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Preface

The T9000 Transputer Products Overview Manual introduces the latest member of the transputer range of
microprocessors, the IMS T9000. Transputers are designed to provide extremely high performance in
single processor applications and are also designed with hardware and software features for the construc-

tion of multiprocessing systems.

Other transputer products include the IMS T225, a 16 bit microprocessor, the 32 bit IMS T425 and the
IMS T8xx series, which are 32 bit microprocessors with an on-chip 64 bit floating point processor. Details
of these and their support devices can be found in The Transputer Databook, which is available as a sepa-
rate publication. Other transputer related documents, including various application and technical notes,
are also available from INMOS.

This manual consists of two parts; an overview section and a set of more detailed documents for the first
members of the new product range. Part 1, the overview, introduces the transputer architecture and then
the features and benefits of the IMS T9000 family. Part 2 contains preliminary information on the IMS T9000
transputer, the IMS C104 packet routing switch and the IMS C100 system protocol converter. This is ad-
vance information and is subject to change.

More detailed documentation on the IMS T9000 family is in preparation. This will include a hardware refer-

ence manual, a programmers reference manual, a system networking manual and various application
notes. Documentation for systems and software products will also be updated to reflect added support
for the IMS T9000. For the latest information, contact your local SGS-THOMSON sales outlet.

Software and hardware examples given in this book are outline design studies and are included to illustrate
various ways in which transputers can be used. The examples are not intended to provide accurate applica-
tion designs.

In addition to transputer products the INMOS product range also includes development systems, systems
products and high performance graphics devices. For further information regarding INMOS products
please contact your local SGS-THOMSON sales outlet.
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1 Introducing the INMOS IMS T9000 family

The INMOS IMS T9000 is the latest member of the transputer family. It is designed to provide far higher
performance and greatly improved communications facilities.

INMOS has used advanced CMOS technology to integrate a 32-bit integer processor, a 64-bit floating point
processor, 16 Kbytes of cache memory, a communications processor and four high bandwidth serial com-

munications links on a single IMS T9000 chip.

The IMS T9000 transputer excels in real-time embedded applicaﬁons, delivering exceptional single pro-
cessor performance and scaleable multiprocessor capability.

The IMS T9000 is binary compatible with previous transputers. It extends the transputer range, making it
easy to upgrade and complement existing transputer systems. There is extensive, industry standard soft-
ware support for all members of the transputer family; this includes high level language compilers, systems
software (such as real time operating systems) as well as an extensive range of development tools.

1.1 Performance

It is essential that any microprocessor family designed for the embedded system market provides the re-
quired performance at low cost.

The transputer family includes a 16 bit processor, a 32 bit range of fast integer and floating point processors
and now, the highest performance member of the family, the IMS T9000. These are all designed to make
it easy to design low cost, high performance systems.

« Single processor performance: the IMS T9000 transputer boasts exceptional single processor
performance; the new superscalar CPU is capable of a peak performance of 200 MIPS and 25

MFLOPS.

+ Real-time performance: the IMS T9000 offers sub-microsecond interrupt response and context
switch times, making it ideal for high performance real-time systems.

+ Communications performance: the four IMS T9000 communication links provide a total of
80 Mbytes/second bidirectional bandwidth.

+ Multiprocessor performance: the interprocessor communications architecture gives scaleable
performance - the ability to increase the performance of a system by adding more processors.

+ Usable performance: the IMS T9000 implementation makes it easy for compilers to fully exploit
the superscalar performance using a range of industry standard programming languages.

. Price/performance: the IMS T9000 offers supercomputer performance at an embedded systems
price.

1.2 Multiprocessing

For applications that demand performance that single processors cannot provide, the IMS T9000 has com-
plete on-chip support for multiprocessing:

« Hardware scheduler: the transputer architecture includes instruction level support for the cre-
ation and scheduling of any number of concurrent processes

» Inter-process communication: the transputer instruction set includes instructions for communi-
cating between concurrent processes. The same instructions are used to communicate between
processes running on a single transputer and between processes running on separate
transputers.

» Inter-processor communication subsystem: the presence of a dedicated communications pro-
cessor which operates concurrently with the main processor, makes interprocessor communica-
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tions flexible and efficient. The integration of the communications system on-chip makes it easy
to write programs for multiprocessor systems

« System control and monitoring: all the IMS T9000 transputers in a system can be initialized,
loaded with code and monitored for errors through a completely independent communications
system.

1.3 Communications support devices

The IMS T9000 transputer is complemented by a range of communications peripherals that extend the com-
munications capabilities of the IMS T9000. The IMS C1XX family ensures that any size of IMS T9000 system
can be constructed, connecting first generation and second generation transputers and providing an inter-
face to the outside world.

« |IMS C104 packet routing switch: the IMS C104 is a complete routing switch on a single chip.
The IMS C104 connects 32 links to each other via a 32 by 32 way, non-blocking crossbar switch
with sub-microsecond latency. This allows simple, fast communication between IMS T9000
transputers that are not directly connected. Multiple IMS C104s can be connected together to
make larger and more complex networks, linking any number of IMS T9000 transputers, or any
other devices that use the link protocol.

+ The IMS C100 system protocol convertor: the IMS C100 system protocol convertor converts
between the first generation transputer links and control signals and the new IMS T9000 proto-
col.The IMS C100 provides an inter-networking solution for transputer systems, allowing networks
to be constructed using the optimum mix of transputers to satisfy processing power, communica-
tion bandwidth and system cost.

1.4 Software

The success of any microprocessor is determined as much by the quality of its software development tools
as by any other feature.

INMOS has over a decade of experience in developing software tools for transputers and for multiproces-
sing systems. The range of compilers and powerful development tools support all the requirements of soft-

ware developers.

« Compatibility: instruction set compatibility with the first generation transputer family means that
the IMS T9000 transputer has inherited a significant range of development and application soft-
ware.

* The transputer toolset: the transputer toolset is a set of development tools for programming,
configuring and debugging mixed transputer systems.

The toolset is available on a variety of host computers including:
= |IBMPC
« NECPC
= VAX
= Sun3
= Sun4

« Debugger: INMOS provides a powerful, interactive debugger for debugging programs running
on networks of transputers. This provides full source level debugging with the ability to set break-
points in any process and on any processor, and then to examine the state of the stopped process
as well as.the low-level state of the processor.
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+ Compilers: for fast time to market, and to satisfy the diverse programming requirements of differ-
ent application areas, the toolset can be used with a variety of industry standard compilers, all
with major support for multiprocessing.

The IMS T9000 is supported by a range of compilers including:
« ANSIC
« C++
= Fortran
= Ooccam

*« Ada

« System software: system software support for the IMS T9000 reflects the requirements of the em-
bedded systems marketplace. A range of operating systems and real-time kernels are available
for the transputer including:

= C Executive
= VRTX
= CHORUS distributed Unix

This impressive array of development tools, industry standard compilers and system software satisfies the
demands of the embedded systems market. It also ensures that the user can benefit from a significant re-
duction in the critical time to market.

1.5  Applications

The transputer family provides unprecedented price/performance solutions for a wide range of embedded
systems applications.

The IMS T9000 transputer has been specifically developed to satisfy the requirements of three segments
of the embedded systems market:

«+ Imaging: the imaging market comprises applications that involve the generation, manipulation
and transmission of image data. Such applications include:

= Laser printers

= Graphics systems

* Image processing systems

= Industrial inspection systems
* Robotics

« Embedded computing: the embedded computing market comprises applications that are run
within a computer environment and add overall performance and functionality to the computer
system. Such applications include:

= Application accelerators: (graphics, numerical, scientific, DTP)
= Disk arrays and high performance file servers
« Databases

« X terminals
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= Supercomputers
= Factory automation

« Communications: the embedded communications market can be segmented into two main ar-
eas that require high performance microprocessors. These are:

= Networking: low cost LAN interfacing - FDDI, Ethernet; internetworking systems - bridges,
gateways and routers.

= Packet switching systems.

The IMS T9000 transputer is highly applicable to the communications market due to its integrated architec-
ture combining high performance CPU and communication links with a packet based protocol. The
IMS C104 packet routing switch has been designed to support the IMS T9000, and is useful in a range of
telecommunications switching applications.

The transputer family provides a range of price/performance solutions for all the above applications.
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2 The IMS T9000 transputer

The IMS T9000 is the latest member in the transputer family of high performance microprocessors. It is part
of a broad range of 16 and 32 bit microprocessors with compatible instructions sets and interfaces. As well
as providing high performance processing, they are designed to be simple to use and enable the construc-
tion of low cost systems. Transputers include functions to enable multitasking on a single processor and
the building of multiprocessor systems.

2.1 Overview

Processor Pipeline

Address
Gan’arator

Address
Genzeram/

Channel
Processor

16 Kbyte
Instruction

|

Figure 2.1 Block diagram of IMS T9000

The IMS T9000 integrates a high performance central processing unit (CPU), a 16 Kbyte cache, communi-
cations system and other support functions on a single chip. The main functional blocks of the IMS T9000
are shown in figure 2.1. The function of each of these is outlined below, more details will be found in the
following sections.

Processor

The IMS T9000 CPU contains a 32 bit arithmetic and logic unit (ALU) and a 64 bit floating point unit ( FPU).
The FPU operates on 32 and 64 bit floating point numbers as specified by the IEEE 754 standard. The CPU
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also includes instructions for byte and half word operations. The CPU uses 32 bit linear addreséing and
can address up to 4 Gbytes of memory.

The IMS T9000 is binary compatible with previous transputers. In particular it implements the same instruc-
tion set as the IMS T805 [1] with many additions.

The instruction set is designed for efficient execution of compiled code and there is a wide range of lan-
guage compilers available for the transputer including a Plum-Hall validated ANSI C compiler, a validated
Ada compiler and Fortran, occam and C + + compilers. These are complemented by a full set of software
tools for developing and debugging programs for single transputers and networks of transputers. In addi-
tion there are a number of system level software products, such as real time kernels and distributed operat-
ing systems.

The transputer includes a hardware kernel for scheduling processes and performing communications.
These operations are directly supported in the instruction set.

The IMS T9000 can run code in protected mode. In this mode all memory accesses are made through a
memory management unit which checks and translates addresses before using them to address the
memory system. Further, only a subset of the full instruction set may be executed, preventing protected
code from executing privileged instructions.

There is improved support for error handling over earlier transputers; errors can be trapped and handled
independently for each process in addition to the global error handling provided previously.

Hierarchical memory system

The IMS T9000 includes a 16 Kbyte unified cache to provide single cycle access to instructions and data.
The cache provides a peak bandwidth of 200 Mwords/s. The CPU also includes another small cache for
the most frequently used local variables of a program which provides another 150 Mwords/s of memory

bandwidth.

The external memory interface is highly programmable, allowing large memory systems, containing differ-
ent types of devices, to be built with little or no external logic. There are four independent sets of memory
control signals simplifying the use of different device types in the same system. The memory can interface
to 8, 16, 32 or 64 bit wide devices. The maximum data transfer rate across the memory interface is

50 Mwords/s.

- Communications system

" An important issue in multiprocessor system design is the communications architecture. To achieve effi-
ciency and ease of use, communications must be properly integrated into the entire processor architecture.

The transputer hardware and instruction set provides simple and efficient communications between pro-
cesses and between processors. Both intemal and external communications are handled identically, using
the same source code and machine instructions.

To support interprocessor communications, there is a complete communications subsystem on chip. This
includes four 100 Mbits/s full-duplex, serial communication links each with its own pair of direct memory
access (DMA) channels. The links can be directly connected between transputers with no external buffering
or other glue logic. The use of serial links simplifies routing of links on a circuit boards and the interconnec-
tion of boards in a system. A communications processor, which manages all link communications, oper-
ates concurrently with the main CPU so that data transfers do not adversely affect CPU operation.

Two additional links are provided for system control and monitoring. Initialization and booting of the proces-
sor can optionally be done through these links.

The communications subsystem also includes four ‘Event’ channels. As well as acting as interrupt inputs,
these can be used, as inputs or outputs, for more general synchronization and signalling.

Multiple internal buses

To support the high degree of concurrent operation on the IMS T9000, and to maintain the high intemal data
rates required, there are four sets of 32 bit address and data buses internally. These provide multi-port ac-
cess to the on-chip cache from the various functional units of the IMS T9000.
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System services

The system services section provides all the general facilities necessary for the operation of the transputer.
This includes the power and ground connections, and the clock input (5 MHz). Other important connections
are a capacitor, which is required for the on-chip phase locked loops which generate all the internal high
frequency clocks, and the processor speed select pins which can be used to select the frequency of the
internal clocks (up to the maximum speed for a particular device). There is also a reset input — however,
as the IMS T9000 includes on-chip power-on reset circuitry, external reset logic may not be required in an
embedded control application.

2.2 The transputer architecture

An important design decision was that transputers should be programmed in a high level language. The
instruction set has, therefore, been designed for simple and efficient compilation.The instructions are all
of the same format and chosen to give a compact representation of the operations most frequently occur-
ring in programs.

The CPU of the IMS T9000 contains three registers (Areg, Breg and Creg) used for expression evaluation,
which form a hardware stack. Loading a value into the stack pushes Breg into Creg, and Areg into Breg,
before loading Areg. Storing a value from Areg pops Breg into Areg, and Creg into Breg. Similarly, the
FPU includes a three register floating-point evaluation stack. When values are loaded onto, or stored from,
the stack the floating-point registers push and pop in the same way as the Areg, Breg and Creg registers.
Analysis of a large number of programs, shows that 3 registers provides an effective balance between code
compactness and implementation complexity.

Registers Locals Program

Areg

Breg

Creg

Workspace ptr

Next Instruction

Operand

Figure 2.2 Processor registers and memory
The transputer has three other registers used when executing code. These are:
« The instruction pointer which points to the next instruction to be executed.

+ The workspace pointer which points to an area of store where local variables are kept. This area
is also used as a stack for procedure calls, etc.

« The operand register which is used in the formation of instruction operands.

The addresses of floating-point values are formed on the CPU stack, and values are transferred between
the addressed memory locations and the FPU stack under the control of the CPU.

Most transputer functions use the contents of these stacks, and most instructions reference the stacks im-
plicitly. For example the add instruction adds the top two values in the CPU stack, leaving the result on the
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top of the stack. The use of a stack reduces the need for instructions to specify the location of their operands
which reduces the size of instructions and hence of compiled code.

23 Support for concurrent processes

Most computers have the ability to effectively run several user tasks or processes concurrently. These pro-
cesses are created and scheduled by the host operating system. The operating system kernel provides
the ability for processes to communicate with the operating system and with each other.

Every transputer includes a hardware kemel with the ability to execute many software processes at the
same time, to create new processes rapidly, and to perform communication between processes within a
transputer and between processes on different transputers. All of these operations are integrated into the
hardware and instruction set of the transputer and are very efficient. Further details of the transputers sched-
uling mechanism will be found in section 5.

2.4 Pipelined, superscalar implementation

To increase the.execution rate of the transputer instruction set, the IMS T9000 is able to issue several in-
structions per cycle. A superscalar micro-architecture was designed which implements the same high level
architecture and instruction set as the IMS T805 but with much higher performance.

Some recent implementations of pipelined and superscalar microprocessors have required very careful
programming to obtain the claimed performance. They require that instructions are presented to the pipe-
line in a sequence that will keep the processor busy. This makes developing effective compilers very diffi-
cult, often forcing programmers to resort to assembly code to achieve the required performance. This puts
the burden of arranging the correct sequencing of instructions on the programmer, adding to the develop-
ment time and hence costs of a product.

Instruction
Fetch

Instruction
Grouping

I
. P

Workspace Non-local

=/
Cache :D Address £l> Cache
7 7S

ALY/ Write/
FPU Jump

@3 @ 8
Main J\
4

<z<2

Figure 2.3 Block diagram of grouper and pipeline
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The details of the IMS T9000 pipeline are transparent to the programmer. The processor appears to be the
simple transputer architecture described above and straightforward code written for that programming
model will get nearly the best performance out of the processor. An optimising compiler for the IMS T9000
can, of course, generate more efficient code if the details of the internal architecture are taken into account.

The pipeline

Instructions are executed in a five stage pipeline: the first can fetch two local variables; the second can
perform two address calculations, for accessing non-local or subscripted variables; the third stage can
load two non-local variables; the next can perform an ALU or FPU operation; and the final stage can do
a conditional jump or write.

A conventional pipeline is designed to allow several instructions to be executed simultaneously; different
parts of each instruction being handled in different stages of the pipeline. In order to allow multiple instruc-
tions to be issued per cycle (as well as multiple instructions being executed in each cycle) the IMS T9000
does not simply send a sequence of instructions through the pipeline but has hardware which assembles
groups of instructions from the instruction stream. These groups are chosen to make the best use of the -
available hardware and one group can be sent through the pipeline every cycle. Instructions are put into
groups in the order that they arrive at the CPU; dependencies within the group are handled automatically
by the pipeline.

The grouper can be thought of as a hardware optimizer; itrecognizes commonly occurring code sequences
that the processor can execute effectively. The design of the grouping mechanism and the pipeline is based
on analysis of the code typically generated by high level language compilers.

An IMS T9000 running at 50 MHz can execute code compiled for the IMS T805 typically10 times faster than .
a 20 MHz IMS T805. This means that existing development tools and software can be used to generate
code for the IMS T9000. It also means that only a modest amount of work is required to modify compilers
to produce code optimized for the IMS T9000.

Grouping of instructions

The grouping of instructions takes advantage of the high degree of concurrency and multiple buses in the
processor. For example, both caches are multi-ported and can each support two reads by the CPU simulta-
neously. This allows two /oad local instructions to go into one group, and the group could also contain two
sets of instructions to calculate addresses and fetch non-local variables. These could all be combined with
an arithmetic operation such as add. More details of the transputer instruction set can be found in [3].

As an example of how the grouper works, consider the assignment and expression evaluation shown be-
low. The code produced is shown along with the number of the pipeline stages in which it is executed.

a[i+l] = b[j+15] + c[k+7];

1d1 ] load local variable j

1dl b load base address of array b
wsub 2 calculate address of b[j]
1dnl 15 213 load value of element b[j+15]
1d1 k [

1dl ¢

wsub 2

1ldnl 7 213 load value of c[k+7]

add [ add two values on top of stack
1d1 i K]

1dl  a

wsub H]

stnl 1 215 storeinto a[i+l]

This code sequence will be executed as three groups (i.e. in 3 cycles) as shown below. The exact contents
of each group will depend on the code which precedes and follows this. The first group might contain other
instructions from earlier in the instruction stream.
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first group | 1d1, 1d1, wsub, 1ldnl
second group | 1d1, 1dl, wsub, 1ldnl, add
third group | 1d1, 1d1l, wsub, stnl

Since the processor can fetch one word, containing four bytes of instructions and data, in each cycle it
is possible to achieve a continuous execution rate of four instructions per cycle (200 MIPS). However, if
any of the instructions require more than one cycle to execute, then the instruction fetch mechanism can
continue to fetch instructions so that larger groups can be built up. Up to 8 instructions can be put into one
group and there may be five groups in the pipeline at any time.

Improvements over IMS T805

In addition to executing several instructions each cycle, the number of cycles required to perform many
arithmetic and logical operations has been reduced from previous transputers by adding extra hardware.
This, combined with the faster clock speed and new micro-architecture, means a ten-fold increase in speed
over the IMS T805.

In addition there is improved support for error handling, and protecting code and data from the errant behav-
ior of a program. The IMS T9000 provides better access to the transputers scheduling mechanism, making
it easier to implement software kernels for a particular processing model.

2.5 Hierarchical memory system
l—»
CPU VCP >
(with internal registers) Scheduler Link engine | g 3
O
i A A
g
ag
_5 E‘ Workspace cache
ISEY
=
j A
A
[
Crossbar switch ~] Main cache
i
External memory

Figure 2.4 IMS T9000 hierarchical memory system
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The IMS T9000 has a complete, hierarchical memory system providing fast and efficient access to data
and instructions. There are two separate caches on chip, a general purpose unified (code and data) cache
and a small cache for local variables.

These caches can provide fast, multi-ported access to data because they are on chip. They also reduce
the number and frequency of accesses to external memory, allowing lower cost, slower devices to be used
without degrading performance. Finally, because the majority of extemal memory accesses will be cache
refills (and therefore multiple word reads and writes) fast memory access methods, such as page mode,
can be used.

2.5.1 Main cache

The main cache consists of four independent banks, each containing 256 lines. Each line holds data from
four consecutive words (16 bytes) in memory. An access can be made to every bank on every cycle which,
with the multiple internal buses, means there is a very high bandwidth between the cache and different
functional units within the IMS T9000.

CPU VCP PMI Scheduler

il $UJ 4

Crossbar switch and arbitrator

4 x32bit address buses
4 x 32 bit data buses

Four banks of cache

Figure 2.5 Diagram of four banks of cache

The four cache banks are accessed by a number of different functional units in the IMS T9000, some of
these units have multiple ports into the cache. To allow four simultaneous reads and writes to take place
in each cycle, there are four sets of address and data buses. An arbitrator controls access from the various
functional units to the cache banks.

Cache operation

Each of the four banks is addressed by a quarter of the memory space. This division of the address space is
done using bits 4 and 5 of the address, the bottom four bits are used to select a byte within a line. Each line
consists of: 16 bytes of RAM for the data; 26 bits of associative memory which holds the address of this line
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of data; and two control bits to indicate if the line is valid and if it has been modified since it was read in (is
‘dirty’). When a memory access is made, the address is checked against the contents of the appropriate
bank. If the address is present (and the line is valid) then the access can go ahead, reading or writing the
data in a single cycle.

A cache refill engine ensures that there is always one empty line available. Then, if a requested address is
not in the cache (a ‘cache miss’), the four words containing the data are read from memory into the empty
line. The refill engine then has to ensure that a new empty line is created. It does this by choosing a line at
random and, if the data has been modified since it was read into the cache, writing it out to memory. The line
is then marked as invalid, i.e. empty and available for use. This is known as ‘early write-back’ as it writes
the chosen line out to memory before a cache miss occurs.

The reading and writing of cache lines takes advantage of any fast memory access methods that are avail-
able (e.g. 64 bit wide accesses or page mode DRAM).

Use as on-chip RAM

Atreset, the cache behaves as 16 Kbytes of normal RAM, enabling the IMS T9000 to be used with no exter-
nal memory. There may be many applications where a number of transputers are used, each requiring little
or no external memory - used in this way the IMS T9000 provides extremely high performance (single cycle
memory reads and writes) combined with extremely low cost (possibly no external components except a
clock). Starting up in this mode provides compatibility with earlier transputers which have a fixed amount of
on-chip RAM. It also makes it possible to test the hardware of a new transputer system as it is known that
there is 16 Kbytes of working RAM which can be used by test software.

During the initialization of the IMS T9000 the cache may be programmed to behave as 16 Kbytes of cache,
as 16 Kbytes of RAM, or as half cache and half RAM. This can be very useful when certain data or code, e.g.
an interrupt handler, must be accessed quickly and in a more deterministic way than a cache provides. The
remaining 8 Kbytes of cache will be large enough to achieve high performance. -

2.5.2 Workspace cache

The workspace cache can hold a copy of the first 32 words of procedure stack and workspace. It is friple
ported, allowing two reads and a write in every cycle. The workspace cache allows local data to be ac-
cessed without going outside the CPU, effectively giving zero cycle access and reducing the load on the
main cache and external memory. It also means that the pipeline can do four data reads (as well as an
instruction fetch) in each cycle: 2 from the local cache and 2 from the main cache.

Because local variables can be accessed quickly, they can be read in the first stage of the pipeline and
can then be used for non-local address calculations in the next stage. The workspace cache is
write-through; whenever data is written into the local cache it is also written to the main cache. This means
there is no overhead for flushing the cache on interrupt or context switch.

The workspace cache is part of the processor pipeline and, in many ways, it is equivalent to the general
purpose register set found on other microprocessors, providing fast access to frequently used data. To
make use of this architecture, the INMOS ANSI C compiler recognizes the ‘register’ keyword and places
those variables lower in the function’s workspace so they are more likely to be cached.

Cache operation

The cache is organized as a 32 word circular buffer and is addressed using the bottom five bits of the work-
space pointer. As the workspace pointer moves up and down, it rolls around the cache. When the work-
space pointer is moved down, on a procedure call for instance, the locations that ‘roll into’ the cache are
marked as invalid and become valid as they are read or written. The first time a variable is read, it is copied
from the main cache (and, of course, fetched from main memory if it is not in the main cache). Lines are
marked as invalid when they ‘roll out’ of the cache as the workspace pointer is moved up (e.g. on a retumn
from a procedure call). On a context switch or interrupt, the entire contents of the cache are marked as
invalid.

This is illustrated in figure 2.6, where the state of the workspace cache during a procedure call and retumn
sequence is shown. Before the call, the locations in the workspace cache above the workspace pointer
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which have been read or written by the program contain valid data. After the call, the workspace pointer
moves down - initially the locations which are above the workspace pointer are invalid; as they are ac-
cessed by the program they are filled with data and marked as valid. When the procedure returns, the loca-
tions which it used will be marked as invalid. As long as the workspace of the called procedure is less than
32 words, some of the workspace of the calling procedure will still be valid after the return. Nested proce-
dure calls, or calls of procedures with a large workspace requirement will cause the workspace pointer
to wrap around so that some of the data at the top of the program workspace is no longer in the cache.
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Figure 2.6 Effects of call and return on workspace cache

As the cache is a circular buffer, moving the workspace pointer by 32 or more will cause the pointer into
the cache to wrap right round, marking every line as invalid.
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3 Simplicity of system design

Many features of the IMS T9000, as with the original transputer range, exist to simplify the user’s design
task and to reduce the amount of support hardware and software that is required. This means that designers
can spend more time working on their application and less time worrying about details. Using transputers
can result in smaller, simpler designs, easier system debugging, faster time to market and lower system
cost. Some of these features and their benefits are outlined below.

3.1 Single 5MHz clock input

All transputers, no matter what the processor speed, and all support devices require only a single 5SMHz
clock input; on-chip phase locked loops generate all the high frequency intemal clocks required for the
processor and links. Because of the asynchronous nature of the link hardware differences in the clock
phase between devices is not important. This means that each processor can have a local clock.

This simplifies system clock generation and distribution, especially where multiple transputers are used.
The use of low frequency signals around a system can be particularly important in electrically noisy environ-
ments such as industrial control systems.

3.2 Programmable memory interface

The first generation of 32 bit transputers have a memory interface which can be programmed to generate
all the timing signals required by a memory system, meaning that little external logic is required to build
a complete system.

The IMS T9000 takes this idea further by providing greater functionality and flexibility. The IMS T9000 pro-
grammable memory interface (PMI) provides complete support for DRAM including multiplexing of row/co-
lumn addresses, refresh, and page mode accesses. It is possible to connect up to 8 Mbytes of 1M x 4
DRAM with no external logic. The amount of memory which can be connected directly is limited only by
capacitive loading; larger amounts of memory will require only the addition of buffering on the address and
data lines. !

The IMS T9000 memory interface will automatically exploit any fast access modes for the memory system.
For example if 64 bit wide DRAM is used then an entire cache line can be read in two memory operations.
If page mode DRAM is available, then reads or writes with the same row address will be done using page
mode, greatly reducing the cycle time. This will always be used for cache line reads and writes, where four
consecutive words will be transferred, but it will also work for any set of reads and writes from the same
page.

In addition to supporting fast DRAM, the IMS T9000 will also efficiently interface to other devices, such as
SRAM, ROM or memory mapped peripherals. The PMI on the IMS T9000 divides the address space into
four banks'. Each bank provides separate decoding and timing control, generating all the signals needed
for the device types in that bank. The address range, timing, memory type and bus width can be pro-
grammed independently for each bank. There is an additional preset bank for slow, byte-wide ROM. This
is intended for systems where the processor is booted from ROM. Only memory reads can be done from
this bank.

The parameters for the memory interface are programmed into a number of configuration registers. A soft-
ware tool is provided in the transputer development system to simplify the task of designing with the PMI.
This tool can be used interactively to describe the parameters for each memory bank. It then produces an
output file which can be used by other parts of the development system for initializing and loading
transputers. The program also produces timing diagrams and descriptions which can be used in document-
ing the system design.

3.3 Control links and configuration

The IMS T9000 has a pair of control links. One is used for receiving commands and sending status informa-
tion, the other provides a cascade connection so that all devices in a system can be daisy-chained togeth-
1.There is no connection between the four banks in the memory interface and the four banks in the main cache.
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er. The control links use the same link protocol as the IMS T9000 data links and provide a control network
which is completely independent of the normal data communication network.

The control links have through routing hardware so that the controlling processor (possibly an IMS T9000)
appears to have a direct connection to every device in the system.

The control links are kept totally separate from the links used for program communication in a system. A
program running on the IMS T9000 cannot send messages down the control links. The separation of control
and data links ensures that the control links are completely reliable. For extra reliability, they can be run
at a lower bit rate.

CLinkO CLink1 CLinkO CLink1 CLinkO CLink1

—{ Te000 — T9000 —| Te000 |—

Figure 3.1  Network of control links

The control links provide an independent communication network which canbe used to load code, do hard-
ware debugging, monitor a running system for errors and perform diagnostic functions, both for a single
IMS T9000 and a network.

Because of the great flexibility of the memory interface and the communications system of the IMS T9000
there are a number of configuration registers that need to be programmed. For all of these, the development
tools will program the registers using high level descriptions of the system. For example, as noted above,
there is an interactive tool for developing configuration data for the PMI. Similarly, the communication sys-
tem is set up using high level language descriptions of the software and hardware networks.

There are two ways of programming the configuration registers: by writing to them from a program running
on the IMS T9000 itself; or via a control link from the host system. The first method is used when the system
is booted from ROM, for example in an embedded system. The second method can be used in a develop-
ment environment or, in a multi-transputer system, where only one processor is initialized (or ‘configured’)
from ROM and all the others are configured via their control links from that root processor. In both cases
the IMS T9000 development tools will generate the data to be programmed into ROM or sent to the control
link of a processor.

There are a number of stages of initializing and loading code onto the IMS T9000 after it has been reset.
These are known as ‘reset levels’ and during the initialization process, every IMS T9000 must go through
each level from complete reset, to having application code running. Each of these levels can be done from
ROM or through a control link.

3.4 Loading and bootstrapping

The transputer can also be bootstrapped in two ways: from code received down a link or from ROM. All
INMOS development tools generate programs to be loaded by either method as required during develop-
ment or in a production system.

There are a number of advantages to the ability to load code from a link. It greatly simplifies the develop-
ment cycle - there is no need to keep programming new EPROMs with new versions of code (or use an
EPROM emulator); it can simply be loaded down a link. It simplifies testing of hardware - a transputer pro-
vided with the minimal essential external signals (5 volts, clock, etc) will be guaranteed to work; there is
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then16 Kbytes of on-chip RAM in which to load test code. In a muitiprocessor system, only the root proces-
sor needs to be booted from ROM - the others can be booted down a link with code contained in that sys-
tem ROM. It is even possible to switch between ROM and link booting, in order to do field testing and diag-
nose faults in an installed system.

3.5 Examples

To show how simple it is to build systems using the IMS T9000, a few example block diagrams are given
here. In the simplest cases these are almost complete circuit diagrams.

The first example (figure 3.2) is a complete working system using the IMS T9000s internal RAM as the sys-
tem memory. The processor boots from ROM which contains the application software. This processor can
communicate with other transputers or peripherals through its data links. It can be set to boot from ROM
or from link for development and test purposes. The full16 Kbytes of on-chip RAM is available for program
workspace.

8V T ‘ ‘—_—"—‘
g VDD CapPlus CapMinus
EPROM
StartFromROM
!—ﬁ
g7 notMemBootCE CE
MemAdd2-31 Address
2 CLinko MomDatao_7 | 8
16 Link0-3 embatad- Data
IMS T9000
Reset
Circuit Reset
5MH§ Clockin
1
Cloc GND
All other inputs tied to ground

Figure 3.2 Complete IMS T9000 system with EPROM

Figure 3.3 shows how a low cost system can be built using a small amount of SRAM. This could be com-
bined with ROM and peripherals for a low cost embedded application.
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2 x IMS 1820 (64K x 4 SRAM)
notMemPsS1 oF oF

MemAdd2-15 - 18 no-15 A0-15
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Figure 3.3 Low cost system with 64 Kbyte of SRAM

The third example in figure 3.4 shows how a large amount of DRAM can be connected to the IMS T9000
with no external logic for decoding, control signal generation or buffering.

,— Up to 8 Mbytes of 1M x 4 DRAM ———
notMemPS0 OF OE ee-. —__|OE
notMemRAS RAS RAS .- — RAS
notMemCAS CAS CAS ... ___|CAS

MemAdd2-31 AO-n AO-n Pooee emmmmAQ-n

W D0-3 W D0-3 W D0-3

notMemWrB0

notMemWrB1

notMemWrB2

notMemWrB3

4 4 4

MemData0-63 64 .-

Figure 3.4 High performance system with 8 Mbytes of DRAM.

The memory in each bank is enabled by separate strobe signals so all of the above memory types could
be combined on a single IMS T9000.
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4 Protection and error handling

The IMS T9000 extends the error handling of earlier transputers to allow error conditions to be easily
trapped and handled in software. It can run code in a protected mode where all memory accesses are
checked and certain, privileged, instructions cannot be executed.

4.1 Error handling

The first transputers have only a global mechanism for trapping errors; stopping the entire processor when
an error is detected. The IMS T9000 extends this to allow a trap handler to be associated with a process
to provide more localized error handling. When an error occurs, control is transferred to the trap handler
with information about the nature of the error and where it occurred.

The action of a trap handler will, in general, be dependent on the language or operating system being used
and will be invisible to the applications programmer. Some languages may include support for user written
error handlers. After taking the appropriate action, for example to report or correct the error, the trap handler
can retum control to the process which caused the error which can then continue execution. Each process
can have its own trap handler, or one trap handler can be shared by several (or all) of the processes on
the transputer.

To maintain compatibility with earlier transputers, the IMS T9000 can also run processes in a global error
mode where the behavior on error is identical to the IMS T805. These two types of processes are known
as L-processes and G-processes (for Local and Global error handling) respectively. Both L- and G-pro-
cesses can be run in parallel, the processor dynamically switching modes as it switches between pro-
cesses. This allows code compiled for the IMS T805 (which will aiways be in global error mode) to be run
in parallel with code specifically compiled for the IMS T9000.

4.2 Protected mode

The IMS T9000 can also run code in protected mode. This is designed to allow run-time checking of pro-
grams written in ‘unsafe’ languages such as C and also to provide memory management. For example,
C allows pointers to data or functions. Without checks for valid pointers, these could contain an illegal
memory address such as: another process’s data or code; a non word aligned address; or a function point-
er which does not point to valid code. As no checks are defined in the language it is important to be able
to check such accesses at run time, if needed.

The protection mechanism is intended to support software development and debugging, and programming
secure systems. It protects the user’s processes or tasks from each other and also protects an operating
system kemel, or other run time suppon from user code. Although code run in this mode is frequently re-
ferred to as a ‘protected process’, it is not the process which is protected but the rest of the world that is
protected from errors in the process.

Protected mode processes

Any L-process can run a piece of code as a protected mode process (or P-process); the processor saves
the state of the L-process and starts executing the P-process. The P-process is executed until control is
returned to the L-process because of an error, protection violation or some other reason. It is important to
realize that P-processes are not scheduled by the transputer’s own scheduler - they only run under the
control of a supervisor L-process. Any of the instructions or other events that might cause a P-process to
be descheduled, will cause control to be returned to the supervisor. The relationship between a P-process
and its supervisor is analogous to that between an L-process and its trap-handler. In both cases the proces-
sor can be thought of as swapping between the two pieces of code.

Executing illegal instructions

Because control is returned to the supervisor when a P-process attempts to execute a privileged or illegal
instruction, it is possible to provide communication and other facilities to a P-process in a controlled way,
but one which is invisible to the programmer. For example, the input and output instructions are privileged
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so, if a P-process attempts a communication then it will trap to the supervisor L-process. This L-process
can examine the state of the P-process and, if the attempted communication is ‘legal’, perform the commu-
nication and return control to the P-process. The P-process will continue as if a normal communication had

occurred.

There is also a ‘syscall’ instruction which can be used by a P-process to explicitly request some action
by the supervisor.

Memory management

When running in protected mode, all memory accesses are checked and translated. Each P-process can
access four regions of memory. The size and base address of each region can be set, and each can have
different protections. Each area can be given permission for code to be executed from it and for data to
be written. For example an area of memory containing code would normally be marked with execute per-
mission but write protected.

All addresses generated when the processor is running in protected mode are logical addresses. These
are translated to physical addresses by combining the low order bits of the logical address with the high
order bits from the control register for that region. The translation and checking is done in parallel with other
address generation operations and so imposes no overhead on memory access time.

The IMS T9000’s memory management can be used to implement swapping of memory to and from disk
and relocation (although it does not support page-based virtual memory). This can be used to implement
most operating system kernels. It can also be used for ‘stack extension’. All the instructions which move
the workspace pointer are checked for a valid address after the operation. If it is found that the workspace
address is no longer valid then a trap occurs, the supervisor process can then allocate more memory for
the processes stack and restart it.
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5 Support for multiprocessing

The requirement for processing performance in embedded systems is continuously increasing as control
algorithms become more sophisticated and as systems become more complex. In the long term, the only
solution to these ever increasing demands for performance is the use of multiple processors to perform
parallel processing.

Transputers are the only microprocessors specifically designed to tackle the problems of building multipro-
cessor systems.There are advantages other than just performance to using multiple transputers in a sys-
tem; it allows scaleable systems to be built, where more processors can be added as demand increases,
or to provide the optimum balance of price versus performance. The communications facilities of the
transputer family can also be used to build distributed systems where, for example, the processors are
located near the equipment or components they control and use links to communicate with other proces-
sors in the system. In addition, transputers can be used to build high reliability, fault tolerant systems.

Fast interrupt response and process switch

In most embedded applications, there is a need for fast real time response (both to external interrupts and
for context switching in multitasking systems). The design of the IMS T9000 processor exploits the pres-
ence of the two on-chip caches by having only a small number of registers in the CPU. This means that
there is little state to be saved when an interrupt or task switch occurs, so these operations are extremely
fast. These types of operations are very efficient on the transputer because of the hardware scheduler.

The register stacks are duplicated so that, when a process running on the IMS T9000 is interrupted, the
contents of the stacks do not need to be written to memory. This results in a sub-microsecond interrupt
response. Furthermore, the duplication of the register stacks enables floating-point arithmetic to be used
in an interrupt routine without any performance penalty.

5.1 The transputer model of concurrency

The model of concurrency and communication implemented by the transputer hardware is based on the
ideas of communicating sequential processes. All the features for creating processes and communicating
between them are accessible from any high level language for the transputer and are implemented directly

by the 0cCam programming language [2].
Processes and channels

Each process can be regarded as a black box with internal state, which can communicate with other pro-
cesses using communication channels. Each channel is a point to point connection between two pro-
cesses. One process always inputs from the channel and the other always outputs to it. Communication
is synchronized: the first process ready to communicate waits until the second is also ready, then the data
is copied from the outputting process to the inputting process and both processes continue.

Each process starts, performs a number of actions and then terminates. An action may be a set of sequen-
tial processes performed one after another, as in a conventional programming language, or a set of parallel
processes to be performed at the same time as one another. Since a process is itself composed of pro-
cesses, some of which may be executed in parallel, a process may contain any amount of internal concur-
rency, and this may change with time as processes start and terminate. Ultimately, all processes are con-
structed from three primitive processes: assignment; input and output.

Program structure

Figure 5.1 shows an example of a system constructed from three communicating processes. In this case
there are separate processes to handle the external hardware (the screen and keyboard) and to execute
the main, application, process. This is a modular design - only the hardware handling processes have to
be changed if the software is moved to a new environment, the same interface (the data sent and received
on channels or ‘protocol’) can be presented to the application process. The keyboard handler can be inter-
rupt driven, only being scheduled when a character is typed, the interrupts appearing as communications.
The input and output processes can provide buffering and other filtering of the data, all of which is invisible
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to the main application process, which could even be placed on a separate processor. This use of separate
processors need not just be for performance reasons but might be done, for instance, if there are a large
number of peripheral devices which could be better handled by a low cost 16 bit transputer. One or more
high performance transputers could then be used for the main computing processes.

Keyboard

Keyboard

Y handler to application
from application

Soreen Screen PP

handler

Figure 5.1 Processes and channels
Example

The code for creating parallel processes in C is very simple. For example, if the three processes in the
example above are external functions, then the following code is all that is needed to run them in parallel:

#include <stdlib.h>
#include <channel.h>
#include <process.h>

/*

declare externally defined functions
*/
extern keyboard_handler (Process *p, Channel *to_app, Channel *echo);
extern screen_handler (Process *p, Channel *echo, Channel *from_app);
extern application (Process *p, Channel *to_app, Channel *from app);

/*

~ declare pointers to process and channel data structures
*/

Process *kbd_p, *scrn_p, *appn_p;

Channel *to_app, *from_app, *echo;

/*

allocate and initialize channel data structures
*/
to_app = ChanAlloc();

from_app = ChanAlloc();
echo ChanAlloc () ;

/*
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allocate and initialize the process data structures
*/
kbd_p = ProcAlloc (keyboard handler, 0, 2, to_app, echo);
scrn_p = ProcAlloc (screen_handler, 0, 2, echo, from app);
appn_p = ProcAlloc (application, O, 2, to_app, from_app);

/*
now run the three processes in parallel, this call
will return when all three processes have terminated
*/
ProcPar (kbd_p, scrn_p, appn p, NULL);

A more complete explanation of how parallel programs can be written for the transputer can be found in
INMOS Technical Note 68, “Developing parallel C programs for transputers” [5].

The equivalent program in 0ccam would be:

CHAN OF BYTE to.app, from.app, echo :

PAR :
keyboard.handler (to.app, echo)
screen.handler (echo, from.app)
application (to.app, from.app)

Multiprocessor programs

SN
i

Figure 5.2 Transputers and links

Every transputer implements these concepts of concurrency and communication. As a result, the same
model can be used to program an individual transputer or to program a network of fransputers. Figure 5.2
shows a typical network of transputers connected by serial links. When a number of processes run on an
individual transputer, the processor shares its time between the concurrent processes, and channel com-
munication is implemented by moving data within memory. When this programming model is used to pro-
gram a network of transputers, each transputer executes the process, or processes, allocated to it.

Communication between processes on different transputers is implemented directly by transputer links.
Thus the same program can be implemented on a variety of transputer configurations, with one configura-
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tion optimized for cost, another for performance, or another for an appropriate balance of cost and perform-
ance as illustrated in figure 5.3.

Figure 5.3 Mapping processes onto one or several transputers

5.2 Other models of concurrency

Although the transputer has direct support for concurrent process which communicate via channels, it is
possible to use the same features of the transputer to build other types of mulitiprocessor system or to sup-
port different scheduling models. The IMS T9000 includes a number of instructions for manipulating the
transputer process queues; these make it simple to write real-time kernels, exploiting the efficient task
switching of the transputer architecture. There are also instructions for ensuring that the data in the cache
and in memory are consistent. These can be very useful when implementing a shared memory system.

Shared memory

In a shared memory system, a number of processors have some sort of common area of memory which
they can all access. This has some advantages over the channel communication model, especially where
very large amounts of data need to be shared or moved between processors. The transputer has hardware
and software support for shared memory systems.

The PMI has a set of signals for controlling access to the external memory interface by an external device.
This is primarily intended for use with a DMA based co-processor. It can also be used, with external arbitra-
tion logic, to allow all of the processors in a system to access the shared memory.

Alternatively, there may be a number of blocks of memory that can be switched into the memory map of
different processors under software control. These blocks can be used for exchanging data and passing
messages between processors. To synchronize the switching of these blocks of memory between proces-
sors, the ideal method is to pass messages over the transputer links; as the memory is switched to a pro-
cessor’s address space, it is sent a message from the previous user of the memory to inform it that it is
now the new ‘owner’ of the memory. This allows large amounts of data to be moved from one processor
to another but without the overhead of copying all of it over a link.

In any shared memory system, the use of a cache can be a problem. In the IMS T9000 there are instructions
for forcing changed data in the cache to be written out to main memory and for marking data in the cache
as invalid so that it will be read from main memory. As the exchange of data is synchronized between pro-
cessors, these instructions can be used to make sure that the correct data is in both the main memory and
the cache of the processors involved.

It is also possible to mark banks of external memory to be ‘un-cacheable’; data from that area of memory
will never be put in the cache. This ensures that a number of processors or other devices which make ran-
dom reads and writes of that memory will always get the most up to date data. In this case there must still
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be some synchronization of the memory accesses to make sure that information is not read by a processor
until it has been written; again, this synchronization can be done over the transputer links.

5.3 Hardware scheduler

The IMS T9000 processor includes a hardware scheduler which implements the transputer model of con-
currency. In many applications this will remove the need for a software kernel. However, the transputers
own scheduling mechanisms can be accessed from software to provide efficient support for the implemen-
tation of standard real-time kemnels.

At any time, a transputer process may be:

active - being executed
- on a list waiting to be executed

ready to input
- ready to output
- waiting until a specified time

inactive

The scheduler operates in such a way that inactive processes do not consume any processor time. The
active processes waiting to be executed are held on a list of process workspaces. This is implemented
using two registers, one of which points to the first process on the list, the other to the last. In figure 5.4,
P is executing, and Q, R and S are active, awaiting execution.

A process runs until it is unable to proceed because it is waiting to input or output, or waiting for the timer.
Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the next
process is taken from the list. Actual process switch times are very small as little state needs to be saved,
it is not necessary for the processor to save the evaluation stack on descheduling.

Current process

Next Instruction

Workspace ptr

Active processes on queue
Front ptr
Back ptr

Figure 5.4 Transputer process queue

5.4 Interrupts, events and timers

As well as process scheduling and communications, the scheduling hardware also supports simple handl-
ing of interrupts and timers. Any event that a process might need to wait for (whether it be a communication,
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an interrupt or a timeout) can be treated in the same way as a communication. For example, an interrupt
handler simply has to wait for an input from a special channel which is mapped onto an interrupt (‘Event’)
input. Because inputs are synchronized, that process will not proceed until the ‘input’ becomes ready, i.e.
until there is an interrupt.

This makes interrupts on the transputer very easy to use. An interrupt handler is simply a process like any
other waiting on an input from the interrupt ‘channel’. This contrasts greatly with the traditional idea of an
interrupt handler as something difficult which needs to use special instructions and be written in a very dif-
ferent way from other program code (usually in assembler).

The IMS T9000 has four sets of pins, known as ‘Event’ channels, which can be used for control and synchro-
nization purposes. Each Event channel can be configured either as an input or an output. As inputs they
can be used as interrupts, to cause a fast processor response to a external signals. When an Event channel
is configured as an output, the process outputting to it will be descheduled until the external device pro-
vides the necessary handshake signal.

The transputer has two timers; one of which ‘ticks’ every microsecond, the other ticks every 64 microsec-
onds. The current value of the processor timer can be read, or a process can perform a timer input in which
case it will become ready to execute when a specified time has been reached. Both these uses of the timer
are treated as inputs similar to channel communication. If the timer is simply being read then the current
timer value is provided immediately; if the process is waiting for a particular time, then it is descheduled
until that time.

5.5 Shared resources

The IMS T9000 aiso provides efficient hardware support for controlling access to a shared resource. This
could be a hardware resource (e.g. a printer) or a piece of software running on a particular processor in
anetwork. Each process which wants to use the resource (a ‘client’) can make a request to the controlling
process (the ‘server’). This request is done in the form of a channel communication and can, therefore, be
done across a network by using transputer links. If the resource is available then the requesting client is
given access to it, otherwise it is put on a queue until the resource becomes free. If multiple clients request
a resource then they are all automatically queued until it is available.

Server process

Client processes

Figure 5.5 Client/server model of resources

The resource mechanism can provide pairs of channels between the server and the processes accessing
it. This can be used, for example, to implement remote procedure calls across a transputer system.
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6 Communication links

Transputer links provide a simple and regular way of interfacing to peripherals and host systems as well
as communicating between transputers. On a single transputer, processes can communicate via channels;
the provision of links allows processes on different fransputers to communicate in the same way. The
IMS C104 routing device enables this communication to take place across a network, even between
transputers that are not directly connected.

The same communication model can be used to communicate with peripheral devices or a host system
using a link adaptor which converts from the bit-serial protocol of the links to a parallel port.

6.1 Using links between transputers

Transputer links can be used to implement point to point communication between transputers. This allows
transputer networks of arbitrary size and topology to be constructed. Point to point links have many advan-
tages over bus based communications in a multiprocessor system:

« Thereis no contention for the communication mechanism, regardless of the number of processors
in the system.

» There is no capacitive load penalty as more processors are added to the system.

« The communications bandwidth does not saturate as more communicating devices are added
to the system. Rather, the larger the number of transputers, the greater the total communications
bandwidth of the system.

» Because each transputer in a system uses its own local memory, overall memory bandwidth is
proportional to the number of transputers in the system. This is in contrast to a large, global
memory where the processors must share the available memory bandwidth.

For small systems, the four transputer links on the IMS T9000 can provide complete connection between
up to five devices. By using additional message routing devices such as the IMS C104, networks of any
size can be built with complete connection between all IMS T9000s. If a system does not need complete
connection or the flexibility of routing that the IMS C104 provides, then networks can be built just from direct-
ly connected transputers.

6.2 Advantages of using links

The advantages of using links for communication are efficiency, simplicity and hardware independence.

Efficiency

There is a separate DMA controller for every input and every output channel which allows data to be trans-
ferred without processor involverment. To exploit this, the transputer deschedules a process which is waiting
for a communication to complete, freeing the processor to execute another process. When the communica-
tion is complete, the process is rescheduled, providing automatic synchronization with the data transfer.

Simplicity

The communication links are, however, very simple to use. The transputer has simple instructions for per-
forming input and output and these are available to the programmer either as function/procedure calls in
a high level language or, in the case of 0CCam, as an integral part of the language. For example, ina C
program, to transfer an array of 256 bytes from the array data to a channel ¢, the following call could be
used:

ChanOut (c, data, 256);
In occam, the same operation could be written as:

c ! 256::data
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This output operation requires four instructions: three to load the address of the channel, the address of
the data and the number of bytes, followed by the output instruction itself. It is worthwhile comparing this
with the complex code required to do the equivalent transfer on a traditional microprocessor. For example,
it would require a DMA controller to be programmed and, in order to allow some degree of multitasking,
it would be necessary to set up the interrupt hardware and write an interrupt handler to control the data trans-
fer. All of this is done automatically by the input and output instructions on the transputer.

As a more concrete example, consider the case of a file server running on a host system talking to a pro-
gram running on the transputer. This would provide the transputer program with all the host operating sys-
tem facilities such as filing system, terminal i/o etc. At the transputer end, the communication is very simple:
a single line of code, as outlined above. At the host end, a lot of complex code (probably written in assem-
bler) is required to handle the data transfer, either programming a DMA controller or polling the status regis-
ters of the memory mapped port. In the case of a Unix system, it will also be necessary to write a device
driver to interface to the hardware.

Of course, when the communication is between two transputers, then both ends of the communication are
equally simple.

Hardware independence

As well as being fast and easy to use, channel communications provide a degree of hardware indepen-
dence.

The same communication mechanism can be used to communicate between concurrent processes, with
peripherals or a host system, and even to handle interrupts. This simplifies the development and testing
of code as each process can be functionally tested before being used in the complete system. A good
description of program development for transputers can be found in [4].

Furthermore, exactly the same code can be used to communicate between processes on the same
transputer (using so called ‘soft channels’) and to communicate between transputers (using links, or ‘hard
channels’). Not only is the source code the same, but the same transputer instructions are used - the
transputer determines at run time whether it is using a hard or a soft channel. This saves the programmer
from having to make decisions about the final hardware implementation while developing and testing code.
The IMS T9000 takes this separation of software from hardware one step further than previous transputers.

6.3 IMS T9000 links

On previous transputers the programmer was limited to assigning two channels, one in each direction, to
each link. To map a particular piece of software onto a given hardware configuration the programmer has
to map processes to processors within the constraints of available connectivity. The problem is illustrated
in figure 6.1 where 3 channels are required between two processors, but only a single link connection is
available.

One possible solution, and one that is frequently suggested by transputer users, is the addition of more
links. However this does not really solve the problems; there is still limited connectivity available. The num-
ber of extra links that can be added is limited by VLSI technology. This ‘solution’ does not address the more
general communication problems in networks, such as communication between non-adjacent processors,
or combining networks in a simple and regular way.
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Figure 6.1 Multiple communication channels required between processors

6.3.1  Virtual channels

The solution chosen in the IMS T9000 was to add multiplexing hardware to allow any number of processes
to use each link, so physical links can be shared transparently. These channels which share a link are
known as ‘virtual channels’; they have the same behavior as software channels.

The IMS T9000 has four data communication links, each with a DMA controller and the ability to synchro-
nize with the scheduling of processes. The links and DMA engines are controlled by a separate communi-
cations processor, the virtual channel processor (VCP), which works concurrently with the CPU. This sup-
ports practically a large number of virtual channels on each link.

Process
A Progess

/

PFOEGSS VCP vCP

Figure 6.2 Shared links between IMS T9000s
Virtual links

Each message sent across a link is divided into packets. Every packet requires a header to identify its
destination process. Packets from different messages are interleaved on the link. There are a number of
advantages to this:

« It makes the transputer simpler to use as it separates the software configuration from the hard-
ware. The programmer does not need to limit the number of channels between processors or ex-
plicitly allocate channels to links.
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« Channels are, generally, not busy all the time therefore the VCP can make better use of hardware
resource by keeping the links busy with messages from different channels.

* Messages from different channels can effectively be sent concurrently - the processor does not
have to wait for a long message to complete before sending another.

Virtual channels are always created in pairs to form a ‘virtual link’; this means there is no need for a return
address in packets, the acknowledgements are simply sent back along the other channel of the virtual link.

Sending packets

The IMS T9000 sends the first packet of amessage and then waits for an acknowledgement from the receiv-
ing processor before sending the next. The process which sent the message cannot proceed until the last
packet of the message has been acknowledged. Messages and acknowledgements from other virtual
links can be sent while waiting for an acknowledgement on a virtual link. This ensures that a single virtual
link cannot monopolize a physical link.

vCP

D778

Packets arriving on link

/78

Figure 6.3 Muitiple channels sharing a link

Receiving packets

The initial packet of a message is acknowledged if a process has requested a message on that virtual link.
The acknowledgement can be sent as soon as the inputting process is identified, as long as the inputter
is able to accept another packet. This means that the entire packet does not have to be received before
the acknowledgement is sent. In this way the acknowledgement can be received by the transmitter before
all of the data packet has been sent and the transmitter can send the next message packet immediately.

The IMS T9000 provides one packet buffer for each virtual link so that each input can be ready to accept
an unsolicited packet. This means that other virtual channels sharing a physical link are not delayed if one
virtual channel is not ready to input. This buffering of the first packet only takes place if the receiving process
is not ready to input, otherwise the data is written directly to the inputting process’s workspace. This buffer
is not visible to the programmer; all communications are still synchronized at the message level.

The virtual channel processor

The VCP routes messages to and from processes on IMS T9000s. It shares each physical link between
any number of processes. It also supports non-local communications by using the IMS C104 to route mes-
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sages in a network of transputers. This can provide multiple virtual channels between any two transputers
in a network. Requests to send messages are queued by the VCP so that the main CPU is not delayed
waiting for packets to be sent.

Implementation

To achieve the speed required to match a faster processor, and to support the virtual channel protocol, a
new, simple link standard has been implemented. The original transputer links are referred to as over-
sampled (OS) links and use a pair of wires. The IMS T9000 links have four wires for each link (a data and
strobe line in each direction) and are known as DS links. All signals are TTL compatible.

The links are asynchronous; the receiving device synchronizes to the incoming data. This simplifies clock
distribution within a system, the exact phase or frequency of the clock on a pair of communicating
IMS T9000s is not critical. It also means that devices with different processor speeds can communicate.

6.3.2 Levels of link protocol.

As with any communications system, the links can be be described at a number of levels with a hierarchy
of protocols. At the highest level a message consists of the data that the user sends down a channel from
one process to another. Any type of data or message can be sent in this way. This communication is syn-
chronized; it will not take place until both processes are ready and the two processes will not continue until
the message transfer is complete.

First

header 32 data bytes end of packet| packet

°

°

°
header 32 data bytes end of packet

Last
header 1 to 32 data bytes end of message | packet
Long message (greater than 32 bytes)

header 0 to 32 data bytes end of message

Short message (0 to 32 daia bytes)

header | end of packet

Acknowledge packet

Figure 6.4 High Level protocol
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Packet level protocol

In order to transfer a message from one IMS T9000 to another, the virtual channel processor sends it as
one or more packets. This allows packets from a number of different channels to be interleaved on the same
link. Each packet is acknowledged by the receiving IMS T9000, to maintain synchronized communication
and to limit the amount of buffering required.

Every packet has a header defining the destination address followed by the data bytes and, finally, an ‘end
of packet’ or ‘end of message’ token. See figure 6.4.This simple protocol supports messages of any length;
the receiving device knows when each packet and message ends without needing to keep track of the
number of bytes received. It also maintains synchronization at the message level.

A packet can contain up to 32 data bytes. If amessage is longer than 32 bytes then it is split up into anumber
of packets all, except the last, terminated by an ‘end of packet’ token. The last packet of the message,
which may contain less than a full 32 bytes, is terminated by an ‘end of message’ token.

Shorter messages can be sent in a single packet, containing 0 to 32 bytes of data, terminated by the ‘end
of message’ token. With this protocol zero length messages can be sent, allowing efficient synchronization

between processors.

Packet acknowledgements are sent as zero length packets terminated with an ‘end of packet’ token. This
type of packet can never occur as part of a message because a zero length data packet must always be
the last, and only, packet of a message, and will therefore be terminated by an ‘end of message’ token.

Token level protocol

In orderto support the packet level protocol described above, a lower level protocol is needed for encoding
tokens which may contain a data byte or control information. Each token has a parity bit plus a control bit
which is used to distinguish between data and control tokens. In addition to the parity and control bits, data
tokens contain 8 bits of data and control tokens have two bits to indicate the token type (e.g. ‘end of mes-

sage’).

Control bit
Parity bit 8 Data bits
Data token P:0:D D D D D D D D
End of packet token P:1:0 1

End of message token | P 1 1 0

Figure 6.5 Low level protocol

Bit level protocol

At the lowest, hardware, level the signals on the data and strobe lines of a link encode a sequence of bit
values. The protocol guarantees that only one of the two wires will have an edge in each bittime. The levels
on the data wire give the values of the transmitted bits. The strobe signal changes state whenever the data
wire does not. These two signals encode a clock along with the data which makes it easy to asynchronous-
ly detect the data at the receiving end.
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Data

Strobe

Figure 6.6 Hardware level

The first generation of transputers use a phase locked loop to synthesize a high frequency clock signal
which is then used to sample the link data. This is adequate for the data rates involved, but would not easily
support the bit rates of 100 Mbits/s and greater used by the IMS T9000.
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7 Network communications

The use of INMOS links for directly connecting transputers has already been described. The new link proto-
col not only simplifies the use of links between processors but also provides hardware support for routing
messages across a network.

7.1 Message routing

The VCP (virtual channel processor) on the sending IMS T9000 packetizes messages to be sent over a link
and adds a header to each packet to identify the destination process. At the receiving end, the VCP uses
the header to send the data in each packet to the intended process. These headers can aiso be used for
routing packets through a communication system connecting a number of IMS T9000s together. This ex-
tends the idea of multiple channels on a single hardware link to multiple channels through a communica-
tions system; a communications channel can be established between any two processes even if they are
running on transputers that are not directly connected. The header still just specifies the destination of the
packet; the programmer does not need to know how to route that message to its destination.

Advantages for the programmer

The ability to have channels between any two processes in a network has a number of significant advan-
tages for the programmer. It simplifies the description of multiprocessor systems by separating the hard-
ware architecture from the software configuration. The programmer doesn’t need to be concemed with the
details of placing channels on links or routing messages through the network. This removes a lot of the
problems with placing of processes on processors - the decision now can be made just on the basis of
the resources (memory size, etc.) available on each processor without worrying about the available con-
nectivity.

The programming mode! for networks of IMS T9000 transputers is unchanged from that for the first genera-
tion of transputers. There is, however, greater flexibility in configuring software. An important feature is that
the hardware and software configurations, and therefore their descriptions, can be kept completely inde-
pendent. The same hardware, and the same description of that hardware, can be used for many different

programs.
Routers

The routing components in a network can be separated from the processing elements. Messages can be
passed from one processor, through any number of routing devices, to the destination processor. This
creates a temporary path through the routing system for that message so, from the programmers point of
view, there still appears to be a single channel directly connecting a process on one transputer with a pro-
cess on another.

T9000 T9000 T9000 T9000

Routing system of one or
more routing devices

Figure 7.1 A routing system

As a packet arrives on a link, the destination address must be inspected before the outgoing link can be
determined. The time before the output link can be determined is therefore proportional to the address
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length. Further, the address itself must be transmitted through the network and consumes network band-
width. It is therefore important that this address be as short as possible, both to minimize latency and maxi-
mize bandwidth.

The router needs to arbitrate between packets which arrive at the same time and have to be sent out of
the same link. Ideally, it should start to output the packet as soon as possible; i.e. immediately after the
output link is determined, provided that the link is not already in use by another packet. This keeps the
latency through the network small, in contrast to a typical packet switching network which uses a ‘store
and forward’ algorithm in which each packet is read into a buffer, the address information is decoded and
then the packet is sent out. The delay that would be introduced by this is unacceptable in a transputer net-
work. Also the amount of buffering needed would make a VLS| implementation of a large routing switch

impractical.
Separating routers and processors

There are a number of advantages to keeping the communications devices and processing elements sepa-
rate in a system. Processors can be directly connected where appropriate, which avoids the silicon costs
and extra routing delays in a small system that doesn’t need to use the routers. Also, the design of the
routing devices and processing elements can be optimized for their different roles. For example, the routing
component can have a larger number of links than would be possible if the two devices were integrated,
because the processor already needs a large number of pins for the memory interface and other functions.
Having a routing device with many links means that large network with a small number of routers can be
built, hence minimizing cost and latency and maximizing bandwidth. If messages had to flow through the
processor, it would increase the pin count, power consumption and packaging costs. This approach also
allows the construction of scaleable architectures where the communications throughput and processing
power can be balanced.

Parallel networks

Because the new link architecture allows all the virtual channels of a transputer to use a single link, com-
plete, system-wide connectivity can be provided by connecting just one link from each transputer to the
routing network. This means that the IMS T9000, with its four links, can be connected to several different
networks. This can be exploited in a number of ways. For example, two or more networks can be used in
parallel to increase bandwidth, to provide a general purpose communications network and an independent
monitoring/debugging network, or as a ‘user’ network running in parallel with a physically separate ‘sys-
tem’ network. . :

7.2 The IMS C104

An important benefit of the IMS T9000’s serial links is that it is easy to implement a full crossbar in VLSI,
even with a large number of links. The use of a crossbar allows packets to be passing through all links at
the same time, making the best possible use of the available bandwidth.

If the routing logic can be kept simple it can be provided for all the input links in the router. This avoids the
need to share the hardware, which would cause extra delays when several packets arrive at the same time.
It is also desirable to avoid the need for the large number of packet buffers commonly used in routing sys-
tems. The use of small buffers and simple routing hardware allows a single VLSI chip to provide efficient
routing between a large number of links.

Wormhole routing

The IMS C104 (figure 7.2) is one of a family of compatible communications support devices for the
IMS T9000. It includes a full 32 x 32 non-blocking crossbar switch, enabling messages to be routed from
any of its links to any other link. In order to minimize latency, the switch uses ‘wormhole routing’ - the con-
nection through the crossbar is set up as soon as the header has been read. The header and the rest of
the packet can start being transmitted from the output link immediately. The path through the switch disap-
pears after the ‘end of packet/message’ token has passed through. This is illustrated in figure 7.3. This
method is simple to implement and provides very low latency as the entire packet doesn’t have to be read
in before the connection is made.
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Figure 7.2 Block diagram of IMS C104

Minimizing routing delays

The ability to start outputting a packet while it is still being input can significantly reduce delay, especially
in lightly loaded networks. The delay can be further minimized by keeping the headers short and by using
fast, simple hardware to determine the link to be used for output. The IMS C104 uses a simple routing algo-

rithm based on interval routing (described in section 7.3.1).

T9000
or

C104

T9000
or

C104

T9000
or

C104

Figure 7.3 Packet passing through IMS C104

Because the route through each IMS C104 disappears as soon as the packet has passed through and the

packets from all the channels that pass through a particular link are interleaved, a single virtual channel

cannot ‘hog’ aroute through a network. Messages will not be blocked waiting for another message to pass
through the system, they will only have to wait for one packet.
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Control links

Like the IMS T9000, the IMS C104 has two control links. One link receives control and programming infor-
mation, the other enables all the devices in a system to be daisy-chained. The routing information for each
link of each IMS C104 is programmed, via the control link, from the controlling processor.

7.2.1  Using IMS T9000s with IMS C104s

A single IMS C104 can be used to provide full connectivity between 32 IMS T9000s. It can also be used
to connect other compatible communications devices, for example to provide an interface to first genera-
tion transputers via a protocol converter, or to peripheral devices via a link adaptor. IMS C104s can also
be connected together to build larger switches connecting bigger networks of IMS T9000s.

The IMS C104s that the packets pass through do not need to have information about the complete route
to the destination, only which link each packet should be sent out of at each point. Each of the IMS C104s
in the network programmed with information that determines which output link should be used for each
header value. In this way, each IMS C104 can route packets out of whichever link will send it towards its
destination.

Header deletion

An approach that simplifies the construction of networks is to provide two levels of header on each packet.
The first header specifies the destination transputer (actually, the output link from the routing network), this
header is removed as the packet leaves the routing system. This exposes the second header which tells
the VCP in the destination transputer which process (actually, which virtual channel) this packet is for. To
support this, the IMS C104 can route packets of any length. Any information after the initial header bytes
used by the IMS C104 is just treated as part of the packet, even if it is going to be interpreted as a header
elsewhere in the system.The IMS C104 can set any output link to do header deletion, i.e. to remove the
routing header from the front of a packet after it been used to make the routing decision. The first part of
the remaining data is then treated as a header by the next device that receives the packet.

R Header used to select
T9000 virtual link in T9000

T9000

vep IMS C104

VCP

Header used to select
output link of C104

Figure 7.4 Header deletion

As can be seen from figure 7.5, by using separate headers to identify the destination processor and a pro-
cess within that processor, the labelling of links in a routing network is separated from the labelling of virtual
channels within each processor. For instance, if the same 2 byte header were used to do all the routing
in a network, then the virtual channels in all the transputers would have to be uniquely labelled with a value
in the range 0 to 64K. However, by using two 1 byte headers, all the IMS T9000s can use virtual channel
numbers in the range 0 to 255. The first byte of the header will be used by the routing system to ensure
that the packets reach the appropriate IMS T9000 before the virtual channel number is decoded.
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(a) labeling the system with 2 byte headers

Network of C104s

T9000 T9000 o o o T9000
Virtual
channels: 0-255 256-511 65279-65535
(b) labeling the system with two 1 byte headers
Network of C104s
0 1 255
T9000 T9000 o o o T9000
Virtual
channels: 0-255 0-255 0-255

Figure 7.5 Using header deletion to label a network
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Figure 7.6 Using header deletion to route through sub-networks
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The advantages of using header deletion in a network are:

* |t separates the headers, and therefore the routing information, for virtual channels from those for
the routing network.

« The labelling of the network can be done independently of the application software running on
the network. .

« There is no limit to the number of virtual channels that can be handled by a system.

Any number of headers can be added to the beginning of a packet so that header deletion can also be
used to combine hierarchies of networks as shown in figure 7.6. An extra header is added to route the mes-
sage through each network. The header at the front of each packet is deleted as it leaves each network
to enter a sub-network.

Routing control channels
For very large networks, the usual method of connecting control links, in a chain, might introduce an unde-

sirable delay. In this case, because of the common virtual link protocol, an IMS C104 can be used to route
the control links to all the devices in a system more directly, as shown in figure 7.7.

CLink0
CLIHQ T9000
Control link .
ffom fost ——— | CLiNkO
IMS C104 Clinko
T9000
CLink0
CLink0
Data link T9000
from host
IMS C104
CLink0O
T9000

Figure 7.7 Routing control links through an IMS C104

7.3 Routing algorithms

In order to route a message through a network, an algorithm is required which is: complete (ensures that
all messages arrive); deadlock free; optimal (packets take the shortest route); scaleable (networks of any
size can be built) and simple to implement.
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7.3.1 Labelling networks
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Lookup table required

Figure 7.8 Labelling a network

For each routing component there will be a number of destinations which can be reached via each of its
output links. Therefore, there needs to be a method of deciding which output link to use for each packet
that arrives. The addresses that can be reached through any link will depend on the way the network is
labelled. An obvious way of determining which destinations are accessible from each link, is to have a
lookup table associated with all the outputs (see figure 7.8). In practice, this is difficult to implement. There
must be an upper bound on the lookup table size and it may require a large number of comparisons be-
tween the header value and the contents of the table. This is inefficient in silicon area and also potentially

slow.

Destinations reachable
from this output link

Link O —— 25, 28, 34, 36, 39 6..18 .25 ..40 ... 50
|
Lick 1] g 17 T Link2]
Link 2l 40, 42, 45, 49
7 Link 3
Link 3} » 18, 22, 24 @
Interval routing table required

Figure 7.9 Interval labelling

However, a labelling scheme can be chosen for the network such that each output link has a range of node
addresses that can be reached through it. If it is then ensured that the ranges for each link are non-overlap-
ping, a very simple test is possible. The header just has to be tested to see into which range, or interval,
it falls and, hence, which output link to use. For example, in figure 7.9, a header with address n would be
tested against each of the four intervals shown below:

Interval Output link
6<n<18 » 1
18<n<25 » 3
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25.<n<40 » 0
40 <n<5 » 2
The advantages of interval labelling are that:
¢ ltis ‘complete’ - any network can be labelled.

¢ Itis simpletoimplement in hardware - it requires little silicon area which means it can be provided
for a large number of links as well as keeping costs and power dissipation down.

¢ Because it is simple, it is also very fast, keeping routing delays to a minimum.

7.3.2 Avoiding deadiock

Deadlock can occur in a network unless the routing algorithm is designed to avoid it. Any program with
communicating processes can also deadlock if not designed carefully. It is important here, to distinguish
between deadlock as a property of the network and as a property of a program running on the network.
A deadlock free network cannot cause a program to deadlock (but, of course, neither can it prevent a badly
designed program from deadlocking). An essential property of a router in a deadlock free network is that,
like a transputer or an IMS C104, it can communicate on all of its links concurrently.

As a simple example consider a network of four nodes (see figure 7.10) with one link in each direction be-
tween each node. If the routing algorithm sends all messages clockwise and all nodes start sending to
the opposite comer at the same time, every link will become busy and the network will deadlock. It is possi-
ble to add buffers to the network, but this will only delay the point at which deadlock occurs. The amount
of buffering needed to avoid deadlock is dependent on the network size and the application program run-
ning on the network.

Figure 7.10 Deadlock in a network

In this example, deadiock can easily be avoided by modifying the routing algorithm to send messages in
opposite directions from alternate nodes. In this case, each node will only need to send one message in
each direction at any time. In this network, buffering can be added just to smooth the flow of data (i.e. to
prevent a process having to wait to send a message when the network is busy) but it is not needed to pre-
vent deadlock.

It is possible to use interval labelling to label any network in a deadlock free way. Many reguiar networks
have optimal, deadlock free routing algorithms. Examples are trees, hypercubes and grids. These net-
works can then be combined, so that any network can be optimally labelled as if constructed from these
sub-networks.
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8 Other communications devices

To complete the IMS T9000 family, a full range of communications products are planned. These will provide
the ability to interface transputers to a range of devices and technologies.

8.1 Mixing transputer types: the IMS C100

The first of these devices is the IMS C100. This allows an IMS T9000 to communicate with a first generation
transputer. The two transputer families have different electrical characteristics and data protocol. The
IMS C100 converts between the four wire DS links of the IMS T9000 and the two wire OS links of the earlier
transputers.

The other conversion done by the IMS C100 is between the IMS T9000 control links and the Reset, Error
and Analyse signals used to control the IMS T805 and similar device.

The IMS C100 provides an inter-networking solution for transputers, allowing transputer systems to be con-
structed using the optimum mix of devices. The IMS C100 has four modes of operation to enable:

« A single IMS T9000 to work in a network of first generation transputers.
» An existing transputer system to control a sub-system of IMS T9000s.
« An IMS T9000 network to interface to a network of first generation transputers.

« A first generation transputer to emulate an IMS T9000.

OS links DS links
-— IMS C100 IMS T9000

D system

Clink0 Clink0

PowerOnReset .| Reset
Reset | TReset ResetOut Reset

Analyse Analysein Error

Error

Figure 8.1 IMS C100 used with an IMS TS000

The IMS C100 converts both data and control protocols between the two transputer types and is intended
to be used in conjunction with software running on the attached transputers.
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Figure 8.2 IMS C100 used with a first generation transputer

8.2 Interfacing to peripherals and host systems

To complete the family of communications devices, arange of interface devices are being designed. These
will convert between the serial link format and a parallel interface, for example. The first of these devices
will interface to a microprocessor bus. This will allow the IMS T9000 to communicate with non-transputer

systems.
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9 Software and systems

INMOS provides a wide range of standard software and hardware products to support development for
the transputer. These have been designed to enable users to evaluate transputers and to develop systems
easily and within the shortest possible timescales.

Development tools include compilers for languages such as C, Fortran and 0CCam as well as the software
needed to test, program and debug systems built from one or many transputers. All the special features
of the transputer are available from high level languages (either as part of the language or as library calls).A
wide range of software is also available from third-party suppliers including compilers, such as Ada, and
real-time kemels, e.g. VRTX and C Executive.

INMOS also supplies arange of modular hardware products. These exploit the ability to build very compact
transputer systems (such as an IMS T805 with 4 Mbytes of memory on a board measuring approximately
2.5 cms by 9 cms) to provide a range of small, cost effective ‘TRansputer Modules’ (TRAMs). These mod-
ules can be mounted on a variety of motherboards, which are available for a range of host systems. The
motherboards provide an interface to the host development system and can be connected to build larger
systems. The standard sizes and interfaces of the modules and motherboards have been adopted by a
number of third party developers to extend the range of compatible systems products available to
transputer users.

INMOS will continue to support all these standards for the IMS T9000 product family, extending them where
necessary to exploit the new features of these products.

More details of the systems and software products currently available for the transputer family can be found
in [5].

9.1 Development software

INMOS has a range of development software, running on different hosts, for the transputer family. These
tools are aimed mainly at developing code for embedded systems, i.e. not necessarily running under the
control of an operating system. It is expected that the end products will either be connected to a host system
or will be completely self-contained units.

Software can be developed in standard high level languages using cross-compilers running on a range
of host machines. Programs for single transputers can be developed using just conventional programming
tools, such as compilers and linkers. All the languages include extensive support, in the form of run-time
libraries, for concurrency and communication. It is possible to write a program consisting of many concur-
rent processes entirely in C (or any other language available for the transputer).

Programs written for multi-transputer systems, or programs written as many sub-programs running in paral-
lel on a single processor, will require the use of extra programming tools. The transputer development sys-
tem includes tools for preparing a program for execution on a parallel processing system and for debug-
ging such systems. These tools include ‘configuration’ tools which are used for describing the hardware,
mapping processes to transputers and setting up the communications channels. It is possible to boot and
load a network with code from the host development system, or from a ROM connected to one of the
transputers in the network. Programs can communicate with a ‘server’ on the host system to get access
to host facilities such as i/o. In addition there are tools for debugging a program running on a network of
transputers. An outline of some of these transputer specific tools is given below.

All of the programming tools are available for all members of the transputer family and, where appropriate,
are used in the same way and provide the same functions for all processor types.

9.1.1  Configuration tools

In discussing IMS T9000 transputer systems, the word ‘configuration’ is used in two senses. The first is
when an IMS T9000 transputer, or an IMS C104, is initialized - at this time a number of intemal ‘configura-
tion’ registers have to be written to program the PMI, the VCP and other subsystems. The process of prepar-
ing a program for loading onto a transputer network is also referred to as ‘configuration’ (and the software
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tools used are known as ‘configurers’). In this description of the development process, the word ‘configura-
tion’ is reserved for the latter meaning of software configuration; the setting up of the hardware will be called
‘initialization’.

The configuration tools are used to build programs consisting of a number of processes or sub-programs
running in parallel on one or more transputers. Input files are used to describe the hardware, the software
and a mapping of the software onto the hardware. From these, the configuration tools produce the files
which are used to initialize and load the transputer network.

Hardware description

The hardware is described using a Network Description Language (NDL). For each transputer in the sys-
tem, this specifies the processor type, the amount and types of memory and peripheral devices. It also
describes the routing network used, if any, and how the data and control links of all the devices in the sys-
tem are connected.

The configuration tools use this description to program the PMI and VCP registers of the IMS T9000 and
to label the links of any IMS C104s used. The information in this file is also used to create the bootable
version of a program to run on the network.

If certain simple rules are followed in the construction and labelling of networks, then the tools can check
the descriptions for errors and deadlock freedom. The NDL description can also be checked against the
actual hardware.

Software description

The NDL file for a particular system will normally be provided by the hardware vendor or designer. The pro-
grammers using the system only need to include a reference to the NDL file in the software configuration
file.The NDL description exports the names of the processors and routes in the network for use in the soft-
ware and mapping description.

The software description has to specify the object code files for each process in the system and the proce-
dure interface (parameters and their types). Optionally, other language dependent attributes can be de-
fined. For example, the size of stack and heap areas for a C program can be specified. The software de-
scription must also specify the way that any communication channels are used between processes.

Mapping software to hardware

A mapping of software (processes) onto hardware (transputers) must also be given. The mapping can be
as simple as a series of statements of the form: ‘place process on processor’ for each process in the
program. Any number of processes can be placed on each processor, allowing a program to be initially
tested on a single processor before the multi-processor version is tried. The configuration tools automati-
cally work out the mapping of channels onto virtual links. If necessary, for example to access the host sys-
tem or a particular piece of hardware, the programmer can explicitly map channels onto links or routes
through the network.

Configuration languages

To provide a degree of flexibility for the user, there are two ‘dialects’ of configuration language: a C-like
one and an 0ccam-style one. These perform identical functions but each has a different syntax, loosely
based on these languages. These configuration languages are used for describing the structure of the soft-
ware and how it is mapped onto the hardware.

Types of networks
The INMOS development tools support development of programs for:
Networks consisting of IMS T9000 transputers only (‘non-routed’ networks).
Networks consisting of IMS T9000 transputers and IMS C104 routers (‘routed’ networks).

Networks consisting of any other transputer types.
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The tools do not directly support arbitrary, mixed networks of IMS T9000 transputers and first generation
devices. However, it is possible to connect the two types of networks, via an IMS C100, although the code
for the two sub-networks has to be developed separately. The two networks can then be loaded from the

host, via a common route.

Inthe case of non-routed networks (of any transputer type) the configuration tools automatically add routing
software to the program to provide any communications required between processors which are not direct-

ly connected.

A network of IMS T9000 transputers can be loaded with code compiled for an IMS T805 or an IMS T9000.
This allows users to write programs for the IMS T9000 even if the compiler used is only available for the
IMS T805. It also means that existing, compiled code can be run on an IMS T9000 system.

9.1.2 Initializing and loading a network

Transputer systems can be bootstrapped in two ways; either from ROM or from link. The initialization and
initial code loading are done via the control link. This initial boot code then loads the main application code
from the data links of the processor.

Levels of initialization

The initialization and loading of code for the IMS T9000 are done in a number of stages. The various levels
of initialization ¢an be done either by code running on an IMS T9000 booted from ROM, or from the host
system via the control link. In a network, different processors may be initialized to different levels from ROM
with the later stages being done via the control link.

Booting a system from link

The ‘boot from link’ option is normally used during program development or whenever a system needs to
be able to run different programs at different times.

In order to load a network from a host system, connections to a single control link and a single data link
are required. This data link normally goes directly to an IMS T9000, the rest of the network being loaded
via this processor. The development tools generate data files which are used to do all the initialization and
loading of code onto the network.

Booting a system from ROM

The development tools can produce a number of different types of ROM. These range in function from per-
forming the (partial) initialization of a single IMS T9000, to booting an entire system.

When booting a system completely from ROM, it is possible to have a single ROM on one processor. This
root processor boots from the ROM and then initializes and loads the rest of the network via links; all other
transputers in the network being set to boot from link.

9.1.3 Host servers

A server is a program that runs on the host machine to give software, running on an attached transputer
system, access to various host facilities such as i/o and disk storage. The server typically loads the execut-
able code onto the transputer network via a link interface. It then waits for requests and data to be sent by
the transputer program. These requests generally come from the run-time library, when the program makes
calls to standard input and output functions (e.g. printf () in C).

The server allows the development tools running on the host to control the target transputer system in order
to reset the system, do any initialization needed and then load a bootable program file. Software running
on the host can also use the server to access the transputer system for testing and debugging.

The nature of the connection from the host to the transputer system depends on the type of the host system,
but generally provides access to transputer links either directly, via a link adaptor on the host bus, or
through some other standard communications system such as Ethernet. In many cases the server software
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includes a device driver, which handles the low level details of the hardware interface, plus a set of func-
tions to access the link through the device driver.

9.1.4 Debugging

INMOS provides an interactive symbolic debugger for debugging programs running on networks of
transputers. This supports source level debugging of programs which consist of a number of parallel pro-
cesses running on any number of processors. The user can set breakpoints, inspect the state of processes
(including expression evaluation, modification of variables, backtracing procedure calls, etc) as well as
examining the low level state of each transputer in the system. A very useful feature is the ability to ‘jump’
down a communication channel between two processes - this allows the state of two communicating pro-
cesses to be examined.

The debugger is currently being developed further to make it more powerful and easier to use. Some of
the features that will be added are:

* Window based user interface.

¢ List all processes running in the network.

« Stop processes to examine their state.

« Source level single stepping.

« History fracing (e.g. keeping track of communications events).

+ Variable watchpointing.

9.1.5 IMS T805 emulation

An IMS T9000 can be booted from a ROM which performs all initialization and then executes a loader pro-
gram. The loader then waits for code to arrive on any of the data links. This emulates the behavior of the
IMS T805 which, after reset, waits for bootstrap code to arrive on a link. With the addition of an IMS C100
to do protocol conversion, this provides the ability to plug an IMS T9000 dlrecﬂy into an existing transputer
network and program it as if it were an IMS T805.

Because the IMS T9000 is binary compatible with, and has the same programming model as, previous
transputers the programmer can use exnstmg development tools, source code, libraries and programming
techniques.

This compatibility also makes it easy for systems companies to port existing software, such as real-time
kernels, compilers and so on, that have already been developed for the current transputer range. This en-
ables an IMS T9000 specific version of these products to be developed very quickly. Additional work can
then be done, if necessary, to extend the product to make use of new features of the IMS T9000.

9.2 iq Systems products

There is already a wide range of TRAMs and motherboards designed for the first generation of transputers.
This includes modules with transputers plus various amounts and types of memory, through to various in-
dustry standard interfaces such as SCS| and GPIB. There is a complementary range of motherboards inter-
facing to hosts such as PC and Sun.

These TRAMs and industry standard motherboards make it easy to develop, prototype and build multipro-
cessor systems, based on the transputer family.
9.2.1  IMS T9000 products

To support the IMS T9000, a number of products compatible with the existing TRAM definition are being
designed. In the longer term a new module standard is being defined to exploit the faster links and other
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features of the IMS T9000. In addition the approach to systems design using the IMS T9000 will be some-
what different because of the facilities provided by the virtual links.

The objectives of the new range of systems products are:

» No jumpers or switches on boards - the user can simply plug together modules to build a system
and start using it.

» No cables for interconnection within a system - all link interconnections via a backplane and
IMS C104s.

¢ Flexible but fixed network topology - this will be chosen to provide complete connection between
all transputers in a system with minimal latency.

« Provision of 3.3V for new high speed, low power components.
¢ Ability to use existing TRAMs where appropriate.

¢ Ability to build fault tolerant and ‘live insertion’ systems.

« Standard interfaces inside and outside the box.

The opportunity will be taken to increase the modularity of the systems components, and to improve the
design mechanically and provide better support for peripheral interface connections. To allow flexible inter-
connection of boards and modules, a backplane architecture is being defined to enable the construction
of routed and non-routed systems. These and other changes are being made based on experience and
customer feedback.

The new standards will embrace modules, boards and system interconnections. This includes the con-
struction and interconnection of scaleable systems with small (1-10) through medium (up to 64) to large
(>256) numbers of processors.

The new module standard will include the provision of a ROM which may be used to provide configuration
data for the memory interface, etc. In some cases the processor might boot from this ROM as well. The
ROM will also be used to store useful information about the board, such as the module type, serial number,
vendor, memory size and speed, and information about other peripheral devices.

The new backplanes will be based on metric standards and will provide a standard backplane interface.
This will probably follow the board and connector formats defined by the Futurebus Plus standard.

The transputer links are, naturally, used for connecting between transputers on a single board or within a
system. There is also a need for longer connections between systems, for example to support interfacing
between a target system and the development host. Two standards are being defined; an electrical connec-
tion for distances up to about 10 meters, and a low cost optical fiber interconnect for longer distances.

Compatible development products

Initially, INMOS will provide a TRAM compatible with current standards but containing an IMS T9000. To
provide compatibility this will have an IMS C100 to convert the links and control signals. The IMS T9000
will boot from ROM so it can be initialized and then be ready to load code down a data link; it will then
appear just like a very fast IMS T805.

This TRAM can be used in an existing development environment to do initial evaluation of code running
on the IMS T9000. The program running on this TRAM can communicate but will obviously not have the
IMS T9000 advantages of very high speed links and the virtual channel mechanism.

A similar product will be developed, allowing the IMS T9000 to be used in an existing development system,
but providing direct connection of the IMS T9000 links. This will enable more realistic multiple IMS T9000
development to be undertaken.

IMS T9000 specific products

INMOS is developing a range of IMS T9000 modules based on the new standard. These will range from
simple ‘compute only’ modules, with a transputer and memory, through to interface modules. These will
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provide access to standards such as SCSI, FDDI, etc. Motherboards for these modules will also be
supplied, both to the new standard and for popular host computers, such as the IBM PC.

Host interfaces ‘

There is a need to provide a new type of interface to efficiently support communlcatlon between a host
system and a program running on an IMS T9000 system.

The existence of multiple virtual links into a network can be exploited to simplify the way that software on
the transputer accesses host services. This can also be used to provide all transputers with access to the
host. The handling of virtual channels on the host could be implemented in hardware for highest perform-
ance or software for greatest flexibility and lowest cost. The choice depends on the capabilities of the par-
ticular host hardware and operating system, as well as user requirements. For example, the data transfer
speed required will be different in a development situation and an accelerator.

The requirements for connecting into the data link network and the control network are quite different. The
data links will typically have a relatively small number of virtual channels connecting to the host, but will
require very high data rates (especially if the IMS T9000 system is being used an an accelerator or co-pro-
cessor). There are potentially a very large number of virtual control links but these can run at a lower data
rate.
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1 Introduction
This document contains preliminary hardware information for the IMS T9000 transputer.

The IMS T9000 transputer is a 32-bit CMOS microprocessor designed to be used in applications which
require high performance combined with high integration and simplicity of use. It is instruction set compat-
ible with the IMS T805 transputer, with additional support for multiprocessing and real-time applications.
Software support for the IMS T9000 transputer includes: ANSI C compilers, ANSI Fortran compilers, and
occam compilers, developed and supported by INMOS and third party software companies.

Figure 1.1 shows the major operational units of the IMS T9000 transputer.

The IMS T9000 has a pipelined superscalar architecture, which allows multiple instructions to be executed
every processor cycle. Compilers can generate code without considering any details of the pipeline as
the hardware organizes the incoming instruction stream into optimum groups of instructions. Other features
which contribute to performance are a 16 Kbyte instruction and data cache, a 64-bit floating point unit, and
a high bandwidth programmable memory interface. The floating point unit incorporates hardware to
perform divide and square root. A separate workspace cache stores 32 locations relative to the workspace
pointer to provide zero latency access to local variables. The IMS T9000 has four communication links for
fast inter-processor communications.

The 16 Kbyte cache provides a peak bandwidth of 200 Mwords/sec. It can also be programmed to function
as 16 Kbyte of on-chip memory, or as 8 Kbyte of on-chip memory and 8 Kbyte of cache. This allows small
applications to run with no external memory, and guarantees deterministic code behavior for applications
where this is critical.

Transputers provide hardware support for scheduling processes, and this can be used directly by applica-
tions written, for example, in C, Fortran or occam. It can also be used to simplify the software implementa-
tion of real-time kernels and operating systems. The process model of the IMS T9000 transputer provides
per process error handling and debugging support, and allows programs to be run in a protected logical
address space. To improve the efficiency of real-time kernels access to the state of the processor has been
simplified, and full control over interrupts and timeslicing has been provided.

Communication between processes takes place over channels, and is implemented in hardware. The
same machine instructions are used for communication between processes on the same processor as for
communication between processes on different IMS T9000 processors. On the IMS T9000, communication
between processes on different processors takes place over virtual channels. Virtual channels are multi-
plexed onto each physical link by the virtual channel processor. Communication between IMS T9000
transputers that are not directly connected is achieved by using a separate dynamic routing switch, the
IMS C104.

With virtual channels it is not necessary for the programmer to allocate channels to phyéical links, and the
allocation of processes to processors is simplified. The programming of powerful multiprocessor systems
is therefore flexible and elegant.

The IMS T9000 has four high bandwidth serial communication links. To support virtual channels and
dynamic message switching, and to provide a higher data bandwidth with high data integrity, each physical
link consists of four wires, two in each direction, one carrying data and one carrying a strobe. The links
are therefore referred to as data-strobe (DS) links. The four DS links support a total bidirectional data
bandwidth of 80 Mbytes/sec.

Two separate control links are provided to enable networks of IMS T9000 processors to be controlled and
monitored for errors, even during the presence of faults in the normal data communications network. The
control links of IMS T9000s and IMS C104s can be daisy chained, and/or connected into a tree by
connection to a IMS C104. Whatever the physical connectivity the controlling network forms a logical tree,
and a control processor is connected at its root. For small systems (such as a single IMS T9000 transputer)
there is no need to use the control links as all necessary functionality can be controlled from software.

The highly integrated programmable memory interface has a 4 Gbyte physical address space, and
provides a peak bandwidth of 50 Mwords/sec. Four independent banks of external memory are supported,
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and this allows the implementation of mixed memory systems, with support for DRAM, SRAM, EPROM and
VRAM. It has a 64-bit data bus, and each bank of memory can be configured to be 8, 16, 32 or 64 bits wide.
The full performance of the IMS T9000 can be exploited using relatively low-cost DRAM, and up to 8 Mbytes

of DRAM can be connected with no external components.
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Figure 1.1

IMS T9000 block diagram
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2 Preliminary pin designations
Signal names are prefixed by not if they are active low, otherwise they are active high.
Pin In/Out Function
VCC, GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockin in Input clock
ProcSpeedSelect0-2 in Processor speed selectors
Reset in System reset
StartFromROM in Boot from external ROM or from link
Error out Error indicator
Table 2.1 IMS T9000 system services
Pin In/Out Function
ProcClockOut out Processor clock
MemAdd2-31 out Address bus
MembData0-63 in/out Data bus
notMemRAS0-3 out RAS strobes - one per bank
notMemCASO0-3 out CAS strobes - one per bank
notMemPS0-3 out Programmable strobes - one per bank
notMemWrBO0-3 1 out Byte-addressing write strobes
MemWait in Memory cycle extender
MemReqin in Direct memory access request
MemGranted out Direct memory access granted
MemReqOut out Processor requires memory bus
notMemBootCE out Bootstrap ROM chip enable
notMemRf out Dynamic memory refresh indicator

t these pins have different functions depending on the external port sizes

Table 2.2 IMS T9000 programmable memory interface
Pin In/Out Function
Eventin0-3 in Event inputs
EventOut0-3 out Event outputs

Table 2.3

IMS T9000 event
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Pin In/Out Function
LinkinData0-3 in Link input data channels
LinkIinStrobe0-3 in Link input strobes
LinkOutData0-3 out Link output data channels
LinkOutStrobe0-3 out Link output strobes
CLinkinData0-1 in Control link input data channels
CLinkinStrobe0-1 in Control link input strobes
CLinkOutData0-1 out Control link output data channels
CLinkOutStrobe0-1 out Control link output strobes

Table 2.4 IMS T9000 link
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3 Processor

The IMS T9000 transputer has a 32-bit pipelined processor. The pipeline consists of 5 stages and, where
possible, multiple instructions are combined into a group and passed down the pipeline together. This al-
lows more than one instruction to be executed on each processor cycle. Code can be generated for the IMS
T9000 transputer without considering the details of the pipeline. However, optimizing compilers can pro-
duce more efficient code if these details are taken into consideration.

Background details of earlier transputers can be found in Transputer Instruction Set - A Compiler Writers’
Guide. Much of the information in this guide can be directly applied to the IMS T9000 transputer. This prelim-
inary information outlines the implications of the extensions which have been implemented in the IMS

T9000 transputer.

3.1 Registers

The design of the IMS T9000 transputer processor exploits the availability of a fast on-chip cache and a
workspace cache by having only a small number of registers; six registers are used in the execution of a
sequential integer process. The six registers are:

« The workspace pointer which points to an area of store where local variables are kept.
« The instruction pointer which points to the next instruction to be executed.

* The operand register which is used in the formation of instruction operands.

« The Areg, Breg and Creg registers which form an evaluation stack.

Areg, Breg and Creg are sources and destinations for most arithmetic and logical operations. Loading a
value into the stack pushes Breg into Creg, and Areg into Breg, before loading Areg. Storing a value from
Areg, pops Breg into Areg and Creg into Breg, the value left in Creg is undefined.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For exam-
ple, the add instruction adds the top two values in the stack and places the resuit on the top of the stack. The
use of a stack removes the need for instructions to re-specify the location of their operands. No hardware
mechanism is provided to detect that more than three values have been loaded onto the stack. Itis easy for
the compiler to ensure that this never happens.

A separate floating point evaluation stack is provided, consisting of FPAreg, FPBreg, and FPCreg. The
floating point evaluation stack behaves in a similar way to the integer evaluation stack. )

Any location inmemory can be accessed relative to the workspace pointer, enabling the workspace to be of
any size. The first 32 words relative to the workspace pointer may be cached by the workspace cache.

Registers Locals ~ | Program

Areg

Breg

Creg

Workspace

Next Instruction

Operand

Figure 3.1 Registers used in sequential integer processes
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3.2 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each.

The processor has a microcoded scheduler which enables any number of concurrent processes to be ex-
ecuted together, sharing the processor time. This removes the need for a software kernel, although kemels
can still be written.

At any time, a process may be

Active - Being executed.
- Interrupted by a higher priority process.
- On a list waiting to be executed.

Ready to input.
- Ready to output.
- Waiting until a specified time.

Inactive

The scheduler operates in such a way that inactive processes do not consume any processor time. Each
active high priority process executes in turn until it becomes inactive. The scheduler allocates a portion of
the processor’s time to each active low-priority process in turn (see section 3.3). Active processes waiting
to be executed are held in two linked lists of process workspaces, one of high priority processes and one of
low priority processes. Each list is implemented using two registers, one of which points to the first process
inthe list, the other to the last. In the linked process list shown in figure 3.2, process S is executing and P, Q
and R are active, awaiting execution. Only the low priority process queue registers are shown; the high
priority process ones behave in a similar manner.

Registers Locals Program
FPtr1 (Front) p
BPtr1 (Back)
Q
Areg
Breg R
Creg
W S
orkspace

Next Instruction

Operand
Figure 3.2 Linked process list
Function High Priority Low Priority
Pointer to front of active process list Fptr0 Fptri
Pointer to back of active process list Bptr0 Bptr1

Table 3.1 Priority queue control registers
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Each process runs until it has completed its action or is descheduled whilst waiting (for a communication
from another process or transputer, or for a time delay to complete). In order for several processes to oper-
ate in parallel, a low-priority process is only permitted to execute for a maximum of two timeslice periods.
After this, the machine deschedules the current process at the nexttimeslicing point, adds itto the end of the
low-priority scheduling list and instead executes the next active process. The timeslice period is approxi-
mately 1 ms.

There are only certain instructions at which a process may be descheduled. These are known as desche-
duling points. A process may only be timesliced at certain descheduling points. These are known as times-
licing points. As aresult, an expression evaluation can be guaranteed to execute without the process being
timesliced part way through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and the
next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and pointers or active queues should not be altered directly.

The processor provides a number of special instructions to support the process model, including start pro-
cess and end process. When a main process executes a parallel construct, start process instructions are
used to create the necessary additional concurrent processes. A start process instruction creates a new
process by adding a new workspace to the end of the scheduling list, enabling the new concurrent process
to be executed together with the ones already being executed. When a process is made active it is always
added to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses a
workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialized to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.3 Priority

The IMS T9000 transputer directly supports two levels of priority. Priority 1 (low priority) processes are ex-
ecuted whenever there are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then the first on the queue is selected and executes until it has to wait for a communication,

a timer input, or until it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to pro-
ceed, then one is selected. Low priority processes are periodically timesliced to provide an even distribu-
tion of processor time between computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2 n -2 timeslice periods. Itis then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolizes the transputer’s time; i.e. it has a distribution of timeslicing points.

When the processor is executing a low-priority process and a high-priority process becomes ready to ex-
ecute, an interrupt occurs. The state of the low-priority process is saved into ’shadow’ registers and the
high-priority process is executed. When no further high-priority processes are able to run, the state of the
interrupted low-priority process is loaded from the shadow registers and the low-priority process is re-
started.

Instructions are provided on the IMS T9000 transputer to allow a high-priority process to store the shadow
registers to memory and to load them from memory. Instructions are also provided to allow a process to
exchange an alternative process queue for either priority process queue. These instructions enable a pre-
emptive scheduler to be constructed.

Note that the workspace pointer is always word aligned so that bits 0 and 1 of the WdescReg register are
free to store the process priority and type. The priority of a process is stored as bit 0 of the WdescReg
register. For a low priority process this bit is set to 1, for a high priority process to 0.
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3.4 Process types
The IMS T9000 transputer schedules two types of process; one is identical to that provided by existing
transputers, the other provides additional trap-handling and debugging capabilities.

When running a process of the first type the IMS T9000 transputer implements the same global trap-
handling and debugging mechanisms as the IMS T225, IMS T425, IMS T805 and IMS T801 transputers.
Processes of this type are therefore referred to as G-processes.

When running a process of the second type the IMS T9000 transputer provides a set of localized, per-
process, trap-handling and debugging mechanisms. Processes of this type are therefore referred to as
L-processes.

The type of a process is stored as bit 1 of the WdescReg register. For a G-process this bit is set to 0, for an
L-process it is set to 1. Both types of process may be present on the process queue at the-same time, the
IMS T9000 dynamically switches to and from emulating the IMS T805.

3.4.1 G-processes: global trap-handling and debugging

The layout of the workspace for a G-process is shown in table 3.2.

Word offset | Location name | Purpose
-1 p.lptr the instruction pointer of a descheduled process
-2 p.Link the address of the workspace of the next process in scheduling
queue
-2 p.Count message length in variable length communication
-3 p.Pointer saved pointer to communication data area
-3 p.State saved alternative state
-3 p.Length length of message received in variable length communication
-4 p.TLink address of the workspace of the next process on the timer queue
-5 p.Time time that