Thisis Chapter 2 from the second edition of :

Networks, Routers and Transputers:
Function, Performance and applications

Edited\D. May, PW. Thompson, and PH. Welch

© INMOS Limited 1993

Thisedition hasbeen madeavail ableelectronically sothat it may befreely copied and distributed.
Permission to modify the text or to use excerpts must be obtained from INMOS Limited. Copies
of this edition may not be sold. A hardbound book edition may be obtained from |OS Press:

|OS Press |OS Press, Inc.

Van Diemenstraat 94 P.O. Box 10558

1013 CN Amsterdam Burke, VA 22009-0558
Netherlands U.SA.

|OS Press/Lavis Marketing Kaigai Publications, Ltd.

73 Lime Walk 21 Kanda Tsukasa—Cho 2—Chome
Headington Chiyoda—Ka

Oxford OX3 7AD Tokyo 101

England Japan

This chapter was written by M.D. May, R.M. Shepherd and PW. Thompson



2 The T9000 Communications
Architecture

2.1 Introduction

This chapter describes the communications capabilities implemented in the IMS T9000 trans-
puter, and supported by the IMS C104 packet router, whichisdiscussed in chapter 3. The T9000
retains the point-to-point synchronised message passing model implemented in first generation
of transputersbut extendsit in two significant ways. Themost important innovation of the T9000
isthe virtualization of external communication. This alows any number of virtual links to be
established over asingle hardware link between two directly connected T9000s, and for virtual
links to be established between T9000s connected by arouting network constructed from C104
routers. A second important innovation istheintroduction of amany-one communication mech-
anism, theresource. Thisprovides, anongst other things, an efficient distributed implementation
of servers.

22 ThelMST9000

The IMS T9000 is a second—generation transputer; it has a superscalar processor, a hardware
scheduler, 16K bytes of on-chip cache memory, and an autonomous communications processor.

Processor Pipeline
Address
Work- Generator 1 FPU
épacr:]e Address |
acne Generator 2 alu
| System Services | Virtual
| Timers | —>  Channel
Processor
16 Kbyte ~r|__ Linko
Instruction <:
and Data i Link 1
Cache
- Link 2
Programmable - . Link 3
Memory
Interface ~S  Event0—3

Figure2.1 TheIMS T9000 Transputer

The T9000’sscheduler allowsthe creation and execution of any number of concurrent processes.
The processes communicate by passing messages over point-to-point channels. Channels are
unidirectional, and message passing is synchronised and unbuffered; the sending process must
wait until the receiving process is ready, and the receiving process must wait until the sending
processisready. Once both processesare ready the message can be copied directly from onepro-
cessto the other. The use of thistype of message passing removes the need for message queues



and message buffersin theimplementation, and prevents accidental loss of datadueto variations
intheorder in which processes happento be executed. The T9000's scheduler also provideseach
process with its own timer, and the means for a process to deschedule until its timer reaches a
specified alarm time.

The T9000’s processor and scheduler implement communication between processes executing
on the same processor. The T9000’'s communication system allows processes executing on dif-
ferent transputers to communicate in the same manner as processes on the same transputer. The
communication system hasfour link interfaces, each of which may bedirectly connectedtoalink
interface of another transputer, or may be connected via a network of routing devices to other
transputers. Messagesare passed over theselinks by the autonomous communi cations processor,
the virtual channel processor (VCP).

2.3 Instruction set basics and processes

2.3.1 Sequential processes
The T9000 has a small set of registers which support the execution of sequential processes:

Registers Workspaces Program
FAreg Areg
FBreg Breg
FCreg Creg
Workspace
Next Instruction

Figure2.2 IMST9000 Registers

The workspace pointer (Wptr) points to the workspace of the currently executing process. This
workspace, whichistypically organized asafalling stack, containsthelocal variablesand tempo-
raries of the process. When aprocessis not executing, for examplewhileit iswaiting for acom-
muni cation, itsworkspace al so contains other information, such asthe process' instruction point-
er.

Theinstruction pointer (1ptr) points at the next instruction to be executed by the current process.

The Areg, Breg and Creg are organized as stack. The stack is used for the evaluation of integer
and address cal culations, and as the operands of more complex instructions, such asthe commu-
nication instructions. The FAreg, FBreg and FCreg form another stack, used for floating point
arithmetic.

2.3.2 Concurrent processes

The T9000 provides efficient support of concurrency and communication. It has a hardware
scheduler which enables any number of processes to be executed together, sharing the processor
time. Thisremoves the need for a software kernel.



At any time, a concurrent process may be:

active being executed
on alist waiting for execution

inactive ready to input
ready to output
waiting until a specified time
waiting for a semaphore

TheT9000'sscheduler operatesin such away that inactive processes do not consumeany proces-
sor time.

Theactive processeswaiting to beexecuted areheld onalist. Thisisalinkedlist of processwork-
spaces, implemented using two registers, one of which points to the first process on the list, the
other to the last.

Infigure 2.3, Sisexecuting, and P, Q and R are active, awaiting execution.

Registers Workspaces Program
Front
P
Back
Q
A
B R
C
Workspace S
Next Instruction

Figure 2.3 Active processes

The T9000 provides anumber of instructions to support the processmodel. Theseinclude start
process, and end process. The start process instruction creates a new concurrent process by ad-
ding a new workspace to the end of the scheduling list, enabling the new concurrent process to
be executed together with the ones already being executed. The end processinstruction allows
anumber of concurrent processes to join together, so that a successor processis executed when,
and only when, all of its predecessors have terminated with an end process instruction.

Priority scheduling

The T9000 schedul er isactually more complex than described above. 1t providestwo scheduling
queues, one for each of two priorities. Whenever a process of high priority (priority O) is able
to proceed, it will do soin preferenceto alow priority (priority 1) process. If ahigh priority pro-
cessbecomesactivewhilst alow priority processisexecuting, the high priority process preempts
the low priority process.

Toidentify aprocessentirely, itisnecessary toidentify both the process workspaceanditsprior-
ity. These can be encoded in a single word by or-ing the priority of the process into the bottom
bit of the workspace address; the resulting value is known as the processid.



24  Implementation of Communications

The T9000 provides a number of instructions which implement communication over channels.
Theseinstructions use the address of the channel to determine whether the channel isinternal or
iIsavirtual channel. Thismeansthat the same instruction sequence can be used, allowing a pro-
cess to be written and compiled without knowledge of where its channels are connected.

Since channelsare distinct objects from the processes which communicate over them, they serve
to hide theinternal structure of such processes from each other. A processwhich interactswith
othersonly viachannelsthus hasavery clean and simpleinterface, which facilitates the applica-
tion of structured programming principles.

Before achannel can be used it must be allocated and initialized. The details depend on whether
the channel is to connect two processes on the same transputer, or two processes on different
transputers.

24.1 Variablelength input and output

Thevariableinput message (vin), variabl e output message (vout) and load count instructionspro-
vide the basi c message passing mechanism of the T9000. They convey amessage and itslength,
from an sending process to an receiving process. The receiver specifiesthe maximum length of
messagethat it is prepared to receive, and the sender the actual length of the message to be sent.
If the actual length islonger than the receiver is prepared to receive than an error is signalled.

A sending process performs an output by loading the evaluation stack with a pointer to the mes-
sage, thelength of the message and the address of the channel. It then executesavout instruction.
A receiving process performs an input by loading the eval uation stack with apointer to the vari-
able, the maximum length of message and the address of the channel. It then executes a vin
instruction followed by aload count instruction. The load count instruction either loads the
length of the messagereceived onto the eval uation stack, or signalsan error, if thelength specified
by the sender was too long.

2.4.2 Internal channel communication

A channel between two processes on the same transputer is implemented by a single word of
memory. Before the channel is used it must be initialized to the special value Not Process
(=80000000;4) which cannot be the address of the workspace of any process.

At any time, an internal channel (asingleword in memory) either holdstheidentity of aprocess,
or holdsthe special valueNot Process, whichindicatesthat the channel isempty. The channel
isinitialized to Not Process beforeit is used.

When amessageis passed using the channel, the identity of the first processto becomeready is
storedinthe channel, and the processor startsto execute the next processfrom the scheduling list.
When the second process to use the channel becomes ready, the message is copied, the waiting
processisadded to the scheduling list, and thechannel isreset toitsinitial state. It doesnot matter
whether the receiving or the sending process becomes ready first.

Infigure 2.4, aprocess P is about to execute an output instruction on an ‘empty’ channel C. The
eval uation stack holds apointer to amessage, the address of channel C and acount of the number
of bytesin the message.



P C
Registers
A: count
B: channel NotProcess
C: pointer

Figure 2.4 Output to empty channel

After executing the variabl e output instruction, the channel C holdsthe address of the workspace
of P, and the address and length of the message to be transferred are stored in the workspace, as
showninfigure2.5. Pisdescheduled, and the processor startsto execute the next process from
the scheduling list.

P C
Workspace

Next
instruction

Length

Pointer

Figure2.5 Outputting Process Descheduled

Thechannel C and the process P remaininthisstate until asecond process, Q executesavariable
input instruction on the channel, as shown in figure 2.6.

P C Q
Workspace A: count
P B: channel
Next
instruction C: pointer
Length
Pointer

Figure 2.6 Input on a Ready Channel

Since the channel is not empty, the message is copied and the waiting process P is added to the
scheduling list. The channel Cisreset to itsinitial ‘empty’ state, as shown in figure 2.7. The
length of the message (as specified by P) isrecorded in the workspace of Q so that it can be put
onto the stack by the load count instruction.



P C Q
Workspace

Next

. . NotProcess
instruction

— List =

Length

Figure 2.7 Communication completed, output ready first

If P isthe receiving process and Q the sending one, the same set of pictures apply, except that
the final stateis as shown in figure 2.8.

P C Q
Workspace
Next
instruction NotProcess
Length

Figure 2.8 Communication completed, input ready first

2.4.3 External channel communication

The synchronised message passing of thetransputer requiresthat data be copied from the sending
process to the receiving process, and that the sending process continue execution only after the
receiving process has input the data. Where the processes communicating reside on different
transputers, it is necessary to transfer the data from one transputer to the other, and to signal in
the other direction that an input has occurred. Thus the connection between the processes must
convey information in both directions.

Virtual links

In the first—generation transputers, each point-to-point physical link between transputers pro-
vides two communication channels, onein each direction. 1nthe new transputers, each physical
link provides an arbitrary number of point-to-point virtual links. Each virtual link providestwo
channels, one in each direction. Hardware within the transputer multiplexes virtual links onto
thephysical links. At any moment, each physical link has an associated list of virtual linkswait-
ing to use it.

Each virtual link is represented by a pair of virtual link control blocks (VLCBS), one on each
transputer. When a process executes an input or output instruction to send or receive amessage
on avirtual link, the processis descheduled and itsidentity is stored in the control block. Atthe
same timethe control block isused to determine the physical link to be used for the communica-
tion, and isadded to the associated list of waiting virtual links. Anexampleof how thelistsmight
look at one moment isillustrated in figure 2.9.



VCP Registers VLCBs

Front
Link O

Back

Front
Link 1

Back

Figure 2.9 Queuesof VLCBs
M essage—passing Protocol

When an output is performed, the message istransmitted as a sequence of packets, each of which
isrestricted in length to a maximum of 32 data bytes. There are several reasons for thiswhich
areexplained below. Each packet of the message starts with aheader, which isused to route the
packet to an receiving processon aremotetransputer. Theheader alsoidentifiesthe control block
of thevirtual link used by the remote receiving process. Thusavirtual link is established by set-
ting up a control block in each of two transputers such that the header in each control block is
set to cause packets to address the other control block.

Each packet of amessageistransferred directly from the sending processto the physical link and
istransferred directly from the physical link to the receiving process, provided that a processis
waiting when the packet arrives. Anacknowledgement packet isdispatched back alongthevirtu-
al link as soon as each packet startsto arrive (thustransmission of acknowledge packets can over-
lap transmission of message packets). At the outputting end of the virtual link, the process will
be rescheduled after the last acknowledgement packet has been received.

When the first packet of a message startsto arrive on avirtua link, it is possible that no process
iswaiting to input the message. In thiscase, it is essential that the packet is stored temporarily
so that communication via other virtual links sharing the same physical link is not delayed. A
single packet buffer associated with each virtual link control block is sufficient for this purpose,
sincetheoutputter will not send any further packetsuntil an acknowledgement packet isreceived.

The splitting of messagesinto packets of limited size, each of which isacknowledged beforethe
next is sent, has several important consegquences:

* It prevents any single virtual link from hogging a physical link
e |t prevents asingle virtual link from hogging a path through a network

* |t providesflow-control of message communication and providesthe end-to-end synchro-
nization needed for synchronised process communication

* Itrequiresonly asmall buffer to be used to avoid blocking inthe casethat amessagearrives
before a process is ready to receive it



Each VLCB must be initialized with the address of the packet buffer for the input channel, the
header to be used for outgoing packets, and which physical link isto be used by the virtual link.

Theimplementation of message—passing

When amessage is passed viaavirtual channel the processor of the T9000 del egates the job of
transferring themessageto the V CP and deschedul esthe process. Onceamessage hasbeentrans-
ferred theV CP causesthewaiting processto berescheduled. Thisallowsthe processor to contin-
ue the execution of other processes whilst the external message transfer takes place.

Infigure 2.10 processes P and Q, executed by different transputers, communicate using avirtual
channel Cimplemented by alink connecting two transputers. P outputs, and Q inputs; note that
the protocol used by the VCP ensures that it does not matter which of P and Q becomes ready
first.

P C Q
Registers VLCB VLCB Registers
A: count A: count
B: channel B: channel
C: pointer 7] C: pointer

Figure2.10 Communication between transputers

The VCP, on being told to output a message, stores the pointer, count and process id into the
VLCB, and causes the first packet of the message to be sent. The VCP maintains queues of
VL CBsfor packetsto be sent on each link, so the sending of apacket isintwo parts; firstly adding
the VL CB to the corresponding queue, and then subsequently taking the VLCB from the front
of the queue and sending apacket, with the header provided by theVLCB. Thequeuesof VLCBs
areillustrated in figure 2.9.

Subsequently, on receipt of an acknowledge packet for this virtual channel, the VCP sends the
next packet of the message. This continues until all packets have been sent. When thefinal ac-
knowledgeisreceived, theV CP readsthe processid from the VL CB and causes the waiting pro-
cess to be scheduled.



P C Q
Workspace VLCB VLCB Workspace
— List ‘T L List =
P Q
Next Next
instruction Pointer o——o— Pointer instruction
Count Count

Figure 2.11 Communication in Progress

Thereceiving transputer’sresponseto thefirst packet will depend upon whether acorresponding
variableinput messageinstruction hasyet been executed. The VCP can determinethisfrom the
state of the VL CB associated with thevirtual channel on whichthe packet hasarrived. If aninput
instruction has not yet been executed, then the VV CP stores the packet into the packet buffer pro-
vided by the VLCB, and an acknowledgement will subsequently be generated once an input
instruction is executed.

When a process executes a variable length input instruction, the processor passes the process
identifier, the virtual channel address, the pointer, and the maximum length, to the VCP and des-
chedulesthe process. The VCP, on being told to input a message, stores the pointer, maximum
length and processid into the VL CB and recordsthat an input has been requested. TheVCPthen
examines the VL CB to determine whether a data packet has already arrived. If the data packet
has already arrived, it will now be handled; otherwise data packets are handled as they arrive.

When adatapacket ishandled, theV CP acknowledgesthe packet by adding the VL CB to aqueue
for the sending of acknowledge packets. (Acknowledge packets are sent in just the same way
as data packets, but use a separate set of queues.) TheV CP then storesthe datainto the memory
locations specified by the input instruction, provided that the total amount of data that has been
received is not greater than the maximum amount specified. If more data than thisis received
thenall datain excessof themaximum allowedisdiscarded. When afinal datapacket isreceived,
the VVCP reschedul es the receiving process, having first recorded the amount of data received?
into the process’ workspace. Thisvalue will be used by a subsequent load count instruction.

Themessageisthuscopied through thelink, by meansof the VL CBsat either end being alternate-
ly queued to send data and acknowledge packets respectively, asillustrated infigure 2.11. After
al thisisdonethe processes P and Q are returned to the corresponding scheduling lists as shown
infigure 2.12.

4. If too much dataisreceived, a special error value (= FFFFFFFF;4) is recorded instead.



P C Q

Workspace VLCB VLCB Workspace
Next Next
instruction instruction
—> List — —O———0— —> List —

Figure 2.12 Communication completed

24.4 Known length communication

In many cases both the sender and recelver of amessage know the precise length of the message
to betransferred in advance. Inthiscaseit ispossibleto optimizethe operation of message pass-
ing and the T9000 provides anumber of instructionswhich do this. The most important of these
are input message and output message®.

These instructions are like vin and vout except that both the receiver and the sender specify the
actual length of message to be passed. Thereisno need for an instruction which corresponds to
load count in this case.

The operation of known length internal communicationissimilar to variable length communica-
tion. However, thefirst process to synchronize does not need to store the length, since the same
length will be specified by the second process.

The operation of known length external communication isidentical to the variable length case,
except for the omission of the load count instruction.

25 Alternativeinput

In asystem, it is sometimes necessary for a process to be able to input from any one of several
other concurrent processes. For example, consider a process which isimplementing a bounded
buffer between two other processes, one of which (aperipheral of some kind) outputs datato the
buffer along a channel, the other (the ” consumer”) requests data from the buffer along another
channel, andreceivesit viaathird, asillustrated infigure 2.13. Thebehavior of the buffer process
is determined not only by itsinternal state, but also by whether the other processes wish to add
or to take data from the buffer.

Thealternative construct isameansto sel ect between one of anumber of guarded processes, each
comprising aguard and an associated process; the guard istypically an inputé. The aternative
selects a guarded process whose guard isready. If aparticular guarded processis selected then
both the guard and the associated process are executed. Guards may also have a boolean part
which force the guard to be disregarded if the boolean is FALSE.

5. Notethat thisisthe only form of communication supported by the first—generation transputers.

6. Inprinciple, outputs could equally well be used as guards; however the implementati on becomes considerably
more complex if both inputsand outputs are allowed asguards. Thusin the T9000 output guardsare not allowed.



Peripheral

4

Figure 2.13 Buffer process

The T9000’simplementation of alternative separates the sel ection of aguarded processfrom its
execution. This means that the only new mechanism needed is one to support selection.

The idea behind the selection mechanism is that for each guard, the channel is examined to see
if itisready. If, when al the channels have been examined, no ready channel has been found,
the process deschedules until at least oneisready. The process then re-examines the channels
and chooses the first one that it finds ready. The key to the mechanism is therefore, the means
by which a process can deschedule until one of several channels becomes ready.

The first aspect of this mechanism is that channels can be enabled and disabled. A channel is
enabled (by the process performing the alternative) by executing an enable channel instruction.
One effect of thisinstruction isthat if the channel subsequently has an output performed on it,
the output will signal the process performing alternative that the channel has becomeready. An
enabled channel is disabled by the process performing alternative executing a disable channel
instruction, which reverses the effect of an enable channel instruction.

The second aspect of the mechanism is the use of a special workspace location by the process
performing aternative. This location serves a number of purposes. Firstly, in the case of a
straightforwardinput itisusedto hold the pointer to thel ocation to storethe message, asdiscussed
previously; consequently it isreferred to asthe” pointer location”. Secondly, whilst an alterna-
tiveisbeing performed, it contains one of the specia valuesEnabling (=NotProcess + 1),
Waiting (= NotProcess + 2), or Ready (= NotProcess + 3). Asno process which is
performing anormal input could be descheduled with one of these valuesin its pointer location
(processes being forbidden to input messagesto these addresses), the valuein thelocation distin-
guishes a process performing alternative from an inputting process. Thirdly, itisused to record
whether any channel which hasbeen examinedisready. Finally, itisalso used to record whether
aprocess performing alternative is active or deschedul ed.

The implementation of alternative can now be explained.
Alternative start

The first thing that a process does to perform an alternative is to execute an alternative start
instruction. This setsthe pointer location of the workspace to the value Enabl ing, indicating
that an alternativeisin progress, that no guard has yet been seen to be ready, and that the process
performing aternative is active.

Enable channdl

Theprocess performing alternativethen executesan enabl e channel instruction for every channel
guard. Thisinstruction determineswhether thechannel isready, and, if itisnot ready, theinstruc-



tion enablesit. If, on the other hand, the channel is ready the instruction sets the value in the
pointer location to Ready .

For an internal channel, the processor determines whether a channel is ready by examining the
channel word. If it contains the identity of another process, then that process has performed an
output on the channel, and so the channel isready. Otherwise, the channel is empty, and so is
enabled by writing inti it the process id of the process performing alternative.

For avirtual channel, the processor usesthe VCP to enable the channel. The VCP examinesthe
VLCB of the channel; if the packet buffer already containsthefirst packet of amessage then the
channel isready. Otherwise, the VCP recordsin the VLCB that the channel has been enabled.

Alternative wait

Once aprocess has enabled all the channelsfrom which it wishesto make a selection, it executes
an alternative wait instruction. Thisfirst writesthe value -1 to location O of the workspace, in
preparation for the selection process. Then, if the pointer location still containsthevalueEnab -
1ling, indicating that no guard is yet ready, the instruction writesthe valuewaiting intothe
pointer location, indicating that the process performing alternativeisnot active, and deschedules
the process. Otherwise, the pointer location contains Ready, indicating that at least one guard
is ready, so the process continues to make its selection.

If aprocess deschedul eson execution of an alternativewait instruction, it will be scheduled when
one of the guards becomes ready. The process will then proceed to make its selection.

Output on an enabled channel

When an output occurs on an internal channel which contains a processid, the sending process
distingui shes between achannel whichisready for input and achannel whichisready for alterna-
tive input by examining the pointer location of the waiting process. If thisword contains one of
thespecial valuesEnabling, Waiting, or Ready thenthechannel isin use by aprocess per-
forming an alternative. Inthiscasethe sending processwill storeinformation into its own work-
space and deschedule asif the inputter were not ready, and may also perform some other actions,
depending on the value in the pointer word of the receiving process:

e |f thevalueisEnabl ing thentheoutputinstruction changesthevaluetoReady, indicat-
ing that an enabled channel is ready.

* |f the value is Wa it ing, and hence the process performing alternative is descheduled,
then the output instruction changes the value to Ready, and schedules the process per-
forming alternative.

* |f the value isReady, the output instruction performs no additional action.

When an output occurs on an enabled virtual channel, the VCP of the outputting transputer will
send thefirst packet of the message as usual; indeed, the sending transputer hasno indication that
the channel has been enabled. When the first packet arrives on an enabled virtual channel, the
V CP placesthe packet in the packet buffer, and records that a packet has arrived asisnormal for
for achannel on which no input has been performed. The VCP also informs the schedul er that
an enabled channel has become ready. The scheduler will then examine the pointer word of the
process which enabled the channel and performs the same actions as an output instruction
executed by alocal process, as described above.

Once an output has been performed on an enabled channel two conditions are true; firstly, that
the process performing alternativeis active (either because it has not descheduled, or because a
channel which hasbecomeready has scheduled it); and secondly, the pointer word of the process
performing alternative hasthevalueReady. Thesetwo, together with the condition for desche-



duling when an alter nativewait i nstruction isexecuted, ensurethat aprocessexecutestheinstruc-
tion following an alternative wait instruction if, and only if, at least one guard is ready.

Disable channdl

The process performing alternative selects a guarded process by executing a disable channel
instruction for each guard and then executing an alternative end instruction. In addition to the
channel address, the disable channel instruction takes a code offset as a parameter. Thisisthe
offset fromthealternativeendinstructionto thecodefor theguard. If thedisablechannel instruc-
tion finds that achannel isready, then workspace O is examined; if it contains avalue other than
-1 then a selection has aready been made, so no further action istaken. If it contains -1 then
thisisthe first ready channel to be disabled and the code offset associated with this channel is
written into workspace 0.

The operation of disable channel depends on whether the channel isinternal or isavirtual chan-
nel.

For aninternal channel, the channel word isexamined. If it containsthe identity of the process
performing alternative, an output has not been performed, the channel is not ready, and the
instruction resets the channel word to Not Process . If the channel contains the identity of a
sending process, then the channel is ready and may be selected.

For avirtual channel, the processor usesthe VCPto disablethe channel. TheVCP examinesthe
VLCB of thechannel; if it containsthefirst packet of amessage then the channel isready. Other-
wise, the VCP removes the information that the channel is enabled from the VLCB.

Alternative end

When all the guards have been disabled, onewill have been selected, because guardsare not dis-
abled until at least one is ready, and the first ready guard that is disabled will be selected. The
process performing alternative jJumpsto the code corresponding to the selected guard by execut-
ing the alternative end instruction. Thisinstruction reads the code offset from workspace 0, and
addsit to the instruction pointer. In thisway the guarded process corresponding to the selected
channel is caused to be executed.

A note about boolean guards

In the above, the fact that the guarded processes can have boolean guards has been overlooked.
In fact, the enable channel and disable channel instructionstake an additional parameter which
is the boolean guard. If the guard is FALSE (= 0) they perform no action.

25.1 Extensionsof alternative
Prioritized and fair alter natives

The T9000's alternative mechanism actually implements aprioritized alternative, the guards be-
ing prioritized in the order in which they are disabled. Thiscan be directly useful; for example,
consider a bounded buffer where we wish to prioritize receiving data from the peripheral over
supplying it to aconsumer. This can easily be achieved by always disabling the channel to the
consumer process’ first, so that if both the peripheral and the consumer happen to be ready, the
aternativeend instruction will awaysfind the offset to the code which interactswith the periph-
eral.

The prioritized alternative which isactually provided can al so be used to implement fair alterna-
tives. For example, if we wish to ensure that the bounded buffer on average favours neither the

7. Sincetheimplementation only providesfor input guards, it is necessary to use two channels between the buffer
and the consumer process, so that the consumer can perform an output to the buffer to indicate its readiness to
receive an item.



peripheral nor the consumer, then thiscan be achieved by alwaysdisabling first the channel which
was not selected on the previous iteration of the buffer control loop.

Other guards

In addition to inputs from channels, aternatives allows two other types of guard which may be
used in addition to, or instead of channel guards.

ThefirstisaskIPp guard, whichisalwaysready. Thisguardisuseful in conjunctionwith boolean
guards, and is supported by the enable skip and disable skip instructions.

The second is atimer guard, which can be used for implementing timeouts, or for arranging for
severa different timerelated operationsto be scheduled by asingleprocess. Theimplementation
of timer guardsis built upon the implementation described above. However, some extramecha
nismsare needed, and this necessitatesthe use of thetimer alternative start and timer alternative
wait instructions, rather than alter native start and alter native wait, for any alternative which con-
tainstimer guards. Timer guardsare supported by the enabletimer and disabletimer instructions.

2.6  Shared channels and Resources

2.6.1 Alternative

The alternative mechanism is very general. It allows a choice to be made between channels,
SKIPsand timers; each guard of an aternative may contain a boolean part; and the choice be-
tween guardsisprioritized. Furthermore, thereis complete freedom about how the channelsare
used both within and outside the alternative. It isthis generality that necessitates the enabling
and disabling of al the guards every time an aternative is executed, a consequence of which is
that the cost of an alternativeis proportional to the number of guards. Thiscost isincurred every
time a selection is made.

Users

Channels:

Server

Figure2.14 Server and users

2.6.2 Servers

One common use of an alternative is to implement a server, or to provide access to a resource.
For examplefigure 2.14illustratesthe notion of asimple server which offersaserviceto N users,
each connected to the server by one of an array of channels.

Asthe provision of the service may involve further interaction with the user, it is necessary for
the codewhich providesthe serviceto be passed itsidentity. Inthiscase, theindex of the channel
in the array identifies the user.



In addition to the potentially large cost of the alternative, there is another potential drawback to
thisimplementation of aserver; thisis, that the server must know theidentity of all the channels
connecting to users, since it hasto enable and disable them in order to select one. A user cannot
usearesourcethat doesnot know about the channel along whichit communicates. A further diffi-
culty isthat fairness between the usersis complicated to implement.

The T9000 provides a communication mechanism called a “‘ resource”’ which overcomes both
of these these problems. A resource may be thought of as a shared channel which connects a
number of ““user’” processesto a‘‘server’” process.

2.6.3 Sharingachannel by a semaphore

Before describing the T9000's resource mechanism and its use, we will first consider another
mechanism that might be used.

Using an efficient semaphore mechanism (which the T9000 does provide), we could implement
resources by means of a single communication channel, whose use was shared by means of a
semaphore. Theresulting systemwould compriseachannel, used to synchronizewith the server,
and aqueue of processeswaiting to usethe server, bel onging to the semaphore. Whilst thismech-
anism would work, it has two drawbacks:

e |t is not a distributed mechanism — it would work only on a single transputer.

* |t nolonger allows channel sto be used asan abstraction. Rather than merely communicat-
ing via a channel, a user would have to first claim the semaphore.

The resource mechanism overcomes both of these problems.

2.6.4 Resources

A resource connects a number of user processesto a single server process. The resource com-
prises a number of resource channels, one for each user, and aresource data structure (RDS).
A user process communicates with the server by outputting on its resource channel, exactly as
if it were an ordinary channel. The server selects a resource channel by executing a a grant
instruction with the address of the RDS. Once a user process has output on aresource channel,
the grant will deliver theidentifier of the chosen resource channel to the server. The server can
then input from the chosen resource channel. Thus the operation of aresourceislike that of an
aternative, in that the functions of selection and communication are separated.

Theidentifier associated with aresource channel isasingle word valuewhich isdelivered to the
server on completion of agrant. Thisisthe only information delivered to the server to identify
the chosen resource channel, and hence, the user. Although it might seem as though the server
should receivethe address of the chosen resource channel, thisisnot always adequate. For exam-
ple, in the server shown in figure 2.14 above, the service—providing code may need theindex of
the channel rather than the channel itself, sothat it can usethisindex inan array of reply channels.
On the other hand, if the channel address is what is wanted, then the identifier can be set to be
the channel address.

Resour ce data structure

The resource datastructure contains one word used to synchronize the server process with auser
process, and apair of words used to implement aqueue. Unlikeachannel shared by asemaphore,
the queue is not a queue of waiting processes, but a queue of resource channels, each of which
has been output to by a user process.



Back of Queue

Front of Queue

Synch word

Figure 2.15 Resource Data Structure (RDS)

AnRDSisinitialized by setting both the synchronization word and thefront pointer toNot Pro-
cess .

Resour ce channels

A resource channel isachannel together with an apair of words. Inthe case of avirtual resource
channel, the extra pair of words are associated with the VLCB of the receiving (resource) side.
Theaddressof aresource channel doesnot distinguishit froman ordinary channel, and aresource
channel which isnot currently part of aresource may be used used just like an ordinary channel,
in which case the pair of wordsis not used.

Resource instructions

In addition to the output instructions mentioned previously, there are three instructions provided
to implement the resource mechanism. These are:

e mark resource channel
e grant
e unmark resource channel

The operation of mark resource channel

The resource mechanism allows resource channel sto be made part of aresource (** marked’”) by
either the server or by theuser8. A server may mark aresource channel irrespective of when the
user outputs on the channel; auser must mark aresource channel prior to outputting on the chan-
nel.

A resource channel is marked as being part of a resource by the execution of a mark resource
channel instruction. Thisinstruction takes three parameters; a pointer to the resource channel,
the identifier, and a pointer to the RDS. There are two possibilities: either the channel is empty,
or an output has already occurred.

If the channel isempty, then theidentifier and the pointer to the RDS are stored in the extrawords
associated with the channel. For aninternal channel, the special value ResChan (= NotPro-
cess + 2) iswritten into the channel word to indicatethat it is part of aresource; for an external
channel the VCP records thisin the VLCB. Thisisillustrated in figure 2.16.

8. A user located on adifferent transputer from the server must arrange for a process local to the server to
do this. Thisisdiscussed in section 2.7.3.



RDS

- Channel:

Channel Identifier

Pointer to RDS

In resource mode

Process workspace

Figure2.16 Channel after mark resource channel but before output

If an output hasalready been executed on the channel, then the mark resource channel instruction
must be being executed by the server. In this case the channel will be queued on the RDS, using
thefirst of thepair of wordsto form alinked list, with the second extraword containing theidenti-

fier. Thisisillustrated in figure 2.19.

The operation of grant

A server process grants use of aresource by loading the evaluation stack with a pointer to the
resource data structure and a pointer to alocation which isto receivetheidentifier of the granted

resource channel, and then executing a grant instruction.

If thereisaresource channel onthe queug, itisdequeued and itsidentifier iswritteninto theloca-
tion provided for it. The server then continues and can input from the (now unmarked) resource

channel.

RDS

Empty

Channel:

Pointer to server

Server

Y

Id location

Pointer to location|

Process workspace

If thereisno resource channel on the queue, thenthereisno user processwaiting for theresource.
In this case the instruction writes the process id of the server into the synchronization word of

Figure2.17 RDS and Server after grant




theRDS, writestheaddressto wheretheidentifier will bewritten into theworkspace of the server
and deschedulesit. Thisisillustratedinfigure2.17. The server will be rescheduled when auser
outputsto theresource. Thus the resource mechanism also provides non—busy waiting, just like
aternative.

Note that once aresource channel is granted to aresource it becomes unmarked. It must be re—
marked before it can be used as part of the resource again. In the meantime it can be used asa
normal channel.

The operation of output

An output performed on aunmarked resource channel isindistinguishable from an output on an
ordinary channel, asillustrated in figure 2.18.

Process workspace

Channel:

Pointer to process

Figure 2.18 Channel after output only

When an output is performed on amarked internal channel, the output instruction readsthe chan-
nel word inthenormal way. On discovering that it containsthe special valueRe sChan, indicat-
ing that it is a marked resource channel, the instruction reads the pointer to the RDS from one
of the extrawords of the resource channel and examines the RDS.

If thereisno server present in the RDS, the output instruction queues the resource channel onto
theRDS, asshowninfigure2.19. If thereisaserver present, then theinstruction grantsthe chan-
nel to the server; the channel word is set to the processid of the sending process, the resource
channel’s identifier is written into the address specified in the pointer location of the server’s
workspace, and the server is rescheduled, as shown in figure 2.20.



RDS

Channel Identifier

Client Processes

Channel Identifier

Channel Identifier

Channel Identifier

Figure 2.19 Four resource channels after mark resource channel and output

When an output is performed on amarked virtual resource channel thefirst packet istransmitted
inthe normal way. Indeed, thereisno indication at the output end of the virtual channel that the
channel isaresource channel. When the packet arrives at the receiving transputer, the VCP will
notice that the packet has arrived on a marked resource channel, and cause the associated RDS
to be examined by the scheduler. If thereisno processid of a server present in the RDS, then
the scheduler queues the resource channel onthe RDS as showninfigure 2.19. If thereisapro-
cessidinthe RDS, then the channel is unmarked and granted to the server. The scheduler reads
the pointer to wherethe server wishestheidentifier to be stored fromthe server’spointer location,

stores the identifier there, and reschedules the server as shown in figure 2.20.




RDS Client Processes

Channel Identifier

Server

Channel Identifier

Channel Identifier|- - - |- - - | -

Channel Identifier

Figure2.20 RDS with queued resource channels and server after grant

Note that in both the internal and external case the resource channel is then in the same state as
achannel after an output has been performed and before the corresponding input has been per-
formed, as shown in figure 2.18.

2.7 Useof resources

The T9000's resource channel mechanism can be used in several ways, three of which we now
discuss.

2.7.1 Resourcesasareplacement for alternative; Omniscient servers

Consider the server example shown in figure 2.14, in which a set of users request some service
from aserver by communicating on an array of channels. We assume that the central server pro-
cess repeatedly chooses a user which hasrequested it, provides some service for atime, and then
chooses another user. If no user requires the service, the server will wait non—busily.

Although this can be implemented directly using the T9000's alternative mechanism, the cost
may be too high if there are alarge number of users, and the time taken to perform the service
issmall. However, if thisis so, we can implement the above server using a resource.

The server processfirst creates and initializes aresource data structure, and then marksall of the
resource channelsinthearray asbeing part of that resource. Theidentifier of each resource chan-



nel is set to the index of that channel in the array. The server then repeatedly selects a user by
performing grant, inputsfrom the chosen user and providesthe service. Thegranting of the cho-
sen channel enablesit to beused asan ordinary channel, and so the server hasto re-mark the chan-
nel toincludeit in the resource when the server has completed thisiteration. Finally, if and when
the server terminates, the channels may haveto be placed in astate where they can be used again
asordinary channels. Thisis done by means of the unmark resource channel instruction.

In order that the new code works correctly, the channels must have been allocated as resource
channels. Thiscan beachieved either by allocating all channelsasresource channels, or by allo-
cating only those channels used in resources as resource channels, in order to optimize memory

usage.

Thisimplementation hasaone-off set up and take down cost, proportional to the number of users,
and aconstant per-iteration cost whichisindependent of the number of users. Theusers(sending
processes) cannot distinguish between thisimplementation and one using alternative—or indeed
one in which every user is provided with its own server, which ssmply performs input!

The use of resourcesinstead of alternativeisefficient only whereanumber of constraints are ob-
eyed. Boolean guardsand explicitly prioritized sel ection must be avoided, and the server process
must interact with only the selected user, and not with any other users.

2.7.2 Resourcesin alternatives

Although the above has been suggestive that resources are some sort of areplacement for aterna-
tives, they arein fact complementary. Resources may be used asguardsin aternatives by means
of the enable grant and disable grant instructions.

Theuse of resourcesinthisway isvery natural. For example, consider abounded buffer process,
with severa providers of data and several usersthereof, asillustrated in figure 2.21.

Users

Server

Providers

Figure 2.21 Server with users and inputs

This can be implemented using two resources, one for the users and one for the providers. The
server can use an aternative to select between the users as agroup and the providers as agroup,
and then within each branch of the alternative it can make a further selection by the resource
mechanism asalready described. Thisensuresthat the server will wait (non—busily) until either



auser or aprovider isready to communicate. When there are many inputs and users waiting,
the server can prioritize either users or providers within the alternative as previously explained.

2.7.3 Ignorant servers

We have seen how to useresourcesinstead of alternatives. Inthat case, the server knowsthrough
which channels its users communicate, and how many users there are, but the users are unable
todistinguishtheresourcefroman alternative. Wenow consider how resources can be used when
the server and the users know only the location of the RDS. In this case the resource channels
can be generated dynamically as needed.

We start by explaining how to do this where the users are located on the same transputer as the
server, and then we explain how to do thiswhere the usersand server may belocated on different
transputers.

L ocal server and users

In this case the user knows that it is going to use aresource channel and knows the RDS of the
resource. The user allocatesthree words of memory for use asaresource channel, initializesthe
channel parttoNot Process, and executesamark resource channel instruction which specifies
the RDS of theresource and givesthe address of the channel itself astheidentifier of the channel.
Theuser then performsan output on the channel. Theserver, whenit grantsthisresource channel,
will be delivered the address of the channel, and can then input from the user. In practice, it will
probably be necessary for the resource to be able to output to the user, aswell asthe user output-
tingtotheresource. A channel can beestablished inthereversedirection according to some con-
vention known both to user and server.

Distributed serversand user

Thedistributed caseismore complex becausethe user cannot initialize and mark aresource chan-
nel by itself. Firstly, asthe user and server arelocated on different transputers, avirtual resource
channel must beused. It must first be allocated, then both ends of the virtual link must beinitial-
ized. Once this has been done something must mark the input side of the virtual channel; this
something must be executed on the same transputer as the server, not on the same transputer as
the user!

However, if we assume the existence of a distributed kernel, capable of allocating, initializing
and marking virtual channels, thedistributed case becomesstraightforward. Firstly, the user asks
thekernel toinitializeand mark avirtual channel connected to the server®. Thekernel then coop-
erateswith the kernel on the server’s machineto initialize the virtual channel, and then the local
kernel waitsfor the remote kernel to mark the virtual channel. Thelocal kernel then informsthe
user process of which virtual channel to use, and the user process proceedsto output on that chan-
nel.

2.8 Conclusion

The T9000 transputer and C104 router provide the mechanisms necessary for the construction
of large concurrent distributed systems. The T9000 providesaprocess and communication mod-
el, based around synchronised message passing over unidirectional point-to-point channelsin-
cluding an efficient and non-busy implementation of message passing, alternative and resources.

The communication system of the T9000 enables channels to be established between processes
executing on different transputers, and for the same communication model to be maintained
whether processes are located on a single transputer, or on a number of transputers.

9. Thekernel can appear asalocal server to the user.



When two T9000 transputers are directly connected, many virtual channelsare provided in each
direction between processes on the two transputers. 1f C104 routers are used, anetwork may be
built which allows processes distributed over any number of transputers to communicate. The
scheduling and communication mechanisms of the T9000 provide efficient support for awide
variety of operating system kernel functions and concurrent programming constructs.






