
This is Chapter 8 from the second edition of :

Networks, Routers and Transputers:
Function, Performance and applications

Edited by: M.D. May, P.W. Thompson, and P.H. Welch

© INMOS Limited 1993

This edition has been made available electronically so that it may be freely copied and distributed.
Permission to modify the text or to use excerpts must be obtained from INMOS Limited. Copies
of this edition may not be sold. A hardbound book edition may be obtained from IOS Press:

IOS Press IOS Press, Inc.
Van Diemenstraat 94 P.O. Box 10558
1013 CN Amsterdam Burke, VA 22009–0558
Netherlands U.S.A.

IOS Press/Lavis Marketing Kaigai Publications, Ltd.
73 Lime Walk 21 Kanda Tsukasa–Cho 2–Chome
Headington Chiyoda–Ka
Oxford OX3 7AD Tokyo 101
England Japan

This chapter was written by C. Barnaby, M.D. May and D.A. Nicole.

8 General Purpose Parallel Computers

8.1 Introduction

Over the last decade, many different parallel computers have been developed, which have been
used in a wide range of applications. Increasing levels of component integration, coupled with
difficulties in further increasing clock speed of sequential machines, make parallel processing
technically attractive. By the late 1990s, chips with 10� transistors will be in use, but design and
production will continue to be most effective when applied to volume manufacture. A ‘‘univer-
sal” parallel architecture would allow cheap, standard multiprocessors to become pervasive, in
much the same way that the von Neumann architecture has allowed standard uniprocessors to take
over from specialised electronics in many application areas.

Scalable performance

One of the major challenges for universal parallel architecture is to allow performance to scale
with the number of processors. There are obvious limits to scalability:

� For a given problem size, there will be a limit to the number of processors which can be
used efficiently. However, we would expect it to be easy to increase the problem size
to exploit more processors.

� There will in practice be technological limits to the number of processors used. These will
include physical size, power consumption, thermal density and reliability. However, as
we expect performance/chip to achieve 100-1000 Mflops during the 1990s, the most sig-
nificant markets will be served by machines with up to 100 processors.

Software portability

Another major challenge for a universal parallel architecture is to eliminate the need to design
algorithms to match the details of specific machines. Algorithms must be based on features com-
mon to a large number of machines, and which can be expected to remain common to many ma-
chines as technology evolves. Both programmer and computer designer have much to gain from
identifying the essential features of a universal parallel architecture:

� the programmer because his programs will work on a variety of machines - and will contin-
ue to work on future machines.

� the computer designer because he will be able to introduce new designs which make best
use of technology to increase performance of the software already in use.

8.2 Universal message passing machines

A universal message passing machine consists of:

� � processing nodes with concurrent processing and communication (and preferably pro-
cess scheduling).

� interconnection networks with scalable throughput (linear in �) and bounded delay (scal-
ing on average as ���(�)).

Programs for message passing machines normally consist of a collection of concurrent processes
which compute values and periodically communicate with each other. These programs must take
into account the relationship between the communication throughput and the computation

throughput of the message passing machine. We will call this ratio the grain (�) of the architec-
ture, and measure it as operations/operand. For simplicity, we will assume that a processor per-
forms an operation in one clock tick, so that we can measure the grain in ticks/operand.

The importance of achieving a good balance between computation and communication can be
understood by considering a simple example. Suppose that a two dimensional image is to be pro-
cessed by an array of transputers. Each transputer stores and processes a portion of the image.
Each step of the computation involves updating every element of the image in parallel. Assume
that at every step of the computation, every element of the array a[i,j] is to be updated to:

f(a[i,j], a[i-1,j], a[i+1,j], a[i,j-1], a[i,j+1])

and that function f involves 4 operations. The following table shows the operations performed
for each item communicated for four possible mappings.

elements per
transputer

operations per
communicationtransputer communication

1 1

4 2

16 4

256 16

If we chose a mapping which allocates one element to each transputer, we would need each trans-
puter to perform one operation in the same time that it can communicate one data item. This is
often referred to as fine grain processing. If, on the other hand, we allocate a large number of
elements to each transputer, the communications requirements are small. This is often referred
to as coarse grain processing. It can be seen from the example that as the grain is decreased, the
communications capability becomes the limiting factor. At this point, it is impossible to use more
transputers to increase performance, but easy to use more transputers to process a larger image.

Specialised transputer configurations can often be used to provide fine grain processing. In the
above example a two-dimensional array of transputers could be used, as communication is re-
quired only between adjacent transputers in the array. However, a general purpose machine
should be able to provide fine grain processing for a wide variety of algorithms, and for software
portability it should allow automatic allocation of processes to transputers. To do this it must
support a high rate of non-local communication, which can be achieved with a suitable network
of routers.

Another important factor affecting the performance of parallel computers is the latency (l) in
communication. A transputer may idle awaiting data from another transputer even though the
communication rate between the transputers is adequate. This is normally overcome by using
extra parallelism in the algorithms to hide communication delays. Instead of executing one pro-
cess on each transputer, we use the transputer process scheduler to execute several processes on
each transputer.

Whenever a process is delayed as a result of a communication, it is descheduled and the transputer
activates another process. This in turn will eventually become descheduled as a result of a com-
munication. Execution proceeds in this way through several processes. Whenever a communica-
tion completes, the corresponding process is rescheduled ready for subsequent execution. Pro-
vided that there are sufficient processes, the transputer will never idle as a result of
communication delays.

To understand the use of excess parallelism, consider the following simple worker process suit-
able for use in a processing farm. In a typical farm a controller process would hand out packets
of work to many such worker processes.

local data, result
loop
{ input ? data

result := compute (data)
output ! result

}

This process performs input (?) to a local variable, computation and output (!) from a local vari-
able sequentially. Any delay in performing communication will be directly reflected in the time
taken for each iteration of the loop.

Provided that the result output at each iteration of the loop is not used (by the controller) to pro-
duce input for the next two iterations, this process could be replaced by the following version
which allows input, computation and output to take place in parallel.

local data, result, nextdata, nextresult
loop
{ parallel

{ input ? nextdata
nextresult := compute (data)
output ! result

}
data, result := nextdata, nextresult

}

Here delays in communication will affect the total time taken for the loop only if one of the com-
munications takes longer than the computation. Even larger delays in communication can be tol-
erated by executing several such processes in each transputer, as in the following version. The
� processes are all independent of each other, and each operates on its own local variables (data,
nextdata, result).

parallel i = 1 to n
{ local data, result, nextdata, nextresult

loop
{ parallel

 { input ? nextdata
nextresult := compute (data)
output ! result

}
data, result := nextdata, nextresult

}
}

Here every communication can be delayed by up to � computation steps. An algorithm of this
kind can be efficiently executed even in the presence of long communication delays.

8.2.1 Using Universal message passing machines

Designing a program for a particular grain (g) is a significant task, so we would like to keep g
constant for all sizes of machine. In practice we would also like to keep g low, as this simplifies
programming and allows fine–grained parallelism. A low and constant g allows programs to be
written at a higher level using, for example,

� Array manipulation

� Big DO-PARs

� Explicit parallelism with lots of small processes

The programmer and compiler will take into account the grain �, and will construct a program
as a collection of � virtual processors (processes) of grain > � and cycle-time � (ticks). We assume
that the processes are cyclical, and in each cycle perform �/� communications and � operations.
Notice that we want to keep the grain of the software as low as possible so as to exploit all possible
parallelism for a given problem size, but the grain must be at least � to avoid processor idling.

The output of the compiler is a program suitable for use on all universal machines of grain �. We
expect to keep the program in this form, and perhaps distribute it in this form. We note that � is
fixed for a range of machines based on the same components, and further that there is likely to
be little variation in � even for machines based on different components. This means that the com-
piled program is likely to be re-useable.

To load a compiled program for execution, we make use of a loader which takes as parameter the
latency of communication: � (ticks). This will vary from machine to machine and will scale as
���(�) for realizable networks. The loader will allocate at least �/� virtual processors to at most
(� � ���� processors. There would be no point in attempting to use more processors than this,
as this would result in processors idling some of the time. It would be better to leave some proces-
sors available for some other purpose. Thus the program will run with optimal efficiency on a
�–processor machine provided (� � �� � 	�� ��

Notice that our loader ensures that there will always be enough processes on each processor to
ensure that (at least) one is executable; the others will be waiting for communication to complete.
This means that we will need to use at least ���(�) more processes than processors. Another way
to think of this is that we could use a specialised machine exactly matched to the algorithm in
which each processor executes only one process; this would offer ���(�) more performance. Spe-
cialised parallel computers will still be needed for maximizing performance where the problem
size is limited!

We note that our proposal for universal message passing is closely related to Valiant’s proposal
for Universal PRAMs [8] in which � = ���(�) and � = 1.

8.3 Networks for Universal message passing machines

Universal message-passing machines consist of a number of concurrent processors, connected
by a communication network. A suitable network is a Universal Communication Network, where
the throughput per terminal link remains constant with varying network size, and the delay per
terminal link grows slowly with increasing network size. Such a machine is universal, as the al-
gorithm running on the machine (made up from the processes on the processors) does not depend
on the underlying structure of the machine. This structural independence means that the program
structure will not need to be altered if the underlying machine is changed, for instance if it has
more or less processors. The machine may be characterized by the parameters � and �.

Suppose that a process sends a message which will take time � to get to its destination. The com-
munication delay may be hidden by the processor scheduling another parallel process (or other
parallel processes) during the communication delay. Given the network delay, �, we can predict
the number of processes which are required to hide the communication latency. It has been shown
that several networks have constant throughput per terminal and latency growing with log(p),
where p is the number of processors. Among them is the n–cube.

8.3.1 A simulation of the n–cube

The 6-dimensional cube is examined. From the distribution of packet arrival times, the probabili-
ty that a packet takes longer than a certain amount of time is derived. The probability, in turn,
is used to predict the amount of parallel slack required. The results compare to the theory of Val-
iant [8], and follow similar arguments.

The probability (derived from simulation) that a packet delivery time is greater than time T is
shown in figure 8.1.

Figure 8.1 Probability that a packet takes longer than time T on a 6–cube

There are a number of processes on each processor, in this case 6, which operate one after another,
for instance process 1, process 2, ..., process 6, then process 1 again. The time required between
process 1 finishing and process 1 starting again is �, the latency of the communication. However,
although process 1 may not have received its communication, and therefore not be ready to run
again, process 2 may have received its communication, and be able to restart. This implies that
the probability of no process being ready is actually the product of the probabilities that any one
of the processes is not ready (assuming that these events are independent). Note that process 1
has time �, whereas process 2 has time 4�/5, process 3 has time 3�/5, and so on. This does not take
account of the compound probabilities of many delays happening in a very short time. The proba-
bility of waiting, against the network latency �, is shown in figure 8.2.

Figure 8.2 Probability that a processor will have to wait

For 6 processes, the graph shows that for a probability of waiting of 10��, we need about 100
cycles between successive executions of a process. For a probability of 10��, we need about 130
cycles. These suggest that each process needs to run for about 20 or 26 cycles respectively. This
is the cycle size �, defined earlier. In the next section, the effect of the probability of waiting is
shown.

The effect on program runtime

In our model, each processor has 6 processes. Each of the 64 processors run their 6 processes
repeatedly. Suppose that a delay to any of the processors means that all the processors have to
wait for the one which is delayed. Then there are 384 (=6 � 64) processes each of which require
their packet to be delivered within time � in order to avoid a delay to the system. If the system
is delayed, it waits for a further � units of time before it continues.

Because we require that all 384 packets are delivered, if the probability of any one packet being
delayed is 10��, nearly all of the cycles will take time 2� rather than �. The time required to run
the program consequently doubles.

If the probability of a delay is 10��, about one third of cycles will be delayed. If the probability
is 10��, then about one in 26 cycles will be delayed. These probabilities correspond to particular
values of �. The factor of increase in runtime over the case where there are no communication
delays, is shown in figure 8.3.

Figure 8.3 Increase in runtime due to latency as a function of cycle time c

8.3.2 An example

Suppose we want to run an image smoothing algorithm on a parallel machine. Then to operate
where the runtime will be minimally affected, we want to hide a latency of 160 cycles. For 6
processes on each processor, this gives a cycle size, � of (160/5)= 32. A network throughput of
about 80% (as simulated for the n–cube) means that about there will be about 25 units of output
per 32 units of time.

Let the unit of time be 0.5 microseconds. This is the about time required to transmit a floating-
point number using DS-Links. Floating-point values will be bundled into 4 packets, one for each
of the � �, � � directions. The header overhead is very small, so the 25 units of time corresponds
to transmitting 4 groups of 6 floating-point numbers.

The image smoothing operation consists of 5 operations per pixel (4 additions and one division).
This suggests that splitting a picture into 6 by 6 pixel squares will give four communications (each
of six floating point numbers), and 36 calculations per process. Therefore within the 16 microse-
conds, a total of 36 � 5 = 180 floating point calculations need to be performed. The correspond-
ing calculation rate is about 11.25 MFlops per processor. Each processor runs six such processes,
giving a total of 64 � 6 = 384 processes in the network. This suggests that an array of such pro-
cessors will process an image of 386 � 36 = 13896 pixels without loss of efficiency.

A corresponding calculation for a network throughput rate of 60% suggests that 5 Mflop proces-
sors could process a 6144 pixel image without loss of efficiency. As expected, a smaller problem
requires a higer ration of communication to computation.

In this example we have taken an algorithm which could be executed on a dedicated two–dimen-
sional grid and re–written it so that it can execute efficiently on universal message–passing ma-
chines of varying sizes.

8.4 Building Universal Parallel Computers from T9000s and C104s

Throughout the remainder of this chapter we assume that the basic architecture of the general–
purpose parallel computer consists of T9000 processing nodes connected via C104 switches, and
examine a number of practical issues in the construction of such machines.

8.4.1 Physical organization

A T9000 runs somewhat hotter than first–generation transputers; a typical T9000 processing
module, with dynamic memory and drivers, might be expected to dissipate around ten watts. This
power budget can, if necessary, accommodate an error correcting memory subsystem. A small
mothercard, with ten T9000s and some C104 switches, might therefore dissipate about 150 watts
in an area of about one tenth of a square metre. Such a board would require a cooling air flow
of around twenty cubic metres per hour. This is not a huge requirement by the standards of high–
performance computer design; a conventional backplane/crate implementation using forced air
cooling with a 30mm card pitch is quite reasonable. Fan noise may, however, be considerable
and a substantial volume will be occupied by air ducting and fans.

Higher component densities may easily be achieved using contact and/or fluid cooling. The pub-
lished design for the Parsytec GC supercomputer [1] implements a sixty–four node subsystem
in a total volume of about 500 by 300 by 200 mm. This GigaCube uses large aluminium contact
plates and heatpipes to transport heat away from the active components. Two alternative cooling
systems can be provided for the ‘‘cold” end of the heatpipes: a fan and fin module for forced air
cooling, or a water cooling block accepting an external water supply. Either module may be ac-
commodated within the GigaCube volume, as is a secondary power supply converting a 42V
40kHz AC power feed down to the 5V required by the modules.

We may contrast these densities with the degree of compactness required to minimize signal prop-
agation delays. Assume that only T9000 data links travel between cards in the computer. Low
level flow control on such a link network is maintained on groups of eight tokens (see Chapter
3); such a group takes about 800nS to transmit at the 100 Mbits/s rate. An end–to–end delay of
half this figure corresponds to a separation of sixty metres in free space; thus, even allowing for
velocity factors, we are able to build very big machines.

Overall, it can be seen that the choice of component density is not constrained by the T9000/C104
architecture; the relatively low power requirements and long permissible cable runs allow the de-
signer full flexibility in mechanical design.

8.4.2 Network Performance Issues

A primary part of the design of a T9000 and C104 system is the design of the data link routing
network. Raw throughput and latency are two important issues that must be considered.

Early work by Dally [3] on routing networks suggested that two dimensional grids formed good
routing networks for supercomputers. These results were, however, based on parameters which
do not apply to C104 networks. In particular, it is desirable to use the very high valency of the
C104 to real effect; connecting many links in parallel to form a low valency network wastes much
of the routing capability.

There are several possible measures of network performance. One, popular with computer
manufacturers, is the peak point–to–point bandwidth between a pair of processors in an otherwise
unloaded network. This measure gives some information about the behavior of the processor to
network interface, but it conveys almost nothing about the performance of the network itself.
Realistic measures must quantify the behavior of the network under reasonable load conditions,

taking into account contention between messages within the network. Important effects can arise
as a network is loaded:

� Even if the network saturates uniformly as regards throughput, individual message laten-
cies may become very high as the network approaches saturation; serious unfairness may
also arise between different processors. Randomization, as offered by the C104, can be
shown [8] to make highly delayed messages improbable.

� Certain particular patterns of communication [3] can cause a dramatic build–up of mes-
sage traffic at particular intermediate nodes in the network. This is a universal property
[4] of deterministic sparse routing networks. It is unfortunate that many popular net-
works (grid, n–cube, Clos...) show this bad behavior on traffic patterns that would be
expected to arise in typical computations. Randomization can again be shown to render
these systematic collisions improbable.

The use of randomization in a C104 network can be seen to offer important simplifications in the
network’s behavior. It can completely decouple the network topology from the algorithmic mes-
sage pattern. One can then essentially characterise a network by its throughput and average laten-
cy for randomly distributed traffic under high load. In practice, the adaptive routing offered by
the C104 normally provides all the benefits of randomization, along with a useful increase in av-
erage bandwidth as will be shown below.

Throughput in a C104 network is limited by contention, the simultaneous presence of two or more
packets requesting the same output link from a C104. Under random traffic, this may be modelled
very simply as discussed in chapter 6. The formulæ derived there may be simply modified to
account for restrictions on the output links. It is then straightforward to calculate approximate
throughputs for networks by cascading this calculation through the various layers of the network.
There are two other direct results from this formula:

� A single 100 Mbit/s link between T9000s can deliver a unidirectional throughput of
8.9M bytes/s. A perfect network could route permutation traffic, in which it is guaran-
teed that no two processors are attempting to communicate to the same destination, at
the same rate. With random traffic, even for a perfect network, contention at the destina-
tion T9000s reduces the maximum throughput per link to 5.6 Mbyte/s.

� Consider an indirect network: one in which there are layers of C104 switch that are not
connected directly to T9000s but only to other C104s. Then the amount of traffic on
these inner layers is reduced by contention in the outer switches adjacent to the T9000s.
A balanced indirect network design will thus have a density of links that is highest near
to the T9000s and is reduced between the inner switches.

8.4.3 A practical Routing Network

A simple and useful routing network is the folded Clos23. The network provides routing between
the mn external ports on the left side of the network, where each of the n switches in the left–hand
column provides m external ports. A 512–terminal version is illustrated in figure 8.4.

23. The title is derived from an important early paper [5] on the design of telephone switching networks. The
particular numbers of interconnections provided by Clos and the related Benes [6] networks are important for
the establishment of telephone circuit connections without contention. These numbers have no special signifi-
cance for packet routing networks such as those built using C104s.

��

����

����

����

����

����

����

�

�

��

�

�

��

��

��

Figure 8.4 Folded Clos network

The simple model of chapter 6 can be used to evaluate the performance of the folded Clos net-
work. If the network is programmed for random routing, then a random one of the p right hand
switches is selected for each message. The probability of an output being active at the first stage
is thus P1 = 1–e–m/p. The probability of an input being active at the second stage is also P1 and
the probability of an output being active, for random traffic, is P2 = 1–e–P

1. Finally, the probabili-
ty of one of the external output ports being active is P3 = 1–e–pP

2
/m, giving an average throughput

per link of 8.9 � P3 Mbyte/s. If grouped adaptive routing is used at the first stage, then the con-
tention there is eliminated as long as p >= m. Thus, the previous formula is modified by replacing
P1 with min(1,m/p). Table 8.1 below shows some calculated random traffic throughputs for typi-
cal Clos type networks.

Table 8.1 Sustained high–load throughputs for Clos–type networks

m p random
throughput
Mbytes/s

adaptive
throughput
Mbytes/s

random
routed

efficiency

adaptive
routed

efficiency

16 16 3.3 4.2 59% 74%

 8 16 4.3 4.8 76% 86%

Note that the two networks differ only in that half the external ports are left unconnected for the
m = 8 network. The randomization applied to folded Clos networks was effectively free; no addi-
tional links were traversed by randomized packets. Nevertheless, adaptive routing can be seen
to be more efficient. Grid and n–cube networks impose more severe penalties. Random routing
must be applied to all but one dimension of the grid or n–cube, almost doubling the traffic density.

Simple adaptive routing also achieves little in eliminating systematic contention from these net-
works.

Similar methods may be used to analyze a wide variety of networks. Homogeneous networks
such as the Folded Clos and n–cube are straightforward. Inhomogeneous networks, such as two
or three dimensional grids, have an unbalanced traffic pattern which peaks (linearly) in the center
of the grid. Calculation of the contended throughput in the centre of the grid gives a good estimate
of the overall throughput of the network.

8.4.4 Routing Network Simulations

Some detailed simulations [2] of C104 networks have been performed by Siemens as part of the
Esprit PUMA project. This work was instrumental in the inclusion of grouped adaptive routing
in the C104. These studies cover Clos, grid and n–cube networks. Concentrating first on the
m=16, p=16 network examined above, the Siemens results find sustained throughputs on random
traffic of 2.9 M byte/s for random routing and 3.1 M byte/s for adaptive routing which compare
well with the crude calculations of the previous section. Interestingly, for a known bad message
pattern, deterministic routing offers a throughput of only 0.3 M byte/s, random routing (of
course) the same 2.9 and adaptive routing 8.8 M byte/s. It turns out that the bad pattern for deter-
ministic routing, a block permutation, is a very good pattern for adaptive routing.

The Siemens simulations also give insight into the average packet delay in the network; for the
m=16, p=16 system delivering 1M byte/s/link throughput we see an average delay of 6�s. Grids
and cubes again perform worse than Clos networks in this parameter.

Overall, the Siemens results show comparable performance for n–cube and Clos networks of
comparable cost, with a small advantage for the Clos designs. Two and three dimensional grids
performed very badly.

There is a received wisdom that the two–dimensional nature of silicon die and PCBs leads natu-
rally to a two–dimensional network structure. There is little justification for this notion; a real
system of modules in boards in crates in cabinets is more naturally tree structured. It is, however,
true that the realization of good global messaging networks requires many links bisecting the sys-
tem. Parsytec [1] have demonstrated a construction technique appropriate for three dimensional
grids. The folded Clos network also lends itself to a natural physical implementation, with the
processors and outer switched arranged on vertical boards and the inner switches on horizontals
as shown in figure 8.5. Such an arrangement will require careful selection of connectors and sup-
port boards, but can easily realize a 256 processor system in a single compact rack.

Figure 8.5 Horizontal boards containing the center stages of a Clos network

8.4.5 Security Implications of Network Topology

In some applications, secure multi–user T9000 parallel computers are required. This might be
to provide conventional inter–user security in a general–purpose machine. It might also be to
improve system ruggedness in the presence of some poor quality software modules. For instance,
in a database system, one might hope that a client instance would be able to fail without bringing
down the main database.

A simple solution to this problem would be to run all the untrusted processes in protected mode,
with all communication and memory management controlled by trusted servers. Unfortunately,
for a variety of reasons this is not always possible:

� Users might be using programming environments that insist on raw access to the proces-
sors, and do not support protected mode.

� The increased communication overheads of protected mode may not be acceptable.

It is possible to use a C104 routing network in order to provide some security against rogue pro-
cessing nodes. The concern is that a rogue node might transmit a packet with headers that it is
not authorized to use, causing corruption of a virtual channel which it should not use. One trick
is to operate the C104s without header deletion at the boundary of the networ, so that the virtual
channel number as seen by the receiving T9000 is actually used to route the packets. Careful
design of the C104 network, and programming of its intervals, can ensue that individual proces-
sors can only access restricted ranges of virtual channels on the other processors. This scheme
is at first sight attractive, but suffers from severe limitations:

� These schemes tend to require large numbers of C104s and an otherwise undesirable net-
work topology.

� Large gaps are created in the range of virtual channels usable at each processor.

� Most standard programming environments [7] assume the use of header deletion at net-
work boundaries.

� This technique offers error detection, but not error recovery. It is difficult to trace the
author of bad packets, and almost impossible to protect against network flooding.

Overall, it seems wisest to accept that C104 networks are not intended to enforce protection, and
to use gateway processors between trusted and untrusted subnetworks.

Most of the popular networks lend themselves naturally to rigid partitioning, but usually only in
restricted ways. For example, n–cubes can realize sets of smaller n–cubes, grids can be dissected
and Clos networks partitioned linearly. It is much harder to assemble closed subnetworks from
arbitrary, non–adjacent sets of processors.

8.5 Summary

We have used the following result from contemporary computer science:

� the ability of certain networks together with randomized or adaptive routing to support
scalable throughput and low delay (even when routing among the �����(�) virtual pro-
cessors distributed among � processors)

 together with the existence of existence of message-passing hardware:

� processors with efficient process scheduling, in which processing throughput and commu-
nication throughput are balanced, and

� high–valency routers allowing the construction of compact communication networks with
scalable throughput and low delay,

and have shown that we can already construct scalable universal message passing machines. For
these machines, we can write scalable, portable software exploiting message passing. Such ma-
chines can easily be constructed from available commodity components.

References

[1] Technical Summary parsytec GC, version 1.0, Parsytec Computer GmbH,
Aachen, Germany, 1991.

[2] A Klein, Interconnection Networks for Universal Message–Passing System,
Esprit ’91 Conference Proceedings pp 336–351, Commission of the European
Communities, 1991, ISBN 92–826–2905–8.

[3] W J Dally, Performance Analysis of k–ary n–cube Interconnection Networks,
IEEE Trans Comput 6 pp 775–785, 1990.

[4] L Valiant, in Handbook of Theoretical Computer Science.

[5] C. Clos, A Study of Non–blocking Switching Networks,
Bell Systems Technical Journal 32, 1953

[6] V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic
Academic Press 1965

[7] Network Description Language User Manual, Inmos Ltd, 1992.

[8] L. G. Valiant, A Bridging Model for Parallel Computation,
Communications of the ACM, August 1990, pp 103–111

