Thisis Chapter 8 from the second edition of :

Networks, Routers and Transputers:
Function, Performance and applications

Edited by: M.D. May, PW. Thompson, and PH. Welch

© INMOS Limited 1993

Thisedition hasbeen madeavail ableelectronically sothat it may befreely copied and distributed.
Permission to modify the text or to use excerpts must be obtained from INMOS Limited. Copies
of this edition may not be sold. A hardbound book edition may be obtained from |OS Press:

|OS Press |OS Press, Inc.

Van Diemenstraat 94 P.O. Box 10558

1013 CN Amsterdam Burke, VA 22009-0558
Netherlands U.SA.

|OS Press/Lavis Marketing Kaigai Publications, Ltd.

73 Lime Walk 21 Kanda Tsukasa—Cho 2—Chome
Headington Chiyoda—Ka

Oxford OX3 7AD Tokyo 101

England Japan

This chapter was written by C. Barnaby, M.D. May and D.A. Nicole.

8 General Purpose Parallel Computers

8.1 I ntroduction

Over the last decade, many different parallel computers have been devel oped, which have been
used in awide range of applications. Increasing levels of component integration, coupled with
difficulties in further increasing clock speed of sequential machines, make parallel processing
technically attractive. By thelate 1990s, chipswith 108 transistorswill bein use, but design and
production will continue to be most effective when applied to volume manufacture. A **univer-
sa” paralle architecture would allow cheap, standard multiprocessors to become pervasive, in
much the sameway that the von Neumann architecture hasall owed standard uni processorsto take
over from specialised electronics in many application areas.

Scalable performance

One of the major challenges for universal parallel architectureisto allow performance to scale
with the number of processors. There are obvious limits to scalability:

* For agiven problem size, there will be alimit to the number of processors which can be
used efficiently. However, we would expect it to be easy to increase the problem size
to exploit more processors.

* Therewill in practice betechnol ogical limitsto the number of processorsused. Thesewill
include physical size, power consumption, thermal density and reliability. However, as
weexpect performance/chip to achieve 100-1000 Mflops during the 1990s, the most sig-
nificant markets will be served by machines with up to 100 processors.

Softwar e portability

Another mgjor challenge for a universal parallel architecture isto eliminate the need to design
algorithmsto match the detail s of specific machines. Algorithmsmust be based on featurescom-
mon to alarge number of machines, and which can be expected to remain common to many ma-
chinesastechnology evolves. Both programmer and computer designer have much to gain from
identifying the essential features of a universal parallel architecture:

» the programmer because hisprogramswill work onavariety of machines- andwill contin-
ue to work on future machines.

* the computer designer because he will be able to introduce new designs which make best
use of technology to increase performance of the software already in use.

8.2 Universal message passing machines

A universal message passing machine consists of:

* p processing nodes with concurrent processing and communication (and preferably pro-
cess scheduling).

* interconnection networks with scal able throughput (linear in p) and bounded delay (scal -
ing on average aslog(p)).

Programsfor message passing machinesnormally consist of acollection of concurrent processes
which computevaluesand periodically communicate with each other. These programsmust take
into account the relationship between the communication throughput and the computation

throughput of the message passing machine. Wewill call thisratio thegrain (g) of the architec-
ture, and measure it as operations/operand. For simplicity, we will assume that a processor per-
forms an operation in one clock tick, so that we can measure the grain in ticks/operand.

The importance of achieving a good balance between computation and communication can be
understood by considering asimple example. Supposethat atwo dimensional imageisto bepro-
cessed by an array of transputers. Each transputer stores and processes a portion of the image.
Each step of the computation involves updating every element of theimagein paralel. Assume
that at every step of the computation, every element of thearray a [1, j] isto be updated to:

f(a[ilj]l a[i_llj]l a[i+llj]l a[ilj_l]l a[ilj+l])

and that function £ involves 4 operations. The following table shows the operations performed
for each item communicated for four possible mappings.

elements per oper ations per
transputer communication
1 1
4 2
16 4
256 16

If we chose amapping which allocates one element to each transputer, wewould need each trans-
puter to perform one operation in the same time that it can communicate one dataitem. Thisis
often referred to as fine grain processing. If, on the other hand, we allocate a large number of
elements to each transputer, the communications requirements are small. Thisis often referred
toascoarsegrain processing. It can be seen from the examplethat asthe grainisdecreased, the
communications capability becomesthelimiting factor. Atthispoint, itisimpossibletousemore
transputers to increase performance, but easy to use more transputers to process a larger image.

Specialised transputer configurations can often be used to provide fine grain processing. Inthe
above example atwo-dimensional array of transputers could be used, as communication is re-
quired only between adjacent transputers in the array. However, a general purpose machine
should be ableto provide fine grain processing for awide variety of algorithms, and for software
portability it should allow automatic allocation of processes to transputers. To do this it must
support ahigh rate of non-local communication, which can be achieved with a suitable network
of routers.

Another important factor affecting the performance of parallel computersis the latency (l) in
communication. A transputer may idle awaiting data from another transputer even though the
communication rate between the transputers is adequate. Thisis normally overcome by using
extraparallelismin the algorithmsto hide communication delays. Instead of executing one pro-
cess on each transputer, we use the transputer process scheduler to execute several processeson
each transputer.

Whenever aprocessisdelayed asaresult of acommunication, it isdeschedul ed and the transputer
activates another process. Thisin turnwill eventually become descheduled as aresult of acom-
munication. Execution proceedsinthisway through several processes. Whenever acommunica
tion completes, the corresponding process is reschedul ed ready for subsequent execution. Pro-
vided that there are sufficient processes, the transputer will never idle as a result of
communication delays.

To understand the use of excess parallelism, consider the following simple worker process suit-
ablefor usein aprocessing farm. Inatypical farm acontroller process would hand out packets
of work to many such worker processes.

local data, result

loop

{ input ? data
result := compute (data)
output ! result

}

This process performsinput (?) to alocal variable, computation and output (!) from alocal vari-
able sequentially. Any delay in performing communication will be directly reflected in thetime
taken for each iteration of the loop.

Provided that the result output at each iteration of theloop isnot used (by the controller) to pro-
duce input for the next two iterations, this process could be replaced by the following version
which allows input, computation and output to take placein parallel.

local data, result, nextdata, nextresult

loop
{ parallel
{ input ? nextdata
nextresult := compute (data)
output ! result
}
data, result := nextdata, nextresult
}

Here delaysin communication will affect the total time taken for theloop only if one of the com-
muni cationstakeslonger than the computation. Even larger delaysin communication can betol-
erated by executing several such processesin each transputer, asin the following version. The
n processes are all independent of each other, and each operates on its own local variables (data,
nextdata, result).

paralleli=1ton
{ local data, result, nextdata, nextresult
loop
{ parallel
{ input ? nextdata
nextresult := compute (data)
output ! result
}

data, result := nextdata, nextresult

}

Here every communication can be delayed by up to » computation steps. An algorithm of this
kind can be efficiently executed even in the presence of long communication delays.

8.2.1 Using Universal message passing machines

Designing a program for a particular grain (g) is asignificant task, so we would like to keep g
constant for all sizes of machine. In practice we would aso liketo keep g low, asthissimplifies
programming and allows fine—grained parallelism. A low and constant g allows programsto be
written at a higher level using, for example,

e Array manipulation

* Big DO-PARSs

* Explicit parallelism with lots of small processes

The programmer and compiler will take into account the grain g, and will construct a program
asacollection of v virtual processors (processes) of grain>g and cycle-timec (ticks). Weassume
that the processes are cyclical, and in each cycle perform c/g communications and ¢ operations.
Noticethat wewant to keep thegrain of the software aslow aspossibleso asto exploit all possible
parallelism for a given problem size, but the grain must be at least g to avoid processor idling.

The output of the compiler isaprogram suitablefor use on all universal machinesof graing. We
expect to keep the program in this form, and perhaps distribute it in thisform. We notethat g is
fixed for arange of machines based on the same components, and further that thereislikely to
belittlevariationing evenfor machinesbased on different components. Thismeansthat thecom-
piled program is likely to be re-useable.

To load acompiled program for execution, we make use of aloader which takes as parameter the
latency of communication: / (ticks). Thiswill vary from machine to machine and will scale as
log(p) for realizable networks. The loader will allocate at least //c virtual processors to at most
(v X ¢)/l processors. There would be no point in attempting to use more processors than this,
asthiswouldresultin processorsidling someof thetime. It would be better toleave some proces-
sors available for some other purpose. Thus the program will run with optimal efficiency on a
p—processor machine provided (v X ¢) > (I X p).

Notice that our loader ensures that there will always be enough processes on each processor to
ensurethat (at | east) oneisexecutable; the otherswill bewaiting for communication to compl ete.
Thismeansthat wewill need to use at least log(p) more processes than processors. Another way
to think of thisisthat we could use a specialised machine exactly matched to the algorithm in
which each processor executes only one process; thiswould offer log(p) more performance. Spe-
cialised parallel computerswill still be needed for maximizing performance where the problem
sizeislimited!

We note that our proposal for universal message passing is closely related to Valiant’s proposal
for Universal PRAMSs[8] inwhich ! =log(p) and c = 1.

8.3 Networksfor Universal message passing machines

Universal message-passing machines consist of a number of concurrent processors, connected
by acommunication network. A suitablenetwork isaUniversal Communication Network, where
the throughput per terminal link remains constant with varying network size, and the delay per
terminal link grows slowly with increasing network size. Such amachineisuniversal, astheal-
gorithm running on the machine (made up from the processes on the processors) does not depend
on theunderlying structure of themachine. Thisstructural independence meansthat the program
structure will not need to be atered if the underlying machine is changed, for instance if it has
more or less processors. The machine may be characterized by the parameters g and /.

Suppose that aprocess sends amessage which will taketime!/ to get to its destination. The com-
munication delay may be hidden by the processor scheduling another parallel process (or other
parallel processes) during the communication delay. Given the network delay, [, we can predict
thenumber of processeswhich arerequired to hidethe communication latency. It hasbeen shown
that severa networks have constant throughput per termina and latency growing with log(p),
where p is the number of processors. Among them is the n—cube.

8.3.1 A simulation of the n—cube

The6-dimensional cubeisexamined. From thedistribution of packet arrival times, the probabili-
ty that a packet takes longer than a certain amount of time is derived. The probability, in turn,
isused to predict the amount of parallel slack required. Theresultscompareto thetheory of Val-
iant [8], and follow similar arguments.

The probability (derived from simulation) that a packet delivery timeis greater thantime T is
shown in figure 8.1.

—
o
S
J

0.804 -

0.60 1

probability time taken > time, T

o

o

o
[

0.20 +—

0.00 | e, | | | | |
0 80 160 240 320 400 480 560

time, T

Figure 8.1 Probability that a packet takes longer than time T on a 6—cube

Thereareanumber of processes on each processor, inthiscase 6, which operate one after another,
for instance process 1, process 2, ..., process 6, then process 1 again. Thetime required between
process 1 finishing and process 1 starting againis/, the latency of the communication. However,
although process 1 may not have received its communication, and therefore not be ready to run
again, process 2 may have received its communication, and be able to restart. Thisimpliesthat
the probability of no process being ready isactually the product of the probabilitiesthat any one
of the processes is not ready (assuming that these events are independent). Note that process 1
hastime/, whereas process 2 hastime 41/5, process 3 hastime 3//5, and so on. Thisdoesnot take
account of the compound probabilitiesof many delayshappeninginavery shorttime. Theproba-
bility of waiting, against the network latency /, is shown in figure 8.2.

1.0e-04 +

1.0e-05 +

1.0e-06 ! ! | | | |
0 30 60 90 120 150 180

latency, |

Figure 8.2 Probability that a processor will have to wait

For 6 processes, the graph shows that for a probability of waiting of 10~2, we need about 100
cycles between successive executions of aprocess. For aprobability of 103, we need about 130
cycles. These suggest that each process needsto run for about 20 or 26 cyclesrespectively. This
isthe cycle sizec, defined earlier. In the next section, the effect of the probability of waiting is
shown.

The effect on program runtime

In our model, each processor has 6 processes. Each of the 64 processors run their 6 processes
repeatedly. Suppose that a delay to any of the processors means that all the processors have to
wait for theonewhichisdelayed. Thenthereare384 (=6 x 64) processes each of which require
their packet to be delivered within time! in order to avoid a delay to the system. If the system
isdelayed, it waits for a further [units of time before it continues.

Because we requirethat all 384 packets are delivered, if the probability of any one packet being
delayed is 102, nearly al of the cycles will taketime 2/ rather than I. The time required to run
the program consequently doubles.

If the probability of adelay is10~3, about onethird of cycleswill be delayed. If the probability
is10~# then about onein 26 cycleswill be delayed. These probabilities correspond to particular
values of ¢. The factor of increase in runtime over the case where there are no communication
delays, isshown in figure 8.3.

20—

1.8 1+

1.6 1+

Expected increase in runtime

144

1.2+

1.0 | | | L. P
20 23 26 29 32 35 38

time assigned to a process

Figure 8.3 Increasein runtime due to latency as afunction of cycletimec

8.3.2 Anexample

Suppose we want to run an image smoothing algorithm on a parallel machine. Then to operate
where the runtime will be minimally affected, we want to hide a latency of 160 cycles. For 6
processes on each processor, this givesacycle size, ¢ of (160/5)= 32. A network throughput of
about 80% (as simulated for the n—cube) means that about there will be about 25 units of output
per 32 units of time.

L et the unit of time be 0.5 microseconds. Thisisthe about time required to transmit afloating-
point number using DS-Links. Floating-point valueswill be bundled into 4 packets, onefor each
of the £ x, =y directions. The header overhead isvery small, so the 25 unitsof time corresponds
to transmitting 4 groups of 6 floating-point numbers.

Theimage smoothing operation consists of 5 operations per pixel (4 additionsand onedivision).
Thissuggeststhat splitting apictureinto 6 by 6 pixel squareswill givefour communications(each
of six floating point numbers), and 36 cal culations per process. Thereforewithinthe 16 microse-
conds, atotal of 36 x 5= 180 floating point cal culations need to be performed. The correspond-
ing calculation rateisabout 11.25 M Flops per processor. Each processor runssix such processes,
giving atotal of 64 x 6= 384 processesin the network. Thissuggeststhat an array of such pro-
cessors will process an image of 386 x 36 = 13896 pixels without loss of efficiency.

A corresponding calculation for anetwork throughput rate of 60% suggeststhat 5 Mflop proces-
sorscould process a 6144 pixel image without loss of efficiency. Asexpected, asmaller problem
requires a higer ration of communication to computation.

In this example we have taken an algorithm which could be executed on a dedicated two—dimen-
sional grid and re-written it so that it can execute efficiently on universal message—passing ma-
chines of varying sizes.

8.4 Building Universal Parallel Computersfrom T9000s and C104s

Throughout the remainder of this chapter we assume that the basic architecture of the general—
purpose parallel computer consists of T9000 processing nodes connected viaC104 switches, and
examine a number of practical issues in the construction of such machines.

8.4.1 Physical organization

A T9000 runs somewhat hotter than first—generation transputers; a typical T9000 processing
modul e, with dynamic memory and drivers, might be expected to dissipatearound tenwatts. This
power budget can, if necessary, accommodate an error correcting memory subsystem. A small
mothercard, with ten T9000s and some C104 switches, might therefore dissi pate about 150 watts
in an area of about one tenth of a square metre. Such a board would require a cooling air flow
of around twenty cubic metres per hour. Thisisnot ahuge requirement by the standards of high—
performance computer design; a conventional backplane/crate implementation using forced air
cooling with a 30mm card pitch is quite reasonable. Fan noise may, however, be considerable
and a substantial volume will be occupied by air ducting and fans.

Higher component densitiesmay easily be achieved using contact and/or fluid cooling. The pub-
lished design for the Parsytec GC supercomputer [1] implements a sixty—four node subsystem
inatotal volume of about 500 by 300 by 200 mm. This GigaCube useslarge aluminium contact
plates and heatpipesto transport heat away from the active components. Two aternative cooling
systems can be provided for the ** cold” end of the heatpipes: afan and fin module for forced air
cooling, or awater cooling block accepting an external water supply. Either module may be ac-
commodated within the GigaCube volume, as is a secondary power supply converting a 42V
40kHz AC power feed down to the 5V required by the modules.

Wemay contrast these densitieswith the degree of compactnessrequiredto minimizesignal prop-
agation delays. Assume that only T9000 data links travel between cardsin the computer. Low
level flow control on such alink network is maintained on groups of eight tokens (see Chapter
3); such agroup takes about 800nS to transmit at the 100 Mbits/srate. An end-to—end delay of
half thisfigure correspondsto a separation of sixty metresin free space; thus, even allowing for
velocity factors, we are able to build very big machines.

Overdl, it can be seen that the choice of component density isnot constrained by the T9000/C104
architecture; therelatively low power requirementsand long permissible cablerunsallow thede-
signer full flexibility in mechanical design.

8.4.2 Network Performance | ssues

A primary part of the design of aT9000 and C104 system is the design of the data link routing
network. Raw throughput and latency are two important issues that must be considered.

Early work by Dally [3] on routing networks suggested that two dimensional gridsformed good
routing networks for supercomputers. These resultswere, however, based on parameterswhich
do not apply to C104 networks. In particular, it is desirable to use the very high valency of the
C104 toreal effect; connecting many linksin parallel toform alow vaency network wastes much
of the routing capability.

There are several possible measures of network performance. One, popular with computer
manufacturers, isthe peak poi nt—to—point bandwidth between apair of processorsinan otherwise
unloaded network. This measure gives some information about the behavior of the processor to
network interface, but it conveys almost nothing about the performance of the network itself.
Realistic measures must quantify the behavior of the network under reasonable |oad conditions,

taking into account contention between messageswithin the network. Important effectscan arise
as anetwork isloaded:

¢ Evenif thenetwork saturatesuniformly asregardsthroughput, individual messagelaten-
ciesmay becomevery high asthe network approaches saturation; seriousunfairnessmay
also arise between different processors. Randomization, as offered by the C104, can be
shown [8] to make highly delayed messages improbable.

e Certain particular patterns of communication [3] can cause adramatic build—up of mes-
sagetraffic at particular intermediate nodesin the network. Thisisauniversal property
[4] of deterministic sparse routing networks. It is unfortunate that many popular net-
works (grid, n—cube, Clos...) show this bad behavior on traffic patterns that would be
expected to arisein typical computations. Randomization can again be shown to render
these systematic collisions improbable.

The use of randomization in a C104 network can be seen to offer important simplificationsinthe
network’sbehavior. 1t can completely decouplethe network topology from the algorithmic mes-
sage pattern. One canthen essentially characteriseanetwork by itsthroughput and averagelaten-
cy for randomly distributed traffic under high load. In practice, the adaptive routing offered by
the C104 normally providesall the benefits of randomization, along with auseful increasein av-
erage bandwidth as will be shown below.

Throughput inaC104 network islimited by contention, the simultaneous presence of two or more
packetsrequesting thesame output link fromaC104. Under random traffic, thismay bemodelled
very simply as discussed in chapter 6. The formulae derived there may be simply modified to
account for restrictions on the output links. It isthen straightforward to calculate approximate
throughputsfor networks by cascading thiscal culation through the variouslayers of the network.
There are two other direct results from this formula:

e A single 100 Mbit/s link between T9000s can deliver a unidirectional throughput of
8.9M bytes/s. A perfect network could route permutation traffic, in which it is guaran-
teed that no two processors are attempting to communicate to the same destination, at
thesamerate. Withrandomtraffic, evenfor aperfect network, contention at the destina-
tion T9000s reduces the maximum throughput per link to 5.6 Mbyte/s.

e Consider an indirect network: one in which there are layers of C104 switch that are not
connected directly to T9000s but only to other C104s. Then the amount of traffic on
theseinner layersisreduced by contention in the outer switches adjacent to the T9000s.
A balanced indirect network design will thus have adensity of linksthat is highest near
to the T9000s and is reduced between the inner switches.

8.4.3 A practical Routing Network

A simpleand useful routing network isthefolded Clos?3. The network provides routing between
themn external portson theleft side of the network, where each of the n switchesin theleft—hand
column provides m external ports. A 512—terminal versionisillustrated in figure 8.4.

23. Thetitle is derived from an important early paper [5] on the design of telephone switching networks. The
particular numbers of interconnections provided by Clos and the related Benes [6] networks are important for
the establishment of telephone circuit connections without contention. These numbers have no specia signifi-
cance for packet routing networks such as those built using C104s.

C104
16

Figure 8.4 Folded Clos network

The simple model of chapter 6 can be used to evaluate the performance of the folded Clos net-
work. If the network is programmed for random routing, then arandom one of the p right hand
switchesis selected for each message. The probability of an output being active at thefirst stage
isthus P, = 1-e~™P. The probability of an input being active at the second stageis also P, and
the probability of an output being active, for randomtraffic, is P,= 1-e~F;. Finally, the probabili-
ty of oneof theexternal output portsbeing activeis P; = 1-ePF,/M giving an average throughput
per link of 8.9 X P; Mbyte/s. If grouped adaptiverouting isused at the first stage, then the con-
tentionthereiseliminated aslong asp >=m. Thus, the previousformulaismodified by replacing
P, withmin(1,m/p). Table8.1 below shows some cal culated random traffic throughputsfor typi-
cal Clos type networks.

Table8.1 Sustained high—load throughputs for Clos-type networks

m/| p random adaptive random adaptive
throughput | throughput routed routed

Mbytes/s Mbytes/s efficiency efficiency
16 | 16 3.3 4.2 59% 74%
8 | 16 4.3 4.8 76% 86%

Note that the two networks differ only in that half the external ports are left unconnected for the
m= 8 network. Therandomization applied to folded Clos networkswaseffectively free; no addi-
tional links were traversed by randomized packets. Nevertheless, adaptive routing can be seen
to be moreefficient. Grid and n—cube networksimpose more severe penalties. Random routing
must be appliedto all but onedimension of thegrid or n—cube, almost doubling thetraffic density.

Simple adaptive routing al so achieveslittle in eliminating systematic contention from these net-
works.

Similar methods may be used to analyze awide variety of networks. Homogeneous networks
such asthe Folded Clos and n—cube are straightforward. 1nhomogeneous networks, such astwo
or three dimensional grids, have an unbalanced traffic pattern which peaks (linearly) in the center
of thegrid. Calculation of the contended throughput in the centre of thegrid givesagood estimate
of the overall throughput of the network.

8.4.4 Routing Network Simulations

Some detailed simulations[2] of C104 networks have been performed by Siemens as part of the
Esprit PUMA project. Thiswork wasinstrumental in the inclusion of grouped adaptive routing
in the C104. These studies cover Clos, grid and n—cube networks. Concentrating first on the
m=16, p=16 network examined above, the Siemensresultsfind sustained throughputson random
traffic of 2.9 M byte/sfor random routing and 3.1 M byte/s for adaptive routing which compare
well with the crude cal culations of the previous section. Interestingly, for aknown bad message
pattern, deterministic routing offers a throughput of only 0.3 M byte/s, random routing (of
course) the same 2.9 and adaptiverouting 8.8 M byte/s. It turnsout that the bad pattern for deter-
ministic routing, ablock permutation, is avery good pattern for adaptive routing.

The Siemens simulations also give insight into the average packet delay in the network; for the
m=16, p=16 system delivering 1M byte/s/link throughput we see an average delay of 6us. Grids
and cubes again perform worse than Clos networks in this parameter.

Overall, the Siemens results show comparable performance for n—cube and Clos networks of
comparable cost, with asmall advantage for the Clos designs. Two and three dimensional grids
performed very badly.

Thereisareceived wisdom that the two—dimensional nature of silicon die and PCBs|eads natu-
rally to atwo—dimensional network structure. Thereislittle justification for this notion; areal
system of modulesin boardsin cratesin cabinetsismore naturally tree structured. Itis, however,
truethat therealization of good global messaging networksrequiresmany linksbisecting thesys-
tem. Parsytec[1] have demonstrated a construction technique appropriate for three dimensional
grids. Thefolded Clos network also lendsitself to anatural physical implementation, with the
processors and outer switched arranged on vertical boards and the inner switches on horizontals
asshowninfigure8.5. Suchanarrangement will require careful selection of connectorsand sup-
port boards, but can easily realize a 256 processor system in a single compact rack.

S
V=
4=

Figure 8.5 Horizontal boards containing the center stages of a Clos network

8.4.5 Security Implications of Network Topology

In some applications, secure multi—user T9000 parallel computers are required. This might be
to provide conventional inter—user security in a general—purpose machine. It might also be to
improve system ruggednessin the presence of some poor quality softwaremodules. For instance,
in adatabase system, one might hope that a client instance would be ableto fail without bringing
down the main database.

A simple solution to this problem would beto run all the untrusted processesin protected mode,
with all communication and memory management controlled by trusted servers. Unfortunately,
for avariety of reasonsthisis not always possible:

e Usersmight be using programming environmentsthat insist on raw accessto the proces-
sors, and do not support protected mode.

e Theincreased communication overheads of protected mode may not be acceptable.

Itispossibleto use aC104 routing network in order to provide some security against rogue pro-
cessing nodes. The concern is that a rogue node might transmit a packet with headersthat it is
not authorized to use, causing corruption of avirtual channel which it should not use. Onetrick
isto operate the C104s without header deletion at the boundary of the networ, so that the virtual
channel number as seen by the receiving T9000 is actually used to route the packets. Careful
design of the C104 network, and programming of itsintervals, can ensue that individual proces-
sors can only access restricted ranges of virtual channels on the other processors. This scheme
isat first sight attractive, but suffers from severe limitations:

* Theseschemestendto requirelarge numbersof C104sand an otherwise undesirable net-
work topology.

e Largegapsare created in the range of virtual channels usable at each processor.

e Most standard programming environments[7] assume the use of header deletion at net-
work boundaries.

» Thistechnique offers error detection, but not error recovery. It isdifficult to trace the
author of bad packets, and almost impossible to protect against network flooding.

Overall, it seemswisest to accept that C104 networks are not intended to enforce protection, and
to use gateway processors between trusted and untrusted subnetworks.

Most of the popular networks lend themselves naturally to rigid partitioning, but usually only in
restricted ways. For example, n—cubes can realize setsof smaller n—cubes, grids can be dissected
and Clos networks partitioned linearly. It is much harder to assemble closed subnetworks from
arbitrary, non—adjacent sets of processors.

85 Summary

We have used the following result from contemporary computer science:

» the ability of certain networks together with randomized or adaptive routing to support
scalable throughput and low delay (even when routing among the p x log(p) virtual pro-
cessors distributed among p processors)

together with the existence of existence of message-passing hardware:

» processorswith efficient process scheduling, in which processing throughput and commu-
nication throughput are balanced, and

* high—valency routersallowing the construction of compact communication networkswith
scalable throughput and low delay,

and have shown that we can already construct scal able universal message passing machines. For
these machines, we can write scalable, portabl e software exploiting message passing. Such ma-
chines can easily be constructed from available commodity components.

References

[1] Technical Summary parsytec GC, version 1.0, Parsytec Computer GmbH,
Aachen, Germany, 1991.

[2] A Klein, Interconnection Networks for Universal Message—Passing System,
Esprit ' 91 Conference Proceedings pp 336-351, Commission of the European
Communities, 1991, ISBN 92-826—2905-8.

[3] W J Dally, Performance Analysis of k—ary n—cube Interconnection Networks,
IEEE Trans Comput 6 pp 775785, 1990.

[4] L Vaiant, in Handbook of Theoretical Computer Science.

[5] C. Clos, A Study of Non—blocking Switching Networks,
Bell Systems Technical Journal 32, 1953

[6] V. E. Benes, Mathematical Theory of Connecting Networ ksand Telephone Traffic
Academic Press 1965

[7] Network Description Language User Manual, Inmos Ltd, 1992.

[8] L. G. Vdiant, A Bridging Model for Parallel Computation,

Communications of the ACM, August 1990, pp 103-111

