
This is Chapter 5 from the second edition of :

Networks, Routers and Transputers:
Function, Performance and applications

Edited by:M.D. May, P.W. Thompson, and P.H. Welch

© INMOS Limited 1993

This edition has been made available electronically so that it may be freely copied and distributed.
Permission to modify the text or to use excerpts must be obtained from INMOS Limited. Copies
of this edition may not be sold. A hardbound book edition may be obtained from IOS Press:

IOS Press IOS Press, Inc.
Van Diemenstraat 94 P.O. Box 10558
1013 CN Amsterdam Burke, VA 22009–0558
Netherlands U.S.A.

IOS Press/Lavis Marketing Kaigai Publications, Ltd.
73 Lime Walk 21 Kanda Tsukasa–Cho 2–Chome
Headington Chiyoda–Ka
Oxford OX3 7AD Tokyo 101
England Japan

This chapter was written by J.M. Wilson.

5 Using Links for System Control

5.1 Introduction

The T9000 family of devices includes processors and routers which have subsystems and inter-
faces which are highly flexible to match the requirements of a wide range of applications. In addi-
tion to the static configuration requirements of subsystems such as the memory interface of the
T9000, the more dynamic aspects of a network of devices must be configured before application
software is loaded. These more dynamic items include:

� cache organization;

� data link bit–rates;

� virtual link control blocks;

If T9000 processors are configured as stand-alone devices, the configurable subsystems will be
initialized by instructions contained in a local ROM. When the devices are integrated as part of
a network with a static configuration every processor in the network could also initialize these
subsystems independently by executing code contained in a local ROM. Typically, however, net-
works of T9000 family devices contain routers as well as processors and executing code from
a ROM is not an option for a routing device. As a consequence, routing devices must be config-
ured under external control. During system development or for systems which are used for multi-
ple applications a flexible configuration mechanism for processors is also required.

Debugging of software and hardware on networks consisting of many devices is not a simple
problem. The major difficulty is in monitoring the behavior of the system as an integrated whole
rather than observing the individual behavior of the separate components. A flexible mechanism
which allows monitoring tools to observe and manage every device in a network in a simple man-
ner is essential in designing a system-wide debugging environment.

5.1.1 Virtual channels

Connecting processors together with point-to-point serial links overcomes many of the problems
of shared memory multi-processor systems. Point-to-point links, however, introduce a different
set of problems. Of these problems, two of the most critical for system design are, firstly, the
difficulty of mapping a software structure on to an arbitrary hardware topology and, secondly,
routing messages between processes running on processors which are not adjacent. A great deal
of effort has gone in to seeking solutions to these problems and the most flexible and readily im-
plementable technique for overcoming the difficulties is the concept of virtual links. Processes
in a network communicate via channels and so the collection of processes and channels define
the software topology of a system. The IMS T9000 has multiplexing hardware (the Virtual Chan-
nel Processor) which allows any number of channels to share the available physical links in such
a manner that processes communicating via the channels are unaware of the sharing. Virtual
channels are naturally paired to form virtual links, as described in chapter 2. The use of virtual
channels allows the software structure of a system to be developed independently from the hard-
ware on which it is to be executed.

Control virtual channels

An ideal way of configuring and monitoring a network of T9000 family devices would be to
create a control network in which a master control process running on a host is connected to a

client control process on every configurable device in the network. Using virtual links to imple-
ment this control network gives exactly the level of control and flexibility required. The remote
end of the control virtual link must be managed by an autonomous process which is active and
able to obey the instructions of the control process even if the device itself is in a completely un-
configured or stopped state. To achieve this, this process is implemented by an independent hard-
ware module called a control unit.

Figure 5.1 illustrates how control virtual channels appear to the control processes involved.

Figure 5.1 Control virtual channels

 Providing all device types with an identical control unit allows:

� host system control software to be consistent for every member of the product family;

� the control network on a mixture of devices to be explored and the device types deter-
mined;

� processor–free routing networks to be initialized and monitored for error;

A virtual channel from a system control process to every device in a network means that each
device can be controlled and monitored as if it were the only device in the network. The ability
to control and monitor routing devices is an important capability especially in networks contain-
ing no processing devices. Facilities provided by the control system must include the ability to:

� start the device;

� stop the device;

� reset the device;

� identify the device;

� configure the device;

� examine and modify memory (if any);

� load boot code (if the device uses loadable code);

� monitor the device for error;

� re-initialize the control system after an error.

Control links

Because of the critical function of the control system in system initialization and error recovery
it is vital that is highly reliable. To guarantee the integrity and reliability of the control system

it is essential that it exists in an entirely different domain from the normal operation of the com-
munication system. This separation is achieved by providing each device in the T9000 family
with two dedicated control links (CLink0 and CLink1, also called the ‘up’ and ‘down’ links)
and a dedicated control unit. Implementing the control links with a data link is not desirable be-
cause it adds complexity to the implementation (by mixing functions which can otherwise be im-
plemented separately) and reduces security, since for example an error in the data network might
be impossible to report.

The control links of every device in a network are connected to form a control network. The com-
munication links of the devices will be connected to form a data network. The control network
is kept completely separate from the data network and is intended for use by the control system
exclusively. It is an important feature that the control links are not accessible to software running
on a T9000 processor; the control system is a mechanism designed exclusively for initializing
and monitoring the various hardware subsystems of the T9000 family of devices. The type of
error which would be reported via the control system includes system crashes such as link failure.
The control system could not be used for run-time system messages to report failure of a user
application. In the latter case the failure messages would be routed via established virtual chan-
nels across the data network but in the former case these channels may no longer be reliable. The
control network may be run at a lower speed or use different interconnect technology from the
data network for increased reliability if necessary.

5.2 Control networks

In a network of T9000 family devices, the control system of each device will have a virtual link
to a process running on the processor being used to manage the initialization and monitoring of
the system (typically a host). The managing processor, referred to as the control processor, is
connected to the network via the control port, which consists entirely of one or more standard
DS-Links. If the control processor is a T9000, one of its serial links could be used as the control
port and the Virtual Channel Processor would then implement the virtual channels to the con-
trolled devices. If the control processor is not a T9000, the control port would need to be imple-
mented by a device such as a DS-Link adapter and the virtual channel handling would need to
be implemented by software.

Within the control network every control unit obeys a simple protocol on its virtual link. Each
message from the control process to a device is acknowledged by a handshake message back to
the control process. Each unsolicited message from a device to the control process is acknowl-
edged by a handshake message from the control process to the device as shown in figure 5.2.

Figure 5.3 Communication between control process and control system

This strict exchange of a handshake message for each command or error message means that the
controlling process can be implemented entirely sequentially without danger of deadlock. Even
if the control system sends an error message at the same time as the controlling process sends a

command, the controlling process subsequently performs an input in any case in order to receive
the handshake for its command. When it receives an error message instead it knows that a further
pair of messages must be exchanged.

The messages received by a control unit have the form of a command byte followed by parame-
ters specific to that command. Of the thirteen commands in the protocol some are common to
all device types and some are specific to particular device types. The physical implementation
of the part of the control unit which handles the common commands is generic to all device types.
The commands common to all device types are those to start, reset, and identify the device, and
to recover from an error in the control network. Other commands are specific to particular de-
vices. The meaning of the commands is detailed in section 5.8.

5.2.1 Implementation

After hard (power-on) reset the virtual links between the control process and the control unit of
all the devices in the network must be established. The virtual link to a device is established by
the first message received by the network device on CLink0; this must be a Start command.
The Start command will be used to set the device ‘label’ as well as the return header used by the
device on every packet sent back to the control process. The label is the header which identifies
the virtual link to this device; all packets received from CLink0 with this label are directed to
the device control unit and all those with a different label are passed to CLink1. Packets received
on CLink1 are passed directly to CLink0. By connecting the control links of all devices into
the control network and establishing a virtual link to every device, the control process can initial-
ize and monitor every processor and router in the network independently of the behavior and
topology of the data network.

Each device has a single control link pair so in a network consisting entirely of processors these
must be daisy-chained as shown in figure 5.4.

Figure 5.4 Daisy chained control links

For large networks containing IMS C104 devices daisy-chaining is undesirable because of com-
mand latency and possible physical routing constraints. In these networks it is better to route the
control network via C104s as shown in figure 5.5.

Figure 5.5 Routing control links through an IMS C104

It is possible to use C104s for control network routing because control links use the same electri-
cal and packet–level protocols as the standard data links. When data links on a C104 are used
to route the control network, its down control link, CLink1, can be connected into one of its own
data links and thus the control network can fan out in a similar manner to the data network. It
is strongly recommended that C104 devices which are part of the control network are used exclu-
sively for the control network and are not part of the data network. If it is unavoidable that a C104
is part of the data network as well as part of the control network it must be partitioned into separate
logical devices so that no link can be in both networks (as described in section 3.6.4 of chapter
3). In this case special actions must be taken during reset sequences to avoid losing the control
network when resetting the data network. When the control network includes C104 devices the
routing tables of the C104 must be initialized using CPoke commands before the control network
can be fully established.

CLink0 is started automatically by the arrival of the first token. CLink1 must be started explic-
itly via a CPoke command received by the control process. If a message is received for downward
transmission and CLink1 has not been started a protocol error will be reported.

5.3 System initialization

System initialization is the sequence of actions from receipt of a hard reset (i.e. assertion of the
reset pin) until the devices in the system are ready to perform the application for which the system
is intended. In a network containing processors, the application may be an operating system
ready to run user software or an embedded application ready to start receiving its control data.
In a network consisting entirely of routers the system is fully initialized when all of the routing
information of the network is established. A possible sequence of actions for a network contain-
ing processors and a host, referred to as levels of reset and shown in figure 5.6, is as follows:

� Label the control network (including configuring any C104s in the control network) - the
network is now at level 1.

� Configure the devices in the network using the control network - level 2.

� Set up virtual links over which to load the network and then run boot code in each processor
-level 3.

� Load the network with the application and then set up the virtual links required by the ap-
plication software -level 4;

� Start the application on the network and a server on the control process - level 5.

Figure 5.6 Levels of reset

The sequence can be performed one device at a time or network wide one level at a time. For
a processor some of the configuration actions can be performed either across the control network
or by local software. Because a richer protocol with higher data transfer rates and (possibly)
shorter paths can be implemented across the data network than exists on the control network it
is generally desirable to establish the data network as early as possible in the initialization cycle.

Using the sequence outlined, application software is loaded onto processors in the network via
virtual channels established within the data network. A loader must first be loaded and connected
to the virtual channels to load the application at the desired locations. This loader must be loaded
and started using the control network and the control channel protocol contains the commands
Boot, BootData and Run to facilitate this. The Run command provides a workspace pointer and
an instruction pointer to start the T9000 CPU. The Run command and the Stop command are the
two commands by which the control system can modify the behavior of the T9000 CPU.

The control network can only be re-labelled after a hard reset so no packet corruption can result
in control messages re-configuring the control network. The control process can, however, issue
a Reset command to any device in the network. The Reset command directs the device to reset
to level 1, 2 or 3 so the control process can restore individual processors to a known state ready
for re-loading an application or, perhaps, to load a debugging kernel.

Some or all of the processors in a network may be set to boot from ROM. Boot-from-ROM de-
vices might be used simply to the configure the local environment or, alternatively, in embedded
applications they can be used to configure and then load the whole system.

5.3.1 Local ROM

In many networks it is desirable to localize configuration information. For example it is often
useful to program the memory interface locally with the the characteristics of the memory system

connected to that processor. Suppliers of special purpose interface boards can build a ROM onto
the board which sets up all of the specific characteristics without having to worry about the envi-
ronment in which the board is going to be used. While a network processor is executing code
from its local ROM it is important that the control process does not attempt to load and configure
the device. A simple convention to prevent this from happening is for the code in the ROM to
set error when it has completed its local configuration, and thereby cause the processor to halt
and transmit an Error message. The receipt of the Error message then signals to the control pro-
cess that the device is now ready to receive the rest of the initialization sequence.

The local ROM could contain code to take the device to a higher reset level. It might be desirable
to bootstrap the device to level 3 ready for the application to be loaded. The same convention
as above could be adopted to indicate to the control process that the ROM has completed its ini-
tialization sequence.

Boot-from-ROM will only occur automatically after a hard reset. The control process can, how-
ever, instruct a T9000 to boot from ROM by sending a Reboot message. This allows the control
process to be in complete control of the system initialization sequence.

5.3.2 System ROM

A T9000 network may be configured to boot from ROM. The processor which is the root of the
network will have access to the system ROM, and will be connected so that one of its data links
is the control port at the ‘top’ of the control network. Its own control links will not be connected
as part of that same network. This processor will be the control processor as well as the root pro-
cessor for the system initialization. Configuration information, bootstraps and application code
will be drawn from the system ROM rather than from a local file store which would typically be
the case if the network was booting from link. After booting the network, the root processor can
execute its own application from RAM or continue executing from the ROM. All processors in
the network, other than the root processor, are initialized and configured across the control net-
work as shown in figure 5.7. These processors could boot from local ROMs for local configura-
tion if necessary.

Figure 5.7 Booting from system ROM

A similar mechanism could be employed for a network consisting entirely of routing devices; a
single (cheap) processor could initialize the routing tables for the whole network. The processor
could then monitor the control system for errors taking appropriate recovery actions and logging
information for later analysis.

5.4 Debugging

The normal mechanism for dealing with errors on a working T9000 processor is to execute a trap
handler which takes recovery and repair actions to restore the processor to a known valid state.
The trap handler may report its actions via the data network to a supervisory process in the system.
During development of software and hardware, however, it may be desirable to halt the processor
which has caused the error and examine the system state in some detail.

Errors generated by a T9000 subsystem (other than those detected in the CPU and caught by a
trap handler) will result in an Error message being generated on the virtual channel back to the
controlling process and the CPU being halted. The control process can then bring the whole sys-
tem to a quiescent state by sending a Stop command to every T9000 in the network. The Stop
command stops the processor cleanly, preserving register values and allowing a debugging kernel
to retrieve processor state and thus trace the cause of the error. If a processor initiated the situation
because of an error, that processor will have halted at the point of error. On all other processors
the CPU will continue until the next deschedule point or timeslice. The links are unaffected, and
the timers continue to run until a Reset3 command is received, but no processes will be scheduled.

After the control process has received handshakes for all of its Stop messages it must allow time
for the system to become quiescent and then issue a Reset3 command to every T9000. When
every device has received a Reset3 command, all of the CPUs will be halted and the system is
guaranteed to be static. At this stage the control process can make certain that the configuration
is correct by using configuration ‘peek’ and ‘poke’ (CPeek and CPoke) commands.

If a debugging kernel is to be loaded into the network it may be necessary to save the area where
it is to be loaded to guarantee that no processor state is lost to the analysis tools. This space can
be retrieved across the control network using the Peek command and stored on the host processor.
The debugging kernel can be loaded and started using a BootData and Run sequence which will
not interfere with the preserved state of the data network.

The debugging kernel now has access to all of the previous processor state and can be directed
by the debugging tools running on the control processor to retrieve information on all of the pro-
cessor’s subsystems. The network is thus a distributed data base containing the memory state,
register contents and call history of the whole system rather than of just a single processor. The
debugging tools can piece together the cause of the system failure and observe the interaction
between the different processes and processors. The combination of access to the state of every
processor, access to the sources from which the system was built and knowledge of the compiling,
linking and loading strategies enables debugging tools to produce an integrated picture of the be-
havior of the whole system at a symbolic level rather than at an instruction stream level. Once
the debugging kernel is loaded onto the network, the debugging tools would, typically, establish
virtual channels across the data network to communicate with the individual kernels.

The mechanism described above is called post-mortem debugging. Interactive debugging can
be accomplished by running a debugging kernel on every processor in the system in parallel with
the application. In this way breakpoints, watchpoints, single stepping and many of the other faci-
lities delivered by ICE systems are provided without using expensive and intrusive additional
hardware. An additional benefit of using links to assist in debugging is the ability to monitor the
behavior of a complete multi-processor system observing the interactions across processor

boundaries at source level. The debugger running on the control processor communicates with
the debugging kernels through virtual channels additional to those established for the data net-
work so that the applications are entirely unaware of the presence of the debugging system.

Much of what has been described in this section is familiar to developers of software for multi-
processor systems. The T9000 family of devices introduce many features to decouple software
and hardware development and as a consequence access to the state of routing devices is a vital
requirement in system debugging. Access to the state of routing devices is particularly important
for networks which contain no processors. The post-mortem mechanisms described earlier are
equally relevant for routers. A control process can examine the configuration of a routing device
and proceed to access the state of every serial link and thus locate the point of failure and deter-
mine what recovery action must be taken. When a data link disconnect error is detected on a rout-
er it will cause an error message to be generated on the virtual link to the monitoring process run-
ning on the system control processor. As a consequence networks of routers do not require special
hardware monitoring devices, a significant amount of fault detection and isolation can be built
into the system by the addition of a single monitoring device.

5.5 Errors

The control system provides an error reporting mechanism for all errors, other than those detected
by a CPU and caught by trap handlers. The reporting of errors by the control system to the control
process is the only time that the controlled device is the initiator of a communication on the con-
trol network. The controlling process must acknowledge receipt of the Error message by sending
an ErrorHandShake message back to the device generating the Error message. The Error mes-
sage includes a field to indicate the source of the error. The control system will not send an error
message if a handshake has not yet been received for a previously sent error message.

The control system handles three distinct classes of error, as listed below.

1. Errors on the control links, which include:

� parity/disconnect on CLink1;

� unexpected acknowledge;

� invalid messages;

� handshake protocol error;

2. System errors - errors from one of the subsystems when stand alone mode is not set.

3. Stand alone mode errors

The effects of the errors are given in table 5.1. The ErrorSinceReset flag is a flag in the
IMS T9000 which is provided to assist self–analysis of stand–alone systems.

Table 5.1 Error effects

The control unit will record a single error which is cleared by the error handshake from the control
process. A hard reset, reset 1 or reset 2 will cause the record of untransmitted errors to be cleared.

5.5.1 Control link errors

The basic reliability of DS-Links used within their specifications, as discussed in chapter 4, is
very high, and this reliability can be further enhanced for the purposes of the control network by
reduced the operating speed somewhat and by paying particular attention to the connection of
links. However since an error – however unlikely – in the control network is potentially very
serious for the whole system, extra mechanisms are provided to report and recover from such er-
rors.

A parity or disconnect error on CLink1 will be reported by the control system to the control pro-
cess via CLink0. A parity or disconnect error on CLink0 will cause the link to halt. This halt
will be detected by the device connected to the other end of the link which will in turn report the
error.

After an error has occurred some virtual links in the control network may be in an invalid state.
The controlling process ends of the virtual links must be reset and then the process can restore
the control network to a valid state by sending RecoverError commands (which can be sent in
violation of the normal protocol). A RecoverError command will reset the remote end of a con-
trol virtual link and cause any un-handshaken error message (which may have been lost) to be
resent. A sequence of RecoverError messages sent by the control process to each of the devices
in turn can thus systematically restore the control network and at the same time recover informa-
tion which may help to determine the cause of the failure.

5.5.2 Stand alone mode

When a T9000 processor is operating in stand-alone mode, errors are handled in a distinct way.
If an unmasked/untrapped error occurs the control system will reset all of the subsystems on the
T9000 and then cause a boot from ROM. The ErrorSinceReset flag will be set so that the
ROM code can determine that an error has occurred.

5.6 Embedded applications

The root processor in an embedded application which has booted from ROM takes over the role
of the control processor on a system which has booted from a host. The control process can moni-
tor and log errors, restarting and re-configuring processors after failure and recovering from er-
rors in the control system. As described in section 5.5.2 above, errors in the control processor
result in the processor rebooting. The control process can determine that an error occurred since
the last reset and can recover and log information from the previous processor state for later anal-
ysis.

5.7 Control system

The control system of each device consists of a pair of control links, a packet handler, a control
unit and system services as shown in figure 5.8. The functionality within each unit of the control
system is described in more detail below.

Figure 5.8 Control system components

5.7.1 Control links

A network of devices is controlled by a set of virtual links, one for every device in the network.
A simple physical implementation of these virtual links can be achieved by connecting together
the control links of a number of devices into a pipeline. The virtual links are multiplexed down
this control link pipeline so that, as far as the network is concerned, each device has a single virtual
link to the control process which is carried by CLink0. CLink1 carries virtual links for devices
further down the pipeline.

The virtual link is established by the first message received on CLink0 after a hard reset. The
physical management of the virtual links by routing packets received on CLink0 to the correct
destination is performed by the packet handler.

5.7.2 Packet handler

The packet handler manages the packet stream performing the following functions.

� Records the first header received on CLink0 after hard reset as the device label.

� Records the return header from a received Start command.

� Checks incoming CLink0 packet headers. Any with a different label from the one re-
corded after reset are forwarded to CLink1.

� Adds the return header to outgoing CLink0 packets.

� Forwards incoming CLink1 packets to CLink0.

� Detects and handles acknowledge packets received on CLink0.

� Validates that commands are correctly formed and forwards correctly formed commands
to the control unit.

� Detects the commands Reset, RecoverError and ErrorHandshake.

� Rejects a command, other than the previous three, if another is already in progress.

. The format of the packets is shown in figure 5.9.

Figure 5.9 Command packet structure

5.7.3 Control unit

The control unit includes a command handler for acting on messages received from the control
network and an autonomous control block which controls the behavior of the device when it is
operating independently of a control network.

Command handler

The command handler:

� captures errors from error inputs and forwards them to the control process via CLink0;

� responds to errors with appropriate stop/halt to sub-systems;

� arbitrates between command responses and errors, and forwards via CLink0 to the con-
trol process;

� filters illegal and inappropriate commands as errors;

� Controls sub-system reset after receipt of a Reset command;

� handles access to the configuration bus after receipt of CPeek, and CPoke commands;

� handles access to the memory system after receipt of Peek, Poke, Boot and BootData com-
mands;

� stops the processor cleanly after receipt of a Stop command;

� starts the processor with with a given workspace and instruction pointer after receipt of
a Run command;

� starts the processor with with a workspace and instruction pointer read from a ROM after
receipt of a Reboot command.

5.7.4 System services

The system services is a block of registers in the configuration space containing control and gen-
eral device information.

5.8 Commands

The commands to which the control unit responds are as follows.

5.8.1 Commands applicable to a variety of devices

Start

This must be the first command received by a device after a hard reset. It is used to program the
return header of the device. After a hard reset it will also set the label of the device.

Identify

The Identify command causes the device to respond with a handshake containing an identifier
unique to that device type.

CPeek

CPeek commands are used to examine registers in the configuration space. The handshake mes-
sage contains the contents of the selected register.

CPoke

CPoke commands are used to initialize registers in the configuration space.

Reset

Reset is used to reset the device to a chosen state specified by a parameter. The parameter can
typically have the values 1, 2 or 3.

1. Equivalent to hard reset but the control system is unaffected.

2. Resets all subsystems except the control system, and leaves the configuration unchanged.

3. Just halts the processor.

RecoverError

RecoverError is used to restore the protocol after a link error in the control link system.

5.8.2 Commands applicable to processors

Peek

Peek commands are used to read the normal address space of a T9000. The handshake message
contains the contents of the selected address.

Poke

Poke commands are used to write data to memory locations in the normal address space of the
T9000.

Boot

This command initiates a booting sequence. Parameters to the command specify the length of
code to be loaded and where it is to be loaded in memory. The Boot and BootData allow code
to be loaded much more efficiently than it would be by using a sequence of Poke commands.

BootData

A sequence of BootData commands follow a Boot command. Each BootData command will
contain 16 bytes of code which will be loaded into consecutive locations starting from the address
specified in the Boot command until the length specified by the Boot command has been reached.

Run

The Run command specifies a workspace pointer and an instruction pointer and causes the pro-
cessor to start executing with these values.

Stop

This command causes the processor to come to a ‘clean’ stop ready for post-mortem debugging.

ReBoot

The ReBoot command re-initiates a boot-from-ROM sequence.

5.9 Conclusions

Using the same electrical and packet protocols for system control as for data transfer allows large
concurrent systems to be programmed, monitored and debugged in a very straightforward way
using virtual links. A small set of commands, supported directly in hardware, provides precise
control over individual devices and the whole system. A simple handshaking protocol at the mes-
sage level ensures that a simple, sequential control process can be used without any difficulty.
Using a separate network for system functions improves the reliability and security of the system.

The provision of a two links and a basic through–routing function on each device allows a low–
cost daisy–chain topology to be used for small systems. Larger systems can employ C104 routers
in the control network to improve fan–out.

Facilities have been added to recover use of the control network even after the temporary discon-
nection of one of its links. The RecoverError command provides a ‘remote channel reset’ func-
tion to enable the control virtual links to be restored to a known state. Error information which
might have been lost is re–transmitted.

