Thisis Chapter 1 from the second edition of :

Networks, Routers and Transputers:
Function, Performance and applications

Edited\D. May, PW. Thompson, and PH. Welch

© INMOS Limited 1993

Thisedition hasbeen madeavail ableelectronically sothat it may befreely copied and distributed.
Permission to modify the text or to use excerpts must be obtained from INMOS Limited. Copies
of this edition may not be sold. A hardbound book edition may be obtained from |OS Press:

|OS Press |OS Press, Inc.

Van Diemenstraat 94 P.O. Box 10558

1013 CN Amsterdam Burke, VA 22009-0558
Netherlands U.SA.

|OS Press/Lavis Marketing Kaigai Publications, Ltd.

73 Lime Walk 21 Kanda Tsukasa—Cho 2—Chome
Headington Chiyoda—Ka

Oxford OX3 7AD Tokyo 101

England Japan

This chapter was written by M.D. May and PW Thompson.

1 Transputers and Routers:
Components for Concurrent
Machines

1.1 Introduction

This chapter describes an architecture for concurrent machines constructed from two types of
component: ‘transputers’ and ‘routers'. In subsequent chapters we consider the details of these
two components, and show the architecture can be adapted to include other types of component.

A transputer isacomplete microcomputer integrated in asingle VLSI chip. Each transputer has
anumber of communication links, allowing transputers to be interconnected to form concurrent
processing systems. Thetransputer instruction set containsinstructionsto send and receive mes-
sagesthrough theselinks, minimizing delaysininter-transputer communication. Transputerscan
be directly connected to form specialised networks, or can be interconnected via routing chips.
Routing chipsare VL SI building blocks for interconnection networks: they can support system-
wide message routing at high throughput and low delay.

1.2 Transputers

VLSI technology enables a complete computer to be constructed on a single silicon chip. The
INMOS T800 transputer [1], integrates a central processor, afloating point unit, four kilobytes
of static random access memory plus an interface for external memory, and a communications
system onto a chip about 1 square centimetre in area.

FPU
= CPU
RAM =
7 Links =

Memory interface

T800 Transputer

Asamicrocomputer, thetransputer isunusual inthat it hasthe ability to communicate with other
transputers via its communication links; this enables transputers to be connected together to
construct multiprocessor systems to tackle specific problems. The transputer is also unusual in
that it hasthe ability to execute many software processes, sharing itstime between them automati-

cally, to create new processes rapidly, and to perform communication between processes within
a transputer and between processes in different transputers. All of these capabilities are inte-
grated into the hardware of the transputer, and are very efficient. Thisisdiscussed in more detail
in chapter 2.

The use of transputersfor parallel programming has been greatly ssmplified by the devel opment
of the occam programming language [2]. The occam language allows an application to be ex-
pressed as a collection of concurrent processes which communicate viachannels. Each channel
Isapoint-to-point connection between two processes; one processawaysinputsfrom the channel
and the other always outputs to it. Communication is synchronised; the first process ready to
communicate waitsuntil the second isal so ready, then the datais copied from the outputting pro-
cesses to the inputting process and both processes continue.

Each transputer has a process scheduler which allows it to share its time between a number of
processes. Communication between processes on the same transputer is performed using thelo-
cal memory; communication between processes on different transputersisperformed using alink
between the two transputers. Consequently, a program can be executed either by asingle trans-
puter or by a collection of transputers connected in a network. Three different ways of using
transputers to execute the component processes of atypical program are shown below.

> - > ...Q

1 transputer 3 transputers 5 transputers

Figure 1.1 Allocations of processes to processors

Figure 1.1 shows the same collection of processes executed on three different specialised net-
works. Inthefirst network, whichisasingletransputer, each communication channel connecting
two processes is implemented using the local memory of the transputer. In the other examples
some or al of the channels are implemented by physical links between different transputers.

Transputers have also been used to construct anumber of general purpose computers, which all
consist of an array of transputers connected together in anetwork. 1n some machinesthe network
can be configured by software, for example by connecting the linksviaaprogrammabl e crossbar
switch. Many applications have been successfully ported to these machines and have demon-
strated efficient parallel processing.

One of the problems with existing general purpose transputer machines is the need to carefully
match algorithms to the interconnection networks of specific machines, which resultsin alack
of softwareportability. It hasbecomeclear that astandard architectureisneeded for these general
purpose message-passing machines. An attractive candidate is a collection of transputers con-
nected by a high throughput, low delay communication network supporting communication
channels between processes anywhere in the network.

1.3 Routers

There are many parallel agorithms in which the number of communication channels between
processes on different transputers is much greater than the number of physical links availableto

connect the transputers. 1n some of these algorithms, a process executed on one transputer must
communicate with processes on alarge number of other transputers. Theserequirementsfor sys-
tem-wide communication between processes can be met by:

* new transputersincluding hardware to multiplex many ‘virtual links along asingle physi-
cal link (see chapter 2)

* new VLS| message-routing chips (routers) which can be used to construct efficient com-
munication networks

This new communications architecture allows communication channels to be established be-
tween any two processes, regardlessof wherethey arephysically located inthesystem. Thissim-
plifies programming because processes can be all ocated to transputers to optimize performance
after the program has been written. For general purpose message-passing computers, a further
benefit isthat processes can be allocated to transputers by acompiler, which effectively removes
configuration details from the program, thereby enhancing portability.

16 |Router

— 1

Router
33

16 Router
2

Router
34

Router
48

Figure 1.2 Network constructed from routers

Theuseof two separate chips, oneto perform computing (thetransputer) and oneto perform com-
munication (the router) has several practical advantages:

* Transputers can be directly connected without routers in systems which do not require
message routing, so avoiding the silicon cost and routing delays.

* |t allows routers to have many links (e.g.32) which in turn allows large networks to be
constructed from asmall number of routers, minimizing the delay through the network.
For example, 48 such routers can connect 512 terminals with only 3 routing delays, as
infigure 1.2.

* |t avoidsthe need for messagesto flow through the transputer, reducing the total through-
put of the chip interface. This reduces the pin count, power consumption and package
costs of the transputer.

* |t supports scal able architectures in which communication throughput must be balanced
with processing throughput. In such architectures, it isknown that overall communica-
tion capacity must grow faster than the total number of processors - alarger machine
must have proportionately more routers.

Since the new architecture allows all the virtual links of a transputer to pass through a single
physical link, system-wide communication can be provided by connecting each transputer to a
routing network viaasinglelink. Theprovision of several linkson transputersallows each trans-
puter to be connected to several different networks. Examples of the use of this technique are:

 The use of two (or more) identical networksin parallel to increase throughput and fault—
tolerance [7]

» The use of amain network and an (independent) monitoring and debugging network

» Theuse of amain network and an independent network for input and output (or for access
to discs)

Another technique for increasing the communications throughput isto construct the network us-
ing two (or more) linksin parallel for each connection. An example of a2-dimensional network
of thiskind is shown in figure 1.4.

In some cases, it is convenient to construct a network from routers and attach transputersto its
termina links. An example isthe multi-stage network shown infigure 1.2. An alternativeisto
construct anetwork such asahypercubeor an array from anumber of nodes, each node consisting
of one or more transputers and arouter as shown in figure 1.4.

Router

Transputer

Figure 1.3 Node combining a transputer and a router
Operation of Routers

Each router has a number of communication links and operates as follows:

* |t uses the header of each packet arriving on each link to determine the link to be used to
output the packet;

* |t arbitrates between two (or more) packets which must both be output through the same
link, and causes them to be output one after another;

* |t startsto output each packet as early as possible (immediately after the output link isde-
termined, provided that the output link is not already in use for another packet).

Theoverall throughput of therouter isdetermined by the number of linkswhich can be operating
concurrently. Animportant benefit of employing serial linksfor packet routingisthatitissimple
toimplement afull crossbar switchin VLS, evenfor alargenumber of links. Useof afull cross-
bar allows packets to be passing through all of the links at the same time.

The ability to start outputting a packet whilst it istill being input can significantly reduce delay,
especialy in networks which are lightly loaded. Thistechnique is known as wormhole routing.
In wormhole routing, the delay through the switch can be minimized by keeping headers short
and by using fast, smple, hardware to determine the link to be used for output.

Theuseof simplerouting hardware allowsthiscapability to beprovided for every link intherout-
er. Thisavoidsthe need to shareit between many linkswhich would increase delay in the event
of several packetsarriving at once. Equally, itisdesirableto avoid the need for the large number
of packet buffers commonly provided in some packet routing systems (in which each packet is
input to abuffer before output starts). Theuse of small bufferstogether with simplerouting hard-
ware alows asingle VLSI chip to provide efficient routing between alarge number of links.

The ssimple communications architecture allows a wide variety of implementations:
* CMOS VLSI can be used to construct routers with alarge number of links,
e |t is straightforward to combine transputers and small routers on a single chip;

* |t is possible to construct routersin ECL or Gallium Arsenide technology to support ex-
tremely high speed implementations of the link.

For some purposes, it may be useful to combine arouter together with each transputer inasingle
chip (or asingle package). One exampleisthe construction of atwo dimensional array of ssmple
transputers for image processing (for this application, no off-chip memory is needed, and most
communicationislocal). Thearchitecture of the routing system makes such a combination pos-
sible, asinfigure 1.4.

o ST
ST

Sl ol

I
il

Figure 1.4 Two dimensiona array of nodes

gllll

1.4 Message Routing

141 Avoiding Deadlock

The purpose of acommunications network isto support efficient and reliable communication be-
tween processes. Consequently, an essential property of a communications network is that it
should not deadlock, i.e. arrive in astate where further progressisimpossible. However, dead-
lock can occur in most networks unlesstherouting algorithmisdesigned to prevent it. For exam-
ple, consider the square of four nodes shown infigure 1.5. Suppose that every node attemptsto
send apacket to the opposite corner at the sametime, and that therouting al gorithm routes packets
inaclockwisedirection. Theneachlink will become*busy’ sending a packet to the adjacent cor-
ner and the network will deadlock.

\

a

Figure 1.5 Deadlock in a simple network

It isimportant to understand that deadlock is a property of the network topology and the routing
algorithm used; it can also arise with buffered packet routing. In the above example, asingle
packet buffer at each node is sufficient to remove the deadlock but, in general, the number of
packet buffers needed to eliminate deadlock depends on the network topol ogy, the routing algo-
rithm and the applications program. Thisisclearly not asatisfactory basisfor agenera purpose
routing system.

All of the above problems can be avoided by choosing networks for which deadl ock-free worm-
hole routing algorithms exist. In such networks, buffers are employed only to smooth the flow
of data through the network and to reduce congestion; often a buffer of size much less than the
length of a packet is sufficient for this purpose. Most important of all, the buffering needed is
not dependent on the network size or the applicationsprogram. Itispossibleto construct asingle
universal router which can be used for networks of arbitrary size and for programs of arbitrary
complexity. Anessentia property of such arouter isthat, like atransputer, it can communicate
on al of itslinks concurrently.

It turns out that many regul ar networks constructed from such routers have deadlock freerouting
algorithms. Important examples are trees, hypercubes and grids.

A deadlock freerouting algorithm for Trees

A tree consists of a collection of nodes with asingle external link from the root. Assume that

two trees! 77 with root link r;and 7> with root link r» are both deadlock free; they will always
perform internal communication without deadlock, and will accept and transmit packets along
the root link without deadlock.

A new treeisformed by connecting the root linksr; and r, to anew root node R; afurther link
r on thisnode is the root link of the newly constructed tree T.

Any packet arriving at R along r; isrouted either tor, ortor. If itisroutedtor,, it will be con-
sumed by 7>, because 7> isdeadlock free. If itisroutedtor, it will eventually be consumed by
theenvironment. By symmetry, packetsarriving alongr; will also be consumed. A packet arriv-
ing alongr will berouted to either 77 or 75; ineither caseit will be consumed because both 77 and
T> are deadlock free.

It remains to show that atree with only one node is deadlock free; thisis true because the node
can send and receive packets concurrently along its single (root) link.

QLN (©

2N oN

7

\ -
/\/ \\\
e ‘ \\
/ AN
/ \
/ \
/ o — \
/ \
\ — — |
\ /
\ /
\ /
\\ //
\\ //

Figure 1.6 Hypercube constructed from 2N*2 Nodes

1. Note that this construction can easily be generalized from binary to n-ary trees.

A deadlock freerouting algorithm for Hypercubes

To avoid deadlock in a hypercube, each packet is successively routed through the dimensions,
starting from the highest.

A simpleinductive argument can be used to show that thisrouting algorithmisfree of deadlocks.
Suppose that the order-N hypercube is deadlock free. Combine two such order-N hypercubes
H; and H> toform an order-(N+1) hypercube by linking corresponding nodesof H; and H>. Any
packet originating at anoder in H; and destined for anodein H» will first travel along the link
joining n to the corresponding node in H,; from thisnode it will be delivered by routing within
H> and thisis deadlock free by assumption. Similarly, any packet originating at anodern in H,
and destined for anode in H; will first travel along thelink joining » to the corresponding node
in Hy; from this node it will be delivered by routing within H; and thisis deadlock free by as-
sumption. An important property of the node isthat it is able to send and receive aong alink
at the sametime; thisis needed to ensure that a packet can flow from node/; in H; to the corre-
sponding node /1, in H, at the same time as a packet flows into /; from h,.

It remains to show that the order-O hypercube is deadlock free (which it is, being just a single
node)!

The effect of the routing algorithm can easily be understood in terms of the example shown in
figure 1.5 above, which shows a2—cube. Instead of routing all packetsin a clockwise direction,
the deadl ock-free algorithm routes two of the packets anti-clockwise. Since the links are bi—
directional thisallowsall of the packetsto be routed without deadlock, asillustratedinfigure 1.7.

Figure 1.7 Avoiding deadlock in a simple network

Thefact that the hypercubeissymmetrical meansthat the order of sequencing through thedimen-
sions does not matter; it isimportant only that every packet is sequenced in the same order.

A deadlock freerouting algorithm for Arrays

The technique of routing a packet by systematically sequencing through the dimensions can be
applied to any processor array. In fact, any rectangular processor array - whatever its size and
dimension-isdeadlock free! To provethisitisfirst necessary to establishthat aline of processing
nodes(aone-dimensional array) isdeadl ock free; thisisguaranteed if apacket generated at anode
takes the shortest path to its destination node.

A simpleinductive argument similar to that used for the hypercube can now be used to establish
that this routing algorithm is deadlock free.

1.5 Addressing

Every packet must carry with it the address of itsdestination; thismight be the address of atrans-
puter, or the address of oneof anumber of virtual channelsforming input channelsto atransputer.
Asapacket arrives at arouter, the destination address must beinspected before the outgoing link
can be determined; the delay through the router is therefore proportional to the address length.
Further, the address must itself be transmitted through the network and therefore consumes net-
work bandwidth.

Itisthereforeimportant that thisaddress be as short as possible, both to optimize network latency
and network bandwidth. However, it is also important that the destination link can be derived
from the address quickly and with minimal hardware. An addressing system which meets both
of these requirementsisinterval labelling.

151 Interval Labelling

Aninterval labelling scheme[6] assignsadistinct |abel to each transputer in anetwork. For sim-
plicity, the labelsfor an N transputer network can be numbersintherange[0,1, ... ,N-1]. At
each router in the network, each output link has one or more associated intervals, where an inter-
val isaset of consecutivelabels. Theintervalsassociated with thelinkson arouter are non-over-
lapping and every label will occur in exactly oneinterval.

As a packet arrives at a router, the address is examined to determine which interval contains a
matching label; the packet is then forwarded along the associated output link.

Theinterval labelling scheme requires minimal hardware; at most apair of comparatorsfor each
of theoutgoing links. Itisalsovery fast, sincethe output link can be determined, oncethe address
has been input, after only a single comparison delay provided all the comparisons are done con-
currently.

There remainsthe question of how to assign labelsto an arbitrary network. Thefollowing exam-
plesgivelabelingsfor networks constructed from nodesasshowninfigure 1.3. Intervalsarerep-
resented with the notation [a,b), which means the set of |abels greater than or equal toa and less
than b; note however that the comparisons are performed modul o the total number of labels, and
intervals are permitted to ‘wrap around’ through zero.

Trees can belabelled

Thetransputersin abinary tree? with N nodes are labelled asfollows. Supposethereare L nodes
totheleft of theroot node. Then the transputersto the left of theroot are numbered O, . .. , L1,
the transputer of the root node is labelled L; the transputers to the right are labelled L+1,. . .
N—-1,

Any noden inthetreeisitself the root node of asubtree § with nodess;, ... ,s,. Theinterval
associated with the left link of n is[s;, . .. , n); that associated with the right link is [n+1,
.. .5, +1); that associated with theroot link is[s, +1, ... ,5). Theinterval [s;+1, ... ,5) consists
of al of the labelsin the tree apart from those in S; numerically it consists of the two intervals
[s,+1,... N+1)and [O, ... ,5). Anexampleisshowninfigure1.8. Thisshowsthelabelsas-
signed to each node, and the intervals assigned to the links of two of the nodes.

2. Thisconstruction can easily be generalized from binary to general trees, asillustrated in figure 1.8.

s

\
\
\
\
\
’ \
\
_ \

Figure 1.8 A Tree with Interval Labelling

Hypercubes can be labelled

Thelabelling of the hypercube followsthe construction given for the deadl ock free routing algo-
rithm. In combining the two order-n hypercubes H; and H», the transputersin H; are labelled
0,...,2"-1andthosein H, arelabelled 27, ... ,2"+1_1. Thelink from each node/; in H;
to the corresponding node 4, in H, is labelled with the interval [27, ... ,2"*1) at h;, and with
[O,... ,2") at hy. Thisinductively constructs ahypercube together with the deadl ock-free rout-
ing algorithm described above.

Arrayscan be labelled

The labelling for an array follows the construction of the deadlock free routing algorithm. An
n-dimensional array is composed of m arrays of dimension n—1, with m corresponding nodes
(onefrom each n—1 dimensional array) joined to form aline. If each of then—1 dimensional ar-
rays hasp nodes, the nodesin then—1 dimensional arraysare numbered O, . . ., p-1;p, . . ., 2p-1,
...;(m=1)p, . ..,mp-1. Onevery linethelink joining thei’ nodeto the (7+1)” node is|abelled
[ip, . .., mp) and the link to the (i—1)"* nodeislabelled [0, . . ., (i—1)p). Thisinductively labels
an array to route packets according to the deadl ock free a gorithm described above. Anexample
isshown in figure 1.9. This shows the labels assigned to each node, and the intervals assigned
to the links of one of the nodes.

[0,8) 4 5 6 7
1 8,9) 9 [10,12)——)
8 9 10 11
[12,16)
12 13 14 15

Figure 1.9 An Array with Interval Labelling
L abelling arbitrary networks

The above labelings provide optimal routing, so that each packet takes one of the shortest paths
to its destination. It can easily be shown [6] that any network can be labelled so as to provide
deadlock free routing; it is only necessary to construct a spanning tree and label it as described
above. Thismay produce a non-optimal routing which cannot exploit all of the links present in
the network as awhole. Optimal labelings are known for all of the networks shown below:

trees

hypercubes

arrays

multi-stage networks
butterfly networks
rings3

In high performance embedded applications (or in reconfigurable computers) specialised net-
works are often used to minimize interconnect costs or to avoid the need for message routing.
Inthese systems, anon-optimal |abelling can be used to provide | ow-speed system-wide commu-
nications such as would be needed for system configuration and monitoring.

15.2 Header Deletion

Themain disadvantages of theinterval labelling system arethat it doesnot permit arbitrary routes
through a network, and it does not allow a message to be routed through a series of networks.
These problems can be overcome by a simple extension: header deletion. Any link of arouter
can be set to delete the header of every packet which passes out through it; the result is that the
dataimmediately following becomes the new header as the packet enters the next node.

Header del etion can be used to minimizedel aysintherouting network. Todothis, aninitial head-
er isused to route the packet to adestination transputer; thisheader isdeleted asit leavesthefinal
router and enters the transputer. A second header isthen used to identify the virtual link within

3. Note that the optimal labelling of aring requires that one of the connections be duplicated in order to avoid
deadlock.

the destination transputer. Asthe number of transputersis normally much less than the number
of virtual links, the initial header can be short, minimizing the delay through each router.

Another important use of header deletion isin the construction of hierarchical networks. Inthe
2-dimensional array of figure 1.4, each transputer could bereplaced with alocal network of trans-
puters as shown in figure 1.10. Headers are deleted as packets leave or enter alocal network.
A single header can be used to route a packet within alocal network, whilst three headers are
needed to route a packet via the 2-dimensional array.

Router |——

7

Router

Figure 1.10 Local network of transputers and a router

1.6 Universal Routing

The routing algorithms described so far provide efficient deadlock free communications and al-
low awide range of networks to be constructed from a standard router. Packets are delivered at
high speed and with low latency provided that there are no collisions between packetstravelling
through the same link.

Unfortunately, for general purpose concurrent computers, thismay not be enough. 1nany sparse
communication network, some communication patterns cannot be realized without collisions.
Such collisions within the network can reduce system performance drastically. For example,
someparallel agorithmsrequirethat all messagesfrom one phase of acomputation aredelivered
before the next phase starts; the late arrival of a single message delays all of the processors. In
the absence of any bound on message latency it is difficult - and in many cases impossible - to
design efficient concurrent programs. The problem of constructing general purpose concurrent
computers therefore depends on the answer to the following question:

Isit possibleto design a universal routing system: arealizable network and arouting algorithm
which can implement all communication patterns with bounded message latency?

Infact, auniversal routing system allowing the construction of scalable general purpose parallel
computers was discovered by Valiant in 1980 [3]. This meets two important requirements:

* The throughput of the network increases proportionately with the number of nodes.

» The delay through the network increases only slowly with the number of nodes (propor-
tional to log(p) for p nodes).

Notice that the aim is to maximize capacity and minimize delay under heavy load conditions -
aparallel communications network isavital component of a parallel computer. Thisisnot the
same as, for example, minimizing delay through an otherwise empty network.

A p-node hypercube hasadelay of proportional tolog(p) (written O(log(p))) if thereareno colli-
sions between packets. Thisis an unreasonable assumption, however, as al of the transputers
will be communicating via the network simultaneously. An important case of communication
isthat of performing aper mutationinwhich every transputer simultaneously transmitsamessage
and no two messages head for the same destination. Valiant’s proof [4] demonstrates construc-
tively that permutation routing is possiblein atime proportional to log(p) on asparsep-node net-
work even at high communication load.

To eliminate the network hot-spots which commonly arise when packets from many different
sourcescollideat alink in asparse network, two phaserouting isemployed. Every packet isfirst
dispatched to a randomly chosen intermediate destination; from the intermediate destination it
continuesto itsfinal destination. Thisisadistributed algorithm - it does not require any central
co-ordination - so it is straightforward to implement and scales easily. Randomization does not,
in fact, strictly guarantee a delivery time which is O(log(p)) - but it givesit a sufficiently high
probability to achieve the universality result. The processorswill occasionally be held up for a
late message, but not often enough to noticeably affect performance. Simulated resultsof univer-
sal routing are presented in chapter 7.

16.1 Randomizing Headers

How isthetwo-phase al gorithm implemented? Asapacket entersarandomizing network, it must
be supplied with a new, random, header; this header will be used to route the packet to a router
whichwill serveastheintermediate destination. Any input link of arouter can be set to random-
ize packetsasthey arrive. Whenever apacket startsto arrivealong such alink, thelink first gener-
ates arandom number and behaves asif this number were the packet header. The remainder of
the packet followsthe newly supplied random header through the network until the header reach-
es the intermediate (random) destination.

At this point, the first (randomizing) phase of the routing is complete and the random header is
removed to allow the header to progressto itsfinal destination in the second (destination) phase.
Theremoval of the random header is performed by a portal in each router which recognizesthe
random header associated with the router. The portal deletes the random header with the result
that the original header is at the front of the packet, as it was when the packet first entered the
network. This header is now used to route the packet to itsfinal destination.

Unfortunately, performing routing in two phases in the same network makes the paths of the
packets more complicated. Theresult isthat deadlock can now occur.

1.6.2 Avoiding Deadlock

A simple way to avoid deadlock is to ensure that the two phases of the packet transmission use
completely separate links. The node numbers are partitioned into two halves: one half contains
the numbers used for the randomizing phase. The numbersin the other half are used for the des-
tination phase. Similarly thelinksare partitionedinto two sets: one set isused in therandomizing
phase and the other set in the destination phase.

Effectively this scheme providestwo separate networks, onefor the randomizing phase, and one
for the destination phase, with only one set of routers. The combination of the two networkswill

be deadlock freeif both of the networks are deadlock free. The simplest arrangement isto make
the randomizing network have the same structure as the destination network - and to make both
employ one of the known deadlock free routing agorithms.

Universal routing can be applied to awide variety of networksincluding hypercubes and arrays

[5].

1.7 Conclusions

Concurrent machines can be constructed from two components:. transputers and routers. Trans-
puters can be connected viatheir links to form dedicated processing systems in which commu-
nication takes place only between directly connected transputers. They can also be connected
viarouters alowing system-wide communication.

The provision of system-wide inter-process communication simplifies the design and program-
ming of concurrent machines. It allows processesto be allocated to transputers after a program
iswritten in order to optimize performance or minimize cost. It ensures that programs will be
portable between different machines, although their performance will vary depending on the ca-
pabilities of the specific communications network used.

The communications architecture allows a wide variety of implementations. VLS| routers can
provide routing between alarge number of links, minimizing network delays. Very fast routers
with fewer links can be constructed using high-speed technology. Transputers and routers can
be combined on VLSI chips to provide network nodes.

Transputers and routers can be used to build machinesin which abalance is maintained between
communi cation throughput and processing throughput. Universal routing can be used to achieve
bounded communication delay, and fast process scheduling within the transputers allows this
communication delay to be hidden by asmall amount of excessparallelism. Animmediate possi-
bility isthe devel opment of astandard architecturefor scalable general purpose concurrent com-
puters, as discussed in chapter 8.

References
[1] M. Homewood, D. May, D. Shepherd, The IMS T800 Transputer
IEEE Micro 7 no. 5, October 1987
[2] INMOS Limited, occam?2 reference manual, Prentice Hall 1988
[3] L.G. Vdiant, A scheme for fast parallel communication
SIAM J. on Computing 11 (1982) pp. 350-361
[4] L.G. Valiant, General Purpose Parallel Architectures,

TR-07-89, Aiken Computation Laboratory, Harvard University

[9] L.G. Vdiant, G.J. Brebner, Universal Schemes for Parallel Communication
ACM STOC (1981) pp. 263-277

[6] J. van Leeuwen, R.B. Tan Interval Routing
The Computer Journal 30 no. 4 pp. 298-307 1987

[7] P. Thompson, Globally Connected Fault—Tolerant Systems
in Transputer and occam Research: New Directions, J. Kerridge (Ed)
|OS Press 1993

