strobe is used, its delay
should be such as to take the strobe low an even number of periods Tm after the start of T1, to coincide with
a rising edge of ProcClockOut.

MemWait may be kept high indefinitely, although if dynamic memory refresh is used it should not be kept
high long enough to interfere with refresh timing. MemWait operates normally during all cycles, including
refresh and configuration cycles. It does not affect internal memory access in any way.

If the start of T5 would coincide with a falling edge of ProcClockOut an extra wait period Tm (EW) is
generated by the EMI to force coincidence with a rising edge. Rising edge coincidence is only forced if wait
states are added, otherwise coincidence with a falling edge is permitted.
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Table 7.11 Memory wait

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHWtH Wait setup O.5Tm+3 ns 1,2
TPCHWtL Wait hold O.5Tm+3 ns 1,2
TWtLWtH Delay before re-assertion of Wait 2Tm ns

Notes

1 ProcClockOut load should not exceed SOpf.

2 If wait period exceeds refresh interval, refresh cycles will be lost.

Tstate I T2

ProcClockOut

MemWait

T3 T4 W T6 T1

MemADD-31

notMemRd

Address Data »-< Address

" /

Th~1 ~ I ~ ~ I w I ~ I~
ProcClockOut~_ _

MemWait

Ts 5

ProcClockOut

MemWait

Figure 7.15 IMS T414 memory wait timing



7.13 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
The transputer samples MemReq during the final period Tm of T6 of both refresh and external memory
cycles. To guarantee taking over the bus immediately following either, MemReq must be set up at least two
periods Tm before the end of T6. In the absence of an external memory cycle, MemReq is sampled during
every low period of ProcClockOut. The address bus is tristated two periods Tm after the ProcClockOut
rising edge which follows the sample. MemGranted is asserted one period Tm after that.

Removal of MemReq is sampled during each low period of ProcClockOut and MemGranted is removed
synchronously with the next falling edge of ProcClockOut. If accurate timing of DMA is required, MemReq
should be set low coincident with a falling edge of ProcClockOut. Further external bus activity, either refresh,
external cycles or reflection of internal cycles, will commence at the next rising edge of ProcClockOut.

Strobes are left in their inactive states during DMA. DMA cannot interrupt a refresh or external memory cycle,
and outstanding refresh cycles will occur before the bus is released to DMA. DMA does not interfere with
internal memory cycles in any way, although a program running in internal memory would have to wait for
the end of DMA before accessing external memory. DMA cannot access internal memory. If DMA extends
longer than one refresh interval (Memory Refresh Configuration Coding, table 7.8), the DMA user becomes
responsible for refresh. DMA may also inhibit an internally running program from accessing external memory.

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 7.12 Memory request

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMRHMGH Memory request response time 4 7 Tm 1
TMRLMGL Memory request end response time 2 5 Tm
TADZMGH Bus tristate before memory granted 1 Tm
TMGLADV Bus active after end of memory granted 1 Tm

Notes

These values assume no external memory cycle is in progress. If an external cycle is active, maximum time
could be (1 EMI cycle Tmx)+(1 refresh cycle TRfLRfH)+(6 periods Tm).

ProcClockOut

MemReq

MemGranted

MemnotWrDO
MemnotRfD1
MemAD2-31

T6

TMRHMGH TMRLMGL

TMGLADV

Figure 7.16 IMS T414 memory request timing
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MemReq

MemGranted

Reset

Configuration
sequence

o Pre- and post-configuration delays (figure 5.3)
I Internal configuration sequence
E External configuration sequence
R Initial refresh sequence
B Bootstrap sequence

Figure 7.17 IMS T414 DMA sequence at reset

MemReq //////7 "''------
External MemorY~J . H I u--Interface cycles --ll Read or Write ......_R_e_fr_e_sh_......r---------1 Read or Write fL-

MemGranted ______---.-J/ "''-----
MemnotRfD1

MemnotWrDO
MemAD2-31

______~---->o._--'/---------«"""__ _

________--.J)>---------«'-- _

Figure 7.18 IMS T414 operation of MemReq, MemGranted with external, refresh memory cycles

MemReq /////7/////7 '" /7 ~
Internal Memory Cycles

External Memory
Interface activity

MemGranted / '" / "----
MemnotWrDO

) CMemnotRfD1 ) <MemAD2-31

Figure 7.19 IMS T414 operation of MemReq, MemGranted with external, internal memory cycles



8 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described on
page 187. Setting a high priority task to wait for an event input is a way of interrupting a transputer program.

Table 8.1 Event

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a ns 1
TKLVH Delay before re-assertion of event request 0 ns
TKHEWL Event acknowledge to end of event waiting 0 ns
TKLEWH End of event acknowledge to event waiting 0 ns

Notes

1 a is 3 processor cycles TPCLPCL.

EventReq

EventAck

TVHKH

TKHVL

TVLKL

TKLVH

Figure 8.1 IMS T414 event timing



9 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T414 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can
be used at 5 or 20 Mbits/sec. Links are not synchronised with Clockln or ProcClockOut and are insensitive
to their phases. Thus links from independently clocked systems may communicate, providing only that the
clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LlnkSpecial, LlnkOSpeclal and Llnk123Special. The link 0 speed can be
set independently. Table 9.1 shows uni-directional and bi-directional data rates in Kbytes/sec for each link
speed; LlnknSpeclal is to be read as LlnkOSpecial when selecting link 0 speed and as Link123Special for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 9.1 Speed Settings for Transputer Links

Link Linkn Kbytes/sec
Special Special Mbits/sec Unl 81

0 0 10 400 800
0 1 5 200 400
1 0 10 400 800
1 1 20 800 1600

Figure 9.1 IMS T414 link data and acknowledge packets
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Table 9.2 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf Linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
5 Mbits/s 30 ns 1

CllZ Linkln capacitance @ f=1MHz 7 pF
Cll LinkOut load capacitance 50 pF
AM Series resistor for 100n transmission line 56 ohms

Notes

This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LinkOut

100/0 - - --
TJQf

Linkln
10% - - - - -

TJDf

Figure 9.2 IMS T414 link timing

1.5v- - - - 

TJBskew

LinkO:ate~;~~ ------
Earliest TJQJD

Linkln

Figure 9.3 IMS T414 buffered link timing



Transputer family device A

LlnkOut I · I Llnkln

____L_I_n_kl_n--',------...--------1 L_I_n_kO_u_t---
Transputer family device B

Figure 9.4 IMS T414 Links directly connected

Transputer family device A Zo=1000hms

LinkOut~lri Linkln

Linkln~ LinkOut
------- Zo=1000hms RM Transputer family device B

Figure 9.5 IMS T414 Links connected by transmission line

Transputer family device A

LinkOut >------~-__i Linkln

buffers
Llnkln ....---~------<;. LinkOut

Transputer family device B

Figure 9.6 IMS T414 Links connected by buffers



10 Electrical specifications

10.1 DC electrical characteristics

Table 10.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
11 Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 2 W

Notes

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to proted the inputs against damage caused by high static voltages or eledrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 10.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 60 pF
TA Operating temperature range 0 70 °C 3

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.
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Table 10.3 DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
Vll low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 JJA 1,2,7

±50 JJA 1,2,8
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOl Output low voltage @ IOl=4mA 0.4 V 1,2
10S Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3

65 100 mA 1,2,4
10Z Tristate output current @ GND<VO<VCC ±10 JJA 1,2
PO Power dissipation 900 mW 2,5
CIN Input capacitance @ f=1MHz 7 pF 6
COZ Output capacitance @ f=1MHz 10 pF 6

Notes

All voltages are with respect to GND.

2 Parameters for IMS T414-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Input clock frequency - 5MHz.

3 Current soureed from non-link outputs.

4 Current soureed from link outputs.

5 Power dissipation varies with output loading and program execution.

6 This parameter is sampled and not 100% tested.

7 For inputs other than those in Note 8.

8 For MemReq, MemWalt, MemConflg, Analyse, Reset, Clockln, EventReq, LlnklnO-3,
LlnkSpeclal, LlnkOSpeclal, Llnk123Speclal, BootFromRom, HoldToGND.

10.2 Equivalent circuits

Output

50pF

GND -.--..........-----4......-

load for: R1 R2 Equivalent load:

Link outputs 1K96 47K 1 SChottky TTl input
Other outputs 970R 24K 2 SChottky TTl inputs

Diodes are 1N916

Figure 10.1 load circuit for AC measurements
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Test point
Output under test

GND ---- --L

VCC

Figure 10.2 Tristate load circuit for AC measurements

10.3 AC timing characteristics

Table 10.4 Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TDr Input rising edges 2 20 ns 1,2
TDf Input falling edges 2 20 ns 1,2
TOr Output rising edges 25 ns 1
TOf Output falling edges 15 ns 1
TSOLaHZ Address high to tristate a a+6 ns 3
TSOLaLZ Address low to tristate a a+6 ns 3

Notes

1 Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

3 a is T2 where T2 can be from one to four periods Tm in length.
Address lines include MemnotWrDO, MemnotRfD1, MemAD2-31.

900/0

100/0

90%

100/0

900/0

10%

900/0

100/0

Figure 10.3 IMS T414 input and output edge timing

1.5V _

TSOLaLZ

10% ~__~ __

Figure 10.4 IMS T414 tristate timing relative to notMemSO
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Time Time

ns Rise time ns
20 20 Fall time

10 Fall time 10

40 60 80 100

Load Capacitance pF

Link

40 60 80 100

Load Capacitance pF

EMI

Notes
Figure 10.5 Typical rise/fall times

Skew is measured between notMemSO with a standard load (2 Schottky TTl inputs and 30pF) and
notMemSO with a load of 2 Schottky TTl inputs and varying capacitance.

10.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 10.6.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in °C and 6JA is the junction-to-ambient thermal resistance in
°CIW. 6JA for each package is given in the Packaging Specifications section.

600

Power 500
PINT

mW 400

300

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 10.6 IMS T414 internal power dissipation vs VCC



11 Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to occam
programs. For the same function, other languages should achieve approximately the same performance as
occam.

11.1 Performance overview

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type iNT. The abbreviations in table 11.1 are used to represent the quantities
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table 11.1 Key to performance table

np number of component processes
ne number of processes earlier in queue
r 1 if iNT parameter or array parameter, 0 if not
ts number of table entries (table size)
w width of constant in nibbles
p number of places to shift

. Eg expression used in a guard
Et timer expression used in a guard
Tb most significant bit set of multiplier ((-1) if the multiplier is 0)
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0)
Tbc most significant bit set in the two's complement of a negative multiplier
nsp Number of scalar parameters in a procedure
nap Number of array parameters in a procedure
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Table 11.2 Performance

Size (bytes) Time (cycles)

Names
variables

in expression
assigned to or input to
in PROC or FUNCTION call,

corresponding to an INi' parameter
channels

Array Variables (for single dimension arrays)
constant subscript
variable subscript
expression subscript

Declarations
CHAR OF protocol
[size] CHAR OF protocol
PROC

Primitives
assignment
input
output
STOP
SKIP

Arithmetic operators
+ -
*
/
REM
» «

Modulo Arithmetic operators
PLUS
MINUS
TIMES (fast multiply)

Boolean operators
OR
AND NOT

Comparison operators
= constant
= variable
<> constant
<> variable
> <
>= <=

Bit operators
/\ \/ x -

Expressions
constant in expression
check if error

1.1+r
1.1+r

1.1 +r
1.1

o
5.3
5.3

3.1
9.4

body+2

o
4
1
2
o

1
2
2
2
2

2
1
1

4
1

o
2
1
3
1
2

2

w
4

2.1+2(r)
1.1+(r)

1.1 +(r)
2.1

o
7.3
7.3

3.1
2.2 + 20.2*size

o

o
26.5
26
25
o

1
39
40
38

3+p

2
1

4+Tb

8
2

1
3
3
5
2
4

2

w
6
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Table 11.3 Performance

Size (bytes) Time (cycles)

Timers
timer input 2 3
timer AFTER

if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+ne*9

ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+ne*9
timer alt guard 8+2Eg+2Et 34+2Eg+2Et

Constructs
SEQ 0 0
IF 1.3 1.4

if guard 3 4.3
ALT (non timer) 6 26

alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg

PAR 11.5+(np-1)*7.5 19.5+(np-1 )*30.5
WHILE 4 12

Procedure or function call
3.5+(nsp-2)*1.1 16.5+(nsp-2)*1.1

+nap*2.3 +nap*2.3

Replicators
replicated SEQ 7.3{+5.1} (-3.8)+15.1 *count{+7.1}
repl icated IF 12.3{+5.1} (-2.6)+19.4*count{+7.1}
replicated ALT 24.8{+10.2} 25.4+33.4*count{+14.2}
replicated timer ALT 24.8{+1O.2} 62.4+33.4*count{+14.2}
replicated PAR 39.f{+5.1J (-6.4)+70.9*count{+7.1}

11.2 Fast multiply, TIMES

The IMS T414 has a fast integer multiplication instruction product. The time taken for a fast multiply is 4+Tb.
The time taken for a multiplication by zero is 3 cycles. For example, if the multiplier is 1 the time taken is
4 cycles, if the multiplier is -1 (all bits set) the time taken is 35 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the occam modulo arithmetic operator TIMES is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.

11.3 Arithmetic

A set of functions are provided within the development system to support the efficient implementation of
multiple length integer arithmetic and floating point arithmetic. In table 11.4 n gives the number of places
shifted and all arguments and results are assumed to be local. Full details of these functions are provided
in the occam reference manual, supplied as part of the development system and available as a separate
publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling
overhead. These functions are compiled directly into special purpose instructions which are designed to
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic.



Table 11.4 Arithmetic performance

+ cycles for
Function Cycles parameter access t

LONGADD 2 7
LONGSUM 3 8
LONGSUB 2 7
LONGDJ:FF 3 8
LONGPROD 34 8
LONGDJ:V 36 8
SBJ:FTRJ:GBT (n<32) 4+n 8

(n>=32) n-27
SBJ:FTLEFT (n<32) 4+n 8

(n>=32) n-27
NORMALJ:SE (n<32) n+6 7

(n>=32) n-25
(n=64) 4

ASBJ:FTRJ:GBT SBJ:FTRJ:GBT+2 5
ASBJ:FTLEFT SBJ:FTLEFT+4 5
ROTATERJ:GBT SBJ:FTRJ:GBT 7
ROTATELEFT SBJ:FTLEFT 7
FRACMUL LONGPROD+4 5

t Assuming local variables.

11.4 IMS T414 floating point operations

Floating point operations for the IMS T414 are provided by a run-time package. This requires approximately
400 bytes of memory for the single length arithmetic operations, and 2500 bytes for the double length arithmeti'c
operations. Table 11.5 summarizes the estimated performance of the package.

Table 11.5 IMS T414 floating point operations performance

Processor cycles
IMS T414

Typical Worst
REAL32 + - 230 300

* 200 240

/ 245 280
< > = >= <= <> 60 60

REAL64 + - 565 700

* 760 940

/ 1115 1420
< > = >= <= <> 60 60
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11.5 Effect of external memory

Extra processor cycles may be needed when program and/or data are held in external memory, depending
both on the operation being performed, and on the speed of the external memory. After a processor cycle
which initiates a write to memory, the processor continues execution at full speed until at least the next
memory access.

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will
depend upon the exact nature of the given sequence of operations.

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted
as e. For the IMS T414, with the fastest external memory the value of e is 2; a typical value for a large external
memory is 5.

If program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated for
linear code sequences. For larger values of e, the number of extra cycles required for linear code sequences
may be estimated at (e-3)/4. A transfer of control may be estimated as requiring e+3 cycles.

These estimates may be refined for various constructs. In table 11.6 n denotes the number of components in
a construct. In the case of J:F, the n'th conditional is the first to evaluate to TRUE, and the costs include the
costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted
by b.

Table 11.6 External memory performance

IMS T414
Program off chip Data off chip

Boolean expressions e-2 0
J:F 3en-8 en
Replicated J:F (6e-4)n+7 (5e-2)n+8
Replicated SEQ (3e-3)n+2 (4e-2)n
PAR (3e-1)n+8 3en+4-
Replicated PAR (10e-8)n+8 16en-12
ALT (2e-4)n+6e (2e-2)n+1Oe-8
Array assignment and 0 max (2e, e(b/2))

communication in
one transputer

For the IMS T414 the effective rate of INMOS links is slowed down on output from external memory by e
cycles per word output, and on input to external memory at 10 Mbitslsec by e-6 cycles per word if e~6.

The following simulation results illustrate the effect of storing program and/or data in external memory. The
results are normalized to 1 for both program and data on chip. The first program (Sieve of Erastosthenes)
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency,
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton
Raphson square root computation.
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Table 11.7 IMS T414 external memory performance

C.vl

Program e=2 e=3 e=4 e=5 On chip
Program off chip 1 1.3 1.5 1.7 1.9 1

2 1.1 1.2 1.2 1.3 1

Data off chip 1 1.5 1.8 2.1 2.3 1
2 1.2 1.4 1.6 1.7 1

Program and data off chip 1 1.8 2.2 2.7 3.2 1
2 1.3 1.6 1.8 2.0 1

11.6 Interrupt latency

If the process is a high priority one and no other high priority process is running, the latency is as described
in table 11.8. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also given
where relevant. Maximum latency assumes all memory accesses are internal ones.

Table 11.8 Interrupt latency

Typical Maximum
TPCLPCL I Tm TPCLPCL I Tm

IMS T414 19 I 38 53 I 116



12 Package specifications

12.1 84 pin grid array package

2 3 4 5 6 7 8 9 10

A

B
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D
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F

G

H

J

K

/ / "'
DoNot Link Proc Link Link Link Link Event Mem
Wire Special Clock 123 InO Out1 In2 Ack GND WaitOut Special

Hold DoNot LinkO Link Link Link Event Mem not
To Clockln Wire Special OutO Out2 Out3 Req Req Mem

GND WrB3

I
Cap Cap Link Link Mem Mem not IGND VCC VCC MemMinus Plus In1 In3 Contig Granted WrB1

~
Hold Hold

" Index
not not not

Error To To Mem Mem Mem
GND GND Rt WrB2 WrBO

Disable Boot not not
Int From Reset Mem Mem VCC

RAM ROM IMS T414 Rd SO
/ 84 pin grid array

1
Hold Mem top view not not not
To Analyse AD31 I

Mem Mem Mem
GND S3 S2 S4

/

1 Mem notMem Mem
AD30 GND AD27 I

not GND Mem
WrDO S1

/

I
Mem Mem Mem Mem Mem Mem Mem Mem Mem

VCC notAD29 AD25 AD23 AD16 AD12 AD8 AD4 AD3 RfD1

Mem Mem Mem Mem Mem Mem GND Mem Mem Mem
AD28 AD24 AD22 AD19 AD17 AD13 AD6 AD5 AD2

I

Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem IAD26 AD21 AD20 AD18 AD15 AD14 AD11 AD10 AD9 AD7
/

Figure 12.1 IMS T414 84 pin grid array package pinout
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Figure 12.2 84 pin grid array package dimensions

Table 12.1 84 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.005
C 2.456 ±0.278 0.097 ±0.011
D 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.025 0.018 ±0.001 Pin diameter
G 1.143 ±O.127 0.045 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 7.2 grams

Table 12.2 84 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow
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12.1.1 84 pin PLCC J·bend package

5 IMS T414 engineering data

CapMinus 1
VCC 2

HoldToGND 3
GND 4

HoldToGND 5
HoldToGND 6

Error 7
BootFromROM 8

Reset 9
DlsablelntRAM 10

HoldToGND 11
Analyse 12

MemAD31 13
MemAD30 14
MemAD29 15

GND16
MemAD2817
MemAD2718
MemAD26 19
MemAD2520
MemAD24 21

Notes

vMN~om~~w~vMN~om~~w~v

~~~~~~~~~~~~~~~w~w~w~

IMS T414
84 pin J-Bend
Chip Carrier
Top View

NMv~w~~mo~NMv~~~~mo~N

NNNNNNNNMMMMMMMMMMvvv

Figure 12.3 IMS T414 84 pin PLCC J-bend package pinout

63 MemReq
62 MemGranted
61 MemWait
60 notMemRf
59 notMemWrB3
58 notMemWrB2
57 notMemWrB 1
56 notMemWrBO
55 notMemRd
54 notMemSO
53 VCC
52 notMemS4
51 notMemS3
50 notMemS2
49 notMemS1
48 GND
47 MemnotWrDO
46 MemnotRfD1
45 MemAD2
44 MemAD3
43 MemAD4

Since the manufacture of the IMS T414, the pin numbers for the 84 pin J-bend chip carrier have been changed,
however the pin functions remain the same.
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index

A B

Figure 12.4 84 pin PLCC J-bend package dimensions

Table 12.3 84 pin PLCC J-bend package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 30.226 ±0.127 1.190 ±0.005
B 29.312 ±0.127 1.154 ±0.005
C 3.810 ±0.127 0.150 ±0.005
D 0.508 ±0.127 0.020 ±0.005
F 1.270 ±0.127 0.050 ±0.005
G 0.457 ±0.127 0.018 ±0.005
J 0.000 ±0.051 0.000 ±0.002
K 0.457 ±0.127 0.018 ±0.005
L 0.762 ±0.127 0.030 ±0.005

Package weight is approximately 7.0 grams

Table 12.4 84 pin PLCC J-bend package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow
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13 Ordering

This section indicates the designation of speed and package selections for the various devices. Speed of
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor PLLx, as detailed in the external memory section.

For availability contact local INMOS sales office or authorised distributor.

Table 13.1 IMS T414 ordering details

INMOS Processor Processor
designation clock speed cycle time PLLx Package

IMS T414-G15S 15 MHz 67 ns 3.0 Ceramic Pin Grid
IMS T414-G20S 20 MHz 50 ns 4.0 Ceramic Pin Grid

IMS T414-J15S 15 MHz 67 ns 3.0 Plastic PLCC J-Bend
IMS T414-J20S 20 MHz 50 ns 4.0 Plastic PLCC J-Bend
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FEATURES

IMS T222
transputer

Engineering Data

16 bit architecture
50 ns internal cycle time
20 MIPS (peak) instruction rate
Pin compatible with IMS T212
4 Kbytes on-chip static RAM
80 Mbytes/sec sustained data rate to internal memory
64 Kbytes directly addressable external memory
20 Mbytes/sec sustained data rate to external memory
950 ns response to interrupts
Four INMOS serial links 5/10/20 Mbits/sec
Bi-directional data rate of 2.4 Mbyteslsec per link
Internal timers of 1 P.s and 64 P.s
Boot from ROM or communication links
Single 5 MHz clock input
Single +5V ±5% power supply
MIL-STD-883C processing will be available

APPLICATIONS

Real time processing
Microprocessor applications
High speed multi processor systems
Industrial control
Robotics
System simulation
Digital signal processing
Telecommunications
Fault tolerant systems
Medical instrumentation

System
Services

4k bytes
of

On-chip
RAM

External
Memory
Interface

42 142401 October 1988
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1 Introduction

The IMS T222 transputer is a 16 bit CMOS microcomputer with 4 Kbytes on-chip RAM for high speed
processing, an external memory interface and four standard INMOS communication links. The instruction set
achieves efficient implementation of high level languages and provides direct support for the occam model
of concurrency when using either a single transputer or a network. Procedure calls, process switching and
typical interrupt latency are sub-microsecond. A device running at 20 MHz achieves an instruction throughput
of 20 MIPS peak. The extended temperature version of the device complies with MIL-STD-883C.

For convenience of description, the IMS T222 operation is split into the basic blocks shown in figure 1.1.

LinkSpecial
LinkOSpecial
Link123Special

LinklnO
LinkOutO

Linkln1
LinkOut1

Linkln2
LinkOut2

MemDO-15

Linkln3
LlnkOut3

F EventReq
Event, EventAck

16

VCC
GND

CapPlus
CapMinus

Reset
SystemAnalyse services

Error
BootFromROM

Clockln

I Timers I
4k bytes

DisablelntRam of 16
On-chip

RAM

ProcClockOut
notMemCE

notMemWrBQ-1

External
Memory

MemWait Interface
MemBAcc

MemReq
MemGranted

16 MemAO-15

Figure 1.1 IMS T222 block diagram

The IMS T222 is functionally equivalent to the IMS T212 but has a more easily connected memory interface
and improved links. The devices are pin-compatible and the IMS T222 is a direct replacement in many
applications. The IMS T222 can directly access a linear address space of 64 Kbytes. The 16 bit wide
non-multiplexed external memory interface provides a data rate of up to 2 bytes every 100 nanoseconds
(20 Mbytes/sec) for a 20 MHz device.

System Services include processor reset and bootstrap control. together with facilities for error analysis.

The INMOS communication links allow networks of transputers to be constructed by direct point to point
connections with no external logic. The links support the standard operating speed of 10 Mbitslsec, but
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also operate at 5 or 20 Mbitslsec. The links have been improved over those of the IMS T212 and support
overlapped acknowledge; each IMS T222 link can transfer data bi-directionally at up to 2.05 Mbyteslsec.

The IMS T222 is designed to implement the occam language, detailed in the occam Reference Manual,
but also efficiently supports other languages such as C and Pascal. Access to the transputer at machine
level is seldom required, but if necessary refer to The Transputer Instruction Set - A Compiler Writers' Guide.

This data sheet supplies hardware implementation and characterisation details for the IMS T222. It is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam.



2 Pin designations

Table 2.1 IMS T222 system services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset
Error out Error indicator
Analyse in Error analysis
BootFromRom in Bootstraps from external ROM or from link
DisablelntRAM in Disable internal RAM
HoldToGND Must be connected to GND

Table 2.2 IMS T222 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemAD-15 out Sixteen address lines
MemDO-15 in/out Sixteen data lines
notMemWrBO-1 out Two byte-addressing write strobes
notMemCE out Chip enable
MemBAcc in Byte access mode selector
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted

Table 2.3 IMS T222 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge

Table 2.4 IMS T222 link

Pin In/Out Function
LinklnD-3 in Four serial data input channels
LinkOutD-3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
LinkOSpecial in Select special speed for Link 0
Link123Special in Select special speed for Links 1,2,3

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 291.



3 Processor

The 16 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 64 Kbytes
of memory via the External Memory Interface (EMI).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, a and e registers which form an evaluation stack.

A, a and e are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes a into e, and A into a, before loading A. Storing a value from A, pops B into A and e into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in The Transputer Instruction Set - A Compiler Writers' Guide.

pLR ·tegls ers ocas rogram

A

B

C

Workspace ~

Next Inst

Operand

Figure 3.1 Registers
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3.2 Instructions

The instruction set has been designed for simple and efficient compilation of high-level languages. All in
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

I Function I Data I
7 4 3

I Operand Register I
~ 0

I

3.2.1 Direct functions

Figure 3.2 Instruction format

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these,
shown in table 3.1, are used to encode the most important functions.

Table 3.1 Direct functions

load constant

load local

load non-local

jump

add constant

store local

store non-local

conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C or Pascal.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.
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The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2 Expression evaluation

Program Mnemonic

x:= 0 Ide 0
stl x

x := #24 pfix 2
Ide 4
stl x

x := y + z Idl y
Idl z
add
stl x

3.2.5 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive two instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.
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A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 251).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active Being executed.
- On a list waiting to be executed.

Inactive - Ready to input.
Ready to output.

- Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 251). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Registers Locals

FPtr1 (Front) P
BPtr1 (Back)

a
A

B R

C

Workspace S

Next Inst

Operand

Figure 3.3 Linked process list

Table 3.3 Priority queue control registers

Function High Priority Low Priority
Pointer to front of active process list FptrO Fptr1
Pointer to back of active process list BptrO Bptr1

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 254). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1 ms apart.
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A process can only be descheduled on certain instructions, known as descheduling points (page 254). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 jJ.s, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T222 supports two levels of priority. Priority 1 (Iow priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer's time; Le. it has a distribution of descheduling points (page 254).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the
standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 53 cycles (assuming use of on-chip RAM).

3.5 Communications

Communication between processes is achieved by means of channels. Process communication is point-to
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
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links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Timers

The transputer has two 16 bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com
pletely in approximately 65 milliseconds. The other is accessible only to low priority processes and is incre
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
four seconds.

Table 3.4 Timer registers

ClockO
Clock1
TNextRegO
TNextReg1

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on .the timer queue, one waiting for time 21, the other for time 31.

TimerO

TNextRegO~__----.J

Workspaces

Alarm

21

Program

TPtrLoc Empty

31

Figure 3.4 Timer registers
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The Function Codes table 4.7. gives the basic function code set (page 248). Where the operand is less
than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative the first
prefix instruction will be nfix.

Table 4.1 prefix coding

Function Memory
Mnemonic code code

Ide #3 #4 #43

Ide #35
is coded as

pfix #3 #2 #23
Ide #5 #4 #45

Ide #987
is coded as

pfix #9 #2 #29
pfix #8 #2 #28
Ide #7 #4 #47

Ide -31 (Ide #FFE1)
is coded as

nfix #1 #6 #61
Ide #1 #4 #41

Tables 4.8 to 4.17 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2 operate coding

Function Memory
Mnemonic code code

add (op. code #5) #F5
is coded as

opr add #F #F5

ladd (op. code #16) #21F6
is coded as

pfix #1 #2 #21
opr #6 #F #F6

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where the memory code
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it
is interpreted from table 4.3.
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Table 4.3 Instruction set interpretation

Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4 Instruction features

Ident Feature See page:

D The instruction is a descheduling point 254

E The instruction will affect the Error flag 254, 263

4.1 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 250). They are
also the ones at which the processor will halt if the Analyse pin is asserted (page 262).

Table 4.5 Descheduling point instructions

input message
timer alt wait
jump

output message
timer input
loop end

output byte
stop on error
end process

output word
alt wait
stop process

4.2 Error instructions

The instructions in table 4.6 are the only ones which can affect the Error flag (page 263) directly.

Table 4.6 Error setting instructions

remainder

check count from 1

subtract
divide
long divide

add constant

long subtract
testerr
check subscript from 0 check single

add
multiply
long add
set error
check word
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Table 4.7 IMS T222 function codes

Function Memory Processor 0
Code Code Mnemonic Cycles Name E

0 OX j 3 jump D
1 1X Idlp 1 load local pointer
2 2X pfix 1 prefix
3 3X Idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnlp 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)

4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
D DX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

Table 4.8 IMS T222 arithmetic/logical operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24FO shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 23 multiply E
2C 22FC div 24 divide E
1F 21FF rem 21 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product
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Table 4.9 IMS T222 long arithmetic operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 3 long sum
4F 24FF Idiff 3 long diff
31 23F1 Imul 17 long multiply
1A 21 FA Idiv 19 long divide E
36 23F6 Ishl n+3 long shift left (n<16)

n-12 long shift left(n~16)
35 23F5 Ishr n+3 long shift right (n<16)

n-12 long shift right (n~16)
19 21F9 norm n+5 normalise (n<16)

n-10 normalise (n~16)

3 normalise (n=32)

Table 4.10 IMS T222 general operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

00 FO rev 1 reverse

3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
10 21FO xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer

Table 4.11 IMS T222 indexing/array operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

02 F2 bsub 1 byte subscript
OA FA wsub 2 word subscript
34 23F4 bcnt 2 byte count
3F 23FF wcnt 4 word count
01 F1 Ib 5 load byte
38 23F8 sb 4 store byte

4A 24FA move 2w+8 move message
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Table 4.12 IMS T222 timer handling operation codes

~Ol

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) D

4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D

48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer

Table 4.13 IMS T222 inpUt/output operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

07 F7 in 2w+19 input message D
OB FB out 2w+19 output message D
OF FF outword 23 output word D
OE FE outbyte 23 output byte D

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D

17 alt wait (channel not ready) D
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip
30 23FO diss 4 disable skip

12 21F2 resetch 3 reset channel
48 24F8 enbc 7 enable channel (ready)

5 enable channel (not ready)
2F 22FF disc 8 disable channel

Table 4.14 IMS T222 control operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

20 22FO ret 5 return
1B 21FB Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) D

5 loop end (exit) D
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Table 4.15 IMS T222 scheduling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

00 FO startp 12 start process D
03 F3 endp 13 end process D
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority

Table 4.16 IMS T222 error handling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

13 21F3 csubO 2 check subscript from 0 E
4D 24FO ccnt1 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21FO seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) D
57 25F7 clrhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error

Table 4.17 IMS T222 processor initialisation operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FO savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25FO sthb 1 store high priority back pointer
1C 21FC stlf 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer



5 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

5.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

5.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1JlF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 20 MHz. If a polarised capacitor is used the negative
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

CapPlus

CapMinus

P.C.B. track

P.C.B. track

Decoupling
capacitor

1JlF

5.3 Clockln

Figure 5.1 Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.
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Table 5.1 Input clock

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

1 Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VlL (table 10.3).

90% K--
100/0- - - - - --TDCf -

TDCerror

2.0v- - 
1.5vO.8v: : : : -

TDCerror

TDCLDCH TDCHDCL

TDCLDCL

90%----A

10%- - - -- - -TDC;- -

Figure 5.2 Clockln timing

5.4 Reset

Reset can go high with YCC. but must at no time exceed the maximum specified voltage for VIH. After VCC
is valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge
of Reset initialises the transputer and starts the bootstrap routine. Link outputs are forced low during reset;
link inputs and EventReq should be held low. Memory request (DMA) must not occur whilst Reset is high but
can occur before bootstrap (page 329). If BootFromRom is high bootstrapping will take place immediately
after Reset goes low. using data from external memory; otherwise the transputer will await an input from any
link. The processor will be in the low priority state.

5.5 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once
only by the transputer, before the first instruction is executed after Reset is taken low.

If BootFromRom is connected high (e.g. to YCC) the transputer starts to execute code from the top two
bytes in external memory. at address #7FFE. This location should contain a backward jump to a program
in ROM. Following this access. BootFromRom may be taken low if required. The processor is in the low
priority state. and the Wregister points to MemStart (page 264).



5 System services

Table 5.2 Reset and Analyse

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 Clockln 1
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFromRom hold after Reset 0 ms 3
TALBRX BootFromRom hold after Analyse 3

Notes

1 Full periods of Clockln TDCLDCL required.

2 At power-on reset.

3 Must be stable until after end of bootstrap period. See Bootstrap section.

Clockln

vcc

Reset

BootFromRom

TRLBRX

Figure 5.3 Transputer reset timing with Analyse low

TRHRL

Reset

TAHRH

Analyse

BootFromRom

Figure 5.4 Transputer reset and analyse timing



6 IMS T222 engineering data

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process.
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately
above the loaded code is used as work space. Messages arriving on other links after the control byte has
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs
from them.

5.6 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting for
a bootstrap from link. If the control byte is 0 then four more bytes are expected on the same link. The first
two byte word is taken as an internal or external memory address at which to poke (write) the second four
byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read) a
word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

5.7 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling point
(page 254). From Analyse being asserted, the processor will halt within three time slice periods plus the
time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Processor flags Error and HaltOnError are not altered
at reset, whether Analyse is asserted or not.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. If BootFrom
Rom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a control
byte on any link. If Analyse is taken low without Reset going high the transputer state and operation are
undefined. After the end of a valid Analyse sequence the registers have the values given in table 5.3.

Table 5.3 Register values after Analyse

MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of I when the processor halted.

8 The value of Wwhen the processor halted, together with the priority of the process
when the transputer was halted (Le. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.
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5.8 Error

The Error pin is connected directly to the internal Error flag and follows the state of that flag. If Error is
high it indicates an error in one of the processes caused, for example, by arithmetic overflow, divide by zero,
array bounds violation or software setting the flag directly (page 254). Once set, the Errorflag is only cleared
by executing the instruction testerr. The error is not cleared by processor reset, in order that analysis can
identify any errant transputer (page 262).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnError has been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers to
halt. This can be done by applying the Error output signal of the errant transputer to the EventReq pin of a
suitably programmed master transputer. Since the process state is preserved when stopped by an error, the
master transputer can then use the analyse function to debug the fault. When using such a circuit, note that
the Error flag is in an indeterminate state on power up; the circuit and software should be designed with this
in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the E"or and HaltOnError flags is saved
for the duration of the high priority process and restored at the conclusion of it. Status of the Error flag is
transmitted to the high priority process but the HaltOnE"or flag is cleared before the process starts. Either
flag can be altered in the process without upsetting the error status of any complex operation being carried
out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I points
one byte past the instruction being executed. In both cases I will be copied to register A.

Event

Analyse
Latch

Reset

Slave Slave
Transputer Transputero 1--------.1"'-1.... 1

Error[O] Error[ 1]

(transputer links not shown)
Slave

Transputer
2

Error[2]

Slave
Transputer

3

Error[3]

Figure 5.5 Error handling in a multi-transputer system



6 Memory

The IMS T222 has 4 Kbytes of fast internal static memory for high rates of data throughput. Each internal
memory access takes one processor cycle ProcClockOut (page 266). The transputer can also access an
additional 60 Kbytes of external memory space. Internal and external memory are part of the same linear
address space. Internal RAM can be disabled by holding DisablelntRAM high. All internal addresses are
then mapped to external RAM. This pin should not be altered after Reset has been taken low.

IMS T222 memory is byte addressed, with words aligned on two-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #8000 and extends to #8FFF. User memory begins at
#8024; this location is given the name MemStart.

A reserved area at the bottom of internal memory is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one.

External memory space starts at #9000 and extends up through #0000 to #7FFF. ROM bootstrapping code
must be in the most positive address space, starting at #7FFE. Address space immediately below this is
conventionally used for ROM based code.
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I

#08001---------.

hi Machine map 10 Byte address

II--R_e_s_et_l_ns_t-L.I ~1 #7FFE

1 1#0

I I#9000 - Start of external memory-

MemStart #12

Ereg IntSaveLoc

STATUSlntSaveLoc

CregIntSaveLoc

Breg IntSaveLoc

Areg IntSaveLoc

IptrlntSaveLoc

WdesclntSaveLoc

TPtrLoc1

TPtrLocO

Event

Link 3 Input

Link 2 Input

Link 1 Input

Link 0 Input

Link 3 Output
Link 2 Output

Link 1 Output

Link 0 Output

#8024

#8022

#8020

#801E

#801C

#801A

#8018

#8016

#8014

#8012

#8010

#800E

#800C

#800A

#8008

#8006

#8004

#8002

#8000

MemStart

Note 1

(Base of memory)

#08

#07

#06

#05

#04

#03

#02

#01

#00

Event

Link 3 Input

Link 2 Input

Link 1 Input

Link 0 Input

Link 3 Output
Link 2 Output

Link 1 Output

Link 0 Output

Figure 6.1 IMS T222 memory map

These locations are used as auxiliary processor registers and should not be manipulated by the user.
Like processor registers, their contents may be useful for implementing debugging tools (Analyse,
page 262). For details see The Transputer Instruction Set - A Compiler Writers' Guide.
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7 External memory interface

The IMS T222 External Memory Interface (EMI) allows access to a 16 bit address space via separate address
and data buses. The data bus can be configured for either 16 bit or 8 bit memory access, allowing the use of
a single bank of byte-wide memory. Both word-wide and byte-wide access may be mixed in a single memory
system (page 272).

The IMS T222 has the ability to handle slower access static RAMs than the IMS T212 and can operate with
a simpler wait state generator. In addition, the write strobes are no longer active during internal memory
access in order to simplify external memory interfacing.

7.1 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL =TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (ordering section).

Edges of the various external memory strobes are synchronised by, but do not all coincide with, rising or
falling edges of ProcClockOut. ProcClockOut has a different phase relationship with the strobes when
compared to the IMS T212.

Table 7.1 ProcClockOut

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCLPCL ProcClockOut period 8-1 8 8+1 ns 1
TPCHPCL ProcClockOut pulse width high b-2.5 b b+2.5 ns 2
TPCLPCH ProcClockOut pulse width low c ns 3
TPCstab ProcClockOut stability 4 Ok 4

Notes

a is TDCLDCLlPLLx.

2 b is 0.5*TPCLPCL (half the processor clock period).

3 c is TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

1.5v - - - - - - - - - -

TPCLPCH TPCHPCL

TPCLPCL

Figure 7.1 IMS T222 ProcClockOut timing
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7.2 Tstates

The external memory cycle is divided into four Tstates with the following functions:

T1 Address and control setup time.

T2 Data setup time.

T3 Data read/write.

T4 Data and address hold after access.

Each Tstate is half a processor cycle TPCLPCL long. An external memory cycle is always a complete
number of cycles TPCLPCL in length and the start of T1 always coincides with a rising edge of edge of
ProcClockOut. T2 can be extended indefinitely by adding externally generated wait states of one complete
processor cycle each.

7.3 Internal access

During an internal memory access cycle the external memory interface address bus MemAO-15 reflects the
word address used to access internal RAM, notMemWrBO-1 and notMemCE are inactive and the data bus
MemOO-15 is tristated. This is true unless and until a DMA (memory request) activity takes place, when the
lines will be placed in a high impedance state by the transputer.

Bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 262).

7.4 MemAQ-15

External memory addresses are output on a non-multiplexed 16 bit bus. The address is valid at the start of
T1 and remains so until the end of T4, with the timing shown. Byte addressing is carried out internally by the
IMS T222 for read cycles. For write cycles the relevant bytes in memory are addressed by the write enables
notMemWrBQ-1.

The transputer places the address bus in a high impedance state during DMA.

7.5 MemOQ-15

The non-multiplexed data bus is 16 bits wide. Read cycle data may be set up on the bus at any time after
the start of T1, but must be valid when the IMS T222 reads it during T4. Data can be removed any time after
the rising edge of notMemCE, but must be off the bus no later than the end of T4.

Write data is placed on the bus at the start of T2 and removed at the end of T4. It is normally written into
memory in synchronism with notMemCE going high.

The data bus is high impedance except when the transputer is writing data. If only one byte is being written,
the unused 8 bits of the bus are high impedance at that time. In byte access mode Mem08-15 are high
impedance during the external memory cycle which writes the most significant (second) byte (page 272).

If the data setup time for read or write is too short it can be extended by inserting wait states at the end of
T2 (page 273).
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Table 7.2 Read

T222-20 T222-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TAVEL Address valid before chip enable low 10 12 ns 1
TELEH Chip enable low 72 78 83 88 ns 1
TEHEL Delay before chip enable re-assertion 20 24 ns 1,2
TEHAX Address hold after chip enable high 10 12 ns 1
TELDrV Data valid from chip enable low 47 53 ns
TAVDrV Data valid from address valid 57 65 ns
TDrVEH Data setup before chip enable high 25 30 ns
TEHDrZ Data hold after chip enable high 0 20 0 24 ns
TWEHEL Write enable setup before chip enable low 20 24 ns 3
TPCHEL ProcClockOut high to chip enable low 10 12 ns 1

Notes

1 This parameter is common to read and write cycles and to byte-wide memory accesses.

2 These values assume back-ta-back external memory accesses.

3 Timing is for both write enables notMemWrBO-1.

Tstate T1 I T2 I T3 I T4 T1

ProcClockOut

MemAO-15

notMemCE

MemDO-15

notMemWrBO-1

Figure 7.2 IMS T222 external read cycle

7.6 notMemWrBQ-1

Two write enables are provided, one to write each byte of the word. When writing a word, both write enables
are asserted; when writing a byte only the appropriate write enable is asserted. notMemWrBO addresses
the least significant byte. The write enables are active before the chip enable signal notMemCE becomes
active, thus reducing memory access time and the risk of bus contention.

The write enables are synchronised with the chip enable signal notMemCE. allowing them to be used without
notMemCE for simple designs.
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Data may be strobed into memory using notMemWrBG-1 without the use of notMemCE, as the write enables
go high between consecutive extemal memory write cycles. The write enables are placed in a high impedance
state during DMA, and are inactive during internal memory access.

Table 7.3 Write

T222-20 T222-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TDwVEH Data setup before chip enable high 50 57 ns
TEHDwZ Data hold after write 10 15 12 17 ns
TDwZEL Write data invalid to next chip enable 10 12 ns
TWELEL Write enable setup before chip enable low -3 0 -4 0 ns 1
TEHWEH Write enable hold after chip enable high 0 3 0 4 ns 1

Notes

1 Timing is for both write enables notMemWrBO-1.

Tstate T1 T2 I T3 I T4 T1

ProcClockOut

MemAO-15 =x..... A_d_d_r_es_s --IX _

TEHWEH

Data

TDwVEH

notMemCE

MemDO-15

TWELEL ~~

notMemWrBO-1 ="_-a- -....IIIl'-' _

Figure 7.3 IMS T222 external write cycle

ProcClockOut

notMemWrBO-1 A Write / Read Read '<
notMemCE y '<
MemAO-15 :x Address X Address X Address X
MemDO-15 => <

Figure 7.4 IMS T222 typical bus actiVity for internal memory cycles
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7.7 notMemCE

The active low signal notMemCE is used to enable external memory on both read and write cycles.

Error vcc :! 1: ..! .. "!II :t-r T III~III lilY'" .,.
GND~GND

MemD12-15

MemD8-11

MemD4-7

MemDO-3

notMemCE
notMemWrB1 --
notMemWrBO

MemGranted

IMS
T222

CapPlus
.........1....-....C_apMinus

S6R

As LinkO

Clockln
(5 MHz)

LinkOln

S6R

100K

GND

LinkOOut

Link11n
Link10ut

Link21n
L ink20 ut --...,....-...---11

Link31n As Link2
Link30 ut --w-..-----II

Reset
Analyse
MemWait -------11
MemReq -------t

MemAO-15

Figure 7.5 IMS T222 application
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Figure 7.6 IMS T222 Least significant byte write in word access mode

Tstate T1 I T2 I T3 I T4 I T1 T2 I T3 I T4 I T1

ProcClockOut

MemA1-15 =>< A_d_d_re_s_s _

MemAO _--="_~. -----1/
notMemCE " / ,"- ....1/

//////7

MemDO-7

MemD8-15

notMemWrBO

MemBacc

~~~~~~~~~~~~~~~~~amo~ ~g~ficaM b~~

~~--e(Datamost significant byte>J-------------e(

,""'--- -""-L_
notMemWrB1 _--="_-.a. ....,/ '-

~~~~~~

Figure 7.7 IMS T222 Most significant byte write to byte-wide memory
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7.8 MemBAcc
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The IMS T222 will, by default, perform word access at even memory locations. Access to byte-wide memory
can be achieved by taking MemBAcc high with the timing shown. Where all external memory operations are
to byte-wide memory, MemBAcc may be wired permanently high. The state of this signal is latched during
T2.

If MemBAcc is low then a full word will be accessed in one external memory cycl~, otherwise the high and
low bytes of the word will be separately accessed during two consecutive cycles. The first (least significant)
byte is accessed at the word address (MemAO is low). The second (most significant) byte is accessed at the
word address +1 (MemAO is high).

With MemBAcc high, the first cycle is identical with a normal word access cycle. However, it will be im
mediately followed by another memory cycle, which will use MemDD-7 to read or write the second (most
significant) byte of data. During this second cycle notMemWrB1 remains high, both for read and write, and
MemD8-15 are high impedance. When writing a single byte with MemBAcc high, both the first and second
cycles are performed with notMemWrBO asserted in the appropriate cycle.

Table 7.4 Byte-wide memory access

T222-20 T222-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TELBAH MemBAcc high from chip enable 12 15 ns
TELBAL MemBAcc low from chip enable 26 29 ns

Tstate T1 I T2 I T3 T4 I T1 I T2 I T3 I T4 I

ProcClockOut

MemA1-15

MemAO

=>< A_d_d_re_s_s >C

-~-------------'/ ~
MemDO-7

MemD8-15

notMemCE

notMemWrBO

notMemWrB1

MemBAcc

Least significant byte

Most significant byte

Most significant byte

Figure 7.8 IMS T222 word write to byte-wide memory
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7.9 MemWait

Taking MemWait high with the timing shown in the diagram will extend the duration of T2 by one processor
cycle TPCLPCL. One wait state comprises the pair W1 and W2. MemWait is sampled near the falling edge of
ProcClockOut during T2, and should not change state in this region. If MemWait is still high when sampled
near the falling edge of ProcClockOut in W2 then another wait period will be inserted. This can continue
indefinitely. Internal memory access is unaffected by the number of wait states selected.

The wait state generator can be a simple digital delay line, synchronised to notMemCE. The IMS T222
has modified internal circuitry, compared with the IMS T212, to reduce the quantity of external components
required. The Single Wait State Generator circuit in figure 7.10 can be extended to provide two or more
wait states, as shown in figure 7.11.

Table 7.5 Memory wait

T222-20 T222-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TPCHWtH MemWait asserted after ProcClockOut high 25 27 ns
TPCHWtL Wait low after ProcClockOut high 35 39 ns

Tstate

ProcClockOut

MemAO-15

notMemCE

MemWait

T1 T2 W1 I W2 T3 I T4 T1

MemDO-15 ~ (~ Da_~ ~)~--~~

notMemWrBO-1 " /

Figure 7.9 IMS T222 memory wait timing
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VCC --4'-
74F741/2

4k S
~ R

notMemCE 0 a .... MemWait....
ProcClockOut CP

Figure 7.10 Single wait state generator

1/2 74F74

~~~"1a~"1a~~"1a~~~

--~-------: --~--------VCC

s S
R R

...----4 0 a t---~---f 0 a t--&--~ MemWait
CP CPGND

notMemCE

ProcClockOut-----I_------~__~----.,.._-
~-------------------- ...

Figure 7.11 Extendable wait state generator



7 External memory Interface

7.10 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
For external memory cycles, the IMS T222 samples MemReq during the first high phase of ProcClockOut
after notMemCE goes low. In the absence of an external memory cycle, MemReq is sampled during every
rising edge of ProcClockOut. MemAD-15, MemOD-15, notMemWrBD-1 and notMemCE are tristated before
MemGranted is asserted.

Removal of MemReq is sampled at each rising edge of ProcClockOut and MemGranted removed with
the timing shown. Further external bus activity, either external cycles or reflection of internal cycles, will
commence during the next low phase of ProcClockOut.

Chip enable, write enables, address bus and data bus are in a high impedance state during DMA. External
circuitry must ensure that notMemCE and notMemWrBD-1 do not become active whilst control is being
transferred; it is recommended that a 10K resistor is connected from VCC to each pin. DMA cannot interrupt
an external memory cycle. DMA does not interfere with internal memory cycles in any way, although a program
running in internal memory would have to wait for the end of DMA before accessing external memory. DMA
cannot access internal memory.

•

MemReq

MemGranted

Reset

Bootstrap activity---~1------------7/-----------"'----
B Bootstrap sequence.

Figure 7.12 IMS T222 DMA sequence at reset

MemReq

External Memory
Interface activity ~

nternal Memory CYCI~eS

1r 11I21J3IHI IrllI2.~llw~I3IH .-t EMI cycle ,------~~MI CYCie with wait ------

,"-----_--.1/MemGranted

notMemWrBO-1

----~/
"==7 ,'----~, ~ 7 '-...._--_..1,----

notMemCE

MemAO-15

MemOO-15

_____)~--<X >..--~<><=

-<<{<<<<»>-------e:(<<t<<<<<< »>---------1

Figure 7.13 IMS T222 operation of MemReq and MemGranted with external and internal memory cycles
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DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 7.6 Memory request

T222-20 T222-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE

TMRHMGH Memory request response time 85 a 100 a ns 1
TMRLMGL Memory request end response time 90 100 100 114 ns
TAZMGH Addr. bus tristate before MemGranted 0 0 ns
TAVMGL Addr. bus active after MemGranted end 0 0 ns
TDZMGH Data bus tristate before MemGranted 0 0 ns
TEZMGH Chip enable tristate before MemGranted 0 0 ns 2
TEVMGL Chip enable active after MemGranted end 0 0 ns
TWEZMGH Write enable tristate before MemGranted 0 0 ns 2
TWEVMGL Write enable active after MemGranted end 0 0 ns

Notes

1 Maximum response time a depends on whether an external memory cycle is in progress and whether byte
access is active. Maximum time is (2 processor cycles) + (number of wait state cycles) for word access; in byte
access mode this time is doubled.

2 When using DMA, notMemCE and notMemWrBO-1 should be pulled up with a resistor (typically 1.2k). Capac
itance should be limited to a maximum of 50pF.

Tstate

ProcClockOut

MemReq

MemGranted

MemAO-15

MemDO-15

notMemCE

notMemWrBO-1

Figure 7.14 IMS T222 memory request timing



8 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described on
page 251. Setting a high priority task to wait for an event input is a way of interrupting a transputer program.

Table 8.1 Event

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a ns 1
TKLVH Delay before re-assertion of event request 0 ns
TKHEWL Event acknowledge to end of event waiting 0 ns
TKLEWH End of event acknowledge to event waiting 0 ns

Notes

1 a is 3 processor cycles TPCLPCL.

EventReq

EventAck

TVHKH

TKHVL

TVLKL

TKLVH

Figure 8.1 IMS T222 event timing
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9 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T222 links allow an acknowledge packet to be sent before the data packet has been fully received.
This overlapped acknowledge technique is fully compatible with all other INMOS transputer links. The hard
output channels are not double buffered. There is thus a pause between transmission of the last byte of
a word of the message and the first byte of the next word. This pause time is related to memory speed.
Hard input channels have one byte of double buffering and are unlikely to affect the data rate. The dominant
factor affecting link bandwidth is therefore the memory bandwidth of the transmitting transputer, as shown in
table 9.1. Internal memory access time is similar to zero wait state external access time. Times are for two
interconnected IMS T222's with 20 Mbits/sec link speed.

Table 9.1 Memory/Link speed relationship

Memory Speed Byte Output Word Memory Unidirectioal
(20MHz device) Time nS Read nS Data Rate Mbytes/sec
1 cycle (0 wait) 575 200 1.48
2 cycle (1 wait) 575 250 1.42
3 cycle (2 wait) 575 300 1.38

The IMS T222 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can
be used at 5 or 20 Mbits/sec. Links are not synchronised with Clockln or ProcClockOut and are insensitive
to their phases. Thus links from independently clocked systems may communicate, providing only that the
clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used· in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LlnkSpeclal, LlnkOSpeclal and Llnk123Speclal. The link 0 speed can be
set independently. Table 9.2 shows uni-directional and bi-directional data rates in Kbytes/sec for each link
speed; LlnknSpeclal is to be read as LlnkOSpeclal when selecting link 0 speed and as Link123Special for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.
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Table 9.2 Speed Settings for Transputer Links

Link Linkn Kbytes/sec
Special Special Mbits/sec Uni Bi

0 0 10 800 1130
0 1 5 430 590
1 0 10 800 1130
1 1 20 1480 2050

~,-
I Ack I

Figure 9.1 IMS T222 link data and acknowledge packets

Table 9.3 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf Linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
5 Mbits/s 30 ns 1

CllZ linkln capacitance @ f=1MHz 7 pF
Cll LinkOut load capacitance 50 pF
RM Series resistor for 1000 transmission line 56 ohms

Notes

1 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LinkOut

90% -------
Linkln

10% -----

- - --
TJQf

Figure 9.2 IMS T222 link timing
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TJBskew

Linkln

L1nkO:ate~;~~ ------
Earliest TJQJD

Figure 9.3 IMS T222 buffered link timing

Transputer family device A

LinkOut I · I Linkln

____L_I_n_kl_n.....,j,-----....--------I_L_i_n_kO_u_t _
Transputer family device B

Figure 9.4 IMS T222 Links directly connected

Transputer family device A Zo=1000hms

~~~_L_:_:_:_:_ ~::~t
Zo=1000hms AM Transputer family device B

Figure 9.5 IMS T222 Links connected by transmission line

Transputer family device A

LinkOut .>-----......---f Linkln

buffers
Llnkln I---~------< LlnkOut

Transputer family device B

Figure 9.6 IMS T222 Links connected by buffers



10 Electrical specifications

10.1 DC electrical characteristics

Table 10.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
11 Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 QC 2
TA Ambient temperature under bias -55 125 QC 2
PDmax Maximum allowable dissipation 2 W

Notes

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to proted the inputs against damage caused by high static voltages or eledrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 10.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 60 pF
TA Operating temperature range IMS T222-S 0 70 QC 3
TA Operating temperature range IMS T222-M -55 125 QC 3

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.
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Table 10.3 DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
Vll Low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 p,A 1,2
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOl Output low voltage @ IOL=4mA 0.4 V 1,2
10S Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3,7

65 100 mA 1,2,4,7
25 90 mA 1,2,3,8
50 130 mA 1,2,4,8

10Z Tristate output current @ GND<VO<VCC ±10 p,A 1,2
PD Power dissipation 700 mW 2,5
CIN Input capacitance @ f=1MHz 7 pF 6
COZ Output capacitance @ f=1MHz 10 pF 6

Notes

1 All voltages are with respect to GND.

2 Parameters for IMS T222-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Parameters for IMS T222-M measured at 4.75V<VCC<5.25V and -55°C<TA<125°C.
Input clock frequency = 5MHz.

3 Current sourced from non-link outputs.

4 Current sourced from link outputs.

5 Power dissipation varies with output loading and program execution.

6 This parameter is sampled and not 1000/0 tested.

7 Parameter for IMS T222-S.

8 Parameter for IMS T222-M.

10.2 Equivalent circuits

Output

50pF

GND _"""'---+---4_

load for: R1 R2 Equivalent load:

Link outputs 1K96 47K 1 SChottky TTL input
Other outputs 970R 24K 2 SChottky TTL inputs

Diodes are 1N916

Figure 10.1 Load circuit for AC measurements
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Test point
Output under test

GND ---- --L

VCC

Figure 10.2 Tristate load circuit for AC measurements

10.3 AC timing characteristics

Table 10.4 Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TOr Input rising edges 2 20 ns 1,2
TOf Input falling edges 2 20 ns 1,2
Tar Output rising edges 25 ns 1
TOf Output falling edges 15 ns 1

Notes

Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

TQf

Figure 10.3 IMS T222 input and output edge timing
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30 30
Time Time

ns Rise time ns
20 20 Fall time

10 Fall time 10

40 60 80 100

Load Capacitance pF

Link

40 60 80 100

Load Capacitance pF

EMI

Notes
Figure 10.4 Typical rise/fall times

1 Skew is measured between notMemCE with a standard load (2 Schottky TTL inputs and 30pF) and
notMemCE with a load of 2 Schottky TTL inputs and varying capacitance.

10.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 10.5.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in °C and 8JA is the junction-to-ambient thermal resistance in
°CIW. 8JA for each package is given in the Packaging Specifications section.

500
Power
PINT 400
mW

300

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 10.5 IMS T222 internal power dissipation vs VCC



11 Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to occam
programs. For the same function, other languages should achieve approximately the same performance as
occam.

11.1 Performance overview

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type INT. The abbreviations in table 11.1 are used to represent the quantities
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table 11.1 Key to performance table

np number of component processes
ne number of processes earlier in queue
r 1 if INT parameter or array parameter, 0 if not
ts number of table entries (table size)
w width of constant in nibbles
p number of places to shift
Eg expression used in a guard
Et timer expression used in a guard
Tb most significant bit set of multiplier ((-1) if the multiplier is 0)
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0)
Tbc most significant bit set in the two's complement of a negative multiplier
nsp Number of scalar parameters in a procedure
nap Number of array parameters in a procedure
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Table 11.2 Performance

Names
variables

in expression
assigned to or input to
in PROC or FUNCTION call,

corresponding to an INT parameter
channels

Array Variables (for single dimension arrays)
constant subscript
variable subscript
expression subscript

Declarations
CBAN OF protocol
[size] CBAN OF protocol

PROC

Primitives
assignment
input
output
STOP
SKIP

Arithmetic operators
+ -
*
/
REM
» «

Modulo Arithmetic operators
PLUS
MINUS
TIMES (fast multiply)

Boolean operators
OR
AND NOT

Comparison operators
= constant
= variable
<> constant
<> variable
> <
>= <=

Bit operators
/\ \/ >< -

Expressions
constant in expression
check if error

Size (bytes)

1.1+r
1.1+r

1.1 +r
1.1

o
5.3
5.3

3.1
9.4

body+2

o
4
1
2
o

1
2
2
2
2

2
1
1

4
1

o
2
1
3
1
2

2

w
4

Time (cycles)

2.1+2(r)
1.1 +(r)

1.1 +(r)
2.1

o
7.3
7.3

3.1
2.2 + 20.2*size

o

o
26.5
26
25
o

1
23
24
22

3+p

2
1

4+Tb

8
2

1
3
3
5
2
4

2

w
6
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Table 11.3 Performance
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Size (bytes) Time (cycles)

Timers
timer input 2 3
timer AFTER

if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+ne.9

ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+ne.9
timer alt guard 8+2Eg+2Et 34+2Eg+2Et

Constructs
SEQ 0 0
XI' 1.3 1.4

if guard 3 4.3
ALT (non timer) 6 26

alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg

PAR 11.5+(np-1).7.5 19.5+(np-1 ).30.5
WBXLE 4 12

Procedure or function call
3.5+(nsp-2).1.1 16.5+(nsp-2).1.1

+nap.2.3 +nap.2.3
Replicators

repl icated SEQ 7.3{+5.1} (-3.8)+15.1.count{+7.1}
repl icated XI' 12.3{+5.1 } (-2.6)+19.4.count{+7.1 }
replicated ALT 24.8{+10.2} 25.4+33.4.count{+14.2}
replicated timer ALT 24.8{+10.2} 62.4+33.4.count{+14.2}
replicated PAR 39.1t+5.1J (-6.4)+70.9.counf{+7.1}

11.2 Fast mUltiply, TXMES

The IMS T222 has a fast integer multiplication instruction product. The time taken for a fast multiply is 4+Tb.
The time taken for a multiplication by zero is 3 cycles. For example, if the multiplier is 1 the time taken is
4 cycles, if the mUltiplier is -1 (all bits set) the time taken is 19 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the occam modulo arithmetic operator TXMES is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.

11.3 Arithmetic

A set of functions are provided within the development system to support the efficient implementation of
multiple length integer arithmetic and floating point arithmetic where relevant. In table 11.4 n gives the number
of places shifted and all arguments and results are assumed to be local. Full details of these functions are
provided in the occam reference manual, supplied as part of the development system and available as a
separate publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling
overhead. These functions are compiled directly into special purpose instructions which are designed to
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic.
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Table 11.4 Arithmetic performance
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+ cycles for
Function Cycles parameter access t

LONGADD 2 7
LONGSOM 3 8
LONGSUB 2 7
LONGD:IIT 3 8
L ONGPROD 18 8
LONGD:IV 20 8
SB:II'TR:IGB'1' (n<16) 4+n 8

(n>=16) n-11 8
SB:II''1'LBI''1' (n<16) 4+n 8

(n>=16) n-11 8
NORMAL:ISB (n<16) n+6 7

(n>=16) n-9 7
(n=32) 4 7

ASB:II''1'R:IGB'1' SB:II''1'R:IGB'1'+2 5
ASB:II''1'LEI''1' SB:II''1'LBI''1'+4 5
RO'1'A'l'BR:IGB'1' SB:II''1'R:IGB'1' 7
RO'1'A'l'BLEI''1' SB:II''1'LEI''1' 7

t Assuming local variables.

11.4 IMS T222 floating point operations

Floating point operations for the IMS T222 are provided by a run-time package. This requires approximately
2000 bytes of memory for the double length arithmetic operations, and 2500 bytes for the quadruple length
arithmetic operations. Table 11.5 summarizes the estimated performance of the package.

Table 11.5 IMS T222 floating point operations performance

Processor cycles
IMS T222

Typical Worst
REAL32 + - 530 705

* 650 705

/ 1000 1410
< > = >= <= <> 60 60

REAL64 + - 875 1190

* 1490 1950

/ 2355 3255
< > = >= <= <> 60 60
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11.5 Effect of external memory

Extra processor cycles may be needed when program and/or data are held in external memory, depending
both on the operation being performed, and on the speed of the external memory. After a processor 'cycle
which initiates a write to memory, the processor continues execution at full speed until at least the next
memory access.

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will
depend upon the exact nature of the given sequence of operations.

External memory is characterized by the number of extra processor cycles per external memory cycle. denoted
as e. The value of e for the IMS T222 with no wait states is 1.

If a program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated
for linear code sequences. For larger values of e, the number of extra cycles required for linear code
sequences may be estimated at (2e-1)/4 per byte of program. A transfer of control may be estimated as
requiring e+3 cycles.

These estimates may be refined for various constructs. In table 11.6 n denotes the number of components in
a construct. In the case of IF, the n'th conditional is the first to evaluate to TRUE, and the costs include the
costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted
by b.

Table 11.6 External memory performance

IMS T222
Program off chip Data off chip

Boolean expressions 8..1 0
IF 3en-1 en
Replicated IF 6en+ge-12 (5e-2)n+6
Replicated SEg (48-3)n+3e (48-2)n+3-e
PAR 4en 3en
Replicated PAR (178-12)n+9 16en
ALT (48..1)n+98-4 (48-1 )n+ge-3
Array assignment and 0 max (2e, eb)

communication in
one transputer

For the IMS T222 the effective rate of INMOS links is slowed down on output from external memory by e
cycles per word output, and on input to external memory at 10 Mbitslsec by e-6 cycles per word if e~6.

The following simulation results illustrate the effect of storing program and/or data in external memory. The
results are normalized to 1 for both program and data on chip. The first program (Sieve of Erastosthenes)
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency,
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton
Raphson square root computation.
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Table 11.7 IMS T222 external memory performance

Program e=1 e=2 e=3 e=4 On chip
Program off chip 1 1.2 1.4 1.8 2.1 1

2 1.1 1.2 1.4 1.6 1

Data off chip 1 1.2 1.5 1.8 2.1 1
2 1.1 1.3 1.4 1.6 1

Program and data off chip 1 1.4 1.9 2.5 3.0 1
2 1.2 1.5 1.8 2.1 1

11.6 Interrupt latency

If the process is a high priority one and no other high priority process is running, the latency is as described
in table 11.8. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also given
where relevant. Maximum latency assumes all memory accesses are internal ones.

Table 11.8 Interrupt latency

Typical Maximum
TPCLPCL I Tm TPCLPCL I Tm

IMS T222 19 I 53 I
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12.1 68 pin grid array package
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Figure 12.1 IMS T222 68 pin grid array package pinout
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Figure 12.2 68 pin grid array package dimensions

Table 12.1 68 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes
A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.008
C 2.466 ±0.279 0.097 ±0.011
0 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.051 0.018 ±0.002 Pin diameter
G 1.270 ±0.127 0.050 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 6.8 grams

Table 12.2 68 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow
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12.2 68 pin PLCC J-bend package

m~~~~~~N~~~~~~~N~

~~~~~~~~

HoldToGND 10
BootFromROM 11

Reset 12
Error 13

HoldToGND 14
MemDO 15
MemD1 16
MemD2 17
MemD318
MemD419
MemDS 20

GND 21
Mem622
Mem723
Mem824

MemD925
Mem1026

~~mO~N~~~~~~mO~N~

NNN~~~~~~~~~~~~~~
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~~~~~~~ ~~~~

60 DlsablelntRam
59 EventAck
58 HoldToGND
57 Analyse
56 MemBAcc
55 MemWait
54 MemReq
53 MemGranted
52 GND
51 notMemCE
50 notMemWrBO
49 notMemWrB1
48 MemAO
47 MemA1
46 MemA2
45 MemA3
44 MemA4

Figure 12.3 IMS T222 68 pin PLCC J-bend package pinout
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index
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Figure 12.4 68 pin PLCC J-bend package dimensions

Table 12.3 68 pin PLCC J-bend package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 25.146 ±0.127 0.990 ±0.005
B 24.232 ±0.127 0.954 ±0.005
C 3.810 ±0.127 0.150 ±0.005
D 0.508 ±0.127 0.020 ±0.005
F 1.270 ±0.127 0.050 ±0.005
G 0.457 ±0.127 0.018 ±0.005
J 0.000 ±0.051 0.000 ±0.002
K 0.457 ±0.127 0.018 ±0.005
L 0.762 ±0.127 0.030 ±0.005

Package weight is approximately 5.0 grams

Table 12.4 68 pin PLCC J-bend package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow
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13 Ordering

This section indicates the designation of speed and package selections for the various devices. Speed of
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor PLLx, as detailed in the external memory section.

For availability contact local INMOS sales office or authorised distributor.

Table 13.1 IMS T222 ordering details

INMOS Processor Processor
designation clock speed cycle time PLLx Package

IMS T222·G17S 17.5 MHz 57 ns 3.5 Ceramic Pin Grid
IMS T222·G20S 20.0 MHz 50 ns 4.0 Ceramic Pin Grid

IMS T222·J17S 17.5 MHz 57 ns 3.5 Plastic J-Bend
IMS T222·J20S 20.0 MHz 50 ns 4.0 Plastic J-Bend

IMS T222·G17M 17.5 MHz 57 ns 3.5 Ceramic Pin Grid MIL Spec
IMS T222·G20M 20.0 MHz 50 ns 4.0 Ceramic Pin Grid MIL Spec
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IMS T212
transputer

The IMS T222
is recommended
for new designs

Engineering Data

16 bit architecture
50 ns internal cycle time
20 MIPS (peak) instruction rate
Pin compatible with IMS T222
2 Kbytes on-chip static RAM
80 Mbytes/sec sustained data rate to internal memory
64 Kbytes directly addressable external memory
20 Mbytes/sec sustained data rate to external memory
950 ns response to interrupts
Four INMOS serial links 5/10/20 Mbits/sec
Si-directional data rate of 1.6 Mbyteslsec per link
Internal timers of 1 JJs and 64 JJs
Soot from ROM or communication links
Single 5 MHz clock input
Single +5V ±5% power supply, less than 1 Watt

APPLICATIONS

Real time processing
Microprocessor applications
High speed multi processor systems
Industrial control
Robotics
System simulation
Digital signal processing
Telecommunications
Fault tolerant systems
Medical instrumentation
Pattern reoognition
Image processing
Graphics processing
Artificial intelligence
Supercomputers

System
Services

2k bytes
of

On-chip
RAM

External
Memory
Interface

42 1405 04 October 1988
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1 Introduction

The IMS T212 transputer is a 16 bit CMOS microcomputer with 2 Kbytes on-chip RAM for high speed
processing, an external memory interface and four standard INMOS communication links. The instruction set
achieves efficient implementation of high level languages and provides direct support for the occam model
of concurrency when using either a single transputer or a network. Procedure calls, process switching and
typical interrupt latency are sub-microsecond. A device running at 20 MHz achieves an instruction throughput
of 10 MIPS.

For convenience of description, the IMS T212 operation is split into the basic blocks shown in figure 1.1.

Linkln1
LinkOut1

Linkln2
LinkOut2

MemOQ-15

MemAQ-15

Linkln3
LinkOut3

F EventReq
Event. EventAck

16

16

16 16 bit
Processor

VCC
GNO

CapPlus
CapMinus

Reset
SystemAnalyse services

Error
BootFromROM

Clockln

I Timers I
2k bytes

OisablelntRam of 16
On-chip

RAM

ProcClockOut
notMemCE

notMemWrBQ-1

External
Memory

MemWait Interface
MemBAcc

MemReq
MemGranted

Figure 1.1 IMS T212 block diagram
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The IMS T212 can directly access a linear address space of 64 Kbytes. The 16 bit wide non-multiplexed
external memory interface provides a data rate of up to 2 bytes every 100 nanoseconds (20 Mbyteslsec) for
a 20 MHz device. System Services include processor reset and bootstrap control, together with facilities for
error analysis.

The INMOS communication links allow networks of transputers to be constructed by direct point to point
connections with no external logic. The links support the standard operating speed of 10 Mbits/sec, but also
operate at 5 or 20 Mbits/sec.

The IMS T212 is designed to implement the occam language, detailed in the occam Reference Manual,
but also efficiently supports other languages such as C and Pascal. Access to the transputer at machine
level is seldom required, but if necessary refer to The Transputer Instruction Set - A Compiler Writers' Guide.

This data sheet supplies hardware implementation and characterisation details for the IMS T212. It is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam.
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2 Pin designations

Table 2.1 IMS T212 system services

Pin In/Out Function
VCC,GNO Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset
Error out Error indicator
Analyse in Error analysis
BootFromRom in Bootstraps from external ROM or from link
OisablelntRAM in Disable internal RAM
HoldToGNO Must be connected to GNO

Table 2.2 IMS T212 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemAD-15 out Sixteen address lines
MemOD-15 in/out Sixteen data lines
notMemWrBD-1 out Two byte-addressing write strobes
notMemCE out Chip enable
MemBAcc in Byte access mode selector
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted

Table 2.3 IMS T212 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge

Table 2.4 IMS T212 link

Pin In/Out Function
LinklnQ-3 in Four serial data input channels
LinkOutQ-3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
LinkOSpecial in Select special speed for Link 0
Link123Special in Select special speed for Links 1,2,3

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 345.
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3 Processor

The 16 bit. processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 2 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 64 Kbytes
of memory via the External Memory Interface (EMI).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-ehip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, a and e registers which form an evaluation stack.

A, a and e are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes a into e, and A into a, before loading A. Storing a value from A, pops a into A and e into B.

Expressions are evaluated on the evaluation staCk, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in The Transputer Instruction Set - A Compiler Writers' Guide.

pLR ·tegls ers ocas rogram

A

B

C

Workspace ---.
Next Inst -
Operand

Figure 3.1 Registers
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3.2 Instructions

The instruction set has been designed for simple and efficient compilation of high-level languages. All in
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

I Function I Data I
743

I Operand Register I
~ 0

I

3.2.1 Direct functions

Figure 3.2 Instruction format

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these,
shown in table 3.1, are used to encode the most important functions.

Table 3.1 Direct functions

load constant

load local

load non-local

jump

add constant

store local

store non-local

conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C or Pascal.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it oomplements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.
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The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2 Expression evaluation

Program Mnemonic

x:= 0 Idc 0
stl x

x := #24 pfix 2
Idc 4
stl x

x := y + z Idl y
Idl z
add
stl x

3.2.5 Efficiency of encoding

Measurements show that about 700k of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive two instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.
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3.3 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 305).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active Being executed.
- On a list waiting to be executed.

Inactive - Ready to input.
Ready to output.

- Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 305). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Registers Locals

FPtr1 (Front) P
BPtr1 (Back)

a
A

B R

C

Workspace S

Next Inst

Operand

Figure 3.3 Linked process list

Table 3.3 Priority queue control registers

Function High Priority Low Priority
Pointer to front of active process list FptrO Fptr1
Pointer to back of active process list BptrO Bptr1

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 308). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1 ms apart.
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A process can only be descheduled on certain instructions, known as descheduling points (page 308). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 p,s, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T212 supports two levels of priority. Priority 1 (Iow priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one ·and two tirneslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer's time; Le. it has a distribution of descheduling points (page 308).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the
standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 53 cycles (assuming use of on-chip RAM).

3.5 Communications

Communication between processes is achieved by means of channels. Process communication is point-to
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
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links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Timers

The transputer has two 16 bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com
pletely in approximately 65 milliseconds. The other is accessible only to low priority processes and is incre
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
four seconds.

Table 3.4 Timer registers

ClockO
Clock1
TNextRegO
TNextReg1

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

TimerO

TNextRegO '--- __

Workspaces

Alarm

21

Program

TPtrLoc Empty

31

Figure 3.4 Timer registers



4 Instruction set summary

The Function Codes table 4.7. gives the basic function code set (page 302). Where the operand is less
than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative the first
prefix instruction will be nfix.

Table 4.1 prefix coding

Function Memory
Mnemonic code code

Ide #3 #4 #43

Ide #35
is coded as

pfix #3 #2 #23
Ide #5 #4 #45

Ide #987
is coded as

pfix #9 #2 #29
pfix #8 #2 #28
Ide #7 #4 #47

Ide -31 (/de #FFE1)
is coded as

nfix #1 #6 #61
Ide #1 #4 #41

Tables 4.8 to 4.17 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2 operate coding

Function Memory
Mnemonic code code

add (op. code #5) #F5
is coded as

opr add #F #F5

ladd (op. code #16) #21F6
is coded as

pfix #1 #2 #21
opr #6 #F #F6

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where the memory code
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it
is interpreted from table 4.3.
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Table 4.3 Instruction set interpretation

Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4 Instruction features

Ident Feature See page:

D The instruction is a descheduling point 308
E The instruction win affect the Error flag 308.317

4.1 Deschedullng points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 304). They are
also the ones at which the processor will halt if the Analyse pin is asserted (page 316).

Table 4.5 Descheduling point instructions

input message
timer alt wait
jump

output message
timer input
loop end

output byte
stop on error
end process

output word
alt wait
stop process

4.2 Error Instructions

The instructions in table 4.6 are the only ones which can affect the Error flag (page 317) directly.

Table 4.6 Error setting instructions

remainder

check count from 1

subtract
divide
long divide

add constant

long subtract
testerr
check subscript from 0 check single

add
multiply
long add
set error
check word
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Table 4.7 IMS T212 function codes

Function Memory Processor 0
Code Code Mnemonic Cycles Name E

0 OX j 3 jump D
1 1X Idlp 1 load local pointer
2 2X pfix 1 prefix
3 3X Idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnlp 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)

4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
D DX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

Table 4.8 IMS T212 arithmetic/logical operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24FO shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 23 multiply E
2C 22FC div 24 divide E
1F 21FF rem 21 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product
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Table 4.9 IMS T212 long arithmetic operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 3 long sum
4F 24FF Idiff 3 long diff
31 23F1 Imul 17 long multiply
1A 21 FA Idiv 19 long divide E
36 23F6 Ishl n+3 long shift left (n<16)

n-12 long shift left(n~16)
35 23F5 Ishr n+3 long shift right (n<16)

n-12 long shift right (n~16)
19 21F9 norm n+5 normalise (n<16)

n-10 normalise (n~16)
3 normalise (n=32)

Table 4.10 IMS T212 general operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

00 FO rev 1 reverse

3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
10 21FO xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer

Table 4.11 IMS T212 indexing/array operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

02 F2 bsub 1 byte subscript
OA FA wsub 2 word subscript
34 23F4 bent 2 byte count
3F 23FF went 4 word count
01 F1 Ib 5 load byte
38 23F8 sb 4 store byte

4A 24FA move 2w+8 move message
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Table 4.12 IMS T212 timer handling operation codes

Jll

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) D

4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D

48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer

Table 4.13 IMS T212 input/output operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

07 F7 in 2w+19 input message D
OB FB out 2w+19 output message D
OF FF outword 23 output word D
OE FE outbyte 23 output byte D

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D

17 alt wait (channel not ready) D
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip
30 23FO diss 4 disable skip

12 21F2 resetch 3 reset channel
48 24F8 enbc 7 enable channel (ready)

5 enable channel (not ready)
2F 22FF disc 8 disable channel

Table 4.14 IMS T212 control operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

20 22FO ret 5 return
1B 21FB Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) D

5 loop end (exit) D
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Table 4.15 IMS T212 scheduling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

OD FD startp 12 start process D
03 F3 endp 13 end process D
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE ldpri 1 load current priority

Table 4.16 IMS T212 error handling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

13 21F3 csubO 2 check subscript from 0 E
4D 24FD ccnt1 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21FO seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) D
57 25F7 clrhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error

Table 4.17 IMS T212 processor initialisation operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25FO sthb 1 store high priority back pointer
1C 21FC stlf 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer



5 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

5.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

5.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1JlF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 20 MHz. If a polarised capacitor is used the negative
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

CapPlus

CapMinus

P.C.B. track

P.C.B. track

Decoupling
capacitor

1JlF

5.3 Clockln

Figure 5.1 Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.
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Table 5.1 Input clock

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (table 10.3).

90% K--
10%- - - - - :=-TDCf -

TDCerror

2.0v- - 
1.5vO.8v===: -

TDCerror

TDCLDCH TDCHDCL

TDCLDCL90%----A
10°,fc>- - - -- - -TDC~ -

Figure 5.2 Clockln timing

5.4 Reset

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC
is valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge
of Reset initialises the transputer and starts the bootstrap routine. Link outputs are forced low during reset;
link inputs and EventReq should be held low. Memory request (DMA) must not occur whilst Reset is high but
can occur before bootstrap (page 329). If BootFromRom is high bootstrapping will take place immediately
after Reset goes low, using data from external memory; otherwise the transputer will await an input from any
link. The processor will be in the low priority state.

5.5 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once
only by the transputer, before the first instruction is executed after Reset is taken low.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two
bytes in external memory, at address #7FFE. This location should contain a backward jump to a program
in ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low
priority state, and the W register points to MemStart (page 318).
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Table 5.2 Reset and Analyse

"10

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power val id before Reset 10 ms
TRHRL Reset puIse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 Clockln 1
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFromRom hold after Reset 0 ms 3
TALBRX BootFromRom hold after Analyse 3

Notes

1 Full periods of Clockln TDCLDCL required.

2 At power-on reset.

3 Must be stable until after end of bootstrap period. See Bootstrap section.

Clockln

VCC

Reset

BootFromRom

Figure 5.3 Transputer reset timing with Analyse low

TRHRL

Reset

TAHRH

Analyse

BootFromRom

Figure 5.4 Transputer reset and analyse timing



J10 7 IM~ T212 engineering data

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process.
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately
above the loaded code is used as work space. Messages arriving on other links after the control byte has
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs
from them.

5.6 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then four more bytes are expected on the same link. The
first two byte word is taken as an internal or external memory address at which to poke (write) the second
two byte word. If the control byte is 1 the next two bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

5.7 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling point
(page 308). From Analyse being asserted, the processor will halt within three time slice periods plus the
time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Processor flags Error and HaltOnError are not altered
at reset, whether Analyse is asserted or not.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. If BootFrom
Rom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a control
byte on any link. If Analyse is taken low without Reset going high the transputer state and operation are
undefined. After the end of a valid Analyse sequence the registers have the values given in table 5.3.

Table 5.3 Register values after Analyse

MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of I when the processor halted.

8 The value of Wwhen the processor halted, together with the priority of the process
when the transputer was halted (Le. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.
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5.8 Error

\311

The Error pin is connected directly to the internal E"or flag and follows the state of that flag. If Error is
high it indicates an error in one of the processes caused, for example, by arithmetic overflow, divide by zero,
array bounds violation or software setting the flag directly (page 308). Once set, the Error flag is only cleared
by executing the instruction testerr. The error is not cleared by processor reset, in order that analysis can
identify any errant transputer (page 316).

A process can be programmed to stop if the Errorflag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnError has been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers to
halt. This can be done by applying the Error output signal of the errant transputer to the EventReq pin of a
suitably programmed master transputer. Since the process state is preserved when stopped by an error, the
master transputer can then use the analyse function to debug the fault. When using such a ci rcuit, note that
the Error flag is in an indeterminate state on power up; the circuit and software should be designed with this
in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the E"or and HaltOnError flags is saved
for the duration of the high priority process and restored at the conclusion of it. Status of the Error flag is
transmitted to the high priority process but the HaltOnError flag is cleared before the process starts. Either
flag can be altered in the process without upsetting the error status of any complex operation being carried
out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I points
one byte past the instruction being executed. In both cases I will be copied to register A.

Event

Analyse
Latch

Reset

Slave Slave
Transputer Transputero ~------._I-t 1

Error[O] Error[1]

(transputer links not shown)
Slave

Transputer
2

Error[2]

Slave
Transputer

3

Error[3]

Figure 5.5 Error handling in a multi-transputer system
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6 Memory

The IMS T212 has 2 Kbytes of fast internal static memory for high rates of data throughput. Each internal
memory access takes one processor cycle ProcClockOut (page 320). The transputer can also access an
additional 62 Kbytes of external memory space. Internal and external memory are part of the same linear
address space. Internal RAM can be disabled by holding DisablelntRAM high. All internal addresses are
then mapped to external RAM. This pin should not be altered after Reset has been taken low.

IMS T212 memory is byte addressed, with words aligned on two-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #8000 and extends to #87FF. User memory begins at
#8024; this location is given the name MemStart.

A reserved area at the bottom of internal memory is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one.

External memory space starts at #8800 and extends up through #0000 to #7FFF. ROM bootstrapping code
must be in the most positive address space, starting at #7FFE. Address space immediately below this is
conventionally used for ROM based code.



6 Memory 319

Word offsets occam map

I,.....---~
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#03

#02

#01

#00

Event

Link 3 Input

Link 2 Input

Link 1 Input

Link 0 Input

Link 3 Output

Link 2 Output

Link 1 Output

Link 0 Output

Figure 6.1 IMS T212 memory map

These locations are used as auxiliary processor registers and should not be manipulated by the user.
Like processor registers, their contents may be useful for implementing debugging tools (Analyse,
page 316). For details see The Transputer Instruction Set - A Compiler Writers' Guide.
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The IMS T212 External Memory Interface (EMI) allows access to a 16 bit address space via separate address
and data buses. The data bus can be configured for either 16 bit or 8 bit memory access, allowing the use of
a single bank of byte-wide memory. Both word-wide and byte-wide access may be mixed in a single memory
system (page 326).

7.1 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (ordering section).

Edges of the various external memory strobes are synchronised by, but do not all coincide with, rising or
falling edges of ProcClockOut.

Table 7.1 ProcClockOut

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCLPCL ProcClockOut period 8-1 8 8+1 ns 1
TPCHPCL ProcClockOut pulse width high b-2.5 b b+2.5 ns 2
TPCLPCH ProcClockOut pulse width low c ns 3
TPCstab ProcClockOut stability 4 0/0 4

Notes

a is TDCLDCLlPLLx.

2 b is 0.5*TPCLPCL (half the processor clock period).

3 c is TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

1.5v - - - - - - - - - -

TPCLPCH TPCHPCL

TPCLPCL

Figure 7.1 IMS T212 ProcClockOut timing
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7.2 Tstates

The external memory cycle is divided into four Tstates with the following functions:

T1 Address and control setup time.

T2 Data setup time.

T3 Data read/write.

T4 Data and address hold after access.

"£1

Each Tstate is half a processor cycle TPCLPCL long, displaced by approximately one fourth of a cycle from
ProcClockOut edges. T2 can be extended indefinitely by adding externally generated wait states of one
complete processor cycle each.

An external memory cycle is always a complete number of cycles TPCLPCL in length. The start of T1 always
coincides with the low phase of ProcClockOut.

7.3 Internal access

During an internal memory access cycle the external memory interface address bus MemAO-15 reflects
the word address used to access internal RAM, notMemWrBO-1 reflect the internal read/write operation,
notMemCE is inactive and the data bus MemOO-15 is tristated. This is true unless and until a DMA (memory
request) activity takes place, when the lines will be placed in a high impedance state by the transputer.

Bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 316).

7.4 MemAO-15

External memory addresses are output on a non-multiplexed 16 bit bus. The address is valid at the start of
T1 and remains so until the end of T4, with the timing shown. Byte addressing is carried out internally by the
IMS T212 for read cycles. For write cycles the relevant bytes in memory are addressed by the write enables
notMemWrBQ-1.

The transputer places the address bus in a high impedance state during DMA.

7.5 MemOQ-15

The non-multiplexed data bus is 16 bits wide. Read cycle data may be set up on the bus at any time after the
start of T1, but must be valid when the IMS T212 reads it during T3. Data can be removed any time during
T4, but must be off the bus no later than the end of that period.

Write data is placed on the bus at the start of T2 and removed at the end of T4. It is normally written into
memory in synchronism with notMemCE going high.

The data bus is high impedance except when the transputer is writing data. If only one byte is being written,
the unused 8 bits of the bus are high impedance at that time. In byte access mode Mem08·15 are high
impedance during the external memory cycle which writes the most significant (second) byte (page 326).

If the data setup time for read or write is too short it can be extended by inserting wait states at the end of
T2 (page 327).
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Table 7.2 Read

T212·20 T212·17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TAVEL Address valid before chip enable low 13 16 15 19 ns
TELEH Chip enable low 56 63 65 72 ns
TEHEL Delay before chip enable re-assertion 35 46 40 51 ns 1
TEHAX Address hold after chip enable high 20 24 21 27 ns
TELDrV Data valid from chip enable low 40 43 ns
TDrVEH Data setup before chip enable high 11 15 ns
TEHDrZ Data hold after chip enable high 0 0 ns
TWEHEL Write enable setup before chip enable low 14 18 ns 2

Notes

1 These values assume back-ta-back external memory accesses.

2 Timing is for both write enables notMemWrBO-1.

Tstate T1 T2 T3 T4 T1 I T2

ProcClockOut

MemAO-15

notMemCE

MemDO-15

notMemWrBO-1

Figure 7.2 IMS T212 external read cycle

7.6 notMemWrBD-1

Two write enables are provided, one to write each byte of the word. When writing a word, both write enables
are asserted; when writing a byte only the appropriate write enable is asserted. notMemWrBO addresses
the least significant byte. The write enables are active before the chip enable signal notMemCE becomes
active, thus reducing memory access time and the risk of bus contention.

The write enables are active before the chip enable signal notMemCE, thus reducing memory access time
and the risk of bus contention.
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Data must be strobed into memory by, or in conjunction with, notMemCE, as the write enables are not
guaranteed to go high between consecutive write cycles. The write enables are placed in a high impedance
state during DMA.

Table 7.3 Write

T212-20 T212-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TDwVEH Data setup before chip enable high 36 42 ns
TEHDwZ Data hold after write 22 30 24 32 ns
TWELEL Write enable setup before chip enable low 4 20 4 24 ns 1
TEHWEH Write enable hold after chip enable high 17 25 18 27 ns 1

Notes

1 Timing is for both write enables notMemWrBO-1.

Tstate T1 T2 T3 T4 T1 I T2

ProcClockOut

MemAO-15

notMemCE

MemDO-15

notMemWrBO-1

=>< A_d_d_r_es_s ....."x'- _

Figure 7.3 IMS T212 external write cycle

ProcClockOut

notMemWrBO-1 ~ Write / Read Read '<
notMemCE y '<
MemAO-15 X Address X Address X Address X
MemDO-15 J <

Figure 7.4 IMS T212 typical bus activity for internal memory cycles



7.7 notMemCE

The active low signal notMemCE is used to enable external memory on both read and write cycles. It must
be used, in conjunction with the write enables notMemWrBO-1, to write data into memory; the write enable
lines only select the byte of memory to be written.

Table 7.4 notMemCE to ProcClockOut skew

T212-20 T212-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TPCHEL notMemCe falling from ProcClockOut rising 1 5 2 8 ns
TEHPCL notMemCe rising to ProcClockOut falling 8 14 10 15 ns

ProcClockOut

notMemCE

Figure 7.5 IMS T212 skew of notMemCE to ProcClockOut
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Figure 7.6 IMS T212 application
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Figure 7.7 IMS T212 Least significant byte write in word access mode

Tstate T1 I T2 I T3 I T4 I T1 T2 I T3 I T4 I T1

ProcClockOut

MemA1-15

MemAO

notMemCE

Address

------/
MemDO-7

MemBacc

MemD8-15

notMemWrBO

~~~~~~~~~~~~~~~~~amo~ ~g~fica~ b~~

~---e:<Datamost significant byte)Jo------------e(

,"--- ..-...-r_
notMemWrB1 _="_......a. .-I/ '--

~~~~~~~

Figure 7.8 IMS T212 Most significant byte write to byte-wide memory
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7.8 MemBAcc

The IMS T212 will, by default, perform word access at even memory locations. Access to byte-wide memory
can be achieved by taking MemBAcc high with the timing shown. Where all external memory operations are
to byte-wide memory, MemBAcc may be wired permanently high. The state of this signal is latched during
T2.

If MemBAcc is low then a full word will be accessed in one external memory cycle, otherwise the high and
low bytes of the word will be separately accessed during two consecutive cycles. The first (least significant)
byte is accessed at the word address (MemAO is low). The second (most significant) byte is accessed at the
word address +1 (MemAO is high).

With MemBAcc high, the first cycle is identical with a normal word access cycle. However, it will be im
mediately followed by another memory cycle, which will use MemDQ-7 to read or write the second (most
significant) byte of data. During this second cycle notMemWrB1 remains high, both for read and write, and
MemD8-15 are high impedance. When writing a single byte with MemBAcc high, both the first and second
cycles are performed with notMemWrBO asserted in the appropriate cycle.

Table 7.5 Byte-wide memory access

T212-20 T212-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TELBAH MemBAcc high from chip enable 12 15 ns
TELBAL MemBAcc low from chip enable 26 29 ns

Tstate T1 T2 T3 T4 T1 T2 I T3 T4 I T1 .

ProcClockOut

MemA1-15 ==:>< A_d_d_re_s_s K
MemAO _="'_.....&.- ....,,/ ~

notMemCE

MemDO-7

MemD8-15

notMemWrBO

notMemWrB1

MemBacc

>----1--<: Data least significant byte >----<. Data most significant byte

>---1--< Data most significant byte >a---------------e

Figure 7.9 IMS T212 word write to byte-wide memory
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7.9 MemWait

vLI

Taking MemWait high with the timing shown in the diagram will extend the duration of T2 by one processor
cycle TPCLPCL. One wait state comprises the pair W1 and W2. MemWait is sampled near the falling edge of
ProcClockOut during T2, and should not change state in this region. If MemWait is still high when sampled
near the falling edge of ProcClockOut in W2 then another wait period will be inserted. This can continue
indefinitely. Internal memory access is unaffected by the number of wait states selected.

The wait state generator can be a simple digital delay line, synchronised to notMemCE. The Single Wait
State Generator circuit in figure 7.11 can be extended to provide two or more wait states, as shown in
figure 7.12.

The Programmable Wait State Generator circuit in figure 7.13 is designed to be interfaced directly to any
memory or peripheral enable signal; 'F' series devices should be employed to ensure minimum delay between
notMemCE and a valid notWaitX input. Only one wait select input line should be low at anyone time; for
zero wait states notWaitO must be asserted.

Table 7.6 Memory wait

T212-20 T212-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TELWtH MemWait asserted after chip enable low 13 13 ns
TELWtL Wait hold after chip enable low 23 a+13 23 a+13 ns 1

Notes

a is w*c where w is the number of wait states and c is the toleranced clock period of 49 ns for IMS T212-20,
56 ns for IMS T212-17.

Tstate T1 T2 W1 W2 T3 I T4 T1 I T2

ProcClockOut

MemAO-15 =x A_d_dr_e_s_s .--X"" _
notMemCE

MemWait

TELWtH

MemDO-15 =:).-----e("" D_at_a .--X _
notMemWrBO-1 -=". L--

Figure 7.10 IMS T212 memory wait timing
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VCC

S
R

_--4 0 a t----4I~ MemWait
CP

notMemCE

1/6

GND

ProcClockOut ---....

Figure 7.11 Single wait state generator

S S
R R

___--I 0 a ...--.........----1 0 a I--I----II~ MemWait
CP CPGND

notMemCE

ProcClockOut ---__~------...._t__---_....--

~~ ... ~~~~ ..............
---------:"-I-----.....&...-VCC

Figure 7.12 Extendable wait state generator

GND

notMemCE S

ProcClockOut CP

---~--........_~------VCC

11a lOa 11b lab 11c lac 11d lad

74F298

Oa ab Qc ad

nlc nlc nlc

nlc nlc

VCC~""".e4I"-

4K7 nlc nlc

- __1----------.__......._- GND

notWait8-......................................J--C:l 17 EO GS PL TC RC
notWait7 16
notWalt6 15 CP 00 nlc
notWait5 14 74F 74F 01 nlc
notWalt4 13 148 Aa 0----.... 00 191 02 nlc
notWait3 12 A1 01 03 t-----~ MemWait
notWait2 11 A2 02
notWait1 10 El 03 CE U/O

notWaitO-e_--------+-----...

Figure 7.13 Programmable wait state generator
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7.10 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
For external memory cycles, the IMS T212 samples MemReq during the first high phase of ProcClockOut
after notMemCE goes low. In the absence of an external memory cycle, MemReq is sampled during every
high phase of ProcClockOut. MemAD-15, MemOD-15, notMemWrBD-1 and notMemCE are tristated before
MemGranted is asserted.

Removal of MemReq is sampled during each high phase of ProcClockOut and MemGranted removed with
the timing shown. Further external bus activity, either external cycles or reflection of internal cycles, will
commence during the next low phase of ProcClockOut.

Chip enable, write enables, address bus and data bus are in a high impedance state during DMA. External
circuitry must ensure that notMemCE and notMemWrBD-1 do not become active whilst control is being
transferred; it is recommended that a 10K resistor is connected from VCC to each pin. DMA cannot interrupt
an external memory cycle. DMA does not interfere with internal memory cycles in any way, although a program
running in internal memory would have to wait for the end of DMA before accessing external memory. DMA
cannot access internal memory.

MemReq

MemGranted

Reset

Bootstrap activity---<7I-------------"lf1-----...........-----

B Bootstrap sequence.

Figure 7.14 IMS T212 DMA sequence at reset

MemReq //////7 " /7 '--
Memory Cycles

External Memory
Interface activity

MemGranted / " / '-
notMemWrBO-1 ) <X ) oc=
notMemCE

) <X ) oc=MemAO-15

MemOO-15 --«{«« }) «({«{«( })

Figure 7.15 IMS T212 operation of MemReq and MemGranted with external and internal memory cycles
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DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 7.7 Memory request

T212-20 T212-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE

TMRHMGH Memory request response time 85 a 100 a ns 1
TMRLMGL Memory request end response time 90 100 100 114 ns
TAZMGH Addr. bus tristate before MemGranted 0 0 ns
TAVMGL Addr. bus active after MemGranted end 0 0 ns
TDZMGH Data bus tristate before MemGranted 0 0 ns
TEZMGH notMemCE tristate before MemGranted 0 0 ns
TEVMGL notMemCE active after MemGranted end 0 0 ns
TWEZMGH Write enable tristate before MemGranted 0 0 ns
TWEVMGL Write enable active after MemGranted end 0 0 ns

Notes

1 Maximum response time a depends on whether an external memory cycle is in progress and whether byte
access is active. Maximum time is (2 processor cycles) + (number of wait state cycles) for word access; in byte
access mode this time is doubled.

Tstate

ProcClockOut

MemReq

MemGranted

MemAO-15

MemDO-15

notMemCE

notMemWrBO-1

Figure 7.16 IMS T212 memory request timing
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8 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described on
page 305. Setting a high priority task to wait for an event input is a way of interrupting a transputer program.

Table 8.1 Event

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a ns 1
TKLVH Delay before re-assertion of event request 0 ns
TKHEWL Event acknowledge to end of event waiting 0 ns
TKLEWH End of event acknowledge to event waiting 0 ns

Notes

a is 3 processor cycles TPCLPCL.

EventReq

EventAck

TVHKH

TKHVL

TVLKL

TKLVH

Figure 8.1 IMS T212 event timing



9 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer. Every byte of data sent on a link is acknowledged on the input of the same link. thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge. which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T212 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can
be used at 5 or 20 Mbits/sec. Links are not synchronised with Clockln or ProcClockOut and are insensitive
to their phases. Thus links from independently clocked systems may communicate. providing only that the
clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments. between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so. their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LlnkSpeclal, LlnkOSpeclal and Llnk123Speclal. The link 0 speed can be
set independently. Table 9.1 shows uni-directional and bi-directional data rates in Kbytes/sec for each link
speed; LlnknSpeclal is to be read as LlnkOSpeclal when selecting link 0 speed and as Llnk123Special for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 9.1 Speed Settings for Transputer Links

Link Llnkn Kbytes/sec
Special Special Mblts/sec Unl 81

0 0 10 400 800
0 1 5 200 400
1 0 10 400 800
1 1 20 800 1600

Figure 9.1 IMS T212 link data and acknowledge packets
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Table 9.2 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr linkln rise time 20 ns
TJDf Linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
5 Mbits/s 30 ns 1

CllZ Linkln capacitance @ f=1MHz 7 pF
Cll LinkOut load capacitance 50 pF
RM Series resistor for 100n transmission line 56 ohms

Notes

This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LlnkOut

90% - - - - - - -
Linkln

10% - - - - -

- - --
TJQf

Figure 9.2 IMS T212 link timing

1.5v- - - - 

TJBskew

L1nkO:ate~~5~~ - - - - - -

Earliest TJQJD

Linkln

Figure 9.3 IMS T212 buffered link timing
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Transputer family device A

LinkOut I · ILinkln

Linkln ,f------..--------i_L_i_n_k_O_u_t _

Transputer family device B

Figure 9.4 IMS T212 Links directly connected

Transputer family device A 20=1000hms

LinkOut~t:J-iLinkln

L1nkln~ LinkOut
---------" 20=1000hms RM Transputer family device B

Figure 9.5 IMS T212 Links connected by transmission line

Transputer family device A

LinkOut :>-----.....----f Linkln

buffers
Linkln 1---.-...-----.< LinkOut

Transputer family device B

Figure 9.6 IMS T212 Links connected by buffers
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10 Electrical specifications

10.1 DC electrical characteristics

Table 10.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
11 Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 2 W

Notes

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to proted the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 10.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 60 pF
TA Operating temperature range 0 70 °C 3

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.
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Table 10.3 DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
Vll low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 p,A 1,2
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOl Output low voltage @ IOl=4mA 0.4 V 1,2
108 Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3

65 100 mA 1,2,4
10Z Tristate output current @ GND<VO<VCC ±10 p.A 1,2
PD Power dissipation 700 mW 2,5
CIN Input capacitance @ f=1MHz 7 pF 6
COZ Output capacitance @ f=1MHz 10 pF 6

Notes

1 All voltages are with respect to GND.

2 Parameters for IMS T212-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Input clock frequency :I: 5MHz.

3 Current sourced from non-link outputs.

4 Current sourced from link outputs.

5 Power dissipation varies with output loading and program execution.

6 This parameter is sampled and not 100%. tested.

10.2 Equivalent circuits

Output

50pF

GND -6----+-----4...--

load for: R1 R2 Equivalent load:

Link outputs 1K96 47K 1 SChottky TTL input
Other outputs 970R 24K 2 SChottky TTL inputs

Diodes are 1N916

Figure 10.1 load circuit for AC measurements



Test point
Output under test

GND ----

VCC

Figure 10.2 Tristate load circuit for AC measurements

10.3 AC timing characteristics

Table 10.4 Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TDr Input rising edges 2 20 ns 1,2
TDf Input falling edges 2 20 ns 1,2
Tar Output rising edges 25 ns 1
TOf Output falling edges 15 ns 1

Notes

Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

TQf

Figure 10.3 IMS T212 input and output edge timing
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30 30 Rise time
Time Time

ns Rise time ns
20 20 Fall time

10 Fall time 10

40 60 80 100

Load Capacitance pF

Link

40 60 80 100

Load Capacitance pF

EMI

Notes
Figure 10.4 Typical rise/fall times

Skew is measured between notMemCE with a standard load (2 Schottky TTL inputs and 30pF) and
notMemCE with a load of 2 Schottky TTL inputs and varying capacitance.

10.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 10.5.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in °C and 8JA is the junction-to-ambient thermal resistance in
°CIW. 8JA for each package is given in the Packaging Specifications section.

500
Power
PINT 400
mW

300

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 10.5 IMS T212 internal power dissipation vs VCC



11 Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to occam
programs. For the same function, other languages should achieve approximately the same performance as
occam.

11.1 Performance overview

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type ntT. The abbreviations in table 11.1 are used to represent the quantities
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table 11.1 Key to performance table

np number of component processes
ne number of processes earlier in queue
r 1 if INT parameter or array parameter, 0 if not
ts number of table entries (table size)
w width of constant in nibbles
p number of places to shift
Eg expression used in a guard
Et timer expression used in a guard
Tb most significant bit set of multiplier ((-1) if the multiplier is 0)
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0)
Tbc most significant bit set in the two's complement of a negative multiplier
nsp Number of scalar parameters in a procedure
nap Number of array parameters in a procedure



Table 11.2 Performance

Size (bytes) Time (cycles)
Names

variables
in expression
assigned to or input to
in PROC or FUNCTION call,

corresponding to an INT parameter
channels

Array Variables (for single dimension arrays)
constant subscript
variable subscript
expression subscript

Declarations
CBAN OF protocol
[size] CBAN OF protocol
PROC

Primitives
assignment
input
output
STOP
SKIP

Arithmetic operators
+ -
*
/
REM
» «

Modulo Arithmetic operators
PLUS
MINUS
TIMES (fast multiply)

Boolean operators
OR
AND NOT

Comparison operators
= constant
= variable
<> constant
<> variable
> <
>= <=

Bit operators
/\ \/ >< -

Expressions
constant in expression
check if error

1.1 +r
1.1 +r

1.1 +r
1.1

o
5.3
5.3

3.1
9.4

body+2

o
4
1
2
o

1
2
2
2
2

2
1
1

4
1

o
2
1
3
1
2

2

w
4

2.1 +2(r)
1.1 +(r)

1.1 +(r)
2.1

o
7.3
7.3

3.1
2.2 + 20.2*size

o

o
26.5
26
25
o

1
23
24
22

3+p

2
1

4+Tb

8
2

1
3
3
5
2
4

2

w
6



Table 11.3 Performance

Size (bytes) Time (cycles)

Timers
timer input 2 3
timer AFTER

if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+ne*9

ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+ne*9
timer alt guard 8+2Eg+2Et 34+2Eg+2Et

Constructs
SEQ 0 0
:tF 1.3 1.4

if guard 3 4.3
ALT (non timer) 6 26

alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg

PAR 11.5+(np-1)*7.5 19.5+(np-1 )*30.5
wa:tLB 4 12

Procedure or function call
3.5+(nsp-2)*1.1 16.5+(nsp-2) *1.1

+nap*2.3 +nap*2.3
Replicators

replicated SEQ 7.3{+5.1} (-3.8)+15.1 *count{+7.1}
repl icated :tF 12.3{+5.1 } (-2.6)+19.4*count{+7.1}
replicated ALT 24.8{+10.2} 25.4+33.4*count{+14.2}
replicated timer ALT 24.8{+1O.2} 62.4+33.4*count{+14.2}
replicated PAR 39.1{+5.1} (-6.4)+70.9*count{+7.1}

11.2 Fast multiply, T:tMES

The IMS T212 has a fast integer multiplication instruction product. The time taken for a fast multiply is 4+Tb.
The time taken for a multiplication by zero is 3 cycles. For example, if the multiplier is 1 the time taken is
4 cycles, if the multiplier is -1 (all bits set) the time taken is 19 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the occam modulo arithmetic operator T:tMES is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.

11.3 Arithmetic

A set of functions are provided within the development system to support the efficient implementation of
multiple length integer arithmetic and floating point arithmetic where relevant. In table 11.4 n gives the number
of places shifted and all arguments and results are assumed to be local. Full details of these functions are
provided in the occam reference manual, supplied as part of the development system and available as a
separate publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling
overhead. These functions are compiled directly into special purpose instructions which are designed to
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic.



Table 11.4 Arithmetic performance

+ cycles for
Function Cycles parameter access t

LONGADD 2 7
LONGSOM 3 8
LONGSOB 2 7
LONGDIIT 3 8
LONGPROD 18 8
LONGDIV 20 8
SBIFTRIGB'l' (n<16) 4+n 8

(n>=16) n-11 8
SBIF'l'LEF'l' (n<16) 4+n 8

(n>=16) n-11 8
NORMALISE (n<16) n+6 7

(n>=16) n-9 7
(n=32) 4 7

ASBIF'l'RIGB'l' SBIF'l'RIGB'l'+2 5
ASBIF'l'LEF'l' SBIF'l'LEF '1'+4 5
RO'l'A'l'ERIGB'l' SBIFTRIGB'l' 7
RO'l'A'l'ELEF'l' SBIF'l'LEF'l' 7

t Assuming local variables.

11.4 IMS T212 floating point operations

Floating point operations for the IMS T212 are provided by a run-time package. This requires approximately
2000 bytes of memory for the double length arithmetic operations, and 2500 bytes for the quadruple length
arithmetic operations. Table 11.5 summarizes the estimated performance of the package.

Table 11.5 IMS T212 floating point operations performance

Processor cycles
IMS T212

Typical Worst
REAL32 + - 530 705

* 650 705

I 1000 1410
< > = >= <= <> 60 60

REAL64 + - 875 1190

* 1490 1950

I 2355 3255
< > = >= <= <> 60 60



11.5 Effect of external memory

Extra processor cycles may be needed when program and/or data are held in external memory, depending
both on the operation being performed, and on the speed of the external memory. After a processor cycle
which initiates a write to memory, the processor continues execution at full speed until at least the next
memory access.

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will
depend upon the exact nature of the given sequence of operations.

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted
as e. The value of e for the IMS T212 with no wait states is 1.

If a program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated
for linear code sequences. For larger values of e, the number of extra cycles required for linear code
sequences may be estimated at (2e-1 )/4 per byte of program. A transfer of control may be estimated as
requiring e+3 cycles.

These estimates may be refined for various constructs. In table 11.6 n denotes the number of components in
a construct. In the case of IF, the n'th conditional is the first to evaluate to TRUE, and the costs include the
costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted
by b.

Table 11 .6 External memory performance

IMS T212
Program off chip Data off chip

Boolean expressions e-1 0
IF 3en-1 en
Replicated IF 6en+ge-12 (5e-2)n+6
Replicated SEQ (4e-3)n+3e (4e-2)n+3-e
PAR 4en 3en
Replicated PAR (17e-12)n+9 16en
ALT (4e-1 )n+ge-4 (4e-1 )n+ge-3
Array assignment and 0 max (2e, eb)

communication in
one transputer

For the IMS T212 the effective rate of INMOS links is slowed down on output from external memory by e
cycles per word output, and on input to external memory at 10 Mbitslsec by e-6 cycles per word if e~6.

The following simulation results illustrate the effect of storing program and/or data in external memory. The
results are normalized to 1 for both program and data on chip. The first program (Sieve of Erastosthenes)
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency,
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton
Raphson square root computation.



Table 11.7 IMS T212 external memory performance

Program 8=1 8=2 8=3 8=4 On chip
Program off chip 1 1.2 1.4 1.8 2.1 1

2 1.1 1.2 1.4 1.6 1

Data off chip 1 1.2 1.5 1.8 2.1 1
2 1.1 1.3 1.4 1.6 1

Program and data off chip 1 1.4 1.9 2.5 3.0 1
2 1.2 1.5 1.8 2.1 1

11.6 Interrupt latency

If the process is a high priority one and no other high priority process is running, the latency is as described
in table 11.8. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also given
where relevant. Maximum latency assumes all memory accesses are internal ones.

Table 11.8 Interrupt latency

Typical Maximum
TPCLPCL I Tm TPCLPCL I Tm

IMS T212 19 I 53 I



12 Package specifications

12.1 68 pin grid array package
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K

Figure 12.1 IMS T212 68 pin grid array package pinout
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index

~-- 8----1.-
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M 10 9 8 7 6 5 4 3 2 1

0000000000 A
00000@0000 8
000 000 C
00 00 D
@@ 00 E

0~ 00 F
0- 00 G
000 000 H
0000000000 J
@@00@@@@00 K

K

Figure 12.2 68 pin grid array package dimensions

Table 12.1 68 pin grid array package dimensions

Millimetres Inches
DIM NOM TOL NOM TOL Notes

A 26.924 ±0.254 1.060 ±0.010
8 17.019 ±0.127 0.670 ±0.008
C 2.466 ±0.279 0.097 ±0.011
D 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.051 0.018 ±0.002 Pin diameter
G 1.270 ±0.127 0.050 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 6.8 grams

Table 12.2 68 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow



12 Package specifications

12.2 68 pin PLCC J-bend package

m~~~~~MN~~~~~~MN~

~~~~~~~~

HoldToGND 10
BootFromROM 11

Reset 12
Error 13

HoldToGND 14
MemDO 15
MemD1 16
MemD2 17
MemD318
MemD419
MemD520

GND 21
Mem6 22
Mem723
Mem824

MemD925
Mem1026

~~mO~NM~~~~~mO~NM

NNNMMMMMMMMMM~~~~

~NM~~~~OMN~om~~~~

~~~~~~~O~~~~««<

CCCCC«>««EEEEE
EEEEEEE EEEE~~~~~
~~~~~~~ ~~~~~~~~~

:E:E:E:E:E:E:E :E:E:E~

60 DisablelntRam
59 EventAck
58 HoldToGND
57 Analyse
56 MemBAcc
55 MemWait
54 MemReq
53 MemGranted
52 GND
51 notMemCE
50 notMemWrBO
49 notMemWrB1
48 MemAO
47 MemA1
46 MemA2
45 MemA3
44 MemA4

Figure 12.3 IMS T212 68 pin PLCC J-bend package pinout
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Figure 12.4 68 pin PLCC J-bend package dimensions

Table 12.3 68 pin PLCC J-bend package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 25.146 ±0.127 0.990 ±0.005
B 24.232 ±0.127 0.954 ±0.005
C 3.810 ±0.127 0.150 ±0.005
D 0.508 ±0.127 0.020 ±0.005
F 1.270 ±0.127 0.050 ±0.005
G 0.457 ±0.127 0.018 ±0.005
J 0.000 ±0.051 0.000 ±0.002
K 0.457 ±0.127 0.018 ±0.005
L 0.762 ±0.127 0.030 ±0.005

Package weight is approximately 5.0 grams

Table 12.4 68 pin PLCC J-bend package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow



13 Ordering

This section indicates the designation of speed and package selections for the various devices. Speed of
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor PLLx, as detailed in the external memory section.

For availability contact 10callNMOS sales office or authorised distributor.

Table 13.1 IMS T212 ordering details

INMOS Processor Processor
designation clock speed cycle time PLLx Package

IMS T212·G17S 17.5 MHz 57 ns 3.5 Ceramic Pin Grid
IMS T212·G20S 20.0 MHz 50 ns 4.0 Ceramic Pin Grid

IMS T212·J17S 17.5 MHz 57 ns 3.5 Plastic J-Bend
IMS T212·J20S 20.0 MHz 50 ns 4.0 PIastic J-Bend
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IMS M212
disk
processor

Product Preview

ST506/ST412, SA400/450 compatible interface
Full disk interface logic on chip
Minimum of external components required
On-chip 16 bit processor
2 Kbytes on-chip RAM
4 Kbytes on-chip ROM disk control software
External memory interface
Hardware CRC/ECC generator
Two bi-directional 8 bit data ports
Two 10/20 Mbits/sec INMOS serial links
External event interrupt
Variable wait states for slow memory
Internal timers
Support for run-time error diagnostics
Bootstraps from ROM, link or disk
Single 5 MHz processor clock input
Power dissipation less than 1 Watt

System
Services

4k bytes
of

On-chip
ROM

2k bytes
of

On-chip
RAM

External
Memory
Interface

16 16 bit
Processor

Disk
Controller



352

1 Introduction

The IMS M212 peripheral processor is an intelligent peripheral controller of the INMOS transputer family,
configured for connection to soft sectored winchester and floppy disk drives. It satisfies the demand for
increasing intelligence in peripheral controllers and maintains a high degree of flexibility, allowing designers
to modify the controller function without altering the hardware.

Reset
Analyse
Error
BootFromROM
LinkSpeed
Clockln
VCC
GND
HoldToGND
CapPlus
CapMinus

2
2
2

System
services

16 bit
Processor

notlndex
notWriteGate
Early
Late
notWriteData
PhaseUp
PhaseDn
Vln
ReadData
WriteClock

LinklnO
LinkOutO

Linkln1
LinkOut1

Event

Link
Interface

Peripheral
Ports and
Disk
Control
Logic

~
EventReq
EventAck--------'4k bytes

of
On-Chip
ROM

2k bytes
of

On-chip
RAM

External
Memory
Interface

notCE
ALE
RnotW
Wait
ProcClockOut
DislntROM

ADO·7 AO·7 PAO·7 PBO·7

Figure 1.1 IMS M212 block diagram

The disk control function has been designed to provide easy connection. with minimal external hardware.
to a standard winchester and/or floppy disk interface. Two byte-wide programmable bidirectional ports are
provided to control and monitor disk functions such as head position. drive selection and disk status. A
dedicated port is provided for serial data interfaces and critical timing signals.



The IMS M212 is programmed as a normal transputer, permitting extremely powerful peripheral control facil
ities to be built into the device and thus reducing the load on the traditional central processor of a computer.
Full details are given in the IMS M212 Disk Processor Product Data manual.

1.1 IMS M212 peripheral processor

1.1.1 Central processor

At the heart of the IMS M212 is a 16 bit processor which is compatible with the transputer family. Its design
achieves compact programs, efficient high level language implementation and provides direct support for the
occam model of concurrency. The processor shares its time between any number of concurrent processes.
A process waiting for communication or a timer does not consume any processor time. Two levels of process
priority enable fast interrupt response to be achieved.

The IMS M212 has been designed so that the on-chip processor performs as many functions as possible,
providing flexible operation and minimising on-ehip disk-specific hardware.

1.1.2 Peripheral Interface

The two 8 bit data ports PAQ-7 and PBO·7 are controlled by the processor via a pair of channels. This allows
the programmer to modify the function of these ports in order to implement a wide variety of applications.

The peripheral interface includes data output registers and TTL compatible input ports, as well as facilities
for defining the direction of the pins on a bit-selectable basis. The interface contains logic to detect a change
of state on the input pins and to store this change for interrogation by the program.

In addition to this, the external memory interface can support memory mapped peripherals on its byte-wide
data bus. An event pin is also provided, so that peripherals can request attention.

1.1.3 Disk controller

The disk interface provides a simple interconnection to ST506/ST412 and SA400/SA450 compatible disk
drives via ten dedicated disk control lines and the two general purpose 8 bit bidirectional data ports PAO·7
and PBO·7. Although the on-chip disk control hardware handles much of the specialised data conversion,
as many disk operations as possible are controlled by the processor, using sequences of control and data
information.

The processor can program and interrogate all the registers controlling the disk functions and data ports, and
thereby control the external interface lines. As a result of this versatility, the IMS M212 can also be used in
applications other than disk control ones.

A versatile hardware 32 bit Error Correcting Codes (ECC) and 16 bit Cyclic Redundancy Codes (CRe)
generator is included to check data integrity. ECC's allow certain classes of errors to be corrected as well as
detected, whilst CRC's only allow detection.

When writing data to the disk the hardware serialises the data and encodes it into a Frequency Modulated
(FM) or Modified Frequency Modulated (MFM) data stream. Any necessary precompensation is performed
internally before outputting the data together with the necessary control signals. Any necessary modification
of the data, for instance writing the Address Marks (AM) or inserting the CRC/ECC bytes, is automatically
performed by the hardware.

When reading data from disk the raw read data is input and the function known as data separation is performed
internally. The hardware examines the data stream for an Address Mark to achieve byte synchronisation and
then searches for the desired sector information. When the required data is located it is decoded and a serial
to parallel conversion is performed before the data is transferred to the processor.



1.1.4 Links

The IMS M212 uses a DMA block transfer mechanism to transfer messages between memory and another
transputer product via the INMOS links. The link interfaces and the processor all operate concurrently,
allowing processing to continue while data is being transferred on all of the links.

The host interface of the IMS M212 is via two INMOS standard links, providing simple connection to any
transputer based system or, via a link adaptor, to a conventional microprocessor system. Link speeds of
10 Mbits/sec and 20 Mbits/sec are available, making the device compatible with all other INMOS transputer
products.

The on-chip disk control logic is controlled by the processor, using simple command sequences, via two
channels which appear to the processor as a normal pair of hardware channels.

1.1.5 Memory system

The 2 Kbytes of on-chip static RAM can be used for program or data storage, as a sector buffer or to store
parameter and format information. It can be extended off chip, via the external memory interface, to provide
a total of 64 Kbytes. Internal and external memory appear as a single contiguous address space.

Software contained in 4 Kbytes of internal ROM enables the IMS M212 to be used as a stand alone disk
processor. The ROM can be disabled to free the address space for external memory.

1.1.6 Error handling

High level language execution is made secure with array bounds checking, arithmetic overflow detection etc.
A flag is set when an error is detected, and the error can be handled internally by software or externally by
sensing the error pin. System state is preserved for subsequent analysis.



2 Operation

The IMS M212 can be used in two modes: Mode 1, which uses the software in the internal ROM, and Mode 2,
which relies upon custom designed software.

2.1 Mode 1

Mode 1 operation uses code in the on-chip ROM to control the disk controller hardware, and little knowledge
of the hardware is required to implement winchester and floppy disk drivers. The programming interface to
all drive types is identical, and there is sufficient flexibility to allow a wide variety of formats and drive types
to be used.

Both ST506/412 compatible winchester and SA400/450 compatible floppy drives are supported in standard
double density formats; this includes common 5.25 and 3.5 inch drives. Up to 4096 cylinders are allowed.
Floppy drives can have up to 8 heads and winchesters up to 16 heads. There can be between 1 and 256
sectors per track, with sector sizes of 128 to 16384 bytes in powers of 2. Drives with or without 'seek complete'
and 'ready' lines are supported, and step rates can be from 64p.s to 16 ms. A range of non-standard formats
can also be set up for user-specific requirements.

As with transputers, the IMS M212 can be bootstrapped from ROM or via a link. In addition, the Mode 1
monitor process also provides a facility whereby the disk processor can bootstrap itself with code read from
a disk; this code runs instead of the Mode 1 process. Another option sends a standard bootstrap message,
read from a disk, out of link 0; the Mode 1 process then continues as normal. It is also possible in Mode 1
to send a command, at any time, to bootstrap from code in the sector buffer.

General workspace for Mode 1 is contained in on-chip RAM, which also provides 1280 bytes of sector buffer.
Contiguous external RAM immediately past the internal RAM will automatically be used to extend the size of
the sector buffer. As many sectors as will fit into the sector buffer can be stored in it at the same time.

In Mode 1 a separate data area, in on-ehip RAM, contains all the required control information (parameters)
for each of the four possible drives. Parameters may be read from or written to via the links, and contain such
information as the capacity of the disk, current position of the heads, desired sector for reading or writing,
drive type, timing details etc.

Command and data bytes are accepted down either of the IMS M212 links; an interlock system prevents
conflict between commands received on both links simultaneously. Any results are returned on the link which
received the command. Available commands are

EndOfSequence
ReadBuffer
Restore
Pal/Drives

Initialise
WriteBuffer
Seek
FormatTrack

ReadParameter
ReadSector
SelectHead
Boot

WriteParameter
WriteSector
SelectDrive

Disk access commands implicitly select the drive, perform a seek and select the head. If an ECC or CRC
error is found when reading a sector, a programmable number of automatic retries are performed and a
subsequent correction attempted if possible. Mode 1 supports two of the four IMS M212 ECC/CRC modes 
ECC and CRC. Either CRC or ECC can be specified in either of the ID or Data fields, making it possible to
have floppies with correctable Data fields.

All appropriate parameters are checked to ensure that, for example, an attempt is not made to access a
non-existent sector, relieving the host processor of such checking. Another feature which reduces the load
on the host processor is the logical sector mode, in which all the sectors are specified as a single linear
address space rather than physical cylinder/head/sector.

The logical address can also be auto-incremented if desired, as can the sector buffer. This allows a number
of consecutive sectors to be read from or written to the disk with little overhead. As a sticky status checking
technique is used, the status only has to be checked once at the end of a stream of commands; if an error
occurred then reading and writing is inhibited, so that the logical address can be inspected to find where the
error occurred.
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2.2 Mode 2

In Mode 2 operation the internal ROM is bypassed, allowing the device to utilise user-defined software. This
software can be held in external ROM, bootstrapped from a floppy or winchester disk, or loaded from the
host processor via a link into internal or external RAM.

In this mode the user services the disk control hardware via a pair of on-chip high bandwidth channels. Using
these channels the processor has access to the 49 registers which control the operation of the disk controller.
Sequences of control codes and data bytes are sent by the processor to the disk controller logic via one of
the hardware channels and data returned to the IMS M212 processor via the other. Each control code is a
single byte, and may be followed by one or more data bytes.

In Mode 2 the designer can define new commands which are more complex than otherwise available. Exam
ples include a Format Disk command as an extension to the Format Track; an application-specific directory
structure; a software interface to optimise a particular file structure. Mode 2 also allows the user to optimise
data transfer; thus, data could be read from a disk with no interleave, or data transfers could be re-ordered
to minimise head movement. Disk searches can be arranged such that data transfer back to the host is
minimised, as data comparisons can be performed by the on-chip processor.

Start Timeout error

Timeout
logic

PAO-7

PBO-1

notlndex

notWriteGate

Early
Late

notWrlteOata

PhaseUp
PhaseOn

Vln
ReadOata

WriteClock

Databus

Code bus

Read/Write
control logic

ID/Data
Compare

Bus IIF
timing

ID/Data
compare
error

Figure 2.1 Disk controller interface



3 Applications
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Figure 3.1 Winchester disk controller
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The IMS M212 can interface to a floppy or winchester disk with very little external circuitry when used in
Mode 1 or if a program is bootstrapped from a link. A typical arrangement is shown in figure 3.1. Note the
absence of any control port buffers; this is possible provided the drive characteristics are not infringed.

Additional external memory can easily be added to the IMS M212. In both Modes 1 and 2, external RAM can
be added for extra sector storage, whilst in Mode 2 extra RAM or ROM can be provided for program storage.

With the addition of control buffers and suitable clocks, a single IMS M212 can interface to both floppy and
winchester drives. Link adaptors provide a means of interfacing to conventional microprocessors.

The IMS B005 evaluation board is an example of an application with control for both types of drive. The
board also has a fully populated memory interface.

Host
interface(s)

5 MHz

M212

......--11.. System
~---t Services

and
Links

EMI interface

Disc
Interface

MHz
MHz

ST506
and

SA400
compatible

disk
drives

Data separation
and

precompensation
filters

Alternative
host

interface

External memory
and

memory mapped peripherals

Figure 3.2 Enhanced disk controller interface

The IMS M212 can interface with both floppy and winchester disk drives, and the data rate to and from the
disk can be selected by software. As a result the device is suitable for interfacing to the new generation of
floppy disk drives which use vertical recording. These drives have an increased data rate of 1 Mbitlsec, and
quadruple the capacity of existing floppy disk drives to 4 Mbytes. A single IMS M212 can be used to control
a mixture of standard floppy drives, winchester drives and the new high speed high capacity drives. This
eases compatibility and portability problems, and provides a simple upgrade path from standard floppies to
high capacity floppies to winchesters.
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The IMS M212 provides a very simple and compact disk controller solution, making it very easy to replace
a single large disk drive with an array of IMS M212's, each controlling a single smaller disk drive. This
has several advantages: cheaper drives can be used; overall available disk bandwidth is increased; local
processing is provided by a high performance processor at each disk node; fault tolerant operation. The
latter can be achieved by holding duplicated data on several drives. This prevents the whole system from
stopping, as would be the case if the single large drive failed.

These advantages are particularly applicable when transputers are connected in arrays to provide high per
formance concurrent systems (figure 3.3). The IMS M212's can be directly connected to the array via INMOS
links and the spare link used to communicate with the adjacent IMS M212 to provide the fault tolerant oper
ation.

Figure 3.3 Transputer network with disk processors

A high performance processor allows many operations to be performed locally to the disk. This not only
frees the host processor for other work but also removes the need for large amounts of data to be needlessly
transferred to the host. Operations which can be performed by the IMS M212 include: file management
with directory management and pre-reading; data manipulation such as compression/de-compression and
encryption/de-cryption; data search such as database key searching; performance optimisation such as head
scheduling and cacheing.

The IMS M212 external memory interface can be used to connect to memory mapped peripherals. One
application of this is interfacing to a SCSI bus controller, permitting direct connection to the SCSI bus in a
low part count system. The processor is used to control the SCSI bus controller and implements the required
command interface, as well as controlling the disk or other peripheral.

This arrangement allows floppy and winchester disks to be simply connected to a SCSI bus. Because the
command interface is controlled by a process running in the IMS M212, any future command upgrades can
easily be incorporated.
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The design can be used both as a target and an initiator interface, again controlled by the process running
in the IMS M212. It provides a means of implementing a link to SCSI interface, as well as a SCSI controlled
disk.
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Figure 3.4 SCSI interface



4 Package specifications

4.1 68 pin grid array package
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Figure 4.1 IMS M212 68 pin grid array package pinout
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Figure 4.2 68 pin grid array package dimensions

Table 4.1 68 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes
A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.008
C 2.466 ±0.279 0.097 ±0.011
0 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.051 0.018 ±0.002 Pin diameter
G 1.270 ±0.127 0.050 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 6.8 grams

Table 4.2 68 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow
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4.2 68 pin PLCC J-bend package
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Figure 4.3 IMS M212 68 pin PLCC J-bend package pinout
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Figure 4.4 68 pin PLCC J-bend package dimensions

Table 4.3 68 pin PLCC J-bend package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 25.146 ±0.127 0.990 ±0.005
B 24.232 ±0.127 0.954 ±0.005
C 3.810 ±0.127 0.150 ±0.005
0 0.508 ±0.127 0.020 ±0.005
F 1.270 ±0.127 0.050 ±0.005
G 0.457 ±0.127 0.018 ±0.005
J 0.000 ±0.051 0.000 ±0.002
K 0.457 ±0.127 0.018 ±0.005
L 0.762 ±0.127 0.030 ±0.005

Package weight is approximately 5.0 grams

Table 4.4 68 pin PLCC J-bend package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow



5 Ordering

This section indicates the designation of speed and package selections for the various devices. Speed of
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor PLLx, as detailed in the external memory section.

For availability contact local INMOS sales office or authorised distributor.

Table 5.1 IMS M212 ordering details

INMOS Processor Processor
designation clock speed cycle time PLLx Package

IMS M212·G15S 15 MHz 67 ns 3.0 Ceramic Pin Grid
IMS M212·G20S 20 MHz 50 ns 4.0 Ceramic Pin Grid

IMS M212·J15S 15 MHz 67 ns 3.0 Plastic PLCC J-Bend
IMS M212·J20S 20 MHz 50 ns 4.0 Plastic PLCC J-Bend
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FEATURES

Standard INMOS serial links
32 way crossbar switch
Regenerates input signal
Cascadable to any depth
No loss of signal integrity
10 or 20 Mbits/sec operating speed
Separate INMOS configuration link
Single +5V ±5% power supply
TTL and CMOS compatibility
1W power dissipation
Standard 84 pin ceramic PGA
MIL-STD-883C device will be available

APPLICATIONS

Programmable crossbar switch
Component of larger switch
Reconfigurable supercomputers
Message routing system
High speed multiprocessor systems
Telecommunications
Robotics
Fault tolerant systems
Additional links for transputers
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1 Introduction

The INMOS communication link is a high speed system interconnect which provides full duplex communication
between members of the INMOS transputer family, according to the INMOS serial link protocol. The IMS C004,
a member of this family, is a transparent programmable link switch designed to provide a full crossbar switch
between 32 link inputs and 32 link outputs.

The IMS C004 will switch links running at either the standard speed of 10 Mbitslsec or at the higher speed
of 20 Mbits/sec. It introduces, on average, only a 1.75 bit time delay on the signal. Link switches can be
cascaded to any depth without loss of signal integrity and can be used to construct reconfigurable networks
of arbitrary size. The switch is programmed via a separate serial link called the configuration link.

All INMOS products which use communication links, regardless of device type, support a standard commu
nications frequency of 10 Mbits/sec; most products also support 20 Mbits/sec. Products of different type
or performance can, therefore, be interconnected directly and future systems will be able to communicate
directly with those of today.

LinklnO-31

synchronisation LinkOutO

System
Services

synchronisation

Control
Logic

CIO;~I~ ---~
Reset - -------_.....

Figure 1.1 IMS C004 block diagram
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LinkSpeed

CapPlus
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2 Pin designations

Table 2.1 IMS C004 system services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset
DoNotWire Must not be wi red

Table 2.2 IMS C004 configuration

Pin In/Out Function
ConfigLinkln in INMOS configuration link input
ConfigLinkOut out INMOS configuration link output

Table 2.3 IMS C004 link

Pin In/Out Function
LinklnO-31 in INMOS link inputs to the switch
LinkOutO-31 out INMOS link outputs from the switch
LlnkSpeed in Link speed selection

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 385.

369
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3 System services

System services include all the necessary logic to start up and maintain the IMS C004.

3.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

3.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1J.LF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

CapPlus

CapMinus

P.C.B. track

P.C.B. track

Decoupling
capacitor

1J.LF

3.3 Clockln

Figure 3.1 Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer family devices may be connected to a common clock, or may have individual clocks
providing each one meets the specified stability criteria. In a multi-clock system the relative phasing of
Clockln clocks is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant
provided the specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.
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Table 3.1 Input clock

"/1

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (table 7.3).
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TDCerror
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TDCLDCL
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Figure 3.2 Clockln timing
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3.4 Reset
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The Reset pin can go high with VCC, but must at no time exceed the maximum specified voltage for VIH.
After VCC is valid Clockln should be running for a minimum period TDCVRL before the end of Reset.

Reset initialises the IMS C004 to a state where all link outputs from the switch are disconnected and held
low; the control link is then ready to receive a configuration message.

Table 3.2 Reset

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2

Notes

1 Full periods of Clockln TDCLDCL required.

2 At power-on reset.

Clockln

VCC

Reset

Figure 3.3 Reset Timing



4 Links

INMOS bi-directional serial links provide synchronized communication between INMOS products and with
the outside world. Each link comprises an input channel and output channel. A link between two devices is
implemented by connecting a link interface on one device to a link interface on the other device. Every byte
of data sent on a link is acknowledged on the input of the same link, thus each signal line carries both data
and control information.

A receiver can transmit an acknowledge as soon as it starts to receive a data byte. In this way the transmission
of an acknowledge can be overlapped with receipt of a data byte to provide continuous transmission of data.
This technique is fully compatible with all other INMOS transputer family links.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies that the receiving link is able to receive another byte.

Links are not synchronised with Clockln and are insensitive to its phase. Thus links from independently
clocked systems may communicate, providing only that the clocks are nominally identical and within specifi
cation.

Links are TTL compatible and intended to'be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

The IMS C004 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they
can be used at 20 Mbits/sec. When the LlnkSpeed pin is low, all links operate at the standard 10 Mbits/sec;
when high they operate at 20 Mbitslsec.

A single IMS C004 inserted between two transputers which fully implement overlapped acknowledges will
cause some reduction in data bandwidth, see table 4.2 and figure 4.7.

Figure 4.1 IMS C004 link data and acknowledge packets
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Table 4.1 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf Linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
CllZ Linkln capacitance @ f=1MHz 7 pF
Cll LinkOut load capacitance 50 pF
RM Series resistor for 100n transmission line 56 ohms

Notes

This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

TJQf
- - --

90% -------

90%
LinkOut

Linkln

Figure 4.2 IMS C004 link timing

TJBskew

1.5v- - - --

L1nkO:ate~;~~ ------
Earliest TJQJD

Llnkln

Figure 4.3 IMS C004 buffered link timing



4 Links

Transputer family device A

LinkOut I · ILinkln

____L_i_n_kl_n_,-----..~-----_L_i_n_k_O_u_t _
Transputer family device B

Figure 4.4 IMS C004 Links directly connected

Transputer family device A 20=1000hms

LinkOut~~ Linkln

Linkln~ LinkOut
------- 20=1000hms RM Transputer family device B

Figure 4.5 IMS C004 Links connected by transmission line
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Transputer family device A

LinkOut --[> Linkln
buffers

Linkln - <}-- LinkOut
Transputer family device B

Figure 4.6 IMS C004 Links connected by buffers
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Table 4.2 T800 links data transfer rate at 20 Mbits/sec

Without COO4 With COO4 Degradation

Unidirectional 1.7 1.3 25%

Bidirectional 2.3 2.1 10%

Link Out

Link In

LJ

l~_ ---'n__
--.I 50

330

550

Without IMS C004 channel

u U
~~50

. 5~0 I
'----_n__

-.t 50
380

600

Notes

Link Out

250 500 250 500 250 500 rLink In n n n

I: ~~50 ~~50 -.t 1150
690 690 690 -.I750 750 750

With IMS C004 channel

Figure 4.7 IMS C004 link timing

1 All values are in ns.

2 Timing values shown are for links at 20 Mbits/sec.
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5 Switch Implementation

The IMS C004 is internally organised as a set of thirtytwo 32-to-1 multiplexors. Each multiplexor has asso
ciated with it a six bit latch, five bits of which select one input as the source of data for the corresponding
output. The sixth bit is used to connect and disconnect the output. These latches can be read and written
by messages sent on the configuration link via ConflgLlnkln and ConflgLlnkOut.

The output of each multiplexor is synchronised with an internal high speed clock and regenerated at the
output pad. This synchronisation introduces, on average, a 1.75 bit time delay on the signal. As the signal is
not electrically degraded in passing through the switch, it is possible to form links through an arbitrary number
of link switches.

Each input and output is identified by a number in the range 0 to 31. A configuration message consisting
of one, two or three bytes is transmitted on the configuration link. The configuration messages sent to the
switch on this link are shown in table 5.1. If an unspecified configuration message is used, the effect of it is
undefined.

Table 5.1 IMS C004 configuration messages

Configuration Message Function
[0] [Input] [output] Connects Input to output.

[1] [link1] [link2] Connects Iink1 to Iink2 by connecting the input of Iink1 to the output of
Iink2 and the input of Iink2 to the output of Iink1.

[2] [output] Enquires which input the output is connected to. The IMS C004 responds
with the input. The most signifigant bit of this byte indicates whether the
output is connected (bit set high) or disconnected (bit set low).

[3] This command byte must be sent at the end of every configuration
sequence which sets up a connection. The IMS C004 is then ready to
accept data on the connected inputs.

[4] Resets the switch. All outputs are disconnected and held low. This also
happens when Reset is applied to the IMS COO4.

[5] [output] Output output is disconnected and held low.

[6] [link1] [link2] Disconnects the output of Iink1 and the output of Iink2.
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6 Applications

6.1 Link switching

The IMS C004 provides full switching capabilities between 32 INMOS links. It can also be used as a compo
nent of a larger link switch. For example, three IMS C004's can be connected together to produce a 48 way
switch, as shown in figure 6.1. This technique can be extended to the switch shown in figure 6.2.

A fully connected network of 32 INMOS transputers (one in which all four links are used on every transputer)
can be completely configured using just four IMS C004's. Figure 6.5 shows the connected transputer network.

In these diagrams each link line shown represents a unidirectional link; Le. one output to one input. Where
a number is also given, that denotes the number of lines.

6.2 Multiple IMS C004 control

Many systems require a number of IMS C004's, each configured via its own configuration link. A simple
method of implementing this uses a master IMS C004, as shown in figure 6.3. One of the transputer links is
used to configure the master link switch, whilst another transputer link is multiplexed via the master to send
configuration messages to any of the other 31 IMS C004 links.

6.3 Bidirectional exchange

Use of the IMS C004 is not restricted to computer configuration applications. The ability to change the switch
setting dynamically enables it to be used as a general purpose message router. This may, of course, also
find applications in computing with the emergence of the new generation of supercomputers, but a more
widespread use may be found as a communication exchange.

In the application shown in figure 6.4, a message into the exchange must be preceded by a destination
token dest. When this message is passed, the destination token is replaced with a source token so that
the receiver knows where the message has come from. The in.out device in the diagram and the controller
can be implemented easily with a transputer, and the link protocol for establishing communication with these
devices can be interfaced with INMOS link adaptors. All messages from rx[i] are preceded by the destination
output dest. On receipt of such a message the in.out device requests the controller to connect a bidirectional
link path to dest. The controller determines what is currently connected to each end of the proposed link.
When both ends are free it sets up the IMS C004 and informs both ends of the new link. Note that in this
network two channels are placed on each IMS C004 link, one for each direction.

6.4 Bus systems

The IMS C004 can be used in conjunction with the INMOS IMS C011 /C012 link adaptors to provide a flexible
means of connecting conventional bus based microprocessor systems.
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LlnklnO Conflg LlnkOut Llnkln1 ConfigLinkOut
C004[1 ]

LlnkOutO ConflgLlnkln LlnkOut1 ConflgLlnkln

Transputer COO4

Linkln1 LlnkOutO Linkln31 ConfigLinkOut
LlnkOut1 LlnklnO LlnkOut31 ConfigLinkln C004[31 ]

Figure 6.3 Multiple IMS C004 controller

up[32]

c. ut
Control

up[O]

.in

Figure 6.4 32 way bidirectional exchange
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Figure 6.5 Complete connectivity of a transputer network using four IMS C004's



382

7 Electrical specifications

7.1 DC electrical characteristics

Table 7.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
11 Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 2 W

Notes

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 7.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 60 pF
TA Operating temperature range IMS C004-S 0 70 °C 3
TA Operating temperature range IMS C004-M -55 125 °C 3

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ftlmin transverse air flow.
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Table 7.3 DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
VIL Low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 p.A 1,2
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOl Output low voltage @ IOl=4mA 0.4 V 1,2
10S Output short circuit current @ GND<VO<VCC 25 90 mA 1,2,3,7

50 130 mA 1,2,4,7
36 65 mA 1,2,3,8
65 100 mA 1,2,4,8

PO Power dissipation 1.5 W 2,5
CIN Input capacitance @ f=1MHz 7 pF 6
COZ Output capacitance @ f=1MHz 10 pF 6

Notes

1 All voltages are with respect to GND.

2 Parameters for IMS C004-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Parameters for IMS C004-M measured at 4.75V<VCC<5.25V and -55°C<TA<125°C.
Input clock frequency - 5MHz.

3 Current soureed from non-link outputs.

4 Current sourced from link outputs.

5 Power dissipation varies with output loading and with the number of links active.

6 This parameter is sampled and not 100% tested.

7 Parameter for IMS C004-S.

8 Parameter for IMS C004-M.

7.2 Equivalent circuits

Output

50pF

GND -..--..-----4_

load for: R1 R2 Equivalent load:

Link outputs 1K96 47K 1 Schottky TTL input
Other outputs 970R 24K 2 Schottky TTL inputs

Diodes are 1N916

Figure 7.1 Load circuit for AC measurements
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7.3 AC timing characteristics

30
Time

ns
20
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9 IM~ (;004 engineering aata

Rise time

Fall time

40 60 80 100

Load Capacitance pF

Figure 7.2 Typical link rise/fall times

7.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 7.3.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in °C and 8JA is the junction-ta-ambient thermal resistance in
cC/Wo 8JA for each package is given in the Packaging Specifications section.

800

Power 700
PINT
rnW 600

500

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 7.3 IMS C004 internal power dissipation vs VCC



8 Package specifications

8.1 84 pin grid array package

385
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Figure 8.1 IMS C004 84 pin grid array package pinout
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Figure 8.2 84 pin grid array package dimensions

Table 8.1 84 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes
'A 26.924 ±0.254 1.060 ±0.010

B 17.019 ±0.127 0.670 ±0.005
C 2.456 ±0.278 0.097 ±0.011
0 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.025 0.018 ±0.001 Pin diameter
G 1.143 ±0.127 0.045 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 7.2 grams

Table 8.2 84 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow
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9 Ordering

This section indicates the designation of package selections for the IMS C004. Speed of Clockln is 5 MHz
for all parts.

For availability contact local INMOS sales office or authorised distributor.

Table 9.1 IMS C004 ordering details

INMOS designation Package
IMS COO4·G20S Ceramic Pin Grid Array

IMS COO4·G20M Ceramic Pin Grid Array MIL Spec
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FEATURES

Standard INMOS link protocol
10 or 20 Mbits/sec operating speed
Communicates with INMOS transputers
Converts between serial link and parallel bus
Converts between serial link and parallel device

Two modes of parallel operation:
Mode 1: Peripheral interface

Eight bit parallel input interface
Eight bit parallel output interface
Full handshake on input and output

Mode 2: Bus Interface
Tristate bidirectional bus interface
Memory mapped registers
Interrupt capability

Single +5V ±5% power supply
TTL and CMOS compatibility
120mW power dissipation
Standard 28 pin 0.6" plastic package
MIL-STD-883C device will be available

IMS C011
link adaptor

Engineering Data

Input
Interface

System
Services

8
Output

Interface

Mode 1

APPLICATIONS

Programmable I/O pins for transputer
Connecting microprocessors to transputers
High speed links between microprocessors
Inter-family microprocessor interfacing
Interconnecting different speed links

System
Services

Interrupt
Control

42 1412 01

Mode 2

October 1988



1 Introduction

The INMOS communication link is a high speed system interconnect which provides full duplex communication
between members of the INMOS transputer family, according to the INMOS serial link protocol. The IMS C011,
a member of this family, provides for full duplex transputer link communication with standard microprocessor
and sub-system architectures, by converting bi-directional serial link data into parallel data streams. The
extended temperature version of the device complies with MIL-STD-883C.

All INMOS products which use communication links, regardless of device type, support a standard commu
nications frequency of 10 Mbits/sec; most products also support 20 Mbits/sec. Products of different type
or performance can, therefore, be interconnected directly and future systems will be able to communicate
directly with those of today. The IMS C011 link will run at either the standard speed of 10 Mbits/sec or at the
higher speed of 20 Mbits/sec. Data reception is asynchronous, allowing communication to be independent
of clock phase.

The link adaptor can be operated in one of two modes. In Mode 1 the IMS C011 converts between a link
and two independent fully handshaken byte-wide interfaces, one input and one output. It can be used by a
peripheral device to communicate with a transputer, an INMOS peripheral processor or another link adaptor,
or it can provide programmable input and output pins for a transputer. Two IMS C011 devices in this mode
can be connected back to back via the parallel ports and used as a frequency changer between different
speed links.

In Mode 2 the IMS C011 provides an interface between an INMOS serial link and a microprocessor system
bus. Status and data registers for both input and output ports can be accessed across the byte-wide bi
directional interface. Two interrupt outputs are provided, one to indicate input data available and one for
output buffer empty.

VCC
GNO

CapMinus
Clockln

Reset
SeparatelQ

LinkOut
Linkln

System
Services

10·7
lAck
IValid

QO·7
Qack
QValid

Figure 1.1 IMS C011 Mode 1 block diagram

System
Services

00·7

Inputlnt
Outputlnt

RSO
RS1
RnotW
notCS

Data and
Status

Registers
LinkOut

Linkln

VCC
GNO

CapMinus
Clockln

Reset
SeparatelQ
LinkSpeed

Figure 1.2 IMS C011 Mode 2 block diagram



2 Pin designations

Table 2.1 IMS C011 services and link

Pin In/Out Function
VCC,GNO Power supply and return
CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset

SeparatelQ in Select mode and Mode 1 link speed
Linkln in Serial data input channel
LinkOut out Serial data output channel

Table 2.2 IMS C011 Mode 1 parallel interface

Pin In/Out Function
10-7 in Parallel input bus
IValid in Data on 10-7 is valid
lAck out Acknowledge 10-7 data received by other link

QO-7 out Parallel output bus
QValid out Data on QO-7 is valid
QAck in Acknowledge from device: data QO-7 was read

Table 2.3 IMS C011 Mode 2 parallel interface

Pin In/Out Function
00-7 in/out Si-directional data bus
notCS in Chip select
RSO·1 in Register select
RnotW in Read/write control signal

Inputlnt out Interrupt on link receive buffer full
Outputlnt out Interrupt on link transmit buffer empty
LinkSpeed in Select link speed as 10 or 20 Mbits/sec

HoldToGND Must be connected to GND
DoNotWire Must not be wi red

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 409.
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3 System services

System services include all the necessary logic to start up and maintain the IMS C011.

3.1 Power

Power is supplied to the device via the VCC and GND pins. The supply must be decoupled close to the chip
by at least one 100 nF low inductance (e.g~ ceramic) capacitor between VCC and GND. Four layer 'boards
are recommended; if two layer boards are used, extra care should be taken in decoupling.

AC noise between VCC and GND must be kept below 200 mV peak to peak at all frequencies above 100 KHz.
AC noise between VCC and the ground reference of load capacitances must be kept below 200 mV peak to
peak at all frequencies above 30 MHz. Input voltages must not exceed specification with respect to VCC and
GND, even during power-up and power-down ramping, otherwise latchup can occur. CMOS devices can be
permanently damaged by excessive periods of latchup.

3.2 CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1J.LF
capacitor to be connected between VCC and CapMinus. A ceramic capacitor is preferred, with an impedance
less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative terminal should
be connected to CapMinus. Total PCB track length should be less than 50 mm. The positive connection of
the capacitor must be connected directly to VCC. Connections must not otherwise touch power supplies or
other noise sources.

CapMinus

P.C.B. track

Decoupling
capacitor

11'F

P.C.B. track

3.3 Clockln

Figure 3.1 Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer family devices may be connected to a common clock, or may have individual clocks
providing each one meets the specified stability criteria. In a multi-elock system the relative phasing of
Clockln clocks is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant
provided the specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.



3 system services

Table 3.1 Input clock

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 400 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (table 7.3).

TDCerror

2.0v- - 
1.5vO.8v====-

TDCerror

TDCLDCH TDCHDCL

TDCLDCL900/0----A
10%- - - -- - -TDC-;- -

Figure 3.2 Clockln timing

3.4 SeparatelQ

The IMS C011 link adaptor has two different modes of operation. Mode 1 is basically a link to peripheral
adaptor, whilst Mode 2 interfaces between a link and a microprocessor bus system.

Mode 1 can be selected for one of two link speeds by connecting SeparatelQ to VCC (10 Mbits/sec) or to
Clockln (20 Mbits/sec).

Mode 2 is selected by connecting SeparatelQ to GND; in this mode 10 Mbits/secor 20 Mbitslsec is selected
by LinkSpeed. Link speeds are specified for a Clockln frequency of 5 MHz. •

In order to select the link speed, separatelQ may be changed dynamically providing the link is in a quiescent
state and no input or output is required. Reset must be applied subsequent to the selection to initialise
the device. If Clockln is gated to achieve this, its skew must be limited to the value TDCHSIQH shown in
table 3.3. The mode of operation (Mode 1, Mode 2) must not be changed dynamically.
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Table 3.2 SeparatelQ mode selection

SeparatelQ Mode Link Speed Mbits/sec
VCC 1 10
Clockln 1 20
GNO 2 10 or 20

Table 3.3 SeparateIQ

PARAMETER
Skew from Clockln to Clockln

Notes

1 Skew between Clockln arriving on the Clockln pin and on the SeparatelQ pin.

3.5 Reset

The Reset pin can go high with VCC, but must at no time exceed the maximum specified voltage for VIH.
After VCC is valid Clockln should be running for a minimum period TOCVRL before the end of Reset. Linkln
must be held low during Reset.

Reset initialises the IMS C011 to the following state: LinkOut is held low; the control outputs (lAck and
QValid in Mode 1, Inputlnt and Outputlnt in Mode 2) are held low; interrupts (Mode 2) are disabled; the
states of QO·7 in Mode 1 are unspecified; 00·7 in Mode 2 are high impedance.

Table 3.4 Reset

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power val id before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2

Notes

1 Full periods of Clockln TDCLDCL required.

2 At power-on reset.

Clockln

VCC

Reset

Figure 3.3 Reset Timing



4 Links

INMOS bi-directional serial links provide synchronized communication between INMOS products and with
the outside world. Each link comprises an input channel and output channel. A link between two devices is
implemented by connecting a link interface on one device to a link interface on the other device. Every byte
of data sent on a link is acknowledged on the input of the same link, thus each signal line carries both data
and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a
one bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted
first. After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit
followed by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged
data byte and that the receiving link is able to receive another byte.

Links are not synchronised with Clockln and are insensitive to its phase. Thus links from independently
clocked systems may communicate, providing only that the clocks are nominally identical and within specifi
cation.

Links are TTL compatible and intended to be used in electrically qUiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

The IMS C011 link supports the standard INMOS communication speed of 10 Mbits/sec. In addition it can be
used at 20 Mbits/sec. Link speed can be selected in one of two ways. In Mode 1 it is altered by SeparatelQ
(page 393). In Mode 2 it is selected by LinkSpeed; when the LinkSpeed pin is low, the link operates at the
standard 10 Mbitslsec; when high it operates at 20 Mbitslsec.

~,-
I Ack I

Figure 4.1 IMS C011 link data and acknowledge packets
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Table 4.1 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
CllZ linkln capacitance @ f=1MHz 7 pF
Cll LinkOut load capacitance 50 pF
AM Series resistor for 100n transmission line 56 ohms

Notes

1 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LinkOut

90% -------
Linkln

10% - - - - -

- - --
TJQf

TJDf

Figure 4.2 IMS C011 link timing

TJBskew

1.5v- - - - -

LinkO~ate~;~~ - - - - - -

Earliest TJQJD

Linkln

Figure 4.3 IMS C011 buffered link timing



4 LinkS

Transputer family device A

LlnkOut I ~ I Linkln

____L_i_n_kl_n_------.:.-------1_L_i_n_kO_u_t--
Transputer family device B

Figure 4.4 IMS C011 Links directly connected

Transputer family device A Zo=100ohms

L1nkOut Linkln

Llnkln~ LinkOut
------- Zo=100ohms RM Transputer family device B

Figure 4.5 IMS C011 Links connected by transmission line

Transputer family device A

LlnkOut >-----......-----f Linkln

buffers
Linkln J---~-----<

--------'
LinkOut

Transputer family device B

Figure 4.6 IMS C011 Links connected by buffers



5 Mode 1 parallel interface

In Mode 1 the IMS C011 link adaptor is configured as a parallel peripheral interface with handshake lines.
Communication with a transputer family device is via the serial link. The parallel interface comprises an input
port and an output port, both with handshake.

5.1 Input port

The eight bit parallel input port 10-7 can be read by a transputer family device via the serial link. IValid and
lAck provide a simple two-wire handshake for this port. When data is valid on 10-7, IValid is taken high by
the peripheral device to commence the handshake. The link adaptor transmits data presented on 10-7 out
through the serial link. When the acknowledge packet is received on the input link, the IMS C011 sets lAck
high. To complete the handshake, the peripheral device must return IValid low. The link adaptor will then
set lAck low. New data should not be put onto 10-7 until lAck is returned low.

Table 5.1 Mode 1 parallel data input

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TldVlvH Data setup 5 ns
TlvHLdV IValid high to link data output 0.8 2 bits 1,2
TLaVlaH Link acknowledge start to lAck high 3 bits 1
TlaHldX Data hold after lAck high 0 ns
TlaHlvL IValid hold after lAck high 0 ns
TlvLlaL lAck hold after IValid low 1 4 bits 1
TlaLlvH Delay before next IValid high 0 ns

Notes

1 Unit of measurement is one link data bit time; at 10 Mbitsls data link speed, one bit time is nominally 100 nS.

2 Maximum time assumes there is no acknowledge packet already on the link. Maximum time with acknowledge
on the link is extended by 2 bits.

10·7

"'-TldVlvH

IValid ----'

lAck ----1-----------'
TlvHLdV ....---1~

LlnkOut -------------_.......+---------------
Llnkln --------

Figure 5.1 IMS C011 Mode 1 parallel data input to link adaptor
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5.2 Output port

The eight bit parallel output port QQ-7 can be controlled by a transputer family device via the serial link.
QValid and QAck provide a simple two-wire handshake for this port.

A data packet received on the input link is presented on QO-7; the link adaptor then takes QValid high to
initiate the handshake. After reading data from QO-7, the peripheral device sets QAck high. The IMS C011
will then send an acknowledge packet out of the serial link to indicate a completed transaction and set QValid
low to complete the handshake.

Table 5.2 Mode 1 parallel data output

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TLdVQvH Start of link data to QValid 11.5 bits 1
TQdVQvH Data setup 15 ns 2
TQvHQaH QAck setup time from QValid high 0 ns
TQaHQvL QAck high to QValid low 1.8 bits 1
TQaHLaV QAck high to Ack on link 0.8 2 bits 1,3
TQvLQaL QAck hold after QValid low 0 ns
TQvLQdX Data hold 11 bits 1,4

Notes

1 Unit of measurement is one link data bit time; at 10 Mbits/s data link speed. one bit time is nominally 100 nS.

2 Where an existing data output bit is re-written with the same level there will be no glitch in the output level.

3 Maximum time assumes there is no data packet already on the link. Maximum time with data on the link is
extended by 11 bits.

4 Data output remains valid until overwritten by new data.

Linkln ==:J D_a_ta_...... oI.-_D_a_ta_--..&. _

QO-7

TLdVQvH

QValid -----------'

QAck ..1

LinkOut ----------------

TQvLQaL

Figure 5.2 IMS C011 Mode 1 parallel data output from link adaptor
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6 Mode 2 Parallel interface

The IMS C011 provides an interface between a link and a microprocessor style bus. Operation of the link
adaptor is controlled through the parallel interface bus lines 00-7 by reading and writing various registers in
the link adaptor. Registers are selected by RS0-1 and RnotW, and the chip enabled with notCS.

For convenience of description, the device connected to the parallel side of the link adaptor is presumed to
be a microprocessor, although this will not always be the case.

6.1 00-7

Data is communicated between a microprocessor bus and the link adaptor via the bidirectional bus lines 00-7.
The bus is high impedance unless the link adaptor chip is selected and the RnotW line is high. The bus is
used by the microprocessor to access status and data registers.

6.2 notCS

The link adaptor chip is selected when notCS is low. Register selectors RSO-1 and RnotW must be valid
before notCS goes low; 00-7 must also be valid if writing to the chip (RnotW low). Data is read by the link
adaptor on the rising edge of notCS.

6.3 RnotW

RnotW, in conjunction with notCS, selects the link adaptor registers for read or write mode. When RnotW
is high, the contents of an addressed register appear on the data bus 00-7; when RnotW is low the data
on 00-7 is written into the addressed register. The state of RnotW is latched into the link adaptor by notCS
going low; it may be changed before notCS returns high, within the timing restrictions given.

6.4 RS0-1

One of four registers is selected by RSO-1. A register is addressed by setting up RSO-1 and then taking
notCS low; the state of RnotW when notCS goes low determines whether the register will be read or written.
The state of RS0-1 is latched into the link adaptor by notCS going low; it may be changed before notCS
returns high, within the timing restrictions given. The register set comprises a read-only data input register,
a write-only data output register and a read/write status register for each.

Table 6.1 IMS C011 Mode 2 register selection

RS1 RSO RnotW Register
0 0 1 Read data
0 0 0 Invalid
0 1 1 Invalid
0 1 0 Write data
1 0 1 Read input status
1 0 0 Write input status
1 1 1 Read output status
1 1 0 Write output status

6.4.1 Input Oata Register

This register holds the last data packet received from the serial link. It never contains acknowledge packets.
It contains valid data only whilst the data present flag is set in the input status register. It cannot be assumed
to contain valid data after it has been read; a double read mayor may not return valid data on the second
read. If data present is valid on a subsequent read it indicates new data is in the buffer. Writing to this register
will have no effect.



Table 6.2 IMS C011 Mode 2 parallel interface control

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TRSVCSL Register select setup 5 ns
TCSLRSX Register select hold 5 ns
TRWVCSL Read/write strobe setup 5 ns
TCSLRWX Read/write strobe hold 5 ns
TCSLCSH Chip select active 50 ns
TCSHCSL Delay before re-assertion of chip select 50 ns

Table 6.3 IMS C011 Mode 2 parallel interface read

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TLdVIIH Start of link data to Inputlnt high 13 bits 1
TCSLIIL Chip select to Inputlnt low 30 ns
TCSLDrX Chip select to bus active 5 ns
TCSLDrV Chip select to data valid 40 ns
TCSHDrZ Chip select high to bus tristate 25 ns
TCSHDrX Data hold after chip select high 5 ns
TCSHLaV Chip de-select to start of Ack 0.8 2 bits 1,2

Notes

1 Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 nS.

2 Maximum time assumes there is no data packet already on the link. Maximum time with data on the link is
extended by 11 bits.

Data

Inputlnt __

RSO·1

TRSVCSL~-"~~

RnotW

TRWVCSL~.....~~

notes

00·7

LinkOut ----------------_......

Data C

Figure 6.1 IMS C011 Mode 2 read parallel data from link adaptor
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Table 6.4 IMS C011 Mode 2 parallel interface write

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TCSHDwV Data setup 15 ns
TCSHDwX Data hold 5 ns
TCSLOIL Chip select to Outputlnt low 30 ns
TCSHLdV Chip select high to start of link data 0.8 2 bits 1,2
TLaVOIH Start of link Ack to Outputlnt high 3 bits 1,3
TLdVOIH Start of link data to Outputlnt high 13 bits 1,3

Notes

Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 nS.

2 Maximum time assumes there is no acknowledge packet already on the link. Maximum time with acknowledge
on the link is extended by 2 bits.

3 Both data transmission and the returned acknowledge must be completed before Outputlnt can go high.

RSO-1

TRSVCSL ....--.....-.t

noteS

00-7

TCSLOIL
Outputlnt

LinkOut

Linkln

Figure 6.2 IMS C011 Mode 2 write parallel data to link adaptor
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6.4.2 Input Status Reg ister

This register contains the data present flag and the interrupt enable control bit for Inputlnt. The data present
flag is set to indicate that data in the data input buffer is valid. It is reset low only when the data input buffer
is read, or by Reset. When writing to this register, the data present bit must be written as zero.

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low re
spectively. When the interrupt enable and data present flags are both high, the Inputlnt output will be high
(page 403). Resetting interrupt enable will take Inputlnt low; setting it again before reading the data input
register will set Inputlnt high again. The interrupt enable bit can be read to determine its status.

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the
register is read. Failure to write zeroes to these bits may result in undefined data being returned by these
bits during a status register read.

7 6 5 4 3 2 o

Figure 6.3 IMS C011 input status register

6.5 Inputlnt

The Inputlnt output is set high to indicate that a data packet has been received from the serial link. It is
inhibited from going high when the interrupt enable bit in the input status register is low (page 403). Inputlnt
is reset low when data is read from the input data register (page 400) and by Reset (page 394).

6.5.1 Output Data Register

Data written to this link adaptor register is transmitted out of the serial link as a data packet. Data should
only be written to this register when the output ready bit in the output status register is high, otherwise data
already being transmitted may be corrupted. Reading this register will result in undefined data being read.

6.5.2 Output Status Register

This register contains the output ready flag and the interrupt enable control bit for Outputlnt. The output.
ready flag is set to indicate that the data output buffer is empty. It is reset low only when data is written to the
data output buffer; it is set high by Reset. When writing to this register, the output ready bit must be written
as zero.

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low respec
tively. When the interrupt enable and output ready flags are both high, the Outputlnt output will be high
(page 404). Resetting interrupt enable will take Outputlnt low; setting it again whilst the data output register
is empty will set Outputlnt high again. The interrupt enable bit can be read to determine it's status.

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the
register is read. Failure to write zeroes to these bits may result in undefined data being returned by these
bits during a status register read.
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Figure 6.4 IMS C011 output status register

6.6 Outputlnt

The Outputlnt output is set high to indicate that the link is free to receive data from the microprocessor for
transmission as a data packet out of the serial link. It is inhibited from going high when the interrupt enable
bit in the output status register is low (page 403). Outputlnt is reset low when data is written to the data
output register (page 403); it is set high by Reset (page 394).

6.7 Data read

A data packet received on the input link sets the data present flag in the input status register. If the interrupt
enable bit in the status register is set, the Inputlnt output pin will be set high. The microprocessor will either
respond to the interrupt (if the interrupt enable bit is set) or will periodically read the input status register until
the data present bit is high.

When data is available from the link, the microprocessor reads the data packet from the data input register.
This will reset the data present flag and cause the link adaptor to transmit an acknowledge packet out of the
serial link output. Inputlnt is automatically reset by reading the data input register; it is not necessary to read
or write the input status register.

6.8 Data write

When the data output buffer is empty the output ready flag in the output status register is set high. If
the interrupt enable bit in the status register is set, the Outputlnt output pin will also be set high. The
microprocessor will either respond to the interrupt (if the interrupt enable bit is set) or will periodically read
the output status register until the output ready bit is high.

When the output ready flag is high, the microprocessor can write data to the ~ata output buffer. This will
result in the link adaptor resetting the output ready flag and commencing transmission of the data packet out
of the serial link. The output ready status bit will remain low until an acknowledge packet is received by the
input link. This will set the output ready flag high; if the intenupt enable bit is set, Outputlnt will also be set
high.



7 Electrical specifications

7.1 DC electrical characteristics

Table 7.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
11 Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 600 mW

Notes

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 7.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 60 pF
TA Operating temperature range 0 70 °C 3

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ftlmin transverse air flow.
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Table 7.3 DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
Vll low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 p.A 1,2,7

±200 p.A 1,2,8
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOl Output low voltage @ IOl=4mA 0.4 V 1,2
10S Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3

65 100 mA 1,2,4
10Z Tristate output current @ GND<VO<VCC ±10 p.A 1,2
PO Power dissipation 120 mW 2,5
CIN Input capacitance @ f=1MHz 7 pF 6
COZ Output capacitance @ f=1MHz 10 pF 6

Notes

All voltages are with respect to GND.

2 Parameters for IMS C011-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Input clock frequency - 5MHz.

3 Current sourced from non-link outputs.

4 Current sourced from link outputs.

5 Power dissipation varies with output loading.

6 This parameter is sampled and not 1000/0 tested.

7 For inputs other than those in Note 8.

8 For pins 2,3, 5, 6, 7, 9, 11, 13, 15, 16,25.

7.2 Equivalent circuits

Output

50pF

GND -.----+------41~

load for: R1 R2 Equivalent load:

link outputs 1K96 47K 1 SChottky TTL input
Other outputs 970R 24K 2 SChottky TTL inputs

Diodes are 1N916

Figure 7.1 Load circuit for AC measurements
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Test point
Output under test

GND ----

Figure 7.2 Tristate load circuit for AC measurements

7.3 AC timing characteristics

Table 7.4 Input, output edges

VCC

SYMBOL PARAMETER MIN MAX UNITS NOTE
TOr Input rising edges 2 20 ns 1,2
TOt Input tailing edges 2 20 ns 1,2
Tar Output rising edges 25 ns 1
TOf Output falling edges 15 ns 1
CSLaHZ Chip select high to tristate 25 ns
CSLaLZ Chip select low to tristate 25 ns

Notes

1 Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

TQf

Figure 7.3 IMS C011 input and output edge timing

1.5V _ 1.5V _

CSLaLZ

10% ------~--k--
Figure 7.4 IMS C011 tristate timing relative to notCS
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30 30
Time Time

ns Rise time ns
20 20 Fall time

10 Fall time 10

Notes

40 60 80 100

Load Capacitance pF

Link

Figure 7.5 Typical rise/fall times

40 60 80 100

Load Capacitance pF

Interface

Skew is measured between notCS with a standard load (2 Schottky TTL inputs and 30pF) and
notCS with a load of 2 Schottky TTL inputs and varying capacitance.

7.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 7.6.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in °C and 8JA is the junction-to-ambient thermal resistance in
°CIW. 8JA for each package is given in the Packaging Specifications section.

200

Power 150
PINT

mW 100

50

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 7.6 IMS C011 internal power dissipation vs VCC



8 Package specifications

8.1 28 pin plastic dual-in-line package

Figure 8.1 28 pin plastic dual-in-Iine package dimensions

Table 8.1 28 pin plastic dual-in-Iine package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 36.830 +0.508 1.450 +0.020
-0.254 -0.010

8 13.716 ±0.051 0.540 ±0.002
C 3.810 ±0.254 0.150 ±0.010
D 15.240 ±0.076 0.600 ±0.003
E 1.905 ±0.051 0.075 ±0.002
F 2.540 ±0.051 0.100 ±0.002
G 1.524 ±0.051 0.060 ±0.002
H 0.457 ±0.051 0.018 ±0.002
J 16.256 0.508 0.640 0.020
K 0.254 ±0.025 0.010 ±0.001
L 0.58 0.020 Minimum
M 3.429 0.135 Maximum

Package weight is approximately 4 grams

Table 8.2 28 pin plastic dual-in-Iine package junction to ambient thermal resistance

4U~

PARAMETER
At 400 linear ft/min transverse air flow
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8.2 28 pin ceramic dual-in-line package

I
o

L
-;J

A---~

1
8

~=-----.-Jj

I~

Figure 8.2 28 pin ceramic dual-in-line package dimensions

Table 8.3 28 pin ceramic dual-in-Iine package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes
A 35.560 ±0.406 1.400 ±0.016
B 15.113 ±0.254 0.595 ±0.010
C 2.159 ±0.254 0.085 ±0.010
0 15.113 +0.762 0.595 +0.030

-0.000 -0.000
E 2.032 0.080 Maximum
F 2.540 ±0.127 0.100 ±0.005
G 1.270 ±0.152 0.050 ±0.006
H 0.457 +0.102 0.018 +0.004

-0.051 -0.002
K 0.254 +0.076 0.010 +0.003

-0.025 -0.001
L 1.270 ±0.381 0.050 ±0.015
M 3.683 ±0.508 0.145 ±0.020
p 13.208 ±0.229 0.520 ±0.009 Square
Q 12.827 ±0.127 0.505 ±0.005 Square
R 0.3175 ±0.0635 0.0125 ±0.0025

Package weight is approximately 5 grams

Table 8.4 28 pin ceramic dual-in-Iine package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow
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8.3 Pinout

LinkOut 1 28 VCC
Linkln 2 27 CapMinus
IValid 3 26 QValid

lAck 4 25 QAck
10 5 24 QO
11 6 23 Q1
12 7 22 Q2
13 8 21 Q3
14 9 20 Q4
15 10 19 Q5
16 11 18 Q6
17 12 17 Q7

Reset 13 16 SeparatelQ
GNO 14 15 Clockln

Figure 8.3 IMS C011 Mode 1 pinout

LinkOut 1 28 VCC
Linkln 2 27 CapMinus
RnotW 3 26 Inputlnt

Outputlnt 4 25 noteS
RSO 5 24 00
RS1 6 23 01

OoNotWire 7 22 02
03 8 21 OoNotWire

OoNotWire 9 20 04
05 10 19 OoNotWire

HoldToGNO 11 18 06
07 12 17 LinkSpeed

Reset 13 16 SeparatelQ
GNO 14 15 Clockln

Figure 8.4 IMS C011 Mode 2 pinout
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9 Ordering

This section indicates the designation of package selections for the IMS C011. Speed of Clockln is 5 MHz
for all parts.

For availability contact 10callNMOS sales office or authorised distributor.

Table 9.1 IMS C011 ordering details

INMOS designation Package
IMS C011-P20S 28 pin plastic dual-in-Iine
IMS C011-S20S 28 pin ceramic sidebraze

IMS C011-S20M 28 pin ceramic sidebraze MIL Spec



FEATURES

IMS C012
link adaptor

Engineering Data

Standard INMOS link protocol
10 or 20 Mbits/sec operating speed
Communicates with INMOS transputers
Converts between serial link and parallel bus
Tristate bidirectional bus interface
Memory mapped registers
Interrupt capability
Single +5V ±5% power supply
TTL and CMOS compatibility
120mW power dissipation
Standard 24 pin 0.3" plastic package

APPLICATIONS

Connecting microprocessors to transputers
High speed links between microprocessors
Inter-family microprocessor interfacing

System
Services

Interrupt
Control

42 1413 01 October 1988



1 Introduction

The INMOS communication link is a high speed system interconnect which provides full duplex communication
between members of the INMOS transputer family, according to the INMOS serial link protocol. The IMS C012,
a member of this family, provides for full duplex transputer link communication with standard microprocessor
and sub-system architectures, by converting bi-directional serial link data into parallel data streams.

All INMOS products which use communication links, regardless of device type, support a standard commu
nications frequency of 10 Mbits/sec; most products also support 20 Mbits/sec. Products of different type
or performance can, therefore, be interconnected directly and future systems will be able to communicate
directly with those of today. The IMS C012 link will run at either the standard speed of 10 Mbits/sec or at the
higher speed of 20 Mbits/sec. Data reception is asynchronous, allowing communication to be independent
of clock phase.

The IMS C012 provides an interface between an INMOS serial link and a microprocessor system bus. Status
and data registers for both input and output ports can be accessed across the byte-wide bi-directional interface.
Two interrupt outputs are provided, one to indicate input data available and one for output buffer empty.

System
Services

Inputlnt
Outputlnt

RSa
RS1
RnotW
notCS

00·7
Data and

Status
Registers

LinkOut
Linkln

VCC
GND

CapMinus
Clockln

Reset
LinkSpeed

Figure 1.1 IMS C012 block diagram



2 Pin designations

Table 2.1 IMS C012 services and link

Pin In/Out Function
VCC,GNO Power supply and return
CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset

Linkln in Serial data input channel
LinkOut out Serial data output channel

Table 2.2 IMS C012 parallel interface

Pin In/Out Function
00·7 in/out Si-directional data bus
noteS in Chip select
RSO·1 in Register select
RnotW in Read/write control signal

Inputlnt out Interrupt on link receive buffer full
Outputlnt out Interrupt on link transmit buffer empty
LinkSpeed in Select link speed as 10 or 20 Mbits/sec

HoldToGNO Must be connected to GNO

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 431.
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3 System services

System services include all the necessary logic to start up and maintain the IMS C012.

3.1 Power

Power is supplied to the device via the VCC and GND pins. The supply must be decoupled close to the chip
by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer boards
are recommended; if two layer boards are used, extra care should be taken in decoupling.

AC noise between VCC and GND must be kept below 200 mV peak to peak at all frequencies above 100 KHz.
AC noise between VCC and the ground reference of load capacitances must be kept below 200 mV peak to
peak at all frequencies above 30 MHz. Input voltages must not exceed specification with respect to VCC and
GND, even during power-up and power-down ramping, otherwise latchup can occur. CMOS devices can be
permanently damaged by excessive periods of latchup.

3.2 CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1~F
capacitor to be connected between VCC and CapMinus. A ceramic capacitor is preferred, with an impedance
less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative terminal should
be connected to CapMinus. Total PCB track length should be less than 50 mm. The positive connection of
the capacitor must be connected directly to VCC. Connections must not otherwise touch power supplies or
other noise sources.

CapMinus

P.C.B. track

Decoupling
capacitor

1~F

P.C.B. track

3.3 Clockln

Figure 3.1 Recommended PLL decoupling

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer family devices may be connected to a common clock, or may have individual clocks
providing each one meets the specified stability criteria. In a multi-elock system the relative phasing of
Clockln clocks is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant
provided the specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.



3 :system services

Table 3.1 Input clock

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TDCLDCH Clockln pulse width low 40 ns
TDCHDCL Clockln pulse width high 40 ns
TDCLDCL Clockln period 200 400 ns 1,3
TDCerror Clockln timing error ±0.5 ns 2
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (table 6.3).

90% K---
10%- - - - - =-TDCf -

TDCerror

2.0v- - 
1.5vO.8v : : : : -

TDCerror

TDCLDCH TDCHDCL

TDCLDCL90%----A
10%- - - -- - -TDC-;- -

Figure 3.2 Clockln timing
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3.4 Reset
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The Reset pin can go high with VCC, but must at no time exceed the maximum specified voltage for VIH.
After VCC is valid Clockln should be running for a minimum period TOCVRL before the end of Reset. Linkln
must be held low during Reset.

Reset initialises the IMS C012 to the following state: LinkOut is held low; the interrupt outputs Inputlnt and
Outputlnt are held low; interrupts are disabled; 00-7 are high impedance.

Table 3.2 Reset

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power val id before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2

Notes

1 Full periods of Clockln TDCLDCL required.

2 At power-on reset.

Clockln

VCC

Reset

Figure 3.3 Reset Timing



4 Links

INMOS bi-directional serial links provide synchronized communication between INMOS products and with
the outside world. Each link comprises an input channel and output channel. A link between two devices is
implemented by connecting a link interface on one device to a link interface on the other device. Every byte
of data sent on a link is acknowledged on the input of the same link, thus each signal line carries both data
and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a
one bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted
first. After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit
followed by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged
data byte and that the receiving link is able to receive another byte.

Links are not synchronised with Clockln and are insensitive to its phase. Thus links from independently
clocked systems may communicate, providing only that the clocks are nominally identical and within specifi
cation.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

The IMS C012 link supports the standard INMOS communication speed of 10 Mbits/sec. In addition it can
be used at 20 Mbitslsec. Link speed is selected by LinkSpeed; when the LinkSpeed pin is low, the link
operates at the standard 10 Mbits/sec; when high it operates at 20 Mbits/sec.

~,-
I Ack I

Figure 4.1 IMS C012 link data and acknowledge packets
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Table 4.1 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr linkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf Linkln fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1
CllZ Linkln capacitance @ f=1MHz 7 pF
Cll LinkOut load capacitance 50 pF
RM Series resistor for 1oon transmission line 56 ohms

Notes

This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LlnkOut

100/0

90% - - - - - - -
Linkln

10% - - - - -

- - --
TJQf

Figure 4.2 IMS C012 link timing

1.5v- - - - 

TJBskew

LlnkO:ate~;~~ ------
Earliest TJQJD

Linkln

Figure 4.3 IMS C012 buffered link timing



Transputer family device A

LlnkOut I · ILinkln

____L_I_n_kl_n......,-----~------_L_I_n_kO_u_t _
Transputer family device B

Figure 4.4 IMS C012 Links directly connected

Transputer family device A 20=1000hms

LinkOut Linkln

L1nkln~ L1nkOut
------- 20=1000hms RM Transputer family device B

Figure 4.5 IMS C012 Links connected by transmission line

Transputer family device A

LinkOut >----~~-___iLinkln

buffers
Linkln t---~------< LinkOut

Transputer family device B

Figure 4.6 IMS C012 Links connected by buffers



5 Parallel interface

The IMS C012 provides an interface between a link and a microprocessor style bus. Operation of the link
adaptor is controlled through the parallel interface bus lines 00-7 by reading and writing various registers in
the link adaptor. Registers are selected by RS0-1 and RnotW, and the chip enabled with notCS.

For convenience of description, the device connected to the parallel side of the link adaptor is presumed to
be a microprocessor, although this will not always be the case.

5.1 00-7

Data is communicated between a microprocessor bus and the link adaptor via the bidirectional bus lines 00-7.
The bus is high impedance unless the link adaptor chip is selected and the RnotW line is high. The bus is
used by the microprocessor to access status and data registers.

5.2 notCS

The link adaptor chip is selected when notCS is low. Register selectors RSO-1 and RnotW must be valid
before notCS goes low; 00-7 must also be valid if writing to the chip (RnotW low). Data is read by the link
adaptor on the rising edge of notCS.

5.3 RnotW

RnotW, in conjunction with notCS, selects the link adaptor registers for read or write mode. When RnotW
is high, the contents of an addressed register appear on the data bus 00-7; when RnotW is low the data
on 00-7 is written into the addressed register. The state of RnotW is latched into the link adaptor by notCS
going low; it may be changed before notCS returns high, within the timing restrictions given.

5.4 RSO-1

One of four registers is selected by RSO-1. A register is addressed by setting up RSO-1 and then taking
notCS low; the state of RnotW when notCS goes low determines whether the register will be read or written.
The state of RS0-1 is latched into the link adaptor by notCS going low; it may be changed before notCS
returns high, within the timing restrictions given. The register set comprises a read-only data input register,
a write-only data output register and a read/write status register for each.

Table 5.1 IMS C012 register selection

RS1 RSO RnotW Register .
0 0 1 Read data
0 0 0 Invalid
0 1 1 Invalid
0 1 0 Write data
1 0 1 Read input status
1 0 0 Write input status
1 1 1 Read output status
1 1 0 Write output status

5.4.1 Input Data Register

This register holds the last data packet received from the serial link. It never contains acknowledge packets.
It contains valid data only whilst the data present flag is set in the input status register. It cannot be assumed
to contain valid data after it has been read; a double read mayor may not return valid data on the second
read. If data present is valid on a subsequent read it indicates new data is in the buffer. Writing to this register
will have no effect.
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Table 5.2 IMS C012 parallel interface control

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TRSVCSL Register select setup 5 ns
TCSLRSX Register select hold 5 ns
TRWVCSL Read/write strobe setup 5 ns
TCSLRWX Read/write strobe hold 5 ns
TCSLCSH Chip select active 50 ns
TCSHCSL Delay before re-assertion of chip select 50 ns

Table 5.3 IMS C012 parallel interface read

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TLdVllH Start of link data to Inputlnt high 13 bits 1
TCSLIIL Chip select to Inputlnt low 30 ns
TCSLDrX Chip select to bus active 5 ns
TCSLDrV Chip select to data valid 40 ns
TCSHDrZ Chip select high to bus tristate 25 ns
TCSHDrX Data hold after chip select high 5 ns
TCSHLaV Chip de-select to start of Ack 0.8 2 bits 1,2

Notes

1 Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 nS.

2 Maximum time assumes there is no data packet already on the link. Maximum time with data on the link is
extended by 11 bits.

Data

Inputlnt _

RSO·1

TRSVCSL~""~-.t

RnotW

TRWVCSL~-...~~

noteS

00·7 ------------~
~...a__........~

LinkOut ------------------
Figure 5.1 IMS C012 read parallel data from link adaptor

Data C



Table 5.4 IMS C012 parallel interface write

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TCSHDwV Data setup 15 ns
TCSHDwX Data hold 5 ns
TCSLOIL Chip select to Outputlnt low 30 ns
TCSHLdV Chip select high to start of link data 0.8 2 bits 1,2
TLaVOIH Start of link Ack to Outputlnt high 3 bits 1,3
TLdVOIH Start of link data to Outputlnt high 13 bits 1,3

Notes

Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 nS.

2 Maximum time assumes there is no acknowledge packet already on the link. Maximum time with acknowledge
on the link is extended by 2 bits.

3 Both data transmission and the returned acknowledge must be completed before Outputlnt can go high.

RSO·1

TRSVCSL~--~~

noteS

00-7

TCSLOIL
OutpuUnt

LinkOut

Linkln

Figure 5.2 IMS C012 write parallel data to link adaptor



5.4.2 Input Status Register

This register contains the data present flag and the interrupt enable control bit for Inputlnt. The data present
flag is set to indicate that data in the data input buffer is valid. It is reset low only when the data input buffer
is read, or by Reset. When writing to this register, the data present bit must be written as zero.

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low re
spectively. When the interrupt enable and data present flags are both high, the Inputlnt output will be high
(page 425). Resetting interrupt enable will take Inputlnt low; setting it again before reading the data input
register will set Inputlnt high again. The interrupt enable bit can be read to determine its status.

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the
register is read. Failure to write zeroes to these bits may result in undefined data being returned by these
bits during a status register read.

7 6 5 4 3 2 o

Figure 5.3 IMS C012 input status register

5.5 Inputlnt

The Inputlnt output is set high to indicate that a data packet has been received from the serial link. It is
inhibited from going high when the interrupt enable bit in the input status register is low (page 425). Inputlnt
is reset low when data is read from the input data register (page 422) and by Reset (page 418).

5.5.1 Output Data Register

Data written to this link adaptor register is transmitted out of the serial link as a data packet. Data should
only be written to this register when the output ready bit in the output status register is high, otherwise data
already being transmitted may be corrupted. Reading this register will result in undefined data being read.

5.5.2 Output Status Register

This register contains the output ready flag and the interrupt enable control bit for Outputlnt. The output
ready flag is set to indicate that the data output buffer is empty. It is reset low only when data is written to the
data output buffer; it is set high by Reset. When writing to this register, the output ready bit must be written
as zero.

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low respec
tively. When the interrupt enable and output ready flags are both high, the Outputlnt output will be high
(page 426). Resetting interrupt enable will take Outputlnt low; setting it again whilst the data output register
is empty will set Outputlnt high again. The interrupt enable bit can be read to determine it's status.

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the
register is read. Failure to write zeroes to these bits may result in undefined data being returned by these
bits during a status register read.
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Figure 5.4 IMS C012 output status register

5.6 Outputlnt

The Outputlnt output is set high to indicate that the link is free to receive data from the microprocessor for
transmission as a data packet out of the serial link. It is inhibited from going high when the interrupt enable
bit in the output status register is low (page 425). Outputlnt is reset low when data is written to the data
output register (page 425); it is set high by Reset (page 418).

5.7 Data read

A data packet received on the input link sets the data present flag in the input status register. If the interrupt
enable bit in the status register is set, the Inputlnt output pin will be set high. The microprocessor will either
respond to the interrupt (if the interrupt enable bit is set) or will periodically read the input status register until
the data presentbit is high.

When data is available from the link, the microprocessor reads the data packet from the data input register.
This will reset the data present flag and cause the link adaptor to transmit an acknowledge packet out of the
serial link output. Inputlnt is automatically reset by reading the data input register; it is not necessary to read
or write the input status register.

5.8 Data write

When the data output buffer is empty the output ready flag in the output status register is set high. If
the interrupt enable bit in the status register is set, the Outputlnt output pin will also be set high. The
microprocessor will either respond to the interrupt (if the interrupt enable bit is set) or will periodically read
the output status register until the output ready bit is high.

When the output ready flag is high, the microprocessor can write data to the data output buffer. This will
result in the link adaptor resetting the output ready flag and commencing transmission of the data packet out
of the serial link. The output ready status bit will remain low until an acknowledge packet is received by the
input link. This will set the output ready flag high; if the interrupt enable bit is set, Outputlnt will also be set
high.



6 Electrical specifications

6.1 DC electrical characteristics

Table 6.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
11 Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 5 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 600 mW

Notes

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 6.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 60 pF
TA Operating temperature range 0 70 °C 3

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.
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Table 6.3 DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
Vll low level input voltage -0.5 0.8 V 1,2
11 Input current @ GND<VI<VCC ±10 p,A 1,2,7

±200 p,A 1,2,8
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOl Output low voltage @ IOl=4mA 0.4 V 1,2
10S Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3

65 100 mA 1,2,4
10Z Tristate output current @ GND<VO<VCC ±10 p,A 1,2
PD Power dissipation 120 mW 2,5
CIN Input capacitance @ f=1MHz 7 pF 6
COZ Output capacitance @ f=1MHz 10 pF 6

Notes

All voltages are with respect to GND.

2 Parameters for IMS C012-S measured at 4.75V<VCC<5.25V and O°C<TA<70°C.
Input clock frequency - 5MHz.

3 Current sourced from non-link outputs.

4 Current sourced from link outputs.

5 Power dissipation varies with output loading.

6 This parameter is sampled and not 1000k tested.

7 For inputs other than those in Note 8.

8 For pins 2,3,5,6,7,9, 11, 13, 14,21.

6.2 Equivalent circuits

Output

50pF

GND -..----+------411~

Load for: R1 R2 Equivalent load:

Link outputs 1K96 47K 1 Schottky TTL input
Other outputs 970R 24K 2 Schottky TTL inputs

Diodes are 1N916

Figure 6.1 Load circuit for AC measurements



6 Electrical specificatiOns

Test point
Output under test

GND ----

VCC

Figure 6.2 Tristate load circuit for AC measurements

6.3 AC timing characteristics

Table 6.4 Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TOr Input rising edges 2 20 ns 1,2
TOf Input falling edges 2 20 ns 1,2
Tar Output rising edges 25 ns 1
TOf Output falling edges 15 ns 1
CSLaHZ Chip select high to tristate 25 ns
CSLaLZ Chip select low to tristate 25 ns

Notes

1 Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

Figure 6.3 IMS C012 input and output edge timing

1.5V _ 1.5V _

CSLaLZ

10% ~_~--

Figure 6.4 IMS C012 tristate timing relative to notCS
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30 30 Rise time
Time Time

ns Rise time ns
20 20 Fall time

10 Fall time 10

Notes

40 60 80 100

Load Capacitance pF

Link

Figure 6.5 Typical rise/fall times

40 60 80 100

Load Capacitance pF

Interface

Skew is measured between notCS with a standard load (2 Schottky TTL inputs and 30pF) and
notCS with a load of 2 Schottky TTL inputs and varying capacitance.

6.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 6.6.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PlO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in °C and OJA is the junction-to-ambient thermal resistance in
°CIW. OJA for each package is given in the Packaging Specifications section.

200

Power 150
PINT

mW 100

50

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 6.6 IMS C012 internal power dissipation vs VCC



7 Package specifications

7.1 24 pin plastic dual-in-line package

Figure 7.1 24 pin plastic dual-in-Iine package dimensions

Table 7.1 24 pin plastic dual-in-Iine package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 31.242 +0.508 1.230 +0.020
-0.254 -0.010

B 6.604 ±0.127 0.260 ±0.005
C 3.302 ±0.381 0.130 ±0.015
0 7.620 ±0.127 0.300 ±0.005
E 1.651 ±0.127 0.065 ±0.005
F 2.540 ±0.127 0.100 ±0.005
G 1.524 ±0.127 0.060 ±0.005
H 0.457 ±0.127 0.018 ±0.005
J 8.382 ±0.508 0.330 ±0.020
K 0.254 ±0.025 0.010 ±0.001
L 0.508 ±0.127 0.020 ±0.005
M 3.048 0.120 Minimum

Package weight is approximately 2 grams

Table 7.2 24 pin plastic dual-in-Iine package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow



7.2 Pinout

LinkOut 1
Linkln 2
RnotW 3

Outputlnt 4
RSO 5
RS1 6

03 7
05 8

HoldToGNO 9
07 10

Reset 11
GNO 12

11 IM:S C012 engineering data

24 VCC
23 CapMinus
22 Inputlnt
21 notCS
20 DO
19 01
18 02
17 04
16 06
15 LinkSpeed
14 HoldToGNO
13 Clockln

Figure 7.2 IMS C012 pinout



8 Ordering

This section indicates the designation of package selections for the IMS C012. Speed of Clockln is 5 MHz
for all parts.

For availability contact local INMOS sales office or authorised distributor.

Table 8.1 IMS C012 ordering details

INMOS designation
IMS C012·P20S

Package
24 pin plastic dual-in-Iine
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A Military standard program

For full details see INMOS document 49-9047 "Military General Processing Specification".

The INMOS military program is designed to provide class B microcircuits in accordance with 1.2.1 of MIL
STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". Devices
are processed for general applications where component quality and reliability must conform to the guidelines
and objectives of military procurement. Suitability for use in specific applications should be determined using
the guidelines of MIL-STD-454.

Screening procedures are compliant with Method 5004 and the provisions of paragraph 3.3 therein. Quality
conformance procedures are compliant with Method 5005 using the alternate Group B provisions of para
graph 3.5.2. All electrical testing is performed to guarantee operation at -55°C, +25°C and +125°C.

All INMOS military grade components are provided in hermetically sealed ceramic packages.

By specifying an INMOS military product, the user can be assured of receiving a product manufactured, tested
and inspected in compliance with MIL-STD-883 and one with superior performance for those applications
where quality and reliability are of the essence.

For more details on the military version of the devices, including characterisation details, contact your local
INMOS sales outlet.

Table A.1 Expression evaluation

100 Percent MIL·STD·883C Test
Process Step Method Condition Comment

Internal visual 2010 B
Stabilization bake 1008 C
Temperature cycle 1010 C
Constant a~celeration 2001 D Y-1 axis
Seal test 1014 B
Seal test 1014 C
Visual inspection INMOS 89-1001
Pre burn-in electrical +25° C data sheet
Burn-in 1015 D
Post burn-in electrical +25°C data sheet
PDA 5% max
Final electrical +125°C data sheet
Final electrical -55°C data sheet
External visual 2009
Group A 5005 3.5.1 A1-A11
Group B 5005 3.5.2
Group C 5005 MIL-STD-883C 1.2.1 .b.17
Group D 5005 MIL-STD-883C 1.2.1.b.17
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B 84 lead quad cerpack

Product under development - for availability contact INMOS.

In the future some transputers will be available in a surface mount quad cerpack package. The leads will be
unformed to allow the user to form them to specific requirements.

Section through
package•

L

D ::-

I~ C .1

I. B J H~~[ J~M
A

Figure B.1 84 lead quad cerpack package dimensions

Notes
38.1 ±. 8 1. ± . 2

B 26.924 ±0.305 1.060 ±0.012
C 20.574 ±0.203 0.810 ±0.008
D 19.558 ±0.254 0.770 ±0.010
E 0.508 0.020
F 1.270 ±0.051 0.050 ±0.002
G 2.489 ±0.305 0.098 ±0.012
H 0.635 ±0.076 0.025 ±0.003
J 1.143 ±0.102 0.045 ±0.004
K 3.099 0.122 Max.
L 27.940 1.100 Max.
M 0.178 ±0.025 0.007 ±0.001

Table B.1 84 lead quad cerpack package dimensions
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C Quality and Reliability

The INMOS Quality Programme is attentive to every phase of the semiconductor product life cycle. This
includes specific programmes in each of the following areas:

• Total Quality Control (TQC)

• Quality and Reliability in Design

• Document Control

• New Product Qualification

• Product Monitoring Programme

• Production Testing and Quality Monitoring Procedure

C.1 Total Quality Control (TQC) and Reliability Programme

Our objective to continuously build improved quality and reliability into every INMOS part has resulted in a
comprehensive Quality/Reliability Programme that we are proud of. This programme demonstrates INMOS'
serious commitment to supporting the quality and reliability needs of the electronics marketplace.

INMOS is systematically shifting away from a traditional screening approach to quality control and towards
one of bUilding in Experimental Design quality through Statistical Process Control (SPC). This new direction
was initiated with a vigorous programme of education and scientific method training.

In the first year of the programme approximately 80 INMOS employees worldwide received thorough SPC
training. In 1987 this training was extended to cover advanced SPC and experimental design. Some of the
courses taught are listed below:

• Experimental Design Techniques

• Statistical Process Control Methods

• Quality Concepts

• Problem Solving Techniques

• Statistical Software Analysis Techniques

Today INMOS utilizes experimental design techniques and process control/monitoring throughout its devel
opment and manufacturing cycles. The following TQC tools are currently supported by extensive databases
and analysis software.

1. Pareto charts 6. Correlation Plots
2. Cause/Effect Diagrams 7. Control Charts
3. Process Flow Charts 8. Experimental Design
4. Run Charts 9. Process Capability Studies
5. Histograms

C.2 Quality and Reliability in Design

The INMOS quality programme begins with the design of new INMOS products. The following procedures
are examples from the INMOS programme to design quality and reliability into every product.

Innovative design techniques are employed to achieve product performance using, whenever possible, state
of the art techniques. For example, INMOS uses 300 nanometre gate oxides on its high performance static
SRAM and MICRO products to obtain the reliability inherent in the thicker gate oxide. In addition, circuit
design engineers work hand in hand with process engineers to optimise the design for the process and the
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process for the product family. The result is a highly reliable design implemented in a process technology
achievable within manufacturing.

INMOS products are designed to have parametric margins beyond the product target specifications. The
design performance is verified using simulations of circuit performance over voltage and temperature values
beyond those of specified product operation, including verification beyond the military performance range. In
addition, the device models are chosen to ensure tolerance to wide variations in process parameters beyond
those expected in manufacture.

The design process includes consideration of quality issues such as signal levels available for sensing,
reduction of internal noise levels, stored data integrity and testability of all device functions. Electro-static
damage protection techniques are included in the design with input protection goals of 2K volts for MIL-STD
883 testing methods. Specific customer requirements can be met by matching their detailed specifications
against INMOS designed in margins.

The completion of the design includes the use of INMOS computer aided design software to fully check and
verify the design and layout. This improves quality as well as ensuring the timely introduction of new products.

C.3 Document Control

The Document Control Department maintains control over all manufacturing specifications, lot travellers,
procurement specifications and drawings, reticle tapes and test programmes. New specifications and changes
are subject to approval by the Engineering and Manufacturing managers or their delegates. Change is
rigorously controlled through an Engineering Change Notice procedure, and QA department managers screen
and approve all such changes.

An extensive archiving system ensures that the history of any Change Notice is readily available.

Document Control also has responsibility for controlling in-line documentation in all manufacturing areas which
includes distribution of specifications, control of changes and liaison with production control and manufacturing
in introducing changed procedures into the line.

Extensive use is made of computer systems to control documentation on an international basis.

C.4 New Product Qualification

INMOS performs a thorough internal product qualification prior to the delivery of any new prOduct, other than
engineering samples of prototypes to customers.

Care is taken to select a representative sample from the final prototype material. This typically consists of
three different production lots. Testing is then done to assure the initial product reliability levels are achieved.
Product qualifications are done in accordance with MIL-STD-883, methods 5004 and 5005, or CECC/BS9000.

The initial INMOS qualification data, and the ongoing monitor data can be very useful in the user qualification
decision process. INMOS also has a very successful history of performing customer qualification testing
in-house and performing joint qualification programmes with customers. INMOS remains committed to joint
customer/vendor programmes.

C.5 Product Monitoring Programme

At the levels of quality and reliability performance required today (Iow PPM and FIT levels), it is essential that
a large statistically significant, current product database be maintained. One of the programmes that INMOS
uses to accomplish this is the Product Monitoring Programme (PMP).

The PMP is comprehensive ongoing programme of reliability testing. A small sample is pulled from production
lots of a particular part type. This population is then used to create the specific samples to put on the various
operating and environmental tests. Tests run in this programme include extended temperature operating life,
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THB and temperature cycle. Efforts are continuing to identify and correlate more accelerated tests to be used
in the PMP.

C.6 Production Testing and Quality Monitoring Procedure

C.6.1 Reliability Testing

INMOS' primary reliability test method is to bias devices at their maximum rated operating power supply level
in a 140° C ambient temperature. A scheme of time varying input signals is used to simulate the complete
functional operation of the device. The failure rate is then computed from the results of the operating life
test using Arrhenius modelling for each specific failure mechanism known. The failure rate is reported at a
temperature that is a typical worst case application environment and is expressed in units of FITs where 1
FIT = 1 Fail in 10E9 device hours, (100 FIT = 0.01 °/0/1 000 Hrs). The current database enables the failure
rate to be valid over various environmental conditions.

The failure rate goal for INMOS products is 100 FITs or less at product introduction with a 50 FIT level to be
attained within one year.

For plastic packaged product, additional testing methods and reliability indices become important. Humidity
testing is used to evaluate the relative hermeticity of the package, and thermal cycling tests are used principally
to evaluate the durability of the assembly (e.g. die/bond attaCh).

The Humidity Test comprises of temperature, humidity bias (THB) at 85°C, 85% Relative Humidity, and a
5V static bias configuration selected to maintain the component in a state of minimum power dissipation and
enhance the formation of galvanic corrosion. INMOS reliability goals have always been to meet or better
the current 'industry standards' and a target of less than 1% failures through 1000 hours of THB at 900/0
confidence has been set.

The Thermal Cycling tests are performed from -65°C to + 150°C for 500 - 1000 cycles, with no bias applied.
Thermal Shock tests using a liquid to liquid (Freon) method are cycled between -55°C and + 125°C. The
INMOS Reliability qualification and monitoring goal for the above tests is less than 1at 90

C.6.2 Production Testing

Electrical testing at INMOS begins while the devices are still in wafer form before being divided into individual
die. While in this form, two different types of electrical test are performed.

The Parametric Probe test is to verify that the individual component parameters are within their design limits.
This is accomplished by testing special components on the wafer. The results of these tests provide feedback
to our wafer fab manufacturing facilities which allows them to ensure that the components used in the actual
devices perform within their design limits. This testing is performed on all lots which are processed, and any
substandard wafers being discarded. These components are placed in the scribe streets of the wafer so they
are destroyed in the dicing operation when they are not of any further use. By placing them there, valuable
chip real estate is saved, thereby holding down cost while still providing the necessary data.

The Electrical Probe test performed on all wafers is the test of each individual circuit or chip on every wafer.
The defective die are identified so they may be later discarded after the wafer has been separated into
individual die. This test fully exercises the circuits for all AC and DC datasheet parameters in addition to
verifying functionality.

After the die have been assembled into packages they are again tested in our Final Test operation. In a
mature product the typical flow is:

• Preburn-in test

• Burn-in @ 140°C

• Final test
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• PDA (Percent Defect Allowed)

• Device Symbolisation

• QA Final Acceptance

The temperature setting used for hot testing is selected so that the junction temperature is the same as it
would be after thermal stabilisation occurred in the specified environment. This is calculated using the hot
temperature power dissipation along with the thermal resistance of the package used. All INMOS product is
electrically tested and burned-in prior to shipment. Historically, the industry has selected burn-in times using
the MIL Standards as a guide (when the market would support the cost) or on a 'best guess' basis dominated
by cost considerations. Whereas INMOS invoke a burn-in reduction exercise to ensure the reduced time has
no reliability impact.

C.6.3 Quality Monitoring Procedure

In the Outgoing Quality Monitoring programme, random samples are pulled from lots, that have been suc
cessfully tested to data sheet criteria. Rejected lots are 100% retested and more importantly, failures are
analysed and corrective actions identified to prevent the recurence of specific problems.

The extensive series of electrical tests with the associated Burn-in PDA limits and Quality Assurance tests
ensure we will be able to continue to improve our high quality and reliability standards.



W1I11~ r'\t't'~••U.A ..,

et bibliography

449



U DIDllograpny



o Bibliography

This appendix contains a list of some transputer-related publications which may be of interest to the reader.
The References section details publications referred to in this manual, other than the standard INMOS doc
uments detailed below.

INMOS publish manuals and data sheets pertaining to transputer based products and to occam. Apart
from items detailed below, INMOS produce an Engineering Data Sheet for each prOduct, as well as Product
Information Guides detailing the INMOS range of products. There are also a number of Technical Notes and
Application Notes available from INMOS, covering a wide range of topics in both the hardware and software
areas.

0.1 INMOS publications

INMOS
occam Programming Manual
72 oce 040

INMOS
occam 2 Language Definition
72 oce 044

INMOS
IMS M212 Product Data manual
72 TRN 103

INMOS
Transputer Development System Manual
Prentice Hall
ISBN 0-13-928995-X

INMOS
The Transputer Instruction Set - A Compiler Writers' Guide
Prentice Hall
ISBN 0-13-929100-8

INMOS
Communicating Process Architecture
Prentice Hall
ISBN 0-13-629320-4

INMOS
Transputer Technical Notes
Prentice Hall
ISBN 0-13-929126-1

INMOS
occam 2 Reference Manual
Prentice Hall
ISBN 0-13-629312-3

INMOS
occam
Keigaku Shuppan Publishing Company
ISBN 4-7665-0133-0
(In Japanese)
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0.2 INMOS technical notes

A wide range of technical and application notes are published by INMOS. Some of these are listed in this
section. Please note that the Prentice Hall publications Communicating Process Architecture and Transputer
Technical Notes are compilations of suitable technical notes listed below.

Number
72 TCH 000
72 TCH 001

72 TCH 002

72 TCH 005
72 TCH 006

72 TCH 007
72 TCH 009
72 TCH 010
72TCH017
72 TCH 018
72 TCH 019
72 TCH 020
72 TCH 021
72 TCH 022
72 TCH 023
72 TCH 024
72 TCH 026

72 TCH 027
72 TCH 029
72 TCH 032
72 TCH 036
72 TCH 037
72 TCH 046
72 TCH 047
72 TCH 049

72 TCH 051

Title
A transputer based radio navigation system
Extraordinary use or transputer links
A Transputer based navigation system - Testing embedded
systems
Program design for concurrent systems
IMS T800 Architecture
Exploiting concurrency; a ray tracing example
Designing with the T414 and IMS T800 memory interface
IMS B003 Design of a multi-transputer board
Performance maximisation
Connecting INMOS links
Designs and applications for the IMS C004 link switch
Communicating processes and occam
The transputer implementation of occam
Communicating process computers
Compiling occam into silicon
Exploring multiple transputer arrays
Graphics support and performance improvements on the
IMS T800
Lies, damned lies, and benchmarks
TRAM module description
Security aspects of occam 2
The INMOS flight simulator
High performance graphics with the IMS T800
Transputer based graphics display
The role of occam in the design of the IMS T800
Module motherboard architecture
Simple real time programming with the transputer
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0.3 References

This section details publications referred to in the TRANSPUTER OVERVIEW chapter of this document.

Harp
Phase 1 of the development and application of a low cost, high performance multiprocessor machine
J G Harp et al
ESPRIT '86: Results and Achievements, Elsevier Science Publishers B.V.
pp 551-562

IEEE
IEEE Standard for Binary Floating-Point Arithmetic
ANSI/IEEE Std 754-1985.

INMOS '84
IMS T414 reference manual
INMOS Limited 1984

INMOS '88
Transputer Instruction Set - A Compiler Writers' Guide
Prentice Hall
ISBN 0-13-929200-8

McMahon
The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range
F H McMahon
Lawrence Livermore National Laboratory
UCRL-53745

A number of papers have been written by external authors, and a bibliography of these is included in the
occam users group newsletter. For details on joining this group contact your local INMOS outlet.
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! 9
" 15
() 14
* 14,103,106,169,233,286,340
+ 14, 103, 106, 169, 171, 233, 235, 286, 288,

340,342
- 14, 103, 169, 171,233,235,286,288,340,

342
/ 14,103,106,169,233,286,340
/\ 14, 103, 169, 233, 286, 340
:= 9
< 14, 103, 106, 169, 171,233,235,286, 288,

340,342
« 14, 103, 169, 233, 286, 340
<= 14, 103, 106, 169, 171,233, 235, 286, 288,

340,342
<> 14, 103, 106, 169, 171, 233, 235, 286, 288,

340,342
= 14,103,106,169,171,233,235,286,288,

340,342
> 14,103,106,169,171,233,235,286,288,

340, 342
>< 14, 103, 169,233,286,340
>= 14, 103, 106, 169, 171, 233, 235, 286, 288,

340,342
» 14,103,169,233,286,340
? 9
\/ 14,103,169,233,286,340
- 14,103,169,233,286,340

ASS 106
Absolute maximum ratings

IMS C004 382
IMS C011 405
IMS C012 427
IMS T212 335
IMS T222 281
IMST414228
IMS T425 163
IMS T800 97

Access
byte-wide IMS C011 390
byte-wide IMS C012 414

Acknowledge
link 35
link IMS C004 373
link IMS C011 395
link IMS C012 419
link IMS T212 332
link IMS T222 278
link IMS T414 225
link IMS T425 160
link IMS T800 94

Address
bus IMS T212 321
bus IMS T222 267
bus IMS T414 205
bus IMS T425 140
bus IMS T800 74
byte IMS T212 318
byte IMS T222 264
byte IMS T414 201
byte IMS T425 136
byte IMS T800 70
mark IMS M212 353
refresh IMS T414 219
refresh IMS T425 154
refresh IMS T800 88
space IMS T212 299, 301
space IMS T222 244, 247
space IMS T414 181, 183
space IMS T425 114, 117
space IMS T800 45, 47

AFTER 14, 15,36, 104, 170,234, 287, 341
ALT 11, 12, 18, 25, 104, 108, 170, 173, 234,

236,287,289,341,343
Alternation construction 10, 11, 12, 25, 36
Analyse

IMS T212 316,317
IMS T222 262, 263
IMS T414 199,200
IMS T425 134, 135
IMS T800 68,69
~ 14,103,169,233,286,340
ANSI-IEEE 754-1985 13

IMS T800 44, 62
Application

bidirectional exchange IMS C004 378
bus systems IMS C004 378
drawing coloured text 39
enhanced controller IMS M212 358
IMS T212 324
IMS T222 270
IMS T414 211
IMS T425 146
IMS T800 80
link switching IMS C004 378
multiple control IMS C004 378
winchester controller IMS M212 357,358

Architecture 24, 25
internal 27
rationale 5

Arithmetic
multiple length 105,170,234,287,341
operation IMS T212 301
operation IMS T222 247
operation IMS T414 183
operation IMS T425 117



operation IMS T800 47
operator 103,106,169,233,286,340

Array 13
assignment 108, 173, 236, 289, 343
byte 15
of disk controllers IMS M212 359
of processes 12
of transputers IMS M212 359
type 13
variable 103, 169, 233, 286, 340

ASCII 15
ASB:IFTLEFT 105
ASB:IFTR:IGBT 105
Assignment 9, 25, 103, 106, 169, 233, 286, 340

array 108, 173, 236, 289, 343
process 8,9

Bandwidth
memory 39
memory IMS T212 303
memory IMS T222 249
memory IMS T414 185
memory IMS T425 119
memory IMS T800 49

Barrel shifter 38
Behaviour

logical 3, 16, 18
physical 3

Benchmark
LINPACK 38
speed 37
Whetstone 37

Bit
counting performance 107, 172
data 35
operator 103, 169, 233, 286, 340
reversal performance 107, 172
start 35
stop 35

Bit-bit 39
B:ITCOONT 107, 172
B:ITREVNB:IT 107, 172
B:ITREVWORD 107, 172
Block move 39

conditional 39
IMS T425 114
IMS T800 44
performance 107, 172
two-dimensional 39

BOOL 13
Boolean

expression 108, 173, 236, 289, 343
operator 103, 169,233,286,340

BootFromRom
IMS T212 314,316
IMS T222 260, 262
IMS T414 197,199
IMS T425 132, 134
IMS T800 66, 68

Bootstrap 20, 21

address IMS T212 316
address IMS T222 262
address IMS T414 199
address IMS T425 134
address IMS T800 68
code IMS T212 318
code IMS T222 264
code IMS T414 201
code IMS T425 136
code IMS T800 70
IMS M212 355
IMS T212 314,316
IMS T222 260, 262
IMS T414 197, 199,222
IMS T425 132,134,157
IMS T800 66, 68, 91
program IMS T212 330
program IMS T222 276

Bootstrapping
IMS T425 136

Brackets 14
Break point

IMS T425 136
Buffer

input IMS C011 403
input IMS C012 425
link 20
output IMS C011 403
output IMS C012 425

Bus 27
IMS C011 400
IMS C012 422

Byte
access IMS C011 390
access IMS C012 414
access IMS T212 321,326
access IMS T222 267,272
address IMS T212 318, 321
address IMS T222 264, 267
address IMS T414 201
address IMS T425 136
address IMS T800 70

BYTE 13

C 19
Capacitive load 5
CapMinus

IMS C004 370
IMS C011 392
IMS C012 416
IMS T212 313
IMS T222 259
IMS T414 195
IMS T425 130
IMS T800 ,64

CapPlus
IMS C004 370
IMS T212 313
IMS T222 259
IMS T414 195
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IMS T425 130
IMS T800 64

CASE 12
CBAN OF 13

protocol 103,169,233,286,340
Channel 4,8,9,11,13,16,19,25,103,169,

233,286,340
communication 32, 34
disk hardware IMS M212 354
empty 32
event IMS T212 331
event IMS T222 277
event IMS T414 224
event IMS T425 159
event IMS T800 93
external 32
external IMS T212 306
external IMS T222 252
external IMS T414 188
externallMS T425 122
external IMS T800 52
IMS T212 305
IMS T222 251
IMS T414 187
IMS T425 121
IMS T800 51
input 25
internal 32
internal IMS T212 306
internal IMS T222 252
internal IMS T414 188
internal IMS T425 122
internal IMS T800 52
link 19
link IMS C004 373
link IMS C011 395
link IMS C012 419
link IMS T212 332
link IMS T222 278
link IMS T414 225
link IMS T425 160
link IMS T800 94
memory 19
occam 19
output 25
process 25

Characteristics
AC timing IMS C004 384
AC timing IMS C011 407
AC timing IMS C012 429
AC timing IMS T212 337
AC timing IMS T222 283
AC timing IMS T414 230
AC timing IMS T425 165
AC timing IMS T800 99
DC electrical IMS C004 382, 383
DC electrical IMS C011 405, 406
DC electrical IMS C012 427,428
DC electricallMS T212 335,336
DC electrical IMS T222 281, 282

DC electricallMS T414 228,229
DC electricallMS T425 163,164
DC electricallMS T800 97,98

CLIP2D 39, 107, 172
Clock 13,21

input 20,21
input, internal IMS C004 370
input, internal IMS C011 392
input, internallMS C012 416
input, internal IMS T212 313
input, internal IMS T222 259
input, internal IMS T414 195
input, internal IMS T425 130
input, internal IMS T800 64
internal 20
link 21
link IMS C004 373
link IMS C011 395
link IMS C012 419
link IMS T212 332
link IMS T222 278
link IMS T414 225
link IMS T425 160
link IMS T800 94
multiple IMS C004 370
multiple IMS C011 392
multiple IMS C012 416
multiple IMS T212 313
multiple IMS T222 259
multiple IMS T414 195
multiple IMS T425 130
multiple IMS T800 64
phase 7
processor 36
processor IMS T212 306
processor IMS T222 252
processor IMS T414 188
processor IMS T425 122
processor IMS T800 52
stability IMS C004 370
stability IMS C011 392
stability IMS C012 416
stability IMS T212 313
stability IMS T222 259
stability IMS T414 195
stability IMS T425 130
stability IMS T800 64
timer 15
timer IMS T212 306
timer IMS T222 252
timer IMS T414 188
timer IMS T425 122
timer IMS T800 52
transputer 7

Clockln
IMS C004 370
IMS C011 392
IMS C012 416
IMS T212 313
IMS T222 259



IMST414 195
IMS T425 130
IMS T800 64
period IMS T212 320
period IMS T222 266
period IMS T414 203
period IMS T425 138
period IMS T800 72
skew IMS C011 393

Code
function/operation IMS T212 307
function/operation IMS T222 253
function/operation IMS T414 189
function/operation IMS T425 123
function/operation IMS T800 53

Coding efficiency
IMS T212 303
IMS T222 249
IMS T414 185
IMS T425 119
IMS T800 49

Colour
display 39
graphics 30
text example 39

Communication 4, 5, 6, 24, 27, 32
bandwidth 5
channel 8, 32, 34
construction 8, 11
contention 5
external 34
frequency 7, 20
IMS T212 305
IMS T222 251
IMS T414 187
IMS T425 121
IMS T800 51
interface 6
internal 32
language 19
link 5,35
parallel IMS C011 390
parallel IMS C012 414
process IMS T212 305
process IMS T222 251
process IMS T414 187
process IMS T425 121
process IMS T800 51
speed 26

Comparison operator 103, 106, 169, 233, 286,
340

Compatibility
IMS T425 115

Concept 25
Concurrency 3, 8, 24

IMS T212 304
IMS T222 250
IMST414 186
IMS T425 120
IMS T800 50

I:: IIIUt:A

internal 8
support 30

Concurrent
FPU/CPU operation 37
process 8, 10, 11, 18,25
systems 8

Conditional construction 10, 11
Configuration

coding IMS T414 217
coding IMS T425 152
coding IMS T800 86
memory IMS T212 316
memory IMS T222 262
memory IMS T414 199,203,212
memory IMS T425 134, 138, 147
memory IMS T800 68, 72, 81
memory, externallMS T414 212,213,214,

215,216,218
memory, external IMS T425 147,148, 149,

150, 151, 153
memory, external IMS T800 81, 82, 83, 84,

85, 87
memory, internallMS T414 212
memory, internal IMS T425 147
memory, internal IMS T800 81
program 16

Connection
link IMS C004 373
link IMS C011 395
link IMS C012 419
link IMS T212 332
link IMS T222 278
link IMS T414 225
link IMS T425 160
link IMS T800 94

Constant 104, 170, 23~28~ 341
subscript 103, 169, 233, 286, 340
value 29

Construction 10, 25, 104, 170, 234, 287, 341
alternation 10, 11, 12, 25, 36
communication 11
conditional 10, 11
parallel 8, 10, 16, 25, 31
parallel IMS T212 305
parallel IMS T222 251
parallellMS T414 187
parallel IMS T425 121
parallel IMS T800 51
performance 107, 173, 236, 289, 343
repetition 12
replication 12
selection 12
sequential 8, 10, 11, 25

Context switch
IMS T425 136

Control
byte IMS T212 316
byte IMS T222 262
byte IMS T414 197,199
byte IMS T425 134



byte IMS T800 68
link IMS C004 372
logic IMS M212 354

Conversion
:INT , REAL 106
REAL, :INT 106

CPU 27
concurrent operation 37
register 27, 28

CRC
IMS M212 353, 355
IMS T425 114
IMS T800 45
performance 107, 172

CRCBYTE 107, 172
CRCWORD 107, 172
Cyclic redundancy

IMS M212 353, 355
IMS T425 114
IMS T800 45
performance 107, 172

00-7
IMS C011 394, 400
IMS C012 418,422

DABS 106
Data

bit 35
bus IMS T212 320,321
bus IMS T222 266, 267
bus IMS T414 205
bus IMS T425 140
bus IMS T800 74
link 35
link IMS C004 373
link IMS C011 395
link IMS C012 419
link IMS T212 332
link IMS T222 278
link IMS T414 225
link IMS T425 160
link IMS T800 94
rate 20,35
rate IMS T212 299
rate IMS T222 244
rate IMS T414 181
rate IMS T425 114
rate IMS T800 45
rate link IMS T212 332
rate link IMS T222 278
rate link IMS T414 225
rate link IMS T425 160
rate link IMS T800 94
read IMS C011 404
read IMS C012 426
separation IMS M212 353
serial 35
structure 29
structure IMS T212 302
structure IMS T222 248

structure IMS T414 184
structure IMS T425 118
structure IMS T800 48
transfer 11
value 28
value IMS T212 302
value IMS T222 248
value IMS T414 184
value IMS T425 118
value IMS T800 48
write IMS C011 404
write IMS C012 426

Data Present
IMS C011 400, 403, 404
IMS C012 422,425,426

Declaration 13, 103, 169,233,286,340
Decoupling

IMS C004 370
IMS C011 392
IMS C012 416
IMS T212 313
IMS T222 259
IMST414 195
IMS T425 130
IMS T800 64

Delay
input 15
timer 15

Deschedule 31, 33, 34
IMS T212 304, 305, 306
IMS T222 250, 251, 252
IMS T414 186, 187,188
IMS T425 120, 121, 122
IMS T800 50,51,52
point IMS T212 305, 308, 316
point IMS T222 251, 254, 262
point IMS T414 187,190, 199
point IMS T425 121, 124, 134
point IMS T800 51, 54, 68

Device 25
Direct function 29

IMS T212 302
IMS T222 248
IMS T414 184
IMS T425 118
IMS T800 48

Direct memory access
IMS T212 321
IMS T222 267
IMS T414 204
IMST425 139
IMS T800 73

OisablelntRAM
IMS T212 318
IMS T222 264
IMS T414 201
IMS T425 136
IMS T800 70

Disk
command IMS M212 355, 356



compression/decompression IMS M212 359
controller IMS M212 352, 353
cylinder IMS M212 355
drive selection IMS M212 352
encryption/decryption IMS M212 359
floppy IMS M212 352,355
format IMS M212 355
head IMS M212 355
head position IMS M212 352
interleave IMS M212 356
management IMS M212 359
parameter IMS M212 355
port IMS M212 353
programming interface IMS M212 355
SA400/450 IMS M212 353, 355
sector IMS M212 355
ST506/412 IMS M212 353, 355
status IMS M212 352
winchester IMS M212 352, 355

DMA
at reset IMS T212 329, 330
at reset IMS T222 275,276
at reset IMS T414 223
at reset IMS T425 158
at reset IMS T800 92
IMST212321,322,329
IMS T222 267, 268, 275
IMS T414 204,222
IMS T425 139, 157
IMS T800 73, 91
operation IMS T212 329
operation IMS T222 275
operation IMS T414 223
operation IMS T425 158
operation IMS T800 92

DRAW2D 39,107,172
DSgRT 106

ECC
IMS M212 353, 355

Efficiency 30
Electrical

AC timing characteristics IMS C004 384
AC timing characteristics IMS C011 407
AC timing characteristics IMS C012 429
AC timing characteristics IMS T212 337
AC timing characteristics IMS T222 283
AC timing characteristics IMS T414 230
AC timing characteristics IMS T425 165
AC timing characteristics IMS T800 99
DC characteristics IMS C004 382, 383
DC characteristics IMS C011 405, 406
DC characteristics IMS C012 427, 428
DC characteristics IMS T212 335,336
DC characteristics IMS T222 281, 282
DC characteristics (MS T414 228,229
DC characteristics (MS T425 163, 164
DC characteristics (MS T800 97,98
operating conditions IMS C004 382
operating conditions (MS C011 405
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operating conditions IMS C012 427
operating conditions IMS T212 335
operating conditions IMS T222 281
operating conditions IMS T414 228
operating conditions IMS T425 163
operating conditions IMS T800 97
specification 20

EMI
(MS T212 320
(MS T222 266
IMS T414 203
IMS T425 138
(MS T800 72

EnableJOBreak
IMS T425 134

Equivalent circuit
(MS C004 383
(MS C011 406
(MS C012 428
IMS T212 336
(MS T222 282
IMS T414 229
IMST425 164
IMS T800 98

Erastosthenes 108, 173, 236, 289, 343
Error 21

IMS T212 316,317
IMS T222 262,263
IMS T414 199,200
IMS T425 134, 135
IMS T800 68, 69

Error 21
IMS T212 317
IMS T222 263
IMS T414 200
(MS T425 135
IMS T800 69
power up IMS T212 317
power up IMS T222 263
power up IMS T414 200
power up IMS T425 135
power up IMS T800 69

Error 21
analysis 17
analysis IMS T212 317
analysis (MS T222 263
analysis IMS T414 200
analysis IMS T425 135
analysis (MS T800 69
circuit IMS T212 317
circuit (MS T222 263
circuit (MS T414 200
circuit (MS T425 135
circuit (MS T800 69
correcting code 30
correcting code (MS M212 353, 355
expression check 104, 170, 234, 287, 341
floating point (MS T800 63
handling 17
IMS M212 355



languages 17
reset IMS T212 317
reset IMS T222 263
reset IMS T414 200
reset IMS T425 135
reset IMS T800 69

Errorln
IMS T425 135
IMS T800 69

Evaluation
expression IMS T212 301, 303
expression IMS T222 247, 249
expression IMS T414 183, 185
expression IMS T425 117, 119
expression IMS T800 47, 49
stack 27,28,32
stack IMS T212 301,305,306
stack IMS T222 247, 251, 252
stack IMS T414 183, 187, 188
stack IMS T425 117, 121, 122
stack IMS T800 47, 51 , 52

Event 12,22
IMS T212 331
IMS T222 277
IMST414224
IMS T425 159
IMS T800 93

EventAck
IMS T212 331
IMS T222 277
IMS T414 224
IMS T425 159
IMS T800 93

EventReq
IMS T212 317,331
IMS T222 263, 2n
IMS T414 200,224
IMS T425 135, 159
IMS T800 69, 93

EventWaiting
IMS T212 331
IMS T222 2n
IMS T414 224
IMS T425 159
IMS T800 93

Example
drawing coloured text 39
instruction set IMS T212 307
instruction set IMS T222 253
instruction set IMS T414 189
instruction set IMS T425 123
instruction set IMS T800 53

Execution
instruction IMS T212 302
instruction IMS T222 248
instruction IMS T414 184
instruction IMS T425 118
instruction IMS T800 48

Expression 8,14,25, 103, 104, 106,169, 170,
233,234,286,287,340,341

evaluation IMS T212 301, 303
evaluation IMS T222 247, 249
evaluation IMS T414 183, 185
evaluation IMS T425 117, 119
evaluation IMS T800 47, 49
subscript 103,169,233,286,340

External
memory interface IMS T212 320
memory interface IMS T222 266
memory interface IMS T414 203
memory interface IMS T425 138
memory interface IMS T800 72
memory performance 107,172,236,289,343
registers 15

Factorial 14
FALSE 14
Flash multiplier 38
Floating point 24, 36

address 37
co-processor 38
comparison 38
concurrency IMS T800 62
concurrent operation 37
datapath 38
design 36, 38
division 38
double length IMS T800 62
error IMS T800 63
functions 106
instruction 30,36
microcode 38
multiplication 37, 38
normalise IMS T800 62
operand 37
performance 102, 106, 171, 235, 288, 342
processor 27, 36
processor IMS T800 44, 62
register 27
rounding IMS T800 62
selector sequence IMS T800 53, 62
single length IMS T800 62
stack IMS T800 62

Floating point numbers 13
FM

IMS M212 353
FOR 12
Fortran 19
FPU (see Floating point) 27, 62
FP"Error

IMS T800 63
FRACMOL 105
Frequency

changer IMS C011 390
Clockln IMS COO4 370
Clockln IMS C011 392
Clockln IMS C012 416
Clockln IMS T212 313
Clockln IMS T222 259
Clockln IMS T414 195



Clockln IMS T425 130
Clockln IMS TSOO 64
link 20
modulation IMS M212 353

Function 14, 104, 170, 234, 287, 341
code 28
code IMS T212 302,307
code IMS T222 248, 253
code IMS T414 184, 189
code IMS T425 118, 123
code IMS T800 48, 53
direct 29
direct IMS T212 302
direct IMS T222 248
direct IMS T414 184
direct IMS T425 118
direct IMS T800 48
indirect 30
indirect IMS T212 303
indirect IMS T222 249
indirect IMS T414 185
indirect IMS T425 119
indirect IMS T800 49
prefix 29, 30
prefix IMS T212 302
prefix IMS T222 248
prefix IMS T414 184
prefix IMS T425 118
prefix IMS T800 48

FUNCTION 14,103, 106,169,233,286,340

GND 20
IMS C004 370
IMS C011 392
IMS C012 416
IMS T212 313
IMS T222 259
IMS T414 195
IMS T425 130
IMS T800 64

Graphics 39
support IMS T425 114
support IMS T800 44

Halt 17
IMS T212 316,317
IMS T222 262, 263
IMS T414 199,200
IMS T425 134,135
IMS T800 68, 69

HaltOnError
IMS T212 316
IMS T222 262
IMS T414 199
IMS T425 134
IMS T800 68

HaltOnError
IMS T212 317
IMS T222 263
IMS T414 200

t: Inaex

IMS T425 135
IMS T800 69

Handshake 8
event IMS T212 331
event IMS T222 277
event IMS T414 224
event IMS T425 159
event IMS T800 93
parallel IMS C011 390, 398, 399

Hardware 5
channel IMS M212 354
IMS M212 353,356

Harness 8, 19

10-7
IMS C011 398

lAck
IMS C011 394, 398

IF 11, 12, 25, 104, 108, 170, 173, 234, 236,
287,289,341,343

Implementation
hard-wired 5
hardware 5
link 6
occam 5
program 8

IMS B005 358
IMS C004 368
IMS C011 390
IMSC012414
IMS M212 352
IMS T212 244, 299
IMS T222 244
IMS T414 181
IMS T425 114
IMS T800 44
Indirect function 30

IMS T212 303
IMS T222 249
IMS T414 185
IMS T425 119
IMS T800 49

Indirection code
instruction IMS T800 62

Input 8,9,15,21,25,103,106,169,233,286,
340

buffer IMS C011 403
buffer IMS C012 425
channel 25
clock 20,21
clock IMS C004 370
clock IMS C011 392
clock IMS C012 416
clock IMS T212 313
clock IMS T222 259
clock IMS T414 195
clock IMS T425 130
clock IMS T800 64
link IMS C004 373
link IMS C011 395



link IMS C012 419
link IMS T212 316,332
link IMS T222 262, 278
link IMS T414 199,225
link IMS T425 134, 160
link IMS T800 68, 94
pins 20
port IMS C011 398
process 8,9, 11
process IMS T212 306
process IMS T222 252
process IMS T414 188
process IMS T425 122
process IMS T800 52
register IMS C011 400,403
register IMS C012 422, 425
timer 104, 170, 234, 287, 341
voltage 20

Inputlnt
IMS C011 394, 403, 404
IMS C012 418,425,426

Instruction
arithmetic IMS T212 303
arithmetic IMS T222 249
arithmetic IMS T414 185
arithmetic IMS T425 119
arithmetic IMS T800 49
comparison IMS T212 303
comparison IMS T222 249
comparison IMS T414 185
comparison IMS T425 119
comparison IMS T800 49
descheduling IMS T212 308
descheduling IMS T222 254
descheduling IMS T414 190
descheduling IMS T425 124
descheduling IMS T800 54
description 28, 29, 30, 31, 32, 36
description IMS T212 301, 302, 303, 305, 306
description IMS T222 247, 248, 249, 251, 252
description IMS T414 183,184, 185, 187, 188
description IMS T425 117, 118, 119, 121, 122
description IMS T800 47, 48, 49, 51, 52, 53,

62, 63
error IMS T212 308
error IMS T222 254
error IMS T414 190
error IMS T425 124
error IMS T800 55
execution IMS T212 302
execution IMS T222 248
execution IMS T414 184
execution IMS T425 118
execution IMS T800 48
floating point 36
floating point error IMS T800 55
format IMS T212 302
format IMS T222 248
format IMS T414 184
format IMS T425 118

format IMS T800 48
IMS T212 301
IMS T222 247
IMS T414 183
IMST425 117
IMS T800 47
indirection code IMS T800 62
logical IMS T212 303
logical IMS T222 249
logical IMS T414 185
logicallMST425119
logical IMS T800 49
memory relative IMS T212 302
memory relative IMS T222 248
memory relative IMS T414 184
memory relative IMS T425 118
memory relative IMS T800 48
operation 29
pointer 31
pointer IMS T212 305
pointer IMS T222 251
pointer IMS T414 187
pointer IMS T425 121
pointer IMS T800 51
prefetch 30
single byte IMS T212 302
single byte IMS T222 248
single byte IMS T414 184
single byte IMS T425 118
single byte IMS T800 48
workspace IMS T212 305
workspace IMS T222 251
workspace IMS T414 187
workspace IMS T425 121
workspace IMS T800 51

Instruction set 8, 28, 255, 309
design 28
example IMS T212 307
example IMS T222 253
example IMS T414 189
example IMS T425 123
example IMS T800 53
IMS T212 301, 302, 303, 307
IMS T222 247, 248, 249, 253
IMS T414 183, 184,185, 189,191
IMS T425 117,118,119, 123,125
IMS T800 47, 48, 49, 53, 56

INT 13,103,169,233,286,340
INT16 13
INT32 13

conversion 106
INT64 13

conversion 106
Integer performance 102, 168, 232, 285, 339
Integrated memory 25
Interface

application specific 21
communication 6
disk controller IMS M212 356
disk programming IMS M212 355
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link 7,35
link IMS C004 373
link IMS C011 395
link IMS C012 419
link IMS T212 332
link IMS T222 278
link IMS T414 225
link IMS T425 160
link IMS T800 94
memory 6,20
memory IMS T212 301,316,320
memory IMS T222 247,262,266
memory IMS T414 183,199,203
memory IMS T425 117,134,138
memory IMS T800 47, 68, 72
parallel IMS C011 400
parallel IMS C012 422
peripheral IMS M212 353
SCSIIMS M212 360
serial data IMS M212 352

Interrupt 8, 12, 27
IMS C011 390, 394
IMS C012 414
latency IMS T212 305
latency IMS T222 251
latency IMS T414 187
latency IMS T425 121
latency IMS T800 51
latency performance 108, 173,237,290,344

Interrupt Enable
IMS C011 403, 404
IMS C012 425,426

IntSaveLoc
IMS T212 318
IMS T222 264
IMST414201
IMS T425 136
IMS T800 70

IPtr
IMS T425 136

IS 14
IValid

IMS C011 398

Language 3, 8, 18, 19
communication 19
error 17
IMS T212 302,303
IMS T222 248, 249
IMS T414 184,185
IMS T425 118, 119
IMS T800 48, 49

Latency 108,173,237,290,344
interrupt IMS T212 305
interrupt IMS T222 251
interrupt IMS T414 187
interrupt IMS T425 121
interrupt IMS T800 51
process IMS T212 305
process IMS T222 251

process IMS T414 187
process IMS T425 121
process IMS T800 51

Link 6, 20, 21
acknowledge 6, 35
acknowledge IMS C011 399, 404
acknowledge IMS C012 426
acknowlege overlap 35
adaptor 7, 21
adaptor IMS C011 390
adaptor IMS C012 414
bootstrap ID IMS T212 316
bootstrap ID IMS T222 262
bootstrap ID IMS T414 199
bootstrap ID IMS T425 134
bootstrap ID IMS T800 68
bootstrap IMS T212 314, 316
bootstrap IMS T222 260,262
bootstrap IMS T414 197
bootstrap IMS T425 132, 134
bootstrap IMS T800 66,68
buffer 20
buffer delays 20
bufferlMST212316
buffer IMS T222 262
buffer IMS T414 199
buffer IMS T425 134
buffer IMS T800 68
channel 19
clock 21
communication 5, 35
control IMS C004 372
crossbar switch IMS C004 368
data 6,35
data IMS C011 399, 400, 403, 404
data IMS C012 422, 425, 426
disk IMS M212 354
frequency 20
implementation 6
IMS C004 373
IMS C011 390, 395
IMS C012 414,419
IMS T212 305,316,332
IMS T222 251, 262, 278
IMS T414 187, 199,225
IMS T425 121, 134,160
IMS T800 51, 68, 94
input IMS C011 404
input IMS C012 426
input IMS T212 316
input IMS T222 262
input IMS T414 199
input IMS T425 134
input IMS T800 68
interface 34, 35
interface register 34
message 6
Mode 1 IMS C011 393, 398
Mode 2 IMS C011 393, 400
mode select IMS C011 393

E index



output IMS T212 316
output IMS T222 262
output IMS T414 199
output IMS T425 134
output IMS T800 68
packet 35
parallel adaptor IMS C011 390
parallel adaptor IMS C012 414
peek IMS T212 316
peek IMS T222 262
peek IMS T414 199
peek IMS T425 134
peek IMS T800 68
performance 108, 173, 236, 289, 343
poke IMS T212 316
poke IMS T222 262
poke IMS T414 199
poke IMS T425 134
poke IMS T800 68
programmable switch IMS C004 368
protocol 6, 7, 35
signal 20
speed 35
speed IMS C011 390
speed IMS C012 414
speed select IMS C011 393
standard 16, 20
start bit 6
static IMS T212 302
static IMS T222 248
static IMS T414 184
static IMS T425 118
static IMS T800 48
stop bit 6
transfer IMS T212 316
transfer IMS T222 262
transfer IMS T414 199
transfer IMS T425 134
transfer IMS T800 68
transmission 35
transputer 8
wiring 26

Link switch
bit time delay IMS C004 377
configuration IMS C004 368, 377
configuration message IMS C004 377
implementation IMS C004 377
multiplexors IMS C004 377

Linked list 31
IMS T212 304
IMS T222 250
IMST414 186
IMS T425 120
IMS T800 50

Linkln
IMS C004 373
IMS C011 394, 395
IMS C012 418,419
IMS T212 332
IMS T222 278

IMS T414 225
IMS T425 160
IMS T800 94

LinkOut
IMS C004 373
IMS C011 394, 395
IMS C012 418,419
IMS T212 332
IMS T222 278
IMS T414 225
IMS T425 160
IMS T800 94

LinkSpecial
IMS T212 332
IMS T222 278
IMS T414 225
IMS T425 160
IMS T800 94

LINPACK benchmark 38
List

linked IMS T212 304
linked IMS T222 250
linked IMS T414 186
linked IMS T425 120
linked IMS T800 50
process IMS T212 304,305
process IMS T222 250,251
process IMS T414 186, 187
process IMS T425 120, 121
process IMS T800 50, 51

Literal value 29
IMS T212 302
IMS T222 248
IMS T414 184
IMS T425 118
IMS T800 48

Livermore loop 37
Load

capacitive 5
instruction IMS T212 302
instruction IMS T222 248
instruction IMS T414 184
instruction IMS T425 118
instruction IMS T800 48

Logical
address IMS M212 355
behaviour 18
operation IMS T212 301
operation IMS T222 247
operation IMS T414 183
operation IMS T425 117
operation IMS T800 47

LONGADD 105
LONGDIFF 105
LONGDIV 105
LONGPROD 105
LONGSOB 105
LONGSUM 105
Loop 12
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Map
memory 19, 21
process 8

MemAO-15
IMS T212 321,329
IMS T222 267, 275

MemAD2-31
IMS T414 204,205,212,219
IMS T425 139, 140, 147, 154
IMS T800 73, 74, 81, 88

MemBAcc
IMS T212 326
IMS T222 272

MemConfig
IMS T414 212,213
IMS T425 147, 148
IMS T800 81, 82

MemDO-15
IMS T212 321,326,329
IMS T222 267, 272, 275

MemGranted
IMS T212 329
IMS T222 275
IMS T414 222
IMS T425 ·157
IMS T800 91

MemnotRfD1
IMS T414 204,205,212,219
IMS T425 139, 140,147, 154
IMS T800 73, 74, 81, 88

MemnotWrDO
IMS T414 204,205,212,213,219
IMS T425 139, 140, 147, 148, 154
IMS T800 73, 74, 81, 82, 88

Memory 27
access IMS T212 301
access IMS T222 247
access IMS T414 183
access IMS T425 117
access IMS T800 47
address IMS T414 205
address IMS T425 140
address IMS T800 74
bandwidth 6, 39
bandwidth IMS T212 303
bandwidth IMS T222 249
bandwidth IMS T414 185
bandwidth IMS T425 119
bandwidth IMS T800 49
channel 19
configuration IMS T212 316
configuration IMS T222 262
configuration IMS T414 199,203,212
configuration IMS T425 134, 138, 147
configuration IMS T800 68, 72, 81
configuration, external IMS T414 212, 213
configuration, externallMS T425 147,148
configuration, external IMS T800 81, 82
configuration, internallMS T414 212
configuration, internal IMS T425 147

E index

configuration, internal IMS T800 81
data IMS T414 205
data IMS T425 140
data IMS T800 74
direct access IMS T414 222
direct access IMS T425 157
direct access IMS T800 91
dynamic IMS T414 203
dynamic IMS T425 138
dynamic IMS T800 72
external IMS T212 318, 321
external IMS T222 264, 267
external IMS T414 201
external IMS T425 136
external IMS T800 70
global 6
IMS M212 354,359
IMST212318
IMS T222 264
IMS T414 201
IMS T425 136
IMS T800 70
integrated 25
interface 6, 20
interface IMS T212 301,316,320
interface IMS T222 247, 262, 266
interface IMS T414 183, 199,203
interface IMS T425 117, 134, 138
interface IMS T800 47, 68, 72
internal IMS T212 318, 321
internal IMS T222 264, 267
internal IMS T414 201, 204
internal IMS T425 136, 139
internal IMS T800 70, 73
local 6
map 19,21
map IMS T212 319
map IMS T222 265
map IMS T414 202
map IMS T425 137
map IMS T800 71
on-chip IMS T212 301
on-chip IMS T222 247
on-chip IMS T414 183
on-chip IMS T425 117
on-chip IMS T800 47
performance 107, 172, 236, 289, 343
read IMS T414 207
read IMS T425 142
read IMS T800 76
refresh IMS T414 199,204,213,214,219,

220,222
refresh IMS T425 134, 139, 148, 149, 154,

155, 157
refresh IMS T800 68, 73, 82, 83, 88, 89, 91
strobe IMS T212 320
strobe IMS T222 266
strobe IMS T414 203,205,208,220,222
strobe IMS T425 138, 140, 143, 155, 157
strobe IMS T800 72, 74, 77, 89, 91



wait IMS T212 321,327
wait IMS T222 267,273
wait IMS T414 203,208,220,221
wait IMS T425 138, 143,155, 156
wait IMS T800 72, 77,89,90

MemReq
IMS T212 329
IMS T222 275
IMS T414 222
IMS T425 157
IMS T800 91

MemStart 21
IMS T212 314,316,318
IMS T222 260, 262, 264
IMS T414 197, 199,201
IMS T425 132, 134,136
IMS T800 66, 68, 70

MemWait
IMS T212 327
IMS T222 273
IMST414220
IMS T425 155
IMS T800 89

Message 6,8
IMS T212 305
IMS T222 251
IMS T414 187
IMS T425 121
IMS T800 51
pointer 32
transfer 34

Microcode 28
computing engine IMS T800 62
cycle IMS T212 320
cycle IMS T222 266
cycle IMS T414 203
cycle IMS T425 138
cycle IMS T800 72
scheduler 26, 30
scheduler IMS T212 304
scheduler IMS T222 250
scheduler IMS T414 186
scheduler IMS T425 120
scheduler IMS T800 50

Microprocessor
bus IMS C011 390
bus IMS C012 414
IMS C011 400
IMS C012 422

MIL specification 437
~NUS 14,103,169,233,286,340
Mode 1

IMS C011 390, 398
IMS M212 355
link IMS C011 393, 398

Mode 2
IMS C011 390, 400
IMS M212 355,356
link IMS C011 393, 400

Modulo operator 103, 169, 233, 286, 340

469

MOVE2D 39,107,172
Multiple length arithmetic 105, 170, 234, 287,

341
Multiple processor 18
Multiplication performance 104, 170,234,287,

341

Name 106
NaN

IMS T800 63
Network 3, 5, 8, 16, 18, 21

disk processor IMS M212 359
Node 4
NORMALISE 105
NOT 14,103,169,233,286,340
notCS

IMS C011 400
IMS C012 422

notMemCE
IMS T212 321,322,324,327,329
IMS T222 267, 268, 270, 273, 275

notMemRd
IMS T414 205
IMS T425 140
IMS T800 74

notMemRf
IMS T414 219
IMS T425 154
IMS T800 88

notMemSO-4
IMS T414 205,213,214,219,220
IMS T425 140, 148, 149, 154, 155
IMS T800 74, 82, 83, 88, 89

notMemWrBO-1
IMS T212 321,322,324,326,329
IMS T222 267, 268, 270, 272, 275

notMemWrBD-3
IMS T414 209,219
IMS T425 144, 154
IMS T800 78, 88

occam 3, 4, 8, 24, 25
channel 6, 19
communication 8
concurrency 8
model 8,26
process 3, 17, 18, 19
program 3, 8, 16, 18
synchronism 18

Operand 28
IMS T212 301,302,307
IMS T222 247, 248, 253
IMS T414 183, 184,189
IMS T425 117, 118,123
IMS T800 47, 48, 53
register 29
types 14

Operating conditions
IMS C004 382
IMS C011 405



470

IMS C012 427
IMS T212 335
IMS T222 281
IMST414228
IMST425 163
IMS T800 97

Operation
arithmetic IMS T212 301
arithmetic IMS T222 247
arithmetic IMS T414 183
arithmetic IMS T425 117
arithmetic IMS T800 47
code IMS T212 307
code IMS T222 253
code IMS T414 189
code IMS T425 123
code IMS T800 53
logical IMS T212 301
logical IMS T222 247
logicallMS T414 183
logical IMS T425 117
logical IMS T800 47

Operator 14
arithmetic 14, 103, 106, 169, 233, 286, 340
bit 14, 103, 169, 233,286, 340
boolean 14, 103, 169, 233, 286, 340
comparison 103, 106, 169, 233, 286, 340
modulo 14, 103, 169, 233, 286, 340
relational 14
shift 14

Optimisation
IMS T212 317
IMS T222 263
IMST414200
IMS T425 135
IMS T800 69
program 17

OR 14,103,169,233,286,340
Ordering details 111, 178, 242, 295, 349, 365,

387, 412, 433
Output 8,9,15,21,25,103,169,233,286,340

buffer IMS C011 403
buffer IMS C012 425
channel 25
link IMS C004 373
link IMS C011 395
link IMS C012 419
link IMS T212 316,332
link IMS T222 262, 278
link IMS T414 199,225
link IMS T425 134,160
link IMS T800 68, 94
pins 20
port IMS C011 399
process 8,9, 11
process IMS T212 306
process IMS T222 252
process IMS T414 188
process IMS T425 122
process IMS T800 52

E index

register IMS C011 403
register IMS C012 425

Output Ready
IMS C011 403, 404
IMS C012 425,426

Outputlnt
IMS C011 394, 403, 404
IMS C012 418,425,426

Overflow
stack IMS T212 301
stack IMS T222 247
stack IMS T414 183
stack IMS T425 117
stack IMS T800 47

Packet
link 35
p~ 10,12,25,104,108,170,173,234,236,

287,289,341,343
Parallel

communication IMS C011 390
communication IMS C012 414
construction 8, 10, 16, 25, 31
construction IMS T212 305
construction IMS T222 251
construction IMS T414 187
construction IMS T425 121
construction IMS T800 51
interface IMS C011 400
interface IMS C012 422
port IMS C011 398
process IMS T212 304
process IMS T222 250
process IMS T414 186
process IMS T425 120
process IMS T800 50

Part program 18
Pascal 19
Pattern recognition 30
Peek

IMS T212 316
IMS T222 262
IMST414 199
IMS T425 134
IMS T800 68

Performance 8,24,30, 102, 168,232,285,339
bit counting 107, 172
bit reversal 107, 172
block move 107, 172
construction 107, 173, 236, 289, 343
CRC 107,172
Cyclic Redundancy Checking 107, 172
estimation 102, 168,232,285,339
external memory 107, 108, 172, 173, 236,

289, 343
external RAM 107, 172, 236, 289, 343
floating point 102, 106, 171,235, 288,342
Floating point processor 37
IMS T212 303
IMS T222 249



IMS T414 185
IMST425 119
IMS T800 49
integer 102,168,232,285,339
interrupt latency 108, 173,237,290,344
link 108, 173, 236, 289, 343
link IMS C004 373
link IMS C011 395
link IMS C012 419
link IMS T212 332
link IMS T222 278
link IMS T414 225
link IMS T425 160
link IMS T800 94
measurement 18
multiple length arithmetic 105, 170, 234, 287,

341
multiplication 104, 170, 234, 287, 341
predefined maths 105,170,234,287,341
priority 108, 173, 237, 290, 344
product 104,170,234,287,341
special purpose functions 107, 172
square root 106, 108, 173,236,289,343
T:IMES 104, 170, 234, 287, 341
wait states 107, 172, 236, 289, 343

Peripheral 21
access 15
control transputer 21
device 25
interface IMS M212 353
memory mapping 21

Phase lock loop
IMS C004 370
IMS C011 392
IMSC012416
IMS T212 313
IMS T222 259
IMST414195
IMS T425 130
IMS T800 64

Pipelined vector processor 38
PLACE 16
PLACED PAR 16
Placement 16, 19
PLLx 111,178,242,295,349,365,387,412,

433
IMS T212 320
IMS T222 266
IMS T414 203
IMS T425 138
IMS T800 72

PLUS 14, 103, 169, 233, 286, 340
Pointer

IMS T212 301
IMS T222 247
IMS T414 183
IMS T425 117
IMS T800 47
instruction 31
instruction IMS T212 305

instruction IMS T222 251
instruction IMS T414 187
instruction IMS T425 121
instruction IMS T800 51
message 32
workspace 29

Poke
IMS T212 316
IMS T222 262
IMS T414 199
IMS T425 134
IMS T800 68

Port 15
asynchronism 15
disk IMS M212 353
input IMS C011 398
output IMS C011 399
parallel IMS C011 398
synchron ism 15

PORT 21
Power 20

IMS C004 370
IMS C011 392
IMS C012 416
IMS T212 313
IMS T222 259
IMST414 195
IMS T425 130
IMS T800 64
rating IMS C004 384
rating IMS C011 408
rating IMS C012 430
rating IMS T212 338
rating IMS T222 284
rating IMS T414 231
rating IMS T425 166
rating IMS T800 100

Prefetch 30
Prefix function 29, 30

IMS T212 302
IMS T222 248
IMS T414 184
IMS T425 118
IMS T800 48

PR:I PAR 16
Primitive 103, 169,233,286,340
Primitive type 13
Priority 16

bootstrap IMS T212 316
bootstrap IMS T222 262
bootstrap IMS T414 197
bootstrap IMS T425 134
bootstrap IMS T800 68
floating point IMS T800 62
IMS T212 304, 305, 316
IMS T222 250, 251, 262
IMS T414 186, 187, 199
IMS T425 120, 121, 134
IMS T800 50, 51, 68
level 26,27
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performance 108, 173, 237, 290, 344
timer IMS T212 306
timer IMS T222 252
timer IMS T414 '188
timer IMS T425 122
timer IMS T800 52

PRce 14,18,19,103,106,169,233,286,340
ProcClockOut

IMS T212 320
IMS T222 266
IMS T414 203
IMS T425 138
IMS T800 72

Procedure 104, 170, 234, 287, 341
Procedures 14
Process 4,5,8,9, 10, 14

active/inactive 31
active/inactive IMS T212 304,305
active/inactive IMS T222 250,251
active/inactive IMS T414 186, 187
active/inactive IMS T425 120, 121
active/inactive IMS T800 50, 51
assignment 8, 9
channel 25
communication IMS T212 305
communication IMS T222 251
communication IMS T414 187
communication IMS T425 121
communication IMS T800 51
concurrent 10, 18, 25
deschedule 34
execution 31,32,33
hardware 5
high priority IMS T212 317
high priority IMS T222 263
high priority IMS T414 200
high priority IMS T425 135
high priority IMS T800 69
IMS T212 304, 317
IMS T222 250, 263
IMS T414 186,200
IMS T425 120,135
IMS T800 50, 69
input 8, 9, 11
input IMS T212 306
input IMS T222 252
input IMS T414 188
input IMS T425 122
input IMS T800 52
latency IMS T212 305
latency IMS T222 251
latency IMS T414 187
latency IMS T425 121
latency IMS T800 51
list 31
list IMS T212 304,305
list IMS T222 250, 251
list IMS T414 186, 187
list IMS T425 120, 121
list IMS T800 50, 51

low priority IMS T212 317
low priority IMS T222 263
low priority IMS T414 200
low priority IMS T425 135
low priority IMS T800 69
mapping 8
monitor 18
new 31
occam 18,19
output 8, 9, 11
output IMS T212 306
output IMS T222 252
output IMS T414 188
output IMS T425 122
output IMS T800 52
parallel IMS T212 304
parallel IMS T222 250
parallellMS T414 186
parallel IMS T425 120
parallel IMS T800 50
primitive 25
queue IMS T212 304
queue IMS T222 250
queue IMS T414 186
queue IMS T425 120
queue IMS T800 50
reschedule 34
sequential IMS T212 301
sequentiallMS T222 247
sequential IMS T414 183
sequential IMS T425 117
sequential IMS T800 47
simulation 18
software 4
switch time 31
switch time IMS T212 305
switch time IMS T222 251
switch time IMS T414 187
switch time IMS T425 121
switch time IMS T800 51
timing IMS T212 306
timing IMS T222 252
timing IMS T414 188
timing IMS T425 122
timing IMS T800 52

Processor 20,27
clock IMS T212 306
clock IMS T222 252
clock IMS T414 188
clock IMS T425 122
clock IMS T800 52
flags IMS T212 316
flags IMS T222 262
flags IMS T414 199
flags IMS T425 134
flags IMS T800 68
IMS M212 353,355
IMS T212 301
IMS T222 247
IMS T414 183

E index



IMST425 117
IMS T800 47
multiple 18
speed IMS T425 114
speed IMS T800 44
speed select IMS T425 131
speed select IMS T800 65

ProcSpeedSelectD-2
IMS T425 131
IMS T800 65

Product performance 104, 170,234,287,341
Program

bootstrap IMS T212 330
bootstrap IMS T222 276
configuration 16
development 18
occam 18
optimisation 17
part 18

Programmable
components 5
device 25
ilo IMS C011 390

Programming 4
model 8
structure 29

protocol
CHAN OF 103, 169, 233, 286, 340

Protocol
link 35

QO·7
IMS C011 394, 399

QAck
IMS C011 399

Queue 32
priority IMS T212 304
priority IMS T222 250
priority IMS T414 186
priority IMS T425 120
priority IMS T800 50
process IMS T212 305
process IMS T222 251
process IMS T414 187
process IMS T425 121
process IMS T800 51
timer IMS T212 306
timer IMS T222 252
timer IMS T414 188
timer IMS T425 122
timer IMS T800 52

QValid
IMS C011 394, 399

RAM 107, 172, 236, 289, 343
IMS T212 318
IMS T222 264
IMS T414 197,201
IMS T425 132, 136
IMS T800 66, 70

4/~

Read
cycle IMS T212 321
cycle IMS T222 267
cycle IMS T414 205, 206
cycle IMS T425 140, 141
cycle IMS T800 74, 75
data IMS C011 404
data IMS C012 426
dynamic memory cycle IMS T414 207
dynamic memory cycle IMS T425 142
dynamic memory cycle IMS T800 76
external cycle IMS T414 206,207
external cycle IMS T425 141, 142
external cycle IMS T800 75, 76

REAL 106
Real time 18
REAL32 13, 106, 171, 235, 288, 342

conversion 106
REAL64 13,106,171,235,288,342

conversion 106
Refresh

memory IMS T414 199,204,213,214,219,
220, 222

memory IMS T425 134,139,148,149,154,
155, 157

memory IMS T800 68, 73, 82, 83, 88, 89, 91
Register

AIMS T212 301,302, 317
AIMS T222 247, 248, 263
AIMS T414 183, 184,200
AIMS T425 117,118, 135
AIMS TBOO 47,48,69
aIMS T212 301
aIMS T222 247
aIMS T414 183
aIMS T425 117
aIMS TBOO 47
elMS T212 301
elMS T222 247
elMS T414 183
elMS T425 117
elMS TBOO 47
CPU 27,28
data input IMS C011 400
data input IMS C012 422
FA IMS TBOO 62
Fa IMS TBOO 62
Fe IMS TBOO 62
Floating point 27
IIMS T212 317
I IMS T222 263
IIMS T414 200
IIMS T425 135
IIMS TBOO 69
IMS C011 400
IMS C012 422
IMS M212 353
IMS T212 301,304,316
IMS T222 247, 250, 262
IMS T414 183, 186, 199
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IMS T425 117, 120, 134
IMS T800 47, 50, 68
input data IMS C011 400, 404
input data IMS C012 422, 426
input status IMS C011 400, 403, 404
input status IMS C012 422, 425, 426
link interface 34
operand 29
operand IMS T212 302
operand IMS T222 248
operand IMS T414 184
operand IMS T425 118
operand IMS T800 48
output data IMS C011 400, 403, 404
output data IMS C012 422, 425, 426
output status IMS C011 400,403,404
output status IMS C012 422, 425, 426
process list 31
timer IMS T212 306
timer IMS T222 252
timer IMS T414 188
timer IMS T425 122
timer IMS T800 52
W IMS T212 314
W IMS T222 260
W IMS T414 197
W IMS T425 132
W IMS TBOO 66
workspace IMS T212 302
workspace IMS T222 248
workspace IMS T414 184
workspace IMS T425 118
workspace IMS T800 48

REM 14,103,106,169,233,286,340
Repetition construction 12
Replication construction 12
Replication performance 104, 108, 170, 173,

234,236,287,289,341,343
Reschedule 31, 34, 36
Reset 20

IMS C004 372
IMS C011 394
IMS C012 418
IMS T212 314, 316, 317
IMS T222 260,262,263
IMS T414 197,199,200
IMS T425 132, 134, 135
IMS T800 66, 68, 69

RnotW
IMS C011 400
IMS C012 422

ROM 21
bootstrap code IMS T212 318
bootstrap code IMS T222 264
bootstrap code IMS T414 201
bootstrap code IMS T425 136
bootstrap code IMS T800 70
IMS M212 354
IMS T212 314
IMS T222 260

I: Inaex

IMS T414 197
IMS T425 132
IMS T800 66

ROTATERIGHT 105
RSQ-1

IMS C011 400
IMS C012 422

Run time 19

SA400/450
IMS M212 353,355

Scheduler 26, 30, 31
IMS T212 304, 305,306
IMS T222 250, 251, 252
IMS T414 186, 187, 188
IMS T425 120, 121,122
IMS T800 50,51,52
list 32
operation 31

SCSI
bus IMS M212 359
interface IMS M212 360

Selection construction 12
Selector sequence

floating point IMS T800 53, 62
SeparatelQ

IMS C011 393
SEQ 10,11,12,25,104,108,170,173,234,

236,287,289,341,343
Sequential

construction 8, 10, 11,25
process IMS T212 301
process IMS T222 247
process IMS T414 183
process IMS T425 117
process IMS T800 47
processing 28

Serial
data 35
protocol 35

SHIFTLEFT 105
SHIFTRIGHT 105
Sieve of Erastosthenes 108, 173, 236, 289, 343
Silicon 27,41
Single byte instruction

IMS T212 302
IMS T222 248
IMS T414 184
IMS T425 118
IMS T800 48

Skew
strobe IMS T414 203,209
strobe IMS T425 138, 144
strobe IMS T800 72, 78

SKIP 103,169,233,286,340
Software

IMS M212 356
kernel 30
kernel IMS T212 304
kernel IMS T222 250



kernellMST414 186
kernel IMS T425 120
kernel IMS T800 50

Special purpose functions 107, 172
Speed

benchmark 37
communication 26
link 35
processor 37
processor IMS T425 114
processor IMS T800 44
select IMS T425 131
select IMS T800 65

SQRT 106
Square 14
Square root 106

performance 108, 173,236,289,343
ST506/412

IMS M212 353,355
Stability

clock IMS C004 370
clock IMS C011 392
clock IMS C012 416
clock IMS T212 313
clock IMS T222 259
clock IMS T414 195
clock IMS T425 130
clock IMS T800 64

Stack
evaluation 27, 28, 32
evaluation IMS T212 301, 305, 306
evaluation IMS T222 247, 251, 252
evaluation IMS T414 183, 187, 188
evaluation IMS T425 117, 121, 122
evaluation IMS T800 47, 51, 52
floating point IMS T800 62
optimise 37
overflow 28,37
overflow IMS T212 301
overflow IMS T222 247
overflow IMS T414 183
overflow IMS T425 117
overflow IMS T800 47

Start
bit 35

Status
IMS T212 316
IMS T222 262
IMS T414 199
IMS T425 134
IMS T800 68
register IMS C011 400
register IMS C012 422

Stop
bit 35

STOP 17,103,169,233,286,340
Store

instruction IMS T212 302
instruction IMS T222 248
instruction IMS T414 184

instruction IMS T425 118
instruction IMS T800 48

String 15
Strobe

memory IMS T212 320
memory IMS T222 266
memory IMS T414 203,205,208,220,222
memory IMS T425 138, 140, 143, 155, 157
memory IMS T800 72, 74, 77, 89, 91
skew IMS T414 203,209
skew IMS T425 138,144
skew IMS T800 72, 78
timing IMS T414 208
timing IMS T425 143
timing IMS T800 77
write IMS T414 209
write IMS T425 144
write IMS T800 78

Structure
data IMS T212 302
data IMS T222 248
data IMS T414 184
data IMS T425 118
data IMS T800 48

Subscript 13
constant 103, 169, 233, 286, 340
expression 103, 169, 233, 286, 340
variable 103, 169,233,286,340

Synchronisation
link IMS C004 373
link IMS C011 395
link IMS C012 419
link IMS T212 332
link IMS T222 278
link IMS T414 225
link IMS T425 160
link IMS T800 94
point IMS T800 62

System services 20
IMS C004 370
IMS C011 392
IMS C012 416
IMS T212 313
IMS T222 259
IMS T414 195
IMS T425 130
IMS T800 64

testerr
IMST212317
IMS T222 263
IMS T414 200
IMS T425 135
IMS T800 69

tim 15
Time 15

delay IMS T212 304
delay IMS T222 250
delay IMS T414 186
delay IMS T425 120



delay IMS T800 50
process switch IMS T212 305
process switch IMS T222 251
process switch IMS T414 187
process switch IMS T425 121
process switch IMS T800 51
real 18
slice IMS T212 304,305
slice IMS T222 250, 251
slice IMS T414 186, 187
slice IMS T425 120, 121
slice IMS T800 50,51
slice period IMS T212 305
slice period IMS T222 251
slice period IMS T414 187
slice period IMS T425 121
slice period IMS T800 51

Timeout 17
Timer 13,15, 18,36, 104,170,234,287,341

AFTER 104,170,234,287,341
clock 15
clock IMS T212 306
clock IMS T222 252
clock IMS T414 188
clock IMS T425 122
clock IMS T800 52
delay 15
IMS T212 305
IMS T222 251
IMS T414 187
IMS T425 121
IMS T800 51
input 104,170,234,287,341
processor 36
queue IMS T212 306
queue IMS T222 252
queue IMS T414 188
queue IMS T425 122
queue IMS T800 52
register IMS T212 306
register IMS T222 252
register IMS T414 188
register IMS T425 122
register IMS T800 52

TIMER 13
TIMES 14,103,169,233,286,340

perlormance 104,170,234,287,341
Timing 8

strobe IMS T414 208
strobe IMS T425 143
strobe IMS T800 77

Tm
IMS T414 203
IMS T425 138
IMS T800 72

TPtrLoc 1, TPtrLoc2
IMS T212 318
IMS T222 264
IMS T414 201
IMS T425 136

I:; IIIUt:A

IMS T800 70
Transfer message 34
Transmission link 35
Transputer

array IMS M212 359
clock 7
development system 8, 16, 17, 21
development system IMS T414 203
development system IMS T425 138
development system IMS T800 72
interconnection 27

TRUE 14
Tstate

IMS T212 321
IMS T222 267
IMS T414 203,205,213
IMS T425 138, 140,148
IMS T800 72, 74, 82

TTL compatibility
link IMS C004 373
link IMS C011 395
link IMS C012 419
link IMS T212 332
link IMS T222 278
link IMS T414 225
link IMS T425 160
link IMS T800 94

Type 13
array 13
BOOL 13
BYTE 13
CBAN OF 13
floating point 13
INT 13
INT16 13
INT32 13
INT64 13
primitive 13
REAL32 13
REAL64 13
record 13
TIMER 13
variant 13

Value
constant 29
data 28
literal 29

Variable 8, 9, 13, 14, 25, 103, 106, 169, 233,
286, 340

array 103, 169, 233, 286, 340
IMS T212 302
IMS T222 248
IMS T414 184
IMST425 118
IMS T800 48
subscript 103, 169, 233, 286, 340
temporary IMS T212 303
temporary IMS T222 249
temporary IMS T414 185



temporary IMS T425 119
temporary IMS T800 49

VCC 20
IMS C004 370
IMS C011 392
IMS C012 416
IMS T212 313
IMS T222 259
IMST414 195
IMS T425 130
IMS T800 64

VLSI 25,41

Wait
IMS T212 327
IMS T222 273
IMS T414 203,208,214,220,221
IMS T425 138, 143,149,155, 156
IMS T800 72, 77, 83, 89, 90
state generator IMS T212 327
state generator IMS T222 273
state IMS T212 321
state IMS T222 267

Whetstone benchmark 37
WB:ILE 12,25,104,170,234,287,341 .
Word

access IMS T212 326
access IMS T222 272
length 27, 28, 30

Workspace 31, 33
disk IMS M212 355
IMS T212 301, 305, 316
IMS T222 247, 251, 262
IMS T414 183, 187, 197
IMS T425 117, 121,134
IMS T800 47, 51, 68
instruction IMS T212 305
instruction IMS T222 251
instruction IMS T414 187
instruction IMS T425 121
instruction IMS T800 51
pointer 29
register IMS T212 302
register IMS T222 248
register IMS T414 184
register IMS T425 118
register IMS T800 48

WPtr
IMS T425 136

Write
cycle IMS T212 321, 322
cycle IMS T222 267, 268
cycle IMS T414 205,209
cycle IMS T425 140,144
cycle IMS T800 74,78
data IMS C011 404
data IMS C012 426
early IMS T414 213
early IMS T425 148
early IMS T800 82

late IMS T414 213
late IMS T425 148
late IMS T800 82
strobe IMS T212 322
strobe IMS T222 268
strobe IMS T414 209
strobe IMS T425 144
strobe IMS T800 78
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