Thisis Chapter 3 from the second edition of :

Networks, Routers and Transputers:
Function, Performance and applications

Edited\D. May, PW. Thompson, and PH. Welch

© INMOS Limited 1993

Thisedition hasbeen madeavail ableelectronically sothat it may befreely copied and distributed.
Permission to modify the text or to use excerpts must be obtained from INMOS Limited. Copies
of this edition may not be sold. A hardbound book edition may be obtained from |OS Press:

|OS Press |OS Press, Inc.

Van Diemenstraat 94 P.O. Box 10558

1013 CN Amsterdam Burke, VA 22009-0558
Netherlands U.SA.

|OS Press/Lavis Marketing Kaigai Publications, Ltd.

73 Lime Walk 21 Kanda Tsukasa—Cho 2—Chome
Headington Chiyoda—Ka

Oxford OX3 7AD Tokyo 101

England Japan

This chapter was written by M. Simpson and PW. Thompson

3 DS-Links and C104 Routers

3.1 Introduction

Millions of serial communication links have been shipped as an integral part of the transputer
family of microprocessor devices. This*OS-Link’, asitisknown, providesaphysical point—to—
point connection between two processes running in separate processors. It is full-duplex, and
has an exceptionally low implementation cost and an excellent record for reliability. Indeed, the
OS-Link hasbeen usedinamost all sectorsof the computer, telecommunicationsand el ectronics
markets. Many of these links have been used without transputers, or with a transputer simply
serving as an intelligent DMA controller. However, they are now a mature technology, and by
today’s standards their speed of 20 Mbits/sisrelatively low.

Since the introduction of the OS-Link, a new type of serial interconnect has evolved, known as
theDS-Link. A major featureof theDS-Link isthat it providesaphysical connection over which
any number of software (or ‘virtual’) channels may be multiplexed; these can either be between
two directly connected devices, or can be between any number of different devices, if thelinks
are connected via (packet) routing switches. Other featuresinclude detection and location of the
most likely errors, and atransmission speed of 100 Mbits/s, with 200 Mbits/s planned and further
enhancement possible.

Although DS-Links have been designed for processor to processor communication, they are
equally appropriate for processor to memory communication and specialized applications such
as disk drives, disk arrays, or communication systems.

3.2 Using links between devices

DS-Links provide point—to—point communication between devices. Each connected pair of DS
Links implements a full-duplex, asynchronous, flow—controlled connection operating at a pro-
grammable speed of up to 100 MBits/sor more. Point to point links have many advantages over
bus based communications in a system with many devices:

e Thereisno contention for the communication mechanism, regardless of the number of
devicesin the system.

* Thereisno capacitive load penalty as more devices are added to the system.

e The communications bandwidth does not saturate as more communicating devices are
added to the system. Rather, the larger the number of devices, the greater the total com-
muni cations bandwidth of the system.

¢ Removingthebusasasingle point of failureimprovesthe fault—tol erance of the system.

For small systems, anumber of DS-Links on each device can provide complete connection be-
tween afew devices. By using additional message routing devices, networks of any size and
topology can be built with complete connection between all devices.

3.3 Levesof link protocol

As with most communications systems, the links can be described at a number of levels with a
hierarchy of protocols. The lowest level of electrical signalsis considered in detail in chapter
4,

3.3.1 Bit level protocol

To achieve the speed required, a new, simple link standard has been produced. DS-Links have
four wiresfor each link, adataand ‘ strobe’ linefor each direction. Thedataline carriestheactual
signal, and the strobe line changes state each time the next bit has the same value asthe previous
onel0. By thismeanseach DSpair carriesan encoded clock, inaway which allowsafull bit-time
of skew—tolerance between the two wires. Figure 3.1 shows the form of signals on the dataand
strobe wires. All signalsare TTL compatible.

Data '
Strobe |

Figure3.1 Link dataformat

Sincethedata—strobe system carriesaclock, thelinksareasynchronous; thereceiving devicesyn-
chronizes to the incoming data. This means that DS-Links ‘autobaud’; the only restriction on
thetransmission rateisthat it does not exceed the maximum speed of thereceiver. It also simpli-
fies clock distribution within a system, since the exact phase or frequency of the clock on apair
of communicating devicesis not critical.

3.3.2 Token level protocol

In order to provide efficient support for higher level protocols, it is useful to be able to encode
“tokens’ which may contain a data byte or control information (in other standards these might
be referred to as ** characters’ or **symbols’ — note that they have no relation to the ““token” of
atoken—ing network). Each token hasaparity bit plusacontrol bit which isused to distinguish
between data and control tokens. In addition to the parity and control bits, data tokens contain
8 bits of data and control tokens have two bitsto indicate the token type (e.g. ‘end of message’).
Thisisillustrated in figure 3.2.

Control bit Data token End of packet token
Parity bit 8 Data bits

l

P.0 . D D D D D D D D|P . 1.0 1

Scope of parity bit in second token

Figure 3.2 Token level protocol

10. NB: This does not correspond with the usual meaning of ‘strobe’, which would be a signal which indicates
every timethat another signal isvalid.

The parity bit in any token covers the parity of the data/control flag in the same token, and the
dataor control bitsintheprevioustoken, asshowninfigure3.2. Thisallowsanerrorinany single
bit of atoken, including the token type flag, to be detected even though the tokens are not all the
same length. Odd parity checkingisused. To ensure the immediate detection of errors null to-
kens are sent in the absence of other tokens. The coding of the control tokensis shown in table
3.1, in which P indicates the position of the parity bit in the token.

Table3.1 Control token codings

Flow control token FCT P100
End of packet EOP P101
End of message EOM P110
Escape token ESC P111
Null token NUL ESC P100

Notethat thetoken level of the protocol isindependent of details of the higher levels, such asthe
amount of datacontained inapacket, or theparticul ar interpretationsof packetsof different types.

Token leve flow control

Token level flow control (i.e. control of theflow of tokens between devices) isperformedineach
link module, and the additional tokens used are not visible to the higher—evel packet protocol.
The token-evel flow control mechanism prevents a sender from overrunning the input buffer
of areceiving link. Each receiving link input contains abuffer for at least 8 tokens (more buffer-
ing than thisisin fact provided). Whenever the link input has sufficient buffering available for
afurther 8 tokens, aflow control token (FCT) is transmitted on the associated link output, and
this FCT gives the sender permission to transmit afurther 8 tokens. Once the sender has trans-
mitted a further 8 tokensit waits until it receives another FCT before transmitting any more to-
kens. The provision of morethan 8 tokens of buffering on each link input ensuresthat in practice
the next FCT isreceived before the previous batch of 8 tokens has been fully transmitted, so the
token level flow control does not restrict the maximum bandwidth of thelink. Thisisanayzed
in detail in chapter 6.

Token level flow control greatly simplifiesthe higher levelsof the protocol, sinceit preventsdata
from being lost dueto buffer overflow and so removesthe need for re-transmission unlesserrors
occur. To the user of the system, the net result isthat a connected pair of DS-Links function as
apair of fully handshaken FIFOs, one in each direction.

Note that the link modul e regulates the flow of dataitemswithout regard to the higher level ob-
jectsthat they may constitute. At any instant the dataitems buffered by alink module may form
part or al of one or more consecutive higher—evel objects. FCTs do not belong to such objects
and are not buffered.

3.3.3 Packet level protocol

In order to transfer data from one device to another, it is sent as one or more packets (in some
other serial standardsthese might becalled** frames” or ** cells”). Thisallowsanumber of simul-
taneousdatatransfersto beinterleaved onthe samelink. Italso allowsdatato berouted by packet
switches such asthe IMS C104 (described later).

Every packet has a header defining the destination address followed by zero or more data bytes
and, finally, a‘terminator’ token, which may be either an ‘end of packet’ or an ‘ end of message’
token. Seefigure3.3. Thissimple protocol supportsdatatransfersof any length, even when (for
reasons of smooth system performance) the maximum packet sizeisrestricted; thereceiving de-

vice knows when each packet and message ends without needing to keep track of the number of
bytes received.

header data bytes terminator

Figure 3.3 Packet format

3.3.4 Higher level protocols

A variety of higher level protocols can belayered on top of thisbasic system. DS-Link packets
can be used as atransport mechanism for protocol s defined by other standards such asATM, SCI
and FibreChannel. They also provide very efficient support for synchronised channel commu-
nication, as described below.

3.4 Channe communication

A model of communication which can beimplemented very efficiently by DS-Linksisbased on
the ideas of communicating sequential processes. The notion of ‘process’ is very genera, and
applies equally to pieces of hardware and pieces of software. Each process can be regarded as
a‘‘black box” with internal state, which can communicate with other processes using communi-
cation channels. Each channel isa point—to—point connection between two processes. One pro-
cess aways inputs from the channel and the other always outputsto it. Communication issyn-
chronized: the first process ready to communicate waits until the second is also ready, then the
datais copied from the outputting process to the inputting process and both processes continue.
Becauseachannel isexternal tothe processeswhich useit, it providesaconnection between them
which hides their location and internal structure from each other. This meansthat the interface
of aprocess can be separated from itsinternal structure (which may involve sub—processes), al-
lowing the easy application of structured engineering principles.

3.4.1 Virtual channels

Each OS-Link of the original transputersimplemented only two channels, onein each direction.
To map a particular piece of software onto a given hardware configuration the programmer had
to map processes to processors within the constraints of available connectivity. The problemis
illustrated in figure 3.4 where 3 channels are required between two processors, but only asingle
link connection is available.

One response to this problem is the addition of more links. However this does not really solve
the problem, since the number of extra links that can be added is limited by VLSI technology.
Neither doesthis*solution’ addressthe moregeneral communication problemsin networks, such
as communi cation between non-adjacent processors, or combining networksinasimpleand reg-
ular way.

Progess ,) > Prol%ess
Process
B
\
D Process
Process - E
C

Figure 3.4 Multiple communication channels required between devices

A better solution isto add multiplexing hardware to allow any number of processes to use each

link, so that physical links can be shared transparently. These channels which share alink are
known as *virtual channels'.

Process
A Process

/ i

Process Mux/ Mux/
B Demux Demux

Figure 3.5 Shared DS-Links between devices

Virtual links

Each message sent acrossalink isdivided into packets. Every packet requiresaheader to identify

itschannel. Packets from messages on different channels areinterleaved on thelink. There are
two important advantagesto this:

e Channels are, generally, not busy al the time, so the multiplexing can make better use
of hardware resource by keeping the links busy with messages from different channels.

* Messagesfrom different channels can effectively be sent concurrently —the device does
not have to wait for along message to complete before sending another.

Mux/
Demux

v/ W77/
/
Packets arriving on link //////////

Figure 3.6 Multiple channels sharing alink

In this specific protocol, a packet can contain up to 32 databytes. If amessageislonger than 32
bytesthenitissplit upinto anumber of packetsall, except thelast, terminated by an ‘ end of pack-
et’ token. Thelast packet of the message, which may contain less than afull 32 bytes, istermi-
nated by an ‘end of message’ token. Shorter messages can be sent in asingle packet, containing
0to 32 bytes of data, terminated by the ‘ end of message’ token. Messages are always sent using
the minimum possible number of packets.

Packet acknowledgements are sent as zero length packets terminated with an * end of packet’ to-
ken. Thistype of packet can never occur as part of a message because a zero length data packet
must always be the last, and only, packet of a message, and will therefore be terminated by an
‘end of message’ token. Each packet of a message must be acknowledged by receipt of an ac-
knowledge packet before the next can be sent. Process synchronization is ensured by delaying
the acknowledgement of the first packet of a message until a processisready to input from the
channel, and delaying continuation of the outputting process until all the packets of the message
have been sent and acknowledged.

Virtual channelsareawayscreatedin pairstoforma’virtual link’. Thismeansitisnot necessary
to include a return address in packets, since acknowledgements are ssmply sent back along the
other channel of thevirtual link. The strict acknowledgement protocol meansthat it isnot neces-
sary toinclude sequence numbersinthe packets, even when therouting network isnon-determin-
istic!

The specific formats of packets used in this system areillustrated in figure 3.7.

First
header 32 data bytes end of packe+ packet
°
°
°
header 32 data bytes end of packet
Last
header 1 to 32 data bytes end of message packet
Long message (greater than 32 bytes)
header 0 to 32 data bytes end of message

Short message (0 to 32 data bytes)

header | end of packet

Acknowledge packet

Figure 3.7 High Level protocol packet formats

35 Errorson links

The DS-Links are designed to be highly reliable within a single subsystem and can be operated
in one of two environments, determined by aflag at each end of thelink, called L ocalizeError.

In applicationswhereall connectionsareon asingleboard or within asinglebox, thecommunica-
tions system can reasonably be regarded as being totally reliable. In thisenvironment errorsare
considered to beextremely rare, but aretreated as being catastrophic should oneoccur. If anerror
occurs it will be detected and reported. Normal practice will then be to reset the subsystem in
whichtheerror hasoccurred and to restart the application. Thisminimizesthe overheadson each
communication, but if an error does occur there will be an interruption in the operation of the
system.

For other applications, for instance when a disconnect or parity error may be expected during
normal operation, a higher level of fault—toleranceisrequired. Thisis supported by localizing
errorsto thelink on whichthey occur, by settingthe L ocalizeError bit of thelink to 1. If anerror
occurs, packetsin transit at the time of the error will be discarded or truncated, and the link will
bereset automatically. Thisminimizestheinterruption of the operation of asystem, but imposes
an overhead on all communications in order to deal with the possibility that data may be lost.

351 Errorsdetected

The DS-Link token protocol alowstwo common types of error to be detected. Firstly the parity
systemwill detect all singlebit errorsat the DS-Link token level, and secondly, because each out-
put link, once started, continues to transmit an uninterrupted stream of tokens, the physical dis-
connection of alink can be detected.

Disconnection errors

If the links are disconnected for any reason whilst they are running then flow control and token
synchronization may belost. Inorder torestart thelink it istherefore necessary to reset both ends
to aknown flow control and token synchronization point.

Disconnection isdetected if, after atoken has been received, no tokens are seen on theinput link
inany 1.6 microsecond window. Once adisconnection error has been detected the link haltsits
output. Thiswill subsequently be detected as a disconnect error at the other end, and will cause
that link to halt itsoutput also. 1t then resetsitself, and waits 12.8 microseconds before allowing
communication to restart. Thistime is sufficient to ensure that both ends of the link have ob-
served disconnection and cycled through reset back into the waiting state. The connection may
now be restarted.

Parity errors

Following aparity error, both bit—-evel token synchronization and flow control statusare nolong-
er valid, therefore both ends of thelink must bereset. Thisisdoneautonomously by theDS-Link
using an exchange—of—silence protocol.

When aDS-Link detects a parity error on itsinput it haltsits output. Thiswill subsequently be
detected asadisconnect error at the other end, and will causethat link to halt its output also, caus-
Ing adisconnect to be detected at thefirst end. The normal disconnect behavior described above
will then ensure that both ends are reset (irrespective of line delay) before either is alowed to
restart.

3.6 Networ k communications: the IMS C104

Theuse of DS-Linksfor directly connecting devices has already been described. Thelink proto-
col not only simplifies the use of links between devices but also provides hardware support for
routing messages across a hetwork.

The system described previously packetizes messages to be sent over alink and adds a header
to each packet to identify thevirtual channel. These headers can aso be used for routing packets
through acommunication system connecting anumber of devicestogether. Thisextendstheidea
of multiple channels on a single hardware link to multiple channels through a communications
system; acommunications channel can be established between any two devices even if they are
not directly connected.

Becausethelink architecture allowsall the virtual channels of adeviceto useasinglelink, com-
plete, system-wide connectivity can be provided by connecting just one link from each device
to the routing network. This can be exploited in anumber of ways. For example, two or more
networks can be used in parallel to increase bandwidth, to provide fault—tolerance, or asa“ user’
network running in parallel with a physically separate ‘ system’ network.

ThelMS C104 isadevicewith 32 DS-Linkswhich can route packets between every pair of links
with low latency. Animportant benefit of using serial linksisthat it is easy to implement afull
crossbar in VLSI, even with alarge number of links. The use of a crossbar allows packets to be

passing through all links at the same time, making the best possible use of the available band-
width.

If the routing logic can be kept ssmpleit can be provided for al theinput linksin therouter. This
avoidsthe need to share the hardware, which would cause extra delays when several packets ar-
riveat the sametime. Itisalso desirableto avoid the need for the large number of packet buffers
commonly used inrouting systems. Theuseof small buffersand simplerouting hardwareallows
asingle VLSI chip to provide efficient routing between alarge number of links.

A single IMS C104 can be used to providefull connectivity between 32 devices. IMS C104scan
also be connected together to build larger switch networks connecting any number of devices.

3.6.1 Wormholerouting

The IMS C104 includes afull 32 x 32 non-blocking crossbar switch, enabling messages to be
routed from any of itslinksto any other link. Inorder to minimizelatency, the switch uses‘worm-
hole routing’, in which the connection through the crossbar is set up as soon as the header has
been read. The header and the rest of the packet can start being transmitted from the output link
immediately. The path through the switch disappearsafter the* end of packet/message’ token has
passed through. Thisisillustrated in figure 3.8. This method is simple to implement and pro-
vides very low latency as the entire packet does not have to be read in before the connection is
made.

Minimizing routing delays

The ability to start outputting apacket whileit is still being input can significantly reduce delay,
especialy inlightly loaded networks. Thedelay can befurther minimized by keeping the headers
short and by using fast, smple hardware to determine the link to be used for output. The
IMS C104 uses a simple routing algorithm based on interval labelling (described in section
3.6.3).

Because the route through each IMS C104 disappears as soon as the packet has passed through
and the packetsfrom all the channel sthat passthrough aparticular link areinterleaved, no single
virtual channel can monopolizearoutethrough anetwork. Messageswill not be blocked waiting
for another message to pass through the system, they will only have to wait for one packet.

C104 inputs header and Device Cl04 Device
selects outgoing link or or
C104 C104

Crossbar connects input to . —Ii .
output; header flows through | Device c104 Device

followed by rest of packet or or
wed by P C104 C104
Packet terminator closes Device C104 Device

crossbar connection or or
C104 C104

Figure 3.8 Packet passing through IMS C104

ThelM S C104sthat the packets passthrough do not need to have information about the complete
route to the destination, only which link each packet should be sent out of at each point. Each
of the IMS C104sin the network is programmed with information that determines which output
link should be used for each header value. Inthisway, each IMS C104 can route packets out of
whichever link will send it towards its destination.

3.6.2 Header deletion

An approach that simplifies the construction of networksisto provide two levels of header on
each packet. Thefirst header specifies the destination device (actually, the output link from the
routing network), and isremoved as the packet leavesthe routing system. This exposes the sec-
ond header which tellsthe destination device which process (actually, which virtual channel) this
packet isfor. To support this, the IMS C104 can route packets of any length. Any information
after the initial header bytes used by the IMS C104 is just treated as part of the packet, even if
itisgoing to beinterpreted asaheader el sewhereinthe system. Any output link of theIMSC104
can be set to do header deletion, i.e. to remove the routing header from the front of each packet
after it been used to maketherouting decision. Thefirst part of the remaining dataisthen treated
as a header by the next device that receives the packet.

Header used to select
virtual link in device

g :

I N % IMS C104 [

e

Header used to select
output link of C104

Figure 3.9 Header deletion

Ascan be seen from figure 3.10, by using separate headersto identify the destination device and
achannel withinthat device, thelabelling of linksin arouting network isseparated from thelabel -
ling of virtual channels within each device. For instance, if the same 2 byte header were used
to do al the routing in a network, then the virtual channelsin all the devices would have to be
uniquely labelled with avaluein the range 0 to 64K. However, by using two 1 byte headers, all
the devices can use virtual channel numbersin the range 0 to 255. The first byte of the header
will be used by the routing system to ensure that the packets reach the appropriate device before
the virtual channel number is decoded.

(a) labelling the system with 2 byte headers

Network of C104s
Virtual
channels: 0-255 256—511 65280—-65535

(b) labelling the system with two 1 byte headers
Network of C104s
0 1 255

Virtual
channels: 0-255 0-—-255 0—-255

Figure 3.10 Using header deletion to label a network

The advantages of using header deletion in a network are:

Any number of headers can be added to the beginning of apacket so that header del etion can also
be used to combine hierarchies of networks as shown in figure 3.11. An extra header is added
to route the message through each network. The header at the front of each packet is deleted as
it leaves each network to enter a sub-network. Thisisjust like the local—nationa—international
hierarchy of telephonenumbers. Sincethe operation of theIMS C104 iscompletely independent
of thelength of the packets, thefact that header deletion changesthelength of apacket asit passes

It separates the headers for virtual channels from those for the routing network.

Thelabelling of the network can be done independently of the application using the net-

work.

Thereisno limit to the number of virtual channels that can be handled by a system.

By keeping the header for routing short, routing latency is minimized.

through the network causes no problem at all.

\-

I vsed to route packet
sub—network of C104s through sub—network,

deleted on output.

sub—network of C104s

[| usedto route packet
through sub—network,
deleted on output.

| |
final header used to identi—\

fy virtual channel on device

Figure 3.11 Using header deletion to route through sub-networks

3.6.3 Labelling networks

For each IMS C104 there will be a number of destinations which can be reached via each of its
output links. Therefore, there needsto be amethod of deciding which output link to usefor each
packet that arrives. The addresses that can be reached through any link will depend on the way
the network islabelled. An obviousway of determining which destinations are accessible from
each link, isto have alookup table associated with all the outputs (see figure 3.12). In practice,
thisisdifficult toimplement. There must be an upper bound on the lookup table size and it may
require alarge number of comparisons between the header value and the contents of the table.
Thisisinefficient in silicon area and also potentially slow.

Destina!tions reaghable Lookup table required

from this output link
Link 0 |+ 40 18 49 28 Link2 | 49 ' Link0
| 25 Link1 | 45 Link 1
Hnk 1 |~ 25,45,17,6,39 24 Link2 |42 Link3
Lnk2 |+ 04 20 28 22§ Link 2 4o§ Link 0
34 18 Link0 | 39 ' Link 1
Link3 | . 36 42 17 ' Link1 |36 Link3
6 Link1 | 34 Link2

Figure 3.12 Labelling a network

Destinations reachable

from this output link Interval routing table required

Link 0 |—» 25 28, 34, 36, 6..18 ...25 ...40 ...50
39 | .
Link1| . g 17 Link 2

Link O

H

Link21 40, 42, 45, 49

> Link 3
Link 31— 18,22,24 = Link 1

Bl

Figure 3.13 Interval labelling

However, alabelling scheme can be chosen for the network such that each output link hasarange
of node addressesthat can bereached throughit. Aslongastherangesfor eachlink are non-over-
lapping, avery simpletest ispossible. The header just hasto be tested to see into which range,
or interval, it falls and, hence, which output link to use. For example, in figure 3.13, a header
with address n would be tested against each of the four intervals shown below:

Interval Output link
6<n<18 1
18<n<25 3
25<n<40 0
40 < n<50 2

The advantages of interval labelling are that:
e |tis‘complete’ —any network can belabelled sothat al packetsreach their destinations.

|t provides an absolute address for each device in a network, so keeping the calculation
of headers simple.

e Itissimpletoimplement in hardware—it requireslittle silicon areawhich meansit can
be provided for alarge number of links as well as keeping costs and power dissipation
down.

e Becauseitissimple, it isaso very fast, keeping routing delays to a minimum.

Figure 3.14 gives an example of interval routing for a network of two IMS C104'sand six IMS
T9000 transputers showing one virtual link per transputer. The example shows six virtual chan-
nels, oneto each transputer, labeled 0to 5. Theinterval containsthelabelsof al virtual channels
accessibleviathat link. Theinterval notation[3,6) isread as meaning that the header value must
be greater than or equal to 3 and lessthan 6. If the progress of a packet with the header value
4 isfollowed from IMS T9000; then it isevident that it passes through both IMS C104s before
leaving on the link to IMS T90004.

IT9000+ T90004
[1,2) [3, 4
[3, 6) [5, 6)
T9000q C104 C104 T90005
[0, 1) [0, 3)
[2,3) [4, 5)
T9000, [T90004
C1044 C104,
Intervals: [0,1) [1,2) [2,3) [3,6) [0,3) [3,4) [4,5) [5,6)

Figure 3.14 Interval routing

Itispossibleto label all the major network topol ogies such that packets follow an optimal route
through the network, and such that the network isdeadl ock free. Optimal, deadlock freelabelings
are available for grids, hypercubes, trees and various multi—stage networks. A few topologies,
suchasrings, cannot belabel edinan optimal deadlock free manner. Althoughthey can belabeled
so that they are deadlock free, thisis at the expense of not using one or more of thelinks, so that
thelabeling isnot optimal. Optimal deadlock freelabelingsexist if one or more additional links
are used.

3.6.4 Partitioning

All the parameters determining the routing are programmable on aper link basis. This enables
an IMS C104 to be used as part of two or more different networks. For example, asingle IMS
C104 could be used for access to both a data network and a control network (see figure 3.15).

Partitioning provides economy in small systems, where using an IMS C104 solely for a control
network isnot desired, whilst maintaining absol ute security. By ensuring that no link belonging
to one partition occurs in any interval routing table in another partition, it is guaranteed that no
packet can be routed from one partition to another, whatever the value of its header.

Network 1 Network 2

C104 used in a data network C104 used in a control network
T9000
[10, 14)
[0, 9)
[1,2) - > C104
[3, 6)
T9000 C104 > T9000 [9, 10)
[0, 1)
2,3
[2.3) C104
T9000

Single C104 used between 2 networks

Interval table for links 4, 5 and 6

Interval | SelectLink

[10, 14) 4

9,10
Network 2 :) [9.10) 5
i 0,9 6
Linkg Link5 [0,9)
[0.9) Link4 [~——>
| _cloa___|lo™m
T Interval table for links 0, 1, 2 and 3

‘TU’ Link1 Link3 W Interval | SelectLink

Link2 ’ [3, 6) 3

Network 1 [2, 3) [2, 3) 2

[1,2) 0

[0, 1) 1

Figure 3.15 Using partitioning to enable one C104 to be used by two different networks

3.6.5 Grouped adaptive routing

The IMS C104 can implement grouped adaptive routing. Sets of consecutive numbered links
can be configured to be grouped, so that a packet routed to any link in the set would be sent down
any freelink of theset!l. Thisachievesimproved network performancein termsof both latency
and throughpui.

Figure 3.16 gives an example of grouped adaptive routing. Consider a message routed from
C1044, viaC104,, to T9000;. On entering C104, the header specifies that the messageisto be
output down Link5 to T9000;. If Link5 isalready in use, the message will automatically be
11. Thisisalso sometimes called a hunt group.

routed down Link6, Link7 or Link8, dependent on which link isavailable first. Thelinkscan
be configured in groups by setting abit for each link, which can be set to * Start’ to begin agroup
and ‘ Continue’ to be included in a group.

C1045

A J Y
Link10 Link9
-7 LinkO Link8 >

. . _
C104, Link1 " G104, HNK7 T9000;

-7 Link2 Link6 >

-7 Link3 Link5 >
Link4

Settings in Group0—31 bit field for
C104,

Start T9000,
Continue
Continue
Continue
Start
Start
Continue
Continue Grouped
Continue
Start
Continue
Start

Grouped

] Grouped

- 2 OCoONOOOP~WN—-O

- O

Start

w
gl

Figure 3.16 Grouped adaptive routing

Grouped adaptiverouting isaso very effectivein multi—stage networks such asthoseillustrated
infigures7.1to 7.4. Since al the centre-stage switches are equivalent, al the links from each
first—stage switch towardsthe centre can be grouped together, allowing ahigh degree of adaption
to dynamic traffic conditions.

3.7 Conclusion

DS-Link technology providesreliable, high—speed serial communicationsat low cost, inasimple
formwhichissuitablefor awiderange of applications. A simple protocol, implemented in hard-
ware, keeps overheads down whilst allowing more complex functionsto be layered on top of it.
It a so permits high—performancerouting devicesto be constructed, from which efficient systems
of any size can be built to provide very high system bandwidth and fault—tolerance.

