Thisis Chapter 5 from the second edition of :

Networks, Routers and Transputers:
Function, Performance and applications

Edited\D. May, PW. Thompson, and PH. Welch

© INMOS Limited 1993

Thisedition hasbeen madeavail ableelectronically sothat it may befreely copied and distributed.
Permission to modify the text or to use excerpts must be obtained from INMOS Limited. Copies
of this edition may not be sold. A hardbound book edition may be obtained from |OS Press:

|OS Press |OS Press, Inc.

Van Diemenstraat 94 P.O. Box 10558

1013 CN Amsterdam Burke, VA 22009-0558
Netherlands U.SA.

|OS Press/Lavis Marketing Kaigai Publications, Ltd.

73 Lime Walk 21 Kanda Tsukasa—Cho 2—Chome
Headington Chiyoda—Ka

Oxford OX3 7AD Tokyo 101

England Japan

This chapter was written by J.M. Wilson.

5 Using Links for System Control

5.1 Introduction

The T9000 family of devicesincludes processors and routers which have subsystems and inter-
faceswhicharehighly flexibleto match therequirementsof awiderangeof applications. Inaddi-
tion to the static configuration requirements of subsystems such as the memory interface of the
T9000, the more dynamic aspects of anetwork of devices must be configured before application
software isloaded. These more dynamic itemsinclude:

» cache organization;
e datalink bit—rates;
e virtual link control blocks;

If T9000 processors are configured as stand-al one devices, the configurable subsystems will be
initialized by instructions contained in alocal ROM. When the devices are integrated as part of
a network with a static configuration every processor in the network could also initialize these
subsystemsindependently by executing code contained inalocal ROM. Typically, however, net-
works of T9000 family devices contain routers as well as processors and executing code from
aROM isnot an option for arouting device. Asaconsequence, routing devices must be config-
ured under external control. During system devel opment or for systemswhich are used for multi-
ple applications a flexible configuration mechanism for processorsis also required.

Debugging of software and hardware on networks consisting of many devices is not a simple
problem. Themajor difficulty isin monitoring the behavior of the system asan integrated whole
rather than observing theindividual behavior of the separate components. A flexible mechanism
which allowsmonitoring tool sto observe and manage every devicein anetwork inasimple man-
ner is essential in designing a system-wide debugging environment.

5.1.1 Virtual channds

Connecting processorstogether with point-to-point serial links overcomes many of the problems
of shared memory multi-processor systems. Point-to-point links, however, introduce adifferent
set of problems. Of these problems, two of the most critical for system design are, firstly, the
difficulty of mapping a software structure on to an arbitrary hardware topology and, secondly,
routing messages between processes running on processors which are not adjacent. A great deal
of effort has gonein to seeking solutionsto these problems and the most flexible and readily im-
plementabl e technique for overcoming the difficulties is the concept of virtual links. Processes
in a network communicate via channels and so the collection of processes and channels define
the softwaretopol ogy of asystem. ThelMST9000 has multiplexing hardware (the Virtual Chan-
nel Processor) which allows any number of channelsto sharethe available physical linksin such
a manner that processes communicating via the channels are unaware of the sharing. Virtual
channels are naturally paired to form virtual links, as described in chapter 2. The use of virtual
channels allowsthe software structure of a system to be devel oped independently from the hard-
ware on which it isto be executed.

Control virtual channels

An ideal way of configuring and monitoring a network of T9000 family devices would be to
create a control network in which a master control process running on a host is connected to a

client control process on every configurable devicein the network. Using virtual linksto imple-
ment this control network gives exactly the level of control and flexibility required. Theremote
end of the control virtual link must be managed by an autonomous process which is active and
ableto obey theinstructions of the control processeven if the deviceitself isin acompletely un-
configured or stopped state. To achievethis, thisprocessisimplemented by anindependent hard-
ware module called a control unit.

Figure 5.1 illustrates how control virtual channels appear to the control processes involved.

\ Contyolling process

ontrolled
rocess

Figure5.1 Control virtual channels
Providing all device types with an identical control unit allows:

* host system control software to be consistent for every member of the product family;

» the control network on a mixture of devices to be explored and the device types deter-
mined;

* processor—free routing networks to be initialized and monitored for error;

A virtual channel from a system control process to every device in a network means that each
device can be controlled and monitored asif it were the only devicein the network. The ability
to control and monitor routing devicesisan important capability especially in networks contain-
ing no processing devices. Facilities provided by the control system must include the ability to:

* start the device;

* stop the device;

* reset the device;

e identify the device;

e configure the device;

e examine and modify memory (if any);

» |oad boot code (if the device uses |oadable code);

* monitor the device for error;

e re-initialize the control system after an error.
Control links

Because of the critical function of the control system in system initialization and error recovery
itisvital that ishighly reliable. To guarantee the integrity and reliability of the control system

itisessential that it existsin an entirely different domain from the normal operation of the com-
munication system. This separation is achieved by providing each device in the T9000 family
with two dedicated control links (CLink0 and CLink1, aso caledthe'up’ and‘down’ links)
and adedicated control unit. Implementing the control linkswith adatalink isnot desirable be-
causeit adds complexity to theimplementation (by mixing functionswhich can otherwise beim-
plemented separately) and reduces security, sincefor example an error in the data network might
be impossible to report.

Thecontrol linksof every deviceinanetwork are connected to form acontrol network. Thecom-
munication links of the devices will be connected to form a data network. The control network
is kept completely separate from the data network and isintended for use by the control system
exclusively. Itisanimportant featurethat the control linksare not accessibleto software running
on a T9000 processor; the control system is a mechanism designed exclusively for initializing
and monitoring the various hardware subsystems of the T9000 family of devices. The type of
error which would bereported viathe control systemincludessystem crashessuch aslink failure.
The control system could not be used for run-time system messages to report failure of a user
application. Inthelatter case the failure messages would be routed via established virtual chan-
nelsacrossthe datanetwork but intheformer case these channelsmay no longer bereliable. The
control network may be run at alower speed or use different interconnect technology from the
data network for increased reliability if necessary.

5.2 Control networks

In anetwork of T9000 family devices, the control system of each device will have avirtual link
to aprocess running on the processor being used to manage the initialization and monitoring of
the system (typically a host). The managing processor, referred to as the control processor, is
connected to the network via the control port, which consists entirely of one or more standard
DS-Links. If the control processor isaT9000, one of itsserial links could be used as the control
port and the Virtual Channel Processor would then implement the virtual channels to the con-
trolled devices. If the control processor isnot a T9000, the control port would need to beimple-
mented by a device such as a DS-Link adapter and the virtual channel handling would need to
be implemented by software.

Within the control network every control unit obeys a simple protocol onitsvirtual link. Each
message from the control processto adeviceis acknowledged by a handshake message back to
the control process. Each unsolicited message from a device to the control processis acknowl-
edged by a handshake message from the control process to the device as shown in figure 5.2.

command messages

controlling |s--------------=-%--- control

process system

Figure 5.3 Communication between control process and control system

This strict exchange of a handshake message for each command or error message meansthat the
controlling process can be implemented entirely sequentially without danger of deadlock. Even
if the control system sends an error message at the same time as the controlling process sends a

command, the controlling process subsequently performsan input in any casein order to receive
the handshakefor itscommand. Whenit receivesan error messageinstead it knowsthat afurther
pair of messages must be exchanged.

The messages received by a control unit have the form of acommand byte followed by parame-
ters specific to that command. Of the thirteen commands in the protocol some are common to
all device types and some are specific to particular device types. The physical implementation
of the part of the control unit which handlesthe common commandsisgenericto all devicetypes.
The commands common to all device types are those to start, reset, and identify the device, and
to recover from an error in the control network. Other commands are specific to particular de-
vices. The meaning of the commandsis detailed in section 5.8.

521 Implementation

After hard (power-on) reset the virtual links between the control process and the control unit of
all the devicesin the network must be established. The virtual link to adeviceis established by
the first message received by the network device on CLinkO0; this must be a Sart command.
The Start command will be used to set the device ‘label’ aswell asthe return header used by the
device on every packet sent back to the control process. Thelabel isthe header which identifies
the virtual link to this device; all packets received from CLink0 with thislabel are directed to
thedevicecontrol unitandall thosewithadifferent label arepassedto CLink1. Packetsreceived
on CLink1 are passed directly to CLink0. By connecting the control links of all devicesinto
the control network and establishing avirtual link to every device, the control processcaninitial-
ize and monitor every processor and router in the network independently of the behavior and
topology of the data network.

Each device hasasingle control link pair so in anetwork consisting entirely of processorsthese
must be daisy-chained as shown in figure 5.4.

Control Control

port processor

— Control network

___________ Data network

Figure 5.4 Daisy chained control links

For large networks containing M S C104 devices daisy-chaining is undesirable because of com-
mand | atency and possible physical routing constraints. Inthese networksit isbetter to routethe
control network via C104s as shown in figure 5.5.

Control Control
port processor

Control network
—>

Data network

Multiple links

Figure 5.5 Routing control links through an IMS C104

Itispossibleto use C104sfor control network routing because control links use the same el ectri-
cal and packet—evel protocols as the standard data links. When data links on a C104 are used
toroutethe control network, itsdown control link, CL.ink1, can be connected into oneof itsown
data links and thus the control network can fan out in a similar manner to the data network. It
isstrongly recommended that C104 deviceswhich are part of the control network are used exclu-
sively for the control network and are not part of thedatanetwork. If itisunavoidablethat aC104
ispart of thedatanetwork aswell aspart of the control network it must be partitioned into separate
logical devices so that no link can be in both networks (as described in section 3.6.4 of chapter
3). Inthiscase specia actions must be taken during reset sequences to avoid losing the control
network when resetting the data network. When the control network includes C104 devicesthe
routing tables of the C104 must beinitialized using CPoke commands before the control network
can be fully established.

CLinko0 isstarted automatically by thearrival of thefirst token. CLink1 must bestarted explic-
itly viaaCPoke command received by the control process. |If amessageisreceived for downward
transmission and CLink1 has not been started a protocol error will be reported.

5.3 System initialization

System initialization is the sequence of actions from receipt of ahard reset (i.e. assertion of the
reset pin) until the devicesinthe system areready to perform the application for which the system
isintended. In a network containing processors, the application may be an operating system
ready to run user software or an embedded application ready to start receiving its control data.
In anetwork consisting entirely of routers the systemisfully initialized when all of the routing
information of the network isestablished. A possible sequence of actionsfor anetwork contain-
ing processors and a host, referred to as levels of reset and shown in figure 5.6, is as follows:

» Label the control network (including configuring any C104sin the control network) - the
network isnow at level 1.

» Configure the devices in the network using the control network - level 2.

* Set upvirtua linksover whichtoload the network and then run boot codein each processor
-level 3.

» L oad the network with the application and then set up the virtual linksrequired by the ap-
plication software -level 4;

» Start the application on the network and a server on the control process - level 5.

Soft reset Controller Control port Network
Level 5:
Server Application running Application
running
Data link Set up host Load application Level 4:
process virtual links Set up virtual links Application loaded
v Run application and started
Control link Set up virtual links for loading| Level 3:
process Load and run bootstraps Ready for
v loading
Control link Configure network devices Level 2:
process Configured
Y
Hard reset| Control link | Set up control | Label control network Level 1:
process virtual links Control network
labelled
Level O:
Devices powered up and reset

Figure5.6 Levelsof reset

The sequence can be performed one device at atime or network wide one level at atime. For
aprocessor some of the configuration actions can be performed either acrossthe control network
or by local software. Because aricher protocol with higher data transfer rates and (possibly)
shorter paths can be implemented across the data network than exists on the control network it
isgenerally desirableto establish the data network as early aspossiblein theinitialization cycle.

Using the sequence outlined, application software is loaded onto processors in the network via
virtual channelsestablished withinthedatanetwork. A loader must first beloaded and connected
tothevirtual channelstoload the application at the desired locations. Thisloader must be loaded
and started using the control network and the control channel protocol contains the commands
Boot, BootData and Run to facilitate this. The Run command provides aworkspace pointer and
an instruction pointer to start the T9000 CPU. The Run command and the Sop command arethe
two commands by which the control system can modify the behavior of the T9000 CPU.

The control network can only be re-labelled after ahard reset so no packet corruption can result
in control messages re-configuring the control network. The control process can, however, issue
aReset command to any device in the network. The Reset command directs the device to reset
tolevel 1, 2 or 3 so the control process can restore individual processors to a known state ready
for re-loading an application or, perhaps, to load a debugging kernel.

Some or al of the processorsin anetwork may be set to boot from ROM. Boot-from-ROM de-
vices might be used simply to the configure thelocal environment or, alternatively, in embedded
applications they can be used to configure and then load the whole system.

531 Local ROM

In many networks it is desirable to localize configuration information. For exampleit is often
useful to program the memory interfacelocally with the the characteristics of thememory system

connected to that processor. Suppliersof special purposeinterface boards can buildaROM onto
the board which setsup all of the specific characteristics without having to worry about the envi-
ronment in which the board is going to be used. While a network processor is executing code
fromitslocal ROM it isimportant that the control process does not attempt to load and configure
the device. A simple convention to prevent this from happening is for the code in the ROM to
set error when it has completed its local configuration, and thereby cause the processor to halt
and transmit an Error message. Thereceipt of the Error message then signalsto the control pro-
cess that the device is now ready to receive the rest of the initialization sequence.

Thelocal ROM could contain codeto takethe deviceto ahigher reset level. 1t might bedesirable
to bootstrap the device to level 3 ready for the application to be loaded. The same convention
as above could be adopted to indicate to the control processthat the ROM has completed itsini-
tialization sequence.

Boot-from-ROM will only occur automatically after ahard reset. The control process can, how-
ever, instruct a T9000 to boot from ROM by sending a Reboot message. This allowsthe control
process to be in complete control of the system initialization sequence.

53.2 System ROM

A T9000 network may be configured to boot from ROM. The processor which istheroot of the
network will have accessto the system ROM, and will be connected so that one of its datalinks
isthe control port at the ‘top’ of the control network. Itsown control linkswill not be connected
aspart of that same network. This processor will bethe control processor aswell astheroot pro-
cessor for the system initialization. Configuration information, bootstraps and application code
will be drawn from the system ROM rather than from alocal file store which would typically be
the caseif the network was booting from link. After booting the network, the root processor can
execute its own application from RAM or continue executing from the ROM. All processorsin
the network, other than the root processor, are initialized and configured across the control net-
work asshown infigure5.7. These processors could boot from local ROMsfor local configura-
tion if necessary.

Control network
_——

Data network

Figure5.7 Booting from system ROM

A similar mechanism could be employed for a network consisting entirely of routing devices; a
single (cheap) processor could initialize the routing tablesfor the whole network. The processor
could then monitor the control system for errorstaking appropriate recovery actionsand logging
information for later analysis.

54 Debugging

The normal mechanism for dealing with errors on aworking T9000 processor isto execute atrap
handler which takes recovery and repair actions to restore the processor to a known valid state.
Thetrap handler may report itsactionsviathedatanetwork to asupervisory processinthesystem.
During development of softwareand hardware, however, it may be desirableto halt the processor
which has caused the error and examine the system state in some detail.

Errors generated by a T9000 subsystem (other than those detected in the CPU and caught by a
trap handler) will result in an Error message being generated on the virtual channel back to the
controlling process and the CPU being halted. The control process can then bring thewhole sys-
tem to a quiescent state by sending a Stop command to every T9000 in the network. The Stop
command stopsthe processor cleanly, preserving register valuesand all owing adebugging kernel
toretrieveprocessor stateand thustracethe causeof theerror. If aprocessor initiated thesituation
because of an error, that processor will have halted at the point of error. On all other processors
the CPU will continue until the next deschedule point or timeslice. Thelinks are unaffected, and
thetimerscontinueto run until aReset3 command isreceived, but no processeswill be scheduled.

After the control process has received handshakesfor all of its Slop messagesit must allow time
for the system to become quiescent and then issue a Reset3 command to every T9000. When
every device has received a Reset3 command, al of the CPUs will be halted and the system is
guaranteed to be static. At this stage the control process can make certain that the configuration
is correct by using configuration ‘peek’ and ‘poke’ (CPeek and CPoke) commands.

If adebugging kernel isto be loaded into the network it may be necessary to savethe areawhere
it isto beloaded to guarantee that no processor stateislost to the analysistools. This space can
beretrieved acrossthe control network using the Peek command and stored on the host processor.
The debugging kernel can be loaded and started using a BootData and Run sequence which will
not interfere with the preserved state of the data network.

The debugging kernel now has access to al of the previous processor state and can be directed
by the debugging tools running on the control processor to retrieve information on all of the pro-
cessor’s subsystems. The network is thus a distributed data base containing the memory state,
register contents and call history of the whole system rather than of just asingle processor. The
debugging tools can piece together the cause of the system failure and observe the interaction
between the different processes and processors. The combination of accessto the state of every
processor, accessto the sourcesfrom which the system wasbuilt and knowledge of the compiling,
linking and loading strategi es enables debugging tool sto produce an integrated picture of the be-
havior of the whole system at a symbolic level rather than at an instruction stream level. Once
the debugging kernel isloaded onto the network, the debugging toolswould, typically, establish
virtual channels across the data network to communicate with the individual kernels.

The mechanism described above is called post-mortem debugging. Interactive debugging can
be accomplished by running adebugging kernel on every processor inthe systemin parallel with
theapplication. Inthisway breakpoints, watchpoints, single stepping and many of the other faci-
lities delivered by ICE systems are provided without using expensive and intrusive additional
hardware. Anadditional benefit of using linksto assist in debugging isthe ability to monitor the
behavior of a complete multi-processor system observing the interactions across processor

boundaries at source level. The debugger running on the control processor communicates with
the debugging kernels through virtual channels additional to those established for the data net-
work so that the applications are entirely unaware of the presence of the debugging system.

Much of what has been described in this section is familiar to developers of software for multi-
processor systems. The T9000 family of devicesintroduce many features to decouple software
and hardware development and as a consequence access to the state of routing devicesisavita
requirement in system debugging. Accessto the state of routing devicesisparticularly important
for networks which contain no processors. The post-mortem mechanisms described earlier are
equally relevant for routers. A control process can examinethe configuration of arouting device
and proceed to access the state of every seria link and thus locate the point of failure and deter-
minewhat recovery action must betaken. When adatalink disconnect error isdetected on arout-
er it will cause an error messageto be generated on the virtual link to the monitoring processrun-
ning onthe system control processor. Asaconsequence networksof routersdo not require special
hardware monitoring devices, a significant amount of fault detection and isolation can be built
into the system by the addition of a single monitoring device.

55 Errors

Thecontrol system providesan error reporting mechanismfor all errors, other than those detected
by aCPU and caught by trap handlers. Thereporting of errorsby the control systemto the control
processisthe only timethat the controlled deviceistheinitiator of acommunication on the con-
trol network. The controlling processmust acknowledgerecei pt of the Error message by sending
an ErrorHandShake message back to the device generating the Error message. The Error mes-
sageincludesafieldto indicate the source of theerror. The control system will not send an error
message if a handshake has not yet been received for a previously sent error message.

The control system handles three distinct classes of error, as listed below.
1. Errorson the control links, which include:
O parity/disconnect on CLink1;
O unexpected acknowledge;
O invalid messages,
O handshake protocol error;

2. System errors - errors from one of the subsystems when stand alone mode is not set.
3. Stand alone mode errors

The effects of the errors are given intable 5.1. The ErrorSinceReset flagisaflaginthe
IMS T9000 which is provided to assist self-analysis of stand—alone systems.

Table5.1 Error effects

Error class Result of error
Stops CPU ErrorSinceReset Error message
flag set sent on CLink0
Control link error No No Yes
System error Yes Yes Yes
Stand alone mode Yes Yes No
error

Thecontrol unit will record asingleerror whichiscleared by the error handshakefromthe control
process. A hardreset, reset 1 or reset 2 will causetherecord of untransmitted errorsto be cleared.

55.1 Control link errors

The basic reliability of DS-Links used within their specifications, as discussed in chapter 4, is
very high, and thisreliability can be further enhanced for the purposes of the control network by
reduced the operating speed somewhat and by paying particular attention to the connection of
links. However since an error — however unlikely — in the control network is potentially very
seriousfor the whol e system, extra mechanisms are provided to report and recover from such er-
rors.

A parity or disconnect error on CLink1 will bereported by the control system to the control pro-
cessviaCLink0. A parity or disconnect error on CLink0 will causethelink to halt. Thishalt
will be detected by the device connected to the other end of the link which will in turn report the
error.

After an error has occurred some virtual linksin the control network may bein an invalid state.
The controlling process ends of the virtual links must be reset and then the process can restore
the control network to avalid state by sending Recover Error commands (which can be sent in
violation of the normal protocol). A RecoverError command will reset the remote end of acon-
trol virtual link and cause any un-handshaken error message (which may have been lost) to be
resent. A sequence of Recover Error messages sent by the control processto each of the devices
inturn can thus systematically restore the control network and at the same time recover informa-
tion which may help to determine the cause of the failure.

55.2 Stand alone mode

When aT9000 processor is operating in stand-alone mode, errors are handled in a distinct way.
If an unmasked/untrapped error occurs the control system will reset all of the subsystems on the
T9000 and then cause aboot from ROM. TheErrorSinceReset flagwill be set so that the
ROM code can determine that an error has occurred.

5.6 Embedded applications

Theroot processor in an embedded application which has booted from ROM takes over therole
of the control processor on asystem which hasbooted from ahost. Thecontrol processcan moni-
tor and log errors, restarting and re-configuring processors after failure and recovering from er-
rors in the control system. As described in section 5.5.2 above, errorsin the control processor
result in the processor rebooting. The control process can determinethat an error occurred since
thelast reset and can recover and log information from the previous processor statefor later anal-
ysSis.

5.7 Control system

The control system of each device consists of apair of control links, a packet handler, a control
unit and system servicesas showninfigure5.8. Thefunctionality within each unit of the control
system is described in more detail below.

CLink0 CLink1

Packet handler

-

Command

Autonomous
control

Command

System
services

Figure5.8 Control system components

571 Control links

A network of devicesis controlled by aset of virtual links, one for every devicein the network.
A ssimple physical implementation of these virtual links can be achieved by connecting together
the control links of anumber of devicesinto apipeline. Thevirtual links are multiplexed down
thiscontrol link pipelinesothat, asfar asthenetwork isconcerned, each devicehasasinglevirtual
link to the control processwhichiscarriedby CLink0. CLink1 carriesvirtual linksfor devices
further down the pipeline.

Thevirtual link is established by the first message received on CLink0 after ahard reset. The
physical management of the virtual links by routing packets received on CLinkO0 to the correct
destination is performed by the packet handler.

5.7.2 Packet handler

The packet handler manages the packet stream performing the following functions.

* Records the first header received on CLink0 after hard reset as the device label.
¢ Records the return header from areceived Sart command.

e Checksincoming CLink0 packet headers. Any with adifferent label from the one re-
corded after reset are forwarded to CLink1.

* Adds the return header to outgoing CLink0 packets.
e Forwards incoming CLink1 packetsto CLinkO.
* Detects and handles acknowledge packets received on CLinkO.

» Validates that commands are correctly formed and forwards correctly formed commands
to the control unit.

¢ Detects the commands Reset, RecoverError and ErrorHandshake.
* Rgjects acommand, other than the previous three, if another is aready in progress.

. Theformat of the packetsis shown in figure 5.9.

Byte0 Byte1 Byte2 Bytes3.. End byte

Device label Command Command parameters ... End of
message

Figure 5.9 Command packet structure

5.7.3 Control unit

The control unit includes acommand handler for acting on messages received from the control
network and an autonomous control block which controls the behavior of the device when itis
operating independently of a control network.

Command handler

The command handler:

e captures errors from error inputs and forwards them to the control processvia CLinkO0;
* responds to errors with appropriate stop/halt to sub-systems,

* arbitrates between command responses and errors, and forwardsvia CLink0 to the con-
trol process,

« filtersillegal and inappropriate commands as errors;
» Controls sub-system reset after receipt of a Reset command,;
» handles access to the configuration bus after receipt of CPeek, and CPoke commands;

» handlesaccessto the memory system after recel pt of Peek, Poke, Boot and BootData com-
mands;

* stops the processor cleanly after receipt of a Sop command,;

» starts the processor with with a given workspace and instruction pointer after receipt of
a Run command,

» startsthe processor with with aworkspace and instruction pointer read from aROM after
receipt of a Reboot command.

5.7.4 System services

The system servicesisablock of registersin the configuration space containing control and gen-
eral device information.

58 Commands

The commands to which the control unit responds are as follows.

5.8.1 Commandsapplicableto avariety of devices
Start

This must be the first command received by adevice after ahard reset. It isused to program the
return header of the device. After ahard reset it will also set the label of the device.

I dentify

The Identify command causes the device to respond with a handshake containing an identifier
unigue to that device type.

CPeek

CPeek commands are used to examineregistersin the configuration space. The handshake mes-
sage contains the contents of the selected register.

CPoke
CPoke commands are used to initialize registers in the configuration space.
Reset

Reset is used to reset the device to a chosen state specified by a parameter. The parameter can
typically havethevalues 1, 2 or 3.

1. Equivaent to hard reset but the control system is unaffected.
2. Resetsall subsystemsexcept the control system, and|eavesthe configuration unchanged.
3. Just halts the processor.

RecoverError

RecoverError is used to restore the protocol after alink error in the control link system.

5.8.2 Commands applicableto processors
Peek

Peek commands are used to read the normal address space of aT9000. The handshake message
contains the contents of the selected address.

Poke

Poke commands are used to write data to memory locations in the normal address space of the
T9000.

Boot

This command initiates a booting sequence. Parameters to the command specify the length of
code to be loaded and where it is to be loaded in memory. The Boot and BootData allow code
to be loaded much more efficiently than it would be by using a sequence of Poke commands.

BootData

A sequence of BootData commands follow a Boot command. Each BootData command will
contain 16 bytesof codewhichwill beloaded into consecutivelocations starting from theaddress
specified inthe Boot command until thelength specified by the Boot command has been reached.

Run

The Run command specifies aworkspace pointer and an instruction pointer and causes the pro-
cessor to start executing with these values.

Stop
This command causes the processor to cometo a“clean’ stop ready for post-mortem debugging.
ReBoot

The ReBoot command re-initiates a boot-from-ROM sequence.

59 Conclusions

Using the same el ectrical and packet protocolsfor system control asfor datatransfer allowslarge
concurrent systems to be programmed, monitored and debugged in a very straightforward way
using virtual links. A small set of commands, supported directly in hardware, provides precise
control over individual devicesand thewholesystem. A simplehandshaking protocol at the mes-
sage level ensures that a simple, sequential control process can be used without any difficulty.
Using aseparate network for system functionsimprovesthereliability and security of the system.

The provision of atwo links and a basi ¢ through—routing function on each device allows alow—
cost daisy—chain topol ogy to beused for small systems. Larger systemscan employ C104 routers
in the control network to improve fan—out.

Facilities have been added to recover use of the control network even after thetemporary discon-
nection of one of itslinks. The Recover Error command providesa ' remote channel reset’ func-
tion to enable the control virtual links to be restored to a known state. Error information which
might have been lost is re-transmitted.

