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1 Introduction

1 Introduction
This book describes each instruction in the IMS T9000 instruction set and explains the context within
which that instruction is used. It is essentially divided into two parts: a narrative that introduces each
instruction within a logical group of instructions, and a reference section that gives a code-like specification
of each instruction with a cross reference to the narrative.

[For details of the T9000 products and development tools, refer to The T9000 Hardware Reference
Manual.]

This is a useful document to all transputer users, but it is aimed in particular at the following.

• the high-level programmer who wants to use low-level code inserts to enhance the performance
of his code

• the compiler writer

• the operating system or run-time kernel writer

• the writer of high-level debugging tools

• the writer of run""time support libraries

• the writer of bootstrap code

The high-level programmer in a language such as C might find that, either his particular compiler is limited
in certain respects, or a particular piece of code is time critical, and may hence need to write a low-level
code sequence. Provided that the compiler/linker system that he is using enables him to write instruction
level sequences into his program, he can overcome such difficulties. For this though he needs a good
understanding of the capabilities and range of the entire instruction set.

A compiler writer needs to understand the exact action of each instruction in order to write the code gen­
eration part of his program.

The writer of a run-time kernel needs to understand the transputer's scheduling mechanism and the
instructions which enable him to implement his own scheduling/interrupt scheme.

Similarly the writer of run time support libraries may need to write time critical code at assembly level.

The writer of a debugging tool needs to be able to control low-level context switching (e.g. for implementing
breakpoints/single-step) and needs to be able to access and manipulate certain registers and data struc­
tures.

Bootstrap code must usually be very compact code and requires some machine specific instructions
which are not available in high-level programming languages. For these reasons, a bootstrap program is
written at assembly code level and the writer of the program needs to be familiar with the processor's
instruction set.

In the narrative part of the book, the art of programming the IMS T9000 is considered subject by subject.
Each subject introduces certain instructions. This provides the reader with the purpose for the instructions
as they are introduced and describes any environmental issues, such as data structures and register/data­
structure pre-conditions. Some of these subjects are of interest to all IMS T9000 users while some are
of specific interest to certain categories of reader.

Chapters 3 to 8 should be read by all transputer programmers who are likely to need to know anything
about the instruction set. The basic concepts of the IMS T9000 are introduced, including: addressing,
instruction representation, processes, registers, communication, and the instructions which are essential
for sequential and concurrent programming. These chapters may also be of interest to high-level program­
mers or system designers who would like a general background on how the IMS T9000 works.

Chapters 9 and 10 are concerned with running code under protection, implementing a memory manage­
ment scheme, and handling errors or unexpected behavior. They are of primary interest to operating sys­
tem writers.
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Chapter 11 describes the support for floating-point arithmetic and is of interest to compiler writers, for im­
plementing mathematical run-time library support, and to programmers who are required to write IEEE
floating-point exception-handlers.

Chapter 12 discusses how channels are used to communicate between transputer processes. In particu­
lar, it describes virtual channels, event channels and resource channels. This information is needed if writ­
ing a program to configure a network of transputers (a configurer).

Chapter 13 overviews the various context switches and associated state storage and retrieval mecha­
nisms. These include traps, high-priority process interruption (and return), descheduling and timeslicing.
Instructions are described which enable process queues to be manipulated and interrupts/timeslices to
be enabled/disabled.

Chapter 14 discusses the various mechanisms available for monitoring the behavior of a process as it
runs, including: breakpointing, watchpointing, single-stepping. The instructions and mechanisms here are
of interest to the programmer implementing debugging tools.

Chapter 15 provides a brief overview of the memory architecture and describes the instructions that can
be used to invalidate and flush the main cache.

Appendix A is the instruction reference section. It lists all the IMS T9000 instructions in alphabetical order.
For each instruction, there is a short English description, a pseudo-code description, and list of pre-condi­
tions, a list of any conditions which may be set by the instruction, and cross reference to the page(s) in
the narrative section of the book where the instruction is introduced.

Appendix B provides a tabulated list of all the instructions in ascending order of operation codes. This list
is useful for disassembly of instruction code. That is, it provides the user with the information needed to
convert from a hex code sequence to an instruction code sequence.
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This chapter introduces and explains some of the conventions, terminology and special notations used
throughout the book.

Instructions

The mnemonic and full name for each IMS T9000 instruction are given when the instruction is first
introduced. All succeeding references to instructions use the mnemonic which is written in italic font and
lower case - e.g. sfl n.

Registers

The registers referenced in this text are those described in section 5.1. Usually a reference to a register
uses its textual description. For example, ThReg is referred to as the 'trap-handler register'. Sometimes
however this would be unwieldy and the shortened name is given (e.g. Areg is usually used in preference
to the integer stack A-register). Registers are written in bold font with an initial capital letter.

Undefined values

In the definition of some instructions the values left in certain registers are said to be undefined. This
means that those values are implementation dependent, and are not even guaranteed to be consistent
within an implementation. No application should attempt to make use of the value that any version of a
transputer implementation happens to provide.

Constants

Some special constant names are used throughout the book. A full list of these is given in tables A.12 and
A.13 (appendix A). They are written in italic font - e.g. BytesPerWord.

Bits

Where a particular bit value is established by the machine, the text usually explicitly states the value to
which it is set. For example 'the trap-handler in use bit is set to 1'. Occasionally however, where this be­
comes cumbersome, the convention is used that the word 'set' implies 'set to l' and the words 'reset' or
'cleared' imply 'set to 0'.

Data structures

Some instructions use data structures for storage and retrieval of data. Data structures are introduced
in the text as required, but the entire set of data structures is duplicated in appendix A. The following ex­
plains the conventions used to describe a data structure.

A data structure within the context of this document is a contiguous block of store that comprises a number
of 'slots'. A slot normally contains a machine word. The address of the structure is a-pointer to a location
in the vicinity of this block. Each slot has a defined word offset from that address. In a description of the
data structure, a name for each slot is provided as well as an offset. Slots are then referred to by name.
Slot names are written in bold font.

For example, the process workspace data structure is presented in section 5.3. Given this, the phrase
'the pw.lptr slot of the process workspace data structure' refers to the slot addressed by the process work­
space (data structure) offset by -1 word (Le. the process workspace byte address minus 4).

Program notation

The occam language is used in this book both as a 'source language' to represent program constructs
and program fragments to be compiled, and as a 'meta-language' to represent algorithms to produce com­
piled code and other examples. These two uses of occam are distinguished by the use of an italic font
for meta-language occam as in

x := a + b
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and a teletype font for source language occam as in

x := a + b

T9000 transputer instruction set manual

A detailed knowledge of occam is not required. Unfamiliar constructs and operations are explained before
use. However, an important semantic difference between occam and most other high level languages,
is that statements may be executed sequentially or concurrently. This is shown syntactically by use of SEQ
and PAR constructs.

For example, the two statements in

SEQ
a := a + 1
b := a + b

are executed sequentially. This is implicitly assumed in most high level programming languages, in which
a group of statements (without jumps) are executed in the order in which they are encountered. This
compares with the occam code

PAR
a := a + 1
b := b + 1

in which the two statements are executed concurrently.

More generally

SEQ
Spred
PAR

Pt
P2

Pn
Ssucc

means that the processes which are enclosed by the PAR construct (Pt, P2 ... Pn) are run concurrently,
but as a whole are run sequentially between the execution of Spred and Ssucc. In practice the processes
may not be able to execute simultaneously (unless there is more than one CPU), and so a looser specifica­
tion of the PAR construct is: none of the processes within the construct may start until the predecessor
process (Spred) has been executed, and successor process (Ssucc) may not execute until all the processes
within the construct have terminated. Note that this does not say anything about when or where these
processes are executed.

Note that an italic font is used for 'meta-variables' inside source language - e.g. the processes Pi in the
above.

The source language occam is the occam 2 language as defined in the occam 2 Reference Manual. The
meta-Ianguage occam is based on occam 2 with some restrictions removed and extensions added to en-
able certain algorithms to be expressed more simply. .

Footnotes

Footnotes are used occasionally to provide more detail and background information to avoid breaking the
flow of the main text.

Where there is just a single reference to a footnote, the footnote is positioned at the bottom of the page
on which that reference is made. It is referenced using a symbol superscript such as: t, +, t, t.

Where there is more than one reference to a footnote, the footnote is positioned at the end of the chapter
in which the references are made. It is referenced using a numeric superscript.
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This chapter gives an overview of the IMS T9000 and introduces some of the concepts used throughout
the book. No detailed explanation is given because each of these topics is discussed in later chapters.

The IMS T9000 transputer is a 32-bit microprocessor with on-chip hardware support for floating-point
arithmetic. As such a single unit can be used as a very fast sequential microprocessor. However, there
are a number of advanced features which characterize the IMS T9000.

• A hardware scheduling mechanism means that the processor can appear to run many processes
concurrently. At a high level, this can be achieved either with an operating system kernel, or with
a language which has a model of concurrency (e.g. occam, parallel C).

• On-chip serial communication engines (data links) make it easy for connected IMS T9000 pro­
cessors to communicate data and implement true concurrency.

• A separate communications processor multiplexes messages across these serial links. Any
number of messages can be simultaneously transmitted to any number of external destination
processes, and the means by which this is achieved is transparent to the programmer.

• An easy to use trap-handling mechanism provides for error detection and debugging, and sup­
ports IEEE floating-point exception handling.

• There is a workspace cache which allows very fast (single-cycle) access to local variables.

• There is on-chip memory which can be used as cache, fast static RAM or a combination of the
two. This gives accelerated access to non-local code or data.

• A pair of control links is provided for transfer of control and boot information. These are entirely
independent of the data links, hence enhancing system reliability.

• An internal pipelined architecture means that instruction sequences can be grouped so that sev­
eral operations can occur simultaneously.

This chapter introduces some of these features and the concepts that utilize them.

3.1 Processes

This section firstly describes the occam process model, and secondly introduces the IMS T9000 imple­
mentation of processes.

A single transputer can efficiently implement the occam process model, by sharing processor time be­
tween concurrent processes. Also a network of transputers can be used to implement the occam process
model with improved performance, by running communicating processes on different transputers.

Note that although the transputer has been carefully designed to implement the occam model of pro­
cesses, the user is not restricted to this process model. For example communication between processes
on the same IMS T9000 tranputer can be achieved via shared variables protected by semaphores.

3.1.1 The occam process model

In the occam process model, a process starts, performs a number of actions, and then either stops or
terminates successfully. Each action is either an assignment, an input or an output. An assignment sets
the value of a variable, an input receives a value from a channel, and an output sends a value to a channel.
The variable set by an assignment should not be accessible to any other process - the only method of
transferring information from one process to another should be by using a channel.

At any time between it starting and terminating successfully a process may be ready to communicate on
one or more of its channels. Each channel provides one way communication between two processes.
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Communication is synchronized. If a channel is used for input in one process and output in another then
communication takes place when both processes are ready. The inputting and outputting processes then
proceed with the value output being copied from the outputting process to the inputting process.

Externally a process may be seen as being a 'black box' that, after starting, mayor may not wish to commu­
nicate along one or more of its channels until it terminates successfully. In order to perform the task it is
designed to achieve, a correctly functioning process normally communicates data with the processes con­
nected to it, and then terminates successfully. However, a process can indefinitely fail to communicate.
This failure of communication can be due to internal deadlock (where all internal processes are waiting
to communicate with each other), internallivelock (where internal processes are only communicating with
themselves and never communicate with the outside world) or due to the process ceasing to execute with­
out terminating successfully (in occam this is the STOP process).

The internal state of a process is not visible to the outside world and all interactions with the process occur
via channel communication. This process model removes the problems associated with variable sharing.

3.1.2 Implementation of processes

A single IMS T9000 can implement the occam model of a process, and can simulate concurrent execution
of a number of such processes.

At any point in time a transputer can only be executing a single process. This is referred to as the 'current'
process. The current process usually executes for a finite period of time. It ceases to be the current pro­
cess if it is descheduled (Le. stops. executing).

The following may cause the process to deschedule.

• Execution has reached a point where the process must wait for action by another process (e.g.
a communication or semaphore).

• Execution has reached a point where the process must wait for a timer.

• The process has had its fair share of execution time and must temporarily give way to another
process. When this occurs, the process is said to have been 'timesliced'.

• The process has executed an instruction which explicitly forces the current process to be
stopped or terminated, or forces another process to start executing.

Sometimes the current process must give way temporarily to a more urgent (higher priority) process which
requires execution. This is referred to as an 'interrupt'.

Because more than one process may be ready to execute, the transputer provides scheduling lists. When­
ever a process becomes ready to execute, it is placed at the end of a scheduling list. When this occurs,
the process is said to be 'scheduled'. The processor automatically timeslices the execution of scheduled
processes, and so over a period of time, this gives the appearance of more than one process running si­
multaneously. The set of processes that is either executing, interrupted or on a scheduling list, is referred
to as the 'active set'.

Two scheduling lists are maintained by the transputer: a list of low priority processes and a list of high
priority processes. When the processor deschedules the current process, it loads the state of the process
at the front of the high priority scheduling list, or if there are no high priority processes scheduled, it loads
the state of the process at the front of the low priority scheduling list. It then starts to execute that process.
No low priority process can be executed until the high priority list is empty.

By default, whenever there is a process on the high priority list, any currently executing low priority process
is interrupted. However a low priority process can explicitly disable interruption and timeslicing on the IMS
T9000. A high priority process cannot be timesliced or interrupted.

The processor can monitor a process for certain error conditions, debug conditions etc. and can optionally
cause a context switch or cause the machine to halt. When this occurs, the process is said to have taken
a 'trap'.
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A T9000 process can run in trusted mode or in protected mode. In trusted mode, it is called an L-process,
and in protected mode, it is called·a P-process. A process is always an L-process when it is loaded for
execution. It may become a P-process while it is executing, but always reverts to an L-process before it
is descheduled. An L-process can implement local trap-handling, by having a trap-handler associated with
it. The trap-handler is discussed later, but amongst other things, it contains status and control bits for the
L-processes which use it.

The capGlcity to run a process under protection (in protected mode) enables the programmer to write-pro­
tect and/or execute-protect regions of memory. When a process is running in protected mode, the L-pro­
cess that invoked the mode is referred to as the 'supervisor' (or 'stub') of the P-process which is currently
executing. The protected mode also provides memory mapping, by mapping logical addresses to a physi­
cal address. Some of the IMS T9000 instructions cannot be executed under protection. These are called
'privileged instructions'.

3.2 Communication

Processes communicate via channels. A channel is a unidirectional point-to-point medium of communica­
tion, which may be between processes running on the same transputer (internal), between processes on
different transputers (external), or between a process on a transputer and an external device. Internal
communication is achieved via memory transfer. External communication is achieved via special purpose
on-chip hardware, known as (data) links.

The instructions used for communication are the same, regardless of whether the channel is internal or
external; the channel address is used by the processor to determine the action to be performed. This al­
lows a procedure to be compiled without knowledge of whether its parameter channels are implemented
by memory locations or by external links.

Channel communication incorporates synchronization and data-transfer. Synchronization ensures that
data-transfer takes place only when both the inputting and outputting processes are ready. When one of
the two processes wants to communicate (using an input or output instruction), it must wait until the se­
cond process is also ready.

There are three synchronization mechanisms available when using channels on the IMS T9000.

• Simple synchronization - This is the simplest form of synchronization. The first process to at­
tempt communication (input or output) is descheduled and the processor starts to execute the
next process on the scheduling list. When the second process becomes ready (performs an out­
put or input), the channel is ready for data-transfer.

• Alternative synchronization - For processes that want to select an input communication from
several possibilities, the IMS T9000 provides a series of instructions known as the 'alternative
sequence'. In this mechanism one of several possible communication channels is selected for
data-transfer.

• Resource synchronization - For a client-server model, the IMS T9000 provides a resource
mechanism, whereby certain channels can be set to 'resource mode'. A queue of clients can thus
be associated with each resource (server). The mechanism ensures that channel communica­
tions to a particular server are selected one at a time. When a channel is selected, it is ready for
data-transfer. A channel which can be set to resource mode is called a 'resource channel'.

When communication has completed, the processor ensures that both communicating processes are
scheduled.

For processes running on the same processor, there is also an n-valued semaphore mechanism provided
on the IMS T9000 .

3.3 Traps

A trap is an unexpected change offlow of execution, which can occur in any process, due to the occurrence
of various conditions. The user may specify for some of these conditions whether or not a trap is taken.
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A trap from an L-process normally results in a context switch to a trap-handler, and a trap from a P-process
results in a context switch to its supervisor.

The conditions that can cause a trap include:

• debug conditions - The IMS T9000 provides facilities to insert breakpoints in code, employ a
single-step mode, and set up watchpointing for access to a specified area of memory.

• errors and IEEE floating-point (fp) exceptional conditions

• system call - A trap may be forced by explicitlyexecution of an instruction (sysca/~.

• timeslice - A timeslice causes a trap when running under protection.

Detection of these conditions facilitates the implementation of error-handlers, debugging tools, IEEE ex­
ception-handlers, operating systems etc.

The errors (and floating-point exceptions) which can be signalled are shown in table 3.1. All of these 'error
signals' cause a trap unless this facility is disabled by the user. Some of them set flags in the status register
if a trap is not taken. This is discussed fully in chapter 10.

error signal brief description

IntegerOverflow integer overflow or integer divide-by-zero

IntegerError integer error other than IntegerOverflow - e.g. explicitly checked
or explicitly set error, misuse of channel

Unalign address of instruction operand is not aligned to the correct
boundary

IIlegallnstruction attempt to execute an illegal instruction

Privlnstruction attempt to execute a privileged instruction in protected mode

AccessViolation attempt to access a memory protected or non-existent address

FPError floating-point 'error'

FPlnvalidOp IEEE floating-point 'invalid operation'

FPDivideByZero IEEE floating-point 'divide by zero'

FPOverflow IEEE floating-point 'overflow'

FPUnderflow IEEE floating-point 'underflow'

FPlnexact IEEE floating-point 'inexact result'

Table 3.1 Definition of errors signalled by the IMS T9000

Associated with an L-process is a 'trap-handler pointer'. This is either the address of a trap-handler data
structure (THDS) or is a null pointer. A THDS may be shared with a number of other L-processes and
contains: status information for the processes that use it, control information which specifies the condi­
tions that cause a trap, and identification of t~e trap-handler code which is executed when a trap occurs
from one of these processes.

Associated with a P-process is a pointer to a P-state data structure (PDS). This contains: status informa­
tion for the P-process and control information which specifies the conditions that cause a trap.

3.4 Configuration of control system

There are two additional links on the IMS T9000, that are used to send and receive hardware control in­
formation. These 'control links' make it possible for a controlling processor to control and monitor a series
of IMS T9000-family devices in a subsystem connected by the control links. This control network is entirely
independent of the data network which is connected by data links, and thus guarantees the integrity of
the control system.
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There is a set of commands that is used for transfer of control information. It includes commands to: reset
a processor, read or write data to a specified address, and transmit boot-code. When one of these com­
mands is sent on a control link, it is preceded by header information to identify the destination processor.

A full description of the IMS T9000 control system and the associated command set is given in The T9000
Hardware Reference Manual.

3.5 Instructions and pipelining

The CPU of the IMS T9000 has a superscalar pipelined micro-architecture, which enables concurrent
execution of instructions on a single transputer. A group of instructions can be issued to this pipeline on
every transputer cycle, and since a large proportion of the IMS T9000 instructions require only one cycle
to complete execution, this means that on average several instructions are executed in each cycle.

There is also a mechanism (grouper) which examines the sequence of instructions and divides these into
optimal groups for concurrent execution. This 'grouper' takes account of which operations can occur con­
currently in the pipeline.

The existence of the grouper means that the programmer need not have any knowledge of the pipelined
architecture. It is entirely transparent to the user. He does not have to specify the groups or the order in
which they are executed.
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The IMS T9000 transputer is a 32-bit word machine, with byte addressing and a 4 Gbyte address space.
This chapter explains how data is loaded from and stored into that address space, explains how signed
arithmetic is represented, and defines the arithmetic significance to ordering of data items.

4.1 Word address and byte selector

A machine address is a single word of data which identifies a byte in memory - Le. a byte address. It com­
prises two parts, a word address and a byte selector. The byte selector occupies the two least significant
bits of the word; the word address the thirty most significant bits. An address is treated as a signed value,
the range of which starts at the most negative integer and continues, through zero, to the most positive
integer. This enables the standard comparison functions to be used on pointer (address) values in the
same way that they are used on numerical values.

Certain values can never be used as pointers because they represent reserved addresses at the bottom
of memory space. They are reserved for use by the processor and initialization. In this text, names are
used to represent these and other values (e.g. NotProcess.p, Disabling.p). A full list of names and values
of constants used in this book is given in tables A.13 and A.12 (appendix A).

4.2 Ordering of information

The transputer is 'Iittle-endian' - Le. less significant data is always held in lower addresses. This applies
to bits in bytes, bytes in words and words in memory. Hence, in a word of data representing an integer,
one byte is more significant than another, if its byte selector is the larger of the two. Figure 4.1 shows the
ordering of bytes in words and memory for the IMS T9000. Note that this ordering is compatible with Intel
processors, but not Motorola or SPARC.

memory
(bytes)

X+7

X+6

X+5

X+4

X+3

X+2

X+1

X+O

words (wordlength is 32 bits)

MSB LSB

bit 131 X+7 24 123 X+6 16 11S X+5 8 1 zX+4 0 I

MSB LSB

bit 131 X+3 24 123 X+2 16 11s X+1 8 I 7 X+O 0 I

X is a word-aligned byte address

X+n is the byte n bytes past X

Figure 4.1 Bytes in memory and words

4.3 Words, objects and signed integers

Most instructions that involve fetching data from or storing data into memory, use word aligned addresses
(Le. bits 1 and 0 are set to 0) and load or store four contiguous bytes. However, there are some instructions
that can manipulate part of the bit pattern in a word, and a few that use double words.
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A data item that is represented in two contiguous bytes, is referred to as a16-bit object. This can be stored, ­
either in the least significant 16-bits of a word location, or in the most significant 16 bits, hence addresses
of such locations are16-bit aligned (Le. bit 0 is set to 0).

A data item that is represented in in two contiguous words, is referred to as a 64-bit object or a double
word.

Similarly, a data item represented in a single byte is sometimes referred to as an a-bit object.

Signed integers and sign extension

A signed integer is stored in twos-complement format and may be represented by an N-bit object. Most
commonly a signed integer is represented by a single word (32-bit object), but as explained, it may be
stored, for example, in a 64-bit object, a 16-bit object, or an a-bit object. In each of these formats, all the
bits within the object contain useful information.

Consider the example shown in figure 4.2, which shows how the value -10 is stored in a 32-bit register,
firstly as an a-bit object and secondly as a 32-bit object. Observe that bits 31 to a are meaningful for a
32-bit object but not for an a-bit object. These bits are set to 1 in the 32-bit object to preserve the negative
sign of the integer being represented.

bit position

I these bit values not related to integer value

31 a 7 0

signed integer value (-10) stored as an a-bit object (byte)

[TID -----'
bit position 31 a 7 0

signed integer value (-10) stored as a 32-bit object (word)

Figure 4.2 Storing a signed integer in different length objects

The length of the object that stores a signed integer can be increased (Le. the object size can be in­
creased). This operation is known as 'sign extension'. The extra bits that are allocated for the larger object,
are meaningful to the value of the signed integer. They must therefore be set to the appropriate value.
The value for all these extra bits is in fact the same as the value of the most significant bit - Le. the sign
bit - of the smaller object. The IMS T9000 provides instructions that sign extend to 32 bits and 64 bits.
These are described in chapter 7.

4.4 Unaligned address detection

Instructions that address words or 16-bit objects expect the addresses to be aligned on 4-byte and 2-byte
boundaries respectively. This requires bits 0 and 1 to be set to 0 for an address operand of a word instruc­
tion or bit 0 to be set to 0 for an address operand of a 16-bit object instruction. If the processor detects
a bad address alignment while executing an instruction, then it signals Unalign.

The user can specify the action that the processor takes when Unalign is signalled: either

• a trap is taken, or

• the address is re-aligned by setting the bottom bit to '0' for a 16-bit object, or the bottom two bits
to '0' for a word.

See chapter 10 for details on trap enabling.
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The word instructions to which this applies are:-

Idnl stnl chantype devlw devsw

disc disg enbc enbg endp

erdsq gajw goprot grant in

initvlcb insphdr irdsq Idcf1status Idresptr

Idshadow lend mkrc out outbyte

outword readbfr readhdr resetch restart

selth setchmode sethdr signal startp

stmove2dinit stopch stresptr stshadow swapbfr

unmkrc vin vout wait writehdr

fpb32tor64 fpi32tor32 fpi32tor64 fpldall fpldnladddb

fpldnladdsn fpldnldb fpldnldbi fpldnlmuldb fpldnlmulsn

fpldnlsn fpldnlsni fpstall fpstnldb fpstnli32

fpstnlsn

The16-bit object instructions to which this applies are:-

13

Idevls devss Is Isx ss
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This section introduces the IMS T9000 registers. The registers listed here are those visible to the program­
mer. Firstly the set of registers known as state registers are presented and discussed. These fully define
the state of the executing process. Secondly the other registers of interest to the programmer, are pres­
ented. The function of each register is detailed later in the book as each register is first encountered in
the context of a machine instruction.

5.1.1 State registers

The state of an L-process at any instant is defined by the contents of the machine registers listed in table
5.1. For a P-process the state also includes the contents of the registers listed in table 5.2. These registers
may be referred to as 'state registers' to distinguish them from registers that are not part of the process
state. The 'register' column gives the abbreviated name of the register. The 'full name/ description' column
provides the full textual name which is usually used when referencing a register in this manual; and where
unclear, a brief description of the information contained in this register. The 'shadow register' column
states the abbreviated name of the associated shadow register (explained below).



16 T9000 transputer instruction set manual

register full name / description process modes shadow register

StatusReg status register StatusReg.sh

WdescReg workspace descriptor register - contains the process des- WdescReg.sh
criptor of the currently executing process

IptrReg instruction pointer register - pointer to next instruction to IptrReg.sh
be executed

Areg integer stack register A Areg.sh

'Breg integer stack register B Breg.sh

Creg integer stack register C Creg.sh

ThRegt trap-handler register - pointer to the current THOS (trap- ThReg.sh
handler data structure)

FPstatusReg floating-point status register - indicates type of value in FPstatusReg.sh
each FP register and the current rounding mode

FPAreg floating-point stack register A FPAreg.sh

FPBreg floating-point stack register B FPBreg.sh

FPCreg floating-point stack register C FPCreg.sh

BMregO 20 block move control register 0 BMregO.sh

BMreg1 20 block move control register 1 BMreg1.sh

BMreg2 20 block move control register 2 BMreg2.sh

WIReg watchpoint lower bound register WIReg.sh

WuReg watchpoint upper bound register WuReg.sh

Ereg+ internal register Ereg.sh

Xreg+ internal register Xreg.sh

EptrReg error pointer register EptrReg.sh

t contains trap-handler pointer of supervisor when executing a P-process

+ Ereg and Xreg are internal registers which the processor uses to store temporary values during the execution of
some instructions. The processor saves their contents when an instruction is interrupted and restores the registers to their pre-
vious state when it is restarted. The actual data values are of no use to the programmer.

Table 5.1 Registers that define the machine state - state registers
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RegionRegO region descriptor register 0 - contains the region descrip- RegionRegO.sh
tor for protection region 0

RegionReg1 region descriptorregister 1 - contains the region descrip- RegionReg1.sh
tor for protection region 1

RegionReg2 region descriptor register 2 - contains the region descrip- RegionReg2.sh
tor for protection region 2

RegionReg3 region descriptor register 3 - contains the region descrip- RegionReg3.sh
tor for protection region 3

PstateReg protected state register - pointer to the current PDS (P- PstateReg.sh
state data structure)

WdescStubReg workspace descriptor stub register - contains the process WdescStubReg.sh
descriptor of the supervisor

Table 5.2 Extra registers that define the P-process state - state registers

Hence depending on the mode in which the process is currently executing, the process state is defined
by a slightly different set of registers. For example the region descriptor registers are listed in table 5.2
because their contents may be valid while a P-process is executing, but their contents are irrelevant when
an L-process is executing.

Register grouping

It is convenient for use now and elsewhere in this manual to refer to certain related registers by a group
name. These names are intended to be intuitive, but table 5.3 clarifies.

register group name

integer stack (registers)

floating-point stack (registers)

stack (registers)

floating-point registers

block move registers

watchpoint registers

region descriptor registers

internal registers

registers include in group

Areg, Breg, Creg

FPAreg, FPBreg, FPCreg

integer stack registers, floating-point stack registers

floating-point stack registers, FPstatusReg

BMregO, BMreg1, BMreg2

WIReg, WuReg

RegionRegO, RegionReg1, RegionReg2, Region­
Reg3

Ereg, Xreg

Table 5.3 Register group names

Shadow registers

When a high priority process interrupts a low priority process, the state of the currently executing process
needs to be saved. For this purpose, a 'shadow register' is provided for each state register. On interrupt,
the content of each register is copied into its shadow. On return from an interrupt the state of the inter­
rupted process is copied back from the shadow registers. The content of the shadow registers is therefore
only valid during an interrupt. A high priority process may manipulate the shadow registers with the instruc­
tions Idshadow and stshadow. Details of these are provided in section 13.3.

5.1.2 Other machine registers

There are several other registers which the programmer needs to know about. These are not part of the
process state, and hence are not state registers and do not have shadow registers. They are presented
in table 5.4.
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register full name / description

FptrRegO high priority front pointer register - contains pointer to first process on
the high priority scheduling list

FptrReg1 low priority front pointer register - contains pointer to first process on
the low priority scheduling list

BptrRegO high priority back pointer register - contains pointer to last process on
the high priority scheduling list

BptrReg1 low priority back pointer register - contains pointer to last process on
the low priority scheduling list

ClockRegO high priority clock register - contains current value of high priority clock

ClockReg1 low priority clock register - contains current value of low priority clock

TptrRegO high priority timer list pointer register - contains pointer to the first pro-
cess on the high priority timer list

TptrReg1 low priority timer list pointer register - contains pointer to the first pro-
cess on the low priority timer list

TnextRegO high priority alarm register - contains the time of the next process on
the high priority timer queue

TnextReg1 low priority alarm register - contains the time of the next process on
the low priority timer queue

Table 5.4 Other machine registers

5.2 Process status and control bits

The status register (StatusReg) contains status and control information for the current process. The
32-bit word held in the status register comprises 'status bits' ('flags') and 'control bits'. Status bits describe
current state, such as the mode of operation (protected/unprotected) and any errors which may have oc­
curred. Control bits specify future behavior which may occur, such as trapping and timeslicing.

The process status and control bits are shown in table 5.5. The meaning and function of each bit is detailed
later in the book when each bit is first encountered in the context of a machine instruction. Bits within the
status register that are not shown in table 5.5, have reserved use.

• Prior to executing an L-process, the processor loads these bits from the THDS (trap-handler data
structure) for that process into the status register. When this process is descheduled or trapped,
the processor writes these bits back from the status register into the THDS. Hence these bits
are local to L-processes which are associated with a particular trap-handler.

• The situation is similar for a P-process, but in this case, the bits are loaded from and written to
the PDS(P-state data structure). The status and control bits here are local to P-processes which
share a particular supervisor.
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bit number status bit name full name / description

2 sb.FPErrorFlag floating-point error flag - indicates, when set,
that a floating-point error has occurred

3 sb.FPErrorTeBit floating-point error trap enable bit - specifies,
when set, that if a floating-point error occurs, the
current process will be trapped

6 sb.lntOvFlag integer overflow flag

7 sb.lntOvTeBit integer overflow trap enable bit

8 sb.FPlnOpFlag floating-point invalid operation flag

9 sb.FPlnOpTeBit floating-point invalid operation trap enable bit

10 sb.FPDivByZeroFlag floating-point divide by zero flag

11 sb.FPDivByZeroTeBit floating-point divide by zero trap enable bit

12 sb.FPOvFlag floating-point overflow flag

13 sb.FPOvTeBit floating-point overflow trap enable bit

14 sb.FPUndFlag floating-point underflow flag

15 sb.FPUndTeBit floating-point underflow trap enable bit

16 sb.FPlnexFlag floating-point inexact result flag

17 sb.FPlnexTeBit floating-point inexact result trap enable bit

19 sb.UnalignTeBit unaligned address trap enable bit

25 sb.TimesliceDisabledBit timeslice disable bit - specifies, when set, that
timeslicing cannot occur

26 sb.StepBit single-stepping trap enable bit - specifies, when
set, that a single-step trap will be taken at the
end of the current instruction

27 sb.lsPprocessBit protection bit - indicates, when set, that the pro-
cessor is running under protection

29 sb.WtchPntEnbl watchpoint trap enable bit - specifies, when set,
that watchpointing is enabled

30 sb.WtchPntPend watchpoint trap pending flag - indicates, when
set that a watchpoint trap will be taken at the end
of the current instruction

Table 5.5 Process status and control bits

Sometimes in this manual it is stated that under certain circumstances, the status register is loaded with
the 'default control word'. This means that all bits in the status register are set to 0 with the exception of
bit7, sb.lntOvTeBit, which is set to 1. In particular, the default control word is loaded when an L-process
executes with a null trap-handler.

5.3 The process descriptor and its associated register fields

In order to identify a process completely it is necessary to know: its workspace address (in which the byte
selector is always 0), and its priority (high or low). This information is contained in the process descriptor.
The process descriptor of the currently executing process is held in the workspace descriptor register
(WdescReg) .

The workspace descriptor register is formed from a pointerto the process workspace or-ed with the priority
indicator at bit O. Often it is required to use or update only some part of the workspace descriptor register,
so two 'register fields': Wptr and Priority are defined so that the following invariants are obeyed.
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Wptr

Priority
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WdescReg /\ (NOT 3)

WdescReg /\ 1

31

Wptr points to the current process workspace, which is always word-aligned. Priority is the priority of the
currently executing process where the value 1 indicates low priority and 0 indicates high priority. Bit 1 is
always set to 0t.

___________w_o_r_ks_p_ac_e_a_d_dr_e_ss ---'GE
210

Figure 5.1 Constituents of a process descriptor

t In preliminary revisions of the IMS T9000 (viz versions a and ~), bit 1 may be set to 1.
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The transputer encoding is designed so that the most commonly executed instructions occupy the least
number of bytes. This chapter describes the encoding mechanism and explains how it achieves this.

A sequence of single byte 'instruction components' is used to encode an instruction. The IMS T9000 inter­
prets this sequence at the instruction fetch stage of execution. Most users (working at the level of micro­
processor assembly language) need not be aware of the existence of instruction components a~d do not
need to think about the encoding. The first section (6.1) has been included to provide a background. The
following section (6.2) need only concern the reader that wants to implement a code generator.

6.1 Instruction encoding

6.1.1 An instruction component

Each instruction component is one byte long, and is divided into two 4 bit parts. The four most significant
bits of the byte are a function code, and the four least significant bits are used to build an 'instruction data
value'. .

I function I data
bit 7 4 3 0

The representation provides for sixteen instruction components (one for each function), each with a data
field ranging from 0 to 15.

There are three categories of instruction component. Firstly there are those that specify the instruction
directly in the function field. These are used to implement 'primary instructions'. Secondly there are the
instruction components that are used to extend the instruction data value - this process of extension is
referred to as 'prefixing'. Thirdly there is the instruction component operate (opr) which specifies the
instruction indirectly using the 'instruction data value'. opr is used to implement 'secondary instructions'.

6.1.2 The instruction data value and prefixing

The data field of an instruction component is used to create an 'instruction-data value'. Primary instructions
interpret the instruction data value as the operand of the instruction. Secondary instructions interpret it
as the operation code for the instruction itself.

The instruction data value is a signed integer that is represented as a 32-bit word. For each new instruction
sequence, the initial value of this integer is zero. Since there are only 4 bits in the data field of a single
instruction component, it is only possible for most instruction components to initially assign an instruction
data value in the range 0 to 15. However two instruction components are used to extend the range of the
instruction data value. Hence one or more prefixing components may be needed to create the correct
instruction data value. These are shown in table 6.1 and explained below.

mnemonic name

pfix prefix

nfix negative prefix

Table 6.1 Prefixing instruction components

All instruction components initially load the four data bits into the least significant four bits of the instruction
data value.

pfix loads its four data bits into the instruction data value, and then shifts this value up four places. nfix
is similar, except that it complements the instruction data valuet before shifting it up. Consequently, a se­
quence of one or more prefixes can be included to extend the value. Instruction data values in the range
-256 to 255 can be represented using one prefix instruction.

t Note that it inverts all 32 bits of the instruction data value.
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When the processor encounters an instruction component other than pfix or nfix, it loads the data field
into the instruction data value but doesn't shift it because the instruction encoding is now complete and
the instruction can be executed. When the processor is ready to fetch the next instruction component, it
starts to create a new instruction data value.

6.1.3 Primary Instructions

Research has shown that computers spend most of the time executing instructions such as: instructions
to load and store from a small number of 'local' variables, instructions to add and compare with small
constants, and instructions to jump to or call other parts of the program. For efficiency therefore, the trans­
puter encodes these directly as primary instructions using the function field of an instruction component.

Thirteen of the instruction components are used to encode the most important operations performed by
any computer executing a high level language. These are used (in conjunction with zero or more prefixes)
to implement the primary instructions. Primary instructions interpret the instruction data value as an oper­
and for the instruction. The mnemonic for a primary instruction will therefore normally include a this oper­
and - n - when referenced.

The mnemonics and names for the primary instructions are listed in table 6.2. Their usage and behavior
are given in chapter 7.

mnemonic name

aden add constant

ajwn adjust workspace

ealln call

ej n conditional jump

eqen equals constant

jn jump

Iden load constant

Idl n load local

Idlp n load local pointer

Idnl n load non-local

Idnlp n load non-local pointer

stl n store local

stnl n store non-local

Table 6.2 Primary instructions

6.1.4 Secondary instructions

The transputer encodes all other instructions (secondary instructions) indirectly using the instruction data
value.

Iname
opr

Imnemonic

The remaining instruction component - opr - causes the instruction data value to be interpreted as the
operation code of the instruction to be executed. This selects an operation to be performed on the values
held in the integer or floating-point stacks. This allows a further 16 operations to be encoded in a single
byte instruction. However the prefix instructions can be used to extend the instruction data value, allowing
any number of operations to be performed.
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Secondary instructions do not have an operand specified by the encoding, because the instruction data
value has been used to specify the operation.

To ensure that programs are represented as compactly as possible, the operations are encoded in such
a way that the most frequent secondary instructions are represented without using prefix instructions.

6.1.5 Summary of encoding

The encoding mechanism has important consequences.

• Firstly, it simplifies language compilation, by providing a completely uniform way of allowing a
primary instruction to take an operand of any size up to the processor word-length.

• Secondly, it allows these operands to be represented in a form independent of the word-length
of the processor.

• Thirdly, it enables any number of secondary instructions to be implemented.

The following provides some simple examples of encoding:­

• The instruction Ide 17 is encoded with the sequence

pfix 1; Ide 1

• The instruction add is encoded by

oprS

• The instruction and is encoded by

opr46

which is in turn encoded with the sequence

pfix 2; opr 14

To aid clarity and brevity, prefix sequences and the use of opr are not explicitly shown in this guide. Each
instruction is represented by a mnemonic, and for primary instructions an item of data, which stands for
the appropriate instruction component sequence. Hence in the above examples, these are just shown as:
Ide 17, add, and and. (Also, where appropriate, an expression may be placed in a code sequence to repre­
sent the code needed to evaluate that expression.)

6.2 Generating prefix sequences

Generating a prefix sequence to create an instruction data value is extremely tedious - especially when
the value is negative. Prefixing is intended to be performed by a compiler (or assembler). Prefixing by hand
is not advised!

Normally a value can be loaded into the instruction data value by a variety of different prefix sequences.
It is important to use the shortest possible sequence as this enhances both code compaction and execu­
tion speed. The best method of optimizing object code so as to minimize the number of prefix instructions
needed is shown below.

6.2.1 Prefixing a constant

The algorithm to generate a constant instruction data value e for a function op is described by the following
recursive function.

prefix( op, e) =IF
e < 16AND e ~ 0
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op(e)
e ~ 16

prefix( pfix, e ~ 4); op( e 1\ # F)
e < 0

prefix( nfix, ( ....... e) ~ 4); op( e 1\ # F )

where op( e) is the instruction component with function code op and data field e, ....... is a bitwise
NOT, and ~ is a logical shift right.

6.2.2 Evaluating minimal symbol offsets

Several primary instructions have an operand that is an offset between the current value of the instruction
pointer and some other part of the code. Generating the optimal prefix sequence to create the instruction
data value for one of these instructions is more complicated. This is because two, or more, instructions
with offset operands can interlock so that the minimal prefix sequences for each instruction is dependent
on the prefixing sequences used for the others.

For example consider the interlocking jumps below which can be prefixed in two distinct ways. The instruc­
tions j and cj are respectively jump and conditional jump. These are explained in more detail later. The
sequence

cj +16; j -257

can be coded as

pfix 1; cj 0; pfix 1; nfix 0; j 15

but this can be optimized to be

cj 15; nfix 15; j 1

which is the encoding for the sequence

cj +15; j -255

This is because when the two offsets are reduced, their prefixing sequences take 1 byte less so that the
two interlocking jumps will still transfer control to the same instructions as before. This compaction of non­
optimal prefix sequences is difficult to perform and a better method is to slowly build up the prefix se­
quences so that the optimal solution is achieved. The following algorithm performs this.

Associate with each jump instruction or offset load an 'estimate' of the number of bytes required
to code it and initially set them all to O.

2 Evaluate all jump and load offsets under the current assumptions of the size of prefix sequences
to the jumps and offset loads

3 For each jump or load offset set the number of bytes needed to the number in the shortest se­
quence that will build up the current offset. t

4 If any change was made to the number of bytes required then go back to 2 otherwise the code
has reached a stable state.

The stable state that is achieved will be the optimal state.

Steps 2 and 3 can be combined so that the number of bytes required by each jump is updated as the offset
is calculated. This does mean that if an estimate is increased then some previously calculated offsets may
t Where the code being analyzed has alignment directives, then it is possible that this algorithm will not reach a stable state. One
solution to this, is to allowthe algorithm to increase the instruction size but notallow itto reduce the size. This is achieved by modifying
stage 3to choose the larger of: the currently calculated length, and the previously calculated length. This approach does not always
lead to minimal sized code, but it guarantees termination of the algorithm.
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have been invalidated, but step 4 forces another loop to be performed when those offsets can be cor­
rected.

By initially setting the estimated size of offsets to zero, all jumps whose destination is the next instruction
are optimized out.

Knowledge of the structure of code generated by the compiler allows this process to be performed on indi­
vidual blocks of code rather than on the whole program. For example it is often possible to optimize the
prefixing in the code for the sub-components of a programming language construct before the code for
the construct is optimized. When optimizing the construct it is known that the sub-components are already
optimal so they can be considered as an unshrinkable block of code.

This algorithm may not be efficient for long sections of code whose underlying structure is not known. If
no knowledge of the structure is available (e.g. in an assembler), all the code must be processed at once.
In this case a code shrinking algorithm where in step one the initial number of bytes is set to twice the
number of bytes per word is used. The prefix sequences then shrink on each iteration of the loop. 1 or
2 iterations produce fairly good code although this method will not always produce optimal code as it will
not correctly prefix the pathological example given above.
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This chapter introduces and describes the instructions that perform sequential operations within a process
- Le. instructions that do not depend on or control any other processes. It also describes the integer stack
architecture, and explains how expressions can be evaluated on this stack. (For details on the floating­
point stack and associated instructions, refer to chapter 11.)

7.1 Registers

The following registers are referred to in sequential operations

IptrReg
Areg
Breg
Creg

contains a pointer to next instruction to be executed - the instruction pointer
integer stack register A
integer stack register B
integer stack register C

as well as the following register field

Wptr contains a pointer to current process workspace - the workspace pointer

Wptr is used as a base from which the local variables of a process can be addressed (see section 5.3).

Integer stack

Areg, Breg and Creg are organized as a three word stack. Instructions that load Areg, push Breg into
Creg and Areg into Breg. Instructions that store Areg, pop Breg into Areg and Creg into Breg, leaving
Creg undefined. The effects of this are shown in figures 7.1 and 7.2.

Before

Areg
Breg
Creg

push x onto stack
a
b
c

After

Areg
Breg
Creg

x
a
b

Figure 7.1 Effect of pushing value onto integer stack

Before After
a popped off stack

Areg a Areg b
Breg b Breg c
Creg c Creg undefined

Figure 7.2 Effect of popping value from integer stack

7.2 Local variables and constants, and stack operations

The instructions shown in table 7.1 include: instructions for loading and storing local workspace values
(local variables), instructions for loading and storing bytes and 16-bit objects, and instructions for manipu­
lating the values in the integer stack.
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mnemonic name

Iden load constant

Idl n load local

stl n store local

Idlp n load local pointer

Ib load byte

Ibx load byte and sign extend

sb store byte

Is load sixteen

Isx load sixteen and sign extend

ss store sixteen

rev reverse

pop pop processor stack

dup duplicate top of stack

Table 7.1 Instructions that can be used for loading, storing and manipulating the integer stack

The most common operations performed by a program are loading and storing one of a small number of
variables, and loading small literal values. The Ide n instruction pushes the operandt n onto the integer
stack. This enables values between 0 and 15 to be loaded into the integer stack using a single byte instruc­
tion.

The Idl n, stl nand Idlp n instructions all address words in memory relative to the workspace pointer Wptr.
The first 16 locations can be identified using a single byte instruction. A local variable held in workspace
location n can be pushed onto the integer stack by

Idl n

and the address of that variable can be pushed by

Idlp n

The value of the variable can be set to a value popped from the stack by

stl n

Note that for the purposes of this text, Idl X denotes loading the value from a local variable X. Similarly
Idlp X denotes loading the address of a local variable X, and stlX denotes storing a value into a local vari­
able X. In all three cases, the operand Xcan be can be interpreted as the appropriate constant offset from
Wptr that will enable these primary instructions to locate the actual stored location of a local variable X.

Ib and Ibx load the byte at the address in Areg, into the integer stack.lb replaces the address in Areg with
the byte stored at that address, treating it as as an unsigned integer by setting the twenty-four most signifi­
cant bits in Areg to O.lbx is similar to Ib, but treats the byte as a signed integer in twos-complement format,
and hence sign extends the representation by setting the twenty-four most significant bits in Areg to the
same value as the most significant bit of the byte (see section 4.3). Breg and Creg are unaffected by these
operations.

sb writes the least significant byte in Breg to the location addressed by Areg. It pops Creg up into Areg,
leaving Breg and Creg undefined.

t Where 'operand' is used in the text, this refers to the instruction data value, which is constructed as described in section 6.1.2. In

summary, for an operand between 0 and 15, this can be coded into the data field of a single instruction component (one byte). Oper­

ands outside this range can be coded using pfix or nfix beforehand.
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Is and Isx load the 16-bit object at the address in Areg, into the integer stack. Is replaces the address in
Areg with the 16-bit object stored at that address, treating it as as an unsigned integer by setting the six­
teen most significant bits in Areg to O. Isx is similar to Is, but treats the 16-bit object as a signed integer
in twos-complement format, and hence sign extends the representation by setting the sixteen most signifi­
cant bits in Areg to the same value as the most significant bit of the 16-bit object. Breg and Creg are unaf­
fected by these operations.

ss writes the 16-bit object in Breg (two least significant bytes) to the location addressed by Areg. It pops
Creg up into Areg, leaving Breg and Creg undefined.

rev swaps the contents of Areg and Breg.

pop forces the integer stack to be popped as shown in figure 7.2.

dup takes a copy of the content of Areg and pushes this onto the integer stack, hence leaving two identical
values in Areg and Breg.

Single word and byte assignment

Single words, 16-bit objects, and bytes may be assigned using the load and store instructions.

Word assignment

If x and y are both single word variables and e is a word valued expression then compiled code for word
assignments

x:=y
X :=e

Idl y; stl x
e; stl x

Byte assignment

If a and b are both single byte variables and e is a byte valued expression then compiled code for byte
assignments are

b:=a
b:=e

address(a); Ib; address(b); sb
e; address(b); sb

where address(variable) is discussed below.

Address calculation

In the previous example, the function address(variable) is introduced. This will be used in subsequent ex­
amples to represent the instruction sequence required to push onto the integer stack, the address of the
memory location used to store variable. How this function is compiled depends on a number of things such
as: the locality of the variable (local/non-local), the size of the variable, and the packing of the variable.
If a word variable is in local workspace, then its address can be loaded into the stack using

e.g. address(variable) Idlp variable

This can also be used to obtain the address of local byte variables if each byte variable is word-aligned.
But if byte variables are packed contiguously in memory, then their addresses can be obtained in the same
way as addresses of byte array elements. This and similar addressing issues are discussed in section
7.5.2.

Use of (Wptr+O)

The location (Wptr+O) is used as a temporary store by certain instructions. These are

outword, outbyte, altwt, taltwt, disc, dist, disg, diss, and a/tend.

If any of these instructions are being used, then local variables should be allocated from (Wptr+1) rather
than (Wptr+O). See also section 8.1.1.
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7.3 Integer stack evaluation

Integer expression evaluation and address calculation is performed using the integer stack. (The floating­
point stack can be used for floating-point arithmetic - see chapter 11.) For example, the evaluation of oper­
ators with two integer operands is performed by instructions that operate on the values of Areg and Breg.
The result is left in Areg, and Creg is popped into Breg leaving Creg undefined.

A compiler loads a constant expression C using

Idc C

(or by loading from a constant table - see section 7.3.2). It loads an expression consisting of a single local
variable using

Idlx

Methods for loading non-local variables, array elements and function calls are given in later sections.

Evaluation of expressions sometimes requires the use of temporary variables in the process workspace,
but the number of these can be minimized by careful choice of the evaluation order.

Let depth(e) be the number of stack locations needed for the evaluation of expression e, defined by

depth(constant)
depth(variable)
depth(function call)
depth(e 1 op e2)

1
1
'infinite'
IF

depth(e1) > depth(e2)
depth(e1)

depth(e1) < depth(e2)
depth(e2)

TRUE
depth(e 1) + 1

That is, if the depth required for each expression is the same, then one extra stack location is required
to store the result of the first expression, while the second expression is being evaluated. If the stack re­
quirements for each expression are different, then the total stack requirement is the larger stack require­
ment of the individual expressions. This is only the case if care is taken over the order of evaluation. Note
that 'infinite' should be taken as meaning greater than any finite depth - because a function call does not
preserve values on the stack (for further explanation, see section 7.12.2).

Let the function eval(e, r) evaluate expression e where there are r registers available to perform the evalu­
ation. Where this expression is an operation on two sub expressions - e 1 op e2 - it is efficiently evaluated
by the following algorithm, where commutes(op) is true if op commutes and false otherwise, and max( v1,
v2) is the larger value of v1 and v2.
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IF
max( depth(e1), depth(e2)) < r
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- i. e. depth of both expressions is less than ir ' - the
- number of registers available

IF
depth(e2) > depth(e1)

IF
commutes(op)

eval( e2, r ); eval( e1, r-1 ); op
TRUE

eval( e2, r ); eval( e1, r-1 ); rev; op
[depth(e2) ::; depth(e 1)]

eval( e1, r ); eval( e2, r-1 ); op
max( depth(e 1), depth(e2)) 2:: r

IF
depth(e2) 2:: depth(e1)

IF
depth(e1) 2:: r - i.e. both depths 2:: r

eval( e2, r ); stl temp; eval( e1, r ); Idl temp; op
TRUE - i.e. (depth(e1) < r) AND depth(e2) 2:: r

IF
commutes(op)

eval( e2, r ); eval( e1, r-1 ); op
TRUE i.e. operation doesn't commute

eval( e2, r ); eval( e 1, r-1 ); rev; op
depth(e2) < depth(e1)

IF
depth(e2) 2:: r - i.e. both depths 2:: r

IF
commutes(op)

eval( e1, r); stl temp; eval( e2, r); Idl temp; op
TRUE

eval( e2, r ); stl temp; eval( e1, r); Idl temp; op
TRUE -i.e. (depth(e2) < r) AND depth(e1) ~r

eval( e1, r ); eval( e2, r-1 ); op

where (/1; 12; ... ; In) represents a sequence of instructions.

(1 )

The justification of this is as follows. If the depth of both expressions is less than the number of registers
available (r), then there is no need to store the result of the first evaluation in a temporary variable. The
deeper expression is evaluated first to ensure that the operation evaluates in the least number of stack
registers. If this were not done then the total depth requirement would have to be incremented due to the
extra location for storing the result of the first evaluation. If both expression depths are as great as r, then
a local variable (temp) must be used to store the result of the first expression. It is again better to evaluate
the expression with the larger depth if possible, because this minimizes the number of local variables re­
quired. If only one of the expressions is as great as r, then provided that expression is evaluated first, there
is no need to store its result in a local variable.

In the cases where a temporary variable temp is required to hold the value of the first expression in the
evaluation of e1 op e2, then that variable can be used as a temporary variable in the evaluation Of first
expression. Also a temporary variable used in the evaluation of first expression and not used to hold its
result can be used in the evaluation of second expression.
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The code sequence

(e2; et; rev; op)

at (1) in the above algorithm, can be optimized further to

(et; e2; op)

19000 transputer instruction set manual

removing the execution of the rev instruction. But be aware that the latter uses an extra stack register,
and so there is trade-off here between evaluation depth and code size.

7.3.1 Loading operands

The three registers of the integer stack are used to hold operands of instructions, and the first three param­
eters of procedure calls. Evaluation of an operand or parameter may involve the use of more than one
register. Care is needed when evaluating such operands to ensure that the first operand to be loaded is
not pushed off the bottom of the integer stack by the evaluation of later operands. The processor does
not detect stack overflow.

Three registers are available for loading the first operand, two registers for the second and one for the
third. Consequently, the instructions are designed so that Creg holds the operand which - on average
- is the most complex, and Areg the operand which is the least complex.

In some cases, it is necessary to evaluate the Areg and Breg operands in advance, and to store the results
in temporary variables. This can sometimes be avoided using the reverse instruction. The following se­
quences may be used to load the operands A, Band C into Areg, Breg and Creg.

C;B;A

2 C; A; B; rev

3 B; C; rev; A

4 A; C; rev; B; rev

The choice of loading sequence, and of which operands should be evaluated in advance is determined
by the number of registers required to evaluate each of the operands. In particular, if C requires more
than two registers it must be loaded before A and B. If A or B requires more than two registers it must
be evaluated before C and may need to be stored in a temporary variable if C requires more than two
registers.
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registers temp load instructions
required sequence

C B A b a

~2 1 1 1 C;B;A

1 2 2 C; A; B; rev

1 >2 4 A; C; rev; B; rev

2 1 1 C;B;A

2 2 * 1 A; stl a; C; B; Idl a

2 >2 * 1 A; stl a; C; B; Idl a

>2 1 3 B; C; rev; A

>2 2 * 3 A; stl a; B; C; rev; Idl a

>2 >2 * 3 A; stl a; B; C; rev; Idl a

>2 1 1 1 C;B;A

1 2 2 C; A; B; rev

1 >2 * 1 A; stl a; C; B; Idl a

2 1 1 C;B;A

2 2 * 1 A; stl a; C; B; Idl a

2 >2 * 1 A; stl a; C; B; Idl a

>2 1 * 1 B; stl b; C; Idl b; A

>2 2 * 2 B; stl b; C; A; Idl b; rev

>2 >2 * * 1 A; stl a; B; stl b; C;ldl b; Idl a
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Table 7.2 Register loading sequences

Table 7.2 gives the instruction sequences needed for loading three operands into the integer stack, where
the number in the 'load sequence' column refers to the list above. The columns labelled 'temp' indicate
where a local variable is needed to temporarily save an operand value in the load sequence. The variable
'a' is used to store operand 'A' and the variable 'b' is used to store operand '8'.

7.3.2 Tables of constants

The transputer instruction set has been optimized so that the loading of small constants can be coded
compactly - for example it allows the loading of constants between 0 and 15 to be coded in a single byte.
Analysis of programs shows that such small constants occur markedly more frequently than large
constants. However when a large constant does need to be loaded the necessary prefix sequence may
be long. Other techniques may be more efficient in these cases.

A simple mechanism to increase the code compactness is to use a table of constants. This is implemented
by storing all the long constants into a lookup table. The address of this table is held in a local variable
which is used to index the array - this table and all its constant entries must be aligned on a word bound­
ary. Then to load the constant from the nth entry in the constant table stored at address constants_ptr the
following code would be used

Idl constants_ptr; Idnl n

where the instruction Idnl n is explained in section 7.4.

This code sequence only takes 2 bytes, provided constants_ptr is less than 16 words from the workspace
pointer address and there are no more than 16 word length constants. At worse it is unlikely to take more
than 4 bytes. Hence, if a constant takes 4 or more bytes to load using Idc then this sequence often im­
proves code compactness - especially if the constant is used more than once.



34 T9000 transputer instruction set manual

7.3.3 Single length signed integer arithmetic

Single length arithmetic with error (overflowt ) checking is provided by the operations listed in table 7.3.
Each of these instructions signallntegerOverflow (see section 10.3.2) if the operation overflows or a divide
by zero is attempted.

mnemonic name

adcn add constant

add add

sub subtract

mul multiply

div divide

rem remainder

Table 7.3 Single length signed integer arithmetic instructions

The primary instruction adc allows a constant value c (the instruction operand) to be added to Areg by
adc c. Breg and Creg are unaffected.

The instruction sequence

Idl X; Idl y;. op

where op is one of: add, sub, mul, div, rem, evaluates the expression

XopY

Le. it takes the value in Breg as the lefthand operand and the value in Areg as the righthand operand,
and loads the result into Areg. The content of Creg is popped into Breg leaving Creg undefined. Of these,
add and mul are commutative.

If adc, add, sub or mul causes overflow, then IntegerOverflow is signalled, and the result is truncated so
as to fit into 32 bits (but see note 1 at the end of the chapter).

The result ofdiv is the integer division rounded towards zero (truncated). If it causes overflow, then Integer­
Overflow is signalled and the result fs undefined. Overflow can occur only if the divisor (Areg) is zero, or
if the dividend (Breg) is MostNeg and the divisor is -1.

The result of rem is the remainder of the integer division of the two operands. The sign is always the same
as the dividend (Breg), regardless of the sign of the divisor (Areg). If the divisor is 0 then IntegerOverflow
is signalled and the result is undefined.

7.3.4 Single length modulo integer arithmetic

Single length arithmetic (with overflow ignored) is provided by

mnemonic name

sum sum

diff difference

prod product

Table 7.4 Single length modulo integer arithmetic instructions

The results of sum, diff and prod are the same as add, sub and mul respectively, but IntegerOverflow is
never signalled. Of these, sum and prod are commutative.

t In general, 'overflow' is said to have occurred if the actual result of an operation cannot be represented by its destination type.
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7.3.5 Unary minus

The expression (-e) can be evaluated with overflow checking by

e; not; ade 1

or

!de 0; e; sub
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The first sequence, using not, requires one less stack register than the second [not is a bitwise inversion
which is fully defined in subsection 7.3.7.]. However the second sequence will execute significantly faster
on the IMS T9000.

The expression can be evaluated without overflow checking by

!de 0; e; diff

7.3.6 Fractional arithmetic

Many applications, such as scientific function evaluation, use fixed point arithmetic. To enable this to be
performed efficiently on the IMS T9000, a fractional multiply instruction is included in the instruction set.

mnemonic

fmu!

name

fractional multiply

Table 7.5 Special instruction for fixed point arithmetic fractional multiply

fmu! is a commutative arithmetic operator that interprets Areg and Breg as fixed point numbers lying in
the range -1 S x < 1. The value associated with each register is 2-31 times its signed integer value. fmu!
returns the rounded fixed point product of these values in Areg and pops Creg up into Breg. The rounding
is performed in Round-to-Nearest mode as in ANSI/IEEE 754-1985 arithmetic.

Attempting (-1) fmu! (-1) produces an undefined result and signals !ntegerOverf!ow, as +1 cannot be rep­
resented in this format - this is the only case in which fmu! can overflow.

7.3.7 Bitwise logic and shifts

Bitwise logic and shift operations are provided by the instructions listed in table 7.6.

mnemonic name

and and

or or

xor exclusive or

not bitwise not

sh! shift left

shr shift right

Table 7.6 Bitwise logic and shift instructions

The not operation has only one operand that is taken from Areg. The result of this, which is a bitwise inver­
sion of all bits in the operand, is loaded into Areg, leaving Breg and Creg unaffected.

and, or and xor have two operands that are taken from Areg and Breg. For each, the result, which is a
bitwise logical operation on the two operations, is loaded into Areg. The data previously held in Creg, is
loaded into Breg, leaving Creg undefined. These operations are commutative.
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The shift operations (shl and shr) shift the operand in Breg by the number of bits specified by the unsigned
integer in Aregt and put the result in Areg. The vacated bit positions are filled with zero bits. If Areg is
zero, the result is the initial value of Breg. When the value in Areg is greater than the number of bits in
the object being shifted, the result of the operation is zero. Areg can be checked to signallntegerError
on such out of range shifts using the esubO operation which is described later (section 7.13). The data
previously held in Creg, is loaded into Breg, leaving Creg undefined.

7.4 Non-local variables

The 'local' operations Idl n, stl nand Idlp n address words in memory relative to Wptr. This is useful for
accessing local variables. For accessing non-local variables, a level of indirection is required.

mnemonic name

Idnl n load non-local

stnl n store non-local

Idnlp n load non-local pointer

Table 7.7 Non-local load and store instructions

The primary instructions listed in -table 7.7 perform 'non-local' operations in a similar way to their 'local'
counterparts except that they access a word address relative to Areg rather than Wptr. This base address
and the word offset specified by the operand of the instruction (n), form the non-local address which speci­
fies the location referenced by these load and store instructions.

Idnlp n loads the non-local address into Areg.ldnl n loads the content of the location specified by the non­
local address into Areg. For both these instructions, Breg and Creg are unaffected. stnl n writes the con­
tent of Breg into the location specified by the non-local address. Ifalso pops Creg into Areg leaving Breg
and Creg undefined. Idnl and stnl signal Unalign if the address in Areg is not word-aligned.

An element in an array is accessed by calculating the offset of the element from the base address of that
array. These non-local load and store instructions can therefore be used on non-local data structures.

7.5 Arrays and subscripts

The addressing instructions provide access to items in data structures using short sequences of single
byte instructions. They also allow the representation of data structure access to be independent of the
wordlength of the processor. (The latter characteristic is not important if writing code specifically for the
IMS T9000, but may be of importance when considering portability to transputers that have a different
wordlength.)

7.5.1 Counting bytes and words

mnemonic name

bent byte count

went word count

Table 7.8 Instructions that provide processor wordlength characteristics

The bent instruction multiplies Areg by the number of bytes in a word (Le. by 4 for the IMS T9000). It is
particularly used for producing the length in bytes of a multiword data item. The result is loaded into Areg,
leaving Breg and Creg unaffected.

The went instruction enables an address to be decdmposed into its component word address and byte
selector as defined in section 4.1 . went takes an address in Areg and returns the word address in Areg
t Note that the time that the IMS T9000 takes to execute these instruction is constant, whereas on the T2fT4fT8-series transputer,
the time is proportional to the value in Areg.
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and the byte selector in Breg, where the word address is sign extended (Le. bits 31 and 30 are set to the
same binary value as bit 29). The value previously held in Breg, is pushed into Creg.

7.5.2 Forming addresses

mnemonic name

Idpi load pointer to instruction

mint minimum integer

bsub byte subscript

,ssub sixteen subscript

wsub word subscript

wsubdb form double word subscript

Table 7.9 Subscript addressing instructions

The address of a local workspace location is loaded using the Idlp instruction (described in section 7.2).

Similarly, the address of a location in the program being executed can be obtained by the Idpi operation
as follows. The address of the location x bytes past the next instruction (which is itself pointed to by the
instruction pointer register) can be pushed onto the integer stack by

Ide x; Idpi

For example, the address of a label L can be loaded by

Ide (L-M); Idpi
M:

where the label M is the address of the instruction that follows the Idpi instruction. Firstly the offset in bytes
from M to L is loaded into Areg. The Idpi then uses this offset and the value in the instruction pointer regis­
ter (which will be the address of label M) to load the address of label L into Areg. This technique is useful
for generating relocatable code. Breg and Creg are unaffected.

The lowest address in memory can be pushed onto the integer stack by mint. This is particularly useful
for forming the address of a communication link. (It is equivalent to Ide MostNeg.)

The wsub, bsub, ssub and wsubdb instructions interpret Areg as the address of the beginning of a vector
of data objects, and Breg as an index into that vector. After execution, Areg holds the address of the in­
dexed element, and Creg is popped into Breg leaving Creg undefined. The purpose of these instructions
is to calculate the address of a selected element of a vector, which begins at the address pointed to by
Areg and stores its elements in contiguous space from that address. They simplify access to vectors of
various sized data elements. For example wsubdb makes it easier to access vectors of REAL 6 4s and
INT64s.

bsub is used for vectors comprising bytes (a-bit objects). The operation performed by bsub is to add the
integer in Breg to the address in Areg (without overflow checking).

ssub is used for vectors comprising 16-bit objects. The operation performed by ssub is to multiply the inte­
ger in Breg by two and to add this to the address in Areg (without overflow checking).

wsub is used for vectors comprising words (32-bit objects). The operation performed by wsub is to multiply
the integer in Breg by four and to add this to the address in Areg (without overflow checking).

wsubdb is used for vectors comprising double words (64-bit objects). The operation performed by wsubdb
is to multiply the integer in Breg by eight and to add this to the address in Areg (without overflow checking).

The user should also be aware that application of these instructions as described makes the best use of
the processor pipeline. For example bsub is functionally equivalent to sum, but the former will be more
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efficiently grouped, in the superscalar architecture of the IMS T9000, when calculating the address of an
element in a vector of bytes.

7.5.3 Arrays

Access to a component of an array can be split into two sections. Firstly the address of the component
must be constructed, and then the transfer of data to or from that component must be performed.

Evaluating a subscript

Array subscripts can be evaluated efficiently using the prod instruction. If array A has been declared by

[S1]" .. [Sn]INTA:

where Si (i =1..n) are the dimensions, then one way of arranging this in store is to have all elements of
the array in a contiguous block. Let's choose to have the elements in the rightmost dimension stored adja­
cently. For example figure 7.3 shows the elements of a particular three dimensional array (Array) stored
in this way.

Arra
Arra

[2][2][3]INT Array:
increasing
memory
addresses

Arra
Arra
Arra
Arra
Arra
Arra
Arra
Arra
Arra
Arra

contiguous
locations for
words in
memory
space

Figure 7.3 A possible method of storing an array of integers

Now if an access is required to such an array,

then the code to evaluate the subscript is

Ide S2J' e1; prod; e2J' add; Ide S3; prod; ... ; en; add

For example to evaluate the subscript for element Array [ 1] [ 0 ] [ 2] (where Array is declared as in fig­
ure 7.3), the code sequence is

Ide 2; 1; prod; 0; add; Ide 3; prod; 2; add

which evaluates to 8, which as can be seen from figure 7.3, is the correct offset from the bottom location
of the block.

There is no need forthe multiplication to checkfor overflow as this should be checkable during compilation.
Mechanisms for range checking the actual subscripts are given later.

Accessing a word addressed array

Let Wa_ptr be a pointer to an array (Wa) that starts at a word boundary, and in which all component types
are measured in words. Let e be a subscript expression. The address of component e of Wa is

or
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if e is a constant expression.

Accessing a byte addressed array

Similarly, let Ba_ptr be a pointer to an array (Ba) which may start at any byte location, and in which each
component type is measured in bytes. Let e be a subscript expression. The address of component e of
Ba is

7.5.4 Transferring array elements

An extra function is introduced here for use in this section and section 8.4.3. The function length(block)
returns the length of block in bytes, where block is a block of data that may correspond to a variable, a
data structure, a channel etc.

Let Xb be a variable or expression, the length in bytes of which is given by the value of the expression
b.Then

length(Xb) = b

Let Xw be a variable or expression, the length in words of which is given by the value of the expression
w. Then

length(Xw) = w; bcnt

If the value of wand the wordlength is known by the compiler, then the value can be loaded directly into
the integer stack using Idc n. For example, for the IMS T9000,

length(Xw) = Idc (w x 4)

Block transfer

move

I mnemonic

Table 7.10 instruction that performs block transfer

Once the address of the array element has been evaluated, its length in bytes is required to enable it to
be transferred using the instruction move, or using the communication instructions described in section
8.4.3.

Assignment of arrays is achieved with the block move instruction move. This interprets Areg as an un­
signed integer representing the number of bytes to be transferred, Breg as the destination address, and
Creg as the source address. It hence moves Areg bytes of data starting at address Creg to address Breg.
All integer stack registers are undefined after execution. This instruction is interruptible (see section 8.2.5).

v1 : = v2 = address(v2); address(v1); length(v1); move

where address(v) is defined on page 29 and length(v) is compiled as described above. The two arrays
must not overlap - if they do, the effect of the move instruction is not defined. In particular the move
instruction cannot be used to initialize a region of memory by moving from one location to an overlapping
location.

7.6 Multiple assignment

Previous sections have detailed how single assignments to variables, array elements and arrays can be
compiled. The compilation of multiple assignments is more complex.
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In occam, the multiple assignment

is defined as being equivalent to

Tn temPn:
SEQ

PAR

temp1 -= E1

temPn := En
PAR

V1 -= temp1

T9000 transputer instruction set manual

where the parallel separation rules of occam apply so that multiple assignments are restricted to those
whose 'expanded' version is a valid occam program. T1 Tn are type definitions of the appropriate
types.

Because the final assignments are performed as if in a PAR construct they are guaranteed not to interfere
- Le. one assignment cannot affect the destination of another - so that they can be compiled as a se­
quence of assignments. Hence the multiple assignment can be compiled as

assign(temP1! E1); . .. ; assign(temPn! ErJ;
assign(V1! temp1); . .. ; assign(Vn! temprJ

where

assign(V, E)

represents the compiled code for

V := E

as detailed in subsection 7.5.4.

This can be optimized by re-ordering the two assignment sequences to enable registers to be used instead
of some of the temporary variables.

For example,

a, b := c, d

can be optimized from

Idl c; Idl d; stl t1; stl t2;
Idl t1; Idl t2; stl a; stl b

to

Idl c; Idl d; stl b; stl a

7.7 Comparisons and jumps

Comparisons and conditional behavior are provided by the instructions listed in table 7.11.
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mnemonic name

eqcn equals constant

diff difference

gt greater than

gtu greater than unsigned

jn jump

cj n conditional jump

Table 7.11 Comparisons and conditional behavior instructions

7.7.1 Representation of true and false

The IMS T9000 uses 0 as false and 1 as true. These values are generated by predicate operations (for
example comparisons).

It is easy to implement programming languages that use a different representation of true and false as
shown in section 7.7.3.

7.7.2 Comparisons

The primary instruction eqc n loads Areg with a truth value - true if Areg is initially equal to the instruction
operand (n), false otherwise. Breg andCreg are unaffected.

diff, gt and gtu take integer operands in Areg and Breg and produce a boolean result which is loaded into
Areg. They also load the value in Creg into Breg, leaving Creg undefined.

diff (introduced in section 7.3.4) can be used as a 'not equals' function. It loads false into Areg when the
values initially held in Areg and Breg are the same.

The gt instruction loads Areg with true if Breg > Areg, false otherwise.

Similarlygtu loads Areg with true if the unsigned value of Breg is greater than the unsigned value of Areg;
false otherwise.

7.7.3 Implementation of languages with different representations of true and false

When true and false are represented by 1 and 0 respectively, these values can be loaded with single byte
load constant instructions. However it is also possible to represent true by a value other than 1. In particu­
lar, using

eqc X; not; adc 1

and

gt; not; adc 1

in place of eqc X and gt respectively, does not affect the representation of a false result, but changes the
representation of true to -1, which is used in some programming languages.

7.7.4 Boolean negation

The above implementation of the boolean type (section 7.7.1) enables a boolean negation to be repre­
sented as follows.

(X; eqc 0)
(X; eqc 0; eqc 0) X
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The symbol'..,' will be used henceforth where a boolean negation is required in a code sequence. This is
merely to aid clarity.

7.7.5 Jump and conditional jump

The are two relative jump instructions. Both are primary instructions.

The unconditional jump instruction,j n, adds its operand (n) to the address of the instruction immediately
following it and puts the result into IptrReg, thus transferring execution to another part of the program.
It leaves the integer and floating-point stacks undefined. This instruction should never be used with a zero
operand except where a breakpoint is requiredt .

When executed in an L-process,j n allows the current process to deschedule (after the jump) if the current
timeslice has been exceeded, ensuring that there is an opportunity to deschedule once each time round
a loop. (This is one of two instructions that have this property. Such instructions are referred to as 'timeslic­
ing points'. See section 8.2.4.)

The conditional jump instruction, ej n, performs a jump if the value in Areg is 0 and does not affect the
integer stack; but otherwise pops the value in Areg off the integer stack and continues with the next
instruction. Consequentlyej n serves as 'jump if false' provided thatthe language being implemented inter­
prets 0 as false (see section 7.7.1).

The ej instruction never deschedules the process. The sequence

Ide 0; ej L

can be used in place of

jL

if it is important that descheduling does not occur. This will cause the value 0 to have been pushed onto
the integer stack when execution reaches L. This 0 value can be removed, if necessary, by making the
first instruction after L a pop which will restore Areg and Breg to the values they held before the jump­
however any value in Creg will have been lost.

7.7.6 Evaluation of boolean expressions

The following shows the correspondence between occam expressions and instructions. X and Yare ex­
pressions, andK a constant. The symbol'..,' is a boolean negation (see subsection 7.7.4).

TRUE
FALSE
NOTX
X=Y
X<> Y
X=K
X<>K
X>Y
X<Y
X>=Y
X<=Y

Ide 1
IdeO
..,(X)
X; 'r'; diff; eqc 0
..,(X; 'r'; diff; eqe 0)
X; eqe K
..,(X; eqe K)
X;~' gt
~. X; gt
..,~. X; gt)
..,(X;~· gt)

Further optimizations can be made to the 'not equals' comparison when followed by a conditional jump.

X <> 'r'; ej L
X <> 0; ej L

X; 'r'; diff; cj L
X; cj L

t The instructionjn has a dual use. Its normal use is an unconditional jump; but if its operand (n) is zero, then it causes a breakpoint

to occur, by forcing a trap to be taken. The latter use is detailed in chapter 14.
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Evaluation of AND and OR
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For evaluation of boolean AND and OR operations, the instruction sequence depends on whether or not
strict or non-strict evaluation is used. In occam, evaluation is non-strict and the following short-circuit tech­
nique must be used.

XOR Y =
XAND Y =

,(,(X); cj L; I(Y); L:)
X; cj L; ~. L:

(1 )

The following laws should be applied to the compilation of conditional expressions before code is gener­
ated to ensure that the jump is taken as early as possible.

I(XAND Y)
I(XOR y)
(X OR Y); cj L
(X AND Y); cj L

(,X) OR (,Y) [=
(,X) AND (,Y) [=
(,X); cj M; Y;' cj L; M:
X; cj L; Y;' cj L

I (X; cj L; Y;' L.)]
I (X); cj L; I(Y); L:]

In other languages, evaluation of booleans is strict (for example, ADA gives the programmer the choice)
and so both expressions in dyadic logical operations may need to be evaluated.

For example where false is represented by 0, and true is represented by any fixed bit pattern other than
o (e.g. true is always 1, or true is always -1), then the following transformations apply

XOR Y ~ XBITOR Y
X AND Y ~ X BITAND Y

and the bitwise instructions given in section 7.3.7 can be used:

XOR Y =
X AND Y =

X; Y;' or
X; Y:' and

Note that even for some non-strict evaluations, the above sequence may be preferable. Where Vis a sim­
ple boolean expression such as a local variable, its evaluation does not cause any side-effects, and so
it does no harm to implement a non-strict evaluation using a bitwise operation.

7.7.7 Conditional transfer of control

The conditional expressions used in a conditional branch of an IF construct are compiled as follows

IFE
P

L:

E; cj L;
P;j END;

where the label END: is at the end of the code for the IF construct.

The compilation of a WHILE loop is

WHILE-E
P

L: E; cj END;
P;j L

END:

Note that this loop includes an unconditional jump. The presence of this ensures that rescheduling can
take place should the loop continue for longer than a single timeslice.

The compilation of a REPEAT

REPEAT
P

UNTIL E

UNTIL loop is

jK
L: E; eqc 0; cj END
K: P;j L;
END:
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7.7.8 Compiling CASE statements

The CASE statement is a special form of conditional transfer where the transfer is determined by compar­
ing an expression to a number of constants.

When compiling the process

CASE X

the expression x is evaluated and stored in a local variable by

x; stl selector

Then each branch of the CASE statement

C1' ••• ,cn
P

can be compiled by

Idl selector; Idc Ct; diff; cj L;
Idl selector; Idc c2; diff; cj L;

Idl selector; eqc cn; cj M;
L: P;j END;
M:

where the label END: is placed at the end of the CASE statement.

Optimized compilation of CASE

The compilation method given above will produce inefficient code for large CASE statements. To produce
more efficient code the following rules can be used.

First build up a set of pairs of selector values and processes, consisting of every selector value in the CASE
statement along with its associated process - the process part of each pair can be represented by the
offset to the start of the compiled code for that process. Then the following rules can be used.

If there are 3 entries or less then use the method as described above.

2 If there are 12 entries or less then use a binary search to limit the number of comparisons re­
quired.

3 For more than 12 entries attempt to use a jump table. The offset of the start of each selected
process is placed in the table against each selector value. Entries that do not match a selector
in the CASE statement must contain the offset of an error handler process. This jump table should
be the largest table such that about ~ of the entries are filled. This compilation strategy is then
recursively called to handle the two ends. The gcall (section 7.11) and Idpi (section 7.5.2) instruc­
tions, can be used to jump to the selected piece of code.

The choice of 3 or less processes, 12 or less processes and ~ filled table are the values used in current
INMOS occam compilers.

Consider compiling the CASE expression

CASE X
c1

P1
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Li:
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where, for brevity, it is assumed that all the case selectors are already in increasing order.

Three entries or less

This case is compiled as

X=cn
Pn

Four to twelve entries

This case is compiled as

IF
X<= Cn

"2
IF

X<= C Il

"4
etc.

x> Cn
"4

etc.
x> CIl

"2
etc.

Using a jump table

Assume that Cj ••• cm form a ~ filled jump table. Then the case is compiled as

IF
X<Cj

CASE X
C1

P1

X>Cm
... similar

TRUE
..• jump table code

where jump table code is

X; Idc Cj; diff; Idc jump_size; prod; Idc (jump_table-M); Idpi
M: bsub;gca~

jump_table:
j case_O; j case_1; ••• ; j case_k

error code
code for Pj
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Lm: code for Pm

The code at jump_table consists of a sequence of jump instructions which transfer control to the relevant
branch Li ... Lm ortoERROR. The destination, case_x, of each ofthesejumps isLj ifcj is equal to (Ci + x)
and is ERROR otherwise.
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The code at ERROR should be the same code as used at the end of an IF statement where all the condi­
tionals have been false. The bsub, Idpi and geall instructions are explained in other sections.

All the jumps in the jump_table code must be encoded to the same length Vump_size bytes) to enable
them to be accessed as a byte array. nop, which a single byte instruction that performs no operation, can
be used to ensure this where different operands require a different amount of prefixing.

Also note that in the special case where jump_size is 1, 'Ide jump_size; prod' can be removed from the
sequence, and where jump_size is 2, 4 or 8, 'Ide jump_size; prod' can be removed provided bsub is re­
placed with ssub, wsub, or wsubdb respectively.

7.8 Long arithmetic and shifts

7.8.1 Multiple length addition and subtraction

Signed addition and subtraction can be performed on values longer than a word using the instructions
shown in table 7.12.

mnemonic name

Isum long sum

Idiff long difference

ladd long add

Isub long subtract

Table 7.12 Long arithmetic instructions

The ladd and Isub instructions are used for the final step of a signed multiple length addition or subtraction.
The other steps can be performed using Isum and Idiff. For all four instructions, there are two single word
integer operands held in Areg and Breg, and a carry (or borrow) operand held in the least significant bit
of Creg (Le. Creglsb - all other bits in Creg are ignored) .

The Isum instruction forms (Breg + Areg) + Creglsb leaving the least significant word of the result in Areg
and the most significant (carry) bit in the least significant bit of Breg (all other bits in Breg are set to 0).
Creg becomes undefined.

Similarly, the Idiff instruction forms (Breg - Areg) - Creglsb leaving the least significant word of the result
in Areg and the borrow bit in the least significant bit of Breg (all other bits in Breg are set to 0). Creg be­
comes undefined.

The ladd instruction sets Areg to (Breg + Areg) + Creglsb. If this instruction causes overflow (Le. the re­
sult is greater than MostPos or less than MostNeg), it signals IntegerError, and the result is truncated so
as to fit into 32 bits (but see note 1 at the end of the chapter). Breg and Creg become undefined.

The Isub instruction sets Areg to (Breg - Areg) - Creglsb. If this instruction causes overflow, it signals
IntegerError, and the result is truncated so as to fit into 32 bits (but see note 1 at the end of the chapter).
Breg and Creg become undefined.

Addition of two double length signed values with overflow checking can therefore be compiled as follows

Ide 0;
Idl Xlo; Idl Ylo; Isum; stl Zlo;
Idl Xhi; Idl Yhi; ladd; stl Zhi

[The subscripts '10' and 'hi', used here and in subsequent text, specify the less and more significant word
respectively, of the double word variable with which they are associated.]

Subtraction of two double length values without overflow checking is compiled as

Ide 0;
Idl XIO: Idl Ylo; Idiff; stl Zlo;
Idl Xhi; Idl Yhi; Idiff; stl Zhi
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with the final borrow left in Areg.

7.8.2 Multiple length multiplication and division

The long multiplication and division instructions are

mnemonic name

Imul long multiply

Idiv long divide
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Table 7.13 Long arithmetic instructions

The Imul instruction multiplies two single word unsigned operands in Areg and Breg, and adds the single
word 'carry' operand in Creg to form a double length unsigned result. The most significant (carry) word
of the result is left in Breg, the least significant in Areg. No overflow is possible so an error cannot be
signalled by this instruction. Multiplication of a single length unsigned valueXby a double length unsigned
value Y can be performed by

Ide 0;
Idl X; Idl Ylo; Imul; stl Zlo;
Idl X; Idl Yhi; Imul; stl Zhi

which leaves the 'carry' in Areg.

Double length unsigned multiplication is not quite so obvious. The product of two unsigned double length
words X and Y - Le.

X. Y = (Xhi· 232 + XtO)·(Yhi· 232 + 'fJo)
= (Xhi· Yhi)·264 + (Xhi· 'fJo + Xto· Yhi)·232 + (Xto· 'fJo)

can be coded as follows.

Ide 0;
Idl Xlo; Idl Ylo; Imul; stl Zo
Idl Xlo; Idl Yhi; Imul; rev; stl Z2
Idl Xhi; Idl Ylo; Imul; stl Z1;
Idl Xhi; Idl Yhi; Imul; rev; stl Za;
Ide 0; rev; Idl Z2J' Isum; stl Z2J'
Idl Za: sum~' stl Za

This gives a quadruple length unsigned result Z.

The Idiv instruction divides the double length unsigned value held in Breg and Creg (most significant word
in Creg) by the single length unsigned value in Areg. The quotient is left in Areg with the remainder in
Breg. Overflow occurs if the result cannot be represented as an unsigned single word value and Integer­
Overflow is signalled. Division of a double length value X by a single length value Y to produce a double
length result Z can be performed by

Ide 0;
Idl Xhi; Idl Y;' Idiv; stl Zhi;
Idl Xlo; Idl Y;' Idiv; stl Zlo

which leaves the remainder in Areg.

Both Imul and Idiv leave Creg undefined.

7.8.3 Multiple length shifts

The long shift instructions are
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mnemonic name

Ishl long shift left

Ishr long shift right

Table 7.14 Long shift instructions

The Ishl and Ishr instructions both shift the double length value held in Breg and Creg (most significant
word in Creg) . Vacated bit positions are filled with zero bits. The number of bit positions shifted is the
unsigned value of Areg. If Areg is zero, then the result is the unshifted value, and if Areg is greater than
the number of bits in a double length word, then the result is zero. The result is left in Areg and Breg (most
significant word in Breg). (The value of Areg can be checked in advance by using the esubO instruction
- see section 7.13.) Both instructions leave Creg undefined.

The value held in a double length variable X can be shifted n places left by

Idl Xhi; Idl Xlo; Idl n; Ishl; stl Xlo; stl Xhi

The value held in a double length variable X can be shifted n places right with the shift length checked
by the following code. This will signal/ntegerError if the shift length is not in the range 0 .. 2 X BitsPerWord.

Idl n; Ide (2 x BitsPerWord + 1); esubO;
Idl Xhi; Idl Xlo; Idl n; Ishl;
stl Xlo; stl Xhi

Single length arithmetic shifts

The value held in a single length variable X can be arithmetically shifted n places right by

Idl X; xdble; Idl n; Ishr; stl X

and by n places left by

Idl X; xdble; Idl n; IshI; esngl; stl X

where xdble and esngl are explained in section 7.9.2.

In the first example here, the integer in Areg is sign extended to a 64-bit object in Breg and Areg. When
the long shift operation is executed, the extra bits are shifted from Breg to Areg. This may be used for
dividing an integer by a 'power of 2' divisor, because the sign of the dividend is preserved in the result.

The second example can be used similarly for multiplying by a 'power of 2' factor. esngl also checks for
an out-of-range result - Le. an integer which is not representable in 32 bits.

Single length rotation

The value held in a single length variable X can be rotated n places right by

Idl X; Ide 0; Idl n; Ishr; or; stl X

and by n places left by

Ide 0; Idl X; Idl n; Ishl; or; stl X

If the rotate length is not guaranteed to lie in the range 0 :::; n < BitsPerWord then the length should be
masked with (BitsPerWord - 1), which produces the shift length modulo BitsPerWord. This is because
the Ishl or Ishr will lose the bits in the word being rotated. BitsPerWord can be evaluated by

Ide 8; bent
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bent multiplies the value in Areg by the number of bytes per wordt .

The long shifts can also be used to perform extraction and insertion of bit fields, even where these cross
word boundaries in memory.

7.8.4 Normalizing

norm
Imnemonic

Table 7.15 Instruction for normalizing double length value

The norm instruction normalizes the unsigned double length value in Areg and Breg (most significant
word in Breg) . The double length value held in Areg and Breg is shifted left until the most significant bit
of the value is one. The shifted double length value remains in Areg and Breg. The number of bits shifted
is left in Creg. If the double length value is initially zero, Creg is set to twice the number of bits in a word.

7.9 Object length conversion

Section 4.3 explains that data can be represented in various sized objects. This section describes the
instructions that can be used to convert between these representations.

Most of the transputer integer arithmetic instructions operate on signed integers held in the integer stack
registers as 32-bit objects, and produce results in this form. A few of the instructions operate on or produce
results as 64-bit objects held in two of the 32-bit stack registers. The IMS T9000 therefore provides instruc­
tions that allow an integer to be sign extended to 32-bits or 64-bits, as well as instructions that allow a
program to check that an integer can be represented in a smaller object than the object in which it is cur­
rently represented.

Object length conversion is also important for conversion of high level language data types.

7.9.1 Conversion between 8/16-bit object and word representations

To enable integer representations to be converted between bytes, 16-bit objects, and words, the IMS
T9000 provides the instructions shown in table 7.16.

8-bit object 16-bit object

mnemonic name mnemonic name

xbword sign extend byte to word xsword sign extend sixteen to word

cb check byte cs check sixteen

cbu check byte unsigned csu check sixteen unsigned

Table 7.16 Instructions used for converting between bytes, 16-bit objects and words

xbword extends a signed 8-bit object (byte) in Areg to a signed word. It achieves this by examining bit
7 of Areg and setting the more significant bits in the word to the same value. The previous values of bits
8 to 32 in Areg are overwritten. Breg and Creg are unaffected by this operation.

xsword extends a signed16-bit object in Areg to a signed word. It achieves this by examining bit 15 of Areg
and setting the more significant bits in the word to the same value. The previous values of bits 16 to 32
in Areg are overwritten. Breg and Creg are unaffected by this operation.

cb examines the value in Areg to ensure that it is representable as a signed 8-bit value. If it is greater than
orequalto-128 (-27) and less than +128 (+27), then the value is legal. Otherwise IntegerErroris signalled.
All integer stack registers are unaffected by this operation.

t This is not strictly necessary if it is known that the code is to be run on the IMS T9000, since the wordlength is known to be 32 bits.

However use ofbentand other word length dependent instructions, can be used to make code portable to machines of differentword­

length.
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cs examines the value in Areg to ensure that it is representable as a signed 16-bit value. If it is greater
than or equal to -32768 (-215) and less than +32678 (+215), then the value is legal. Otherwise IntegerError
is signalled. All integer stack registers are unaffected by this operation.

cbu examines the value in Areg to ensure that it is representable as an unsigned 8-bit value. If it is greater
than or equal to 0 and less than +256 (+28), then the value is legal. Otherwise IntegerError is signalled.
All integer stack registers are unaffected by this operation.

csu examines the value in Areg to ensure that it is representable as an unsigned 16-bit value. If it is greater
than or equal to 0 and less than +65536 (+216), then the value is legal. Otherwise IntegerError is signalled.
All integer stack registers are unaffected by this operation.

Hence for example, where variables are stored as 16-bit objects in local workspace,

a = b + C

can be coded as

Idlp b; Isx; Idlp c; Isx; add; cs; Idlp a; ss

where the integers are signed, or

Idlp b; Is; Idlp c; Is; add; csu; Idlp a; ss

if the integers are unsigned.

Note that in these examples, the 16-bit objects are stored on word (32-bit) boundaries making it possible
to use Idlp n to calculate the object address (see page 29).

7.9.2 Conversion between single word and double word representations

mnemonic name

xdble extend to double

csngl check single

Table 7.17 Instructions for conversion between single word and double word representation

The instruction xdble sign extends a single word to a double word - Le. it changes the representation of
a signed integer from a 32-bit object in Areg to a 64-bit object in Areg and Breg (most significant word
in Breg). It achieves this by examining bit 31 of Areg and setting all bits in Breg to the same value. The
data previously held in Breg is pushed into Creg.

Conversely, csngl reduces the representation of a signed integer from double word in Areg and Breg to
a'single word in Areg. An IntegerError is signalled if the integer value falls outside the range of values
representable in a single word. Creg is popped into Breg leaving Creg undefined.

7.9.3 General conversion between N-bit object and word representations

mnemonic name

xword extend to word

cword check word

Table 7.18 Instructions for conversion between word and N-bit object representation

The instruction xword sign extends an N-bit object to a word - Le. it changes the representation of a signed
integer from an N-bit object to a 32-bit object (see section 4.3). The instruction cword checks that the
signed integer represented in a single word can be represented in an N-bit object. For these instructions,
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an N-bit object is assumed to be of any length between 1 bit and 32 bits, and assumed to occupy the least
significant bits in a word.

The two operands of xword are an N-bit object in Breg and a length specified in Areg. The length of the
N-bit object is specified by the bit pattern of the most negative integer representable in the N-bit object
- Le. bit N-1 is set and all other bits are clear. The representation of a signed integer (currently in Areg)
can therefore be extended from a 1O-bit object to a word by

Ide #200; xword

Similarly, the two operands ofeword are a signed integer represented in a single word in Breg, and a length
specified (as above) in Areg. The result, left in Areg, is the (unchanged) value of Breg and IntegerError
is signalled if the integer cannot be represented in the N-bit object.. The following code can be used to
determine whether a signed integer (currently in Areg) can be represented in a 4-bit object.

Ide #8; eword

Two signed integers X and Y; represented as 3-bit objects, can be added and checked for overflow by

X; Ide #4; xword;
V;' Ide #4; xword;
add; Ide #4; eword

7.10 Replication

Replicators may be implemented by using the loop end instruction.

lend

I mnemonic

Table 7.19 Conditional replication instruction

A loop is controlled by a loop end data structure, the format of which is shown in table 7.20. The le.Count
slot contains the number of iterations left to perform, and so the user should initialize this to the total num­
ber of iterations required. The le.lndex slot can-be used to hold a control variable, and so the user should
initialize this (if required) to the value that such a variable should take in the first iteration of the loop.

word offset slot name purpose

0 le.lndex contains the loop control variable

1 le.Count contains number of iterations left to perform

Table 7.20 Loop end data structure

The lend instruction interprets Breg as a pointer to the loop end data structure and Areg as the number
of bytes from the start of the next instruction to the start of the loop. The start of the loop normally will be
before the lend instruction in memory so the offset for this 'conditional jump' is measured in the opposite
direction to the offsets for the other jump instructions (viz. j nand ej n).

lend signals Unalign if the loop end data structure is not word aligned, and signals AeeessViolation if the
data structure is protected. The contents of the integer and floating-point stack registers are undefined
after execution.

lend decrements the le.Count slot. If the number of iterations remaining (Le. the value of le.Count after
the decrement) is less than or equal to zero then execution passes to the next instruction. If the number
of iterations remaining is greater than zero, then the processor increments le.lndex and subtracts Areg
from IptrReg. Notethat, like the jump instruction (j - section 7.7.5), lend is a timeslicing point and causes
the process to reschedule if the looping process has exceeded its timeslice, again ensuring that there is
an opportunity to timeslice each time round a loop.
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As an example take the occam replicated SEQ construct. This is compiled as

SEQ i = a FOR n
P

a; stl i; n; stl i+ 1;
Idl i+ 1; ej END;

L: P;
Idlp i; Ide (END-L); lend;

END:

Where it is clear that n is not zero the following may be used

SEQ i = a FOR n
P

a; stl i; n; stl i+ 1;
L: P;

Idlp i; Ide (END-L); lend;
END:

The same basic instruction sequence may be used to implement an occam replicated IF, ALTor PAR, and
to initialize arrays of channels.

The count of iterations (n) to perform should be positive. When the number of iterations is the result of
an expression then it may be necessary to add some range checking to cause an error or skip the loop
if this evaluates to a negative value. Ifn is negative in the first example above, then the loop executes once
before the lend instruction causes the loop to end. A negative count value should probably be treated as
an error, though this depends on the definition of loops in the language being compiled. To check for a
negative n, the first line of the above sequence s~ould be amended to

a; stl i; n; mint; esubO; stl i+ 1;

where esubO is explained in section 7.13.

7.11 Procedures

The instructions in table 7.21 are used to implement procedures.

mnemonic name

ealln call

geall general call

ajwn adjust workspace

gajw general adjust workspace

ret return

Table 7.21 Instructions for implementing procedures

7.11.1 Adjusting workspace

The primary instruction ajw n adjusts the value of the workspace pointer by the number of words in its
operand value - n. Workspace should be claimed by using a negative value and released by using a posi­
tive value.

7.11.2 Call and return

The primary instruction call n adjusts the workspace pointer downwards, allocating four new locations into
which it stores the three integer stack registers and the instruction pointer (return address) - the return
address is also left in Areg by the instruction. The operand to the call- n - is added to IptrReg to produce
the address of the procedure being called.

The state of the workspace after the call instruction is as shown below
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Saved values
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Wptr+4
Wptr+3
Wptr+2
Wptr+1
Wptr+O

(= old Wptr)
Creg
Breg
Areg
IptrReg

The ret instruction restores the IptrReg from the Wptr+O slot and adjusts the workspace pointer upwards,
to deallocate the four locations. A procedure that requires more workspace will normally include ajw
instructions to allocate and deallocate space. When the ret instruction is executed, the programmer must
ensure that

• the Wptr+O holds the return address

• any workspace claimed by the procedure should have been released so that the Wptr has re­
turned to the value it held at the start of the procedure.

The ret instruction does not affect the integer stack, which can therefore be used to return up to three
values to the calling procedure.

7.11.3 Use of (Wptr+O)

The location (Wptr+O) is used as a temporary store by certain instructions. These are

outward, outbyte, aItwt, taltwt, disc, dist, disg, diss, and altend.

Any procedure that uses one of these instructions must allocate an extra workspace slot for this use of
(Wptr+O) so that the return address is not overwritten. Workspace is allocated by the ajw instruction (see
also section 8.1 .1).

7.11.4 Loading parameters

It is convenient to load the first three parameters of the procedure into the integer stack registers, and to
arrange the workspace of the calling procedure so that the additional parameters can be stored in loca­
tions 0, 1, ••• of the workspace before the procedure is called. In this way, the called procedure will be
entered with its parameters stored in consecutive locations starting at workspace location 1. To enable
the procedure to access non-local variables the parameters of a procedure should include a link to the
environment in which the procedure was declared. This is discussed in section 7.11.5.

7.11.5 The static chain

The scope rules of block structured languages can be implemented using a static chain. This involves
passing a single pointer as a parameter whenever a procedure is called. The 'non-local' load, store and
pointer operations described in section 7.4, can then be used to access variables declared in an enclosing
block.

Variable access via the static chain

Access via the static chain is provided by the Idnl, stnl and Idnlp instructions. Let n be the lexical level of
the current procedure, and Si the offset of the lexical link at level i. Then access to a location x at level
n-1 is provided by

Idl Sn; Idnl x
Idl Sn; Idnlp x
Idl Sf}J' stnl x

- to load a variable
- to load a pointer to a variable
- to store a variable

Similarly, access to a location y at level n-2 is

Idl Sn; Idnl Sn-1; Idnl y

etc.
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Forming a static link

When a procedure P is called, the static link for the call of P must be computed. Let n be the lexical level
of the current procedure, and m the lexical level of P. If m = n+1 the new link is computed by (Idlp x) with
x chosen so that P can access all of its global variables, channels etc. Otherwise the new link is computed
as the value of the link location at level m. With Si as above, this can be obtained by

IF
m =n+1

Idlpx
m=n

Idl Sn
m =n-1

Idl Sn; Idnl Sn-1
m=n-2

Idl Sn; Idnl Sn-1; Idnl Sn-2

etc.

Passing the static link as a parameter

The static link for the called procedure, and the first two parameters are loaded into the integer stack, using
a loading sequence as described above. The remaining parameters are each evaluated and stored in
workspace locations starting from 0 before calling the procedure with a call instruction. In this way the
procedure will see the return address at workspace 0, the static link at workspace 1 and the parameters
at workspace 2 and onwards.

7.11.6 Other calling techniques

The gcall instruction enables any type of procedure call to be constructed as a sequence of instructions.
Its only effect is to exchange the IptrReg and Areg registers. The entry point of the procedure to be called
can therefore be computed in the same way as an expression. If necessary, another gcall instruction can
be used later to return to the calling procedure if the return address, held in Areg, is saved on entry to
the procedure.

It is possible to compile a procedure so that it can be called using either a call or a gcall instruction. Both
the call and gcall instructions leave the return instruction pointer in Areg. Consequently, if the first instruc­
tion in the called procedure is (stl 0), the return instruction pointer will be saved in the appropriate location
in the calling workspace. The calling code may then execute either

call relative_address_°Lprocedure

or the sequence

ajw --4; st/1; stl2; stl3; absolute_address_oLprocedure; gcall

If using call, it is not strictly necessary for the procedure to execute (stl 0), but by executing this one extra
instruction, it means that the code does not have to distinguish between the calling methods. The proce­
dure should however assume that there are no useful values in the integer stack after this operation. Note
that when using gcall, the calling code must first adjust its workspace pointer using (ajw -4), and then ex­
plicitly store the first three actual parameters in workspace locations 1, 2 and 3, as this is not be done by
gcall. The ret instruction in the called procedure can then be used in the normal way irrespective of how
the procedure was called. However, better ways of dealing with gcall are described below.

Efficiency will be improved if all procedures can assume they have been call-ed and methods -similar to
the ones described below are us~d in cases where a gcall is necessary. Combinations of the call and gcall
instructions can be used to provide efficient implementation of procedure parameters, or for runtime link­
ing of separately compiled procedures.

Library linkage

Most high level languages have a library system associated with them. Programs are able to make use
of procedures from a library of standard procedures. To prevent the code size becoming too large the li-
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brary procedures are not put into the compiled code until it is linked. This involves extracting the relevant
library'procedures from the libraries and 'linking' all the calls to those procedures in the compiled code to
the correct address. Initially it might seem that all the code needs to be scanned for these library calls so
that the link address can be instantiated but there is a simple mechanism making use of call andj to handle
this.

Consider the compilation of a program which somewhere includes a call to the library procedure
Iib_proc_1. .

Each library call is compiled into a call to a 'stub' at the end of the program associated with that library
call. The first call to any library procedure will cause the compiler to create a stub for that procedure. A
stub is a sequence of bytes into which a short piece of code will be placed by the linker so a sufficient
number of bytes need to be reserved for this. So between compilation and linkage the code might look
like

lib_proc_ 1_stub: - n bytes reserved;

When the program is linked the linker inserts the code

j offseLto_lib_proc_ 1_code

into the stub. Hence the calls inside the program will transfer control to this stub and the jump will then
transfer control to the library procedure. The j instruction makes the code relocatable. The process might
be timesliced on the j instruction but, since the call has already stored the integer stack into workspace,
this is not important. The parameter passing of the original call has been undisturbed so that the return
address still points back into the program (and not to the stub) . However since the j instruction may be
timesliced the value of Areg on entry to the library procedure cannot be guaranteed to be the return
address. This means that library routines called by this mechanism cannot be written to be gcall-able. If
this is required then a larger stub that explicitly adjusts the workspace, gcalls the library routine and then
returns to its call, could be used; but this is more expensive.

In the scheme described above 8 bytes should be reserved for each stub on a 32 bit transputer as the
offset could possibly have 32 significant bits needing 7 prefixes before the j. (4 bytes are required on a
16 bit transputer.) The final linked code of the example above is

Procedures as parameters

Calling a procedure that has itself been passed as a parameter needs to be compiled with agcall instruc­
tion, because its address cannot be compile time evaluated. Although this gcall can be made to look like
a call by the methods above there is a more efficient way that uses a call to set up the parameters. Again
this uses a call to a program stub. If an invocation of this procedure (which has been passed as a parame­
ter) has itself got n parameters then this can be compiled by invoking a stub using call. This call should
pass n+1 parameters where the last parameter is the address of the procedure. The stub then loads this
n+1th parameter into Areg and performs agcall. This has the same effect as a normal call to the procedure.

For example consider the following fragment of 'C' that uses a pointer to a function (f_ptr), to make a
dereferenced call.

void (*f-ptr)( ... formal list of n parameters ... )i
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(*f_ptr)( ... actual parameter list ... )
/* call of function through Jf_ptr' */

Assuming that there are at least 3 formal parameters (Le. n ~ 3), the call may be compiled as

Idl,-ptr;
stl (n-3);

- where 'f_ptr' contains the absolute address of the function
- store as the n+1th parameter - N.B. first 3 parameters

are loaded onto the integer stack, 4th parameter
is stored at workspace 0 etc.

- call has moved the workspace down four slots

... load other parameters as normal
call ,-stub

'-stub: Idl (n+ 1)
gcall

If there are less than 3 parameters, the function address is passed in the integer stack.

7.11.7 Other workspace allocation techniques

The gajw instruction exchanges the contents of Wptr and Areg, allowing workspaces to be allocated dy­
namically, and allowing dynamic switching between existing workspaces.

If a process workspace holds a pointer to a new workspace, then

Idl W new; gajw; stl Wold

changes to the new workspace and stores a pointer to the old workspace. The old workspace can be re­
stored by

Idl Wold; gajw

In addition, the old workspace can be accessed from the new workspace, using

Idl Wold; Idnl x
Idl Wold; stnl x
Idl Wold; Idnlp x

7.12 Functions

The instructions explained in section 7.11 can also be used to implement a function. Up to 3 results of size
less than or equal to the word length of the transputer can be returned from a function in the integer stack
- the ret instruction does not affect the registers. Further results, or results larger than the word length,
can be returned by passing into the function the addresses of places to store these results as extra param­
eters.

The occam function is used for purposes of illustration (for simplicity, it is assumed that the first 3 results
can be returned in registers):

T1 , ••• , Tm FUNCTION F ( V1 , ••• , Vn )
local variable declarations
VALOF

p

RESULT E1 , ••• , Em

can be compiled as

ajw -locaLvariables;
P;
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assign(result4,E4J; .•• ; assign(resultm,ErrJ
Es; E2; E1;

ajw locaLvariables;
ret

where

assign(\I, E)

is the code for the assignment

V:=E

57

and result4 , ... ,resultmare the addresses of the result stores passed as extra parameters to the function.

One of the loading sequences described earlier may be required if the expressions returned in the regis­
ters contain evaluations. Since the values returned by a multiple result function, will be assigned to vari­
ables in a multiple assignment which assigns in parallel, it is always possible to evaluate the results in any
order. In this way cases can be handled where the results returned in the registers are not the first 3 results.

7.12.1 Calling a function

If the function has more than 3 results, then those results which cannot be passed in the integer stack
should be assigned using 'call by reference'. The addresses of these result variables, as well as the func­
tion's parameters and the static link, must therefore be passed to the function. As with procedures the first
three of these should be loaded into the integer stack before the call instruction which automatically stores
them in the workspace. The remainder of the 'parameters' passed should be loaded into the workspace
before call is executed. When the function returns, the results whose addresses were passed will already
have been stored so all that remains is to store the (up to) 3 results returned in the integer stack.

For example the function call

V1f ... f Vm :=F(E1f ... fEn}

could be compiled by

Es; stl 0; ... ; En: stl (n-3);
genaddr(V4J; stl (n-2); ... ; genaddr(VrrJ; stl ((m+n)-6);
E2,,' E1; static_link; call F;
stl V1; stl V~ stl Vs

where genaddr(X) is the code needed to form the address ofX. The compiler must have already allocated
sufficient workspace for the parameters that are stacked explicitly. For simplicity it has been assumed that
V1 ••• Vs are all local variables whose values can be returned in a register.

7.12.2 Single result functions

In most programming languages, a function that returns a single result can be used in an expression as
well as in an assignment.

A common form of function returns a single value contained in a word - the mechanism described above
will return this in Areg. When compiling expressions (using the algorithm described in section 7.3.1), the
depth of such a function call should be taken as being infinite - Le. deeper than any other form of expres­
sion. This is because the function call will always lose any other information in the registers. By giving it
infinite depth the expression compilation' algorithm will never call a function while another expression result
is being held in a register.

7.13 Error checking instructions

The instructions listed in table 7.22 can explicitly check for integer errors. The following text describes
these instructions and demonstrates how they may be used. If conditions are such that IntegerError is
signalled, this causes a trap to be taken. A general treatment of trap-handling is given in chapter 10.
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mnemonic name

csubO check subscript from 0

ccnt1 check count from 1

cir check in range

ciru check in range unsigned

Table 7.22 Instructions that may explicitly signal/ntegerError

Subscript checking, sign checking and 'signal if true'

The csubO instruction signals IntegerError if the unsigned value of Breg is greater than or equal to the
unsigned value of Areg. The value in Areg is popped from the stack by this instruction.

It can be used to check subscript operations. An expression E can be checked to signal/ntegerError if
it is greater than or equal to S by

E; S; csubO

IfA is an array of Swords subscripted from 0, and E an expression, then A [E] can be translated into the
range checked access

E; S; csubO; A; wsub; Idnl 0

Note that the csubO instruction traps both an overlarge subscript and a negative subscript; since, when
considered as unsigned values, all negative values are greater than any positive value.

Similarly csubO can test an expression (E) for a negative integer value with

E; mint; csubO

The bit pattern for MostNeg is 100..0. Since csubO treats its operands as unsigned integers, it will in this
example signal/ntegerError for any bit pattern which has the msb (most significant bit) set to 1. In twos
complement format, this represents all negative numbers.

It can test a boolean expression for true with

E; Idc 1; csubO

This sequence signals IntegerError if E is any value other than 0; but since 0 is the representation of false,
it performs a 'signal if true' operation on the boolean valued expression E. It also signals IntegerError if
E is outside the range of boolean values (Le. not 0 or 1).

Checking message lengths and 'signal if false'

The ccnt1 instruction signals IntegerError if the unsigned value of Breg is greater than the unsigned value
of Areg or is less than 1 (viz. 0). That is, it checks that Breg is in the range 1 to Areg inclusive. The value
in Areg is popped from the stack by this instruction.

It can test a boolean expression for false with

E; Idc 1; ccnt1

This sequence signals IntegerError if E is not 1; but since 1 is the representation of true, it performs a
'signal if false' operation on the boolean valued expression E. It also signals IntegerError if E is outside
the range of boolean values (Le. not 0 or 1).

General range checking

The cir instruction signals IntegerError if the signed value of Creg is greater than the signed value of Breg
or is less than the signed value of Areg. That is, it checks that Creg is in the range Areg to Breg inclusive.
The range values in Areg and Breg are popped from the stack by this instruction.
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ciru is similar to cir, but uses unsigned comparisons of the values.
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80th instructions may be used to check whether the result of an expression is in the correct range before
using it further. For example a signed expression E can be checked by signalling IntegerError if it is not
in the range Slower to Supper:-

E; Supper; Slower; cir

For example in Pascal, if an array (A) is declared as

VAR A: ARRAY [ -27:104 ] OF INTEGER;

then to load an element of that array (A [ i ]), compile as

Idl i; - load index
Idc 104; Idc -27; cir; - check that index is within range of array
Idl a; adc 27; wsub; - load address of element
Idnl 0 - load element

7.14 Device access instructions

The previously described memory access instructions use the following memory model: a read instruction
applied to a particular location should return the last value written to that location by a write instruction.
This says nothing about whether the value is actually stored in main memory by the write, nor does it say
anything about the temporal order of reading and writing in relation to other instructions.

If a memory address is being handled by one of the main cache bankst, then data written to this address
may not get written back to main memory before a subsequent access to the same address. This means,
for example, in a sequence where a read is made between two writes to the same location -

Idc A; Idl Location 1; stnl 0;

Idl Location 1; IdnlO; Idl Location2; stnl 0;

Idl B; Idl Location 1; stnl 0;

- store constant A into
- Location 1
- load content of Location 1 and (2)
- store elsewhere (Location2)
- store constant 8 into Location1

- that although the read returns the last value written to the location before the read (A), the main memory
location itself may never have actually held this value.

Where a sequence of instructions writes data to different memory locations, assumptions cannot be made
about the order in which those locations are assigned data. For example, it cannot be assumed in the se­
quence

Idc A; Idl Location; stnl 0;
Idl (Location+1); Idnl 0

- store constant A into Location (3)
- load content of Location+1

that the write to location at Location is made before the read from Location+1.

The above behavior may cause problems where external devices are memory mapped. The behavior of
such devices is often strictly defined by the ordering of read and write cycles to locations mapped onto
ports within the device, and it is important that all data written to a memory mapped location is really copied
to the device. For this reason, the IMS T9000 includes within its instruction set, special instructions for
accesses to memory mapped devices. These are shown in table 7.23. Note however that these instruc-

. tions may also be used to access non-device locations.

t For a resume of the cache, refer to chapter 15. For a more detailed presentation of the memory architecture, refer to sections Pro­

grammable memory interface and Instruction and data cache of The T9000 Hardware Reference Manual and to chapter 15 of this
book.
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mnemonic name

devlw device load word

devIs device load sixteen

devlb device load byte

devsw device store word

devss device store sixteen

devsb device store. byte

devmove device move

Table 7.23 Device access instructions

The device instructions devlw, devls, devlb, devsw, devss, devsb, and devmove use the same registers
as memory instructions Idnl 0, Is, Ib, stnl 0, ss, sb, and move respectively, and in the context of the memory
model described above, they have the same behavior.

It is possible to ensure that certain areas of memory are reserved for access by device instructions only.
The programmable memory interface (PMI) can allocate memory banks as 'device memory'. This is ex­
plained in section Programmable memory interface of The T9000 Hardware Reference Manual. Also,
when running under protection a region descriptor register can mark a region as 'device access only', so
that a P-process trap is caused if a non-device instruction makes an access. This is explained in section
9.5.

The behavior therefore of the device instructions with respect to main memory may be different to their
memory instruction counterparts. Firstly, the instructions guarantee that for memory marked by the PMI
as 'device memory', writes and reads are made to the main memory. Therefore the sequence

Idc A; Idl Location 1; devsw;
Idl Location 1; devlw; Idl Location2; devsw;
Idl B; Idl Location1; devsw

(compare with sequence 2 above) is guaranteed to make a write, a read and another write to the actual
memory location - in particular it will always write the constantA to main memory on the first write. Second­
ly these instructions guarantee that reads and writes to specified locations occur in the same sequence
that they appear in the code sequence - e.g. the sequence

Idl Location; devsw;
Idl (Location+1); devlw

(compare with sequence 3 above) ensures that the write to location at Location is made before the read
from Location+ 1.

devmove performs the minimum number of reads and writes required to copy the block of data. It guaran­
tees that each successive read is from a location with a higher address (more positive) than the previous
read, and similarly ensures that each successive write is to a location with a higher address than the pre­
vious write. The processor reads and writes complete words of data (rather than bytes), and so where
a transfer is from a source block that is not aligned to word boundaries, it is necessary for the processor
to read two words from the source before it can form a complete word to write to the destination. This
instruction is interruptible (see section 8.2.5).

Where a combination of normal memory access instructions and device access instructions is used, the
following rules apply.

• It is guaranteed that a device load instruction is executed after all normal memory load instruc­
tions that appear before the device load in the code sequence, and it is executed before all normal
memory load instructions that appear after it.

• It is guaranteed that a device store instruction is executed after all normal memory store instruc­
tions that appear before the device store in the code sequence, and it is executed before all nor­
mal memory store instructions that appear after it.
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This feature can be utilized in the following shared memory system example. Consider two processors
sharing a particular area of memory. (See figure 7.4.) Each processor can only write to this area when
it has been granted permission to do so. This permission is requested by polling on a specified 'permission'
memory location using a device load instruction. If this has the special Available value, then the processor
can claim write permission by writing its own identity into the location with a device store instruction, and
can then proceed to write to the shared area using normal memory store instructions. When it has finished
writing to shared memory, it writes Available back to the 'permission location' using a device store instruc­
tion. The other processor, which may now be polling this location, cannot write to the shared memory area
until it finds the value Available.

Each processor therefore makes a device read and a device write prior to reading from or writing to shared
memory. It also makes a device write when it has finished writing to shared memory. The above guaran­
tees thus ensure that the processor does not make any reads from shared memory before it has success­
fully polled and cannot make any writes to shared memory before it has written back its own identity, and
also ensure that the processor does not make any writes to shared memory after it has released its write
privilege.

processor 1

shared
memory

use device store
instruction to write
special value ­
Available - when
writing has finished 1------1

poll permission
location using de­
vice load instruction
prior to writing to
shared memory

Figure 7.4 A shared memory example

7.15 Specialist instructions

7.15.1 Two dimensional block move

Graphical applications often require the movement of two dimensional blocks of data to perform window­
ing, overlaying etc. The transputer contains instructions to perform efficient copying, overlaying and clip­
ping of graphics data based on byte sized pixels.

mnemonic name

move2dinit initialize data for 20 block move

move2dall 20 block copy

move2dnonzero 20 block copy non-zero bytes

move2dzero 20 block copy zero bytes

Table 7.24 Two dimensional block transfer instructions

A two dimensional array can be implemented by storing rows adjacently in memory. Given any two 2 di­
mensional arrays implemented in this way, the instructions provided can copy a section (a block) of one
array to a specified address in the other.
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To perform a two dimensional move, 6 parameters are required - see figure 7.5. These are

• The address of first element of the source block to be copied. This is called the source address.

• The address of first element of the destination block. This is called the destination address.

• The number of bytes in each row in the block to be copied. This is called the width of the block.

• The number of rows in the block to be copied. This is called the length of the block.

• The number of bytes in each row in the source array. This is called the source stride.

• The number of bytes in each row in the destination array. This is called the destination stride.

j.--- width -+j
"..---

~r\"T ~ /
length

-:l source ~
address destination

address

~ source stride ---+j I---destination stride-----!

Figure 7.5 Two dimensional block move

The two stride values are needed to allow a block to be copied from part of one array to another array where
the arrays can be of differing size.

The move2dinit instruction sets up 3 of these parameters. It takes the source stride from Creg and writes
this into BMReg2, it takes the destination stride from Breg and writes this into BMReg1 , and it takes the
length from Areg, and writes this into BMRegO. This must be performed before every two dimensional
block move. The integer stack register values are interpreted as unsigned integers, and are undefined
after execution. -

Each of the 2D block move instructions (move2dall, move2dnonzero, move2dzero) has the source ad­
dress in Creg, the destination address in Breg and the width in Areg (interpreted as an unsigned integer).
These instructions are interruptible (see section 8.2.5), and undefine the integer stack and block move
registers after execution.

move2dall copies the whole of the block of length rows each of width bytes from the source to the destina­
tion.

move2dnonzero copies the non zero bytes in the block leaving the bytes in the destination corresponding
to the zero bytes in the source unchanged. This can be used to overlay a non rectangular picture onto
another picture.

move2dzero copies the zero bytes in the block leaving the bytes in the destination corresponding to the
non zero bytes in the source unchanged. This can be used to mask out a non rectangular shape from a
picture.
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The current process must not be descheduled between the move2dinit instruction and the actual 20 move
instruction.

None of the two dimensional moves has any effect if either the width or length of the block to copy is equal
to zero. Also a two dimensional block move only makes sense if the source stride and destination stride
are both greater or equal to the width of the block being moved. The effect of the two dimensional moves
is undefined if the source and destination blocks overlap.

7.15.2 Bit manipulation and CRC evaluation

The instructions listed in table 7.25 allow efficient implementation of some of the low level bit manipulation
required in communication protocols etc.

mnemonic name

bitcnt count bits set in word

bitrevword reverse bits in a word

bitrevnbits reverse bottom n bits in word

crcword calculate GRG on word

crcbyte calculate GRG on byte

Table 7.25 Instructions' thafperform bit manipulation and GRG evaluation

bitcnt counts the number of bits that are set in Areg, adds this to the integer in Breg, and returns the result
in Areg. Creg is popped up into Breg. The use of a register to accumulate the total number of bits set
means that this instruction can be used in an inline sequence or a loop to count bits set in an array of words
efficiently. Note that a loop using lend cannot be used as this has the potential of timeslicing. This instruc­
tion has applications in pattern matching and image recognition.

bitrevword reverses the bit pattern of the word held in Areg. Breg and Creg are left unchanged. bitrevnbits
reverses the bottom Areg bits in Breg, zeroing all other bits, leaving the result in Areg and popping Creg
up into Breg. This result is undefined if Areg is greater than the wordlength, or is negative.

These instructions are useful when interfacing the 'Iittle-endian' transputer with other systems that are
'big-endian' .

crcword and crcbyte are component instructions in the calculation of the cyclic redundancy check word
for a message. This method for checking the correctness of data that has been communicated is based'
on polynomial division. Both instructions take the data to be processed in Areg - though for crcbyte it
must be in the most significant byte of the word. Breg contains the GRG that has already been generated
and Creg contains the generator. The instruction calculates the GRG by iterating a loop for BitsPerWord
or BitsPerByte iterations. The GRG for one bit is performed by shifting Brag and Areg left one place as
a double word quantity (most significant word in Breg) then xor-ing Creg into the resulting Breg if the bit
shifted out of Breg was set to 1. At the end the new GRG word generated in Breg is left in Areg and the
generator is left in Breg.

Calculating the CRC of a message

The crcword and crcbyte instructions are designed to be used sequentially in in-line code to enable effi­
cient generation of the GRG of a message.

If a message is word aligned and is a multiple of BytesPerWord long, then the GRG can be calculated by
loading the generator and the first word of the message into the integer stack. Then each remaining word
in turn is loaded and crcword applied to it.
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The CRC generation can be coded into a loop using lend. Areg and Breg must be preserved over the lend
. instruction in two locals as the process could be timesliced. The following code would evaluate the CRC

of a word aligned message mess of len words.

L:

END:

Ide 0; stl LEDS; Idllen; stl LEDS+ 1;
Ide generator; Ide 0;
stl temp_ere; stl temp_generator;

Idl temp_generator;
Idl LEDS; Idl message; wsub; Idnl 0;

Idl temp_ere; rev;
ereword;
stl temp_ere; stl temp_generator;

Idlp LEDS; Ide (END-L); lend;

- set up 'loop end data structure'

- store CRC accumulation (initially zero)
- and generator into temporary variables
- load CRC generator
- load loop control variable and load
- word from message indexed by
- that variable
- load CRC accumulation

- store CRC accumulation and
- generator into temporary variables
- load pointer to 'loop end data structure'
- and 'jump offset' prior to testing for loop
-end

If the message is not word aligned then more care is needed. erebyte is used to handle any non-word­
aligned bytes at either end of the message.

The overhead involved in handling the loop can be reduced by putting more than one ereword in-line inside
the loop body.

Remember that the transputer is totally 'Iittle-endian' in that more significant data is always to the left of
less significant data or at a more positive address. This applies to bits in bytes, bytes in words and words
in arrays.

Communications protocols and standard CRCs differ widely in the way they order data so that to calculate
the CRC of a message it will often be necessary to use the bitrevword and bitrevnbits instructions to handle
this. Care is needed to ensure that the CRC being calculated is the same as that required and that data
is communicated in the correct order. Many protocols make claims of being 'Iitlle-endian' or 'big-endian'
but this is not always totally correct - for example the CRC is sometimes in the opposite orientation to
the data.,

1. If IntegerOverflow is signalled for these instructions, then a result is returned in Areg if and only if trapping is disabled. If a trap
is taken, then the contents of the integer stack are undefined when presented to the trap-handler/supervisor. This is discussed in
details in section 13.2.2. If no trap is taken, then the result represents the number that would be obtained from repeatedly subtracting
232 from (or adding 232 to) the positive (or negative) numberwhich should be yielded mathematically (iftherewere no implementation
restrictions), until the result is in the range _231 to (231 -1). Hence, for adc, add, ladd, sub and Isub, the difference between the result
and the required result is -232 (or +232), and for mul the difference is n232, where n is an integer.
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8 Concurrent processes
The transputer is capable of running many processes concurrently. This concept is introduced in section
3.1 . The following chapter explains the scheduling mechanism that enables the machine to do this, and
discusses how processes communicate.

8.1 Workspace

A process workspace consists of a vector of words in memory. It is used to hold the local variables and
temporary values manipulated by the process. The workspace is organized as a falling stack, with 'end
of stack' addressing; that is the local variables of a process are addressed as positive offsets from the
workspace pointer. Space is allocated anddeallocated explicitly using the adjust instructions, and is also
allocated implicitly by the procedure call and return instructions.

8.1.1 Process workspace data structure

When a process is descheduled, its workspace pointer is stored as part of the process descriptor (see
section 5.3). Certain key data words are stored below the workspace address. This is referred to as the
process workspace data structure.

The following slot names are used to name locations relative to a process workspace for an L-process.

word offset slot name purpose

0 pw.Temp slot used by some instructions for storing temporary values

-1 pw.lptr the instruction pointer of a descheduled process

-2 pw.Link the address of the workspace of the next process in schedul-
ing list

pw.Count message length in variable length communication

-3 pw.TrapHandler pointer to trap-handler data structure (THDS)

-4 pw.Pointer saved pointer to communication data area

pw.State saved alternative state

pw.Length length of message received in variable length communication

-5 pw.TLink address of the workspace of the next process on the timer
list

-6 pw.Time time that a process on a timer list is waiting for

Table 8.1 Word offsets and names for data slots in a L-process workspace

In the text, a reference such as 'the pw.Length slot of the process workspace', would mean the address
at an offset of -4 words (-16 bytes) from the workspace address of the process.

Note that in some cases, a word offset is shared by more than one slot name. This is because the location
specified by such an offset is used for a number of different purposes at different times. For example when
the pw.Count slot contains information about the message length, the process is not on a scheduling list
and so the location is not required to contain pw.Link information.

A small number of instructions - outward, outbyte, a/twt, ta/twt, disc, dist, disg, diss, and a/tend - make
use of pw.Temp. A process must therefore ensure that workspace 0 (Wptr+O) is not in use when execut­
ing an output instruction, or during the disabling part of an alternative sequence (see section 8.7). Also,
care is needed to ensure that the return address of a procedure call, which is stored at (Wptr+O) on entry
to the procedure, is not lost.

8.1 .2 Size of workspace

To ensure that the process workspace data structure is not overwritten, each process must be allocated
workspace in addition to that for the local variables. The extra locations are immediately below the work­
space pointer address, held in Wptr.
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process with no Vo 3 words
process with only unconditional Vo using in and out, or vin and vout 4 wordst
process with only unconditional ilo using outbyte or outword 4 words
process with alternative input 4 wordst
process with timer input 6 words
process with alternative timer input 6 wordst

8.2 Scheduling and priority

The concept of scheduling lists and the two priority levels provided by the machine, were introduced in
section 3.1. This section provides some more detail on scheduling, descheduling, timeslicing and inter­
rupts.

8.2.1 The current process, the null process, and scheduling lists

The descriptor (see section 5.3) of the process that is currently 'executing' is held in the workspace des­
criptor register (WdescReg). This process is referred to c;lS the 'current process'. If the 'null process' is
executing (i .e. no process is executing) then the workspace descriptor register contains the special value
NotProcess.p. In section 3.1, the term 'active set' was defined. A process is in the active set if:-

• it is the current process,

• it is the interrupted process, or

• it is on one of the scheduling lists.

When a process belongs to this set it may be described as 'running', 'scheduled', or 'active'. A process
on one of the scheduling lists may be described as 'queued'.

The processor maintains two lists of processes which are ready to run, one for each priority level. Each
list is a linked list of workspace data structures for processes which are ready to be executed, not including
the current or interrupted processes. When a process is run, it is added to the end of the appropriate list.
When the current process is timesliced, it is placed at the end of the appropriate scheduling list and the
new current process is taken from the front of the list.

The front pointer registers, FptrRegO and FptrReg1, contain the workspace pointers for the next process
to be executed at high and low priority respectively. Similarly the back pointer registers, BptrRegO and
BptrReg1, contain the workspace pointers for the last process on each list. Each queued process (except
the last in each list) holds, in the pw.Link slot of the process workspace data structure (section 8.1.1),
a pointer to the workspace of the next process scheduled at the same priority.

The scheduler operates in such a way that non-executing processes do not consume any processor time.
Figure 8.1 shows the workspace area and code for processes P, Q, Rand 5, where 5 is the currently
executing process, and P, Q and R are active, awaiting execution. Only the low priority process queue
registers are shown; the high priority processes are queued and executed in a similar manner.

t In addition to the belowworkspace data structure, these processes also use the pw.Temp slot (not included in the above figures).

For example, a process cannot use pw.Temp as a local variable while performing an alternative input.
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Figure 8.1 Linked scheduling list

Manipulating the scheduling lists

The instructions swapqueue and insertqueue have been provided for manipulation of the scheduling lists.
They are described in section 13.6.

8.2.2 Descheduling

When a process ceases to be the current process, it is said to be 'descheduled'. As described in section
3.1, a process may be descheduled for a number of reasons. Descheduling can only occur after execution
of certain instructions. These are called 'descheduling points' and are listed in table 8.2. Some of these
instructions have not yet been introduced and are left to later sections.

j altwt endp grant in

lend out outbyte outword selth

5 topch stopp taltwt timeslice tin

vin vout wait

Table 8.2 List of descheduling points

When a process is descheduled, its instruction pointer is stored in the pw.lptr slot of the process work­
space data structure and execution of the process is suspended. The integer and floating-point stack reg­
isters are not saved when a process is descheduled. This means that an L-process must not attempt to
transfer any information in these stacks across any descheduling points. If the process is descheduled,
other processes may corrupt the stacks before it is rescheduled. [Note that this is not a concern for P-pro­
cesses because these do not deschedule. When a P-process takes a trap, the integer state is saved in
the P-state data structure.]

8.2.3 Rescheduling after communication

When a communication completes, the waiting process is placed on the end of the relevant scheduling
list. The transputer determines the priority of this process by examining the least significant bit of its des­
criptor (refer to section 5.3). If the waiting process is a high priority process and the transputer is currently
running a low priority process, then the waiting process interrupts the current process.
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8.2.4 Clocks and timeslicing

mnemonic name

s ttimer store timer

timeslice timeslice

settimeslice set timeslicing status

Table 8.3 Instructions which relate to the timer and timeslicing

The processor contains two clock registers, one for each priority. These registers start incrementing after
the processor has been reset only after a store timer - sttimer - instruction has been executed. sttimer
is described in section 13.6.

The high priority clock register ticks (increments) every 1~s and the low priority clock increments every
64~s.

After every 256 ticks of the high priority clock (Le. 256 ~s), a timeslice period is said to have ended. When
two timeslice periods have ended while the same low priority process has been continuously executing,
the processor will force a timeslice at the next timeslicing point. For an L-process, the only timeslicing
points are the instructions j or lend - Le. the processor may timeslice after execution of either of these
instructions. For a P-process, a timeslicing point is any- point at which an interrupt can occur - including
during execution of an interruptible instruction (section 8.2.5). See table 8.4.

timeslicing point note

jr

lend

all interrupt points (see sec- protected mode only
tion 8.2.5)

t exceptj 0 - see section 10.3.1

Table 8.4 Timeslicing points

For a low priority L-process, a timeslice forcibly deschedules the current process, and immediately resche­
dules it by placing it at the end of the low priority scheduling list. The next waiting process becomes the
current process. Note that since j and lend may cause a current L-process to deschedule, they are also
descheduling points and so have been included in the list given in table 8.2. The same consideration there­
fore holds for stack corruption across timeslicing points as across descheduling points (see subsection
8.2.2).

For a low priority P-process, a timeslice causes a trap to the supervisor.

The processor does not timeslice high priority processes.

In low priority processes, timeslicing can be disabled with the settimeslice instruction. This is discussed
in section 13.5.

A timeslice can be forced by execution of the timeslice instruction. This will force a timeslice to be taken
by a high (as well as a low) priority process; and is effective whether or not timeslicing or interrupts are
enabled. This is discussed in more detail in section 13.5.

Processes that are nottimesliced execute until they are descheduled for another reason (e.g. communica­
tion), unless they are interrupted.

Operations for reading the clock values and comparing these values, are described in section 8.5.

8.2.5 Priorities and interruption

The processor can execute processes at one of two priority levels, one level for urgent (high priority) pro­
cesses, one for less urgent (Iow priority) processes. A high priority process will always execute in prefer-
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ence to a low priority process if both are able to do so. If a high priority process becomes able to run whilst
a low priority process is executing, the low priority process is temporarily stopped - 'interrupted' - and
the high priority process is executed. When there are no high priority processes able to run, the interrupted
process continues executing.

A low priority process may be interrupted after it has completed execution of any transputer instructiont.
Furthermore, to minimize the time taken for an interrupting high priority process to start executing, the
potentially time consuming instructions shown in table 8.5 are interruptible - Le. they may be interrupted
in the middle of execution. (Some of these instructions have not yet been introduced and are left to later
sections.) The points at which a process may be interrupted - Le. at the end of any instruction or during
execution of an interruptible instruction - are referred to as 'interrupt points'.

move2dzero move2dnonzeromove

in

tin

fprem

readhdr

move2dall

vin

taltwt

writehdr

out

dist

outbyte outword vout

Table 8.5 List of interruptible instructions

When an interrupt occurs, the process state of the currently executing low priority process, is saved into
shadow registers (section 5.1.1), and the high priority process starts to execute. This state is known as
the 'shadow state'. Execution of the low priority process is interrupted until no high priority processes are
able to run; at which point, the state registers are reloaded from the shadow registers, and execution of
the interrupted process continues. There can only ever be at most one interrupted process. Note that the
interrupted process is not placed onto the low priority scheduling list.

8.2.6 Scheduling/descheduling of L-processes

As mentioned in section 3.1, the processes which are queued on the IMS T9000 scheduling lists are
known as L-processes. The status and control bits that relate to an L-process are discussed in section
5.2. The following discusses the scheduling and descheduling mechanisms.

Prior to executing any L-process, the processor loads the trap-handler pointer (stored in the pw.TrapHan­
dler slot) into the trap-handler register. This is a pointer to an area of store called a trap-handler data struc­
ture (THDS) (detailed in section 10.1.1), which identifies the trap-handler to be run if a trap occurs while
running this L-process. Such a trap-handler may be shared by any number of L-processes. Amongst other
information, the THDS holds the status and control bits for the L-processes which share it, and upper and
lower addresses which specify a watchpoint region (see chapter 14 for further details). When the proces­
sor loads the trap-handler register, it also loads the status and control bits for the process from the THDS
into the status register, and loads the watchpoint registers (WIReg and WuReg) if appropriate. When an
L-process is descheduled, the processor copies the status and control bits from the status register into
the THDS. These status and control bits are therefore local to all L-processes which share the trap-han­
dier, and the mechanism described ensures that the status is preserved through execution of other pro­
cesses which do not share that trap-handler.

8.3 Initiation and termination of processes

All processes must have an area of memory reserved as their workspace - this holds the process' local
variables etc. The allocation of space to concurrent processes can often be performed by a compiler, elimi­
nating the overheads of dynamic storage allocation. However, the transputer instructions also allow fully
dynamic process initiation and termination.

Initiation and termination of concurrent process can be performed by the instructio~s shown in table 8.6.
With the exception of Idpri, all these instructions are privileged.

t Interruption cannot occur after prefix instruction components (see chapter 6). Hence for a secondary instruction, it can only occur

during (if interruptible) or after the opr instruction component.
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mnemonic name

startp start process

endp end process

runp run process

stopp stop process

Idpri load current priority

Idth load trap-handler

Table 8.6 Instructions for starting and terminating processes

8.3.1 Scheduling parallel processes

The instruction startp can be used to run a process in parallel. This can be repeatedly executed to run
several processes concurrently. Each parallel process signals completion of execution with the instruction
endp. The latter instruction interacts with a parallel process data structure to achieve correct synchroniza­
tion.

Setting up the parallel process data structure

The parallel process data structure is shown in table 8.7. This must be word-aligned. The pp.Count slot
holds an unsigned count of the number of parallel processes that have not yet terminated. It should hence
be initialized to the number of processes that are to be run concurrently. The pp.lptrSucc slot should be
set to point to the first instruction to be executed by the 'successor process' (Le. the process that runs when
all the parallel processes have terminated).

This data structure also becomes the workspace of the successor process.

word offset slot name purpose

1 pp.Count contains unsigned count of parallel processes

0 pp.lptrSucc contains pointer to first instruction of successor process

Table 8.7 Parallel process data structure

Starting a concurrent process

The instruction startp schedules a new concurrent process of the same priority as the current process.
Breg contains the offset from the address of the next instruction to the first instruction of the new process.
Areg contains the address of the workspace of the new process - this must be a word-aligned address.
The processor schedules this new process by placing it at the end of the appropriate scheduling list, and
initializing its processes workspace data structure with pw.lptr set to the absolute address of the first
instruction, and pw.TrapHandler pointing to the data structure of current trap-handler (hence the new pro­
cess will share the current trap-handler). This instruction does not deschedule the current process, but
it does undefine the integer and floating-point stack registers.

Terminating a concurrent process

The instruction endp terminates the current process, which is one from a set of processes running concur­
rently. Areg contains a pointer to the parallel process data structure (see table 8.7).

endp has the effect of decrementing the value held in the pp.Count slot of the parallel process data struc­
ture. If the value of pp.Count is1 before execution, indicating that the current process is the last of the
concurrent processes to terminate, then it starts the successor process.
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Compiling PAR

71

In a high-level language that supports concurrency, there may be a parallel construct. In occam this is the
PAR construct (see chapter 2).

startp and endp can be used to implement this. Consider the following high-level code.

-SEQ
PredProc
PAR

ParProcA
ParProcB
ParProcC

SuccProc

An example of how this may be implemented is shown below. An explanation is given in the paragraphs
that follow and the workspace layout is illustrated in figure 8.2.

PredProc;
Idc 3; stl1;

Idc (L5-L6); Idpi;
L6: stlO;

Idc (L 1-L2);

Idlp WA;

startp;
L2: Idc (L3-L4);

Idlp WB;

startp;
L4: ParProcC;

Idlp 0;

endp;
L1: ParProcA;

Idlp -WA;

endp;
L3: ParProcB;

Idlp -WB;

endp;
L5: SuccProc;

- process PredProc
- store parallel process count into the pp.Count of the

parallel process data structure (in this case
the current process workspace)

- store the address of instruction to be executed after the
parallel construct, into pp.lptrSucc

- load into the integer stack, the offset address of the first
instruction of process ParProcA

- load into the integer stack, the workspace address of
process ParProcA

- run process ParProcA
- load into the integer stack, the offset address of the first

instruction of process ParProcB
-load into the integer stack, the workspace address of

process ParProcB
- run process ParProcB
- process ParProcC
- load into the integer stack, the address of the parallel

process data structure (in this case the
same as the current process workspace)

- terminate ParProcC
- process ParProcA
- load into the integer stack, the address of the parallel

process data structure (in this case the
same as the workspace used by PredProc)

- terminate ParProcA
- process ParProcB
-load into the integer stack, the address of the parallel

process data structure (in this case the
same as the workspace used by PredProc)

- terminate ParProcB
- process SuccProc
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DD.Count I Parallel Process
WPP: pp.lptrSucc data structure

workspace area for: PredProc,

ParProcA, and SuccProc

I I

WPp+WA:tjr
workspace area for ParProcB

I I

WPp+WB:tjr
workspace area for ParProcC

Figure 8.2 Example of workspace layout for compiling parallel processes

where WPP is the workspace address of PredProc, WA is the offset from the workspace of PredProc to
that of ParProcA, and WB is the offset from the workspace of PredProc to that of ParProcB.

The 'predecessor process' (Le. the process that sets up the parallel construct) must set up the parallel
process data structure before it schedules the other concurrent processes. Note, when the predecessor
has finished starting all the parallel processes, that it will itself become a component of the parallel
construct. It must therefore include itself in the parallel process count when assigning pp.Count.

In this example, the processes PredProc, ParProcC and SuccProc share the same workspace. Firstly the
code representing the process PredProc (the predecessor processor) runs. Then the three parallel pro­
cesses (ParProcA, ParProcB and ParProcC) run concurrently. Finally when all three of these processes
have terminated, the process SuccProc runs.

Since the parallel process data structure provides the workspace of the successor process (SuccProc) ,
. and (in this example) the successor process has the same workspace as the predecessor process (Pred­

Proc), the latter initializes the data structure by setting (Wptr+1) (which is the equivalent to pp.Count)
and (Wptr+O) (which is the equivalent to pp.lptrSucc), to the required values.

In general, there is for each parallel process (component of the parallel construct), a start sequence, the
code for the process itself, and a terminating sequence. The start sequence is executed by the predeces­
sor process, and comprises loading the integer stack with the appropriate parameters and executing
startp. Note that ParProcA and ParProcB are by default, processes with the same priority as PredProc
(and hence ParProcC, which inherits the priority of PredProc). The terminating sequence is executed by
the parallel process component itself, and comprises loading the integer stack with a pointer to the parallel
process data structure (workspace address of the continuation process) and executing endp. SuccProc
will not start until ParProcA, ParProcB and ParProcC have all terminated. Note that ParProcC does not
have a start sequence because it automatically supercedes the current process (PredProc), but it does
have a terminating sequence because this is essential for synchronization.

Since the processes ParProcA, ParProcB and ParProcC are run concurrently, it is not known which pro­
cess will finish executing first. The endp instructions may thus be executed in any order. The concurrent
scheduling of processes has been described in section 8.2.
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Be aware that the above is just one way that a parallel construct could be implemented. The continuation
process SuccProc could for example use a completely different workspace to PredProc.

8.3.2 Other scheduling instructions

The runp instruction schedules an L-process, the descriptor of which is held in Areg. The workspace point­
er field in this process descriptor points to a process workspace data structure, in which the pw.lptr slot
contains the value to be loaded into IptrReg when the process is scheduled, and the pw.TrapHandler
slot contains a pointer to a THDS. runp can be used to start an L-process at either priority level by setting
or clearing the priority bit in the process descriptor in Areg. This instruction does not deschedule the cur­
rent process, but it does undefine all integer and floating-point stack registers.

The instruction stopp simply terminates the current process, saving the value of IptrReg and ThReg in
the process workspace data structure. The process is not put onto the scheduling lists so to restart it a
runp instruction is needed.

The instruction Idpri pushes the value of Priority (the priority of the current process - see section 5.3) onto
the integer stack.

The instruction Idth pushes the pointer to the THDS (see section 3.3) of the current process onto the inte­
ger stack. More detail on this instruction and other trap-handling instructions are given in chapter 10.

If J is a variable holding the address of the first instruction of a new process, and W holds the address
of a workspace for the process, then the following code sequence will start a process that shares its trap­
handler with the current process and has the same priority.

Idth; Idl W; stnl-3;

Idl J; Idl Lt\/,. stnl -1;

IdlLt\/,­
Idpri; or;

runp;

- store a pointer to the current process's THDS into the
pw.TrapHandler slot of the new process's
workspace data structure (W)

- store the address of the first instruction that the new process
should execute (J) in the pw.lptr slot of its
workspace data structure (W)

- load the workspace address into the integer stack
- form process descriptor by combining the workspace

address with the priority of the current process
- schedule the L-process specified by the descriptor formed

above

If it is known that the current priority is high, then

Idth; IdlLt\/,· stnl -3; Idl J; IdlLt\/,· stnl -1; IdlLt\/,· runp;

will start an L-process at the same priority, sharing the same trap-handler. Here, because W is Word­
aligned, the bottom bit of the process descriptor, which represents Priority, is 0 (hence specifying high
priority).

8.4 Channel communication, synchronization and data-transfer

Section 3.2 introduces the concepts of channel communication, synchronization and data-transfer. This
section introduces the various channel implementations, discusses synchronization, details the different
types of channel communication, and finally explains how internal channels are implemented and initial­
ized.

8.4.1 Channels

A channel is used for synchronization and data-transfer between two processes. It may be implemented
either by a word in memory - for communication between processes on the same transputer (internal
channel), or by an external link - for communication between transputers or between a transputer and
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an external device (external channel). A channel is uniquely identified by a 'channel address'. For an inter­
nal channel, the channel address corresponds to a memory location which may be allocated by the compil­
er. For an external channel, the channel address belongs to a range of addresses reserved for external
channels (this is discussed further in chapter 12).

A process can be written and compiled without knowledge of whether its channels are connected to other
processes on the same transputer, or other transputers. The same instruction sequence is used in both
cases. That is, a process that uses instructions to communicate on a channel, does not need to know how
the channel is implemented. However some instructions can only be used on specified implementations.
The various implementations for channels are: internal channels, virtual channels, byte-stream channels,
and event channels. Virtual, byte-stream and event channels are referred to generically as external chan­
nels. The instructions determine the channel implementation at run-time.

• An internal channel (sometimes referred to as a soft channel) connects processes that are on
the same processor.

• A virtual channel allovvs communication between processes on different IMS T9000 transputers.
These transputers do not have to be directly connected, provided there is a connecting path via
a communications network.

• A byte-stream channel allows communication between a process on an IMS T9000 transputer
and a process on a neighboring T2!T4!T8-series transputer. (N.B. Links between these transput­
ers must be connected via a system protocol converter. See the IMS e100 data sheet - docu­
ment number 42 147501 - for details.)

• An event channel allows a communication between a process and an external device. This type
of channel can carry no message: it is purely for synchronization. For example one use of the
event channel is as an external interrupt input.

8.4.2 Synchronization

Before data-transfer can occur, there must be synchronization between the inputting and outputting pro­
cess. The general philosophy is that there are always two sides to any communication, Le. an input and
an output. There are three ways of achieving synchronization, which are specific to channels. (More gen­
erally the semaphore mechanism provided on the IMS T9000 - section 8.6 - can also be considered as
a synchronization mechanism.)

Simple synchronization

Simple synchronization occurs when one process is executing an input instruction, and another process
executing an output instruction, on the same channel.

When a communication instruction is executed (either input or output) on a channel, the action taken de­
pends on the type of channel and on whether or not a complementary communication instruction (output
or input respectively) has already been executed on that channel.

If a process executes a communication instruction on

(i) an internal channel on which there has been no previous complementary execution of a commu­
nication instruction

(ii) an external channel

then the process is descheduled. That is, the current process is descheduled until the another process
executes the other communication instruction. By the time the process is rescheduled, the data-transfer
will have occurred.

If, when a process executes a communication instruction on an internal channel, there has been a comple­
mentary execution of a communication instruction on the same channel, then the data-transfer can take
place immediately.
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For simple synchronization, the only instructions that are required are the input and output instructions
which also handle the data-transfer. No extra instructions are needed to establish the communication. This
is not the case with the other forms of synchronization which are discussed below.

Alternative synchronization

The transputer provides a synchronization mechanism that enables one channel to be selected for input,
from a number of 'alternatives'. That is, several inputs are considered for synchronization, but only one
is selected. If no inputs are ready immediately, then the inputting process is descheduled until one is ready.
Each input has an associated piece of code that is run if selected. When an input is selected, the inputting
process synchronizes with the process that has executed an output instruction on the same channel, and
the data-transfer can be completed by the selected code segment. The instructions that are used to imple­
ment this synchronization are known as 'the alternative sequence'. The mechanism and related instruc­
tions are described in greater detail in section 8.7.

The alternative sequence thereby gives the user the capability of implementing a construct where one
communication is selected from several possibilities (e.g. the occam ALT construct).

Resource synchronization

Resource synchronization provides a means of implementing many-to-one communication.

One commonly occurring concurrent process paradigm is known as the client-server model. In this model,
there may be several processes acting as servers and several processes acting as clients to those serv­
ers. Anyone of the clients may at any time want to communicate with anyone of the servers. Since any
server can be accessed by a number of clients, it may receive requests at a faster rate than it can deal
with them.

The resource mechanism provides a direct way of implementing the client-server model. It provides a re­
source queue (data structure), which can be associated with a server, so that channel connections can
be allocated in a fair way. It also provides a resource mode for channels that are to be used in this way.
A channel in resource mode is associated with a particular resource. When an output is made on such
a channel, the behavior depends on whether the resource is waiting. If it is, then the communication can
be immediately synchronized ready for data-transfer. Otherwise, the outputting process (client) is desche­
duled, and the channel is attached to the resource queue until it is selected. If the inputting process (server)
is ready but has no clients to service, then this is descheduled until a client becomes ready (makes a
'claim'). The name given to a channel which can be set to resource mode, is a 'resource channel'. This
is described in greater detail in section 8.8.

8.4.3 Communication

The three synchronization mechanisms discussed in section 8.4.2, can all be used in conjunction with
zero, fixed or variable length communication.

• In zero-length communication, there is synchronization but no data-transfer (no message is
passed). It is just used to synchronize the processes which are connected by the channel on
which the communication occurs. Zero-length communication can occur on internal channels,
virtual channels or event channels, but cannot occur on byte-stream channels.

• In fixed-length channel communication, there is synchronization and data-transfer. The data­
transfer requires both communicating processes to have knowledge of the length of the message
that is to be transferred. Fixed-length communication can occur on internal channels, virtual
channels or byte-stream channels, but cannot occur on event channels.

• In variable-length communication, there is synchronization and data-transfer. The data-transfer
requires only the outputting process to have knowledge of the length prior to transfer, while the
inputting process specifies a maximum allowable length. The actual message length is commu­
nicated to the inputting process at the time of transfer, along with the message itself. Variable­
length communication can occur on internal channels or virtual channels, but cannot occur on
event channels or byte-stream channels.
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It is guaranteed that both processes are in the active set immediately after completion of any of these com­
munications. If a process had been descheduled while waiting for the process at the other end to communi­
cate, then this process is rescheduled by its host processor.

Occam has operations which directly implement input from and output to a channel to enable synchro­
nized transfer of messages between concurrent processes. The syntax for each operation is as follows,
where <channel> specifies a channel which has previously been declared using the keyword CHAN, and
<message> is the data which is to be transferred.

input
output

<channel> ? <message>
<channel>! <message>

These operations are used below to demonstrate the IMS T9000 communication instructions: in, out, vin,
vout, outbyte, and outword.

If the receiving process knows the length of the message that is to be received, fixed-length communica­
tion can be used. Otherwise, either the length of the communication must be communicated first, or vari­
able-length communication must be used.

N.B.lt is not recommended that a message length larger than half of the address space (2 Gbytes) is used
to transfer data in the same processor memory space - hence message transfer on internal channels
should adhere to this.

Fixed-length communications

mnemonic name

in input message

out output message

Table 8.8 Fixed length Vo operation instructions

A process inputs a message of known size by executing the instruction in. The process loads:-

• the address of the destination buffer (where the message is to be stored) into Creg,

• the address of the channel into Breg,

• and the length of message in bytes (as an unsigned integer) into Areg;

and then executes in. For example

c? v address(v); address(c); length(v); in

where the address is defined on page 29 and length is defined in section 7.5.4.

If the channel is an internal channel that has already had an output performed on it, then there is a mes­
sage waiting and this is transferred to the buffer specified by Areg and Creg. If the channel is an external
channel or an empty internal channel then the process stores the pointer to the destination buffer in the
pw.Pointer slot of the process workspace data structure, and deschedules.

A process outputs a message of known size by executing instruction out. The process loads:-

• the address of the source buffer (where the message is currently stored and from where it is to
be copied) into Creg,

• the address of the channel into Breg,

• and the length of message in bytes (as an unsigned integer) into Areg;

and then executes out. For example

c! v address(v); address(c); length(v); out
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If the channel is an internal channel that has already had an input performed on it, then there is a destina­
tion buffer ready and the message specified by Areg and Creg is transferred to this buffer. If the channel
is an external channel or an empty internal channel then the process stores the pointer to the message
in the pw.Pointer slot of the process workspace data structure, and deschedules. (There are further con­
siderations for the output instruction if the channel is a resource channel or has been enabled by an enbe
instruction, but this detail is left until those mechanisms are explained.)

The contents of the integer and floating-point stack registers are undefined after execution of in or out.
These instructions are privileged and interruptible, and are descheduling points. They signallntegerError
if Breg does not contain a valid channel address (see section 12.4), and signal Unalign if the channel ad­
dress is not word-aligned. Both the input and output ends of a'communication should have the same value
in Areg when executing in and out. These instructions may be applied to any channel (internal or external).

If different lengths are specified by the in and out instructions, then the behavior is undefined.

Variable-length communications

mnemonic name

vin variable-length input message

vout variable-length output message

Ident load message byte count

Table 8.9 Variable length i/o operation instructions

The previous type of communication is called fixed-length because both the sending and receiving pro­
cess need to know the length of the message prior to transfer. In variable-length communication, it is only
necessary for the sending process to know the exact length of the message prior to transfer (although
the receiving process must know the maximum length). If the in and out instructions are to be used for
transferring variable-length messages, then some protocol is needed by which the length is communi­
cated before the actual message. The IMS T9000 provides three more instructions to obviate the need
for such protocol.

To allow the secure and efficient communication of variable length data, the vin and vout instructions may
be used instead of in and out. vout may send a message of any length. vin provides an input buffer to
receive the message. When the transaction is complete, the inputting process can find out the length of
the message using a special instruction for that purpose (Ident). These instructions may be applied to inter­
nal channels, virtual channels or event channels.

When both a vin and a vout instruction have been executed by processes referring to the same channel,
data is transferred from the outputting process to the inputting process in a similar way to a communication
which uses in and out. However, in the case where the length specified by vout exceeds that specified
by vin, the message cannot be transferred. Whether or not the data-transfer has been successful, it is
guaranteed that both processes are in the active set immediately after the communication. An additional
instruction,ldent, is provided to enable the inputting process to determine how much data (if any) has been
transferred or whether an error has occurred. Note that it is not possible to mix the use of fixed length and
variable length transfer in a single communication. For example if out is used to transmit a message, it
is not possible to receive that message with vin.

The mechanism for a variable length communication is similar to that described for a fixed-length commu­
nication. The following descriptions detail the differences.

vin

A process inputs a message of variable length by executing the instruction vin. The process loads:-

• the address of the destination buffer (where the message is to be stored) into Creg,

• the address of the channel into Breg,
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• and an unsigned integer representing the maximum message length in bytes into Areg;

prior to executing vino The maximum message length must be less than MostPosUnsigned. The values
in the integer and floating-point stack registers are destroyed by the instruction.

This instruction is privileged, interruptible and a descheduling point. It signals IntegerError if Areg contains
MostPosUnsigned. It also signals IntegerError if Breg does not contain a valid channel address, and sig­
nals Unalign if the channel address is not word-aligned.

When vin is executed, the behavior depends on whether or not the message being received is longer than
the maximum length Areg. The data is only transferred successfully if message length is less than or equal
to the maximum. There is a special pw.Length slot in the workspace to give information about the length
or error status of the message.

When the communication is successful, the complete message is transferred into the destination buffer
and the length of the message is stored in the pw.Length slot.

If the message is too long, the complete message cannot be received and a special value LengthError.p
is written into the pw.Length slot to indicate that there has been an error. Whether or not part of the mes­
sage is received, is undefined. Data is never written into any part of memory not specified by the input
process, hence ensuring that buffer overflow does not occur.

vout

A process outputs a message in a variable-length communication by executing the instruction vout. The
process loads:-

• the address of the source buffer (where the message is currently stored and from where it is to
be copied) into Creg,

• the address of the channel into Breg,

• and an unsigned integer representing the message length in bytes into Areg;

prior to executing vout. The values in the integer and floating-point stack registers are destroyed by the
instruction.

This instruction is privileged, interruptible and a descheduling point. It signals IntegerError if Breg does
not contain a valid channel address, and signals Unalign if the channel address is not word-aligned.

Where the value in Areg is longer than the maximum message length specified by the receiving process,
the complete message cannot be sent. Whether or not part of the message is sent, is undefined.

Ident

Ident pushes the length of a successfully received message onto the integer stack. Otherwise, it signals
IntegerError to indicate that the previous vin instruction did not successfully receive a message because
the message available on the channel was too long.

The processor obtains the message length from the pw.Length slot of the current process workspace
data structure (pointed to by Wptr) , and this is copied into Areg. Hence if the communication is unsuccess­
ful, it copies the special value LengthError.p onto the stack.

Note that for this instruction to yield correct information, it should be used after vin and before any subse­
quent descheduling point, timeslicing point, adjust workspace operation or procedure call. It is a privileged
instruction.

Zero-length communications

Where synchronization is required between processes, but no message needs to be transferred, zero­
length communication can be used. This comprises the synchronization stage of a channel communica-
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tion but not the data-transfer. Either of the above pairs of communication instructions can be used for zero­
length communication - Le. in/out or vin/vout. In both cases the message length must be set to zero when
passed to the appropriate instructions.

Zero-length is the only form of communication which is allowed on an event channel, because messages
cannot be transferred on these channels. (If a non-zero message length is specified on an event channel,
then a zero length communication will still occur.)

Zero-length communication cannot occur on byte-stream channels because synchronization cannot oc­
cur unless at least one byte of data is transferred.

Single word and byte transfer

The common cases of single word and byte transfer can be optimized.

mnemonic name

outbyte output byte

outword output word

Table 8.1 O_Single byte transfer instructions

Byte transfer

outbyte outputs the single byte in the least significant byte of Areg down the channel specified in Breg.
It uses the slot pw.Temp as a temporary variable. The three most significant bytes of Areg are ignored.

Ifa and b are both single byte elements and e is a byte valued expression then compiled code for the trans­
fers are

e? b
e!e

Word transfer

address(b); address(e); Ide 1; in
address(e);e;outbyte

outword outputs the single word in Areg down the channel specified in Breg. It uses the slot pw.Temp
as a temporary variable.

If x and y are both single word elements and e is a word valued expression then compiled code for the
transfers are

e? x
e!e

address(x); address(e); Ide BytesPerWord; in
address(e); e; outword

[When the target wordlength is unknown (e.g. for code that must operate on transputers of different word­
lengths), single word channel input can be generalized to

address(x); address(e); Ide 1; bent; in

outbyte and outword are privileged instructions, and are descheduling points. They signallntegerError
if Breg does not contain a valid channel address, and signal Unalign if the channel address is not word­
aligned.

8.4.4 Implementation of channels

Initializing internal channels

In a high-level language that supports concurrency, there may be a data type that supports message pass­
ing. In occam there is a channel type, which is declared with the keyword CHAN. The INMOS 'C' compiler
also provides a channel type - Channel. A channel provides unbuffered, unidirectional point-tb-point
communication of values between two concurrent processes.
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An internal channel is represented by a word in memory. The address of this word is the channel address,
which is passed via Breg in the communication instructions. Before a memory location can be used as
a channel, it must be initialized to NotProeess.p to indicate that no process is waiting for communication
on that channel. This value can be obtained by the mint instruction. It is convenient to do this when a chan­
nel declaration is executed. For example

CHAN OF PROTOCOL e :

or

mint; stl e;

[n ] CHAN OF PROTOCOL e :

- initialize channel by setting memory address
corresponding to channel to
NotProeess.p

L:

END:

Ide 0; stl (LEDS+le.lndex);
Ide n; stl (LEDS+le.Count);
mint; Idl e; Idl (LEDS+le.lndex);
wsub; stnl 0;
Idlp LEDS; Ide (END-L); lend;

- set up the loop end data structure with initial
Index=Q and Count=n

- initialize channel at memory word address
(c+lndex)

- load the address of the loop data structure
and the offset for the next instruction
into the integer stack prior to
executing lend

The input and output instructions use the memory location (channel word) to provide synchronized com­
munication between two concurrent processes. After each communication, the store location is returned
to its initial value, NotProeess.p. This general mechanism of message transfer across internal channels
is discussed below in more detail.

Implementation of internal channel communication

An internal communication occurs when two processes on the same processor communicate. Because
atransputer is only executing one process at any time, one of these two processes will become ready to
communicate first. For example, in figure 8.3, process P is about to execute an output instruction, specify­
ing a message to be transferred.

process P channel memory

registers

~

Areg: count

Breg: channel empty message

(NotProeess.p)

Creg: pointer

Figure 8.3 Output to empty channel

When the first process to become ready to communicate executes its communication instruction, the
transputer will find the value NotProeess.p in the channel word - this signifies that the other process is
not ready to communicate.
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The process then

81

• copies the current process descriptor from the workspace register (WdescReg) into the channel
word

• writes the address of its communication area to the pw.Pointer slot of the current process work­
space data structure - if the first communication instruction is an input, this will be a pointer to
the buffer area where the message should be placed when received - if the first communication
instruction is an output, this will be a pointer to the message that needs to be transmitted

• (for variable-length only) writes length / maximum length of message into the pw.Count slot of
the current workspace data structure

• deschedules itself

Figure 8.4 shows the state after output has executed.

process P channel memory I
workspace

~

pw.Temp P
message

pw.lptr

I I

pw.Pointer

Figure 8.4 Process descriptor of first process left in channel

When the second process to become ready to communicate executes its communication instruction, the
transputer reads the value in the channel word and finds the value is a process descriptor (Le. not NotPro­
cess.p) , thus identifying the process that is waiting to communicate. Figure 8.5 shows process Q about
to input from the channel that is being output to by process Q.
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process P channel process Q memory

workspace registers

Areg: count ------.

pw.Temp P ----- Breg: channel
message

pw.lptr
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pw.Pointer

~

message
receive

area

Figure 8.5 Input from waiting channel

The second process then

• (for variable-length only) writes the message length (or LengthError.p) into pw.Length of the cur­
rent process workspace

• resets the value of the channel word to NotProcess.p

• (provided message length does not exceed maximum) performs a block move using its source
or destination address, its length, and the destination or source address in the workspace pointed
to by the channel word

• reschedules the first process

Figure 8.6 shows process P and the channel and memory state when process Q has completed its input
instruction.
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For communication between processes on different transputers, or communication between a process
and a non-transputer device, external channels must be used. There are three types of external channel:
virtual channels, event channels and byte-stream channels. The implementation details of these are dis­
cussed in chapter 12.

In summary, a channel may be implemented as: internal, virtual, byte-stream or event; where virtual, byte­
stream and event channels are forms of external channel. Synchronization is achieved via: the simple
mechanism, the alternative mechanism or the resource mechanism. Communication may be: zero­
length, fixed-length or variable-length. The channel can be considered as the medium of message transfer
while the type of synchronization and communication refers to the usage of that medium.

8.5 Time

On a transputer, time is cyclic. There are two clock registers, one for each priority level, ClockRego and
ClockReg1. The high priority clock ClockRego increments every 11ls. The low priority clock ClockReg1
increments every 641ls. Whenever ClockReg =MostPos, it is 'incremented' to MostNeg.

mnemonic name

Idtimer load timer

tin timer input

Table 8.11 Jnstructions which use the on-chip clocks

8.5.1 Past and future

For each priority level, 'future' and 'past' are defined as follows.

(ClockReg PLUS MostNeg)

ClockReg

past

future

< ClockReg

(ClockReg PLUS MostPos)
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ClockReg

past future

ClockReg + MostNeg

That is, all times which are between (ClockReg PLUS MostNeg) and ClockReg are considered to be in
the past, and those which are between (ClockReg PLUS 1) and (ClockReg PLUS MostPos) are con­
sidered to be in the future.

The AFTER relation

Care is needed when operating on cyclic quantities such as time. The usual 'greater than' relation is re­
placed by the relation AFTER which is defined by

(x AFTER y) == ((x MINUS y) > 0)

and can be translated into

x; y; diff; Ide 0; gt

The usual transitive property does not hold for the after relation, that is:

(x AFTER y) 1\ (y AFTER z) does not imply (x AFTER z)

A consequence of this property of cyclic time is that a group of times are only unambiguous if they are
all contained within a half cycle of timer ticks - Le. within a range of size (MostPos - MostNeg) -;- 2.

8.5.2 Reading the clock

The current value of the processor clock can be read by executing a 'load timer' instruction Idtimer. This
reads the value of the high priority clock when executed in a high priority process and the low priority clock
when executed in a low priority process, and pushes this onto the integer stack.

8.5.3 Timer input

A process can arrange to perform a 'timer input', in which case it will become ready to execute after a
specified time has been reached.

The timer input instruction, tin, requires a time to be supplied in Areg. This time is referred to as the 'alarm­
time' and it specifies that the process should not be in the active set up to and including that time. If this
time is in the 'past' - Le. ClockReg AFTER Areg - then the instruction has no effect. If the time is the
current time or it is in the 'future' - Le. Areg = ClockReg or Areg AFTER ClockReg - then the process
is descheduled. The process is rescheduled when the specified time is reached (Le. the value in the ap­
propriate clock register is AFTER the alarm-time). The process will not necessarily start to execute immedi­
ately it is scheduled, as other processes may already be waiting on the scheduling list. Consequently when
the process starts to execute, the value in the clock may be some time after the time specified in the timer
input.

tin is therefore a descheduling point, and is privileged and interruptible. The integer and floating-point
stacks are left undefined by this instruction, even if the time specified is in the past.
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For example the following code sequence executed in a low priority process would cause the process to
be descheduled for (at least) one second by waiting for 1000000 -7- 64 (= 15625) ticks of the clock.

Idtimer; Ide 15625; sum; tin

Note that when dealing with time the unsigned modulo arithmetic operations sum, diff, must be used rather
than add and sub which would cause an arithmetic overflow when the value representing the time wrapped
round from MostPos to MostNeg.

8.5.4 Timer lists

The following provides some background information on the mechanism of the timer lists which are used
to ensure that processes are rescheduled at the correct time, having been descheduled by a tin or taltwt
(see section 8.7) instruction ..

Each priority level has a timer list. Each timer list contains information about processes that are waiting,
and is represented as a linked list of process workspace data structures. The address of the workspace
of the head of each timer list is stored in one of the timer list pointer registers: TptrRegO for high priority,
and TptrReg1 for low priority. The linked list is implemented by storing the address of the next workspace
in the pw.TLink slot of a process workspace. The alarm-time for each process is stored in the in pw.Time
slot. This is the time at which the process will become ready - so if a process executes

Ide X; tin

the time (X+1) will be entered into pw.Time slot. The end of a timer list is signified by a link address of
NotProeess.p.

Each list is ordered so that each process in the list is waiting for a time no earlier than that of the process
before it and no later than that of the process after it. For each list, the time of the first process - the next
time that is required - is stored in a alarm register: TnextRegO for high-priority, and TnextReg1 for low­
priority.

Timer input

When a timer input is performed - either because of a tin instruction or by a timer guard in an alternative
sequence (see section 8.7) - then the process is inserted into the relevant timer list. This involves search­
ing down the list until the time requested lies between the times of two adjacent entries so that when the
process is inserted there, the ordering of the list is maintained. This means that instructions that manipu­
late the timer lists take (on average) time proportional to the length of the timer lists. Because of this, these
instructions are interruptible.

Manipulating the timer lists

The instruction swaptimer has been provided for manipulation of the timer lists. It is described in section
13.6.

8.6 Semaphores

Semaphores were introduced in 1965 by E.W. Dijkstra as a means of controlling the execution of concur­
rent processes. An n-valued semaphore ensures that from the set of processes that are waiting on that
semaphore, at most n can run concurrently. If a process has a critical piece of code which must only
execute when the semaphore allows it to, then the code waits on the semaphore before commencing, and
signals to the semaphore when it has finished.

The IMS T9000 transputer provides an efficient implementation of an n-valued semaphore for processes
on the same processor. signal and wait instructions (table 8.13) are provided which operate on a data
structure which may be located at any word aligned address in memory. A semaphore is implemented by
a three word data structure. The word locations in the data structure are shown in table 8.12. The data
structure must be initialized with the s.Count slot set to n for an n-valued semaphore and with the s.Front
slot set to NotProeess.p.
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word offset slot name purpose

2 s.Back back of waiting queue

1 s.Front front of waiting queue

0 s.Count number of extra processes that the semaphore will allow to
continue running on a wait request

Table 8.12 Word offsets and names for data slots in a semaphore data structure

When a process executes a wait instruction, it will only be able to proceed without delay provided there
are currently less than n processes that have claimed the semaphore - Le. the number of wait instructions
executed on the semaphore by all processes, does not exceed by more than n, the number of signal
instructions executed by all processes. If this is not the case, the process executing the current wait
instruction is temporarily descheduled. If further processes execute wait instructions prior to a signal
instruction, they will also be descheduled and all such processes are placed in a queue awaiting restart.
For each signal instruction that is received, a queued process is restarted. In summary, a process can
claim a 'run slot' from the n available, using wait, and it can free that slot for another process using signal.

mnemonic name

wait wait

signal signal

Table 8.13 Semaphore operation instructions

Both instructions are privileged and require a semaphore data structure address in Areg. All integer and
floating-point stack registers are left undefined after these operations.

The wait instruction examines the value of the counter in s.Count. If this is greater than zero, then it decre­
ments this count and takes no further action. In this case the executing process is free to continue. If the
counter is equal to zero, then the current process is descheduled and appended to the end of the process
queue pointed to by s.Front and s.Back. Hence by implication, this instruction is a descheduling point.

The effect of signal is to allow one extra process to execute a wait without being suspended. Unless
s.Front contains the value NotProcess.p, it contains a process descriptor and the process that it describes
can be run. Hence this process is removed from the front of the semaphore queue and is rescheduled.
If s.Front contains the special value NotProcess.p, then there are no processes waiting. The action taken
in this case, is to increment the value in s.Count. If the count overflows, then IntegerOverflow is signalled.

A semaphore may be shared between processes of different priorities, but processes are removed from
the semaphore in the order that they are queued, rather than in priority order.

8.7, Alternative input

The ALT construct in occam allows a process to make a choice over its future behavior dependent on the
readiness of other concurrent processes to communicate with it.

It can be implemented by the instruction set in one of two ways. The first method is the more direct one
and uses the instruction set 'alternative sequence', described in this section. The second method is by
using resource channels and this is described in section 8.8.

8.7~1 The occam ALT construct

In occam the construct which describes an alternative is called the ALT construct, the syntax of which is

ALT
Co

which expands to

ALT

Go
Po
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Each Gj, Pi (i = 0 to n) pair is referred to as 'component alternative' i-or Cj. Gj is a 'component guard'
and Pi is the 'component process' which is executed if component i is selected. Just one of the component
alternatives is selected, namely, any component whose guard happens to be ready. If no guard is ready
then the process waits until one is.

Each component may have one of the following 'guards' where e is a boolean expression.

skip component e & SKIP
P

channel component c? v e & c? v
P P

timer component timer? AFTER t e & timer? AFTER t
P P

The skip guard is ready whenever e is true. The channel guard is ready when both e is true and the input
channel is ready to receive. The timer guard is ready when both e is true and the alarm-time has expired.

Guards which do not have a boolean conjunct to them have TRUE & implicitly added.

c? v
P

timer? AFTER t
P

TRUE & C? v
P

TRUE & timer? AFTER t
P

8.7.2 The 'alternative sequence'

The instruction set 'alternative sequence' is a sequence of instructions that can be used to select one of
the component alternatives, and initiate execution of the instruction sequence associated with that alter­
native.

The list of instructions which may be used in an alternative sequence is shown in table 8.14. These instruc­
tions are privileged.

mnemonic name

aft alt start

altwt alt wait

altend alt end

talt timer alt start

taltwt timer alt wait

enbs enable skip

diss disable skip

enbc enable channel

disc disable channel

enbt enable timer

dist disable timer

enbg enable grant

disg disable grant

Table 8.14 Instructions required to implement an alternative sequence

The occam ALT (or similar high-level construct) can be implemented by: an alt (or talt) instruction, a se­
quence of enable instructions (one for each component guard), an altwt (or taltwt) instruction, a sequence
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of disable instructions (one for each component guard) and an attend instruction. Hence the chronological
order of events is:

• The aft (or ta/t) instruction signifies the start of the sequence.

• For each guard of the ALT, there is an enabling sequence, which uses one of the instructions:
enbs, enbc,enbt, enbg.

• An a/twt (or ta/twt) instruction forces the current process to deschedule until one of the guards
is ready.

• There is for each guard a disabling sequence, which uses one of the instructions: diss, disc, dist,
disg.

• The a/tend instruction signifies the end of the alternative sequence, and the code for the selected
component is run.

The order in which the alternatives are enabled is unimportant, but the order in which they are disabled
determines the priority of the alternatives. The first ready alternative to be disabled is selected. If none
of the component alternatives is a timer component, then the instructions aft and a/twt must be used; other­
wise the instructions ta/t and ta/twt must be used instead.

Workspace pointer during selection

The workspace pointer must have the same value at each of the aft, a/twt, a/tend instructions and the en­
able and disable instructions. It may however be changed, for example, while evaluating an argument to
an enable instruction. However, the user must not change the pw.State slot of the process workspace
data structure between execution ofaft and a/tend, and when the alternative sequence has a timer compo­
nent; the user must not change either pw.State or pw.TLink between ta/t and a/tend. The slot pw.Temp
has a special use, and so must not be written to, and is not preserved over the disabling sequence (from
the a/twt instruction to the a/tend instruction).

Instructions

The effect of aft, is to put the special value Enabling.p into the pw.State slot of the process workspace.
The ta/t instruction is similar but it also puts the special value TimeNotSet.p into the pw.TLink slot. This
indicates that there is a timer component in the alternative sequence, which has not yet been enabled.
The stack registers are not affected by these instructions.

For all four enabling instructions (enbs, enbc, enbt, enbg), the boolean expression value of the guard is
passed in Areg. If the boolean in Areg is true then that guard is 'enabled'.

enbs enables the guard by placing Ready.p into the pw.State slot of the process workspace data
structure.

For enbc, the channel address is passed in Breg. If the specified channel is ready to communi­
cate, then the instruction sets the pw.State slot to the special value Ready.p to indicate that this
is the case.

For enbt, the time at which the component process should be run (if selected) is passed in Breg.
The instruction sets the pw.TLink slot of the process workspace data structure to TimeSet.p to
indicate a timer component has been enabled in the alternative sequence. It also stores the
alarm-time value, passed in Breg, in the pw.Time slot of the process workspace data structure,
unless there is already an earlier time value stored in that slot.

enbg will be described in section 12.7.

enbs has no effect on any of the values in the integer stack. enbc, enbt and enbg leave the boolean value
in Areg, and pop the value held in Creg into Breg leaving Creg undefined.

The a/twt instruction examines the pw.State slot of the process workspace. If it contains the special value
Ready.p, then at least one of the guards is ready and so the instruction takes no further action. Otherwise
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the instruction sets the pw.State slot to the special value Waiting.p and deschedules the current process
until one of the guards becomes ready. The integer and floating-point stacks are left undefined by this
instruction, even if one of the guards is ready.

The ta/twt fnstruction is similar to a/twt but if no communication channels are ready, then it also considers
the case where timer guards have been enabled. If the alarm-time recorded in the pw.Time slot is in the
past, then the pw.State slot is set to Ready.p the current process continues. If the alarm-time is in the
future, then the process is put onto the timer list and descheduled. As for a/twt, the integer and floating­
point stacks are left undefined, even if one of the guards is ready. ta/twt is interruptible.

For the disabling instructions (diss, disc, dist, disg) , Areg contains an offset from the instruction following
the a/tend to the start of the code for that branch of the alternative, and Breg contains the boolean expres­
sion value of the guard.

For disc, the channel address is passed in Creg.

For dist, the alarm-time is passed in Creg (this should be the same as the time passed for the
enbt). If the process is still on the timer list, it is removed. dist is interruptible.

disg will be described is section 12.7.

The first ready component alternative to be disabled is selected. The code offset for the selected compo­
nent is loaded from Areg into pw.Temp. These instructions: return a boolean in Areg which is true only
if that branch of the alternative is the one to have been selected, and leave Breg and Creg undefined.

The instruction a/tend marks the end of the alternative sequence. When this is executed one of the guards
has been selected by the disabling sequence. This instruction forces a jump to the code associated with
the selected guard. a/tend achieves this by adding the offset for this code, held in pw.Temp, to the address
of the next instruction, and loading the result into IptrReg. Note that if the selected guard is a channel,
then the alternative sequence does not perform the data-transfer. This should be done by an input instruc­
tion in the component process.

enbc and disc signal/ntegerError if the channel parameter is not a legal channel address, and signal Una/­
ign if the channel address is not word-aligned.

8.7.3 Execution of the alternative sequence

Section 8.7.2 describes the code necessary to implement an alternative sequence. This section overviews
the changes that are made to the process workspace data structure and to the channel words during the
execution of this sequence.

The three phases of enabling, waiting and disabling are considered separately.

The value held in the pw.State slot of the process workspace data structure, is known as the ALT state
of the alternative, and it has one of the following values

Enabling.p
Waiting.p
Ready.p

MostNeg+1
MostNeg+2
MostNeg+3

MostNeg+1
MostNeg+2

pw.State has the same offset in the process workspace data structure, as pw.Pointer, but because none
of the above values is a valid pointerto an input message buffer, an outputting process is able to distinguish
between an unconditional input and .an alternative input on the channel.

In addition for a timer component, the timer list link, held in the pw.TLink slot, has one of the following
values

TimeSet.p
TimeNotSet.p =

Enabling

An alternative is enabling between the execution of the a/t or ta/t instruction and the start of the execution
of the a/twt or ta/twt instruction.
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The processor sets the ALTstate (pw.State slot) to Enabling.p to indicate that the guards of an alternative
construct are being enabled. If any guard is immediately ready - e.g. is a SKIP guard or a channel guard
on a ready channel - then this location is set to Ready.p to indicate that a guard is ready.

Timer alternatives

A record of the earliest timer guard yet encountered is kept during the enabling sequence of a timer alter­
native. The pw.TLink slot contains TimeNotSet.p until the first timer guard is enabled and then it contains
TimeSet.p with pw.Time containing the earliest time encountered.

Waiting

An alternative is waiting between the start of execution of the altwt or taltwt instruction and the start of the
next instruction.

The processor initializes the pw.Temp slot to NoneSelected.o to indicate that no branch has yet been se­
lected. If the ALTstate (pw.State slot), is not Ready.p then the processor sets this to Waiting.p and des­
chedules the process.

Any communication to a waiting alternative causes the ALT state to be set to Ready.p. When one of the
alternative guards becomes ready the process executing the alternative is rescheduled. The waiting peri­
od ends when this process comes to the front of its scheduling list and starts to execute.

Timer alternatives

If no other guards are ready, an additional check is made to see if the earliest enabled time is earlier than
the current time. If so, the process is not descheduled and the ALT state is set to Ready.p as a timer guard
is ready. If a guard is ready then the current time is recorded in the pw.Time slot to indicate when the timer
finished waiting. If no guard is ready then the process is descheduled and inserted into the appropriate
timer list.

Disabling

An alternative is disabling between the execution of the instruction after the altwt or taltwt instruction and
the execution of the altend instruction.

When a guard becomes ready the disabling sequence is executed. When the first ready guard is disabled,
the offset to the component process code is stored in pw.Temp to indicate that it has been selected.

Timer alternatives

If necessary, the current process is removed from the appropriate timer list. The current process will not
be on the timer list if one of the timer guards is ready.

Communication on a guarded internal channel

For an internal channel, the action of an output instruction when outputting to an alternative input, is slightly
different from its action when outputting to an unconditional input. (Note however that this is transparent
to the outputting process.) The following describes the various assignments thatare made to the channel.

If there is no process descriptor in the channel when it is enabled, then enbc leaves the descriptor of the
current (inputting) process in the channel.

When an output instruction is executed on the channel, if there is no process descriptor held in the channel,
then the descriptor of the outputting process is left there and the process deschedules as for simple syn­
chronization. However, if there is a process descriptor held in the channel, then the pw.Pointer/pw.State
slot of the process workspace data structure is examined. If the value is a valid pointerto a message buffer,
then this is a simple synchronization, and the data-transfer occurs as described previously. Otherwise the
value in pw.State is theALTstate, and the inputting process is operating an alternative sequence. Hence,
the communication does not occur as the guard has not yet been selected.
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• IftheALTstate is Enabling.p, then the inputting process is enabling, but has not yet found a guard
that is ready. Since there is now a channel ready to communicate, the ALTstate is changed to
Ready.p.

• If the ALT state is Waiting.p, then the inputting process is descheduled and waiting for a guard
to become ready. Since there is now a channel ready to communicate, the ALT state is changed
to Ready.p and the inputting process is rescheduled.

• If the ALT state is Ready.p, then there is another guard ready in the alternative sequence, and
the inputting process is already aware of this, so the ALT state does not need to be modified.

In each case, the outputting process leaves its own descriptor in the channel and deschedules itself.

When the inputting process subsequently executes disc, the presence in the channel, of a descriptor that
is not of the current (inputting) process, will indicate that this guard is ready. If the inputting process selects
this guard (in the disabling sequence), then a subsequent input instruction will transfer the data and re­
schedule the outputting process.

8.7.4 Compiling an ALT statement

Section 8.7.1 introduces the occam ALT construct. To translate this, each component alternative requires
an enabling sequence, enable(Cj) , a disabling sequence disable(Cj,offset) , and a process sequence, pro­
cess(CJ. These sequences are defined later. The ALT statement presented in subsection 8.7.1, can then
be translated as follows.

alt;
enabler Co); enabler C1 ); ••• ; enabler Cn);
altwt;
disable( Co, PO-A); disable( C1, P1-A); •.. ; disable( Cn, Pn-A);
altend

A:
PO:
P1:

Pn:
END:

process( Co); j END;
process( C1 ); j END;

process( Cn); j END;

Note that talt and taltwt would need to be used if any of the guards Gj is a timer guard.

Enabling and disabling component alternatives

Component alternatives are enabled and disabled by the following sequences of instructions

component - C

e & SKIP
P

e & c? v
P

e & timer? AFTER t
P

enabler C )
disable( C, L

enable(C)
disable( C, L )

enable(C)
disable( C, L )

enable/disable sequence

e; enbs
e; L; diss

c, e, enbc
c; e; L; disc

t, e, enbt
t; e; L; dist

where L is the offset from the instruction which follows attend to the start of the instruction sequence corre­
sponding to process P.
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Component alternative process sequences

For the component alternative which has a channel communication guard, the process P should be pre­
ceded by the input instruction. The following shows this.

component - C

e & SKIP proeess( C)
P

e & e? v proeess( C)
P

e & timer? AFTER t : proeess( C)
P

process sequence

P;

e? v; P;

P;

where e? v is translated by fixed or variable input as described in section 8.4.3.

8.7.5 Trapping degenerate alternatives

It is possible for all the guards of an -alternative to fail due to all the boolean components being false. In
some circumstances this might need to be reported as an error, because the alternative can never pro­
ceed. Each enable instruction terminates with the value of its boolean expression in Areg. This can be
used during the enabling sequence to detect whether the boolean expressions in all the alternatives are
false. For example

aIt;
enable(Co); stl F;
enable(C1); Idl F; or; stl F;

enable(CrJ; Idl F; or; Ide 1; eent1;
altwt

Thus the eent1 instruction will signallntegerError if the disjunct of all the boolean components is false.
This uses the temporary local variable F to evaluate the disjunct. This is so that its value is preserved in
the event of the process descheduling, or integer stack pushing. If it is known that none of the enabling
sequences can cause the process to be descheduled, and the evaluation of the two operands to the enable
requires no more than two registers, then the following sequence could be used.

aIt;
enable(Co);
enable(C1); or;

enable(CrJ; or; Ide 1; eent1;
altwt

8.7.6" Replicated ALT

An ALT construct in occam can use a replication sequence.

ALT i = b FOR e
Cj which expands to

ALT i = b FOR e
Gj

P(O

The enabling sequence for this involves using a loop round the enable guard instructions. This is achieved
using lend as described in section 7.10.

The disabling sequence for a replicated ALT is more complex as the value of the control variable i for the
branch selected must be passed into the execution of P. Each disable instruction terminates with Areg
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holding true if the alternative is selected, and false otherwise. This allows the disabling sequence for a
replicated alternative to record the selected value of the control variable. The disabling sequence for Cj,
is

disable(CJ; cj M; Idl i; stl selected_i; M:

where the selected process P(i) will use selected_i as its constant i.

8.7.7 PRI ALT

In occam, there is also a PRI ALT construct.

PRI ALT

Go
Po

This is similar to an ALT construct, but gives priority to its components in the order that they are listed.
Hence if two guards become ready at the same time, then the first component listed (of the two whose
guards are ready) in the PRI ALTconstruct is selected. For an ordinary ALTconstruct, the selected compo­
nent is indeterminate when more than one guard is ready (although this may be determinate for particular
compiler implementations).

This is easy to implement with the alternative sequence. Each component should be disabled in the same
order as they are listed in the occam construct. The first guard found to be ready in the disabling sequence,
is the one whose component is selected. This provides the required priority ordering.

8.8 Resource channels

The synchronization mechanism provided by resource channels has been introduced in section 8.4.2 as
a means of allowing many-to-one communication. This section presents a particular programming prob­
lem for which resource channels can be used to solve, further explains the mechanism, and gives the re­
quired data structures.

8.8.1 The client-server model

The problem

In concurrent programming, it is often the case that several processes require a communication path to
the same process. It may be for example, that there is a centrai resource such as a printer which is being
controlled by a process, and there are several other processes which are potential users of this resource.
This is referred to as a client-server model, where the user processes are the clients, and the process
controlling the resource is the server. At a high-level this is most easily demonstrated in occam.
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PROC Server ( []CHAN OF ANY in
SEQ

WHILE Serving
declarations

ALT i = 0 FOR SIZE in
in[i]? Message

Serve ( Message, i

PROC Client( CHAN OF ANY out )
. .. declarations
SEQ

out! Message

[n]CHAN OF ANY client.to.server:
PAR

. .. declarations
Server ( client.to.server
PAR i = 0 FOR n

Client( client.to.server[i]
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8
~ ------­

~

In this example, a single Server process is running concurrently with n Client processes. Each client
is connected to the server via an element of the array of channels, client. to. server, and the only
action by the client in which we are interested, is an output on that channel which sends a message to
the server. The message may be anything from a single byte token, to a large message with complex pro­
tocols. The server executes a continuous loop, and in each branch of the loop, it waits for a message to
be received from one of its clients. When it receives a message, it executes a procedure (Serve) dedi­
cated to handling that message on behalf of the client.

In practice there may be many servers, each of which has a set of clients, where these sets may not be
mutually exclusive.
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One way to implement this model in the transputer instruction set is with an 'alternative sequence' (de­
scribed elsewhere - see section 8.7). The disadvantage of this is that for a large n, each loop of the alterna­
tive may take a long time to run, because every channel must be explicitly enabled and disabled.

A better approach (for large n) is to implement every channel as a resource channel; and to associate each
of these with the server process. The following describes how this can be achieved with the IMS T9000
instruction set, and the next section gives an overview of the data structures and state assignments. Fur­
ther implementation details and full descriptions of the associated instructions are given in section 12.7.

The coding of an outputting process is independent of the synchronization mechanism. The only require­
ment is that an extra two words are reserved for each channel that is to be used as a resource channel.
The client process therefore tries to communicate with a server using a normal output instruction (out,
outbyte, outward, vout). There is nothing then to prevent the channel from being used for either normal
channel communication or resource channel communication. Such a channel is thus considered to have
two modes of operation: 'normal mode' and 'resource mode'. It is in fact possible to change the mode of
a channel after the client has executed the out instruction (while the client process is descheduled).

The server process, which has several clients inputting information via channels, can set any number of
these to resource mode, using the instruction mkrc. When the server is ready to receive an input from one
of these channels, it executes a grant instruction. If none of the resource channels are ready to communi­
cate then the server process is descheduled until one of the clients does try to communicate. If one or
more have already tried to output, then one of them is selected. In either case, when the server is ready
to proceed, it should then execute an input instruction (in, vin) on the selected channel. The grant instruc­
tion also sets the channel back to normal mode, so it must be explicitly set back to resource mode before
attempting another resource communication.

Note that although the resource mechanism has been proposed as an alternative for implementing an ALT
construct, it is not as general as the 'alternative sequence'. In particular: (i) it cannot easily implement bool­
ean guards (ii) the Serve procedure (in the above example) cannot use the other components of channel
array client. to. server.

In this example the server knows all it needs to know about its clients. This is the 'omniscient server' that
is described in section 12.7.5, which also presents some other uses of resource channels.

8.8.2 Resource mechanism and data structures

A resource is represented in memory by a 'resource data structure' (RDS). The format of the RDS is shown
in table 8.15, which also shows how this data structure should be initialized. The RDS is resident on the
memory of the transputer that hosts the server process. When a client process becomes ready to output,
it executes an output instruction specifying the resource channel address.

claim

If the channel specified by an output instruction is in resource mode, then the processor makes a 'claim'
to the resource on behalf of the client. That is:-

• If there is a waiting server, then it is granted an immediate communication.

• Otherwise it is attached to the end of a queue of waiting clients (or the front of that queue if there
are no others waiting). The first and last channels on this queue are pointed to by the rds.Front
and rds.Back slots of the RDS respectively.

When the server process becomes ready to communicate, it executes a grant instruction (for full details
of this instruction, see section 12.7.4), supplying a pointer to the RDS. The first channel on the queue is
removed and that channel is made ready to communicate. If there is no client process ready when a server
executes a grant, then the server's descriptor is left in the rds.Proc slot of the RDS and the server is des­
cheduled until the next client output.
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word offset slot name purpose initial value

2 rds.Back pointer to back of resource channel queue any

1 rds.Front pointer to front of resource channel queue NotPro-
cess.p

0 rds.Proc process descriptor of server NotPro-
cess.p

Table 8.15 Resource data structure (RDS)

To implement a channel that can be set to resource mode, it is necessary to allocate a resource channel
data structure. This is shown in table 8.16, which also shows how this data structure should be initialized.

The rc.ld slot is used to indicate the mode of the channel. If it has the special value NotProcess.p, then
the channel is in normal mode, but if it has any other value then it is in resource mode. Because a channel
is in normal mode when its memory space is first allocated, the rc.ld slot should always be initialized to
NotProcess.p. The instruction mkrc (see section 12.7.4) will set this to a unique 'resource channel identifi­
er' when setting the channel to resource mode. mkrc must never assign the value NotProcess.p to the
resource channel identifier.

When the channel is in resource mode, the slots are used as follows. Prior to making an output on a re­
source channel, the rc.Ptr slot points to the RDS. Where a channel is linked into a resource channel queue
on an RDS as described above, rc.Ptr points to the next channel in the queue. The 'resource channel
identifier', which is held in the rc.ld slot, is written to the location specified as a parameter to the grant
instruction, when the latter selects this channel. It can then be used by the server process, to determine
the channel address for the subsequent input instruction.

word offset slot name purpose initial value

1 rc.ld resource channel identifier / mode indicator NotPro-
cess.p

0 rc.Ptr pointer to RDS or next resource channel any

Table 8.16 Resource channel data structure

Very often the identifier stored in the resource channel data structure will be the channel address itself.
If this is returned by the grant instruction, it is easy for the subsequent input instruction, to input from the
correct channel. In some circumstances however, it may be more convenient for this to be an integer that
represents an offset in a channel array. Such an index can have a dual use. Firstly it may be used to calcu­
late the actual channel address from a base address, or as an index into a table of channel addresses.
Secondly it may be used as a parameter to the subsequent procedure, perhaps to enable the procedure
to identify the requesting client. An example of this is the paramet_er i in procedure Serve above.

The positioning of the resource channel data structure, the implementation of channels in resource mode,
and the instructions applicable to the use of resource channels, are fully described in chapter 12.
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9 Protection and memory management
The protection and memory management mechanism on the IMS T9000 provides:

• instruction protection - preventing interference between executing processes
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• memory protection - allowing regions of memory to be write and/or execute protected

• memory management - provides mapping from logical to physical address space

These features are available when running code 'under protection' (we sometimes say running in 'pro­
tected mode', or running a P-process). They are designed to support the development and debugging of
programs, to allow the safe execution of insecure languages, and to support address translation. The
mechanism does not provide virtual memory, or page-based memory protection, but does provide for
stack extension when the stack overflows the region allocated for it - hence allowing dynamic allocation
of a calling stack.

N.B. A P-process should not be considered as 'protected'; it is the supervisor and the other transputer
processes that are protected from the P-process. Furthermore, a P-process should not be considered as
a distinct process, but as a mode of a transputer process (where theL-process is the other mode).

9.1 The mechanism

Any L-process can cause the IMS T9000 to run code under protection, acting as the 'supervisor' of that
code. A supervisor is responsible for initializing and maintaining two data structures. The first of these is
the PDS (P-state data structure) which is primarily used for storing the state of the P-process. The second
is the region descriptor data structure which contains information controlling memory protection and
memory mapping. (More detail on these data structures is given in section 9.7.) Provided that these data
structures are initialized correctly, execution by the supervisor of the instruction goprot, puts the machine
into protected mode. The priority of the process executing under protection is unchanged from that of the
supervisor.

The process then continues to run under protection (as a P-process) until it takes a trap. A number of differ­
ent conditions can cause a lP-process trap'. These are:-

• the occurrence of an error, which includes accessing an illegal address (AccessViolation) or
executing a privileged instruction (Privlnstruction),

• the expiry of a timeslice period (see section 8.2.4),

• the execution of the syscall instruction (system call), or

• a debugging event (breakpoint, watchpoint, single-step, causeerror).

(More detail on trap causes is provided in section 10.3.) When a P-process traps, it restarts its supervisor
at the instruction following goprot. The supervisor then has access (via the PDS) to the state of the process
prior to the trap. If the code running under protection causes an error, the supervisor is able to handle the
error much as a trap-handler is able to handle an error caused by an L-process. (More detail on state stor­
age and the trap mechanism is given in section 10.2 and section 13.2.)

A trapped P-process can be restarted by the supervisor, using goprot.

9.2 Instruction protection - privileged instructions

Code run under protection is prevented from interfering with the execution of other processes in the trans­
puter. This is achieved because only a subset of the transputer instruction set may be executed under
protection. The set of instructions that may not be executed under protection are known as 'privileged
instructions'. These include all scheduling and communication instructions and all instructions that config­
ure the transputer.
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If a P-process attempts to execute a privileged instruction, then it signals Privlnstruetion and traps to its
supervisor. Note that in this case, the supervisor has enough information to execute the instruction on
behalf of the P-process if required.

The complete list of privileged instructions is:-

alt altend altwt ehantype disc

disg diss dist enbe enbg

enbs enbt endp erdsq fdel

goprot grant iel in initvleb

insertqueue insphdr intdis intenb irdsq

Idehstatus Ident Ideonf Idmemstartval Idresptr

Idshadow Idth mkre out outbyte

outword readbfr readhdr reseteh restart

runp selth setehmode sethdr settimesliee

signal startp steonf s topch stopp

stresptr stshadow sttimer swapbfr swapqueue

swaptimer talt taltwt testpranal tin

tret unmkre vin vout wait

writehdr

9.3 Address translation, memory protection, and stack extension

When code is running under protection all addresses are treated as logical addresses and are translated
into physical addresses before access is made to memory. Each such address should be within one of
four logical address regions, the range of which is specified by four words called 'region descriptors' which
are contained in special-purpose registers called the region descriptor registers. If an instruction specifies
an address that is not in one of these logical regions, then it signalsAeeessViolation. Each descriptor spec­
ifies the size of its associated region and the mapping that is used by the hardware to translate logical
addresses to a physical addresses. The region of memory which is thus mapped to by the descriptor is
referred to as a physical address region.

A region descriptor also contains protection information, stating whether the locations within that region
are read-only or read-write, whether or not instructions may be fetched from that region, and whether or
not device access instructions must be used to access these locations. Each address access (whether
read, write or instruction fetch) is therefore checked by the hardware to ensure that there is not a protection
violation. If an error is detected, then AeeessViolation is signalled and a P-process trap is taken.

In addition to checking the validity of memory accesses, whenever a non-privileged instruction adjusts the
workspace pointer (Wptr), the hardware checks that the new value in Wptr is the address of a writable
location (if this were not the case then the stack would be read-only) and is not a location reserved for a
device. If in protected mode, a call, ajw or gajw instruction causes the workspace pointer to address an
invalid location then it traps to the supervisor. When a trap is taken as a result of such a workspace adjust­
ment, the supervisor can restart execution of the error causing instruction in protected mode after extend­
ing the region. In this way it is possible to execute stack extension on demand. This is the only case where
it is possible to restart an instruction which has trapped due to a non-floating-point error. (See section
13.2.2 for further details.)

The IMS T9000 allows independent relocation of each region. A region may be of size 2n bytes, with a
minimum size of 256 bytes (64 words) and a maximum size of 230 bytes. A region of size 2n bytes may
be translated onto any 2n byte boundary in the physical address space. It is the programmer's responsibil­
ity to ensure that the physical address regions do not overlap.
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9.4 Regions
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In protected mode, the logical address space is divided into four address quarters. Associated with each
quarter is a logical address region, which is specified by a region descriptor. Each region is sized, posi­
tioned, assigned access permissions; and addresses within each region are independently translated.
The two most significant bits of a logical address determine which region is being referenced. The terms
region 0, region 1, region 2, and region 3 are used to refer to the regions having addresses with the most
significant bits set to 00, 01, 10 and 11 respectively. It is not possible to access addresses outside these
regions.

The region associated with each quarter of the address space occupies either the top 2n addresses or the
bottom 2n addresses within that quarter. The size and position of the region is fully specified by the region
descriptor. Table 9.1 and figure 9.1 show the range of accessible (legal) addresses for each region.

positioned from top of address positioned from bottom of ad-
quarter dress quarter

region size most positive most negative most positive most negative
address address address address

0 21 230 -1 230 - 21 21-1 0

1 2k 231 -1 231 - 2k 230 + 2k - 1 230

2 2n -230 -1 -230 - 2n -231 + 2n -1 231

3 2m -1 -2m -230 + 2m -1 -230

Table 9.1 Region addresses

A consequence of this is that, except for when the maximal sized region (230 bytes) is in use, it is possible
to ensure that the addresses 0 and #80000000, which are commonly used as null pointers, do not corre­
spond to legal addresses and so access to such an address is immediately detected as a violation.
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non-accessible
memory

quarter 1 : 01xx ~

non-accessible
memory

""""""'""" 230

non-accessible
memory

non-accessible
memory

non-accessible
memory

non-accessible
memory

non-accessible
memory

non-accessible
memory

regions positioned at top

......-....- - 231

regions positioned at bottom

-1

quarter 0 : OOxx ~

/V.
quarter 3 : 11 xx /\:/'

- 230 - 2n

/V.
quarter 2 : 10xx /"Y

Figure 9.1 Position of region addresses in logical memory space
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A region descriptor defines the size of a region, the position of the logical region, the address translation,
and the write, execute and device permissions associated with that region.

A region descriptor is a single word which specifies a region of size 2n, where the minimum allowed value
of n is 8. It contains the following fields.

• bit 0 indicates whether writes may be made to the region (1 = write-permit)

• bit 1 indicates whether instructions may be fetched from the region (1 = execute-permit)

• bit 2 indicates the position of the logical region (1 =top, 0 =bottom)

• bit 3 indicates whether non-device instructions are allowed to access locations within the region
(1 = device-access-only)

• bits 4 to n-2 must be set to 0

• bit n-1 specifies the size of the region - it is set to 1 to indiQate that the region size is 2n

• bits n to 31 specifies the address of the physical region to which the logical region should be relo­
cated - these bits replace the corresponding bits in the logical address which is being translated

A region may be disabled by setting the region descriptor to the special value #8000000, the 'null descrip­
tor'. This sets the region to zero size. That is, there are no accessible addresses in the quarter of the ad­
dress space associated with this descriptor. The region is 'disabled'.

A descriptor with a form different to that described above is invalid and must not be used. Also the behavior
is undefined if the two physical address regions overlap. No two distinct logical addresses may translate
to the same physical address.

The above mechanism is illustrated in the following diagram.

~g~~address ~~~~P_.._._P~~~~~_b_as_e~ad_d_r_e_ss~~~~

bit 31 ,30 bit 29 down to bit n bit (n-1) down to bit 0

region descriptor ~~~r_e_lo_c_a_tio_n~~_G 0... 0 CiliEEJ
• ••

bit 31 down to bit n bit (n-1) down to bit 0

physical address

•

relocation

bit 31 down to bit n

base address

bit (n-1) down to bit 0

Figure 9.2 Logical to physical address translation

The next diagram gives a specific example where the logical address #BFFFF1 CS is translated to the
physical address #002831 CS. Region 2 is being used here, its size is 4096 (212), it is positioned at the
top of the address quarter, and is read-only executable, and is not memory mapped to a device area.
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logical address G 11 1111 1111 1111 1111 I0001 1100 1001 I
region

,. .
base address

RegionReg2 00000000001010000011 110000000 8
relocation

.,. .
size permissions/position

physical address 00000000001010000011 I 0001 1100 1001

relocation
.,. .

base address

Figure 9.3 An example of logical to physical address translation

Note that for the logical address to be valid, bits n to 29 must be 1s if the position bit (bit 2) in the region
descriptor is set to 1, and must be Os if the position bit is o. Otherwise AccessViolation is signalled.

9.6 Registers

The IMS T9000 has several registers which are used only by the protection mechanism. The following
text describes the contents of these registers whilst the code is running under protection.

register name / description

RegionRegO region descriptor register 0

RegionReg1 region descriptor register 1

RegionReg2 region descriptor register 2

RegionReg3 region descriptor register 3

PstateReg protected state register - pointer to the P-state data structure

WdescStubReg process descriptor of the supervisor

Table 9.2 Registers used by protection mechanism

The RegionRegX register contains the region descriptor for region X. This information is loaded from the
region descriptor data structure on execution ofgoprot. As described above, the region descriptor defines
the size, position, physical address and permissions of a region as a single word.

The PstateReg register contains a pointer to the P-state data structure (detailed in section 9.7).

The WdescStubReg register contains the process descriptor of the supervisor while the code is running
under protection.

9.7 Data structures

This section describes the two data structures that need to be initialized prior to starting a P-process for
the first time with goprot:

• The P-state data structure

• The region descriptor data structure
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9.7.1 P-state data structure (PDS)

The data structure referred to as the P-state data structure (or PDS) is shown in table 9.3.

word offset slot name purpose

10 ps.sXreg internal state - loaded into / stored from Xreg when pro-
tected mode entered/exited in the middle of executing an
interruptible instruction

9 ps.sEreg internal state -loaded into / stored from Ereg when pro-
tected mode entered/exited in the middle of executing an
interruptible instruction

8 ps.sCreg P-process C register - loaded into / stored from integer
stack C register when protected mode entered/exited

7 ps.sBreg P-process B register - loaded into / stored from integer
stack B register when protected mode entered/exited

6 ps.sAreg P-process A register - loaded into / stored from integer
stack A register when protected mode entered/exited

5 ps.slptr P-process instruction pointer - loaded into / stored from
instruction pointer register when protected mode en-
tered/exited

4 ps.sWptr P-process workspace pointer - loaded into / stored
from Wptr when protected mode entered/exited

3 ps.eWu upper bound of P-process watchpoint region - may be
loaded into upper watchpoint register when protected
mode entered

2 ps.eWI lower bound of P-process watchpoint region - may be
loaded into lower watchpoint register when protected
mode entered

1 ps.Eptr pointer to instruction causing trap -loaded into / stored
from error pointer register when protected mode en-
tered/exited

0 ps.Cntl control, word
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Table 9.3 P-state data structure (or PDS)

This section describes very generally the source/destination of data loaded into / copied from this data
structure. There are several anomalies, and for a thorough understanding of state storage and retrieval,
refer to section 13.2.2. For discussion of the trapping mechanism, also refer to chapter 10.

The control word: ps.Cntl

When a process starts to execute under protection, the processor loads the process status and control
bits from the P-state control word (the ps.Cntl slot of the PDS) into the status register (StatusReg). The
control word thus determines the conditions under which the P-process traps or sets flags (see section
10.3). When the process takes a P-process trap, these status and control bits are written back into the
control word in the PDS.

[The order of bits within the control word is the same as the status and control bits in the status register,
as set out in table 5.5.]

P-process state: ps.sWptr, ps.slptr, ps.sAreg, ps.sBreg, ps.sCreg, ps.sEreg, ps.sXreg

The state of the P-process is loaded from the PDS when goprot is executed. The processor loads the con­
tents of the ps.sWptr and ps.slptr slots into Wptr and IptrReg respectively, and loads the contents of
ps.sAreg, ps.sBreg and ps.sCreg into the integer stack. When a P-process takes a trap back to its su-
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pervisor, the processor saves the contents (at the time of the trap) of all these registers, in the appropriate
slots of the PDS. When a supervisor starts a P-process for the first time, it is usually the case that only
ps.sWptr and ps.slptr contain useful information (see below: Creation of a PDS). Note also if a trap is
taken in the middle of an interruptible instruction, that the internal registers are saved in ps.sEreg and
ps.sXreg, and are reloaded from those slots if the trapped P-process is restarted.

Trap causing instruction: ps.Eptr

When a P-process takes a trap, the address of the trap causing instruction (which is held in EptrReg),
is written into the ps.Eptr slot. [This is different to the content of the ps.slptr slot (see above), into which
is stored the address of the instruction which was due to be executed next.] This error pointer is not loaded
back into EptrReg unless goprot is being used to restart an interrupted process (see section 13.4).

Watchpoints: ps.eWI and ps.eWu

If watchpoints are enabled in the P-state control word (sb.WtchPntEnbl is set to 1), then when a process
starts to execute under protection, the contents of the ps.eWI and ps.eWu slots are loaded into the watch­
point registers (WIReg and WuReg respectively). These addresses specify the lower bound and upper
bound of the watchpoint region. While enabled, any instruction writing to a location in this region causes
the process to take a trap. Note, that since the processor is in protected mode, the watchpoint region speci­
fies logical addresses.

More details on watchpointing are provided in chapter 14.

The supervisor workspace

While the process is executing under protection, the process descriptor of the supervisor is held in
WdescStubReg (see section 9.6). The processor reloads this descriptor into the workspace descriptor
register when the P-process takes a trap.

The supervisor's instruction pointer

While the process is executing under protection, the instruction pointer of the supervisor is stored in the
pw.lptr slot of the supervisor's workspace data structure. The processor reloads the instruction pointer
register (lptrReg) with the content of pW.lptr when the P-process takes a trap.

Creation of a PDS

Any suitably sized word-aligned block of store may be used as a P-state data structure.

Whengoprotis used to start a P-processforthe first time, it is always necessary to ensurethatthe ps.Cntl,
ps.sWptr and ps.slptr slots are initialized correctly with:-

• ps.Cntl specifying the conditions under which a trap should be taken,

• ps.sWptr pointing to the workspace of the P-process, and

• ps.slptr pointing to the next instruction which will be executed under protection.

N.B. When the machine switches to protected mode, the values that have been loaded from ps.sWptr
and ps.slptr are treated as logical addresses.

9.7.2 Region descriptor data structure (RODS)

The data structure referred to as the region descriptor data structure is shown in table 9.4.
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word offset slot name purpose

3 pc.RegionReg3 loaded into region descriptor register 3 when pro-
tected mode entered

2 pc.RegionReg2 loaded into region descriptor register 2 when pro-
tected mode entered

1 pc.RegionReg1 loaded into region descriptor register 1 when pro-
tected mode entered

0 pc.RegionRegO loaded into region descriptor register 0 when pro-
tected mode entered
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Table 9.4 Region descriptor data structure

Any suitably sized word-aligned block of store may be used as a region descriptor data structure. It is nec­
essary to initialize the data structure with region descriptor information for each quarter of the address
space. Its contents are then loaded into the region descriptor registers as indicated in the table.

9.8 Instructions

The following instructions are used to switch to and from protected mode. (Execution of syscall is just one
of the causes of a trap to the supervisor. The others are listed in section 10.3.1 .)

mnemonic name

goprot go protected

syscall system call

Table 9.5 Instructions used for switching to and from protected mode

goprot

goprot starts execution of code in protected mode. It is a privileged instruction. Before it is executed, Areg
contains a word-aligned address that points to a PDS (P-state data structure). Breg contains a word­
aligned address that points to a region descriptor data structure. goprot can thus be used to

• start a P-process for the first time

• restart a P-process that has been trapped

• restart a P-process that has been interruptedt

The following paragraphs describe how goprot saves and loads state.

The current state of the L-process is saved. If the process has a trap-handler, then the trap, watchpoint,
timeslice and single-step enable bits, and all flags in the status register (StatusReg) are written into the
th.Cntl slot of the THDS (see section 10.1.1). The content of the instruction pointer register (lptrReg) is
copied into the pw.lptr slot of the local workspace. The content of the workspace descriptor register is
copied into the workspace descriptor stub register (WdescStubReg). Note that the content of the trap­
handler register (ThReg) does not need to be saved because this register is not affected when the ma­
chine is running under protection.

The processor then loads the state of the P-process. The address of the PDS (P-state data structure)
contained in Areg is loaded into the protected state register (PstateReg). The four words stored in the
region descriptor data structure (pointed to by Breg - table 9.4) are loaded into the corresponding region
descriptor registers. The contents of the ps.sWptr and ps.slptr slots of the PDS are copied into Wptr
t N.B. Unless the shadow state is altered, the state of an interrupted P-process is automatically reloaded from the shadow registers
when there are no high priorityprocesses running - i.e.goprotis not required. Howeveraprogram such as an operating system kernel
might be required to store the shadow state and restart the interrupted process later. goprot can be used for this. See section 13.4
for details on this application.
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and the instruction pointer register (lptrReg); and the ps.sAreg, ps.sBreg and ps.sCreg slots are copied
into the integer stack registers. The trap, watchpoint, timeslice and single-step enable bits and all flags
are loaded into the status register, from the ps.Cntl slot of the PDS. Also if the watchpoint enable bit
(sb.WtchPntEnbl) is set, the contents of the ps.eWI and ps.eWu slots are loaded into the watchpoint
registers (WIReg and WuReg). The new workspace area specified by the address held in ps.sWptr
should be writable, otherwise AccessViolation will be signalled as soon as a local variable is stored. Fur­
thermore, this address must be word-aligned otherwise undefined behavior will result.

If goprot is restarting the code at an instruction that has been interrupted or timesliced in the middle of
execution, then it loads the contents of the ps.sEreg and ps.sXreg slots into the internal registers (Ereg
and Xreg respectively).

The protection bit in the status register (sb.lsPprocessBit) is set and the processor begins to execute,
under protection, the code specified by the PDS.

Section 10.4 describes what happens when this instruction triggers a single-step or watchpoint trap.

syscall

When syscall is executed in protected mode, the effect is to force a trap to the supervisor. More detail on
this is provided in section 10.4.
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10 The trap mechanism

When a process takes a trap, control is transferred in one of the following ways.
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machine executing an L-process
with a trap-handler specified

machine executing an L-process
with a null trap-handler

machine executing a P-process

control is transferred to trap-han­
dler of L-process

machine is halted

control is transferred to supervisor
of P-process

The first two are referred to as L-process traps, and the third is referred to as a P-process trap.

The following provides a complete description of traps including:

• an overview of the L-process traps including the trap-handler data structure (a similar overview
of the P-process trap is given in chapter 9);

• details on the state storage and retrieval when a trap is taken;

• a comprehensive list of trap causes and errors;

• a list of the instructions that may be used when dealing with traps, together with a description
for each.

10.1 The trap-handler

All L-processes have associated with them, a 'trap-handler pointer'. For the currently executing process,
this is held in the trap-handler register (ThReg). For a non-executing process, it is stored in the
pw.TrapHandler slot of the process workspace. Normally an L-process has an associated trap-handler,
in which case the trap-handler pointer is the address of a trap-handler data structure (THDS), which itself
provides a pointer to the trap-handler code to be run when a trap is taken. More than one L-process may
share a trap-handler. Alternatively, an L-process may have a null trap-handler, in which case its
trap-handler pointer is a null-pointer and has the special value NotProcess.p.

10.1.1 The THDS (trap-handler data structure)

For an L-process to be associated with a trap-handler, its trap-handler pointer must be the word aligned
address of a THDS.

A THDS records the state of the trapped process, and provides a pointer to the trap-handler code which
runs when a trap is taken. Its complete construction is shown in table 10.1.
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word offset slot name purpose

11 th.sCreg L-process C register - stored from / loaded into integer
stack C register when trap-handler entered/exited

10 th.sBreg L-process B register - stored from / loaded into integer
stack B register when trap-handler entered/exited

9 th.sAreg L-process A register - stored from / loaded into integer
stack A register when trap-handler entered/exited

8 th.slptr L-process instruction pointer - stored from / loaded into
instruction pointer register when trap-handler entered/
exited

7 th.sWptr L-process workspace pointer - stored from / loaded
into Wptr when trap-handler entered/exited

6 th.eWu upper bound of L-process watchpoint region - may be
loaded into upper watchpoint register when an L-pro-
cess is executed1

5 th.eWI lower bound of L-process watchpoint region - may be
loaded into lower watchpoint register when an L-pro-
cess is executed1

4 th.Eptr pointer to instruction causing trap - stored from error
pointer register when trap-handler entered

3 th.Bptr back of trap sharing process queue

2 th.Fptr front of trap sharing process queue

1 th.lptr trap-handler instruction pointer - loaded into instruction
pointer register when trap-handler entered

0 th.Cntl control word

Table 10.1 Trap-handler data structure (or THDS)

This section describes very generally the source/destination of data loaded into / copied from this data
structure. There are several anomalies, and for a thorough understanding of state storage and retrieval,
refer to section 13.2.2. For discussion of the trapping mechanism, also refer to later sections in this chap­
ter.

The control word: th.Cntl

When the processor starts execution1 of an L-process, it loads the process status and control bits from
the trap-handler control word (the th.Cntl slot of the THDS) into the status register (StatusReg). The con­
trol word thus determines the conditions under which the L-process traps or sets flags (see section 10.3).
When the process takes an L-process trap, these status and control bits are written back into the control
word in the THDS.

[The order of bits within the control word is the same as the status and control bits in the status register,
as set out in table 5.5.]

There is a extra bit in the control word known as the trap-handler in use bit (sb.ThlnUse - bit 31). This
bit is not loaded into the status register. It provides an interlock which prevents two or more processes
that share a trap-handler from simultaneously requiring use of that trap-handler. The processor achieves
this by setting the bit to 1 when a trap-handler is entered and clearing it when the trap-handler is exited.
(See below.)

L-process state: th.sWptr, th.slptr, th.sAreg, th.sBreg, th.sCreg

When an L-process takes a trap, its current state is saved in the THDS. The workspace and instruction
pointer are saved in th.sWptr and th.slptr respectively. The integer stack is saved in th.sAreg, th.sBreg
and th.sCreg. The processor restores this state to the processor if it is required to restart the trapped pro­
cess on return from the trap.
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The trap-handler's instruction pointer: th.lptr

The instruction pointer (Le. the entry point) of the trap-handler code is stored in the th.lptr slot. When an
L-process takes a trap, the content of th.lptr is copied into the instruction pointer register (lptrReg).

Trap causing instruction: th.Eptr

When an L-process takes a trap, the address of the instruction that caused the trap (which is held in Eptr­
Reg), is written into the th.Eptr slot. [This is different to the content of the th.slptr slot (see above), into
which is stored the address of the instruction that was due to be executed next.]

Watchpoints: th.eWI and th.eWu

If watchpoints are enabled in the trap-handler control word (sb.WtchPntEnbl is set to 1), then when an
L-process starts execution1, the contents of the th.eWI and th.eWu slots are loaded into the watchpoint
registers (WIReg and WuReg respectively). These addresses specify the lower bound and upper bound
of the watchpoint region. While enabled, any instruction writing to a location in this region causes the pro­
cess to take a trap.

More details on watchpointing are provided in chapter 14.

The trap-handler queue: th.Fptr and th.Bptr

Before the processor executes an L-process it checks the trap-handler in use bit to determine whether
or not the trap-handler is in use. If the trap-handler is in use then the process is appended to the trap-han­
dier queue. (If an L-process were executed while its trap-handler was in use by another process, then the
trap-handler could not be invoked if a trap occurred.) This queue is specified by a front pointer (th.Fptr)
and a back pointer (th.Bptr) and is linked in the same manner as the high and low priority scheduling lists
(see section 8.2.1). When the trap-handler is exited, the entire trap-handler queue is inserted at the front
of the appropriate priority scheduling list (Le. the same priority at which the trap-handler is running).

The trap-handler workspace

When an L-process takes a trap, the processor loads the workspace pointer register field (Wptr) t with
the content of the trap-handler register (ThReg). Hence the trap-handler can immediately use the area
below the THDS as its workspace.

Since a trap-handler's workspace pointer initially points to the THDS, the trap-handler code must avoid
corrupting this information. In particular, if any of the trap-handler's instructions use workspace location
o (pw.Temp - see section 8.1.1), then the code should firstly adjust the workspace pointer (e.g. execute
ajw -1) so that it points to a free memory location. Likewise, the workspace pointer must be adjusted if
local variables are allocated.

The trap-handler's 'trap-handler'

The trap-handler itself initially executes with a null trap-handler, and so the trap-handler register is loaded
with NotProcess.p.

Creation of a THDS

Any suitably sized word-aligned block of store may be used as a trap-handler data structure. The area
below this block will also initially be the trap-handler workspace when an L-process takes a trap (although
the trap-handler code may change this on entry). The block must be initialized: with the th.Fptr slot set
to NotProcess.p to indicate that the trap-handler queue is empty, with the th.lptr slot set to the appropriate
address for the trap-handler code, and with the trap-handler in use bit (sb.ThlnUse) of the control word
set to 0, the flags set appropriately, and the other bits selecting traps as desired. If watchpointing is se­
lected in the control word, then the th.eWI and th.eWu slots should be set to define the watchpoint region.

Changing a trap-handler

There are two instructions that an L-process may use to manipulate its trap-handler. The first is load trap
handler -Idth and the second is select trap handler - selth. These are detailed in section 10.4.

t The process priority is not changed when the context changes to a trap-handler.
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10.1.2 Sharing a trap-handler data structure

It is possible to a share a THDS (trap-handler data structure) between any number of processes. However,
there are certain restrictions

• The processes sharing a THDS must be of the same priority.

• All processes sharing a THDS also share the control word in the THDS, which implies that they
all have the same traps enabled (floating-point, watchpoint etc.).

Note that it is possible to change the status and control bits in the status register while a process
is executing; but be aware that if/when a timeslice or trap subsequently occurs, some of these
bits are written back into the th.Cntl slot of the THDS and hence are shared by all processes
which use this trap-handler.

The IMS T9000 will not executet a process if its trap-handler is currently in use+ by another process. This
ensures that when a process takes a trap, a second process cannot take a trap to the same trap-handler
whilst the first trap is being handled. This restriction is enforced automatically by the IMS T9000 scheduler
as described in section 10.1.1.

10.1.3 The null trap-handler

If the trap-handler pointer of an L-process is the special value NotProcess.p, then it has a null trap-handler.
Before the process is executed:

• The null trap-handler value (NotProcess.p) is loaded into the trap-handler register.

• The status register (StatusReg) is loaded with the default control word (see section 5.2). This
specifies that the only enable option that is selected is the integer overflow trap (sb.lntOvTeBit
is set to 1). Hence an L-process executing with the null trap-handler, does not trap on floating­
point exceptional conditions and misalignment errors, and does not have watchpointing enabled.

If an L-process takes a trap while a null trap-handler is installed (a null trap), the processor is halted.

The main use of the null trap-handler is to provide some way of executing L-processes without a trap-han­
dier (often just for short periods). This can be essential. For example, trap-handlers (which are themselves
run as L-processes) must always be ready to execute, and cannot therefore themselves have a trap-han­
dier when first invoked. If this were allowed, it might be that the secondary trap-handler (Le. the trap-han­
dler's trap-handler) would be in use by another process at the time that the primary trap-handler was in­
voked. The primary trap-handler would then not be ready to execute. However although a trap-handler
must have a null trap-handler at the time of invocation, it is perfectly acceptable to provide it with its own
trap-handler while it is executing (making use of the select trap handler instruction - see section 10.4).

10.2 State storage and retrieval when a trap is taken

When an L-process takes a trap, it relinquishes control to its trap-handler (or halts the machine if there
is a null trap-handler specified). This is referred to as an L-process trap.

When a P-process takes a trap, it relinquishes control to its supervisor. This is referred to as a P-process
trap.

t Note carefully the word 'execute' here. The transputer will schedule a process (Le. place its process on the scheduling list) without

checking whether its trap-handler is in use. It is only when it starts execution ofthe process (Le. install it as the current process) that

it checks. It will at this point prevent the process from being executed if a process sharing the same THDS has trapped.
+The term 'trap-handler in use' means that a trap has already been taken to the trap-handler specified by that particulartrap-handler

data structure, butthe corresponding 'trap return' instructions (tret) has not yet been executed. However, it is possible for two L-pro­

cesses with different trap-handler data structures, to use the same trap-handler code. That is, the th.lptr slot can be a pointer to the

same code in two or more trap-handler data structures. L-processes can thus share the same trap-handler code, without sharing

workspace. There is no restriction on execution of L-processes which share trap-handler code but have separate trap-handler data
structures.
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Except when a null trap is taken (see section 10.3.3), the reason for the trap is encoded in Areg, and if
the trap has been caused by an error, the type of error is encoded into Breg. Creg is left undefined. This
section provides some detail on state storage2 and retrieval, and a comparison between the two types
of trap.

If a trap occurs as a result of a floating-point exception, then prior to taking the trap, the state of the floating­
point unit is restored to the state that it had before the floating-point operation (refer to section 11 .13 for
more details).

THDS

/
Wptr, IptrReg
Areg, Breg, Creg,
EptrReg,
status and control bits

/
L-process

L-process trap

PDS

Gupervisv

/
Wptr, IptrReg
Areg, Breg, Creg,
EptrReg,
status and control bits

/
P-process

P-process trap

An L-process trap

When an L-process takes a trap, the action depends on the trap-handler pointer (stored in the trap-handler
register - ThReg). If it points to a THDS, then the current state is stored and the trap-handler state is set
up as described below. If the trap-handler pointer is the special constant NotProcess.p, which signifies
that there is a null trap-handler, then the machine halts (takes a null trap).

The THDS (trap-handler data structure) which is pointed to by the trap-handler register is used both to
save the state of the L-process when it takes a trap, and to contain the necessary details required to invoke
the trap-handler.

The contents of the instruction pointer register (lptrReg), Wptr, and integer stack registers are all written
into the THDS. This action cannot signal a watchpoint or AccessViolation. The address of the instruction
that has caused the trap (held in EptrReg) is written into the th.Eptr slot. The error, watchpoint, timeslice
and single-step trap enable bits and all error flags in the status register (StatusReg) are written into the
th.Cntl slot. Also the trap-handler in use bit (sb.ThlnUse) is set in this slot (to prevent execution of the
processes which share this trap-handler).

The workspace pointer and instruction pointer of the trap-handler are (re) installed: the content of the trap­
handler register is copied into the workspace pointer register field (Wptr); and the content of the th.lptr
slot is copied into the instruction pointer register. Observe that the process priority bit of the workspace
descriptor register is left unaltered. The trap-handler continues to run as an L-process at the same priority.
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The trap-handler register is given the special constant value (NotProcess.p) which signifies that the trap­
handler itself initially has a null trap-handler. The status register is loaded with the default control word (all
zeroes except for sb.lntOvTeBit).

A P-process trap

When a P-process takes a trap, the current state is stored and the supervisor's state is retrieved as de­
scribed below.

The PDS (P-state data structure) which is pointed to by the protected state register (PstateReg), is used
both to save the state of the P-process when it takes a trap, and to contain the necessary details required
to restart its supervisor.

The contents of the instruction pointer register (lptrReg), Wptr, and the integer stack registers are all writ­
ten into the PDS. This action cannot signal a watchpoint orAccessViolation. The address of the instruction
that has caused the trap (held in EptrReg) is written into the ps.Eptr slot. The error, watchpoint, timeslice
and single-step trap enable bits, and all error flags in the status register (StatusReg) are written into the
ps.Cntl slot. If the trap is taken in the middle of an interruptible instruction (Le. due to a timeslice), then
the contents of internal registers Ereg and Xreg are saved in the ps.sEreg and ps.sXreg slots of the PDS
respectively.

The workspace pointer and instruction pointer of the supervisor are reinstalled: the content of the work­
space descriptor stub register (WdescStubReg) is copied into workspace descriptor register; and the
content of the pw.lptr slot of the supervisor's workspace data structure, is loaded into the instruction point­
er register.

If the trap-handler register points to a THDS, then the supervisor has a trap-handler installed and its state
is restored from the THDS as follows. The error, watchpoint, timeslice and single-step trap enable bits and
all error flags are loaded into the status register, from the th.Cntl slot of the THDS, and the sb.lsPpro­
cessBit is reset. Also if the watchpoint trap enable bit (sb.WtchPntEnbl) is set, the contents of the th.eWI
and th.eWu slots in the THDS are loaded into the watchpoint registers (WIReg and WuReg).

If the supervisor's trap-handler pointer has the special constant value NotProcess.p, then it has a null trap­
handler and so the status register is loaded with the default control word (all zeroes except for sb.lntOvTe­
Bit).

A comparison

It is useful to observe the similarities and differences in behavior between the above two mechanisms.

• For each there is a data structure which is used to store the state of the process when trapped.
This state is required if it is necessary to examine the process state and/or it is required to restart
the process at the point where the trap was taken.

• In both data structures, the control word, the workspace pointer, the instruction pointer, the inte­
ger stack registers and the address of the trap causing instruction for the trapped process are
stored automatically.

• The THDS address is held in the trap-handler register, whereas the PDS address is held in the
protected state register.

• The workspace pointer of the trap-handler is held in the trap-handler register, whereas the work­
space pointer of the supervisor is held in the workspace descriptor stub register.

• The instruction pointer for the trap-handler code is held in a slot in the THDS, but the instruction
pointer for the supervisor is held in the supervisor's workspace data structure.

• When a trap-handler is started, this must itself have a null trap-handler, and so in order to load
the correct state when an L-process traps to its trap-handler, the processor only needs to install
the workspace pointer and instruction pointer, and to set the status register to a default control
word. However a supervisor may have its own THDS, and so when a P-process traps to its super-
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visor, it is also necessary to load the process bits from the control word of its THOS and, if ap­
propriate, load the watchpoint registers.

Exiting from a trap-handler or a supervisor

When a trap-handler has performed its function, it must execute tret (the 'trap return' instruction - see
section 10.4), which may either:-

• terminate the execution of the process which trapped, or

• continue its execution.

If Areg is 0 when tret is executed, then the process is continued from the point where it trapped t ,otherwise
it is terminated. The workspace pointer register field (Wptr) should hold the address of the THOS when
tret is executed. tret must be executed (as opposed to stopp) even when the trapped process is not to
be restarted. This ensures that the 'trap-handler in-use' bit is reset, and any accumulated process queue
is transferred to the scheduling list.

A supervisor restarts a trapped P-process with the goprot instruction.

More details on these instructions are given in section 10.4.

Extra state storage and retrieval

Observe that the floating-point and block move register state is not automatically saved when a trap is
taken. There is no need for the mechanism to do so, because this state is not overwritten by the context
change. However subsequent execution may overwr.ite the contents of the floating-point and block move
registers at any time, so it is left to the trap-handler or supervisor to save and restore this state using
instructions included for the. purpose. Refer to section 13.2.3.

10.3 Trap causes and signalling of errors

This section is concerned with the events that can cause a process to take a trap, or setflags. The descrip­
tion applies to both P-process traps and L-process traps, unless explicitly stated.

10.3.1 Trap causes

As summarized in the introduction to this chapter, there are two types of trap. When an L-process is
executing, a trap transfers control to its trap-handler (L-process trap), and when a P-process is executing,
a trap returns control to its supervisor. This subsection considers the various trap causes, discusses which
of these can occur simultaneously, and explains how these causes are presented to the trap-handler or
supervisor.

The events that can cause traps are given in table 10.2 and explained below.

name notes

single-step

error

syscall (system call)

causeerror

breakpoint

watchpoint

timeslice P-process trap only

Table 10.2 . General trap causes and their abbreviations

t unless the trap-handler has modified the th.slptr slot
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If a process has single-stepping enabled, as indicated by the single-stepping trap enable bit (see section
14.2) in the status register, then it takes a trap when it has finished executing any instruction.

If an error (or a floating-point exceptional condition) is detected, then this is signalled and may cause a
trap. There are a number of such 'signals' and these are considered separately in section 10.3.2.

When a process executes syscall, causeerror (see section 10.4) or the breakpoint instruction ljD), then
it traps to its trap-handler or supervisor.

If a process has watchpointing enabled, as indicated by the watchpoint trap enable bit (see section 14.3)
in the status register, then it takes a trap if an instruction attempts to write to an address in the watchpoint
region.

When a timeslice becomes due while a low priority P-process is executing, then the P-process traps to
its supervisor at the next interrupt point.

Traps for multiple reasons

The trap causes listed above may not be unique (Le. there may be more than one cause of a trap).

Table 10.3 shows which trap causes can occur together. An entry of 'V' indicates that the two trap causes
can be coincident, an entry of 'N' that they cannot.

single-step error syscall causeerror breakpoint watchpoint timeslice+

single-step - Y Y Y Y Y y+

error Y - N N N yt N

syscall Y N - N N N N

causeerror Y N N - N N N

breakpoint Y N N N - N N

watchpoint Y yt N N N - y+

timeslice+ y+ N N N N y+ -

t a watchpoint can only be coincident with an error (viz. AccessViolation) in a P-process

+ a timeslice only causes a trap from a P-process

Table 10.3 Trap causes that can occur simultaneously

Indication of cause of traps

The trap-handler or supervisor must be able to determine the trap cause (or causes). The reporting of the
reason for a trap is essentially the same for both an L-process trap and a P-process trap. Firstly, the ad­
dress of the instruction that caused the trap and/or the address of the next instruction to be executed are
written into the handler's data structure. Secondly, two values are used to convey why the instruction
trapped; the first, delivered in Areg (see table 10.5), indicates the trap reason, the second, delivered in
Breg (see section 10.3.2) indicates which type of error (if any) has occurred.

The address of the trap causing instruction is written into th.Eptr of the THDS for an L-process trap, or
to ps.Eptr of the PDS for a P-process trap. The only times where this information is not valid is when a
P-process trap has been taken between instructions due to a timeslice, or when a memory semantics error
has occurred (see page 120).

It is possible that an L-process is due to be descheduled when it is trapped. More specifically, descheduling
can be coincident with a single-step or a watchpoint (if the process workspace data structure is watch­
pointed). Although the descheduling action is not a trap cause, this information is encoded into the the
word delivered in Areg. The trap-handler is then aware that the trapped process cannot be immediately
restarted on trap return.

Similarly, it is possible for an L-process trap to occur from an instruction that would normally change the
context of the process. More specifically, goprot, selth (which changes the trap-handler-see section 10.4)
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and restart (which restarts an interrupted L-process - see section 13.4) can cause a single-step or watch­
point trap. In this situation, these instructions simply take a trap after they have written the current state
into the control word of the trap-handler data structure. It is then left to the trap-handler to change the con­
text. Although the context change is not a trap cause, this information is encoded into the the word deliv­
ered in Areg. The trap-handler is then aware that the trapped process cannot be restarted using tret.

The trap reason value, delivered in Areg, is encoded as shown in table 10.4.

field bit 4 bits 3 .. 1 bit 0

meaning 1: single-step 000: error 1: watchpoint
0: not single-step 001 : breakpoint 0: not watchpoint

010: none of this set
011 : timeslice
100: sysca11
101 : deschedule
110: causeerror
111 : context

Table 10.4 Bit mapping of trap reason delivered in Areg

This coding uses 5 bits which allows 32 possible values. Of these only 23 can ever occur, according to
the combinations of trap causes that can occur simultaneously (as given in table 10.3). (Note that the trap
causes encoded by bits 3 .. 1 cannot be coincident.) Table 10.5 summarizes.
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trap reason trap reason symbol meaning note
value (hex)

0 (#00) t.Error error

1 (#01) t.WatchError watchpoint and error P-process trap only

2 (#02) t.Break breakpoint

3-4 (#03-#04) invalid

5 (#05) t.Watch watchpoint

6 (#06) t.Time timeslice P-process trap only

7 (#07) t.WatchTime watchpoint and timeslice P-process trap only

8 (#08) t.Scall syscall

9-10 (#09-#10) invalid

11 (#08) t.WatchDesch watchpoint and deschedule L-process trap only

12 (#OC) t.Cerror causeerror

13-14 (#OD-#OE) invalid

15 (#OF) t.WatchContext watchpoint and context L-process trap only

16 (#10) t.StepError single-step and error

17 (#11) t.StepWatchError single-step, watchpoint and error P-process trap only

18 (#12) t.StepBreak single-step and breakpoint

19 (#13) invalid

20 (#14) t.Step single-step

21 (#15) t.StepWatch single-step and watchpoint

22 (#16) t.StepTime single-step and timeslice P-process trap only

23 (#17) t.StepWatchTime single-step, watchpoint and time- P-process trap only
slice

24 (#18) t.StepScall single-step, syscall

25 (#19) invalid

26 (#1 A) t.StepDesch single-step and deschedule L-process trap only

27 (#18) t.StepWatchDesch single-step, watchpoint and des- L-process trap only
chedule

28 (#1 C) t.StepCerror single-step and causeerror

29-31 (#1 D) invalid

30 (#1 E) t.StepContext single-step and context L-process trap only

31 (#1 F) t.StepWatchContext single-step, watchpoint and con- L-process trap only
text

Table 10.5 Possible trap reasons as loaded into Areg when a is taken

10.3.2 Signalling of errors

A process executing on an IMS T9000 can detect a variety of errors. The precise errors that a particular
process detects depend on the mode of the process (Le. L-process or P-process). The signalling of certain
errors may cause a trap to be taken, or flags to be set within the status register. This is controlled by the
setting of bits known as 'error trap enable bits'. This subsection presents these flags and trap enable bits,
and details the different types of errors.
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The errors, that a process executing on the IMS T9000 can detect, are:-

errors that are explicitly set or checked - These are caused by the execution of an error setting
instruction (e.g. causeerror - see section 10.4) or by error detection instructions. An example
of the latter is an array subscript error detected by a csubO instruction.

integer overflow - This is signalled when there is an integer overflow or integer division by zero.

misalignment - This is signalled when a instruction attempts to load or store a 32-bit or 16-bit
object from a byte address that is not 32-bit or 16-bit aligned.

attempt to execute illegal instruction - This is signalled when opr is executed with an invalid oper­
and - i.e. not an instruction.

• attempt to execute privileged instruction in protected mode

.- access violation in protected mode

• floating-point exceptional conditions - The IMS T9000 can detect the conditions specified as ex­
ceptional conditions by the IEEE floating-point standard. These are 'invalid operation', 'divide by
zero', 'overflow', 'underflow' and 'inexact result'. In addition to these it also detects a condition
called, 'floating-point error'. The latter is detected whenever an arithmetic operation has as an
operand, an infinity or a not-a-number, and when the conditions 'invalid operation', 'divide by
zero', or 'overflow' are true. (Detection of 'floating-point error' ensures compatibility with the treat­
ment of floating-point errors by the IMS Ta05.)

• memory semantics violation - see page 120

The detection of any of these distinct operating conditions is signalled, either by the setting of one or more
flags, or by a trap being taken. The complete set of 'error signals' are defined in table 10.6.

error signal brief description note

IntegerOverflow integer overflow or integer divide-by-zero

IntegerError integer error other than IntegerOverflow - e.g. explicitly
checked or explicitly set error, misuse of channel

Unalign address of instruction operand is not aligned to the cor-
rect boundary

IIlegallnstruction attempt to execute an illegal instruction

Privlnstruction attempt to execute a privileged instruction in protected P-process trap only
mode

AccessViolation attempt to access a memory protected or non-existent P-process trap only
address

FPError floating-point 'error'

FPlnvalidOp IEEE floating-point 'invalid operation'

FPDivideByZero IEEE floating-point 'divide by zero'

FPOverflow IEEE floating-point 'overflow'

FPUnderflow IEEE floating-point 'underflow'

FPlnexact IEEE floating-point 'inexact result'

Table 10.6 Definition of errors signalled by the IMS T9000

IntegerError and IntegerOverflow are sometimes referred to generically as integer errors, and FPError,
FPlnvalidOp, FPDivideByZero, FPOverflow, FPUnderflow and FPlnexact are referred to as floating-point
exceptional conditions.

Flags

Various bits within the status register (StatusReg) are reserved as flags. (See section 5.2.) These are
set when certain errors are signalled as outlined in table 10.7. More than one error may be signalled by
an instruction, and more than one flag may be set; however no flags are set if a trap is taken2.
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name error signals notes

sb.lntOvFlag IntegerOverflow

sb.FPErrorFlag FPError corresponds to IMS T805 floating-point
error flag

sb.FPlnOpFlag FPlnvalidOp

sb.FPDivByZeroFlag FPDivideByZero

sb.FPOvFlag FPOverflow

sb.FPUndFlag FPUnderflow

sb.FPlnexFlag FPlnexact

Table 10.7 Flags and the error signals that cause them to be set

Error trap enable bits

Various bits within the status register (StatusReg) are reserved as error trap enable bits. (See section
5.2.) Table 10.8 shows which error signals cause a trap to be taken when each of these bits is set.

name error signals

sb.lntOvTeBit IntegerOverflow

sb.UnalignTeBit Unalign

sb.FPErrorTeBit FPError

sb.FPlnOpTeBit FPlnvalidOp

sb.FPDivByZeroTeBit FPDivideByZero

sb.FPOvTeBit FPOverflow

sb.FPUndTeBit FPUnderflow

sb.FPlnexTeBit FPlnexaet

Table 10.8 Error trap enable bits and error signals that cause a trap when bits are set

If a trap for a certain error signal is explicitly disabled, and a trap does not occur for any other reason, then
the instruction completes execution, and a flag is set according to table 10.7 (although there is no flag for
Unalign). If the trap is enabled, a value is presented to the trap-handler or supervisor (in Breg) to indicate
the error that has occurred (see later - table 10.10).

Observe that although two types of integer error have been classified (table 10.6), it is only possible to
selectively enable trapping on the IntegerOverflow error. Usually an integer error is either very serious
(e.g. a range check fails) or is deliberate (e.g. if forced by the causeerror instruction). In these cases the
error cannot be ignored and the option to disable traps is not provided. For the potentially less serious
integer errors such as arithmetic overflow and division by zero, this option is provided with sb.lntOvTeBit.
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Effect of error signals

Table 10.9 summarizes the effect of each of the error signals.
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error signal extra condition for trap to be taken flags set if trap not taken

IntegerOverflow sb.lntOvTeBit sb.lntOvFlag

IntegerError true+ not applicable

Unalign sb.UnalignTeBit none

IIlegallnstruction true+ not applicable

Privlnstruction in protected mode none

AccessViolation in protected mode none

FPError sb.FPErrorTeBit sb.FPErrorFlag

FPlnvalidOp sb.FPlnOpTeBit sb.FPlnOpFlag

FPDivideByZero sb.FPDivByZeroTeBit sb.FPDivByZeroFlag

FPOverflow sb.FPOvTeBit sb.FPOvFlag

FPUnderflowt sb.FPUndTeBit sb.FPUndFlag

FPlnexact sb.FPlnexTeBit sb.FPlnexFlag

t To comply with the IEEE standard, FPUnderflow is signalled on detection of 'tininess' if trapping is enabled, but other-
wise on detection of 'tininess' and 'inexact'. See section 11.2.5.

+Le. a trap is always taken when these errors are signalled.

Table 10.9 Effect of signalling errors

When an error is signalled, a trap is taken if the appropriate trap enable bit is set according to table 10.9.
For some signals (viz. IntegerError, IIlegallnstruction, Privlnstruction, and AccessViolation) , there is no
trap enable bit. These signals always cause a trap to occur. Privlnstruction and AccessViolation can only
be generated when running under protection.

If an L-process has the null trap-handler, the signalling of IntegerError, IntegerOverflow or IIlegallnstruc­
tion causes the processor to stopt. (Note that there is no equivalent to a null trap-handler when running
a P-process. A trap always returns control to its supervisor.)

Indication of which errors (if any) have caused the trap

When an error causes a process to take a trap, the processor loads a unique value into Breg to indicate
which particular error was the cause. A complete list of the values that may be loaded into Breg, is given
in the first column of table 10.10. The second column of this table gives the symbol for each error. The
third column states the condition that causes each error to occur. The fourth column shows the meaning
of each error.

t In this way, the execution of an L-process without a trap-handler is compatible with the execution of process on the IMS TaG5 in

'halt-on-error' mode.
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error type error type symbol condition for trap to occur error meaning
value (hex)

0 (#00) et.NoError any non-error trap reason trap has not been
caused by an error

1 (#01) et.Privlnstruction Privlnstruction attempt to execute a
(when running under protection) privileged instruction

in protected mode

2 (#02) et.lllegallnstruction IlIegallnstruction attempt to execute
illegal instruction

3 (#03) et.Unalign Unalign AND sb.UnalignTeBit address of instruc-
tion operand is not
aligned to the cor-
rect boundary

4 (#04) et.AccessViolation AccessViolation attempt to access a
(when running under protection) memory protected

or non-existent ad-
dress

5 (#05) et.lntegerError IntegerError integer error, not in-
dicated by integer
overflow

6 (#06) et.lntegerOverflow IntegerOverflow AND sb.lntOvTe- integer overflow or
Bit integer divide-by-

zero

7 (#07) et.FPError FPError AND sb.FPErrorTeBit floating-point errort

8 (#08) et.FPlnvalidOp FPlnvalidOp AND sb.FPlnOpTeBit IEEE floating-point
AND 'invalid operation'

(NOT 'conditions for et.FPError')

9 (#09) et.FPDivideByZero FPDivideByZero AND IEEE floating-point
sb.FPDivByZeroTeBit 'divide by zero'

AND
(NOT 'conditions for et.FPError')

10 (#OA) et.FPOverflow FPOverflow AND sb.FPOvTeBit IEEE floating-point
AND 'overflow'

(NOT 'conditions for et.FPError')

11 (#OB) et.FPUnderflow FPUnderflow AND sb.FPUndTeBit IEEE floating-point
AND 'underflow'

(NOT 'conditions for et.FPError')

12 (#OC) et.FPlnexact FPlnexact AND sb.FPlnexTeBit IEEE floating-point
AND 'inexact result'

NOT ('conditions for et.FPError' OR
'conditions for et.FPOverflow' OR
'conditions for et.FPUnderflow')

13 (#OD) et.MemSemError see below memory semantics
error

t This is not an IEEE exception. See section 11.13 for more details.

Table 10.10 Possible error types as loaded into Breg when a trap is taken

Because of the concurrent nature of instruction execution in the pipeline, it is not always possible for the
processor to instantly determine the exact instruction that has caused an error. The processor may need
to re-execute some of the most recently executed instructions, one at a time. It should be able to reproduce
the same error and thereby take a trap with the correct error type value. This behavior is transparent to
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the user. However it is possible that on re-execution, the error does not occur because the same values
have not been read from memory. This is known as a memory semantics error and can only happen if

(i) there is a memory fault, or

(ii) a memory location has changed.

The following might cause the latter, but these practices should be avoided.

• locations that are used by external channels - The data in locations below MemStart (see section
12.4) may change asynchronously. In particular, the programmer should not attempt to directly
access a virtual link control block or a packet buffer associated with a virtual link while that link
is communicating. If this is attempted then there is no guarantee that two consecutive reads from
such locations will yield the same data, and so a memory semantics error might occur.

• memory mapped device in uncached memory - A memory mapped device should be marked
as 'device memory'. As explained in section 7.14, this ensures that only device instructions are
used to access a device. A memory semantics error cannot occur when a device instruction is
executed. However, if a normal load instruction is used to read from a device, this might result
in a memory semantics error.

• sharing memory between processors - Care must be taken if using transputers in a shared
memory system. One scheme to ensure that a memory semantics error does not occur, is to
follow the procedure described in section 7.14. However if a program allows a piece of shared
memory to be written by another processor while it is reading from that memory, a memory se­
mantics error might occur.

If the processor detects such a memory semantics violation, it presents the special error type
et.MemSemError to the trap-handler in place of the original error. But note that a memory semantics error
will only occur as a result of the processor attempting and failing to determine the initial error that caused
the trap.

TB-series compatible error handling

For an L-process with a trap-handler data structure, it is possible to detect the same errors that would be
detected on a T8-series transputer. This is ensured by enabling integer overflow trapping, disabling mis­
alignment trapping and all the floating-point traps.

For an L-process with a null trap-handler the error handling is compatible with an IMS T805 in halt-on-error
mode.

Summary

Any error flag can only be set by a unique error signal (see table 10.7), but note that more than one flag
may be set if more than one signal is raised.

Similarly, when a trap is taken, all error types that may be presented in Breg, are due to a unique error
signal: In this case however, when more than one signal is raised concurrently, only one 'error' is presented
to the trap-handler or supervisor. If an error is signalled and the corresponding trap enable bit(s) is set,
then a trap is taken. If this is the only signal with its trap enable bit set, then this is the error presented to
the trap-handler or supervisor in Breg. If there is more than one error signal with its trap enable bit set,
then the error type presented in Breg is determined according to the conditions listed in table 10.10. For
a full explanation of the precedence rules, refer to section 11 .13.

10.3.3 Null trap causes

Only a subset of the trap causes listed in table 10.2 can cause a trap to occur while a process has a null
trap-handler. More explicitly, it is possible for 'syscall', 'causeerror,, 'breakpoint' and 'error' traps to be tak­
en, but it is not possible for a 'watchpoint' or 'single-step' trap to be taken.
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When a process is first installed with a null trap-handler, the status register is set to the 'default control
word' (see section 5.2). Hence the only error signals that are initially trapped are IntegerError, IntegerOv­
erflow and IIlegallnstruction. A process can however explicitly set the the error trap enable flags using the
stflags instruction. So for example a null trap can be forced when Unalign is signalled. Note that stflags
does not change the values of the single-step and watchpoint trap enable bits, so single-step and watch­
point traps can never occur when a null trap-handler is being used.

Since a null trap causes the processor to halt, it is not possible to determine the trap reason and error type
until the processor is rebooted. This is discussed in the Control system chapter of The T9000 Hardware
Reference Manual.

10.4 Instructions

The instructions listed in this section are relevant to the use of traps.

mnemonic name

syscall system call

causeerror causeerror

tret trap return

goprot go protected

Idth load trap-handler

selth select trap-handler

Idflags load error flags

stflags store error flags

Table 10.11 Instructions used in conjunction with trap-handling

syscall

The user can force control to be transferred to a trap-handler or supervisor by executing syscall.

syscall forces the current process to take a trap. Hence in an L-process it transfers control to the trap-han­
dier (or takes a null trap), and in a P-process it returns control to the supervisor. Unless a null trap is taken
(see section 10.3.3), the reason for the trap is delivered in Areg (see table 10.5) to inform the trap-handler
or supervisor why a trap has been taken. The only trap cause that can occur simultaneously with syscall
is a 'single-step' because, if enabled, this occurs after all instructions. The trap reason assigned to Areg
is therefore either t.Scall or t.StepScall. The state is saved as for all traps, and this can be inspected or
manipulated by the trap-handler or supervisor. The error type et.NoError is loaded into Breg. Creg is left
undefined.

Note that when a trap is taken, the integer stack is stored into the THDS or PDS. This enables the execut­
ing process to pass up to three parameters if required.

For more detail on state storage and retrieval, refer to section 10.2.

causeerror

A program can simulate the occurrence of an error with the causeerror instruction. The instruction obtains
the type of error to simulate from the value held in Areg. This value should correspond to one of the error
types given in table 10.10. If it does not, then causeerror signals IntegerError.

causeerror forces the current process to take a trap. Hence in an L-process it returns control to the trap­
handler (or takes a null trap), and in a P-process it returns control to the supervisor. The reason for the
trap is delivered in Areg (see table 10.5) to inform the trap-handler or supervisor why a trap has been tak­
en. The only trap cause that can occur simultaneously with causeerror is a 'single-step' because, if en-
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abled, this occurs after all instructions. The trap reason assigned to Areg is therefore either t.Cerror or
t.StepCerror. The state is saved as for all traps, and this can be inspected or manipulated by the trap-han­
dier or supervisor. The type of the error being simulated (Le. the value initially in Areg) is loaded into Breg.
Creg is left undefined.

Note that this instruction forces a trap to be taken regardless of whether trapping has been enabled for
the particular error that is being simulated.

For more detail on state storage and retrieval, refer to section 10.2.

tret

tret is used to return from a trap-handler. If the value stored in Areg is zero then it returns control to the
L-process that has its state stored in the THDS. Otherwise it allows the next process on the scheduling
list to be executed. Before tret is executed, the workspace pointer register field (Wptr) should hold the
address of the THDS (trap-handler data structure) for the current trap-handler. The following paragraphs
describe how tret saves and loads state.

The current state of the trap-handler, including the workspace pointer and the instruction pointer, are not
saved. The trap-handler in use bit (sb.ThlnUse) is reset in the th.Cntl slot of the THDS to signify that the
trap-handler is no longer in use. If the THDS has accumulated a local process queue pointed to by the
th.Fptr and th.Bptr slots, then this entire queue is placed on the front of the scheduling list of the appropri­
ate priority (Le. the same priority as the trap-handler).

If the value held in Areg is non-zero, then the processor terminates the trapped L-process, and starts to
execute the next process on the scheduling list.

If the value in Areg is zero, then the processor reloads the registers with the state saved in the THDS.
The address of the THDS contained in Wptr is copied into the trap-handler register (ThReg). The contents
of the th.sWptr and th.slptr slots of the THDS are copied into Wptr and the instruction pointer register
(lptrReg); and the th.sAreg, th.sBreg and th.sCreg slots are copied into the integer stack registers. The
error, watchpoint, timeslice and single-step trap enable bits, and all error flags are loaded into the status
register, from the th.Cntl slot of the THDS. If the watchpoint trap enable bit (sb.WtchPntEnbl) is set, the
contents of the th.eWI and th.eWu slots are copied into the watchpoint registers (WIReg and WuReg).

tret is a privileged instruction. Prior to executing tret, the trap-handler itself must have a null trap-handler.
If this is not the case (Le. ThReg holds a value other than NotProcess.p) then the instruction signals Integ­
erError. If the trap-handler queue is non-empty when tret is executed, then the contents th.Fptr and
th.Bptr slots must be word aligned otherwise the behavior of the instruction is undefined. Note that pro­
vided these slots are initialized correctly, they will always be word aligned unless explicitly manipulated
by the user.

goprot

When goprot is executed, the IMS T9000 begins to execute in protected mode. More detail on this is pro­
vided in section 9.8.

If this instruction triggers a ·single-step or watchpoint trap, then it does not start the P-process. The trap
delivers in Areg, one of the trap reasons t.WatchContext, t.StepContext or t.StepWatchContext.

/dth

Idth pushes a copy of the trap-handler pointer (held in the trap-handler register - ThReg) on to the integer
stack. This instruction must be used if the current process needs the address of its THDS. It may, for exam­
ple, be necessary to store this for later use, if a new trap-handler is to be installed (see selth). It is a privi­
leged instruction.

se/th

The selth instruction can be used to change the trap-handler of the current process. Its action is to load
the trap-handler register (ThReg) with the value held in Areg. The current process status and control bits
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are saved in the old trap-handler (THDS) and new values for these bits are loaded from the new trap-han­
dier. This instruction undefines the integer and floating-point stacks. It is privileged, and is a descheduling
point.

If the value currently held in the trap-handler register is the special constant NotProcess.p, which repre­
sents the null trap-handler, then it is not necessary to store any status information. Otherwise the error,
watchpoint, timeslice and single-step trap enable bits, and all error flags in the status register (StatusReg)
are written into the th.Cntl slot of the current trap-handler. t

If this instruction triggers a single-step or watchpoint trap, then it does not install the new trap-handler.
The trap delivers in Areg, one of the trap reasons t.WatchContext, t.StepContext or t.StepWatchCon­
text.

Assuming a trap is not taken, the value in Areg is loaded into the trap-handler register. This value is either
the word-aligned address of the THDS for the new trap-handler, oris the special value indicating a null
trap-handler. (If address held in Areg is not word-aligned, then undefined behavior will result.) If the new
trap-handler specified is the null trap-handler then the default control word is loaded into the status regis­
ter. Otherwise, unless the new trap-handler is in use, the trap, watchpoint, timeslice and single-step trap
enable bits, and all flags are loaded into the status register, from the th.Cntl slot of the new THDS. If the
watchpoint trap enable bit (sb.WtchPntEnbl) is set, the contents of the th.eWI and th.eWu slots are
loaded into the watchpoint registers (WIReg and WuReg). If the new trap-handler is currently in use, then
the current instruction pointer (content of IptrReg) and the new value in the trap-handler register are saved
in the pw.lptr and pW.TrapHandler slots below the local workspace; and the current process is desche­
duled and appended to the queue of that trap-handler.

Note that the state of the old trap-handler is saved into the old control word before the state is loaded from
the new control word. This implies that if Areg specifies the existing trap-handler, the instruction doe~ not
affect the status register. se/th can therefore not be used to change the contents of the status register
without changing the trap-handler.

Idflags

The instruction /dflags copies all the error flags and error trap enable bits from the status register
(StatusReg) into the corresponding bit positions in Areg. All other bits in Areg are set to O. The values
previously held in Areg and Breg are pushed into Breg and Creg respectively. N.B. This instruction only
writes into Areg, the bits listed in tables 10.7 and 10.8 which do not include sb.StepBit and
sb.WtchPntEnbl.

stflags

The action of the stf/ags instruction is to overwrite the error flags and error trap enable bits in the status
register with the values specified at the corresponding bit positions in Areg. The setting of the other bits
in Areg is ignored. The integer stack is popped one level by this operation, leaving the value Creg unde­
fined. N.B. This instruction only writes into Areg, the bits listed in tables 10.7 and 10.8 which do not include
sb.StepBit and sb.WtchPntEnbl. Single-stepping and watchpointing can only be enabled by writing to
the trap-handler (or supervisor) control word. (See also chapter 14.)

t When selth is executed, there will never be any processes on the queue ofthe trap-handler which is being replaced, because the

trap-handler cannot be in use. By definition, it is not being used by the current process, and if any other process were using it, the

current process wouldn't have been allowed to execute.
1. 'starts execution' in this context means installs the L-process as the current process. This may occur either when an L-process
comes to the front of the scheduling list, or when a trapped L-process is restarted.
2: Although this chapter generally discusses process state storage when a trap occurs, the details of state storage are different for
various types of trap - in particular traps caused by errors or floating-point exceptions. These anomalies are thoroughly presented
in section 13.2.2.
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11 Floating-point instructions

11.1 IEEE floating-point arithmetic

125

Parts of this chapter assume a thorough understanding of the ANSI/IEEEstandard 754-1985 -An Ameri­
can national standard for binary floating-point arithmetic. Henceforth, this will be referred to as 'the IEEE
standard' or simply 'the standard'.

In summary, the standard specifies:-

• single and double precision floating-point number formats

• arithmetic operations: add, subtract, multiply, divide, square-root, remainder; and compare op­
erations

• conversions between integer and floating-point formats

• conversions between different floating-point formats

• floating-point exceptions and the behavior required of an implementation when certain excep­
tional conditions occur

It also states that there should be

• two representations of zero (±O) ,

• two infinities (±oo) and

• two types of special symbol - quiet NaNs (not-a-numbers) and signalling NaNs.

11.2 The implementation of IEEE floating-point arithmetic on the IMS T9000

11.2.1 Formats

The IMS T9000 implements single precision and double precision formats of floating-point numbers as
described in the IEEE standard. It does not implement the extended formats.

Single precision (REAL32) and double precision (REAL64) values are stored in the following form8;ts

~ fra_c ----JI
bit 0

where s is the sign bit, exp is the exponent and frac is the fraction. For single precision, s is 1 bit wide,
exp is 8 bits wide and frac is 23 bits wide. For the double precision, s is 1 bit wide, exp is 11 bits wide and
frac is 52 bits wide. Whenever the exp field is not 0 the actual fraction of the number represented has an
'implied' 1 placed on the left of the frac value.

A floating-point value is given by

= {( - 1)5 x 1.frac x 2exp ~bia5, ifexp -:;C 0;

val ~,--_~_fra_c 1 (- 1)5 x OJrac x 21-bla5, ifexp = 0;

where bias is 127 for single precision and 1023 for double precision

11.2.2 Floating-point operations

A floating-point operation is one of the operations described in section 5 of the IEEE standard. All of these
operations are implemented by floating-point instructions described in this chapter.
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The following sets of floating-point instructions implement floating-point operations: the arithmetic instruc­
tions (including fprem and fprange) , the comparison instructions, and real to real type conversion instruc­
tions (including fpint, fprtoi32 and fpadddbsn 1). The full list of instructions that implement floating-point
operations is therefore:-

fpadd
fpsub
fpmul
fpdiv
fprem
fprange

fpldnladdsn
fpldnladddb

fpldnlmulsn
fpldnlmuldb

fpmulby2
fpdivby2
fpexpinc32
fpexpdec32
fpabs
fpsqrt

fpeq
fpgt
fpge
fplg
fpordered

fpr32tor64
fpr64tor32
fpint1

fprtoi321

fpadddbsn 1

11.2.3 Exceptions

IEEE exceptions

In accordance with the IEEE standard, there are a number of conditions - referred to as '(floating-point)
exceptional conditions' -that are detected. Detection of each of these conditions causes one of the signals
described in section 10.3.2. These are reproduced in table 11 .1.

signal exception for which condition has
been detected

FPlnvalidOp IEEE 'floating-point invalid operation'

FPDivideByZero IEEE 'floating-point divide by zero'

FPOverflow IEEE 'floating-point overflow'

FPUnderflow IEEE 'floating-point underflow'

FPlnexact IEEE 'floating-point inexact result'

Table 11.1 Signals raised when an IEEE exceptional condition is detected

One of two actions is taken as a result of such a detection.

• a trap is taken - Control is transferred to a trap-handler or supervisor which deals with the excep­
tion.

• a flag is set - If the trap is not selected, the appropriate flag is set, and for floating-point instruc­
tions that deliver a floating-point result, that result is defined as follows:for '(floating-point) t invalid
operation' the result is a quiet not-a-number, for a 'divide by zero' or a 'floating-point overflow'
the result is an infinity, and for an 'underflow' or an 'inexact result' the result is the correctly
rounded value.

Special exceptional condition - FPError

The IMS T9000 provides an additional exceptional condition - FPError. This is signalled when either a
not-a-number or an infinity is used as an operand to a floating-point operation, or when one or more of
the conditions FPlnvalidOp, FPOverflow, or FPDivideByZero is detected. This allows the user to make
use of a simpler means of indicating 'errors', as discussed in section 11.13.

This chapter does not explicitly list exceptional conditions for each instruction. They are however compre­
hensively listed in appendix A.

11.2.4 Not-a-Number representations (NaNs)

The IEEE standard provides a special category of floating-point 'value' - namely, a 'not-a-number' (abbre­
viated to 'NaN'). There are two types of NaNs: signalling NaNs and quiet NaNs. They are represented by
floating-point number with its exponent field set to to all '1 's and with a non-zero fraction field.

t 'floating-point' will be excluded from now on when referring to the IEEE exceptions, exceptfor 'floating-point overflow' which cou"ld

be confused with its integer equivalent.
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• signalling NaN

The occurrence of a signalling NaN as the operand of any floating-point operation signals
FPlnvalidOp.

The IMS T9000 implements signalling NaNs as having the most significant bit of their fraction
part set to O.

• quiet NaN

The occurrence of a quiet NaN as an operand to any floating-point operation is not necessarily
an exceptional condition.

The IMS T9000 implements quiet NaNs as having the most significant bit of their fraction part
set to 1.

Where a floating-point dyadic operation is required to return a floating-point value, it has the following be­
havior with regard to Not-a-Number operands. If only one operand is a NaN, then if it is a quiet NaN then
it is returned as the result, whereas if it is a signalling NaN, a quiet version of that NaN is returned. This
ensures that NaNs propagates through expressions. If both operands are NaNs then to meet the IEEE
standard, one must be returned - the IMS T9000 produces results according to the following rules. If both
operands are quiet NaNs, then the result is the NaN in FPAreg. If the operand in FPAreg is a signalling
NaN, then the result is a quiet version of that NaN. Otherwise the result is a quiet version of the NaN in
FPBreg. (See section 11.14 for more detail.)

For every other case where a floating-point operation signals FPlnvalidOp and requires a floating-point
result, a unique quiet NaN results if trapping is disabled. In this way if the result of an operation is a Not-a­
Number it is possible to detect what type of error has occurred. (See also section 11.14.)

11.2.5 Implementation of underflow

The IEEE standard defines two criteria for detecting 'underflow': 'tininess' and 'loss of accuracy'. For the
'underflow' trap to be taken, it is sufficient that 'tininess' has been detected. For the 'underflow' flag to be
set, both 'tininess' and 'loss of accuracy' must have been detected.

Section 7.4 of the IEEE standard gives the implementor the choice between detecting tininess before or
after rounding. The IMS T9000 detects tininess after rounding. This applies whether or not the underflow
trap is enabled.

The standard also gives the implementor the choice of detecting loss of accuracy via denormalization loss
or inexact result. The IMS T9000 detects loss of accuracy via inexact result.

11.3 Floating-point stack

In addition to the three deep stack of integer registers - Areg, Breg and Creg (see section 7.1) - the
processor contains a three deep stack of floating-point registers:

FPAreg floating-point stack register A
FPBreg floating-point stack register B
FPCreg floating-point stack register C

Each floating-point register can hold either a single precision or a double precision valuet and has a tag
associated with it (stored in the floating-point status register) which signifies the precision of the value it
contains. The floating-point stack behaves in a similar manner to the integer stack. When a value is loaded
in FPAreg the values in FPAreg and FPBreg are pushed down into FPBreg and FPCreg respectively.
When a value is stored from FPAreg, FPBreg is popped into FPAreg and FPCreg into FPBreg.

Manipulation of floating-point stack

The instructions listed in table 11.2 provide direct manipulation of the floating-point stack. They correspond
to the integer instructions rev and dup (see section 7.2), but operate on the floating-point stack as opposed
to the integer stack.

t The single and double precision formats supported are as specified in the IEEE 754 standard.
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mnemonic name

fprev floating-point reverse

fpdup floating-point duplicate

Table 11.2 Instructions which are used to directly manipulate the floating-point stack

fprev swaps the contents of FPAreg and FPBreg, not affecting FPCreg.

fpdup takes a copy of the content of FPAreg and pushes this into the floating-point stack, leaving two iden­
tical values in FPAreg and FPBreg, and the old value of FPBreg in FPCreg.

11.4 Loading and storing floating-point values

This section introduces the instructions that are used to store floating-point values in memory, or to load
values 'into the floating-point stack. Both single precision and double precision floating-point values are
considered. Single precision format floating-point values are represented in memory within a single ma­
chine word (32-bit). Double precision format floating-point values are represented in memory by two con­
tiguous machine words. The word that contains the sign bit is held at the memory location with the higher
address of the two.

Addresses for loading and storing floating point values are formed on the integer stack, and floating-point
values are transferred between the addressed memory locations and the floating point stack. A 'floating­
point pointer' is the address of the location(s) that holds a floating-point number. For a double precision
floating-point number, this is a pointer to the memory location with the lower address of the two.

11.4.1 Loading

The instructions used to load floating-point numbers into the floating-point stack, are shown in table 11 .3.

mnemonic name

fpldnlsn floating-point load non-local single

fpldnldb floating-point load non-local double

fpldnlsni floating-point load non-local indexed single

fpldnldbi floating-point load non-local indexed double

Table 11.3 Floating-point load instructions

fpldnlsn or fpldnldb respectively load single or double precision floating-point values from memory into the
floating-point stack. These instructions read the floating-point value from the location(s) specified by the
floating-point pointer in Areg. The new floating-point value is pushed onto the floating-point register stack
(see section 11.3). The integer stack is popped to remove the pointer in Areg.

These instructions signal Unalign if the address in Areg is not word-aligned. The double precision load
instructions do not insist that the address is two-word-aligned.

For example to load the content of (Wptr+5) as a single precision value onto the floating-point stack the
instruction sequence below is used.

Idlp 5; fpldnlsn

The state of the two stacks during this sequence is shown in figure 11 .1 .
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Areg = a
Breg =b
Creg = c

Areg = Wptr+5
Breg = a
Creg = b

Areg = a
Breg = b
Creg = undefined

FPAreg = fa
FPBreg = fb
FPCreg = fc

Idlp5

FPAreg = fa
FPBreg = fb
FPCreg = fc

fpldnlsn

FPAreg =X
FPBreg = fa
FPCreg = fb

(Wptr+5) :X

(Wptr+5) :X

(Wptr+5) :X
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Figure 11.1 Stack use in floating-point load

To aid code compactness in loading from arrays, two indexed floating-point loads are provided.

fpldnlsni
fpldnldbi

wsub; fpldnlsn
wsubdb; fpldnldb

The following sequences can be used for loading from component X[e] of a floating-point array X, where
e is an integer expression for the array index.

e; Idlp X; fpldnlsni

e; Idlp X; fpldnldbi

- where X is a REAL32 array

- where X is a REAL64 array

Loading constants

There is no special instruction for loading an arbitrary constant into the floating-point stack. A constant
must be in memory, prior to loading into the stack. This is most conveniently achieved by forming a pointer
into a table of constants.

Since 0.0 is a common constant, two instructions fpldzerosn and fpldzerodb (shown in table 11.4) are pro­
vided to load single and double precision 0.0.

mnemonic name

fpldzerosn load zero single

fpldzerodb load zero double

Table 11 .4 Instructions for loading floating-point zero

11.4.2 Storing

The instructions used to store floating-point numbers in memory, are shown in table 11.5.

mnemonic name

fpstnlsn floating-point store non-local single

fpstnldb floating-point store non-local double

Table 11 .5 Floating-point store instructions

fpstnlsn or fpstnldb respectively save single or double precision floating-point values into memory from
the floating-point stack. These instructions store the floating-point value held in FPAreg into the location (s)
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specified by the floating-point pointer in Areg. Both integer and floating-point stacks are popped to remove
the data that has just been used.

These instructions signal Unalign if the address in Areg is not word-aligned. The double precision store
instructions store onto any word boundary.

The compiler is expected to ensure that single precision data is stored with a fpstnlsn and double precision
with a fpstnldb. The processor makes no check on the correctness of the precision, and the behavior of
mismatched stores is undefined - the compiler should prevent this from happening.

The following instruction sequence stores the double precision value in FPAreg to the word· ,address
(Wptr+7) - N.B. the double word value is stored in (Wptr+7) and (Wptr+8).

Idlp 7; fpstnldb

The state of the two stacks during this sequence is shown in figure 11.2.

Areg = a FPAreg = fa
Breg = b FPBreg = fb
Creg = c FPCreg = fc

Idlp 7

Areg = Wptr+7 FPAreg = fa
Breg = a FPBreg = fb
Creg = b FPCreg = fc

fpstnldb

(Wptr+7): x
(Wptr+8): y

(Wptr+7): x
(Wptr+8): y

Areg =
Breg =
Creg =

a
b
undefined

FPAreg =
FPBreg =
FPCreg =

fb
fc
undefined

(Wptr+7) : lower 32 bits of fa
(Wptr+8) : top 32 bits of fa

Figure 11.2 State of stacks in floating-point store

Storing to arrays is similar to loading from arrays except that there are no store indexed instructions. The
following sequences can be used for storing to component X[e] of a floating-point array X.

e; Idlp X; wsub; fpstnlsn

e; Idlp X;' wsubdb; fpstnldb

- where X is a REAL 3 2 array

- where X is a REAL64 array

11.5 Compiling floating-point expressions

Compilation of expressions to be evaluated on the floating-point stack can be done in much the same way
as for integer expressions.

A compiler loads a variable, X, by loading into the floating-point stack, the memory address allocated to
that variable

address2(X); fpldnlsn
address(X); fpldnldb

- for single precision X
- for double precision X

A compiler best loads floating-point constants by arranging all constants in a table. The following code
loads a constant C that is positioned at offset Constantc from the a table with base address Constants.

Idlp Constants; Idnlp Constantc; fpldnlsn - for single precision
Idlp Constants; Idnlp Constantc; fpldnldb - for double precision
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N.B. As for the integer table of constants (described in section 7.3.2), this table and the floating-point
constants within it must be word-aligned.

An expression e 1 op e2 is evaluated as shown in the algorithm in section 7.3, but the following sequences
are replaced.

rev
stl temp
Idl temp

becomes
becomes
becomes

fprev
Idlp temp; fpstnl
Idlp temp; fpldnl

where fpstnl and fpldnl here stand for either the single or double precision load or store instruction depend­
ing on the type of the value being placed in a temporary variable.

When FPAreg and FPBreg need to be loaded with specific values - e.g. for a comparison - then code
sequences similar to those given in the section on loading integer operands can be used (section 7.3.1).

11.6 Floating-point rounding mode

When an operation yields a floating-point result, this result is by default rounded to the nearest represent­
able value to the exact result (Round-to-nearest). The IEEE standard does however provide three other
rounding modes. The IMS T9000 provides instructions to set the mode for execution of the subsequent
instruction.

mnemonic name

fprn set rounding mode to round nearest

fprz set rounding mode to round zero

fprp set rounding mode to round plus

fprm set rounding mode to round minus

Table 11.6 Rounding mode setting instructions

The floating-point rounding mode is reset to Round-to-nearest at the end of all other floating-point instruc­
tions (except fplda/~. To use any other rounding mode, one of the set rounding instructions listed in table
11.6 should be executed before the floating-point operation. These explicitly set the rounding mode. If
there is no explicit selection of a rounding mode then the mode is Round-to-nearest.

Round-to-zero mode provides truncation, while the Round-to-plus-infinity and Round-to-minus-infinity
modes have their uses in interval arithmetic and elsewhere.

11.7 Floating-point arithmetic instructions

Floating-point expression evaluation is performed using the floating-point stack. This section introduces
instructions that are used for

• dyadic floating-point arithmetic - arithmetic instructions with two floating-point operands

• monadic floating-point arithmetic - arithmetic instructions with one floating-point operand

11.7.1 Dyadic operations

mnemonic name

fpadd floating-point add

fpsub floating-point subtract

fpmul floating-point multiply

fpdiv floating-point divide

fprem floating-point remainder

Table 11.7 Arithmetic instructions with two floating-point operands
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The dyadic floating-point arithmetic instructions are listed in table 11.7. These instructions evaluate
FPBreg op FPAreg leaving the result in FPAreg, and popping FPCreg into FPBreg like the integer arith­
metic instructions. (Refer also to section 11 .7.2 which describes some multiply and divide instructions that
have one user specified operand and one implicit operand.)

The same instructions are used for single and double precision arithmetic instructions. The arithmetic
instructions return the result as defined by the IEEE 754 standard. They assume both operands are of
the same format - if not the result is undefined. For each instruction the destination (result) of the opera­
tion is the same format as its operands.

For a full discussion of fprem and the associated instruction fprange, refer to section 11 .8.

Load and operate instructions

mnemonic name

fpldnladdsn floating-point load non-local and add single

fpldnladddb floating-point load non-local and add double

fpldnlmulsn floating-point load non-local and multiply single

fpldnlmuldb floating-point load non-local and multiply double

Table 11 .8 Floating-point load and operate instructions

To make the floating-point code more compact some common pairs of instructions can be replaced with
a single instruction. The load and operate instructions shown in table 11.8 are equivalent to the instruction
pairings shown below. These are the four instructions with the greatest effect on the size of code.

(fprx); fpldnladdsn
(fprx); fpldnladddb
(fprx); fpldnlmulsn
(fprx); fpldnlmuldb

fpldnlsn; (fprx); fpadd
fpldnldb; (fprx); fpadd
fpldnlsn; (fprx); fpmul
fpldnldb; (fprx); fpmul

where the optional instruction 'fprx' is one of the rounding mode instructions explained in section 11 .6.

Prior to executing any of these instructions, the first operand has already been loaded onto the floating­
point stack. Therefore the floating-point data being loaded must have the same precision as the data in
FPAreg. Otherwise the operation is undefined. That is FPAreg must contain single precision data prior
to execution of fpldnladdsn and fpldnlmulsn, and must contain double precision data prior to execution
of fpldnladddb and fpldnlmuldb.

11.7.2 Monadic operations

mnemonic name

fpmulby2 floating-point multiply by 2

fpdivby2 floating-point divide by 2

fpexpinc32 floating-point multiply by 232

fpexpdec32 floating-point divide by 232

fpabs floating-point absolute value

fpsqrt floating-point square root

Table 11 .9 Arithmetic instructions with one floating-point operand

The monadicfloating-point arithmetic instructions are listed in table 11.9. These instructions take the value
of the operand from FPAreg and load the result into FPAreg, overwriting the operand value. The other
floating-point stack registers are unaffected.



11 Floating-point instructions

Multiplying and dividing by special values
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Multiplication and division by 2.0 are common. Two instructions fpmulby2 and fpdivby2 perform these op­
erations. These are considerably faster than loading 2.0 and doing an fpmul or fpdiv as they operate direct­
lyon the data in FPAreg.

Similarly multiplication and division by 232 are provided by fpexpinc32 and fpexpdec32 mainly for use in
the conversion routines.

Sign bit manipulation

fpabs replaces FPAreg with its absolute value. i.e. it makes the sign bit positive, except when the operand
is a NaN. For a NaN, the sign bit is left unaltered.

Square root instruction

This section and section 11 .8 use tables to document the effect of instructions in terms of signals and re­
sults for various operand values. The symbol'NaN' in the 'operand conditions' column means either a quiet
NaN or a signalling NaN. The meaning of 'finite_num' is any floating-point value that is not zero, ± infinity
or NaN, while the meaning ofany means literally any possible bit pattern. Where 'finite_num' orOarespeci­
fied without a sign in the 'operand conditions' column, this means that the condition includes both positive
and negative values. Where no sign is included in the 'result' column, the result is the same sign as the
first (or only) operand in the 'operand conditions' column. Where there can be no meaningful result for the
operation, the processor generates a quiet NaN. A full list of NaNs that the processor may produce is
shown in table 11.29.

fpsqrt takes the a single floating-point operand and calculates the square root of this value. The result and
signals raised are shown in table 11 .10.

operand conditions signals result (square root)
SQRT FPAreg

SQRT( NaN) as detailed in section 11.14 as detailed in section 11.14

SQRT( -00 ) FPlnvalidOp, FPError NegSqrtNaN

SQRT( + 00 ) FPError +00

SQRT( -0) none -0

SQRT( +0) none +0

SQRT( -finite_num ) FPlnvalidOp, FPError NegSqrtNaN

SQRT( +finite_num ) nonet SQRT1EEE( +finite_num)

t FPlnexact may be signalled

Table 11.10 Signals raised and result of fpsqrt instruction

11.8 Remainder and range instructions

This section gives a detailed treatment of the dyadic operation fprem (already introduced in section 11.7.1)
and the associated instruction fprange (table 11.11).

mnemonic name

fprem floating-point remainder

fprange floating-point range reduce
~.~

Table 11 .11 Floating-point remainder and range reduction instructions
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fprem

The operation REM as as defined in the IEEE 754-1985t .

T9000 transputer instruction set manual

The instruction fprem calculates the remainder when evaluating the integer quotient of FPBreg divided
by FPAreg. The result is loaded into FPAreg. The value of FPCreg is popped into FPBreg and FPCreg
is left undefined by this instruction. The operands must either both be single precision or both be double
precision floating-point numbers, otherwise the result is undefined. The integer stack is unaffected.

The instruction is interruptible. Floating-point exceptional conditions are signalled according to table
11 .12. The result of REM is always exact.

operand conditions signals result (remainder)
FPBreg REM FPAreg

NaN REM any as detailed in as detailed in section 11.14
any REM NaN section 11 .14

o REM 0 1 FPlnvalidOp, RemainderByZeroNaN
finite_num REM 0 J FPError

± 00 REM 0 1 FPlnvalidOp, RemainderFromlnfNaN
± 00 REM finite num I FPError
± 00 REM ± 00- J

±O REM ± 00 FPError 0

finite_num REM ± 00 FPError finite_num

finite_num1 REM finite_num2 FPUnderflowt not applicablet
(if underflow occurs)

finite_num1 REM finite_num2 none finite_num1 REMIEEE finite_num2
(no underflow)

t As the result cannot be 'inexact', REM cannot underflow unless a trap is taken. The condition is therefore only applicable if the
'underflow' trap is enabled. See also section 11.13.2.

Table 11 .12 Signals raised and result of fprem instruction

fprange

The instruction fprange is similar to fprem, but has two essential differences:-

• In addition to calculating the remainder, it produces the integer quotient result (in floating-point
format).

• It has a limited range of operation. The integer quotient must be less than or equal to 224_1 for
single precision arithmetic, or less or equal to than 253_1 for double precision.

fprange takes the top two floating-point operands on the floating-point stack and calculates the integer
quotient and remainder when dividing the value in FPBreg by the value in FPAreg. The quotient is loaded
into FPBreg and the remainder is loaded into FPAreg. Because the quotient is given by this instruction,
it is suitable for use in rangereduction (for example in trigonometric functions). The operands must be
of the same precision, otherwise the result is undefined. FPCreg and the integer stack are unaffected by
this instruction.

Note that whereas fprem is interruptible, this instruction is not. This is because the maximum execution
time for fprange is much shorter than fprem. Floating-point exceptional conditions are signalled as shown
in table 11.13.

t In summary, when y ~ 0, the remainder r = x REM Yis defined by

r=x-yXn
where n is the nearest integer to the exact value xjy.
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operand conditions signals result result
FPBreg RANGE FPAreg (remainder) (integer quo-

tient)

NaN RANGE any as detailed in as detailed in sec- undefined
any RANGE NaN section 11 .14 tion 11.14

·0 RANGE 0 1 FPlnvalidOp, RemainderByZero- undefined
finite_num RANGE 0 J FPError NaN

±oo RANGE 0 1 FPlnvalidOp, RemainderFromlnf- undefined
±oo RANGE finite num I FPError NaN
±oo RANGE ± 00- J

-0 RANGE -00 FPError -0 +0

-0 RANGE +00 FPError -0 -0

+0 RANGE -00 FPError +0 -0

+0 RANGE +00 FPError +0 +0

-finite_num RANGE -00 FPError -finite_num +0

-finite_num RANGE +00 FPError -finite_num -0

+finite_num RANGE -00 FPError +finite_num -0

+finite_num RANGE +00 FPError +finite_num +0

finite_num1 RANGE finite_num2 FPUnderflowt not applicablet not applicablet
(if underflow occurs)

finite_num1 RANGE finite_num2 FPlnvalidOp, RangeQuotError- undefined
(integer quotient not in range of FPError NaN

destination)

finite_num1 RANGE finite_num2 none finite_num1 finite num1
(no underflow and integer REMIEEE INT-OIV+

quotient within range of destination) finite_num2 fin ite-=,num2

t As the results cannot be 'inexact', RANGE cannot underflow unless a trap is taken. The condition is therefore only applicable if
the 'underflow' trap is enabled.

+floating-point representation ofthe nearest integerto the exact value offinite_num1 /finite_num2 - if the exact value is equidistant
from two integers, then the even integer is chosen

Table 11 .13 Signals raised and result of fprange instruction

As an example of the use of the fprange instruction, consider the following.

example - use of fprange for range reduction

An occam implementation of sine where SINEPRIM is a function that evaluates sines over [-Jt, Jt] could
be

REAL32 FUNCTION SINE( VAL REAL32 X )
VAL REAL32 Two.pi IS 6.283185307 (REAL32):
REAL32 Reduced.X:
VALOF

Reduced.X := X REM Two.pi
RESULT SINEPRIM( Reduced.X

However in practice the value of 2Jt that would be used (Two. PI) would not be exact. As the quotient (X
REM Two.P/) increased this error in 2Jt would be reflected in an increasingly large error in Reduced.X­
Le. the value used in the primary range calculation would become inaccurate. Suppose in this example
that the value JtREAL32 is used to derive Two. Pi where
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JtREAL32 = :Tt + E

then the reduced range of X evaluates to

Reduced.X = X - m X Two. Pi
= X - m X 2 X JtREAL32

=X-2m X (:Tt + E)
= (X - 2m X Jt) - 2m X E

So the Reduced.X calculated consists of the true reduced argument plus the error term -2m X E. As m

is INT({;) this error grows unacceptably large as X grows - for example at X = 1OOJt the error is 6 bits.

To get around this problem an approximation to this error can be added back to the remainder by multiply­

ing an approximation of E byINT(~):Tt. In effect this is using a value of:Tt with twice as many significant bits

as the format provides.

This error correction is needed in all the standard functions so support for it is useful. When calculating
a remainder the quotient is also being developed so the fprange instruction returns the quotient in FPBreg.

IfXis very much larger than Ythen INT(~) cannot be exactly represented in the floating-point format. Suffi­
cient conditions for FPBreg to contain the quotient after the remainder are that (X.exp - Yexp) is less than
23 for single precision and 52 for double precision values. If this is the case then a fast and accurate range

reduction of X into [ - ~Y, ~Y] can be implemented by

address(X); fpldnlsn; - load X into floating-point stack
address(Y); fpldnlsn; - load Y into floating-point stack
fprange; fprev; - execute 'range' operation and reverse

- order of 'quotient' and 'remainder' in stack
address(Yerror); fpldnlsn; -load Yerror (the known error in Y due to loss

- of precision) into floating-point stack
fpmul; fpadd; - calculated (X REM V) + Yerror X (X/V)
address(Y); fpldnlsn; fprem - perform an extra REM Y (see below)

The final fprem is required because after adding the error term the result may possibly lie just outside the

range [ - iY, iYJ. If Y has last bit accuracy then this can be corrected by taking the remainder by Y: In
this sequence, since the proximity of the first operand can be guaranteed, fprem executes very quickly.

Note that both fprem and fprange can only signal FPUnderflow if the 'underflow' trap is enabled. This is
because although they can produce a tiny non-zero result, it is not possible for either of these operations
to lose precision. For the 'underflow' flag to be set, precision must have been lost. Whereas for an 'under­
flow' trap to be taken, it is sufficient for the result be tiny and non-zero.

11.9 Comparisons

11.9.1 Comparison instructions

The IMS T9000 provides the comparison instructions shown in table 11.14.

fpgt, fpge, fpeq and fplg perform (FPBreg comp FPAreg). fpordered tests if FPAreg and FPBreg can be
'ordered' in the IEEE sense.

mnemonic name

fpeq floating-point equality

fpgt floating-point greater than

fpge floating-point greater than or equals

fplg floating-point less than or greater than

fpordered floating-point orderability

Table 11 .14 Floating-point comparison instructions
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Each instruction implements a comparison of two operands. The left hand operand is taken from FPBreg
and the right hand operand is taken from FPAreg. The two operands are popped from the floating-point
stack in all the comparison instructions except fpordered for which the floating-point stack is unaffected
by execution. The operands must be of the same precision, otherwise the result is undefined. Every com­
parison instruction returns a boolean result, which is pushed onto the integer stack.

The instructions: fpeq, fpgt, fpge and fplg implement the IEEE comparison operations '=', I>', '>=' and '<>'
respectively. If one or both of the operands is a NaN, then the result is false. When neither operand is a
NaN, the result of these instructions is as would be expected from the following predicate.

-00 < -finite_num < -0 = +0 < +finite_num < + 00

fpordered implements the IEEE 'NOT(?)' operation, where I?' is the IEEE 'unordered' relation. A relation
is ordered provided that both operands are numeric floating-point values. fpordered therefore always eval­
uates to true provided neither operand is a NaN. This instruction can be used to filter out the case where
the result of another comparison instruction is false because of a NaN,operand. It does not pop the floating­
point stack.

Table 11 .15 summarizes the results of these instructions. The relationship between any two floating-point
numbers is one and only one of the four relations shown in the table: 'greater than', 'less than', 'equal' or
'unordered'. That is, these relations are mutually exclusive. The table shows the result returned by each
comparison instruction for each of these relations. For example if the number in FPBreg is 'less than' the
number in FPAreg, then fpeq, fpgt and fpge return false in Areg, whereas fplg and fpordered return true.

IEEE relations
instruction

'ad hoc' greater than less than equal unordered

fpeq = false false true false

fpgt > true false false false

fpge >= true false true false

fplg <> true true false false

fpordered NOT(?) true true true false

Table 11.15 Results of comparison instructions for all possible relations

The conditions for which these instructions raise signals are shown in table 11.16.

instruction signal raised if either signal raised if either signal raised if either
operand is a signalling operand is a quiet NaN operand is an infinity

NaN but neither operand is a but neither operand is a
signalling NaN NaN

fpeq FPlnvalidOp, FPError FPError
FPError

fpgt FPlnvalidOp, FPlnvalidOp, FPError
FPError FPError

fpge FPlnvalidOp, FPlnvalidOp, FPError
FPError FPError

fplg FPlnvalidOp, FPlnvalidOp, FPError
FPError FPError

fpordered FPlnvalidOp, FPError FPError
FPError

Table 11.16 Signals raised by comparison instructions, for various operand conditions

11.9.2 Implementation of IEEE comparisons

The five instructions described in section 11.9.1, are provided as primitives for building comparison opera­
tions. The comparisons given in the IEEE standard can be constructed from these instructions. This is
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shown in table 11.17. For the code sequences in this table, the following shorthand is used for loading a
floating-point number into the floating-point register.

f1d( X, Y) is defined as 'load X into FPBreg and load Y into FPAreg using suitable
instructions as described elsewhere'

IEEE ad hoc > < = ? FPlnvalidOp code sequence
comparison

A > B T F F F yes f1d( A, B ); fpgt

NOT(A > B) F T T T yes f1d( A, B); fpgt; eqc 0

A >= B T F T F yes f1d( A, B); fpge

NOT(A >= B) F T F T yes f1d( A, B ); fpge; eqc 0

A < B F T F F yes f1d( B, A); fpgt

NOT(A < B) T F T T yes f1d( B, A); fpgt; eqc 0

A <= B F T T F yes f1d( B, A); fpge

NOT(A <= B) T F F T yes f1d( B, A); fpge; eqc 0

A <> B T T F F yes f1d( A, B); fplg

NOT(A <> B) F F T T yes f1d( A, B); fplg; eqc 0

A <=> B T T T F yes f1d( A, B); fpordered; fpgt; or+

NOT(A <=> B) F F F T yes f1d( A, B); fpordered; fpgt; or; eqc 0+

A ? B F F F T no f1d( A, B ); fpordered; eqc 0t

NOT(A ? B) T T T F no f1d( A, B); fpordered;t

A ?<> B T T F T no f1d( A, B ); fpeq; eqc 0

A = B F F T F no f1d( A, B); fpeq

A ?> B T F F T no f1d( B, A); fpordered; cj end; fpge;
end: eqcOt

NOT(A ?> B) F T T F no f1d( B, A); fpordered; cj end; fpge;
end: <next instr> t

A ?>= B T F T T no f1d( B, A ); fpordered; cj end; fpgt;
end: eqcOt

NOT(A ?>= B) F T F F no f1d( B, A ); fpordered; cj end; fpgt;
end: <next instr> t

A ?< B F T F T no f1d( A, B); fpordered; cj end; fpge;
end: eqcOt

NOT(A ?< B) T F T F no f1d( A, B); fpordered; cj end; fpge;
end: <next_instr>t

A ?<= B F T T T no f1d( A, B); fpordered; cj end; fpgt;
end: eqcOt

NOT(A ?<= B) T F F F no f1d( A, B); fpordered; cj end; fpgt;
end: <next instr>t

A ?= B F F T T no f1d( A, B); fpordered; eqc 0; fpeq; or

NOT(A ?= B) T T F F no f1d( A, B); fpordered; fpeq; eqc 0; and

t leaves two values on the floating-point stack

+fpgt forces FPlnvalidOp to be signalled for unordered

t leaves two values on the floating-point stack only if the predicate is 'unordered'

Table 11.17 Code sequences that should be used to implement IEEE comparisons
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N.B. Remember (section 11.9.1) that either X and Y must both be single precision, or they must both be
double precision. Otherwise the behavior of the comparison instructions is undefined.

11.9.3 Some anomalies

It is important when using the comparison instructions, that the user fully understands which instructions
to use for the correct treatment of NaNs.

If all NaNs are to be treated as errors, then it does not matter what result is returned from an 'unordered'
relation - e.g.

(A> B)
(A>= B)
(A= B)

is eQuivalent to
is eQuivalent to
is eQuivalent to

NOT( B >=A)
NOT( B > A)
NOT( A <> B)

only if not considering
result for a NaN operand

In this case the code can use either fpgt or fpge (with or without a logical inversion as appropriate) for any
of the comparisons: '>', '<=', '<' and '>='; and can use eitherfpeq or fplg (with or without a logical inversion
as appropriate) for the comparisons: '=' and '<>'.

However, often the above rules do not apply, since if either operand is a NaN, the result should be false
for the comparisons: '=', '<>', '>', '<=', '<' and '>=' - e.g.

(A> B)
(A>= B)
(A= B)

is not eQuivalent to
is not eQuivalent to
is not eQuivalent to

NOT( B >= A)
NOT( B > A)
NOT(A<> B)

in the general case where
NaN operands are considered

For this reason it is essential to make the correct choice of instructions for these comparisons - i.e. as
shown in table 11.17.

Furthermore when implementing the IEEE comparisons that test for 'unordered' (those that have'?, in
table 11.17), FPlnvalidOp should not be signalled (unless one of the operands is a signalling NaN). The
instructions fpgt, fpge and fplg signal FPlnvalidOp when one of the operands is a quiet NaN, and so execu­
tion of these instructions should be avoided for these comparisons if the relation is unordered - e.g.

(A> B)
(A>= B)

is not equivalent to
is not equivalent to

NOT( B ?>= A)
NOT( B?> A)

If in any doubt, use the sequences recommended in table 11.17.

11.10 Class analysis

mnemonic name

fpnan floating-point NaN

fpnotfinite floating-point not finite

Table 11 .18 Class analysis instructions

The instructions shown in table 11.18 are provided to allow a rudimentary check to be made on the class
of the value held in FPAreg. They push a boolean value into Areg and do not affect the floating-point stack.

fpnan tests to see if FPAreg is a Not-a-Number and fpnotfinite tests to see if FPAreg is not finite - i.e.
is a Not-a-Number or an infinity.

11.11 Type conversion

The transputer has facilities to enable conversions between the integer types (represented by single word
and double word formats) and the floating-point types (represented by single precision and double preci-
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sion formats). Several instructions are provided to perform the component parts of the various conver­
sions. Each conversion can be constructed by using a suitable sequence of these components.

11.11.1 REAL to REAL conversions

mnemonic name

fpr32tor64 floating-point REAL 3 2 to REAL 6 4

fpr64tor32 floating-point REAL 6 4 to REAL 3 2

Table 11 .19 Real to real conversion instructions

The two instructions fpr32tor64 and fpr64tor32 (table 11.19) convert the floating-point value in FPAreg
from one floating-point format to the other. fpr32tor64 is an exact conversion involving no rounding.
fpr64tor32 rounds during the conversion so a set rounding mode instruction must precede it if a rounding
mode other than Round-to-nearest is required.

The behavior of these instructions is undefined if FPAreg does not initially hold the correct precision float­
ing-point data - Le. for fpr32tor64 it must hold a single precision value, and for fpr64tor32 it must hold a
double precision value.

An infinity is represented in the IEEE standard by a floating-point number with maximum exponent but
zero fraction. A Not-a-Number has a maximum exponent but a non-zero fraction. When converting from
one format to the other, infinities are preserved. When a Not-a-Number is converted from single precision
(REAL32) to double precision (REAL64), it is converted to a quiet NaN (if it isn't already quiet). When a
double precision NaN is converted to single precision, it always becomes R64ToR32NaN, which is itself
a quiet NaN. (See section 11.14 for full details).

11.11.2 REAL to INT conversions

mnemonic name

fpint round to floating integer

fpchki32 floating-point check in range of INT32

fpchki64 floating-point check INT64

fprtoi32 REAL to INT32

fpstnli32 floating-point store non-local INT32

Table 11 .20 Real to integer conversion instructions

fpint converts a floating-point number to an integer value in the same floating-point format. This is the
'Round Floating-Point Number to Integer Value' function specified by the IEEE standard. It takes the value
in FPAreg and rounds it, according to the current rounding mode, to an integer value. If a rounding mode
other than Round-to-nearest is required for the conversion then this instruction should be preceded im­
mediately by the mode selection instruction. For example if FPAreg contained 345.678 then after

fprz; fpint

FPAreg would contain 345.0.

fpchki32 and fpchki64 check that the floating-point value in FPAreg (regardless of precision) lies in the
range of the relevant integer type. If the value lies outside the range then FPlnvalidOp and FPError are
signalled.

To aid code compactness the most common floating-point to single word integer case

fpint; fpchki32
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can be replaced with the single instruction
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fprtoi32

fpstnli32 firstly converts the floating-point number in FPAreg to an integer value, rounding towards -00 .

It then converts the number to a 64-bit twos-complement integer, and stores the least significant 32-bits
of this integer in the location pointed to by Areg.

The behavior of this instruction is only defined if FPAreg contains a floating-point number, the integer part
of which lies within the range of a 64-bit integer. Note that this excludes infinities and NaNs.

Code sequences for the conversions to integer from floating-point are shown below. Note that rounding
to an integer must be performed by fpint (or fprtoi32) as described above prior to applying the rest of the
conversion sequence.

• floating-point variable (fp) to single word integer, Round-to-nearest mode, error checked, storing
the result in X:

address2(fp); fpldn/t; fprtoi32; address(X); fpstnli32

• floating-point variable (fp) to double word integer, truncated (Round-to-zero mode), unchecked,
storing the result in Y:

address(fp); fpldnl; fprz; fpint; fpdup; address(Y); dup; fpstnli32; Idnlp 1; fpexpdec32; fpstnli32

In this sequence, the floating-point number is duplicated using fpdup. The first copy of the num­
ber is used to convert the less significant part of the number. The second copy of the number
divided by 232 using fpexpdec32 prior to conversion in order to yield the more significant part of
the number.

11.11.3 INT to REAL conversions

mnemonic name

fpi32tor64 INT32 to REAL64

fpi32tor32 INT32 to REAL32

fpb32tor64 BIT32 to REAL64

fpadddbsn floating-point add double producing single

Table 11.21 Integer to real conversion instructions

The various integer to real type conversions can be provided by code sequences using the instructions
listed in table 11.21. The following describes each instruction and provides suggested sequences for these
conversions. Each sequence should be followed by code to store the converted value into its destination
if necessary. Where required the rounding mode for the conversion can be set.

Single word integer to double precision floating-point

fpi32tor64 takes the single word integer value from the address contained in Areg and converts this to
a double precision floating-point number in FPAreg. This is an exact conversion (Le. no rounding is re­
quired).

For example a single word integer (int32) is converted to a double precision floating-point number by

address2(int32); fpi32tor64

Single word integer to single precision floating-point

The sequence

t fpldnl is defined on page 131
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fpi32tor64; (fprx); fpr64tor32
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where the optional instruction 'fprx' is one of the rounding mode instructions explained in section 11.6,
converts a single word integer to a single precision floating-point number. But this can be replaced by the
shorter equivalent sequence

(fprx); fpi32tor32

fpi32tor32 takes the single word integer value from the address contained in Areg and converts this
(rounding if necessary) to a single precision floating-point number in FPAreg. This is preceded by a round
mode selection instruction if a rounding mode other than Round-to-nearest is required.

For example a single word integer (int32) is converted to a single precision floating-point number in Round­
to-zero mode by the sequence

address2(int32); fprz; fpi32tor32

Double word integer to double precision floating-point

A conversion from double word integer to double precision floating-point is performed by converting each
word of the double word integer to double precision and adding them together. The more significant word
is converted to floating-point by fpi32tor64 and the less significant word by fpb32tor64.

fpb32tor64 takes the unsigned 32 bit value from the address contained in Areg and converts this to a
double precision floating-point number of the same value in FPAreg. This is an exact conversion.

Hence the following instruction sequence converts from double word integer (int64) to double precision
floating-point using Round-to-nearest mode.

address2(int64); dup; fpb32tor64; Idnlp 1; fpi32tor64; fpexpinc32; fpadd

Here, firstly the less significant word of the double word integer is converted by fpb32tor64 as an unsigned
integer to double precision floating-point format. Secondly the more significant word is converted by
fpi32tor64 as a signed integer, and then multiplied by 232. The two results are summed to give the double
precision representation. This last action may cause the result to be rounded.

Double word integer to single precision floating-point

fpadddbsn adds two double precision floating-point numbers in FPAreg and FPBreg to produce a correct­
ly rounded single precision value in FPAreg. FPCreg is popped into FPBreg leaving FPCreg undefined.
This should be preceded by a round mode selection instruction if a rounding mode other than Round-to­
nearest is required.

Both operands must be double precision, otherwise the result is undefined. FPlnvalidOp is caused by sig­
nalling NaNs and adding infinities of opposite sign. If either operand is a NaN then the result is
R64ToR32NaN.

For example, using the following sequence, a double word integer (int64) is converted to a single precision
floating-point number in Round-to-minus-infinity mode.

address2(int64); dup; fpb32tor64; Idnlp 1; fpi32tor64; fpexpinc32; fprm; fpadddbsn

The user may instead be tempted here to use the same conversion sequence as that described for conver­
sion from double integer to double floating-point, followed by an fpr64tor32 instruction. This would not be
accurate since rounding would occur after both fpadd and fpr64tor32; the fpadddbsn removes this double
rounding.

In the conversions from double word integer, the round mode selection takes place immediately before
the results from converting the two halves of the double word integer are added together as the sub-con­
versions from integer to floating-point are exact.
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11.12 Floating-point state
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The floating-point state comprises the content of the floating-point stack, and the floating-point status
word. The latter, which contains rounding mode and precision information, is discussed below, as are the
effects of descheduling, interrupting, and trapping on the floating-point state, and the instructions that can
be used to store and load this state.

11.12.1 Floating-point status word

The currently executing process has a floating-point status word associated with it. This is stored within
the floating-point status register (FPstatusReg). Its format is shown in table 11.22. This shows that four
pieces of information are stored in this word: the floating-point rounding mode, and the type of floating­
point value stored in each floating-point stack register.

field (bit numbers) meaning

0-1 rounding mode

2-3 type of floating-point value in FPAreg

4-5 type of floating-point value in FPBreg

6-7 type of floating-point value in FPCreg

8 to 31 reserved - read and write as zeros

Table 11.22 The format of the floating-point status word

The rounding mode may be one of the four modes specified by IEEE 754. This is encoded into a two bit
field and the binary value for each mode is shown in table 11.23. Although the rounding mode is reset after
execution of every instruction (section 11.6), the mode needs to be stored as part of the shadow state
when an instruction is interrupted.

value meaning

0 IEEE round zero

1 IEEE nearest

2 IEEE round + infinity

3 IEEE round - infinity

Table 11 .23 The floating-point rounding mode field values

The format of the floating-point value stored in any of the floating-point stack registers, can be single pr~ci­

sion or double precision. This information is represented as shown in table 11.24.

value meaning

0 single precision - IEEE format 32~bit floating-point number

1 double precision - IEEE format 64-bit floating-point number

2 reserved

3 reserved

Table 11.24 The floating-point type field values

11.12.2 Saving the floating-point state

Timeslicing and descheduling

In the same manner that information must not be left on the integer stack when a process may be desche­
duled, care must be taken with the floating-point stack.



144 T9000 transputer instruction set manual

The floating-point registers are not saved when a process is descheduled. This is the same as for the inte­
ger registers. To take account of this a compiler must ensure that at all descheduling points, there is no
information being stored on the floating-point stack. Any data that is needed later must be stored in tempo­
rary variables.

When a process is scheduled it can make no assumptions about the contents of the floating-point regis­
ters. If floating-point arithmetic is to be used then data needs to be loaded into the floating-point registers
thus setting the round mode to Round-ta-nearest. Hence the value of the rounding mode when a process
is scheduled, and by implication when a process is descheduled, is irrelevant.

Interrupts

When a high priority process interrupts a low priority process the floating-point state is copied into shadow
registers and retrieved when control is returned to the low priority process. The conditions required to en­
sure correct behavior of low priority processes are sufficient to ensure correct behavior of high priority pro­
cesses.

Traps

When a process traps, the trap-handler or supervisor can store the floating-point state by executing fpstall.
Conversely when returning from the trap, the state can be reloaded with fpldall. These instructions are
explained in section 11 .12.3, and an explanation of how they would normally be used is given later in sec­
tion 13.2.3.

11.12.3 Instructions for saving and loading floating-point state

mnemonic name

fpstall floating-point store all

fpldall floating-point load all

Table 11 .25 Floating-point state instructions

fpstall

The instruction fpstall stores the floating-point register values into the data structure addressed by the
pointer in Areg. The floating-point stack is undefined, and the integer stack is popped leaving Cregunde­
fined.

The data structure pointed to by Areg contains seven words of data. The instruction writes the floating­
point status word (see section 11 .12.1) into the single word fp.FPstatusReg slot of the data structure.
It then writes the current value of each floating-point stack register into the other three slots. Each of these
slots is two words wide so that double precision floating-point values can be stored. Where a floating-point
stack register holds single precision data, this is loaded into its two word slot at the location with the lower
address. This is summarized in table 11.26.

fpldall

The instruction fpldall loads the floating-point register values from the data structure addressed by the
pointer in Areg. The integer stack is popped leaving Creg undefined.

The data structure pointed by Areg contains seven words of data. The instruction loads the floating-point
status word (see section 11.12.1) from the single word fp.FPstatusReg slot of the data structure. It then
restores each floating-point stack register from the other three slots. This is summarized in table 11.26.
Note that an effect of this instruction is that the rounding mode may change.
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word offset slot name purpose

5 fp.FPCreg loaded into / stored from floating-point stack regis-
ter C by fpldall / fpstall

3 fp.FPBreg loaded into / stored from floating-point stack regis-
ter B by fpldall / fpstall

1 fp.FPAreg loaded into / stored from floating-point stack regis-
ter A by fpldall / fpstall

0 fp.FPstatusReg loaded into / stored from floating-point status regis-
ter by fpldall / fpstall

Table 11.26 Floating-point state data structure

11.13 Exception handling mechanism
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This section discusses the IMS T9000 exception handling mechanism and explains how to implement an
IEEE trap handler. The term 'T9 exception handler' is used here to mean trap-handler or supervisor de­
pending on whether a trap has been taken from an L-process or P-process. The term 'IEEE (trap) handler' .
refers the the 'trap-handler' specified in the standard (section 8).

The IMS T9000 has a flag and a trap enable bit associated with each of the floating-point exceptions. When
the IMS T9000 detects an exceptional condition, it raises one of the signals shown in table 11.27. These
exceptional conditions represent a subset of the error conditions that are detected by the IMS T9000. (A
more general treatment of signalling and handling of errors is given in section 10.3.) Table 11.27 states
for each signal, which flag is set, or under what circumstances a trap is taken.

signal extra condition for trap to be taken flags set if trap not taken

FPError sb.FPErrorTeBit sb.FPErrorFlag

FPlnvalidOp sb.FPlnOpTeBit sb.FPlnOpFlag

FPDivideByZero sb.FPDivByZeroTeBit sb.FPDivByZeroFlag

FPOverflow sb.FPOvTeBit sb.FPOvFlag

FPUnderflowt sb.FPUndTeBit sb.FPUndFlag

FPlnexaet sb.FPlnexTeBit sb.FPlnexFlag

t To comply with the IEEE standard, FPUnderflow is signalled on detection of 'tininess' if trapping is enabled, but other-
wise on detection of 'tininess' and 'inexact'.

Table 11.27 Effect of signals raised due to detection of exceptional conditions

The IMS T9000 provides a general floating-point exception ('floating-point error') as an alternative (sim­
pler) method of handling exceptions. If enabled, this exception occurs when FPError is signalled. The
conditions that cause this signal are a superset of the conditions which cause FPlnvalidOp, FPDivideByZ­
era and FPOverflow signals. FPError is also signalled when a NaN (either signalling or quiet) or an infinity
is used as an operand of a floating-point operation. This is of interest to the user who does not want to
analyze the type of exception, but is just interested in detecting any extraordinary floating-point conditions.
For example many high-level languages treat these conditions as errors. However note that FPUnderflow
and FPlnexact do not cause 'floating-point error', so if these conditions need to be detected, then this must
be done explicitly (by enabling the respective traps or examining the flags).

[The 'floating-point error' exception is extra to the IEEE specification, and provides compatibility with the
IMS T805 floating-point error flag. The latter treats FPlnvalidOp, FPDivideByZero, FPOverflow and the
use of any NaN or infinity as an operand to a floating-point operation as a floating-point error. The IMS
T9000 retains compatibility with the IMS T805 by providing a flag and a trap enable bit associated with
the T805 error conditions. These are the sb.FPErrorFlag and the sb.FPErrorTeBit which are used to
implement 'floating-point error'.]
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Exceptions are either represented by the setting of a flag or by the occurrence of a trap. Unless a trap is
taken, the flag reserved for that exception is set (table 11.27). If the trap is enabled, a value is presented
to the T9 exception handler (in Breg) to indicate the exception that has occurred (table 11 .28), but no flags
are set.

error type error type symbol condition for trap to occur error meaning
value (hex)

7 (#07) et.FPError FPError AND sb.FPErrorTeBit 'floating-point error,r

8 (#08) et.FPlnvalidOp FPlnvalidOp AND sb.FPlnOpTeBit IEEE 'floating-point
AND invalid operation'

(NOT 'conditions for et.FPError')

9 (#09) et.FPDivideByZero FPDivideByZero AND IEEE 'floating-point
sb.FPDivByZeroTeBit divide by zero'

AND
(NOT 'conditions for et.FPError')

10 (#OA) et.FPOverflow FPOverflow AND sb.FPOvTeBit AND IEEE 'floating-point
(NOT 'conditions for et.FPError') overflow'

11 (#0B) et.FPUnderflow FPUnderflow AND sb.FPUndTeBit IEEE 'floating-point
AND underflow'

(NOT 'conditions for et.FPError')

12 (#OC) et.FPlnexact FPlnexact AND sb.FPlnexTeBit IEEE 'floating-point
AND inexact result'

NOT ('conditions for et.FPError' OR
'conditions for et.FPOverflow' OR
'conditions for et.FPUnderflow')

t This is not an IEEE exception. See above.

Table 11.28 Exceptional conditions and error types

When a floating-point instruction is executed, it is possible for more than one signal to be raised. More
precisely: an FPError can coincide with FPlnvalidOp, FPDivideByZero, FPOverflow, or FPlnexact; an
FPOverflow can coincide with FPlnexact; and an FPUnderflow can coincide with an FPlnexact.

However, only one error type value (first column of table 11.28) is provided to the T9 exception handler
and this value is supplied according to these rules: where there is any conflict, the 'floating-point error'
takes precedence, followed by 'floating-point overflow' or 'underflow' (these are mutually exclusive), fol­
lowed by 'inexact'. The precedence of the IEEE exceptions is that set out in the IEEE 754 standard. (N.B
These precedence rules are incorporated into the column labelled 'conditions for trap to occur' in table
11.28.) In contrast, when traps have not been enabled, the signalling of multiple floating-point exceptional
conditions gives rise to the setting of all the corresponding flags.

For example, consider what happens ifsay both FPOverflow and FPlnexact are signalled. While sb.FPEr­
rorTeBit is set, it is et.FPError which is presented to the T9 exception handler (loaded into Breg). If on
the other hand, this bit is not set, but both sb.FPOvTeBit and sb.FPlnexTeBit are set, then et.FPOver­
flow is presented since this has the higher priority. If only sb.FPlnexTeBit is set, et.FPlnexact is pres­
ented. In all these cases, no flags are set as a result of these error signals because a trap is taken. Finally
if no trap enable bits are set, then a flag is set for each error according to table 11.27.

Thus if any of the trap enable bits are set such that a single exceptional condition causes a trap to be taken,
then the number for that exception is presented to the T9 exception handler. If more than one trap enabled
exceptional condition is signalled, then only one exception is presented to the T9 exception handler ac­
cording to the above precedence rules. If a trap is not taken, a flag is set for each exception.

11.13.1 State delivered by floating-point exception - Implementing an IEEE (trap) handler

Where a trap occurs as a result of a floating-point exceptional condition, the floating-point state is restored
to the state that was present before the operation was performedt (but see section 11.13.2). This state
can be stored in the appropriate data structure using fpstall (section 11.12.3).
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It is therefore straightforward for the T9 exception handler to invoke an IEEE handler, passing via parame­
ters the information that the standard requires to be delivered to an IEEE handler. The floating-point state
can be used to calculate this information as described below. Where it is necessary to re-execute a trapped
instruction, the instruction opcode can be obtained from the location pointed to by the address in the
th.Eptr (or pS.Eptr) slot, and the initial state can be reloaded with fp/dal/.

• All exceptional conditions signalled by the instruction can be ascertained by examining the flags
(using stf/ags) having re-executed the instruction with traps disabled.

• The kind of operation performed can be ascertained by examining the instruction's opcode.

• The destination's format can be determined by examining the floating-point status word and the
instruction's opcode.

• The operand values are part of the restored floating-point state.

• For 'inexact', the result to be delivered to the IEEE handler (correctly rounded) can be obtained
by re-executing the instruction with traps disabled.

• For 'overflow' and 'underflow', the result to be delivered to the IEEE handler can be computed
from the original values.

Finally when the IEEE handler has fully analyzed the trap cause, the T9 exception handler might for exam­
ple be required to present its own result for the instruction. It may do this as follows:-

• by loading the floating-point stack and floating-point status register with the appropriate data (us­
ing fp/da/~

• by setting the appropriate flags in the status register (using /dflags and stf/ags) to indicate which
exceptional conditions have been detected

• by restarting the code from the correct point by executing tret (or goprot).

11.13.2 Some anomalies

Compound instructions

Care must be taken with the compound instructions - namely: fp/dn/addsn, fp/dn/adddb, fp/dn/mu/sn,
fp/dn/mu/db, fpi32tor32 and fprtoi32. Either stage of these two-part instructions can cause a trap. The pro­
cessor behaves in the same way that it would if both instructions (that the compound instruction replaces)
were executed separately. -

For the load and operate instructions (fp/dn/addsn, fp/dn/adddb, fp/dn/mu/sn and fp/dn/mu/db) , floating~
point exceptional conditions can only be signalled by the operate part of the instruction (Le. add or multi­
ply). When a trap is taken due to such a signal, the state delivered is the state prior to the operate part.
This is similar for fpi32tor32 (which is equivalent to fpi32tor64 followed by fpr64tor32) since fpi32tor64 can­
not cause a floating-point trap.

fprtoi32 (which comprises fpint and fpchki32) can signal floating-point exceptional conditions in either op­
eration. The state delivered is the floating-point state before the trap causing part of the instruction was
executed. Similarly, the trap behavior of fpadddbsn is the same as the behavior of the sequential execution
of fpadd and fpr64tor32, even though the function is slightly different.

fprem

The possible exceptions for fprem are 'underflow' and 'invalid operation' .The only time that the initial oper­
ands are not restored is when fprem has caused an 'underflow' trap. In this case, the initial value is restored
to FPAreg (the divisor), but the value restored to FPBreg may be less than the initial value (the dividend)
by a multiple of the value in FPAreg. For 'underflow' (as well as 'overflow', and 'inexact') traps, the IEEE

t This implies that the result of a floating-point operation is only delivered if a trap is not taken.
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standard requires that the correctly rounded result is presented to the IEEE handler. This can still be
achieved for fprem by re-executing the instruction with traps disabled. For 'invalid operation' (as well as
'divide by zero'), the standard requires that the initial operands are presented to the IEEE handler. This
can be achieved for fprem (as for all instructions) because the initial values are restored when an 'invalid
operation' trap is taken.

11.14 Implementation of NaNs

Section 11.2.3 explains that if a trap is not taken when a 'invalid operation' occurs, then any floating-point
result should be a NaN. Since this NaN is the result of an operation, it must also be a quiet NaN (in accor­
dance with the IEEE standard). Under these circumstances, the IMS T9000 therefore generates one of
the values listed in table 11.29. These are the only NaNs generated by the IMS T9000 unless one of the
operands is a NaN (discussed later).

error constant name single double precision val-
precision ue (quiet NaN)
value
(quiet NaN)

divide zero by zero DivZeroByZeroNaN #7FCOOOOO #7FF80000 00000000

divide infinity by infinity DivlnfBylnfNaN #7FEOOOOO #7FFCOOOO 00000000

multiply zero by infinity ZeroMullnfNaN #7FDOOOO #7FFAOOOO 00000000

addition of opposite infinities or AddOplnfsNaN #7FC80000 #7FF90000 00000000
subtraction of like infinities

negativ~ square root (non-zero) NegSqrtNaN #7FC40000 #7FF88000 00000000

REAL 64 (double precision) to R64ToR32NaN #7FC20000 (not applicable)
REAL 3 2 (single precision) NaN
conversion

remainder from infinity RemainderFromlnfNaN #7FC04000 #7FF80800 00000000

remainder by zero RemainderByZeroNaN #7FC02000 #7FF80400 00000000

quotient out of range in result of RangeQuotErrorNaN #7FC01000 #7FF8020000000000
fprange

Table 11.29 Quiet NaNs generated when FPlnvalidOp is signalled but no trap is taken

When a NaN is changed from single precision to double precision (fpr32tor64) , the sign bit is set to 0, the
exponent field is extended from eight '1 's to eleven '1 's (to maintain the representation as a NaN), and
the 'value' of the fraction field is maintained by setting the 29 least significant bits to O. The most significant
bit of the fraction field is set to 1 to ensure that it is a quiet NaN. The same meaning (e.g. divide zero by
zero) is thus preserved.

When a NaN (either a signalling or quiet) is used as an operand to a floating-point operation, then FPError
is signalled. (This causes 'floating-point error' - if enabled - which provides compatibility with the IMS
T80S transputer. It is not an IEEE exceptional condition.) Also, if a signalling NaN is used as an operand
to a floating-point operation, then FPlnvalidOp is signalled.

Tables 11.30 and 11.31 show the signals raised and the values returned (unless a trap is taken) when NaNs
are present as the inputs to floating-point operationst. Q( value) means that the signalling NaN value is
converted to a quiet NaN (by setting the most significant bit of its fraction). The word 'number' means a
floating-point representation that is not a NaN.

t This does not apply to fpadddbsn, which returns the quiet NaN R64ToR32NaN if either of its operands is a NaN.
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input signals result
(unless trap taken)

signalling NaN FP/nvalidOp, FPError Q(input)

quiet NaN FPError input

Table 11.30 Behavior of monadic floating-point operations for NaN input
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inputs signals result

A B (unless trap taken)

signalling NaN signalling NaN FP/nvalidOp, FPError Q(A)

signalling NaN quiet NaN FP/nvalidOp, FPError Q(A)

quiet NaN signalling NaN FP/nvalidOp, FPError Q(B)

quiet NaN quiet NaN FPError A

signalling NaN number FP/nvalidOp, FPError Q(A)

quiet NaN number FPError A

number signalling NaN FP/nvalidOp, FPError Q(B)

number quiet NaN FPError B

Table 11.31 Behavior of dyadic floating-point operations for NaN inputs

The stack manipulation instructions, the class analysis instructions, the load and store instructions, fp/dall,
fpstall, the integer to real conversion instructions (except fpadddbsn 1) , and the real to integer conversion
instructions (except fpint and fprtoi321), are not classified as floating-point operations and so do not cause
FP/nvalidOp or FPErrorwhen there is a NaN (of any kind) present as an input, nor do they convert a signal­
ling NaN to a quiet NaN.

Note that since a signalling NaN is never generated by the machine, when one is detected it must have
been either created explicitly or created accidentally (e.g. uninitialized or retyped data). The programmer
can hence take advantage of the detection of signalling NaNs. For example it might be useful to 'initialize'
floating-point data to signalling NaNs, so that if this data is used prior to being assigned a proper floating­
point number, then this is signalled.

1. fpint is grouped with the 'real to integer' type conversion instructions because it is used in those conversion sequences. However
it does itself produce a result in floating-point format, and so is a floating-point operation. fprtoi32 is a compound instruction which
incorporates fpint and so this part ofthe instruction is a floating-point operation. Similarly fpadddbsn is grouped with the 'integerto real'
type conversion instructions because it is used in those conversion sequences, butthis has floating-point operands and floating-point
results and so is also classified as a floating-point operation.

2. address(X) loads into the integer stack, the address of the slot that holds variable X - see section 29.
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12 Channels

The concepts of channels and communication between transputer processes were introduced in section
3.2, and more detail was provided in section 8.4, which also considered the implementation issues for
internal channels. This chapter gives more detail on the three types of external channel and considers
some of the implementation details of various communications on these channels. It also considers how
to reset a channel in the event offailure; it provides further details on implementation of resource channels,
including the instructions which are required; and finally it describes some other instructions which relate
to channel communication.

12.1 Compilation and configuration of channels - an overview

Before considering the details of communication betwee-n processes, it is worthwhile having a general pic­
ture of the sort of scheme that could be used to produce machine code for a network of IMS T9000 trans­
puters. The example given is not the only approach that can be taken but it demonstrates some of the
principles which should be understood when designing tools for such a network. The description is based
on a process/channel model which can be described directly in occam, but can also be implemented in
other high-level languages.

In this system, there are two tools provided to produce machine code and data structures from a high-level
description. Firstly there is a compiler, which compiles segments of code and assumes that this code is
to be placed on a single transputer. Secondly there is a configurer which maps these segments onto a
network of transputers.

The code generated by a compiler is always targeted onto. a single transputer. This is referred to as an
'se (separately compiled) unit'. It may consist of any number of parallel (or 'concurrent') processes, but
execution of these processes is only concurrent in concept, since they are all sharing the same epu. The
channels that connect the processes within an se unit, can all be implemented as internal channels as
it is known that each end of the channel is connected to a process that is on the same transputer. (See
figure 12.1.) It is therefore possible to allocate these channels at compile time to channel words in memory.
The se unit may also have channels as external variables or parameters. The compiler does not know
if these are internal or external channels. They will connect to processes in other se units, but it does not
know whether or not the code for that unit will be loaded onto the same transputer. It therefore leaves the
allocation of these to the configurer.

either internal or
external channels

\
I

/------

/ '"
/ I----"----T------.

/
{

\
\

" II I ~
"internal channels

'-----/

Figure 12.1 An se unit - a separately compiled unit of code
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Network mapping of processes onto transputers can be described by:-

• a high-level description of how the se units are connected,

• a network description that describes the hardware, and

• a mapping from one to the other.

This is illustrated by the small example shown in figure 12.2. The configurer takes this information and
deduces where to place each se unit and how to implement the channels which connect the se units.
Note that the channels between se units on different transputers, are implemented as external channels,
while the channels between the se units on the same processes are implemented as internal channels.

internal
channels

;'

/ / ..---- ............ 0 process

• \
external \ CJchannels /

se unit

t

"-.... / D T9000- .-/' transputer

Figure 12.2 A small network

The instructions which are used to communicate between processes (in, out, outbyte, outward, vin, vout,
disc, enbc), do not need to know the type of the channel. One of the parameters that is passed to them
in the integer stack, is the channel address. The value of this address enables the processor to determine
the type of the channel, and act accordingly. Therefore when writing the process code, or designing the
code generator of a compiler, the programmer does not need to know the channel type.

The scheme described above assumes that the configuration is static - Le. it does not change as the pro­
gram is run on the network. A more complicated system might require processes to be dynamically loaded
and channel connections to be made and broken under the control of a distributed operating system. This
is equally achievable with a network of IMS T9000 transputers.

12.2 External channels

As introduced in section 3.2, a channel can either be internal (a communication path between processes
on the same processor) or external (a communication path between processes on different processors).
The implementation of internal channels is discussed in section 8.4. This section describes the three types
of external channel: virtual channels, byte-stream channels, and event channels.

The processor determines the type of the channel from the instruction's channel address parameter. The
channel address mapping is given in subsection 12.4.

A transputer has 4 physical (data) links. Each of these can either be used for virtual channels or for byte­
stream channels, but not both.

12.2.1 Virtual channels

A virtual channel can connect any two processes in a network of IMS T9000 transputers and IMS e1 04
dynamic routing devices. The processors that host the processes do not have to be adjacent, provided
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there is a connecting path through the network. This path must be specified by a 'packet header' which
is associated with the virtual channel. The inputting end of each channel must have a buffer specified
which is capable of storing the maximum sized packet expected. This section provides the background
needed to set up and use virtual channels.

A virtual channel is referenced by using one of the virtual channel addresses (see section 12.4), and the
physical link associated with that channel should be set to 'virtual mode' by configuring the appropriate
VCP link mode register (see section 12.5). A communication must never be attempted on a virtual channel
for which the physical link hasn't been set to virtual mode.

The IMS T9000 incorporates a hardware communications processor, called the Virtual Channel Proces­
sor (VCP), which is able to multiplex any number of virtual channels over each physical link. Each mes­
sage is split into a sequence of packets, and packets from different messages may be interleaved over
each physical link. Interleaving packets from different messages allows any number of processes to com­
municate simultaneously via each physical link. IMS T9000 transputers may be connected directly or via
a network of IMS C1 04 dynamic routing devices. Communication channels can be established between
any two processes regardless of where they are physically located, or whether the channels are routed
through a network. Thus, programs can be independent of network topology.

In order that the VCP of the receiving transputer can distinguish packets that are part of different mes­
sages, each received packet contains one or two bytes that identify a virtual input channel of the receiving
transputer. When a packet is transmitted it may also contain information to route the packet through a
packet switching network of IMS C1 04s. The combination of any routing information and the identification
of the virtual input channel of the receiving transputer is called the packet header. Every packet of a mes­
sage ends with an end-of-packet (EOP) token, except the last packet which ends with.an end-of-mes­
sage (EOM) token.

The maximum length of data in each packet is 32 bytes (excluding the header and the EOP/EOM token).
All but the last packet of a message contain the maximum amount of data; the last contains the maximum
amount of data or less. Each packet has the structure illustrated in figure 12.3. The header bytes (contain­
ing routing and channel information) are transmitted first, followed by the data bytes of the packet (if any),
followed by the encoded end of packet marker. The VCP can thus encode short messages (not longer
than 32 bytes) in a single packet.

The message protocol details are not required by the programmer but the interested reader is referred
to the Communications chapter of The T9000 Hardware Reference Manual.

I header I data bytes (up to 32 bytes) I end of packet I

Figure 12.3 Structure of a packet

The VCP enforces a high-level protocol on each virtual channel. Each packet of data sent along a virtual
channel must be acknowledged before the next is sent to ensure that no. data is lost. An acknowledge
packet is sent automatically by the VCP of the receiving IMS T9000. The transmitting IMS T9000 waits
for the last packet to be acknowledged prior to rescheduling the outputting process, hence ensuring syn­
chronized communication. Data packets on a virtual channel are acknowledged by the VCP by sending
acknowledge packets on another virtual channel back to the VCP which sent them. This acknowledge­
ment is process-to-process and is transparent to intermediate network components.

Virtual channels always occur in pairs between pairs of communicating processors, with one virtual chan­
nel in each direction. If a message is being communicated in one direction, the virtual channel in the oppo­
site direction is used to return acknowledge packets to the sender. The pair of associated virtual channels
is referred to as a virtual link. A virtual link can transfer messages in both directions at the same time with
data packets and acknowledge packets being interleaved on both of the virtual channels. Because virtual
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channels are always paired in this way it is not necessary to include source information in the packets.
Thus packet headers need only represent their destinations.

When the CPU of one transputer performs an output instruction (output, outbyte, outword or variable out~

put), its VCP sends the first packet of the message to another transputer on a virtual channel. When the
VCP of the second transputer receives the packet, it uses the packet header to identify the virtual channel
on which the packet was received. If a process on the second transputer has performed an input instruc­
tion on the channel, the data contained in the packet is stored in the data space of the inputting process.
If there is no process ready to receive the first packet, then it is placed in an in-store packet buffer
associated with the virtual link. When the inputting process becomes ready, the first packet is copied from
the buffer into the data space of the process and an acknowledge packet is sent. This buffer is transparent
to the communicating processes because it is empty when the input process is active.

In order that the data contained in a buffer is not overwritten, the VCP of a transputer that has sent one
packet of a message on a virtual channel to another transputer, does not send another packet on that
channel until it receives an acknowledgment that a process on the second transputer has become ready
to receive the message.

Virtual link control blocks

For each virtual link, a data structure, called a virtual link control block (VLCB), is stored in the memory
of both transputers connected by that link. A VLCB stores information to control the operation of the virtual
link; it is 8 words long and aligned on an a-word boundary. The details of the information stored in this block
are private to the VCP and of no interest to the programmer, but the following provides a brief description
of its usage and type of information that it holds.

A number of instructions (described in section 12.6.1) are provided on the IMS T9000 for manipulating
VLCBs. These instructions may be used to establish the virtual links, dynamically alter the connections,
activate, deactivate and reset the channels, place channels into resource mode, and assist in the
debugging parallel programs.

The physical links are shared by a number of virtual links by threading on linked lists, the control blocks
of the virtual links waiting to use the physical links.

Each VLCB has slots to store the process descriptors of the processes (if any) sending and/or receiving
messages on the virtual link. These slots may be referred to as the channel words for the virtual output
and virtual input channels respectively.

To enable the first packet of any message to be received at any time on a virtual input channel, it is neces­
sary to have a buffer area to hold that packet until the receiving process is ready to transfer the message
into the data area specified by the input instruction. The address of this buffer, which must beword-aligned,
is copied into the VLCB from Breg, when initvlcb is executed (see section 12.6.1).

The virtual link's header contains routing information for its output channel's forward path and its input
channel's acknowledge path. The VLCB specifies this header which is included with each packet sent.

• If a header is up to 3t bytes long it is held in the VLCB itself. This is known as a 'short header'.

• If a header is longer than 3t bytes, it is held in a special region of memory. This is known as a
'long header'. For a long header, the VLCB holds the length of the header and an offset to the
location in memory where it may be found.

The VLCB marks the header as a null header when initialized by initvlcb. The encoding of short headers,
where possible, within the VLCB saves amemory access on every packet sent.

In addition to the 8 word VLCB, there may be another two words for the resource channel data structure
if the receiving channel is a resource channel, butthese are held in a separate area of memory (see section
12.4).

Errors

The VCP can detect a length overrun on an input. This is dealt with by recording an invalid message length
(LengthError.p) in the pw.Length slot of the inputting process workspace data structure. The process
t This value could change in future revisions of the IMS T9000.
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must recognize and handle the error after it has been rescheduled, which it can do with the Idcnt instruc­
tion.

Other VCP and link errors are fully discussed in the Communications and Data/Strobe links chapters of
The T9000 Hardware Reference Manual.

12.2.2 Byte-stream channels

A communication on a byte-stream channel is between processes on adjacent processors. That is, the
processors' links must be physically connected (via a system protocol convertor or a link adaptor). The
variable-length communication instructions cannot be used on byte-stream channels.

A byte-stream channel is referenced by using one of the byte-stream channel addresses (see section
12.4), and the physical link associated with that channel should be set to 'byte-stream mode' by configur­
ing the appropriate VCP link mode register (see section 12.5). This mode of operation enables the IMS
T9000 to communicate with a T2/T4/T8-series transputer, via the IMS C100 system protocol convertor.
It does not provide a communication channel between adjacent IMS T9000 transputers. A communication
must never be attempted on a byte-stream channel for which the physical link hasn't been set to byte­
stream mode.

Output to a byte-stream channel

When an output communication instruction is executed on a byte-stream channel, the current process
descriptor (content of the workspace descriptor register), the pointer to the message source, and the mes­
sage length are saved, and the process is descheduled. The current process descriptor is copied into the
relevant link channel word (see section 12.4).

When all the message has been output and the final acknowledge received, the process is rescheduled
and the link channel word reset to NotProcess.p.

Input from a byte-stream channel

When an input communication instruction is executed on abyte-stream channel, the current process des­
criptor, the pointer to the message destination and the message length are saved, and the process is des­
cheduled. The current process descriptor is copied into the relevant link channel word.

When all the message has been input and the final acknowledge received the process is rescheduled and
the link channel word reset to NotProcess.p.

12.2.3 Event channels

The event-in pins (EventlnO, Eventln1, Eventln2, Eventln3) and event-out pins (EventOutO, Event­
Out1, EventOut2, EventOut3) provide an asynchronous handshake interface between external events
and internal processes. Event channels provide process synchronization but cannot transfer any data.
Each pair of event-in and event-out pins (0 to 3) can act independently as either an input or an output event
channel, but not both.

Input event channel

When an external event takes an event-in pin high, the associated external event channel be­
comes ready. A process may have already performed an input on this channel. In this case, the
process is rescheduled and the associated event-out pin is set high. If there has not yet been
an input on that channel, then the processor does not set the event-out pin high until one occurs.

The processor then resets the event-out pin to low when it sees the event-in pin go low. See fig­
ure12.4.

Output event channel

When a process performs an output on an event channel, the IMS T9000 asserts the event-out
pin and deschedules that process. This action instructs the external hardware, which connects
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to the event pins, to perform an action. When the processor sees a low-to-high transition on the
associated event-in pin, it reschedules the process and sets the event-out pin to low. The external
device should then lower the signal on the event-in pin to complete the handshake. See figure
12.4.

If no process performs an output on a particular event channel, then the event-out pin for that
event is never be taken high. The event-out pins are taken low when reset occurs or when a re­
setch instruction (see section 12.8.1) is executed on that channel.

Input event channel

Eventln

EventOut

Eventln

EventOut

-----1 \'-----
External hardware asserts Eventln

T9000 acknowledges event request

Output event channel

--f ~
External hardware acknowledges event request

-----1 \'----
T9000 asserts EventOut

Figure 12.4 Event channel full handshake

The addresses of these event channels are shown in figure 12.8. For each pair, the input channel is one
channel address word lower than its corresponding output channel. This is consistent with the channel
address space for virtual channels and byte-stream channels. Note also that channel address
#t80000020 is an event input channel, and this is consistent with the T2!T4!T8-series transputer.

When the state of an event channel is empty (this and other channel states/modes are defined in section
12.3), the channel word has the value NotProcess.p. If the state is waiting (inputting, outputting or en­
abled) then it contains the process descriptor of the communicating process. If the event channel is in the
resource mode idle state, then it contains the value ResChan.p. The reverse channel word - that is, the
other channel word of the input/output pair - holds the value NotProcess.p when the event channel is acti­
vated. When the channel is deactivated, it holds the special value Deactivated.p. Hence for an event chan­
nel to be initialized ready for communication, both the forward and reverse channel words should be as­
signed the value NotProcess.p. This is achieved by applying to the channel address, the instructions
resetch and setchmode which are detailed elsewhere in this chapter.

Use of event channels as interrupts

These channels can be used to handle external interrupts. In real-time applications, it is important for a
processor to be able to respond quickly to a signal from an external device. Input event channels can thus
be used as interrupt pins with a full handshake facility. The following procedure explains how to do this.

An interrupt handler, implemented as a high priority process, should execute an input instruction on an
input event channel. If the associated event-in pin is low, then this process is descheduled. It takes no
t #n represents a hexadecimal value.
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further action unless that pin goes high. If it does, then the high priority process is rescheduled, and pro­
vided that the processor is currently executing a low priority process and interruption is enabled, an inter­
rupt will occur at the next interrupt point. The high priority interrupt handler then resumes execution.

12.3 Channel states and modes of operation

12.3.1 Normal channel states

A 'normal' channel is defined as a channel which cannot be in resource mode. Such a channel can be
essentially in one of two states: empty or waiting. Prior to receiving its first communication, the state of
the channel is described as empty. When a single communication instruction (input or output) has been
applied to that channel, its state is described as waiting. A channel is also waiting if it has been enabled
in an alternative sequence. It remains in the waiting state until the communication is synchronized with
the second communication instruction.

A virtual channel may also be in a third state: stopping. This is a 'winding down' state which is necessary
when a virtual channel is stopped. When an input channel is stopping, any received packets are acknowl­
edged. When an output channel is stopping, any packet queued will not be sent, but the channel must
receive an acknowledge for any packet which has already been sent.

12.3.2 Resource channel states

A resource channel (as explained in section 8.8) has two modes: normal mode and resource mode. Within
each of these modes the channel may be in one of two states.

In normal mode the resource channel behaves identically to a 'normal' channel.

In resource mode, the synchronization mechanism of the resource channel is as described in section 8.8.
Prior to receiving an output, the state of the channel is described as idle. When an output instruction is
applied to a resource channel, a 'claim' is made for the resource. If the server process is waiting on the
resource, then the 'claim' is granted, and the channel is returned to normal mode. Otherwise, the channel
is put on the resource queue and the state is described as queued.

12.3.3 Virtual and event channel activation modes

Each end of a virtual or event channel can be either 'activated' or 'deactivated'.

Both ends of the channel must be activated for communication to occur.

No communication can occur while either end of the channel is deactivated, but no state or data is lost.
This puts the channel in temporary suspension. For example, a virtual channel remains deactivated until
it is known that the virtual link headers have been set up correctly at both ends. When deactivated, an
output channel cannot send any data packets, and cannot cause the VCP to schedule a process. If a pack­
et is received on a deactivated input channel, then it is stored as normal, but no acknowledge packet is
sent, and no scheduling actions can occur.

12.4 Channel configuration and mapping

The VCP and CPU (in common with a number of other sub-systems of the IMS T9000) are controlled via
registers in a configuration space. The registers are accessed via the Idconf and stconf instructions, or
via CPeek and CPoke command messages (described in the Control system chapter of The T9000 Hard­
ware Reference Manua~ received along control link CLinkO. This subsection describes some of these
configuration registers and also defines the relationship between the addressing of channels and the ad­
dressing of memory.

A channel address is the value used to access a channel in a communication instruction. The IMS T9000
channel address space is shown in figure 12.5. The special channel address names, MemStart and
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MinInvalidChannel, are introduced later in this section. MinVirtualChannel and MinEventChannel are
constants defined in section A.2.7 of appendix A.

Event channels are always accessed via event channel addresses. The physical data links are normally
accessed via virtual channel addresses. However, each IMS T9000 physical link may be set to operate
in 'byte-stream mode' for use in mixed transputer systems. They are then accessed via the byte-stream
channel addresses.

channel address

#80000040

#80000020

#80000010

#80000000

internal channels

illegal channels

I

virtual channels

events channels

byte-stream channel inputs

byte-stream channel outputs
MostNeg

MinEventChannel

MinVirtualChannel

MinInvalidChanne

MemStart

Figure 12.5 IMS T9000 channel address space

The IMS T9000 memory space is shown in figure 12.6. The special memory address names, MemStart,
HdrAreaBase and ExternalRCbase, are introduced later in this section.

The user must not directly access the memory space below MemStart. To examine and assignthe channel
control information, the user should execute the instructions described in section 12.6.1 which access this
area via the channel address space.
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memory address

MemStart

HdrAreaBase

ExternalRCbase

MostNeg

process workspace

packet buffer region

header region

resource channel
data structures

virtual link control blocks

byte-stream and event
channel control words

access via
special
instructions

(base of memory)

159

Figure 12.6 IMS T9000 memory map

Note that a virtual channel address does not equate to the memory address of the VLCB which implements
that virtual channel.

12.4.1 Configuration register instructions

mnemonic name

stconf store to configuration register

Idconf load to configuration register

Table 12.1 Configuration instructions

A complete list of the configuration registers and their ad9resses is given in the Configuration register ref­
erence guide chapter of The T9000 Hardware Reference Manual. The instructions in table 12.1 are used
to write data to and read data from these registers.

stconf loads the data held in Breg into the configuration register specified by the configuration write-ad­
dress in Areg. Creg is popped into Areg leaving Breg and Creg undefined.

Idconfreads the data held in the configuration register specified by the configuration read-address in Areg,
and loads this into Areg. Breg and Creg are unaffected.

Both instructions are privileged. They both signal/ntegerError if an invalid configuration address is passed
in Areg.
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12.4.2 Configuration registers used for memory mapping

Free memory start value register

The register MemStart holds a pointer to the start of free memory - MemStart. This identifies the first word
of memory that is not used by the VCP for implementation of external channels. An example of setting
this register up is given on page 169.

The communications instructions operate by treating all channel addresses at or above MemStart as inter­
nal channels - that is channels between processes executing on the same processor. All channel commu­
nications below this address are transferred to the VCP, after checking for illegal addresses.

mnemonic

Idmemstartval

name

load value of MemStart address

The Idmemstartval instruction can be used to obtain the free memory start value. This pushes MemStart
onto the integer stack. It is a privileged instruction.

Packet buffers

Each virtual link must have an allocated packet buffer, which may be placed in any area of memory space
that is not reserved for other use. An efficient strategy is to use maximum size (8 word) packets and align
these to cache lines (4 words) in a region below MemStart but above the region allocated for headers.

Minimum invalid virtual channel address register

There is a range of channel addresses below MemStart that do not correspond to valid external channels.
The memory below the equivalent memory address MemStart normally contains virtual link control blocks
and headers. The lowest channel address that corresponds to an invalid channel address - Minlnvalid­
Channel- is held in the minimum invalid channel address register (MinlnvalidChannel). An example of
setting this register up is given on page 169.

External resource channel base address register

A resource channel is a channel that may be in normal mode or resource channel mode. It is implemented
in the same way as a normal channel, but has an additional two word resource channel data structure
(RCDS - see sections 8.8 and 12.7 on resources). For resource channels connecting processes on the
same processor (i.e. internal resource channels), the RCDS is contiguous with the word used as the chan­
nel. For resource channels connecting processes on different processors (i.e. external channels) an
RCDS is associated with each input virtual resource channel and event input resource channel. These
extra words are allocated together in a block, and the base of the block (ExternaIRCbase), which must
be word-aligned, is defined by the external resource channel base address register (ExternaIRCbase).

Header region word offset base register

If the header associated with a virtual output channel is longer than three bytes, it is not held in the VLCB
associated with that channel, but resides in a separate region of store - the 'header region'. The base of
this region - HdrAreaBase - is defined by the header base address register (HdrAreaBase) and must
be word aligned.

12.4.3 Virtual link mapping functions

Allocation of virtual link numbers

Any two virtual channels that have source and destination processes on opposing transputers can be
paired together and assigned to a unique virtual link on each transputer. Figure 12.7 shows a small network
of processes statically connected via virtual links across a communications network. Each virtual link is
given a 'virtual link number'.
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Figure 12.7 Network of processes connected by virtual channels

NB1: It does not matter if the source end of one channel and the destination end of another channel in
a virtual link pair are connected to different processes, provided that these processes are on the same
transputer. For example virtual link 0 on transputer A pairs two channels that connect to different pro­
cesses.

NB2: If it is not possible to pair a virtual channel with a return channel, then that channel must be given
a virtual link to itself on each transputer. For example there is only one channel between virtual link 0 on
tranputer B and virtual link 1 on transputer C. But be aware that the return path is still used to transmit
acknowledges so it is essential that both links are assigned the correct headers.

Mapping packet headers to virtual link numbers

When a packet is received via a physical link, the VCP converts the header number to a virtual link number,
by subtracting the value stored in the appropriate header offset register.

The header offset registers (VCPLinkOHdrOffset, VCPLink1 HdrOffset, VCPLink2HdrOffset,
VCPLink3HdrOffset) are each programmed with an offset. The number of the virtual link to which a pack­
et is directed is calculated by the VCP hardware using the following mapping function: -

virtual link number = (Header - HeaderOffsetN)

where HeaderOffsetN is the content of the header offset register for physical link N via which the packet
was received.

Section 12.4.4 briefly illustrates how this mapping is put into effect for message routing.
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N.B. The header offset value would normally be expected to be no greater than the header value. However
where this is not the case the VCP applies the following mapping function when calculating the virtual link
number:-

virtual link number = (Header + 216 - HeaderOffsetN) rem 216

where rem is the integer remainder operator - Le. it performs a modulo 216 subtraction.

Mapping virtual channel addresses to virtual link numbers

When an instruction references a virtual channel address, the processor automatically converts this ad­
dress to the number of the virtual link associated with that channel. This mapping is given arithmetically
by:-

virtual link number = ('virtual channel address' - MinVirtualChannen -;- 8 (4)

because there are 2 channels mapped to each link, and each channel address is separated by 4.

Hence channel addresses #80000040 and #80000044 are implemented by virtual link 0 and #80000048
and #8000004C are implemented by virtual link 1.

Mapping virtual link number to VLCB memory address

For each IMS T9000 in a network, the VLCB for its virtual link 0 is positioned in memory immediately above
its byte-stream and event channel words at MinVirtualChannel, and is aligned to an eight word boundary
(see figure 12.8). The VLCB for virtual link 1 is positioned immediately above virtual link 0 and so is also
eight word aligned. All other VLCBs are stacked thus in ascending order of virtual link numbers.

The VCP maps each virtual link to its VLCB address by the formula:-

VLCB memory address = MinVirtualChannel + ('virtual link number' x BytesPerVLCB)

where MinVirtualChannel is #80000040 and BytesPerVLCB is 32 for the IMS T9000.

N.B. The user does not need to know this mapping function, but may need to know that 8 words are allo­
cated for each virtual link in order to determine the required value of ExternalRCbase (see figure 12.6).

Figure 12.8 shows the mapping of channel addresses and header numbers to virtual link numbers, and
also shows how each virtual link is allocated a unique VLCB. The example given shows 3 virtual links (6
virtual channels) using 2 words for long headers.
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channel space virtual link memory space
number

#800000BO internal channels MemStart
---

#800000AC header region
#800000A8
#800000A4 resource channel
#800000AO data structures
#8000009C
#80000098 /#80000094
#80000090 / VLCB for
#8000008C

/
virtual link 2

#80000088
#80000084 /#80000080 illegal channel
#8000007C addresses /#80000078 /#80000074 /
#80000070 / 2 / VLCB for
#8000006C /

virtual link 1
#80000068 /#80000064 /
#80000060 / /#8000005C /'#80000058 /#80000054 /'
#80000050 /' VLCB for

#8000004C virtual channel /' virtual link 0

#80000048 addresses 0
#80000044
#80000040 ---
#8000003C
#80000038
#80000034
#80000030 event channel event channel
#8000002C addresses control words
#80000028
#80000024
#80000020
#8000001C
#80000018
#80000014 byte-stream byte-stream
#80000010 channel channel control
#8000000C addresses words
#80000008
#80000004
#80000000

channel/memory
address

Figure 12.8 Mapping of channel addresses and header numbers to the memory address of
the VLCB
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12.4.4 Packet header labelling

There are two strategies that the programmer might adoptfor routing messages in a network of IMS T9000
transputers and IMS C1 04 packet routing switches:-

• header deletion with local link numbering

• global link numbering.

In header deletion, the header comprises two parts. The first part of the header specifies the destination
transputer. The IMS C1 04 packet routing switches are programmed to remove this part of the header prior
to routing the rest of the packet to the destination processor. Hence the rece-iving processor just sees the
second part of the header. This 'local header' is used to calculate the virtual link number and hence the
memory address of the VLCB using the above mapping functions. In this system, the header offset values
are usually set to zero. The local headers correspond to the virtual link numbers and there need be no
correlation between the local header value and the number of the physical link on which the packet was
received. Note that a header is transmitted in ascending order of byte significance, and so the routing
header should be placed below the local header in memory when the header is written (see writehdr in
section 12.6.1).

In global link numbering, each end of every virtual link in the network is given a unique destination address.
This address is then used as the header. The IMS C1 04 packet routing switches are not programmed to
delete headers in this system and so each packet is routed with its header according to the interval label­
ling mechanism described in The IMS e104 Datasheet. Provided that the receiving header addresses of
the virtual links are such that the range of header addresses received on each physical link is contiguous,
it is always possible for the IMS C1 04 packet routing switches to correctly route all messages. By setting
the correct header offset value for each physical link, the IMS T9000 can calculate the virtual link number
and hence the memory address of the VLCB using the above mapping functions.

For example consider the IMS T9000 shown in figure 12.9. The network is configured such that only mes­
sages with headers within a fixed range are received on each physical link.

2..39

headers 0..7

link 0

link 3
T9000

headers 3

rs 96.. 103 link 1

link 2

headers 64..71

heade

Figure 12.9 An IMS T9000 receiving packets with headers in specified ranges

If the contents of the header offset registers are set as

VCPLinkOHdrOffset 0
VCPLink1 HdrOffset 24
VCPLink2HdrOffset 48
VCPLink3HdrOffset 72



12 Channels

then the header to link mapping would be

headers 0..7
headers 32..39
headers 64..71

headers 96.. 103

~ virtual links 0..7
~ virtual links 8.. 15
~ virtual links 16..23
~ virtual links 24..31
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12.5 Other configuration registers for setting up links and VCP

Packet header limit registers

The base and limit of packet headers which are acceptable on each physical link are stored in the header
lower limit registers (VCPLinkOMinHeader, VCPLink1 MinHeader, VCPLink2MinHeader,
VCPLink3MinHeader) and the header upper limit registers (VCPLinkOMaxHeader, VCPLink1 Max­
Header, VCPLink2MaxHeader, VCPLink3MaxHeader). Out of range headers cause the associated
packets to be discarded and, unless the LocalizeError flag (see under 'VCP link mode register' in this
section) is set, generate link errors. These registers can be used for enhanced system security.

VCP link mode register

The VCP link mode registers (VCPLinkOMode, VCPLink1 Mode, VCPLink2Mode, VCPLink3Mode)
contain information about the physical links 0 to 3 respectively.

Bit Bit field Function

0 ByteMode when set to 1, the associated physical link is set to operate in byte-
stream mode - otherwise it is set to operate in virtual mode

1 LocalizeError when set to 1, link errors detected by the VCP are no longer reported
to the control unit - see also the Communications chapter of The T9000
Hardware Reference Manual

2 HeaderLength programs the expected length of the incoming packet header (1 or 2
bytes) for each physical link

0 1 byte header
1 2 byte header

Table 12.2 Bit fields in registers VCPlinkQ-3Mode

VCP command register

The VCP command register (VCPcommand) enables commands to be issued to the VCP. Each bit of
the register corresponds to a command, see table 12.3 below. The command is executed when the bit
is set. Each write to the register can set only one bit.

It is important that the the VCP is not started until the VLCBs have been set up. An example is shown on
page 171. For further details on starting, stopping and resetting the VCP, refer to the Communications
chapter of The T9000 Hardware Reference Manual.

Bit Bit field Function

0 Reset Reset the VCP - stops the VCP and resets the registers to their
undefined level 2 state.

1 Start Start the VCP

2 Stop Stop the VCP 'cleanly' so that channel states are preserved. The VCP
accepts messages currently in transit but no new messages can be
sent.

Table 12.3 Bit fields in the VCPcommand register
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12.6 Setting up the virtual link control blocks

12.6.1 Instructions for setting up a VLCB

To set up virtual channel communication, it is necessary to provide each VLCB with: a physical link num­
ber, header information, and buffer information for input channels. Although it is useful to understand the
contents of the VLCB as described in section 12.2.1, it is not necessary for the programmer to know its
precise structure and memory map. The IMS T9000 provides a set of privileged instructions that allow
the user to set up the VLCB. These are listed in table 12.4 and explained below.

mnemonic name

initvlcb initialize vlcb

sethdr set virtual channel header

writehdr write virtual channel header

readhdr read virtual channel header

insphdr inspect virtual channel header

readbfr read buffer pointer from VLCB

swapbfr swap buffer pointer in VLCB

setchmode set channel mode

Table 12.4 Instructions used for setting up and manipulating the VLCB

The instructions initvlcb, sethdr, writehdr, swapbfr and setchmode are used for setting up the VLCB. The
instructions readhdr, insphdr, swapbfr and readbfr are used for analyzing the current state of the VLCB.

initvlcb

initvlcb initializes the VLCB associated with the channel speCified in Areg. It also associates the word­
aligned packet buffer specified in Breg with the VLCB, and ensures that the VLCB marks the header as
a null header (see section 12.6.2). Both the virtual input and the virtual output channels associated with
this VLCB are deactivated by the instruction. Areg inherits the value of Creg leaving Breg and Creg unde­
fined. The example shown on page 171 illustrates the use of this instruction.

If the packet buffer specified in Breg is not word-aligned, then the instruction signals Unalign.

sethdr

sethdr establishes the physical link number and header type for the VLCB associated with the channel
specified in Areg.Breg holds the physical link number to be associated with the VLCB, or a special value
- Nul/Header - to indicate that a null header is required (see section 12.6.2). Creg holds the word offset
into the header region to specify the location of the header, or it contains a special value - Nul/Offset ­
to indicate that the header is a short header. The integer stack is left undefined after execution. The exam­
ple shown on page 171 illustrates the use of this instruction.

If the unsigned value passed in Breg is greater than or equal to the number of physical links (4) and is
not equal to Nul/Header, then sethdr signals IntegerError. If the unsigned value passed in Creg is greater
than the maximum header region word offset - MaxHeaderOffset - and is not equal to Nul/Offset, then
the instruction signals IntegerError. It only" sets to a null header if both input and output channels for the
VLCB are deactivated. If this is not the case, it signals IntegerError.

If Breg contains the value Nul/Header, then the VLCB marks the header as a null header.

If Breg contains a valid physical link number (0 ... 3), then sethdr records this in the VLCB. If Creg contains
a valid header region word offset (0 ... MaxHeaderOffset) , then it also records this in the VLCB. Note care­
fully that this offset is a word offset and not a byte offset. The absolute address of the header in the header
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region is (HdrAreaBase + 'header region word offset' X 4). If Breg contains a valid physical link number
and Creg contains Nul/Offset, then the link number is recorded in the VLCB but there is no offset to be
recorded.

writehdr

writehdr assigns a packet header to the VLCB associated with the channel specified in Areg. Breg holds
the length in bytes of the header. Creg holds the address of the data area where the header is stored.
The integer stack is left undefined after execution. The example shown on page 171 illustrates the use
of this instruction.

If the value passed in Breg is zero, or is greater than the maximum header length (#FF), then writehdr
signals IntegerError. If the value passed in Breg is greater than the maximum short header length (3) but
the VLCB has not been set up (using sethdr) with a header region word offset, then the instruction signals
IntegerError. The instruction is interruptible.

Prior to execution of this instruction, the header is stored in a contiguous block that is Breg bytes long
and begins at the address held in Creg.

If the header length in Breg is in the range 1 to 3, then the header is a short header, and so is stored in
the VLCB. The length of the header and the header itself are copied into the VLCB, from Breg and data
area pointed to by Creg.

If the header length in Breg is greater than 3, then the header is a long header. This length is written into
the VLCB. The VLCB should have already been initialized with a header region word offset (using sethdr) ,
which identifies the place where the header should be stored. The header is copied to that header region,
from the data area pointed to by Creg.

A packer header is transmitted in ascending order of byte significance, and so the byte pointed to by Creg
will be the first byte transmitted.

readhdr

readhdr copies the packet header of the VLCB associated with the channel specified in Areg, into an area
of store beginning at the address held in Creg. Breg holds the length in bytes of that header. The integer
stack is left undefined after execution.

If the value passed in Breg is not equal to the header length, then the instruction signals IntegerError. If
the VLCB has been set to a null header, then the instruction signals IntegerError. The instruction is inter­
ruptible.

If the header length in Breg is in the range 1to 3, then the header is a short header. The header is therefore
copied from the VLCB to the block pointed to by Creg.

If the header length in Breg is greater than 3, then the header is a long header. The header is therefore
copied from the special header region, to the block pointed to by Creg.

. insphdr

insphdr loads the integer stack with information stored in the VLCB associated with the channel specified
in Areg. It loads Areg with the number of the physical link (0 ... 3) on which the specified channel
communicates, loads Breg with the length in bytes of the header, and loads Creg with the header region
word offset (if applicable).

If the header is a null header, then Nul/Header is loaded into Breg and Nul/Offset is loaded into Creg. If
the header is a short header then the its length in bytes is loaded into Breg, and Nul/Offset is loaded into
Creg. If the header is a long header, then the length is loaded to Breg, and the header region word offset
is loaded into Creg.

swapbfr

swapbfr exchanges the buffer pointer in Breg with the buffer pointer of the VLCB associated with the input
channel specified in Areg.
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The instruction signals IntegerError if the channel address is not a virtual input channel address, and
signals Unalign if the packet buffer specified in Breg is not word-aligned.

The buffer pointer held in Breg is written into the word in the VLCB reserved for the buffer pointer. This
establishes a (new) buffer pointer for the VLCB. Any pointer which may have been previously associated
with the VLCB is loaded into Areg.

Breg inherits the value previously in Creg, and Creg is left undefined after execution.

readbfr

readbfr loads into the integer stack, the buffer pointer, buffer length and received packet status of the
VLCB associated with the input channel specified in Areg. Areg is loaded with the buffer pointer. Breg
is loaded with length in bytes of the packet currently stored in the buffer. Creg is loaded with an integer
representing the receive state.

The instruction signals IntegerError if the channel address is not a virtual input channel address.

The receive state in Creg is as coded in table 12.5.

receive state meaning
code

0 no packet - there is no packet currently
stored in the buffer

1 last packet - the packet stored in the buffer is
the last packet in the message

2 other packet - there is a packet in the buffer
but it is not the last packet of the message

Table 12.5 Meaning of value loaded into Creg by readbfr

setchmode

setchmode activates the virtual channel specified by the channel address in Areg if Breg holds the value
true, or deactivates the channel if it hold the value false. Areg inherits the value previously in Creg, and
Breg and Creg are left undefined after execution. The example shown on 'page 172 illustrates the use
of this instruction.

If the channel address in Areg associates with a VLCB that has a null header when a channel is being
activated, then the instruction signals IntegerError. Also if the value in Breg is not true or false, then it
signals IntegerError. setchmode can also be used on an event or a byte-stream channel (see section
12.9.3), but signals IntegerError if the channel address is not an external channel address.

If the channel address is that of a virtual channel (with a non-null header), then the VCP records the activa­
tion mode of the channel in the VLCB.

Programming for independence of short/long header knowledge

There is no guarantee that future versions of the IMS T9000 will have the same maximum short header
length - namely 3 for the current version. It may be prudent therefore for programs not to assume this
value.

It is possible to set up a header using sethdr and writehdr without knowledge of the maximum length of
a short header. To do this, it should firstly be assumed that the header is a long header and sethdr should
be used to reserve this space in the header region. writehdr then writes the header either into this space
if it is a long header or into the VLCBififls a short header. Finally, insphdrcan be used to determine wheth­
er or not the header is a long or short header, allowing the unused memory in the header region to be freed
if it is a short header.
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12.6.2 Null header

169

When a VLCB is first created or is cleared using initvlcb, the channels associated with it are deactivated,
and there is no header information - Le. it has a 'null header'. "

It is guaranteed whenever a virtual link has a null header, that the virtual channels using the link are deacti­
vated. This prevents communication on these channels and, before communication instructions can use
them, it is necessary to install the virtual link with a header using sethdr and writehdr. The channels can
then be activated using setchmode.

Note if setchmode attempts to activate a virtual link that has a null header, then it signals IntegerError.
Also, sethdr signals IntegerError if either of the channels associated with the specified virtual link are acti­
vated. These instructions thus ensure that a null header cannot be installed with activated channels.

12.6.3 An example

This subsection presents a small example for setting up the virtual links control blocks as well as their
associated buffers. Some assumptions are made as a starting point:-

• no virtual input channels are to be used as resource channels

• all headers are short headers

• the number of virtual links is known and is stored in a local variable - NumVirtualLinks

An outline of this procedure is:

SEQ
... set up configuration registers
... stop the VCP
... set up virtual link control blocks
... start the VCP
... activate channels

Each stage is described in more detail below.

Set up configuration registers and pointer to packet buffer region

In this example the channel and memory maps are to be set up as shown in figure 12.10. There is no
requirement for a resource channel data structure region or a header region; none of the virtual channels
are resource channels and all headers are short headers to be saved in the virtual link control blocks.
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channel address

internal channels

MemStart--+-----------i

illegal channels

MinlnvalidChannel--+------------I

virtual channels

MinVirtuaIChannel--+-----------i

event and byte stream
channels

MostNeg ---'------------'
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memory address

MemStart

packet buffer region

BufferBase--+------------i

VLCBs

byte-stream and event
channel control words

MostNeg

Idl NumVirtualLinks;
Ide 8; prod;
Ide MinVirtualChannel; sum;

Figure 12.10 Example channel and memory maps

The configuration registers that need to be assigned, are: MemStart, and MinlnvalidChannel. It is also
necessary to assign a variable - BufferBase - that points to the start of the packet buffer region.

The value MinlnvalidChannel can be calculated from knowledge of the number of virtual links ­
NumVirtualLinks. Equation (4) above shows that the mapping from virtual channel addresses to virtual
link numbers is obtained by dividing by 8. This mapping can be used reciprocally to determine the minimum
invalid channel address from the number of virtual links.

- calculate the offset address from the minimum virtual
- channel to the first invalid channel address;
- add offset to minimum virtual channel address
- to obtain the first invalid channel address;

Ide MinlnvalidChannelConfigAddr; - store MinlnvalidChannel into configuration register;
steonf,'

The buffer region is placed immediately above the VLCB region. The address of the start of this region
- BufferBase - can be calculated from knowledge of the number of virtual links and the number of words
that should be allocated for each VLCB.

Idl NumVirtualLinks;
Ide BytesPerVLCB;
prod;
Idl MinVirtualChannel;
sum;

stl BufferBase

- calculate total number of bytes required for VLCB region;
- calculate memory address above VLCB region
- (N.B. would be ExternalRCbase if resource channels
- were being used);

MemStart can be calculated from knowledge of BufferBase, and the size of each packet buffer; in this
example each packet buffer is allocated enough memory for a maximum sized packet - MaxPaeket­
Length.
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Idl NumVirtualLinks;
Ide MaxPaeketLength;
prod;
Idl BufferBase; sum
Ide MemStartConfigAddr;
steonf,'
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- calculate total number of bytes required for buffer region;
- calculate memory address above buffer region;
- store MemStart into configuration register;

Stop the VCP

It is advisable to ensure that the VCP has been reset and then put into the waiting state before configuring
the processor's virtual channels.

Ide 1;
Ide VCPeommandConfigAddr;
steonf;

Idtimer;
Ide WaitTimeForVCPreset;
sum;
tin;

Ide 0;
Ide VCPeommandConfigAddr;
steonf,'

- set bit '0' in VCPcommand to reset
- the VCP - see table 12.3;

- wait for VCP to be reset

- clear bit '0' in VCPcommand to return
- the VCP to waiting state;

The value of WaitTimeForVCPreset depends on the priority of the current process. The VCP needs at
most 20~s for the reset to be effective. At low priority therefore, set WaitTimeForVCPreset to 2, and at
high priority, set it to 21.

Set up virtual link control blocks and packet buffers

In this example, when this code is loaded into memory space, it is followed by a block of encoded data
that comprises a 3 block data structure for each virtual link to be set up. Each data structure holds the
following information that is needed for loading into each VLCB.

word offset slot name purpose

2 HeaderOffset header to be associated with virtual link

1 HeaderLenOffset length of the header in bytes (must be ::; 3) - N.B.
must be stored from least significant end of word

0 PhyLinkOffset number specifying physical link on which virtual link will
transmit packets

These data structures are stored contiguously from memory label VLCBdata_'abe'. Note that this informa­
tion could be stored in a more compact form. For example, the length of the header (which in this example
will never be more than 3) and the physical link number could be coded in 4 bits rather than 2 words. How­
ever this would require masking to extract the information, and this example has been intentionally simpli­
fied.

Ide 0; stl (LEDS+le.lndex); - set up 'loop end data structure';
Idl NumVirtualLinks; stl (LEDS+le.Count); -

Ide MinVirtualChannel;
stl CurrentVirtualChannel;

Idl BufferBase;
stl CurrentBuffer_ptr;

- initialize CurrentVirtualChannel,
- a variable that is going to be used to
- point to each virtual output channel
- in turn;
- initialize CurrentBuffer_ptr, a variable
- that is going to be used to point to each
- buffer area in turn;
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Ide (VLCBdata_label- NextlnsL/abelj
Idpi

NextlnsL/abel:
stl CurrentVLCBdata_ptr;

LOOP:
Idl CurrentBuffer_ptr;
Idl CurrentVirtualChannel;
initvleb;

Ide Nul/Offset;

Idl CurrentVLCBdata_ptr;
Idnl PhyLinkOffset;
Idl CurrentVirtualChannel;
sethdr;

Idl CurrentVLCBdata_ptr;
Idnlp HeaderOffset;
Idl CurrentVLCBdata_ptr;
Idnl HeaderLenOffset;
Idl CurrentVirtualChannel;
writehdr;

Idl CurrentVirtualChannel;
Idnlp 2;
stl CurrentVirtualChannel;

Idl CurrentVLCBdata_ptr;
Idnlp 3;
stl CurrentVLCBdata_ptr;

Idl CurrentBuffer_ptr;
Ide MaxPacketLength; sum;
stl CurrentBuffer_ptr;

Idlp LEDS; Ide (END - LOOP)
lend

END:

NextlnsL/abel:

Start the VCP
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- initialize CurrentVLCBdata_ptr, a variable
- that is going to be used to point to the
- VLCB information data structure for
- each virtual link;

- load pointer to buffer area
- load the virtual channel address;
- initialize VLCB for the 'current channel'
- and set up its packet buffer;
- all headers are short headers in this
-example;
- load the physical link number for this
- virtual link;
- load the virtual channel address;
- set up the virtual channel header;

- load pointer to the short header;

- load pointer to the header length;
- load the virtual channel address;
- write header into VLCB;

- adjust the current virtual channel
- address to that of the next virtual
- input channel;

- adjust CurrentVLCB_ptr to point to
- the next VLCB information
- data structure;

- adjust CurrentBuffer_ptr to point to
- the next buffer area;

- test for last iteration;

- load encoded VLCB data here;

Now that the virtual link control blocks and their assoc,iated buffers have been assigned, the VCP can be
started.

Ide2;
Ide VCPeommandConfigAddr;
steonf;

Activate channels

Finally the virtual channels can be activated.

- set bit '1' in VCPcommand to start
- the VCP - see table 12.3;
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Ide 0; stl (LEDS+le.lndex);
Idl NumVirtualLinks;
Idl2; prod; stl (LEDS+le. Count);
Ide MinVirtualChannel;
stl CurrentVirtualChannel;
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- set up 'loop end data structure' -
- N.B. the number of virtual links is multiplied
- by 2 to obtain the number of virtual channels;
- initialize CurrentVirtualChannel, a
- a variable that is going to be used to
- point to each virtual output channel
- in turn;

LOOP: Ide true;
Idl CurrentVirtualChannel;
setchmode; - activate channel;

Idl CurrentVirtualChannel;
Idnlp 1;
stl CurrentVirtualChannel;

Idlp LEDS; Ide (END - LOOP)
lend

END:

12.7 Resource channels

- increment to next virtual link;

Section 8.8 introduced the concept of a resource and discussed its purpose and application. Resource
channels can be implemented on internal, virtual and event channels. This section provides details. It also
explains how a reverse channel from server to client can be implemented. It describes all the instructions
which are used in conjunction with resource channels. Finally it describes how resource channels should
be used to implement various client-server models.

12.7.1 Implementation of internal resource channels

To implement an internal resource channel, a resource channel data structure (RCDS - presented in sec­
tion 8.8.2) should be positioned immediately above the word in memory used to implement an internal
channel (refer to section 8.4.4). The latter can still be used as a normal channel word, but holds the special
value ResChan.p, when the channel is in idle state. If the channel word has this value when an output
instruction is executed, then the processor recognizes that it is in resource mode, and a 'claim' (this opera­
tion is defined in section 8.8.2) is made on behalf of the client process executing the output instruction.

12.7.2 Implementation of external resource channels

A virtual input resource channel

A communication on a virtual channel can be queued on a resource data structure in exactly the same
way as a communication on an internal channel.

The resource (and server process) is on the the same transputer as the receiving end of the virtual chan­
nel, and so it is on this processor that the communication is queued. It is therefore only the input channel
which needs to be in resource mode.

To implement a virtual input resource channel, an RCDS should be associated with the VLCB for that chan­
nel. The positioning of this virtual RCDS is discussed below under 'Placement of resource channel data
structures for external channels'. When an input is received while this channel is in resource mode, the
VCP makes a 'claim' on behalf of that channel to the resource specified by the rc.Ptr slot. The action taken
then is as described in section 8.8.2.

An event resource channel

A communication on an event channel can be queued on a resource in exactly the same way as a commu­
nication on an internal channel or a virtual channel.
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To implement an event resource channel, an RCDS should be associated with the that event channel. The
positioning of this event RCDS is discussed below under 'Placement of resource channel data structures
for external channels'. When an input is received while this channel is in resource mode, the processor
makes a 'claim' on behalf of that channel to the resource specified by the rc.Ptr slot. The action taken
then is as described in section 8.8.2.

Placement of resource channel data structures for external channels

The resource channel data structur.es for external channels are located in a separate area to their
associated channel data structures - Le. the RCDS for a resource input channel is not contiguous with
the VLCB for that channel, and the RCDS each event channel is not contiguous with the channel word
for that channel. The area which stores these data structures is the 'external RCDS block' and begins at
the memory address stored in the external resource channel base address register (ExternaIRCbase).
This address should be set up by the program responsible for allocating virtual channels and resource
channels. Although this area can be placed anywhere, it is best placed below MemStart. The programmer
must also be aware of the other structures which are mapped below MemStart (see figure 12.8).

There is a one to one sequential correspondence between each external RCDS and its associated exter­
nal channel (refer again to figure 12.8). That is, the first two words in the external RCDS block are the
RCDS for event input channel 0 (channel address #80000020), the next two words for event input channel
1 (channel address #80000028) etc. The first two words after the four event resource channel data struc­
tures are the RCDS for the first virtual input channel (channel address #80000040), the next two for the
second virtual input channel (channel #80000048) and so forth.

Observe that if say the tenth virtual input channel (channel address #80000088) is used as a resource
channel, then space must be reserved in the external RCDS block for all the event resource channel data
structures and the first nine virtual resource channel data structures. This is the case whether or not any
these other channels are being used as resource channels. It therefore makes good sense in terms of
memory space economy, to map all the virtual input channels used as resource channels onto to the low­
est address channels possible (from channel address #80000040 upwards), and similarly for event chan­
nels.

12.7.3 Reverse channel

Where a server process is inputting a message on a resource channel, it is often convenient to use the
channel address immediately above the input channel, as an output channel to the client process. This
channel is referred to as the 'reverse channel'. For a virtual channel, the reverse channel is the other chan­
nel (Le. the output channel) in the pair of channels implemented by the virtual link. For an internal channel,
the reverse channel word is the rc.Ptr slot of the resource channel data structure, and so it is only under
certain circumstances that this can be used as a reverse channel.

When the resource channel is in normal mode, it is not associated with an RDS and cannot be on a re­
source queue, and so the rc.Ptr slot of the RCDS is not used to hold a pointer. Hence, since this slot is
positioned immediately above the channel word for an internal resource channel, it may be used as the
reverse channel provided that the channel is in normal mode.

For example consider the following piece of occam code for a client and server model.

PROC Server ( []CHAN OF ANY in, out)
WHILE TRUE

. .. declarations
ALT i = 0 FOR SIZE in

in[i]? message
SEQ

Task( message, i )
out[i]! task_complete
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PROC Client( CHAN OF ANY out, in
. .. declarations
SEQ

out! message
in? task_complete

[n]CHAN OF ANY client.to.server, server.to.client:
PAR

. .. declarations
Server ( client.to.server, server.to.client )
PAR i = 0 FOR n

Client( client.to.server[i], server.to.client[i]
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Server

In this example, the client sends a message to the server and waits for a response (task_complete),
indicating that the server has performed its task, prior to continuing. The server receives the message,
performs the task and acknowledges completion to the client. If this is implemented with the resource
mechanism, then the reverse channel can be used for each component of server. to. client. This
is possible because the grant instruction sets the channel to normal mode. Conversely observe that it isn't
possible to use the rc.Ptr slot as a reverse channel until the grant instruction has been executed. In prac­
tice, the reverse channel should not be used before an input instruction has been executed on the 'forward'
channel, because this would result in deadlock.

Note that as far as the server is concerned, it does not need to know whether the reverse channel is an
internal channel or an external (virtual) channel. In both cases, the channel address of the reverse channel
is immediately above the input channel in channel address space.

12.7.4 Instructions for setting and using the resource mechanism

This section contains a description of the instructions which are specifically used in conjunction with the
resource mechanism. This is followed by some rules on how some of these should be used. The
instructions covered here are shown in table 12.6. These instructions assume that the resource channel
and resource data structures have been allocated as described earlier.
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mnemonic name

mkrc mark resource channel

grant grant resource

unmkrc unmark resource channel

erdsq empty resource data structure queue

irdsq insert at front of RDS queue

Idresptr load resource queue pointer

stresptr store resource queue pointer

enbg enable grant

disg disable grant

Table 12.6 Instructions used for resource mechanism

mkrc takes as its parameters: a channel address in Areg, a pointer to an RDS in Breg and a resource
channel identifier in Creg. The instruction sets the channel to resource mode by associating it with the
RDS, and giving it an identifier. If there has already been an output to this channel, then the resource chan­
nel is linked into the RDS. The stack is left undefined after this operation.

mkrc is a privileged instruction. If the value in Areg is not word aligned, then the instruction signals Unalign;
and if the value is not a valid internal, virtual or event channel address, then it signals IntegerError.

If the rc.ld slot already contains a resource channel identifier (Le. it does not contain NotProcess.p), then
the channel is already in resource mode and so the instruction has no effect. Otherwise, the following oc­
curs. The resource channel identifier (Creg) is assigned to the rc.ld slot. The state of the channel is ex­
amined to determine whether or not the channel is empty or waiting. If it is empty, then the rc.Ptr slot is
assigned the RDS pointer (Breg), and the the state becomes idle. If it is waiting, the resource channel
is attached to the end of the RDS queue and the state becomes queued.

For an internal channel that is empty or an external channel (virtual or event input), the channel word is
set to ResChan.p. This is not the case for an internal channel which is waiting, because the memory word
is used to store the process descriptor of the outputting process.

mkrc should not be applied to a channel that has been put into the waiting state by an input instruction.
It may be applied to a channel which is waiting due to an output instruction, but it may not be applied when
both the channel is waiting and the resource has a waiting server. This is because the instruction does
not perform a complete 'claim'; it just attaches the channel to the resource queue. This only needs to be
considered in practice, when a controller process (see section 12.7.5) is executing a mkrc instruction; be­
cause when a server executes mkrc, it cannot be waiting, and similarly when a client executes mkrc, there
cannot be an output pending. .

grant

grant takes as its parameters: the address of the RDS in Areg, and the 'identifier store address' in Breg,
where the identifier store address is the address of a memory location where the result of the instruction
is to be stored. If there is no client waiting for the resource, then the current process deschedules, other­
wise the resource channel identifier associated with the client is written into the identifier store address,
and the resource channel of that client is set back to normal mode. The the integer and floating-point
stacks are left undefined after this operation.

grant is a privileged instruction. If the value in Areg or Breg is not word aligned, then the instruction signals
Unalign.

The instruction inspects the RDS queue. If it is empty, then the current process is descheduled, leaving
a copy of its process descriptor in the rds.Proc slot of the RDS, and the identifier store address in the
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pw.Pointer slot of the process workspace. If there is one or more resource channels in the RDS queue,
then: the processor: removes the channel at the front of the queue, writes the resource channel identifier
(value held in the rc.ld slot) into the identifier store address, sets the channel back to normal mode by
setting the rc.ld slot to NotProcess.p, and initializes the reverse channel by setting the rc.Ptr slot to Not­
Process.p.

In order to complete the communication, it is necessary for an input instruction to be subsequently
executed. '

unmkrc

unmkrc takes as its parameters a channel address in Areg. The instruction sets the specified resource
channel to normal mode. The value in Areg is popped from the stack leaving Creg undefined.

unmkrc is a privileged instruction. If the value in Areg is not word aligned, then the instruction signals
Unalign; and if the value is not a valid internal, virtual or event channel address, then it signals IntegerError.

If the value held in the slot rc.ld is NotProcess.p, then the channel is already in normal mode, and no fur­
ther action is taken. Otherwise, the channel is set to normal mode by assigning NotProcess.p to the rc.ld
slot. If the channel is idle, it is set to the empty state, and if the channel is queued it is set to the waiting
state.

Note that the resource channel identifier is removed whether or not the channel is on the queue. It is as­
sumed that under normal circumstances, when one resource channel is unmarked, all other resource
channels that might be on the queue are also unmarked. This includes any channels that may happen
to have made 'claim's while the queue is being unmarked. The communications on unmarked channels
must be completed as normal channel communications.

erdsq

erdsq takes as its parameter, a pointer to an RDS in Areg. The instruction empties the queue associated
with the RDS specified, and pushes the front and back pointers of the queue that is removed on to the
integer stack. The value previously in Breg is pushed into Creg.

erdsq is a privileged instruction. If the value in Areg is not word aligned, then the instruction signals Unal­
ign.

The instruction loads the value held in the rds.Front slot into Areg and stores the special value
NotProcess.p into the slot; and also loads the value held in rds.Back into Breg.

irdsq

irdsq takes as its parameter, a pointer to an RDS in Areg, and pointers to a linked list of resource channels
in Breg and Creg. The instruction concatenates the specified linked list onto the front of the list (if there
is one) already associated with the specified RDS. The stack is left undefined after this operation.

irdsq is a privileged instruction. If the value in Breg or Creg is not word aligned, then the behavior is unde­
fined, and if the value in Areg is not word aligned, then the instruction signals Unalign.

The front pointer of the new queue is passed to this instruction in Breg and is written into the rds.Front
slot of the RDS specified by Areg. If the previous front pointer was NotProcess.p, then the resource queue
was empty, at the time of execution, and so the back pointer of the new queue, which is passed in Creg,
is written into the rds.Back slot of the RDS. If the resource queue is non-empty at the time of execution,
then it is concatenated onto the end of the new queue by setting the rc.Ptr slot of the last channel of the
new queue (pointed to by Creg) to the previous value of the rds.Front slot.

Idresptr

Idresptr takes as its parameter in Areg the address of a queued resource channel. The instruction loads
into Areg, the address of the next channel in the resource queue. The values in Breg and Creg are unaf­
fected.
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Idresptr is a privileged instruction. If the value in Areg is not word aligned, then the instruction signals
Unalign; and if the value is not a valid internal, virtual or event channel address, then it signals IntegerError.

The value held in the rc.Ptr slot of the channel specified, is loaded into Areg, overwriting that channel
address currently stored in that register. If the channel is queued, then the address is either that of the
next channel on the queue, or is undefined if the channel is the last in the queue. The result is also unde­
fined if the channel is idle or if it is in normal mode.

stresptr

stresptr takes as its parameters: the address of a queued resource channel in Areg, and a new channel
address Breg. The instruction places the resource channel pointed to by Breg behind the resource chan­
nel pointed to be Areg, in the resource queue. The value in Creg is popped into Areg, leaving Breg and
Creg undefined.

stresptr is a privileged instruction. If the value in Areg is not word aligned, then the instruction signals
Unalign; and if the value is not a valid internal, virtual or event channel address, then it signals IntegerError.

The value contained in Breg is written into the rc.Ptr slot of the channel specified by Areg, overwriting
the value currently stored in that location.

enbg

enbg takes as its parameters: in Areg - the boolean expression value of a component guard, and in Breg
- address of an RDS. If the value held in Areg is true, then the instruction enables the specified resource
as part of the alternative sequence described in section 8.7.2. Areg is unaffected by this instruction, and
Creg is popped into Breg, leaving Creg undefined.

enbg is a privileged instruction. If the value in Breg is not word aligned, then the instruction signals Unalign.

If Areg is true, then the resource is enabled as follows. The current process descriptor is written into the
rds.Proc slot of the RDS. If there is a client already on the queue, then the value Ready.p is written into
the pw.State slot of the current process workspace.

disg

disg takes as its parameters: in Areg - an offset from the start of the instruction following the altend to
the start of the code for that branch of the alternative, in Breg - the boolean expression value of a compo­
nent guard, and in Creg - address of an RDS channel address. If the value held in Areg is true, then the
instruction disables the specified resource as part of the alternative sequence described in section 8.7.2.
If this component alternative is selected, then Areg is loaded with true, otherwise it is loaded with false.
Creg is popped into Breg, leaving the former undefined.

disg is a privileged instruction. If the value in Breg is not word aligned, then the instruction signals Unalign.

If the value held in Breg is initially false, then this is not changed and the component alternative cannot
be selected. If Breg is true, then the resource is disabled as follows. The resource server's process des­
criptor is read from the rds.Proc slot of the RDS. If this isn't a valid process descriptor, then the resource
must have already been disabled, and so this component cannot be selected. Otherwise the rds.Proc
slot is assigned the value NotProcess.p. If there are no clients on the queue then this component alterna­
tive is not ready and cannot be selected. If there is at least one client in the queue, then this component
is ready and available for selection. It is only selected if it is the first ready component to be disabled.

In order to complete the communication if the component is selected, it is necessary for grant and an input
instruction to be executed in the component branch code.

12.7.5 Usage of resource channels

This section describes the ways in which the resource channel instructions of the T9000 are intended to
be used.
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Overview of Resource Channels

In summary, resource channels are a means of synchronizing many 'client' processes with a single 'serv­
er' process in an efficient way. The processes may be on the same or different transputers. The synchro­
nization is achieved by means of instructions which manipulate data structures in the memory of the IMS
T9000 where the server process resides, together with the mechanism of virtual channels.

When a resource channel has both been put into resource mode, Le. associated with a specific RDS and
been output to by a client process, this combination of events is called a 'claim'. The RDS may have a
queue of resource 'channels which have performed 'claim's upon it. When a server executes grant on the
RDS, it obtains the next resource channel to have made a 'claim'. It can then synchronize with (and receive
data from) the client which is outputting to that resource channel and interact with it until it wishes to service
the next client. t -

To increase the flexibility of servers, the whole RDS can be treated as one branch of an alternative. One
server can thus service more than one RDS.

General comments about usage of resource instructions

-Listed here are some general comments about how instructions must be used with resources.

The client-server model which is described in section 8.8, mayor may not have an extra process which
controls the connections between the clients and servers. For the purposes of this text, this process is
called a 'controller'. (It would typically be part an operating system.)

The instructions out, vout, outbyte and outword, which perform a 'claim' operation for the resource on be­
half of the channel, are executed by a client. They may also be performed by a server on the reverse chan­
nel, but only after the server has received the resource channel identifier of the forward channel via execu­
tion of a grant instruction. In the latter case, there is no 'claim' operation because the reverse channel is
a normal channel (not a resource channel).

The instructions grant, in, vin, enbg, disg, mkrc and unmkrc are executed by a server. in and vin may also
be performed by a client, on the reverse channel, but only after the client has performed an output instruc­
tion. mkrc and unmkrc may also be performed by a controller.

This instructions erdsq, irdsq, Idresptr and stresptr are expected to be used by a controller:j:, for queue
inspection and manipulation. The resource queue can be extracted with erdsq, examined and/or manipu­
lated with Idresptr and stresptr, and restored to the resource with irdsq. When the queue is taken away
from the resource, no grants by the server should be permitted, because the server is assumed not to be
waiting for a 'claim' when the queue is returned. This can be readily enforced with a binary semaphore
(see section 8.6). Idresptr and stresptr should only be applied to channels that are in a queu'e which has
been removed from a resource by the erdsq instruction. Since Idresptr does not return a useful result when
the channel is last in the queue, then it should not be applied to such a channel. This can be avoided by
comparing the channel address with that of the queue's back pointer prior to execution.

The controller may also want control of which resource channels should be in resource/normal mode and
when. For this purpose, the controller would make use of the instructions mkrc and unmkrc.

The instructions enbg and disg should be used a part of the alternative sequence described in section
8.7.2. This allows the alternative and resource synchronization mechanisms to be mixed (see section
8.4.2). This would be needed for example where implementing an occam ALT which has lots of channel
guards (the resource mechanism can be used for these) together with some timer guards or SKIP guards.
The code associated with the guard needs to execute a grant instruction and an input instruction in exactly
the same way as any other server.

Omniscient Servers

The most straightforward usage of the resource channel mechanism is as a more efficient replacement
for a replicated ALT. This is the example illustrated in section 8.8.1. It is repeated below.

t Note that the same resource channel might be associated with different 'RDS's at different times, different client processes might

use the same resource channel at different times, and different server processes might use the same RDS at different times..
:j: But is also possible for a server to manipulate the queue on behalf of a controller.
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PROC Server ( []CHAN OF ANY in
SEQ

WHILE Serving
declarations

ALT i = 0 FOR SIZE in
in[i]? Message

Serve ( Message, i

PROC Client( CHAN OF ANY out )
... declarations
SEQ

out! Message

T9000 transputer instruction set manual

[n]CHAN OF ANY client.to.server:
PAR

• •• declarations
Server ( client.to.server
PAR i = 0 FOR n

Client( client.to.server[i]

The channels client. to .-server must be resource channels - that is a resource channel data struc­
ture must be allocated and initialized. When the process Server executes the 'WHILE Serving'loop,
an RDS must be allocated and initialized, and the resource channels must be set into resource mode by
mkrc. The server process is able to do this because it knows all the resource channels (it is 'omniscient').
This means that the client processes can be compiled without knowledge of whether they will be served
using the alternative or the resource mechanism; this knowledge is restricted to the server. In order to
support the full generality of this situation, the server gives each resource channel an identifier from which
it can reconstruct the channel (in simple cases it can simply be the channel address). It is this resource
channel identifier that is delivered to server when it does a grant on the RDS. Note, however, that this
mechanism will not implement all varieties of replicated ALT; for example it is difficult to use it if there are
boolean guards, and it is an absolute restriction that the process Server does not use any of the other
channels client. to. server [ j ] ,j :;r. i.

Inside the loop, instead of enabling and disabling the whole array of channels (as required for the alterna­
tive sequence), the server merely has to execute the sequence

grant;
Address( RCidentifier, ChannelAddress);
Input( ChannelAddress, Message);
Server Message, RCidentifier );
mkrc

grant returns the channel RCidentifier. This is used by Address to determine to determine
ChannelAddress. Input uses an input instruction to receive a Message from the channel. This is passed
to Serve which serves the client. Finally mkrc returns the channel to resource mode so that the client can
be served again in the future.

When Server exits the 'WHILE Serving' loop, it must put each channel in the the array back into normal
mode by applying the unmkrc to each one; unless the client. to. server channels go out of scope,
or it is known that another process is going to use the same RDS with the same set of resource channels
(for example if there is an enclosing loop).

Ignorant Servers

An alternative usage of the resource mechanism is to implement servers that do not know who their clients
are, nor even how many there may be ('ignorant servers'). In this case the client process must know that
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it is going to use a resource channel, and what the address of the RDS is. Provided it is on the same pro­
cessor as the server, the client can allocate a resource channel for itself, associate it with the RDS by using
mkrc, and put itself on the queue by Qutputting. However, the resource channel data structure must be
on the same processor as the server and mkrc must be executed there, clients on remote processors must
rely on an auxiliary process to assist them in establishing their connection to the server. Since we may
also wish to allocate the virtual channels dynamically, the most general sequence of events is as follows:

• The client process makes a request to a 'controlling process' on its processor. Note that it can
do this by dynamically allocating an internal resource channel and queueing itself on an RDS
used by its controller.

• This controller communicates (along a pre-existing virtual channel) with a controlling process on
the same processor as the server; the controlling processes each allocate a VLCB and set up
the headers thereof so as to form a virtual link.

• The controller on the server's processor executes mkrc to link the newly-established input virtual
channel with the server's RDS.

• The controller on the client's processor now replies to the client's request by giving it the address­
es of the channels (both halves of the virtual link) along which it can communicate with the server.

If the client happens to be on the same processor as the server, the two controlling processes are one
and the same, and this process can allocate an internal resource channel for the client. In this situation
neither the client nor the server need know where the other is located. In environments which are not com­
pletely dynamic, some or all of this sequence of operations can be performed by a compiler so as to reduce
or eliminate the need for 'controlling processes'.

Note that it is illegal for a controlling process to apply mkrc to a waiting resource channel (because it cannot
be sure that server is not also waiting for a client).

It might also be unwise to apply unmkrc to a queued channel if the server is ignorant. The problem here
is that the although unmkrc changes the mode of queued channel from resource to normal, it doesn't actu­
ally remove it from the queue. It does however remove the client's resource channel identifier from the
resource channel data structure, so when the channel reaches the from of the queue, an execution ofgrant
by the server will yield a null identifier (NotProcess.p). An omniscient server would be able to handle this,
but an ignorant server might not.

Robust Servers

Whether a server is omniscient or ignorant, it may be required to make it tolerate the failure of a client.
This would certainly be the case if the server were a component of an operating system which communi­
cates with user programs. There are two ways to achieve this:

Restrict the way in which clients are allowed to interact with the server so that once a client has
made a 'claim' on the server it is guaranteed to complete its interaction correctly. This could be
achieved by means of library procedures etc.

2 Make the server able to recover from a failure. This would require that the main body of the server
always records enough information about its status so that it can be re-started, and any inconsis­
tencies tidied up (close any open files or whatever), and that it has another component (which
may be part of an operating system) that notices when the main body has failed (e.g. by timeout)
and re-starts it.

Unwanted Clients

In an operating system (o/s) environment it is necessary to be able to remove processes that are part of
a failed (or aborted) program. In the case of resources, one solution is for the o/s to inform the server of
the identity of the unwanted process(es), and then wait until it comes to the front of the queue. This implies
an unbounded wait, however, so instructions (erdsq, Idresptr etc.) are provided to allow the RDS queue
to be scanned for unwanted resource channels, and forthem to be unlinked from the queue. This operation
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can either be performed by the server itself, or by another process (e.g. part of the o/s). However if it is
performed by another process, it is essential that the server is prevented from performing a grant on the
RDS until the operation is complete. This can be achieved by guarding the RDS with a semaphore which
the server must obtain before performing agrant. This imposes an overhead on the operation of the server,
but permits the processing of the queue to proceed whilst the server is still interacting with a client.

Note that since it is unknown whether the unwanted resource channel is idle or queued, unmkrc must be
applied to it before the queue is scanned, otherwise the resource channel can make a 'claim' which can
'slip by' the scanning operation. Having applied unmkrc, it might be sensible to determine whether or not
it is idle or queued before it was unmarked. This is achieved either by inspecting the resource channel
data structure if the channel is an internal channel, or by executing Idchstatus (see section 12.9.3) if the
channel is external. Then the resource queue need only be inspected if the channel is queued.

If the removal of unwanted clients is to be combined with the second strategy for constructing robust serv­
ers, it will be necessary for the server to record the identity of the client which it is serving. It may also be
necessary to protect this value with a semaphore in order to ensure atomic access.

12.8 Resetting and stopping a channel

T9000 links have been engineered so that when used within a system of devices connected on a printed
circuit board or via a backplane, they are extremely reliable. When used within their specification, the links
implement arbitrary numbers of virtual channels as dependably as the memory implements an arbitrary
number of variables.

In other circumstances, such as communication between a development system and a target system, or
communication via an unreliable interconnect, it is still possible to use transputer links. However, this re­
quires careful programming and the use of special instructions.

Even in an ideal environment it may be necessary to recover the use of correctly functioning virtual chan­
nels which are in operation, for example when a distributed operating system kills a collection of communi­
cating processes. Again, this requires careful programming and the use of special instructions.

12.8.1 Dealing with a communication failure

Detecting communication failure

Communication failures will, of necessity, vary from ·system 'to system. In a development system con­
nected to a target system, an error in the target's software may prevent a communication with the develop­
ment system from occurring; in a system where links may be unplugged, communications may start but
fail to complete. For many systems, use of timeouts, and checking lengths of messages received is suffi­
cient to detect failure; this normally requires the use of an additional process operating concurrently with
the communicating process. The following example uses a timeout to detect the failure of an output:-

CHAN OF BOOL completed:
PAR

SEQ
c! message
completed! TRUE

ALT
completed? ok

completed communication
TIME? AFTER timeout

... failure detected

Having determined that a communication failure has occurred, there are two actions that may be required.
The first is to allow the process whose communication has failed to resume execution; the second is to
recover use of the channel.

Restarting processes

The example above cannot terminate when a communication failure occurs because the outputting pro­
cess never completes. The resetch instruction permits the process that detected the failure to recover the



12 Channels 183

descriptor of the outputting process. The outputting process can then be run, enabling it to complete. At
the same time, resetch resets the channel so that should the communication subsequently complete the
outputting process will not be scheduled a second time.

resetch

I mnemonic I name

resetch takes as its parameter a channel address in Areg. It returns a value in Areg, leaving Breg and
Creg unaffected.

This is a privileged instruction. It signals Unalign if the channel address is not word aligned. It signals Integ­
erError if the address is not a channel address.

For an internal channel the channel word is set to NotProcess.p and the previous value of the channel
word is returned in Areg.

For a byte-stream channel in byte-stream mode, the corresponding link is reset and restarted. If a commu­
nication was in progress the descriptor of the process communicating is returned in Areg; otherwise Not­
Process.p is returned in Areg.

For a byte-stream channel not in byte-stream mode, the corresponding link is reset and restarted, and
Areg is undefined.

A virtual or event channel is reset into the empty state. If a communication was in progress the descriptor
of the process communicating is returned in Areg; otherwise NotProcess.p is returned in Areg.

The following example shows the two processes that must be run in parallel to allow continuation after
the communication failure.

The first process attempts to output the message and then signals to the other process.

Process 1 - outputting process (this must start to execute before the controlling process)

SEQ
c! message
completed! TRUE

The second process either receives the signal or times out. If it times out it resets the channel on which
the communication is being attempted. If the communication happens to complete after the timeout but
before the the channel is reset, the outputting process will be rescheduled and resetch will deliver the value
NotProcess.p. The process descriptor returned by resetch is run unless it is NotProcess.p. In either case
a signal will then be received from the outputting process. The following calls two procedures which are
described below.

Process 2 - controlling process

ALT
completed? ok

SKIP
TIME? AFTER timeout

INT pid:
SEQ

resetch( c, pid )
IF

pid = NotProcess.p
SKIP

TRUE
run( pid )

completed? done
ok := FALSE
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The procedure resetch has two parameters. The first parameter is a value parameter, and is the channel
address which is loaded into Areg before application of the resetch instruction. The second parameter
is a variable parameter, and is the value loaded into the integer stack as a result of the resetch instruction.

The procedure run has one parameter. This is a value parameter, and is the descriptor of the communicat­
ing process which is loaded into Areg before application of the runp instruction.

Note that it is essential that the outputting process executes the output instruction before the second pro­
cess starts to execute. This ensures that resetch is not applied before the communication has been at­
tempted.

Restarting communication

If the processes communicating over an external channel wish to reuse the channel after they have each
recovered from a communication failure, they must both apply resetch again. Each process must allow
sufficient time between its applications of resetch to ensure that

(i) the other process has already performed its first reset, and

(ii) the channel has become completely quiescent.

Virtual channels cannot successfully be reused unless the unqerlying hardware is functioning correctly.
For example, if a link has been unplugged, it must be reconnected and restarted.

12.8.2 Recovering the use of a virtual channel which is in operation

In a complex system the use of timeouts, as described above, is complicated as detailed knowledge about
the whole system is needed to compute the timeout periods. However, in the absence of communication
failure, a distributed operating system can recover a virtual channel which may be in use, without timeouts.

To recover a virtual channel it is not sufficient to put each end of the channel into the empty state because
there may still be data or acknowledge packets in transit. The stopch instruction can be used to ensure
that there are no further packets in transit. The channel can then be made ready for reuse.

To know that there are no packets in transit it is only necessary to wait for the output end of the channel
to arrive at the state where every packet sent has been acknowledged. Thus it is necessary to ensure that
all data packets sent are acknowledged. Consequently, recovering use of the virtual channel involves ac­
tion by a process at each end. The process at the output end has to wait until every data packet has been
acknowledged; the process at the input end has to ensure that they are acknowledged. In each case this
is achieved by the process executing a stopch instruction.

stopch

mnemonic

stopch

name

stop virtual channel

stopch takes as its parameter a virtual channel address in Areg. It leaves the integer and floating-point
stacks undefined.

The instruction signals Unalign if the channel address is not word aligned, and signals IntegerError if the
channel address is not a virtual channel address. It is a privileged instruction. It may also deschedule the
current process if the channel is an output channel, and so it is a descheduling point.

If the channel is a virtual input channel then any further packets received on the channel are acknowl­
edged, but otherwise ignored, until resetch is applied. The process is not descheduled.

If the channel is a virtual output channel, the behavior depends upon whether or not there is an output
in progress. If there is no output in progress the instruction completes without taking any further action.
Otherwise the process is descheduled. When every packet sent has been acknowledged the process is
rescheduled and the channel is left in the empty state.
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To put the input end of the channel in an empty state, the process at the input end has to execute resetch
after the process at the output end has completed its execution of stopch. In the following example this
is achieved by means of a communication on another channel.

Process 1 - controlling process used to stop a virtual output channel on processor 1
SEQ

... establish that output channel is to be stopped
stopch ( channel ) - described below
completed! 0

Process 2 - controlling process used to stop a virtual input channel on processor 2

INT ANY:
SEQ

... establish that input channel is'to be stopped
stopch ( channel ) - described below
completed? ANY
resetch ( channel, ANY ) - described in section 12.8. 1

These processes call two procedures that are not defined in the code. resetch is described in section
12.8.1 . stopch is described below.

The procedure stopch loads its single value parameter into Areg and applies the stopch instruction. The
resetch procedure is the same as before but observe that the variable parameter returned (ANY) is not
used.

12.9 Channel instructions according to usage

This section groups all instructions that reference channel addresses according to their usage. It includes
some instructions that have been described in chapter 8, some instructions that have been described in
this chapter, and a few that have not yet been described. Full descriptions are included for instructions
that have not been previously described.

12.9.1 Instructions that can be applied to all channels

The following instructions may be applied to all channels except vin and vout which cannot be applied to
byte-stream channels, and resetch which cannot be applied to event channels.

mnemonic name

in input message

out output message

outbyte output byte

outword output word

vin variable-length input message

vout variable-length output message

enbc enable channel

disc disable channel

resetch reset channel

chantype channel type

These instructions have the following in common.

• They are privileged instructions.
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• They have a channel address parameter passed to them via one of the integer stack registers.

• They signal Unalign if the channel address is not word aligned.

• They signallntegerError if the channel address does not specify a channel.

in, out, outbyte, outword, vin, vout, enbc and disc are described in chapter 8. resetch is described in sec­
tion 12.8.1.

chantype

chantype (channel type) takes the channel address in Areg and assigns true to Areg if the channel is inter­
nal, or false if it is an external channel. Breg and Creg are unaffected by this operation.

This is a privileged instruction.

12.9.2 Instructions that can be applied to resource channels

All the instructions in this category are applied to resource channels, and so can be applied to internal
channels, virtual input channels and event channels.

mnemonic name

mkrc mark resource channel

unmkrc unmark resource channel

Idresptr load resource queue pointer

stresptr store resource queue pointer

They have the following in common.

• They are privileged instructions.

• They have a channel address parameter passed to them in the integer stack register A.

• They signal Unalign if the channel address is not word aligned.

• They signallntegerError if the channel address does not specify an internal channel, a virtual
input channel, or an event channel.

They are described in section 12.7.4.

12.9.3 Instructions that can be applied to external channels

The following instructions may only be applied to external channels.

mnemonic name

setchmode set channel mode

Idchstatus load channel status

These instructions have the following in common.

• They are privileged instructions.

• They have a channel address parameter passed to them in the integer stack register A.

• They signal Unalign if the channel address is not word aligned.

• They signallntegerError if the channel address does not specify an external channel.
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setchmode has been described in section 12.6.1 for use on a virtual channel. It can also be applied to event
and byte-stream channels.

setchmode either activates the event channel specified by the channel address in Areg if Breg holds the
value true, or deactivates the channel if it holds the value false. Areg inherits the value previously in Creg,
and Breg and Creg are left undefined after execution. The reverse event channel word (Le. the word used
to store the process descriptor etc. when the event is used to communicate in the opposite direction) is
used to store the activation state. If activation has been requested, then NotProcess.p is loaded into the
reverse channel word. If deactivation has been requested, then Deactivated.p is loaded into the reverse
channel word.

If the channel address is that of a byte-stream channel, then the processor either starts the physical link
associated with that channel address if Breg holds the value true, or resets the physical link if Breg holds
the value false. The behavior of this instruction does not depend on the mode of the physical link - Le.
it starts/resets channel when it is in either virtual or byte-stream mode.

Idchstatus

Idchstatus takes as its parameter an external channel address in Areg. The instruction loads status in­
formation into the integer stack. Idchstatus is a privileged instruction. The format of the information re­
turned depends on whether the channel is a virtual channel, an event channel or a byte-stream channel.

For a virtual channel and an event channel, the status word returned in Areg is as shown in table 12.7.
The state is determined by examining the VLCB for a virtual channel, or the channel words for an event
channel.

bit number description

0 activation mode: '1' =activated, '0' =deactivated

1 set if channel stopping

3 channel in resource mode

4 set if packet or acknowledge pending

-5 set if schedule pending

31 channel type: '1' =virtual, '0' =event

Table 12.7 Bit settings for virtual/event channel status in Areg

The instruction has the following effect when examining a virtual input channel or an event input channel.
If the channel is empty or stopping, then it loads NotProcess.p into Breg and undefines Creg. If the chan­
nel is waiting, then it loads the process descriptor of the inputting process into Breg and undefines Creg.
If the channel is in resource mode, then it loads the content of rc.Ptr slot into Breg and the content of rc.ld
into Creg.

The instruction has the following effect when examining a virtual output channel or an event output chan­
nel. If the channel is empty, then it loads NotProcess.p into Breg and undefines Creg. If the channel is
waiting, then it loads the process descriptor of the outputting process into Breg and undefines Creg.

For a byte-stream channel, the status word returned in Areg is as shown in table 12.8. The state is estab­
lished by the VCP.
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bit number description

0 set if error detected (Le. parity or disconnect)

3 set if parity error detected

4 set if disconnect error detected

31 always 0 (indicates byte-stream channel)

Table 12.8 Bit settings for byte-stream channel status in Areg

The instruction has the following effect when examining a byte-stream channel. If the channel is empty,
then it loads NotProcess.p into Breg and undefines Creg. If the channel is waiting, then it loads the pro­
cess descriptor of the communicating process into Breg and undefines Creg.

12.9.4 Instructions that can be applied to virtual channels

The following instructions may only be applied to virtual channels.

mnemonic name

initvlcb initialize vicb

sethdr set~rtu~chann~header

writehdr write virtual channel header

readhdr read virtual channel header

insphdr inspect virtual channel header

readbfr read buffer pointer from VLCB

swapbfr swap buffer pointer in VLCB

stopch stop virtual channel

All these instructions have the following in common.

• They are privileged instructions.

• They have a channel address parameter passed to them in the integer stack register A.

A VLCB controls the communication of an input and output channel pair. Each of these virtual
channels have a different channel address (the input channel has an even address and the output
has an odd address). In these instructions, the address of either channel can be used to identify
the channel's controlling VLCB.

• They signal Unalign if the channel address is not word aligned.

• They signal/ntegerError if the channel address does not specify a virtual channel.

These instructions are described in section 12.6.1 except stopch which is described in section 12.8.2.
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This chapter provides detail on state changes that can be caused by various mechanisms of the processor
or explicitly by execution of certain instructions. It reviews the various forms of context switch that can
occur, including how to access and manipulate process state under certain circumstances; it explains how
timeslicing and interruption can be disabled; and it presents the instructions that can be used to manipulate
the scheduling and timer lists.

Prior to reading this chapter, the reader should be familiar with chapter 5, and sections 8.2, 8.3 and 8.5
of chapter 8, as well as sections 9.7 and 10.1.

13.1 Context switching

Chapter 5 introduced the registers that completely define the processor's state. Because the transputer
is a machine that can run many processes concurrently by time-sharing execution, it is required to save
and/or reload the contents of these registers, as the current process is changed. This change of state is
known as a context switch.

There are broadly speaking two types of context ,switch on the IMS T9000. There is a partial context
switch, which stores some part of the state. This is used for scheduling/descheduling including timeslicing
between processes, and forthe trap mechanism. There is also a full context switch, which stores the entire
state of the current process. This is used when a low-priority process is interrupted by a high-priority pro­
cess. The next two sections consider these separately.

13.2 Partial context switch - descheduling and trapping

When a context switch occurs, it is not always necessary or efficient to store the entire process state. A
partial context switch occurs when

• The current process is descheduled. This may be because

• it is waiting to communicate with another process

• it is waiting on a semaphore

• it is waiting on a timer

• it is being timesliced

• it has executed an instruction that explicitly forces the current process to be stopped
- e.g. stopp, endp

• A trap is being taken or returned from.

In each of these cases, part of the current state is saved, and is often replaced with the contents of a data
structure defining the state of another context.

The data saved/reloaded in a context switch due to descheduling are values contained in: the workspace
descriptor register, the instruction pointer register, the status register, and the trap-handler register.

The'data saved/reloaded in a partial context switch due to the trap/protection mechanism are as for des­
cheduling/scheduling, but in addition include the values contained in the integer stack registers.

A trap-handler or supervisor can optionally save/reload the floating-point and 20 block move state of its
subordinate process(es). Special instructions are provided for this.

13.2.1 Descheduling and execution of the next process

When an L-process is descheduled, the instruction pointer and the trap-handler pointer are both saved
in data slots immediately below the workspace area of the process being descheduled. Also, the process



190 T9000 transputer instruction set manual

status and control bits (see section 5.2) are saved in the th.Cntl slot of the THDS. These bits are not saved
if a null trap-handler has been specified. Table 13.1 summarizes. The process descriptor (content of
WdescReg), which uniquely identifies that process, is usually saved somewhere but its exact storage
location depends on why the process is being descheduled. For example if the process has descheduled
due to communication, the descriptor is stored in the channel word. The descriptor is not saved if the pro­
cess has been explicitly descheduled with with a stopp, endp, or restart instruction.

Observe that all other state information is lost when a process is descheduled. The points at which a pro­
cess may be descheduled are called descheduling points and these are listed in section 8.2.2. It is left
to the programmer to ensure that no important information is in any of the other state registers when a
process is descheduled. In particular, it is important that if an expression is being evaluated across a des­
cheduling point, that any intermediate results are stored in local variables rather than in the registers.

register old register value

StatusReg the process status and control bits are saved in
the th.Cntl slot of the THDS, unless the process
has a null trap-handler, in which case, these bits
are unsaved

WdescReg saved somewhere - see above

IptrReg saved in pw.lptr slott of process workspace data
structure

ThReg (for an L-process) saved in pw.TrapHandler slott of process work-
space data structure

all other state registers unsaved

t values are not saved when descheduled by endp or restart instruction

Table 13.1 State register values when a process is descheduled

To execute an L-process, the workspace pointer is removed from the front of the scheduling list and loaded
into the workspace descriptor register. Given the workspace address, the process then determines the
instruction pointer and trap-handler of the new process, from the process workspace data structure. The
processor then loads the process status and control bits into the status register, and may load the watch­
point registers with the values stored in the THDS. If a null trap-handler has been specified, then the status
register is loaded with the default control word. Table 13.2 summarizes.

register new register value

StatusReg the process status and control bits are loaded
from the th.Cntl slot of the THDS - otherwise,
unless the process has a null trap-handler, in
which case, the status register is loaded with the
default control word

WdescReg the Wptr register field is loaded with a new value
from the front of the current scheduling list

IptrReg loaded with content of the pw.lptr slot of the pro-
cess workspace data structure of new process

ThReg loaded with pw.TrapHandler slot of process
workspace data structure

WIReg if watchpointing is specified in the trap control
word, loaded with content of the th.eWI

WuReg if watchpointing is specified in the trap control
word, loaded with content of the th.eWu

Table 13.2 Register values after loading state for execution of process
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13.2.2 Trapping

State storage and retrieval for the trap mechanisms is described in chapter 10. This information is re­
peated here with more detail in tabular form. Tables 13.3 and 13.4 show the state storage and retrieval
for an L-process trap and execution of tret. Tables 13.5 and 13.6 show the state storage and retrieval for
a P-process trap and execution of goprot.

Most traps are taken at the end of the instruction that causes the trap. The state delivered to the trap-han­
dier or supervisor is therefore the state after execution of this instruction. There are some traps for which
this is not true, and this is discussed later with other anomalous issues.

L-process trap

register old register value new register value

StatusReg process status and control bitstare default control word
saved in the th.Cntl slot of the THDSt

WdescReg the workspace pointer field of this reg- the workspace pointer field of this reg-
ister is saved in the th.sWptr slot of ister is loaded with the address of
the THDS THDS

IptrReg saved in the th.slptr slot of the THDS4= loaded with the content of the th.lptr
slot of the THDS

Areg saved in the th.sAreg slot of the trap reason
THDS*t

Breg saved in the th.sBreg slot of the error type
THDS*"t

Creg saved in the th.sCreg slot of the undefined
THDS*"t

ThReg copied into Wptr NotProcess.p

FPstatusReg not saved unchanged*"t or restored+

FPAreg not saved unchanged*"t or restored+

FPBreg not saved unchanged*"t or restored+

FPCreg not saved unchanged*"t or restored+

BMregO unchanged*"t unchanged*"t

BMreg1 unchanged*"t unchanged*"t

BMreg2 unchanged*"t unchanged*"t

WIReg not saved undefined

WuReg not saved undefined

EptrReg saved in the th.Eptr slot of the THDS* undefined

all other state not saved undefined
registers

t all bits listed in table 5.5 except the sb.WtchPntPend bit - see 'Single-step and watchpoint traps', page 196

+. if trap is due to floating-point exception, then the content is restored to value that register had prior the floating-point
operation that trapped - see section 11 .13 and 'Trapping a floating-point exception', page 195

"* undefined iftrap is due to a non-recoverable error-see 'Trapping dueto non-floating-pointerrors-non-restartable',
page 195

t undefined when a memory semantics error causes a trap - see 'Memory semantics error', page 196

4= not saved if trap is due to a recoverable error - see 'Trapping due to non-floating-point errors - restartable', page
195

* may not pointto exactly the right instruction when a memory semantics errorcauses atrap-see 'Memorysemantics
error', page 196

Table 13.3 State register values before and after an L-process trap
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For the 'trap return' mechanism, the value in Areg at the time the instruction is executed, determines
whether or not the trapped process is to be restarted. If Areg is zero, then it is not restarted, and the next
process on the scheduling list is executed. The new register values in this case are those shown in table'
13.2. If Areg is non-zero, then the trapped state is reloaded as shown in table 13.4.

register old register value new register value

StatusReg any bits overwritten are not saved process status and control bitstare
loaded from the th.Cntl slot of the
THDS+

WdescReg the workspace pointer register field of the workspace pointer field of this reg-
this register (Wptr) is saved in ThReg ister is loaded with the content of the

th.sWptr slot of the THDS+

IptrReg not saved loaded with the content of the th.slptr
slot of the THDS+

AReg not saved loaded with the content of the th.sAreg
slot of the THDS+

BReg not saved loaded with the content of the th.sBreg
slot of the THDS+

CReg not saved loaded with the content of the th.sCreg
slot of the THDS+

ThReg not saved loaded with the content of Wptr+

WIReg not saved if watchpointing specified, then loaded
with content of the th.eWI slot of the
THDS+

WuReg not saved if watchpointing specified, then IO'aded
with content of the th.eWu slot of the
THDS+

all other state not saved undefined
registers

t all bits listed in table 5.5 except the sb.WtchPntPend bit - see 'Single-step and watchpoint traps', page 196

+ new register values here are only applicable if Areg is 0 when tret is executed - otherwise see table 13.2

Table 13.4 State register values before and after a tret instruction
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register old register value new register value

StatusReg process status and control bitsTare sb.lsPprocessBit is cleared - other-
-saved in the ps.Cntl slot of the post wise as for loading and executing an

L-process - see table 13.2

WdescReg the workspace pointer field of this reg- loaded with the content of WdescStu-
ister is saved in the ps.sWptr slot of bReg
the POS

IptrReg saved in the ps.slptr slot of the post loaded with the content of the pw.lptr
slotof the process workspace data
structure of the supervisor

Areg saved in the ps.sAreg slot of the trap reason
POS*t

Breg saved in the ps.sBreg slot of the error type
POS*t

Creg saved in the ps.sCreg slot of the undefined
POS*t

ThReg unaffected same as old value

FPstatusReg not saved unchanged*t or restored+

FPAreg not saved unchanged*t or restored+

FPBreg not saved unchanged*t or restored+

FPCreg not saved unchanged*t or restored+

BMregO unchanged*t unchanged*t

BMreg1 unchanged*t unchanged*t

BMreg2 unchanged*t unchanged*t

WIReg not saved as for loading and executing an L-pro-
cess - see table 13.2

WuReg not saved as for loading and executing an L-pro-
cess - see table 13.2

Ereg copied into ps.sEreg slot of POSo undefined

Xreg copied into ps.sXreg slot of POSo undefined

EptrReg saved in the ps.Eptr slot of the undefined
PDS*

PstateReg

WdescStubReg copied into WdescReg undefined

all other state not saved undefined
registers

t all bits listed in table 5.5

+ iftrap is due to floating-point exception, then the content is restored to valuethat register had priorthefloating-point
operation that trapped - see section 11.13 and 'Trapping a floating-point exception' J page 195

-/{ undefined iftrap is dueto a non-recoverable error-see 'Trapping due to non-floating-point errors-non-restartable',
page 195

t undefined when a memory semantics error causes a trap - see 'Memory semantics error', page 196

+ not saved if trap is due to a recoverable error - see 'Trapping due to non-floating-point errors - restartable', page
195

* may not pointto exactlythe right instruction when a memory semantics error causes a trap -see 'Memory semantics
error', page 196; and is undefined when a timeslice trap is taken

0 only saved when trap occurs in the middle of an interruptible instruction

Table 13.5 State register values before and after a supervisor trap
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register old register value new register value

StatusReg .as for descheduling an L-process ~ see process status and control bitstare
table 13.1 loaded from the ps.Cntl slot of the

PDS and sb.lsPprocessBit is set

WdescReg saved in WdescStubReg the workspace pointer field of this reg-
ister is loaded with the content of the
ps.sWptr slot of the PDS

IptrReg as for descheduling an L-process - see loaded with the content of the ps.slptr
table 13.1 slot of the PDS

AReg saved in PstateReg loaded with the content of the ps.sA-
reg slot of the PDS

BReg not saved loaded with the content of the
ps.sBreg slot of the PDS

CReg not saved loaded with the content of the
ps.sCreg slot of the PDS

ThReg unaffected same as old value

WIReg not saved if watchpointing specified, then loaded
with content of the ps.eWI slot of PDS

WuReg not saved if watchpointing specified, then loaded
with content of the ps.eWu slot of PDS

Ereg not saved loaded with the content of the ps.sEr-
eg slot of PDS+

Xreg not saved loaded with the content of the
ps.sXreg slot of PDS+

EptrReg not saved loaded with the content of the ps.Eptr
slot of the PDS+

RegionRegO not saved loaded with the content of the pc.Re-
gionRegO slot of the RDDS

RegionReg1 not saved loaded with the content of the pC.Re-
gionReg1 slot of the RODS

RegionReg2 not saved loaded with the content of the pc.Re-
gionReg2 slot of the RDDS

RegionReg3 not saved loaded with the content of the pc.Re-
gionReg3 slot of the RDDS

PstateReg not saved loaded with the content of Areg - ad-
dress of PDS

WdescStubReg not saved loaded with the content of WdescReg

all other state not saved undefined
registers

t all bits listed in table 5.5

+ only reloaded when restarting an interrupted instruction - see section 13.4

Table 13.6 State register values before and after a goprot instruction

Timeslicing from protected mode

Whereas for a low priority L-process, timeslicing can only occur at a timeslicing point, for a low priority
P-process, timeslicing can occur at any interrupt point. It is thus possible to ensure that a user task (imple­
mented as a P-process) cannot hog machine time. This is important for untrusted code. A timeslice in
protected mode causes a P-process trap. A trap may thus occur after any instruction or indeed in the
middle of any interruptible instruction. The state delivered to the supervisor is the current process state
at the time the trap is taken.
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aside: The integer stack does not have to be preserved when an L-process is descheduled for a timeslice.
This is because the points at which a timeslice can occur are restricted. For a P-process, timeslicing is
not restricted in this way and so the integer state is stored in the PDS by the trap mechanism.

Trapping a floating-point exception

When a floating-point operation causes a trap, the machine restores the floating-point state to the state
as it was before the operation. That is, the floating-point stack, the floating-point status register, and the
floating-point flags are restored. The remaining (non-floating-point) state delivered to the trap-handler or
supervisor, is the state at the time the trap is taken. It is then left to the trap-handler or supervisor to deliver
the correct result to an IEEE handler. (See section 11.13.)

Trapping due to non-floating-point errors - non-restartable

In general it is not possible to recover from an instruction that traps due to an error that isn't a floating-point
exception (but see 'Trapping due to non-floating-point errors - restartable'). For such traps the contents
of the following registers are not saved: integer stack registers, floating-point registers, block move regis­
ters and internal registers. But the trap does deliver to the trap-handler or supervisor, the remaining state
at the time the trap is taken - Le. the status bits, the workspace descriptor, the instruction pointer, the error
pointer and the trap-handler pointer. If an error occurs during the fetch stage of instruction execution, then
the next instruction due to be executed is still the instruction that is being fetched, and so the error pointer
and instruction pointer will have the same value.

Trapping due to non-floating-point errors - restartable

For traps caused by certain errors, it is possible to restart the trapped process. When such errors occur,
the process state delivered to the supervisor (or trap-handler) is the state as it was before the instruction
was -executed. However the instruction pointer is not saved. The following gives details for this class of
error.

• Section 9.3 explains that when instructions call, ajw or gajw are executed in protected mode, Ac­
cessViolation is signalled if the new workspace pointer is not writable. When the supervisor has
taken corrective action, it can re-execute the trapped instruction by restarting the P~process us­
ing goprot. Before executing goprotthe supervisor must copy the error instruction pointer, which
has been saved in ps.Eptr, into ps.slptr.

• Section 9.2 explains that some instructions cannot be executed when running under protection.
An attempt to execute anyone of these 'privileged' instructions causes Privlnstruction to be sig- ­
nailed and a trap to be taken. This enables the supervisor to take corrective action (for example
execute the instruction on behal~ of the P-process) and to restart the P-process from the instruc­
tion following the privileged instruction using goprot. Before executing goprotthe supervisor must
copy into ps.slptr, the error instruction pointer, which has been saved in ps.Eptr. N.B. When a
privileged instruction is trapped, the stored error pointer is the address of the next instruction to
be executed.

• Similarly if a process attempts to execute an an illegal instruction (Le. an invalid opcode), then
the process traps. This enables the trap-handler (or supervisor) to take corrective action and re­
start the trapped process from the following instruction using tret or goprot. Before executing tret
(or goprot) the trap-handler (or superyisor) must add the instruction length (in bytes) to the error
instruction pointer, which has been saved in th.Eptr (or ps.Eptr,) and write the result into th.slptr
(or ps.slptr).

Instructions that explicitly cause traps

The instructions j 0 (breakpoint), syscall and causeerror, which explicitly force a trap to be taken, deliver
to the trap-handler or supervisor, the state after the instruction is executed. Since these instructions do
no more than take a trap, the only change that these instructions make to the current process state during
their execution, is to adjust the instruction pointer register to the address of the next instruction to be
executed.
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Context traps

If single-step is enabled or a watchpoint occurs when goprot, selth, or restart is executed, then a 'context'
trap is taken, as discussed in section 10.3.1. Under these conditions therefore, the state is saved as for
'Instructions that explicitly cause traps' (described above).

Single-step and watchpoint traps

Single-step and watchpoint traps are usually taken between instructions. They therefore deliver the state
exactly as it is after an instruction has been executed.

An L-process can only trap at the end of an instructiont. However, a timeslice may cause a P-process .to
trap in the middle of an instruction, delivering to the supervisor, the current process state at the time the
trap is taken. Hence, if a timeslice is due in the middle of an interruptible instruction, when single-stepping
a P-process, then a single-step and timeslice trap is taken (t.StepTlme is presented to the supervisor).
Similarly if a timeslice is due in the middle of an interruptible instruction when a watchpoint is pending, then
a watchpolnt and timeslice trap is taken (t.WatchTlme is presented to the supervisor). A watchpoint trap
is in this case nottaken attbe end of the instruction unless anotherwatchpoint is detected after the instruc­
tion resumes execution.

When a watchpoint is detected, the watchpoint trap pending flag (sb.WtchPntPend) is set in the status
register. When a trap is taken, this flag is cleared before saving to the control word of the THOS or POS.
If a watchpoint is pending when an instruction is interrupted then sb.WtchPntPend is saved in the shadow
state, and this is reloaded into status register when the instruction resumes. Hence, even if an instruction
is interrupted, a pending watchpoint causes a watchpoint trap at the end of that instruction (or at the next
timeslice) .

Memory semantics error

When a memory semantics error occurs (see page 120), it is not possible for the machine to determine
the exact address of the instruction that caused the error. The address that it loads into the error pointer
slot of the THOS or POS points to a location that is near to and not before the error causing instruction,
but is not guaranteed to point to the actual location. The instruction pointer register, the integer stack regis­
ters, the floating-point registers, the block move registers and the internal registers are not saved. It is not
possible to restart a process that has caused a memory semantics error.

13.2.3 Instructions that are used to store and retrieve additional state

A point to note from tables 13.3 and 13.5 is that the floating-point registers and block move registers con­
tain valid state of the trapped process after a trap has been taken. These registers are not used to establish

- a new environment for the trap-handler or supervisor, so there is no need for the mechanism to deliver
this state in a data structure. However instructions are provided for a program to store this state in data
structures for later use, and complementary instructions are available for reloading the registers with the
preserved state. These are listed in table 13.7 (fpstall and fpldall are introduced in section 11.12.3.). Typi­
cally, the trap-handler orthe supervisor executes fpstall and stmove2dinit immediately after a trap. Similar­
ly fpldall and move2dinit are executed prior to restarting the trapped process. (A convenient place to store
this extra state, might be immediately after the THOS or POS. The programmer is, however, given the
freedom to choose the location.)

If it is known that the trapped process does not have any floating-point or block move state, then execution
of these instructions may be omitted.

mnemonic name

fpstall floating-point store all

fpldall floating-point load all

stmove2dinit store move2dinit data

move2dinit initialize data for 20 block move

Table 13.7 Instructions for storing/retrieving extra state

t although it may complete execution of an instruction prematurely if an error is detected
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fpstall and fpldall

These instructions are described in section 11.12.3.

stmove2dinit
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The instruction stmove2dinit stores the block move register values into the empty data structure ad­
dressed by the pointer in Areg. The integer stack is popped leaving Creg undefined.

If the content of Areg is not word aligned, then Unalign is signalled. When executed in a P-process, if any
part of the vector is protected, then AccessViolation is signalled.

The data structure pointed to by Areg should be able to store three words of data. The instruction stores
the contents of the block move registers: BMregO, BMreg1 and BMreg2 in the three slots of this structure
This is summarized in table 13.8.

word offset slot name purpose

2 bmr.DeltaS stmove2dinit copies the content of 20 block move con-
trol register 2 into this slot

1 bmr.DeltaD stmove2dinit copies the content of 20 block move con-
trol register 1 into this slot

0 bmr.Count stmove2dinit copies the content of 20 block move con-
trol register 0 into this slot

Table 13.8 Block move data structure

move2dinit

move2dinit is documented in section 7.15.1. Observe that it is complementary to stmove2dinit in much
the same way that fpldal/ is complementary to fpstal/. However a data structure is not used. Instead the
block move registers are loaded with the contents of each of the integer stack registers. The integer stack
is undefined after execution.

an example

For example the following extract of code may be used in a supervisor, where BMDS_ptr is a variable hold­
ing the address of a three word block move data structure (BMOS) of the form shown in table 13.8, and
FPDS_ptr is a variable holding the address of a seven word floating-point data structure (FPOS) of the
form shown in table 11.26. These and other variables used in this sequence are local variables.

Idl BMDS_ptr; Idnl bmr.DeltaS;
Idl BMDS_ptr; Idnl bmr.DeltaD;
Idl BMDS_ptr; Idnl bmr. Count;
move2dinit;

Idl FPDS_ptr;
fpldal/;

Idl RODS_ptr; Idl PDS_ptr;
goprot;
stl TrapReason; stl ErrorType;

Idl FPDS_ptr;
fpstal/;

Idl BMDS_ptr;
stmove2dinit

Initially this sequence loads the block move state. To achieve this it loads the data in each slot of the BMOS
into the integer stack, prior to executing move2dinit. It then loads the floating-point state more simply by
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loading the address of the FPDS into Areg and executing fp/dal/. The RDDS and PDS pointers are loaded
into the integer stack as described in chapter 9 prior to executing goprot which runs a P-process under
protection. When that P-process traps, control returns to the instruction following goprot. The trap and
error reasons, which are left in the integer stack by the trap mechanism, are saved in local variables. The
floating-point and block move state is then saved back into their data structures using fpstal/ and
stmove2dinit respectively.

13.3 Full context switch - interruption

An interrupt may occur at any interrupt point (see section 8.2.5). When a high priority process interrupts
a low priority process, the entire state of the low priority process is saved. The value in each state register
is loaded into its shadow register at the time of interrupt. This is known as a full context switch.

The state of the new high priority process is installed according to table 13.2.

When there are no more high priority processes to be executed, the transputer copies the contents of the
shadow registers back into the main registers and restarts the interrupted low priority process. The com­
plete state of the interrupted process is reloaded by this operation, and as far as the low priority processes
are concerned nothing has changed, unless a high priority process has explicitly changed the shadow
state.

Instructions are provided to enable the high priority process to inspect, save, and/or manipulate the values
held in these shadow registers. A debugging tool for example may need these instructions to examine the
state of the interrupted process. Also an operating system kernel may want to save the interrupted state
for reloading later, and in the meantime restart a different process at low priority. More details are given
on the latter application in section 13.4.

Instructions for saving and reloading shadow state

The instructions that give access to the shadow registers are listed in table ·13.9. stshadow makes the
shadow state visible by storing it in memory. This may, for example, need to be inspected or saved for
later use./dshadow is complementary to stshadow in that it loads the shadow registers from memory. This
allows the state of the low priority process to be modified, or even a different low priority process to be
started on return from interrupt. These instructions are only meaningful when executed in a high priority
process.

mnemonic name

/dshadow load shadow registers

stshadow store shadow registers

Table 13.9 Shadow register instructions

Figure 13.1 groups the shadow registers into the order in which they are saved with the stshadow instruc­
tion, and the order in which they are loaded with the /dshadow instruction. The shadow register index mark­
ers shown in the figure, are used by the instructions to specify which blocks of registers are to be saved
or loaded.
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shadow marker shadow register words in slot

0 •
RegionRegO.sh ]RegionReg1.sh

4RegionReg2.sh
RegionReg3.sh
•

PstateReg.sh ] 2
WdescStubReg.sh

2 •
ThReg.sh ]

3 •
StatusReg.sh ]

4 •
WdescReg.sh
IptrReg.sh
Areg.sh
Breg.sh
Creg.sh
Ereg.sh 11
Xreg.sh
BMregO.sh
BMreg1.sh
BMreg2.sh
EptrReg.sh

5 •
FPstatusReg.sh 1

]7FPAreg.sh 2
FPBreg.sh 2
FPCreg.sh 2

6 •
WIReg.sh J2WuReg.sh

7 •

Figure 13.1 Order in which shadow registers are stored

Prior to executing either of these instructions, the integer stack registers are set up as follows.
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Areg
Breg
Creg

marker specifying start of first shadow group to be loaded or stored
marker specifying end of last shadow group to be loaded or stored
pointer to the first location to be read from or written to

The range of registers is specified by the shadow markers held in Areg and Breg. The registers specified
by the instructions are those grouped between these markers according to figure 13.1. (Note that the
markers are between register groups to avoid ambiguity.) Hence if the value in Areg is 5 and the value
in Breg is 6, then this specifies the floating-point shadow registers.

The shadow register instructions are privileged. Their behavior is undefined when executed by a low prior­
ity process. Their behavior is also undefined if the values held in Areg and Breg do not satisfy the certain
criteria - namely, Areg should be greater than or equal to 0 and should less than Breg, Breg should be
less than or equal to 7.
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stshadow

stshadow stores the contents of the shadow registers specified by the shadow markers held in Areg and
Breg, into the contiguous block of memory beginning at the address in Creg. The integer and floating-point
stack registers are undefined after execution of stshadow.

The contents of the shadow registers are stored into the contiguous block of store that starts atthe address
stored in Creg. Data is stored into this block according to the order shown in figure 13.1. For example if
the region descriptor registers are specified, then the content of RegionRegO.sh is stored at the first word
location in the block, the content of RegionReg1.sh is stored at the second word location in the block,
etc. The number of words required for storing the data in each register is also shown figure 13.1. Observe
that, the floating-point stack registers are double word registers and so consume two word locations each
in the data block. All other registers are single word registers.

Where the interrupted process is the null process (Le. no low priority process had been executing), this
in indicated by the workspace descriptor shadow register having the value NotProcess.p and the status
shadow register having the value O.

Idshadow

Idshadow loads the contents of the locations within the contiguous block of memory beginning at the ad­
dress in Creg, into the shadow registers specified by the shadow markers held in Areg and Breg. The
integer and floating-point stack registers are undefined after execution of Idshadow.

The shadow registers are loaded from the contiguous block of store that starts at the address stored in
Creg. The order of the data held in this block determines the resultant shadow state, according to figure
13.1. For example if only the watchpoint registers are specified, then WIReg.sh is loaded with the content
of the first word location in the block, and WuReg.sh is loaded with the content of the second word location
in the block. The floating-point stack registers are double word registers and so consume two words of
data each from the data block. All other registers are single word registers.

If any of the shadow registers WdescReg.sh, ThReg.sh, PstateReg.sh, or WdescStubReg is not word
aligned, or the priority bit of WdescReg.sh or WdescStubReg.sh is not '1 ' (Iow), then undefined behavior
will occur.

13.4 Restarting an interrupted process

It has previously been described how the instructions tret and goprot are respectively used to restart a
trapped L-process and a trapped P-process. This section explains how to restart an interrupted process.
If a process that has just been interrupted, is to be restarted, then there is no problem because its state
is stored in the shadow registers and will be automatically reloaded when the current high priority process
deschedules or terminates. However, if it is required to restart a process that is not the currently interrupted
process, then one of the two methods described in this section can achieve this.

Use of Idshadow

One way of restarting an interrupted process (either P-process or L-process), is via starting up another
high priority process (using runp). The job of this process is then to reload the shadow state from the saved
data structure of the interrupted process. For this it uses the Idshadow instruction. It should then terminate
itself (using stopp) hence allowing the low priority state to be reloaded by the processor.

This method of reloading interrupted state is in one way more straightforward than the method described
next, because the Idshadow instruction complements stshadow. The saved data need not be manipulated
between these two instructions.

The disadvantage is that it is necessary to run an extra process at high priority, to force the transputer to
reload the interrupted state from the shadow registers.

Use of goprot and restart

An alternative way of restarting an interrupted P-process or L-process is by using goprot and restart (table
13.10) respectively. They use the P-state data structure (PDS), which is described in section 9.7.1.
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mnemonic name

goprot go protected

restart restart

Table 13.10 Instructions for restarting interrupted processes
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goprot

goprot is fully described in section 9.8. As well a (re)starting a trapped P-process, it can be used to restart
an interrupted P-process.

Note that when a subsequent trap occurs, control will be returned to the process that executed goprot,
and the process state will be saved in the P-state data structure specified by that instruction. Thus if it is
required to return control to the same supervisor that would have handled traps prior to the interrupt, then
this supervisor must execute the goprot. A separate code sequence can be used for setting up the restart,
but a jump must be made to the supervisor for the actual restart. The following example demonstrates.

supervisor: Idl RODS_ptr
Idl PDS_ptr
goprot

- load pointer to region descriptor data structure - RDDS
- load pointer to P-state data structure - PDS
- restart P-process

restarter: ... set up PDS and RDDS
... load WdescStubReg of interrupted process into Areg (from shadow state)
Ide (-4) - load workspace pointer mask
and - extract workspace pointer from process descriptor
gajw - set to supervisor's workspace
j supervisor - jump to supervisor

The 'restarter' is the code responsible for restarting the interrupted P-process. It firstly loads the PDS with
the shadow state for the P-process. It then adjusts the workspace pointer to that of the 'supervisor', and
makes a jump to the entry point in the code of the supervisor where the P-process is restarted. PDS_ptr
and RODS_ptr are local variables that hold pointers to the P-state data structure and region descriptor
data structure respectively. The supervisor loads these into the integer stack and restarts the P-process
using goprot.

restart

The restart instruction restarts an interrupted L-process in the same way thatgoprot restarts an interrupted
P-process (except that there is no requirement for Breg to hold an RDDS pointer because relocation and
protection are not applicable to an L-process). The state of the process should therefore be loaded into
a PDS in exactly the same way as for a P-process, and a pointer to this should be held in Areg when the
instruction is executed. Note that this is a secondary use for the PDS because in this case it is used to
hold L-process state rather than P-process state.

This instruction saves the current state according to table 13.1. The new state is loaded according to table
13.6 except that PstateReg, WdescStubReg, and the region descriptor registers are not applicable for
restarting an L-process.

restart does not change the value of the trap-handler register, and so an L-process started with restart
has the same trap-handler as the process that starts it. It may therefore be necessary to install the trap­
handler for the interrupted L-process (using selth) before starting it with restart.

If restart triggers a single-step or watchpoint trap, then it does not restart the L-process. The trap delivers
in Areg, one of the values t.WatchContext, t.StepContext or t.StepWatchContext.
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If an interrupted process is to be restarted using one of these instructions, then the high priority process
that caused the interruption must extract the state from the shadow registers using stshadow. At some
later stage, this state must be written into the POS that is specified in Areg by goprot or restart.

It may be necessary to reload the floating-point and 20 block move state as described earlier (using fpstall
etc.). This state should be reloaded immediately before execution of goprot or restart and it should be
saved when an interrupt occurs.

13.5 Enabling and disabling interruption and timeslicing, and forcing a timeslice

By default, a low priority process is timesliced (section 8.2.4), and can be interrupted (section 8.2.5). How­
ever, timeslicing and interruption can be explicitly disabled.

mnemonic name

settimes/ice set timeslicing status

timeslice timeslice

intdis interrupt disable

intenb interrupt enable

Table 13.11 Timeslice and interrupt instructions

Instructions used to disable and enable timeslicing and interruption, and for forcing a timeslice, are shown
in table 13.11, and described below, but firstly the following general points should be noted.

When the currently executing process enables (or disables) timeslicing, this action also enables (or dis­
ables) timeslicing for all the other processes that share the same trap-handler. The timeslice enable/dis­
able state is indicated by the timeslice disable bit (sb.TimesliceDisabledBit) in the status register - Le.
when timeslicing has been disabled, this bit is set. This is a process control bit and so gets saved when
a trap occurs.

When interruption has ben disabled, neither interrupts nor timeslices are allowed to occur. Interruption is
automatically re-enabled when a process is descheduled. Interruption or timeslicing cannot be disabled
while running under protection.

settimeslice

settimeslice can be used both to prevent timeslicing and to allow timeslicing. The value passed in Areg
specifies which is required. If Areg is fa/se, timeslicing is disabled, and if Areg is true, timeslicing is en­
abled. After execution of the instruction, Areg holds a value to indicate whether or not timeslicing was
previously enabled (again fa/se means disabled and true means enabled). Breg and Creg are unaffected
by this instruction.

This instruction is privileged and is only meaningful when run in a low-priority process. If Areg does not
contain false or true when it is executed, the behavior is undefined.

If prior to execution, the sb.TimesliceDisabledBit was set then Areg is loaded with fa/se to indicate that
timeslicing was disabled. If prior to execution, the sb.TimesliceDisabledBit was reset then Areg is
loaded with true to indicate that timeslicing was enabled. If prior to execution, the value fa/se was present
in Areg, then sb.TimesliceDisabledBit is set to 1 to indicate that timeslicing is now disabled. If prior to
execution, the value true was present in Areg, then sb.TimesliceDisabledBit is set to 0 to indicate that
timeslicing is no longer disabled.

times/ice

times/ice forces a timeslice to be taken, regardless of whether timeslicing or interruption is enabled. The
instruction requires no stack parameters.
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This can be executed from a high or low priority process. It is a descheduling point. A side-effect of this
is that when executed from a low priority L-process, it will cause interruption to be enabled (because the
current process.is descheduled).

When executed from an L-process at either low or high priority, the current process is descheduled and
rescheduled, hence placing it at the back of the current priority scheduling list. The integer and floating­
point stacks are not preserved. When executed from a P-process at either low or high priority, a trap is
taken and a special value is presented to the supervisor in Areg, indicating that the reason for the trap
was a timeslice.

intdis

intdis disables interruption and timeslicing. It requires no parameters and does not affect the integer stack.

This instruction is privileged and is only meaningful when run in a low-priority L-process.

intenb

intenb enables interruption. It requires no parameters and does not affect the integer stack.

This instruction is privileged and is only meaningful when run in low-priority L-process.

Remember that disabling interruption forces timeslicing to be disabled; but provided that the timeslice dis­
able bit is 0, intenb also re-enables timeslicing.

Additional timeslicing considerations

When a low priority L-process is executed with a-null trap-handler, timeslicing is enabled by default. It can
be explicitly disabled, but if the process is descheduled or trapped, timeslicing will again be enabled when
it restarts. This implies that a trap-hander will always start executing with timeslicing enabled, because
it must itself have a null trap-handler. But if it subsequently installs a trap-handler for itself (using selth)
it will inherit the timeslice enable/disable state specified by that trap-handler.

If an interrupt occurs,- the entire content of the status register is preserved via its shadow register. There­
fore, when the low priority process resumes, timeslicing is as it was when the interrupt occurred (unless
explicitly manipulated by a high priority process).

The timeslice clock continues to count while timeslicing is disabled. If a timeslice is due when timeslicing
is enabled, a timeslice will be taken at the next timeslicing point (or at the next interrupt point if running
under protection). Furthermore, a timeslice trap does not reset the timeslice clock, and so if the timeslice
clock indicates that a timeslice is due while executing a P-process, it will still indicate that a timeslice is
due after the timeslice trap has been taken. Assuming therefore that it has timeslicing enabled, the super­
visor will timeslice at the next timeslicing point. Note however that this may not be the case when a time­
slice trap is forced by execution of timeslice.

Alternative means of disabling timeslicing

Where a process requires a short sequence of its code to execute without descheduling, the settimeslice
instruction described above should be used. However in applications that require an entire process to be
executed without timeslicing, there is an alternative method.

The trap-handler (or supervisor) can disable timeslicing in a subordinate L-process (or P-process) by set­
ting the timeslice disable bit (sb.TimesliceDisabledBit) in the control word prior to executing tret (or go­
prot). When the processor executes an L-process (or P-process), it loads the timeslice disable bit from
the control word of the process's THDS (or PDS) into the status register.

13.6 Scheduling list and timer list queue manipulation

Before reading this section, the reader should be familiar with sections 8.2.1, 8.3 and 8.5.
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As well as the instructions described for initiation and termination of processes (section 8.3), the IMS
T9000 provides two instructions for explicit manipulation of the scheduling lists. These provide more con­
trol over the scheduling mechanism. This is of particular interest to the operating system programmer.

Similarly, as well as the timer instructions described in section 8.5, the IMS T9000 also provides instruc­
tions to manipulate the timer lists and restart the clocks.

It is safe to manipulate either scheduling list or either timer list from either priority. It is usual to manipulate
the lists from the same or higher priority. It would not be normal practice for a low priority process to manip­
ulate the high priority list. However, bear in mind that if a high-priority queue is installed by a low priority
process, an interrupt will result as soon as the list has been modified (unless interruption has been dis­
abled).

The programmer must be aware that the scheduling or timer lists may asynchronously change as a result
of the communication or timer mechanism recognizing ready processes, but it is guaranteed that while
a list manipulation instruction is being executed, the list specified by the instruction cannot be changed
by these mechanisms. However between instructions, there is the potential for interruption or timeslicing.
If a sequence of manipulation instructions is being executed, it may be necessary to disable interruption
and timeslicing (using the instructions described in section 13.5). Note however that queues can still
change while interruption is disabled.

The instructions that can be used to manipulate the scheduling lists and the timer lists, are shown in table
13.12, and are described below. For each of these instructions, if a specified queue has a front pointer
value NotProcess.p (the null process), then the queue is empty.

mnemonic name

swapqueue swap scheduler queue

insertqueue insert at front of scheduler queue

swaptimer swap timer queue

Idtimer load timer

s ttimer store timer

Table 13.12 Instructions used to manipulate scheduling and timer lists

swapqueue

The instruction swapqueue takes the following parameters. Areg indicates the priority of the scheduling
list to be swapped (0 for high and 1 for low). Breg contains a pointer to the workspace of the first process
in the new queue. Creg contains a pointer to the workspace of the last process in the new queue. After
execution, the new queue is installed as the scheduling list for the specified priority and pointers of the
old scheduling list are held in Areg and Breg. Creg is left undefined.

This instruction is privileged. If Areg initially has a value other than 0 or 1, then the behavior is undefined.
Unless Breg specifies an empty queue (NotProcess.p) , the instruction has an undefined effect if the point­
ers in Breg or Creg are not word aligned. Note that the queue pointers are guaranteed to be word aligned
for all queues generated by the processor.

The front pointer register of the appropriate priority takes the value initially in Breg, and Areg is assigned
the initial value of the front pointer register. Similarly the back pointer register of the appropriate priority
takes the value initially in Creg, and Breg is assigned the initial value of the back pointer register.

insertqueue

The instruction insertqueue takes the following parameters. Areg indicates the priority of the scheduling
list to be extended. Breg contains a pointer to the workspace of the first process in the queue to be in­
serted. Creg contains a pointer to the workspace of the last process in the queue to be inserted. After
execution, the queue is inserted at the front of the scheduling list for the specified priority. The integer stack
is left undefined.
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This instruction is privileged. If Areg initially has a value other than 0 or 1, then the behavior is undefined.
If Breg initially contains NotProcess.p, then the insert queue is empty and the instruction has no effect.
Unless Breg specifies an empty queue (NotProcess.p) , the instruction has an undefined effect if the point­
ers in Breg or Creg are not word aligned. Note that the queue pointers are guaranteed to be word aligned
for all queues generated by the processor.

The front pointer register of the appropriate priority takes the value initially in Breg. If the initial value of
the front pointer register was NotProcess.p, then the initial scheduling list was empty, and the back pointer
register is assigned the initial value of Creg. If the initial scheduling list was not empty, then the initial value
of the front pointer register is stored in the pw.Link slot of the process workspace pointed to by Creg,
thereby linking the original list on to the end of the newly inserted queue.

swaptimer

The instruction swaptimer takes the following parameters. Areg indicates the priority of the timer list to
be swapped (0 for high and 1 for low). Breg contains a pointer to the workspace of the first process in the
new queue. After execution, the new queue is installed as the timer list for the specified priority and the
front pointer of the old timer list is held in Areg. Breg and Creg are left undefined.

This instruction is privileged. If Areg initially has a value other than 0 or 1, then the behavior is undefined.
Unless Breg specifies an empty queue (NotProcess.p) , the instruction has an undefined effect if the point­
er in Breg is not word aligned. Note that queue pointers are guaranteed to be word aligned for all queues
generated by the processor.

The front pointer register of the appropriate priority takes the value initially in Breg, and Areg is assigned
the initial value of the front pointer register. The timeout register of the appropriate priority is loaded with
the first time on the new list, which is obtained from the pw.Time slot of the workspace of the process at
the front of the list.

note: The timer mechanism will only work correctly if the timer list is linked in chronological order. This can
be guaranteed if the newly installed list has been previously created by the processor using tin etc. (section
8.5).

Idtimer

The Idtimer instruction reads the time of the current priority clock, where the current priority is the priority
of the executing process. The value in the appropriate clock register is pushed into the integer stack.

sttimer

The sttimer instruction starts both high and low priority clocks. The value in Areg at the time of execution,
is assigned to both clock registers. Areg is then popped from the integer stack, leaving Creg undefined.
This is a privileged instruction.

This needs to be executed before any timer operations are executed, and furthermore because the time­
slicing mechanism uses these clocks, no timeslicing will occur before it is executed. For these reasons
the instruction is usually executed by the bootstrap code. However, execution of this instruction can be
repeated, hence resetting the clocks to the value in Areg.
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14 Debugging mechanisms

Section 10.3.1 introduced seven trap causes. Three of these are specifically provided to support program
debugging - namely: breakpoints, watchpoints, and single-stepping. This chapter discusses how each
of these are used to monitor both P-processes and L-processes. It also considers some subtleties that
occur when a process is due to deschedule or change context at the time of a trap.

14.1 ' Breakpoints

goprot

supervisor

~ ) breakpoint (j 0)

~

tret

trap-handler

------=-- ) breakpoint (j 0)

G3'
A breakpoint can be used to debug a program by deliberately diverting control from the process in which
it appears. It is normally inserted by a debugger, in place of an existing instruction, which should be re­
placed at a later time. A breakpoint instruction is implemented by a dual use of the jump instruction. Thus,
the otherwise redundant instructionj 0, is interpreted as a breakpoint. This is coded in a single byte and
hence can always substitute any single instruction. The action is to cause a trap to be taken to its supervi­
sor if the process is a P-process or to its trap-handler if the process is an L-process.

The only other trap that can occur at the same time as a breakpoint trap, is a single-step trap. The trap
delivers a reason in Areg for the supervisor or trap-handler to inspect. This will be one of the trap reasons
t.Break or t.StepBreak (see table 10.5). It also delivers et.NoError to Breg.

14.2 Single-stepping

goprot

supervisor

~ ) single-step

~

tret
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14.2.1 Single-stepping a P-process

A supervisor can single-step a P-process by setting to '1' the single-stepping trap enable bit (sb.StepBit)
of control word in the PDS for that P-process. Provided this bit is set, when the supervisor executes goprot
to (re)start the P-process, the latter will trap back to the supervisor when it has executed a single instruc­
tion.

When the P-process trap saves the process state, it writes the address of the next instruction to be
executed into the ps.slptr slot of the PDS. Successive executions of goprot by the supervisor thus allow
a sequence of instructions to be executed in the P-process.

The trap delivers a reason in Areg for the supervisor to inspect. It may be that there is more than one
cause. The instruction being single-stepped may have caused an error, may have indicated that a time­
slice is due, or may have written to a watchpointed location (see section 14.3); or it could be one of the
instructionssyscall,j 0 (breakpoint), orcauseerror, which all force a trap to betaken.lfone of more of these
trap conditions has been detected as well as the single-step, then these are encoded in the trap reason.
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The trap also delivers the error type in Breg. For example if an add instruction causes an integer overflow,
it delivers t.StepError to Areg and et.lntegerOverflow to Breg (see tables 10.5 and 10.10). If no error
occurs during execution of a single-stepped instruction, the trap delivers the type code et.NoError.

14.2.2 Single-stepping an L-process

A trap-handler can single-step an L-process by setting to '1' sb.StepBit of control word in the THDS. Pro­
vided this bit is set, when the trap-handler executes tret to restart the L-process, the latter will trap back
to the trap-handler when it has executed a single instruction.

When the L-process trap saves .the process state, it writes the address of the next instruction to be
executed into the th.slptr slot of the THDS. Successive executions of tret by the trap-handler thus allow
a sequential sequence of instructions to be executed in the L-process.

The trap delivers a reason in Areg for the trap-handler to inspect. It may be that there is more than one
cause. The instruction being single-stepped may have caused an error, or may have written to a watch­
pointed location (see section 14.3); or it could be one of the instructions syscall, j 0 (breakpoint), or cau­
seerror, which all force a trap to be taken. If one of more of these trap conditions has been detected as
well as the single-step, then these are encoded in the trap reason. Furthermore, it may be that certain
instructions are due to deschedule or context change and so this information is also encoded (this is dis­
cussed in section 14.4).

The trap also delivers the error type in Breg. For example if an fpsub instruction causes floating-point un­
derflow, it delivers t.StepError to Areg and et.FPUnderflow to Breg (see tables 10.5 and 10.10). If no
error occurs during execution of a single-stepped instruction, the trap delivers the type code et.NoError.

14.2.3 Early 'single-step' trap

If single-stepping is enabled then a trap occurring for any other reason, after the single-stepped instruction
has started execution, is also coded as a single-step trap. For example if a timeslice trap is taken from
a P-process in the middle of an instruction that is being single-stepped, then the reason for the trap is
t.StepTime (see table 10.5). Provided single-stepping is still enabled when this instruction is restarted,
a single-step trap will still be taken when the instruction has finished execution. However if a P-process
timeslice trap is taken after the completion of goprot but before the first instruction of the P-process starts
execution, then this is not coded as a 'single-step' trap.

14.3 Watchpoints

goprot
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J watchpoint

0ro~
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A trap-handler or supervisor can monitor a specified region of the address space for write operations made
by its subordinate L-process or P-process. This 'watchpointed region' is specified by a lower bound watch­
point register (WIReg) and an upper bound watchpoint register (WuReg). The addresses in these regis­
ters must be word-aligned, and the address in WuReg must be greater than or equal to the address in
WIReg. If the watchpoint trap enable bit (sb.WtchPntEnbl) in the status register is set, then any instruc­
tion, attempting to write to an address between and including those addresses in these registers, causes
a trap to occur. Hence any instruction that performs a write operation can cause a watchpoint trap to be
taken.

This section explains how a trap-handler or supervisor can set up this mechanism.
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14.3.1 Watchpointing a P-process

The watchpointed region is specified for a P-process by loading ps.eWu and ps.eWI with the upper and
lower addresses respectively. A supervisor can then watchpoint a P-process by setting to '1' the watch­
point trap enable bit of control word in the PDS for that P-process. Provided this bit is set, when the supervi­
sor executes goprot to (re)start the P-process, the latter will trap back to the supervisor when an instruction
makes a write to the watchpointed region. Because the processor is operating under protection, the ad­
dresses in ps.eWu and ps.eWI are logical addresses, and the specified watchpointed region is a logical
address region.

The trap delivers a reason in Areg for the supervisor to inspect. It may be that there is more than one
cause. The instruction that caused the watchpoint also may have caused an error, may have indicated
that a timeslice is due, or may have been single-stepped (see section 14.2). If one of more of these trap
conditions has been detected as well as the watchpoint, then these are encoded in the trap reason.

14.3.2 Watchpointing an L-process

The watchpointed region is specified for an L-process by loading th.eWu and th.eWI with the upper and
lower addresses respectively. A trap-handler can then watchpoint an L-process by setting to '1' the watch­
point trap enable bit of control word in the THDS for that L-process. Provided this bit is set, when the trap­
handler executes tretto (re)start the L-process, the latter will trap back to the trap-handler when an instruc­
tion makes a write to the watchpointed region.

Since a number of L-processes can share the same trap-handler, it is possible for the same trap-handler
to watchpoint a collection of L-processes.

The trap delivers a reason in Areg for the trap-handler to inspect. It may be that there is more than one
cause. The instruction that caused the watchpoint also may have caused an error, or may have been
single-stepped (see section 14.2). If one of more of these trap conditions has been detected as well as
the watchpoint, then these are encoded in the trap reason. Furthermore, it may be that certain instructions
are due to deschedule or context change and so this information is also encoded (this is discussed in sec­
tion 14.4).

When a watchpoint is detected, the trap always occurs after the instruction has been executed, unless
one of the other trap conditions has caused a trap to occur earlier than this. For example if a timeslice trap
is taken from a P-process in the middle of an instruction, when a watchpoint is pending, then the reason
for the trap is t.WatchTime (see table 10.5). When the instruction is restarted, there will no longer be a
watchpoint pending, and so a watchpoint trap will not occur at the end of the instruction, unless another
watchpoint is detected before completion of execution.

The trap also delivers the error type in Breg. Even when no error occurs at the same time as a watchpoint,
it delivers the type code et.NoError.

14.4 Single-stepping and watchpointing an L-process - some special considerations

A trap-handler that is monitoring an L-process using single-stepping or watchpointing, needs to take ac­
count of the special behavior of certain instructions. Some instructions cause a process to timeslice (see
section 8.2.4), some instructions cause a process to deschedule (see section 8.2.2), and some instruc­
tions cause other context swaps. Each of these are considered in this section.

Note that for a P-process, this is not a problem. If a timeslice is due, this causes a trap to be taken at the
next interruptible point, but otherwise a P-process does not deschedule or context change.

Timeslicing

If a timeslice is due prior to taking a watchpoint or single-step trap, then it is still due after the trap - i.e.
a timeslice is taken at the next timeslice point.
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Note that timeslicing is always enabled by the trap mechanism - see section 13.5. If for example there
is a timeslice due but timeslicing is disabled, then a trap will re-enable timeslicing and the trap-handler will
by default timeslice at the next timeslicing point. If this is not required then the trap-handler must explicitly
disable timeslicing before executing a timeslicing point.

Descheduling

When a descheduling point (other than a timeslice point) takes a watchpoint or single-step trap, then this
information is encoded into the trap reason (e.g. t.StepDesch). The trap-handler may then deal with this
accordingly. Typically it will load '1' into Areg prior to executing trap return to prevent the process from
restarting.

Context changes

When single-stepping or watchpointing an L-process, the instructions goprot, restart and selth must be
treated with care, because under normal circumstances these instructions would cause a change of con­
text and so it would be unclear as to where control is transferred when the trap is taken.

For this reason, when goprot, restart and selth cause a single-step or watchpoint trap, these instructions
are not executed in the normal way. They simply deliver the state to the current trap-handler, indicating
in the trap reason code that a context change was due to occur. It is thus left to the trap-handler to act
on this information. Note that a watchpoint trap is caused if the control word of the current trap-handler
is being watchpointed.

When an L-process traps while executing selth, it traps to the trap-handler that it had before the instruction
was executed. The new trap-handler is not selected. If the trap-handler is required to install a new trap­
handler on behalf of the trapped process, then it must change the context of that process. It can do this
by adjusting the trapped process's workspac'e data structure and restarting the process. The instruction
pointer should therefore be copied from th.slptr to pw.lptr of the workspace data structure, and the new
trap-handler should be copied from th.sAreg to pw.TrapHandler. The address of the workspace data
structure is held in th.sWptr. This address should then be loaded into Areg prior to execution of runp which
will restart the process with the new trap-handler. Note that this procedure forces the process executing
selth to be descheduled, whereas this is not necessarily the case when no trap is taken. When the trap­
handler executes tret, it should ensure that '1' is loaded into Areg to prevent the process continuing execu­
tion with the original context.

When an L-process traps while executing goprot, it traps to the trap-handler that it has before the instruc­
tion is executed. The P-process does not start to execute. There are a number of ways that the trap-han­
dier might wish to handle this depending on the full reasons for the trap and the requirements of the code
behavior. The following discusses two options that can be implemented for a single-step trap: (i) it might
be required to single-step the P-process, (ii) it might be required to let the P-process execute without step­
ping and for stepping the resume when control has returned to the L-process (the supervisor).

In order to single step the P-process, the trap-handler can be made to act as its supervisor. The address
of the PDS for the P-process can be retrieved from th.sAreg. sb.StepBit should be set to '1' in the control
word of the PDS. The address of the PDS should be loaded into Areg, and the address of the RODS (re­
gion descriptor data structure) should be loaded into Breg from th.sBreg. The trap-handler is then ready
to execute goprot. This can then be repeated to single-step sequential instructions in the P-process as
described in section 14.2.1.

In order to bypass single-stepping of the P-process, is necessary to clear sb.StepBit in the control word
of the THDS. To re-execute goprot in the trapped process, the address of the trapped instruction should
be sp,ecified as the next instruction by copying th.Eptr into th.slptr, prior to executing tret. In addition to
this it is also necessary to provide an indication to the trap-handler of when the P-process traps back to
the supervisor, so that single-stepping can be restarted. A breakpoint inserted at the instruction following
goprot provides this indication.
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The performance of a computer system can be improved by providing a memory 'cache'. A cache is a
fast access memory separate from main memory. It contains a copy of the data stored in selected loca­
tions of main memory, and is designed such that at any time, the contents of the most frequently accessed
locations are held in cache. Access to these locations can then be made to the cache rather than to main
memory, thus reducing access time.

When a location is accessed for reading or writing, the processor examines the cache to determine wheth­
er or not there is a copy of the data for that location currently in the cache. If not this is known as a cache
'miss'. On a miss, the data is read from the external memory location, and if the location being accessed
is one that can be associated with the cache - Le. it is 'cacheable' - then the contents of a fixed area of
memory (often called a 'line') containing that location are copied into the cache.

CPU

read

uncacheable read

cache
read

local read local write

workspace I
cache I

I

main cache

main memory

write

uncacheable write

cache
write

Figure 15.1 Memory architecture

The IMS T9000 has two memory caches: a workspace cache, and a main cache. Figure 15.1 shows the
memory architecture. The workspace cache is a 'write-through' cache, whereas the main cache is a 'write­
back' cache. This chapter explains these two different schemes, and describes the instructions that are
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used to flush and invalidate the main cache. Refer to the Instruction and data cache and Programmable
memory interface chapters of The T9000 Hardware Reference Manual for a more detailed presentation
of the memory architecture.

15.1 Workspace cache

The workspace cache is used to provide fast access to local variables. It can cache (Le. hold a copy of)
the first 32 words relative to the current workspace pointer (i .e. memory in the range Wptr @ 0 to
Wptr @ 31 -see section A.2.5 for an explanation of this notation). Each cache location is marked as inval­
id (Le. empty) until an access is made to the associated memory location. When the workspace is ad­
justed, all new locations-in the 32 word range are marked as invalid.

If the memory location being read is within the first 32 words in the local workspace then Idl operates as
follows:-

• If the data for the specified location is not already cached, it copies the data to the workspace
cache and marks this data as valid, before loading into the integer stack.

• If the data is already cached it loads directly from the workspace cache.

When the processor writes a whole word (e.g. stl, stnl, move) to any of the first 32 words in the local work­
space, it writes this data to both the workspace cache and the main cache / main memory. This data is
marked as valid in the workspace cache after this operation. The workspace cache is thus always consis­
tent with main memory, hence whenever data is read from either main memory or cache it is known that
this data will be correct. This is known as a 'write-through' cache.

A location that is cached by the workspace cache becomes uncached and its associated cache slot is
marked as invalid, when an instruction (sb or ss) writes only part of a word.

Note that the load instructions Idnl, Ib, Ibx, Is, Isx always load from main cache / main memory - Le. they
do not read data from the workspace cache.

15.2 Main Cache

The programmable memory interface (PMI) specifies which parts of memory can be cached by the main
cache.

The main cache comprises a collection of cache 'lines', where each line holds data for 4 contiguous word
locations. A cache line comprises (i) a 4-word aligned physical address specifying the 4-word block repre­
sented by the line and (ii) data for those 4 words.

When a location is accessed (for either reading or writing), the processor searches the main cache. If it
finds a line specifying the location's address, then the access is made to the cache rather than main
memory. If it does not find a valid cache line for that location - Le. the processor performs a cache 'miss'
- then provided that location is cacheable, it copies the contents of the 4-word aligned block that contains
the accessed location from main memory into an invalid cache line, which is then marked as valid. This
and subsequent memory accesses to locations with addresses within this 4-word block are then per­
formed to/from the cache rather than the main memory, as long as the line remains valid. After marking
a new line as valid, the processor invalidates one line of the cache (chosen at random), ensuring that there
is always at least one empty cache line for the next cache miss. When the cache has just been set up,
there is guaranteed to be one cache line, chosen at random, marked as invalid.

When the processor writes to a cached location, it writes the new data to the appropriate cache line, but
does not immediately record the change in main memory. Therefore unlike the workspace cache, the
cache data can be inconsistent with main memory. A cache line with such data is known as 'dirty'. If a
cache is dirty when it is being invalidated, then the processor writes its data back to main memory (al­
though explicit invalidation using ica or icl - see later - does not cause write-back). This type of cache
is known as a 'write-back' cache. Note that provided the host processor is the only machine accessing
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memory, it will never access incorrect data. If the memory is already cached then it will read from the
cache, which is guaranteed to hold the most recent data. If the memory is not cached, then it either will
have never been cached, or will have been written back with the most recent data at the last invalidation.

15.3 Instructions

Where main memory is read by an external device (e.g. a DMA controller or another processor), the pro­
grammer must ensure that the main memory data is consistent with the cache data. Since the main cache
is write-back rather than write-through, this cannot automatically be guaranteed. The IMS T9000 provides
cache flushing instructions for this purpose.

Similarly, if an external device changes main memory, this is not automatically reflected in the workspace
or main cache. The programmer must therefore be aware that any such external memory change may
cause the information in the caches to be out-of-date. The IMS T9000 provides cache invalidation instruc­
tions, which can be used to ensure that the next read from specified locations is not taken from the main
cache but is read from external memory. However there are no such instructions for the workspace cache.
Hence to ensure that this never causes a problem, the local workspace should never be placed in an area
of memory that is likely to be modified by an external device - irrespective of whether this memory is
cacheable.

The instructions listed in table 15.1 operate on the main cache rather than the workspace cache. They
are provided to support the use of shared external memory.

mnemonic name

ica invalidate cache address

icl invalidate cache line

fdca flush dirty cache address

fdcl flush dirty cache line

Table 15.1 Cache instructions

The only times that a cache line gets written back to main memory, are either when a line is replaced follow­
ing a cache miss, or by explicit execution of fdca or fdcl. These instructions do not invalidate cache lines.

If there is a valid cache line in the main cache that holds data for the address specified in Areg and this
line is dirty, then fdca writes this cache line back to main memory and marks it as not dirty. Areg is increm­
ented by BytesPerLine making this instruction convenient for sequential use where a contiguous block
of memory needs to be flushed. Breg and Creg are unaffected. Note that when a P-process executes
fdca, it interprets the content of Areg as a logical address.

If the cache line specified in Areg is valid and dirty and the address associated with that line is in the range
of addresses specified by Breg to Creg, then fdcl writes it back to main memory and marks it as not dirty.
Areg is incremented by one, making this instruction convenientfor sequential use where a number of lines
need to be flushed. This is a privileged instruction. Breg and Creg are unaffected. The cache line specified
should be in the range 0.. 1023, unless half of the cache is configured as internal RAM in which case the
line should be in the range 512.. 1023.

When only a small area of memoryt needs to be flushed, this can be achieved by applying a short se­
quence of fdca instructions - one application for each block of four words. Conversely when a large area
of memory needs to be flushed, it is more efficient to apply a sequence of fdcl instructions. This instruction
would normally be used in a loop incrementing the line in Areg from 0 through to 1023, thus ensuring that
all memory addresses in the specified range are consistent with the data in the cache. In some circum­
stances it may be desirable to flush just part of the cache. For example if half of the cache lines are config­
ured as internal memory, only those relating to external memory should be flushed. Also for flushing a very
large range of memory, it may be better to flush this by parts to avoid consuming a large amount of time
doing the flush in one go.

t As a rule of thumb, if a contiguous block of data that is less than 4000 words is to be flushed, then a sequence of fdca instructions
should be used in preference to a sequence of fdcl instructions.
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Under ongoing operating conditions, there will normally be one and only one invalid line in the main cache.
However a program can explicitly invalidate cache lines using one of the instructions ica or icl. Be aware
that these instructions do not write dirty lines back to main memory before invalidating. It is therefore im­
portant that if variables are shared between processes, these should be explicitly flushed (using fdcl or
fdca) prior to being explicitly invalidated. This is because when one process invalidates a cache line, it
cannot be certain that another process has not made a write prior to the invalidation.

If there is a cache line in the main cache that holds data for the address specified in Areg, then ica invali­
dates this cache line. Areg is incremented by BytesPerLine, making this instruction convenient for re­
peated use where a contiguous block a memory needs to .be invalidated. Breg and Creg are unaffected.

icl invalidates the cache line specified in Areg, if the address associated with that line is in the range of
addresses specified by Breg to Creg. Areg is incremented by one making this instruction convenient for
repeated use where a number of lines need to be invalidated. Breg and Creg are unaffected. The cache
line specified should be in the range 0..1023, unless half of the cache is configured as internal RAM in
which case the line should be the range 512.. 1023.

When only a small area+ of memory needs to be invalidated, this can be achieved by applying a short
sequence of ica instructions - one application for each block of four words. Conversely when a large area
of memory needs to be ,nvalidated, it is more efficient to apply a sequence icl instructions. These instruc­
tions would normally be used in a loop incrementing the line in Areg from 0 through to 1023, thus ensuring
that all memory addresses in the specified range are uncached. In some circumstances it may be desir­
able to invalidate just part of the cache. For example if half of the cache lines are configured as internal
memory, only those relating to external memory should be invalidated. Also for invalidating a very large
range of memory, it may be better to invalidate this by parts to avoid consuming a large amount of time
doing the invalidate in one go.

+As a rule of thumb, if a contiguous block of data that is less than 4000 words is to be invalidated, then a sequence of ica instructions
should be used in preference to a sequence of icl instructio,ns.
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This reference section provides a summary of the T9000 instruction set. The instructions are listed in al­
phabetical order, one to a page. Each page has the instruction mnemonic and full name at the top and then
the following categories of information:

• Code: the instruction code;

• Description: a brief summary of the purpose and behavior of the instruction;

• Definition: a more complete description of the instruction, using the notation described below
in section A.2;

• Error signals: a list of errors and other signals which can occur;

• Comments: a list of other important features of the instruction;

• See chapter: a reference to the chapter in the main body of this book where the use of the instruc­
tion is described;

• See also: for some instructions, a cross reference is provided to other instructions with a related
function.

These categories are explained in more detail below, using the add instruction as an example.

A.1.1 Instruction name

The header at the top of each page shows the instruction mnemonic and, on the right, the full name of the
instruction. For primary instructions the mnemonic is followed by In' to indicate the operand to the instruc­
tion - this is used in the description to show how the operand is used.

A.1.2 Code

For secondary instructions the instruction op-code is shown as the 'memory code' - the actual bytes, in­
cluding any prefixes etc., which are stored in memory. The value is given as a sequence of bytes in hexade­
cimal, most significant byte first. The codes are stored in memory in 'little-endian' format - with the least
significant byte at the lowest address.

For primary instructions the code stored in memory is determined partly by the value of the operand to the
instruction. In this case the op-code is shown as 'Function x' where x is the function code in the last byte
of the instruction. For example, adc (add constant) is shown as 'Function 8'. See Chapter 6 for more details
of instruction and operand encoding.

Example

The entry for the add instruction is:

Code:F5

A.1.3 Description

The description section provides an indication of the purpose of the instruction as well as a summary of
the behavior. This includes the meaning of the values in the registers which are used as parameters and
results of the instruction.

Example

The add instruction contains the following description:

Description: Add Areg and Breg.
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A.1.4 Definition

The 'definition' section is intended to provide a more complete description of the behaviorofthe instruction.
The behavior is defined in terms of its effect on the state of the processor (Le. the values in registers and
memory before and after the instruction has executed).

The effects of the instruction on registers, etc. are given as relationships of the following form:

register' Eo- expression involving registers, etc.

Where primed names (e.g. Areg') represent values after instruction execution, while unprimed names
represent values when instruction execution starts. For example, Areg represents the value in Areg be­
fore the execution of the instruction while Areg' represents the value in Areg afterwards. So, the example
above states that the register on the left hand side becomes equal to the value of the expression on the
right hand side after the instruction has been executed.

The description is written with the main function of the instruction stated first (e.g. the main function of the
add instruction is to put the sum of Areg and Breg into Areg). This is followed py the other effects of the
instruction (e.g. popping the stack). There is no temporal ordering implied by the order in which the state­
ments are written.

The notation is described more fully below, in section A.2.

Example

The add instruction contains the following description:

Definition:
Areg' Breg +checked Areg

Breg'
Creg'

Creg
undefined

This says that the integer stack is popped and Areg assigned the sum of the values that were initially in
Breg and Areg. After the instruction has executed Breg contains the value that was originally in Creg,
and Creg is undefined.

A.1.5 Error signals

This section lists the errors and other exceptional conditions that can be signalled by the instruction. This
only indicates the error signal, not the action that will be taken by the processor - this will depend on the
the trap enable bits which are set, the value in the trap handler register, etc. The effects of these signals
are fully explained in chapter 10. The order of the error signals listed is significant in that if a particular error
is signalled then errors later in the list may not be signalled. The errors that may be signalled are as follows:

AccessViolation indicates that an attempt was made to access a non-existent or protected
memory or device address. Can only occur in P-processes.

IntegerError indicates a variety of general errors such as a value out of range and misuse of chan­
nels.

IntegerOverflow indicates that an overflow occurred during an integer arithmetic operation.

Privlnstruction indicates that an attempt was made to execute a privileged instruction. Can only
occur in P-processes.

Unalign indicates that an access to an incorrectly aligned data object was attempted.

FPDivideByZero, FPlnexact, FPlnvalidOp, FPOverflow, and FPUnderflow-these floating point
errors correspond directly to the exceptional events specified in IEEE standard 754-1985: "divide
by zero", "inexact result", "invalid operation", "overflow", and "underflow" respectively.

FPError indicates a general floating point error - it is signalled by a not-a-number (NaN) or an
infinity as an operand to the instruction or whenever FPDivideByZero, FPlnvalidOp or FPOver­
flow are signalled. This provides a simpler error handling mechanism and compatibility with the
T800 series of transputers.
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Example

As an example, the error signals listed for the add instruction are:

Error signals:
IntegerOverflow can be caused by +checked
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So, the only error that can be caused by add is an integer overflow during the addition of Areg and Breg.

A.1.6 Comments

This section is used for listing other information about the instructions that may be of interest. Firstly, there
is an indication of the type of the instruction. These are:

"Primary instruction" - indicates one of the 13 functions which are directly encoded in a single
byte instruction.

"Secondary instruction" - indicates an instruction which is encoded using opr.

Then there is information concerning the scheduling of the process:

"Instruction is a descheduling point" - an L-process may be descheduled after executing this
instruction. .

"Instruction is a timeslicing point" - an L-process may be timesliced after executing this instruc­
tion.

"Instruction is interruptible" - the execution of this instruction may be interrupted by a high prior­
ity process.

"Instruction is privileged" - the instruction cannot be executed when running under protection.

This section also describes any situations where the operation of the instruction is undefined or invalid.

Example

Using the add instruction as an example again, the comments listed are:

Comments:
Secondary instruction

This says that add is a secondary instruction (it is encoded as operate 5).

A.2 Notation

The following sections gives a full description of the notation used in the 'definition' section of the instruc­
tion descriptions.

A.2.1 The transputer state

The transputer state consists of the registers (mainly Areg, Breg, Creg, IptrReg, WdescReg, FPAreg,
FPBreg, and FPCreg), the contents of memory, and various flags and special registers (such as the error
flags, process queue pointers, clock registers, etc.). See chapter 5 for more information about process
state.

The two names wptr and WdescReg, in the description, represent different values from the same T9000
register, WdescReg. wptr is used for the address of the process workspace - this address is word
aligned and therefore has the two least significant bits set to zero. WdescReg is used for the 'process des­
criptor' - the value that is actually held in the workspace descriptor register. This value is composed of
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the workspace address and the process priority, stored in bit 0 of the word. Bit 0 is set to 0 for high priority
processes and is set to 1 for low priority processes. Bit 1 of the process descriptor is always O.

The floating point rounding mode is represented by a variable called RoundMode.

A.2.2 General

The instruction descriptions are not intended to describe the way the instructions are implemented, but
only their effect on the state of the processor. So, for example, the block move instructions are described
in terms of a sequence of byte reads and writes even though the instructions are implemented to perform
the minimum number of word reads and writes.

Comments (in italics) are used to both clarify the description and to describe things that cannot easily be
represented by the notation used here; e.g. start nextprocess. These actions may be performed in another
subsystem in the device such as the VCP or the scheduler and so any changes to machine state are not
necessarily completely synchronized with the execution of the instruction (as the different subsystems
work independently and in parallel).

Ellipses are used to show a range of values; e.g. 'i = 0 •• 31' means that i has values from 0 to 31,
inclusive.

Subscripts are used to indicate particular bits in a word; e.g. Aregi for bit i of Areg; and Arego .. 7 for
the least significant byte of Areg. Note that bit 0 is the least significant bit in a word, and bit 31 is the most
significant bit.

Instruction pointer

Generally, if the description does not mention the state of a register or memory location after the instruc­
tion, then the value will not be changed by the instruction.

One exception to this general rule is IptrReg, which is assigned the address of the next instruction in the
code before every instruction execution starts. The IptrReg is included in the description only when it is
directly affected by the instruction (e.g. in the jump instruction). In these cases the address of the next
instruction is indicated by the comment "next instruction".

Scheduling operations

Some registers, such as the timer and scheduling list pointers, and some special workspace locations can
be changed at any time by scheduling operations. Changes to these are included in the description only
when they are directly caused by the instruction, and not just as an effect of any scheduling operation which
might take place.

A.2.3 Undefined values

Many instructions leave the contents of a register or memory location in an undefined state. This means
that the value of the location may be changed by the instruction, but the new value cannot be easily de­
fined, or is not a meaningful result of the instruction. For example, when the integer stack is popped, Creg
becomes undefined, Le. it does not contain any meaningful data. An undefined value is represented by
the name undefined. The values of registers which become undefined by an instruction are implementa­
tion dependent and are not guaranteed to be the same on different transputer versions, or on future imple­
mentations of the T9000.

A.2.4 Data types

The transputer instruction set includes operations -on four sizes of data: 8, 16, 32 and 64-bit objects. 8-bit
and 16-bit data can represent signed or unsigned integers; 32-bit data can represent addresses, signed
or unsigned integers, or single length floating point numbers; and 64-bit data can represent signed or un­
signed integers, or double length floating point values. Normally it is clear from the context (e.g. from the
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operators used) whether a particular object represents a signed, unsigned or floating point number. A sub­
scripted label is added (e.g. Aregunsigned) to clarify where necessary.

A.2.5 Representing memory

The transputer memory is represented by arrays of each data type. These are indexed by a value repre­
senting a byte address. Access to the four data types is represented in the instruction descriptions in the
following way:

• byte [address]

• sixteen [address]

• word [address]

• double [address]

references a byte in memory at the given address

references a 16-bit object in memory

re'rerences a 32-bit word in memory

references a 64-bit object in memory

For all of these ,the state of the machine referenced is that before the instruction if the function is used
without a prime (e.g. word [ ]), and that after the instruction if the function is used with a prime (e.g.
word' []).

For example, writing a value given by an expression, expr, to the word in memory at address addr is repre­
sented by:

word' [addr] ~ expr

and reading a word from a memory location is achieved by:

Areg' ~ word [addr]

Writing to memory in any of these ways will update the contents of memory, and these updates will be con­
sistently visible to the other representations of the memory - Le. writing a byte at address 0 will modify
the least significant byte of the word at address O.

Data alignment

Each of these data items have restrictions on their alignment in memory. Byte values can be accessed
at any byte address, Le. they are byte aligned. 16-bit objects can only be accessed at even byte addresses,
Le. the least significant bit of the address must be O. 32-bit and 64-bit objects must be word aligned, Le.
the 2 least significant bits of the address must be zero.

Unalign may be signalled by an instruction accessing an object with the wrong alignment.

Address calculation

An address identifies a particular byte in memory. Addresses are frequently calculated from a base ad­
dress and an offset. For different instructions the offset may be given in units of bytes, words or double
words depending on the data type being accessed. In orderto calculate the address of the data, the offset
must be converted to a byte offset before being added to the base address. This is done by multiplying
the offset by the number of bytes in the particular units being used. So, for example, a word offset is con­
verted to a byte offset by multiplying it by the number of bytes in a word (4 in the case of the T9000).

As there are many accesses to memory at word offsets, a shorthand notation is used to represent the cal­
culation of a word address. The notation register @ x is used to represent an address which is offset by
x words (4 x x bytes) from register. For example, in the specification of load non-local there is:

Areg' ~ word[Areg @ n]

Here, Areg is loaded with the contents of the word that is n words from the address pointed to by Areg
(Le. Areg + 4 x n), where n is the operand to the instruction -e.g.ldnl n. As another example, the speci­
fication of fpldnldbi (floating point load non-local double indexed) instruction includes the line:

FPAreg' ~ double [Areg @ (2 x Breg)]
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In this case, FPAreg is loaded with the 64-bit value that is offset from Areg by the number of double words
in Breg - Le. at address Areg + (8 x Breg).

In all cases, if the given base address has the correct alignment then any offset used will also give a cor­
rectly aligned address.

A.2.6 The configuration subsystem

The configuration registers are also represented as an array called ConfigReg. An error is caused if an
access is made to an illegal configuration register address. An error is also signalled if the CPU attempts
to write (using stconf) to a register which has been locked.

In addition, some of the commonly used configuration registers are referenced directly. These are:

ExternalRCBase

HdrAreaBase

MemStart

A.2.7 Constants

A number of data structures have been defined in this book. Each comprises a number of data slots that
are referenced by name in the text and the following instructions descriptions. The complete set of these
data structures is repeated below for convenience.

word offset slot name purpose

0 le.lndex contains the loop control variable

1 le.Count contains number of iterations left to perform

Table A.1 Loop end data structure

word offset slot name purpose

0 pw.Temp slot used by some instructions for storing temporary values

-1 pw.lptr the instruction pointer of a descheduled process

-2 pw.Link the address of the workspace of the next process in schedul-
ing list

pw.Count message length in variable length communication

-3 pw.TrapHandler pointer to trap-handler data structure (THDS)

-4 pW.Pointer saved pointer to communication data area

pw.State saved alternative state

pw.Length length of message received in variable length communication

-5 pw.TLink address of the workspace of the next process on the timer list

-6 pw.Time time that a process on a timer list is waiting for

Table A.2 Word offsets and names for data slots in a L-process workspace

word offset slot name purpose

1 pp.Count contains unsigned count of parallel processes

0 pp.lptrSucc contains pointer to first instruction of su'ccessor process

Table A.3 Parallel process data structure
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word offset slot name purpose

2 s.Back back of waiting queue

1 s.Front front of waiting queue

0 s.Count number of extra processes that the semaphore will allow to contin-
ue running on a wait request

Table A.4 Word offsets and names for data slots in a semaphore data structure

word offset slot name purpose initial value

2 rds.Back pointer to back of resource channel queue any

1 rds.Front pointer to front of resource channel queue NotProcess.p

0 rds.Proc process descriptor of server NotProcess.p

Table A.5 Resource data structure (RDS)

word offset slot name purpose initial value

1 rc.ld resource channel identifier / mode indicator NotProcess.p

0 rc.Ptr pointer to RDS or next resource channel any

Table A.6 Resource channel data structure

word offset slot name purpose

10 ps.sXreg internal state - loaded into / stored from Xreg when protected mode
entered/exited in the middle of executing an interruptible instruction

9 ps.sEreg internal state - loaded into / stored from Ereg when protected mode
entered/exited in the middle of executing an interruptible instruction

8 ps.sCreg P-process C register - loaded into / stored from integer stack C reg-
ister when protected mode entered/exited

7 ps.sBreg P-process B register - loaded into / stored from integer stack B reg-
ister when protected mode entered/exited

6 ps.sAreg P-process A register - loaded into / stored from integer stack A reg-
ister when protected mode entered/exited

5 ps.slptr P-process instruction pointer - loaded into / stored from instruction
pointer register when protected mode entered/exited

4 ps.sWptr P-process workspace pointer - loaded into / stored from Wptr when
protected mode entered/exited

3 ps.eWu upper bound of P-process watchpoint region - may be loaded into
upper watchpoint register when protected mode entered

2 ps.eWI lower bound of P-process watchpoint region - may be loaded into
lower watchpoint register when protected mode entered

1 ps.Eptr pointer to instruction causing trap - loaded into / stored from error
pointer register when protected mode entered/exited '

0 ps.Cntl control word

Table A.7 P-state data structure (or PDS)
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word offset slot name purpose

3 pc.RegionReg3 loaded into region descriptor register 3 when protected mode en-
tered

2 pc.RegionReg2 loaded into region descriptor register 2 when protected mode en-
tered

1 pc.RegionReg1 loaded into region descriptor register 1 when protected mode en-
tered

0 pc.RegionRegO loaded into region descriptor register 0 when protected mode en-
tered

Table A.a Region descriptor data structure

word offset slot name purpose

11 th.sCreg L-process C register - stored from / loaded into integer stack C reg-
ister when trap-handler entered/exited

10 th.sBreg L-process 8 register - stored from / loaded into integer stack 8 reg-
ister when trap-handler entered/exited

9 th.sAreg L-process A register - stored from / loaded into integer stack A reg-
ister when trap-handler entered/exited

8 th.slptr L-process instruction pointer - stored from / loaded into instruction
pointer register when trap-handler entered/exited

7 th.sWptr L-process workspace pointer - stored from / loaded into Wptr when
trap-handIer entered/exited

6 th.eWu upper bound of L-process watchpoint region - may be loaded into
upper watchpoint register when an L-process is executed1

5 th.eWI lower bound of L-process watchpoint region - may be loaded into
lower watchpoint register when an- L-process is executed1

4 th.Eptr pointer to instruction causing trap - stored from error pointer register
when trap-handler entered

3 th.Bptr back of trap sharing process queue

2 th.Fptr front of trap sharing process queue

1 thJptr trap-handler instruction pointer - load~d into instruction pointer reg-
ister when trap-handler entered

0 th.Cntl control word

Table A.9 Trap-handler data structure (or THDS)

word offset slot name purpose

5 fp.FPCreg loaded into / stored from floating-point stack register C by
fpldall / fpstall

3 fp.FPBreg loaded into / stored from floating-point stack register 8 by
fpldall / fpstall

1 fp.FPAreg loaded into / stored from floating-point stack register A by
fpldall / fpstall

0 fp.FPstatusReg loaded into / stored from floating-point status register by
fpldall / fpstall

Table A.1 0 Floating-point state data structure
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word offset slot name purpose

2 bmr.DeltaS stmove2dinit copies the content of 20 block move control register 2
into this slot

1 bmr.DeltaD stmove2dinit copies the content of 20 block move control register 1
into this slot

0 bmr.Count stmove2dinit copies the content of 20 block move control register 0
into this slot

Table A.11 Block move data structure

In addition, a number of constants are used to identify word length related values, etc. Note that, although
the T9000 is a 32-bit processor, these names are used for clarity and for consistency with the descriptions
of other transputers. These constants are listed in table A.12.

There are a number of values that are used by the transputer to indicate the state of a process and other
conditions. These are shown in table A.13.

Name Value Meaning

BitsPerByte 8 The number of bits in a byte.

BitsPerWord 32 The number of bits in a word.

ByteSelectMask #00000003 Used to select the byte select bits of an address.

WordSelectMask #FFFFFFFC Used to select the byte select bits of an address.

BytesPerWord 4 The number of bytes in a word.

BytesPerLine 16 The number of bytes in each cache line.

BytesPerVLCB 32 The number of bytes that are allocated for each VLCB

MaxHeaderOffset #FFFE The maximum offset allowed into the VLCB header
area.

MaxLink 3 The maximum link number.

MaxPacketLength 32 The maximum length of a virtual channel packet.

MinLink 0 The minimum link number.

MinVirtualChannel MostNeg + #40 The lowest virtual channel address.
#80000040

MinEventChannel MostNeg + #20 The lowest event channel address.
#80000020

MostNeg #80000000 The most negative integer value.

MostPos #7FFFFFFF The most positive signed integer value.

MostPosUnsigned #FFFFFFFF The most positive unsigned integer value.

Table A.12 Constants used in the instruction descriptions
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Name Value Meaning

Deactivated.p MostNeg·+ #01 Stored in reverse channel word of a deactivated event chan-
#80000001 neL

Deviceld Depends on trans- A value used to identify the type and revision of transputer.
puter type. See Returned by the Idprodid and Iddevid instructions.
table A.14.

Disabling.p MostNeg + #03 Stored in the pw.State location while an alternative is being
#80000003 disabled.

Enabling.p MostNeg + #01 Stored in the pw.State location while an alternative is being
#80000001 enabled.

false 0 The boolean value 'false'.

LengthError.p MostPosUnsigned Stored in the pw.Length slot of a process' workspace to indi-
#FFFFFFFF cate that the number of bytes received by a vin was more

-1 than the maximum specified.

NoneSelected.o -1 Stored in the pw.Temp slot of a process' workspace while no
#FFFFFFFF branch of an alternative has yet been selected during the

waiting and disabling phases.

NotProcess.p MostNeg Used, wherever a process descriptor is expected, to indicate
#80000000 that there is no process.

Nul/Header -1 Used where a null virtual channel header is needed.
#FFFFFFFF

Nul/Offset -1 Used where a null virtual channel header offset is needed.
#FFFFFFFF

Ready.p MostNeg + #03 Stored in the pw.State location during the enabling phase of
#80000003 an alternative, to indicate that a guard is ready.

ResChan.p MostNeg + #02 Stored in a channel word to indicate that it is in resource
#80000002 channel mode.

Stopping.p MostNeg + #03 Stored in a channel word to indicate that the channel is stop-
#80000003 ping.

TimeNotSet.p MostNeg + #02 Stored in pw.TLink location during enabling of a timer alter-
#80000002 native after a time to wait for has been encountered.

TimeSet.p MostNeg + #01 Stored in pw.TLink location during enabling of a timer alter-
#80000001 native after a time to wait for has been encountered.

true 1 The boolean value 'true'.

Waiting.p MostNeg + #02 Stored in the pw.State location by altwt and taltwt to indicate
#80000002 that the alternative is waiting.

Table A.13 Constants used within the T9000

Device identity values

The following table lists the values returned by the Iddevid and Idprodid instructions.

Device

T9000

Revision

Table A.14 Device identity values

Value

300 .. 319

A.2.8 Operators

Modulo operators

Arithmetic onaddresses is done using modulo arithmetic - Le. there is no checking for errors and, if the
calculation overflows, the result 'wraps around' the range of values representable in the word length of
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the processor - e.g. adding 1 to the address at the top of the address map produces the address of the
byte at the bottom of the address map. There are also a number of instructions for performing modulo arith­
metic, such as sum, prod, etc. These operators are represented by the symbols' + " '-', etc.

Error conditions

Any errors that can occur in instructions which are defined in terms of the modulo operators are indicated
explicitly in the instruction description. For example the div (divide) instruction indicates the cases that can
cause overflow, independently of the actual division:

if (Areg = 0) or ((Breg = MostNeg) and (Areg -1))
{

Areg ~ undefined
IntegerOverflow

}
else

Areg' ~ Breg / Areg

Breg'
Creg'

Creg
undefined

Checked operators

To simplify the description of checked arithmetic, the operators' +checked', ' - checked', etc. are used to indi­
cate operations that perform checked arithmetic on signed integers. These operators signal an IntegerOv­
erflow if an overflow, divide by zero, or other arithmetic error occurs. If no trap is taken, the operators also
deliver the modulo result.

To indicate floating point arithmetic performed to the IEEE standard, the operators' +IEEE', '-IEEE', etc.
are used.

A number of comparison operators are also used and there are versions of some of these that treat the
oper'ands as unsigned integers.

A full list of the operators used is given in table A.15.
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Symbol Meaning

Integer arithmetic with overflow checking

+checked Add, subtract, and multiply of signed integers. If the computation overflows an
-checked IntegerOverflow is signalled and the result of the operation is truncated to the
X checked word length.

Unchecked (modulo) integer arithmetic

+ Integer add, subtract, multiply, divide and remainder. If the computation over-
- flows the result of the operation is truncated to the word length. If a divide or
x remainder by zero occurs the result of the operation is undefined. No errors
/ are signalled. The operator' -' is also used as a monadic operator.

rem

Floating point arithmetic to IEEE standard 754-1988

+IEEE These perform IEEE floating point arithmetic, using the current rounding
-IEEE mode, on the operands. Both operands must be of the same precision. If an
X IEEE error occurs, the appropriate exception is signalled and the result depends on
/IEEE the particular instruction and the type of the error (see chapter 11 for more

reIDJEEE details).

Signed comparison operators

< Comparisons of signed integer and floating point values: 'less than', 'greater
> than', 'less than or equal', 'greater than or equal', 'equal' and 'not equal'.
:::;

~

=
;c

Unsigned comparison operators

<unsigned Comparisons of unsigned integer values: 'less than', 'greater than', 'greater
>unsigned than or equal', and 'after' (for comparison of times - defined in chapter 8).
~unsigned
after

Logical bitwise operations

- (or BITNOT) 'Not' (1 's complement), 'and', 'or', 'exclusive or', and logical left and right shift
1\ (or BITAND) operations on bits in words.
v (or BITOR)
(0 (or BITXOR)

~

~

Boolean operators

not Boolean combination in conditionals.
and
or

Table A.15 Operators used in the instruction descriptions
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A.2.9 Functions

Type conversions

A number of functions are used to indicate type conversions. These are:

227

fpint (x) converts x (a floating point number) to an integral value, in the same floating point
format, using the current rounding mode.

int64 (x) converts the floating point value, x, to a 64-bit signed integer, rounding towards-oo
(note that this operation ignores the current rounding mode).

rea132 (x) conv"erts x (which can be either an integer or a double precision floating point val­
ue) to a single precision (32-bit) floating point number, using the current rounding mode. If x is
a NaN then the result is R64ToR32NaN.

rea164 (x) converts x (which can be either an integer or a single precision floating point value)
to a double precision (64-bit) floating point number, using the current rounding mode. See chap­
ter 11 for details of the conversion of NaNs.

unsign (x) causes the bit-pattern in x to be interpreted as an unsigned integer.

In addition the following functions are used to simplify the descriptions:

sgroot ( x ) returns the square root of x using the current rounding mode.

Q (x) converts a signalling NaN, x, into the equivalent quiet NaN.

See chapter 11 for more details of the floating point operations.

A.2.10 Conditions to instructions

In many cases, the action of an instruction depends onthe current state of the processor. In these cases
the conditions are shown by an if clause; this can take one of the following forms:

if (condition)
statement

if (condition)
statement

else
statement

These conditions can be nested. Braces, {}, are used to group statements which are dependent on a condi­
tion. For example, the cj (conditional jump) instruction contains the following lines:

if (Areg = 0)
IptrReg , ~ next instruction + n

else

IptrReg' ~ next instruction

Areg'
Breg'
Creg'

Breg
Creg
undefined

This says that if the value in Areg is zero, then the jump is taken (the instruction operand, n, is added to
the instruction pointer), otherwise the stack is popped and execution continues with the next instruction.
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laden

Code: Function 8

Description: Add a constant to Areg, with checking for overflow.

Definition:
Areg' E- Areg +checked n

Error signals:
IntegerOverflow can be signalled by +checked

Comments:
Primary instruction

See chapter: 7

See also: Idnlp

229

add constant I
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Iadd

Code: F5

T9000 transputer instruction set manual

Description: Add Areg and Breg, with checking for overflow.

Definition:
Areg' Breg +checked Areg

Breg' Creg
Creg , undefined

Error signals:
IntegerOverflow can be signalled by +checked

Comments:
Secondary instruction

See chapter: 7

See also: adc sum
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lajwn

Code: Function B

231

adjust workspace I

Description: Move the workspace pointer by the number of words specified in the operand, in order to
allocate/deallocate workspace stack. In protected mode a (recoverable) error occurs if the newworkspace
address is not writable. The state delivered to the trap-handler in this case is the state before the instruction
started.

Definition:
wptr' ~ wptr @ n

Error signals:
AccessViolation signalled in a P-process if new workspace address is not writable

Comments:
Primary instruction

See chapter: 7

See also: call gajw
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Iaft

Code: 24 F3
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alt start I

Description: Start of a non-timer alternative sequence. The pw.State location of the workspace is set
to Enabling.p.

Definition:
word' [Wptr @ pw.State] E- Enabling.p
enter alternative sequence

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: a/tend a/twt disc disg diss dist enbc enbg enbs enbt talt taltwt
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la/tend

Code: 24 F5

Description: End of alternative sequence. Jump to start of selected process.

Definition:
terminate alternative sequence
IptrReg , ~ next instruction + word [Wptr @ pw. Temp]

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Uses the pw.Temp slot in the p~ocess workspace

See chapter: 8

See also: alt altwt disc disg diss dist enbc enbg enbs enbt talt taltwt

233

alt end I
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Ialtwt

Code:· 24 F4
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alt wait I

Description: Wait until one of the enabled guards of an alternative has become ready, and initialize work­
space for use during the disabling sequence.

Definition:
if (word[Wptr @ pw.State] ~ Ready.p)
{

word' [Wptr @ pw.State] E- Waiting.p
deschedule process and wait for one of the guards to become ready

word' [Wptr @ pw.Ternp] E- NoneSelected.o

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: alt altend disc disg diss dist enbc enbg enbs enbt talt taltwt
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land

Code: 24 F6

Description: Bitwise and of Areg and Breg.

Definition:
Areg' Breg 1\ Areg

Breg' Creg
Creg' undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

235
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Ibent

Code: 23 F4
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byte count I

Description: Produces the length, in bytes, of a multiword data object. Converts the value in Areg, repre­
senting a number of words, to the equivalent number of bytes.

Definition:
Areg' ~ Areg x BytesPerWord

Error signals: none

Comments:
Secondary instruction

See chapter: 7
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Ibiten!

Code: 27 F6
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count bits set in word I

Description: Count the number of bits set in Areg and add this to the value in Breg.

Definition:
Areg'

Breg'
Creg'

Breg + number of bits set to 1 in Areg

Creg
undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7
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bitrevnbits

Code: 27 F8
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reverse bottom n bits in word

Description: Reverse the order of the bottom Areg bits of Breg.

Definition:
if (0 :s Areg) and (Areg :s BitsPerWord)
{

Areg' o..Areg-l

Areg , Areg .. BitSPerWord-l

}
else

undefined effect

Breg' Eo- Creg
Creg' Eo- undefined

Error signals: .none

reversed Brego ..Areg-l

o

Comments:
Secondary instruction
The effect of the instruction is undefined if the number of bits specified is more than the word length

See chapter: 7

See also: bitrevword
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Ibitrevword

Code: 27 F7

Description: Reverse the order of all the bits in Areg.

Definition:
Areg' E- reversed Areg

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: bitcnt bitrevnbits

239

reverse bits in word I
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IbSUb

Code: F2
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byte subscript i

Description: Generate the address of the element which is indexed by Breg, in the byte array pointed
to by Areg.

Definition:
Areg' Areg + Breg

Breg' Creg
Creg' undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: ssub sum wsub wsubdb
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Icall n

Code: Function 9
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calli

Description: Adjust workspace pointer, save evaluation stack, and call subroutine at specified byte offset.
In protected mode a (recoverable) error occurs if the new workspace address is not writable. The state
delivered to the trap-handler in this case is the state before the instruction started.

Definition:
wptr' E- Wptr @ -4

word' [Wptr' @ 0]
word' [Wptr' @ 1]
word' [Wptr' @ 2]
word' [Wptr' @ 3]

IptrReg
Areg
Breg
Creg

IptrReg'

Areg'
Breg'
Creg'

next instruction + n

IptrReg
undefined
undefined

Error signals:
AccessViolation signalled in a P-process if new workspace address is not writable

Comments:
Primary instruction

See chapter: 7

See also: ajw gcall ret
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Icauseerror

Code: 62 FF

T9000 transputer instruction set manual

cause error I

Description: Take a trap with a reason of causeerror and with the error type set to the value in Areg. If
the error code is not in the range 0 through 13, an integer error is signalled. Note that this instruction forces
a trap even when the corresponding trap enable flags are not set.

Definition:
if (0 :::;; Areg) and (Areg :::;; 13)

take a 'causeerror'trap with error value given in Areg
else

IntegerError

Error signals:
IntegerError signalled if Areg is not in range

Comments:
CauseError trap taken if Areg is in range

See chapter: 10
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ICb

Code: 28 FA

243

check byte I

Description: Check that the value in Areg can be represented as an 8 bit signed integer.'

Definition:
if (Areg < -2 7 ) or (Areg ;::: 2 7 )

IntegerError

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cbu cir ciru cs csu
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ICbU

Code: 28 F8

T9000 transputer instruction set manual

check byte unsigned I

Description: Check that the value in Areg can be represented as an 8 bit unsigned integer.

Definition:
if (Areg < 0) or (Areg ~ 2 8 )

IntegerError

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cb cir ciru cs csu
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I ccnt1

Code: 24 FD

245

check count from 1 I

Description: Check that Breg is the range 1..Areg, interpreting Areg and Breg as unsigned numbers.

Definition:
if (Breg = 0) or ( Bregunsigned > Aregunsigned)

IntegerError

Areg'
Breg'
Creg'

Breg
Creg
undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: csubO
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IChantype

Code: 2C F9

T9000 transputer instruction set manual

channel type I

Description: Test if channel pointed to by Areg is an internal channel.

Definition:
if (Areg does not cause Unalign trap)
{

if ( internal channel)
Areg' E- true

else if (external channel)
Areg' E- false

else
IntegerError

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if Areg is not word aligned
IntegerError signalled if Areg is not a legal channel address

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12
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Icir

Code: 2C F7

Description: Check that Creg is in the range Areg ..Breg.

Definition:
if (Creg < Areg) or (Creg > Breg)

IntegerError

247

check in range I

Areg'
Breg'
Creg'

Creg
undefined
undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7
~

See also: ciru
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Iciru

Code: 2C FC
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check in range unsigned I

Description: Check that Creg is the range Areg..Breg, treating all as unsigned values.

Definition:
if (Cregunsigned < Aregunsigned) or (Cregunsigned > Bregunsigned)

IntegerError

Areg'
Breg'
Creg'

Creg
undefined
undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cir
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ICj n

Code: Function A

249

conditional jump I

Description: Jump if Areg is 0 (Le. jump if false). The destination of the jump is expressed as a byte offset
from the instruction following.

Definition:
if (Areg 0)

IptrReg' E- next instruction + n
else

IptrReg'
Areg'
Breg'
Creg'

Error signals: none

Comments:
Primary instruction

See chapter: 7

See also: j lend

next instruction
Breg
Creg
undefined



250

!crcbyte

Code: 27 F5

T9000 transputer instruction set manual

calculate GRG on byte I

Description: Generate a GRG (cyclic redundancy check) checksum from the most significant byte of
Areg. Breg contains the previously accumulated checksum and Creg the polynomial divisor (or 'genera­
tor'). The new GRG checksum, the polynomial remainder, is calculated by repeatedly (8 times) shifting the
accumulated checksum left, shifting in successive bits from the Areg and if the bit shifted out of the check­
sum was a 1, then the generator is exclusive-ored into the checksum.

Definition:
Areg'
Breg'
Creg'

temp(8)
Creg
undefined

where
temp(O)
for i = 1

temp(i)

Error signals: none

Breg
8

( temp ( i-I) « 1) + AregBitsPerWord-i )
8 (Creg * temp ( i-I) BitSPerWord-l )

Comments:
Secondary instruction

See chapter: 7

See also: crcword
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Icrcword

Code: 27 F4

251

calculate CRC on word I

temp (BitsPerWord)
Creg
undefined

Description: Generate a eRe (cyclic redundancy check) checksum from Areg. Breg contains the pre­
viously accumulated checksum and Creg the polynomial divisor (or 'generator'). The new eRe checksum,
the polynomial remainder, is calculated by repeatedly (BitsPerWord times) shifting the accumulated
checksum left, shifting in successive bits from the Areg and if the bit shifted out of the checksum was a
1, then the generator is exclusive-ored into the checksum.

Definition:
Areg'
Breg'
Creg'

where
temp(O)
for i = I

temp(i)

Error signals: none

Breg
BitsPerWord
(temp( i-I) « I) + AregBitsperword-i)

o (Creg * temp ( i-I) BitSPerWord-l )

Comments:
Secondary instruction

See chapter: 7

See also: crcbyte
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les
Code: 2F FA

19000 transputer instruction set manual

check sixteen I

Description: Check that the value in Areg can be represented as a 16 bit signed integer.

Definition:
if (Areg < _2 15 ) or (Areg ?: 2 15 )

IntegerError

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cb cbu cir ciru csngl csu cword
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Icsng/

Code: 24 FC

253

check single I

Description: Check that the two word signed value in Areg and Breg (most significant word in Breg) can
be represented as a single length signed integer.

Definition:
if ((Areg ~ 0) and (Breg;r: 0)) or ((Areg < 0) and (Breg;r: -1))

IntegerError

Breg' ~ Creg
Creg , ~ undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cb cbu cir ciru cs csu cword
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Icsu
Code: 2F FB

T9000 transputer instruction set manual

check sixteen unsigned I

Description: Check that the value in Areg can be represented as a 16 bit unsigned integer.

Definition:
if (Areg < 0) or (Areg ~ 2 16 )

IntegerError

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cb cbu cir ciru cs csngl cword
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ICSUbO

Code: 21 F3

255

check subscript from 0 I

Description: Check that Breg is in the range O.. (Areg-1), interpreting Areg and Breg as unsigned num­
bers.

Definition:
if (Bregunsigned ~ Aregunsigned)

IntegerError

Areg'
Breg'
Creg'

Breg
Creg
undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: ccnt1
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Jcword

Code: 25 F6

T9000 transputer instruction set manual

check word I

Description: Check that the value in Breg can be represented as an N bit signed integer. Areg contains
2N-1 to indicate the value of N (i.e. bit N-1 of Areg is set to 1 and all other bits are set to zero).

Definition:
if (Breg < -Areg) or (Breg ~ Areg)

JntegerError

Areg'
Breg'
Creg'

Breg
Creg
undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
The result of the instruction is undefined if Areg is not a power of 2
Secondary instruction

See chapter: 7

See also: cb cs csngl xword
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IdeVlb

Code: 2F FO

257

device load byte I

Description: Perform a device read from memory or a memory-mapped device. The byte addressed by
Areg is read into Areg as an unsigned value. The memory access performed by this instruction is guaran­
teed to be correctly sequenced with respect to other device-access instructions. Also the instruction is
guaranteed to be executed after all normal memory load instructions that appear before it in the code se­
quence, and before all normal memory loads that appear later.

Definition:
Areg' 0 •• 7

Areg' 8 .. BitSPerWord-l

byte[Areg]
o

Error signals:
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 7

See also: devls devlw devsb Ib
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Idevls

Code: 2F F2

T9000 transputer instruction set manual

device load sixteen I

sixteen[Areg]
o

Description: Perform a device read from memory or a memory-mapped device. The 16 bit object ad­
dressed by Areg is read into Areg as an unsigned value. The memory access performed by this instruction
is guaranteed to be correctly sequenced with respect to other device-access instructions. Also the instruc­
tion is guaranteed to be executed after all normal memory load instructions that appear before it in the code
sequence, and before all normal memory loads that appear after it.

Definition:
Areg' o.. 15

Areg , 16 .. BitSPerWord-l

Error signals:
Unalign signalled if Areg is not 16 bit aligned
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 7

See also: devlb devlw devsb Is
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Idevlw

Code: 2F F4

259

device load word I

Description: Perform a device read from memory or a memory-mapped device. The word addressed by
Areg is read into Areg. The memory access performed by this instruction is guaranteed to be correctly
sequenced with respect to other device-access instructions. Also the instruction is guaranteed to be
executed after all normal memory load instructions that appear before it in the code sequence, and before
all normal memory loads that appear after it.

Definition:
Areg' ~ word[Areg]

Error signals:
Unalign signalled if Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 7

See also: devlb devls devsw Idnl
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Idevmove

Code: 62 F4

T9000 transputer instruction set manual

device move I

Description: Perform a device copy between memory or memory-mapped devices. Copies Areg bytes
to address Breg from address Creg. Only the minimum number of reads and writes required to copy the
data will be performed. Each read will be to a strictly higher (more positive) address than the one before
and each write will be to a strictly higher address than the one before. There is no guarantee of the relative
ordering of read and write cycles, except that a write cannot occur until the corresponding read has been
performed. The memory accesses performed by this instruction are guaranteed to be correctly sequenced
with respect to other device-access instructions. Also the instruction is guaranteed to be executed after
all normal memory access instructions that appear before it in the code sequence, and before all normal
memory accesses that appear after it.

Definition:
if (source and destination overlap)

undefined effect
else for i = O.. (unsign(Areg) - 1)

byte' [Breg + i] ~ byte[Creg + i]

Areg'
Breg'
Creg'

undefined
undefined
undefined

Error signals:
AccessViolation signalled in a P-process if any address accessed is protected

Comments:
Secondary instruction
The effect of the instruction is undefined if the source and destination overlap
Instruction is interruptible

See chapter:?

See also: move
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!devsb

Code: 2F F1

261

device store byte I

BregO .. 7

Description: Perform a device write from memory or Cl memory-mapped device. Store least significant
byte of Breg into the byte addressed by Areg. The memory access performed by this instruction is guaran­
teed to be correctly sequenced with respect to other device-access instructions. Also the instruction is
guaranteed to be executed after all normal memory store instructions that appear before it in the code se­
quence, and before all normal memory stores that appear after it.

Definition:
byte' [Areg]

Areg'
Breg'
Creg'

Creg
undefined
undefined

Error signals: .
AccessViolation signalled in a P-process if the address in Areg is not writable

Comments:
Secondary instruction

See chapter: 7

See also: devlb devss devsw sb
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Idevss

Code: 2F F3

T9000 transputer instruction set manual

device store sixteen I

Description: Perform a device write from memory or a memory-mapped device. Store bits 0..15 of Breg
into the sixteen bits addressed by Areg. The memory access performed by this instruction is guaranteed
to be correctly sequenced with respect to other device-access instructions. Also the instruction is guaran­
teed to be executed after all normal memory store instructions that appear before it in the code sequence,
and before all normal memory stores that appear after it.

Definition:
sixteen' [Areg] Eo- Brego .. 15

Areg'
Breg'
Creg'

Creg
undefined
undefined

Error signals:
Unalign signalled if Areg is not 16 bit aligned
AccessViolation signalled in a P-process if the address in Areg is not writable

Comments:
Secondary instruction

See chapter: 7

See also: devls devsb devsw ss
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Idevsw

Code: 2F F5

263

device store word I

Description: Perform a device write from memory or a memory-mapped device. Store Breg into the word
of memory addressed by Areg. The memory access performed by this instruction is guaranteed to be cor­
rectly sequenced with respect to other device-access instructions. Also the instruction is guaranteed to
be executed after all normal memory store instructions that appear before it in the code sequence, and
before all normal memory stores that appear after it.

Definition:
word' [Areg] ~ Breg

Areg'
Breg'
Creg'

Creg
undefined
undefined

Error signals:
Unalign signalled if Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is not writable

Comments:
Secondary instruction

See chapter: 7

See also: devlw devsb devss stnl
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Code: F4

T9000 transputer instruction set manual

difference I

Description: Subtract Areg from Breg, with checking for overflow.

Definition:
Areg' Breg - Areg

Breg' Creg
Creg' undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: sub
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Idisc

Code: 22 FF

265

disable channel I

- boolean guard is false

Description: Disable a channel guard in an alternative sequence. Areg is the offset from the byte follow­
ing the a/tend to the start of the guarded process, Breg is the boolean guard and Creg is a pointer to the
channel. If this is the first ready guard then the value in Areg is stored in workspace and Areg is set to
true, otherwise Areg is set to fa/se. Note that this instruction should be used as part of an alternative se­
quence following an a/twt or ta/twt instruction.

Definition:
if (Breg = false)

Areg' ~ false
else if (Creg does not cause Unalign trap)
{

if (Creg is internal channel)
{

if (word[Creg] = NotProcess.p)
Areg' ~ false

else if (word[Creg] = WdescReg)
{

- guard already disabled

- this guard is not ready

word' [Creg]
Areg'

NotProcess.p
false

}
else if (word[Wptr @ pw.Temp] NoneSelected. 0) - this is the first ready guard

word' [Wptr @ pw.Temp]
Areg'

}
else

Areg' ~ false
}
else if (Creg is external channel)
{

request VCP to disable external channel

Areg
true

- a previous guard was selected

if (channel not ready) - determined by VCP
Areg' ~ false

else if (word[Wptr @ pw.Temp] = NoneSelected.o)-thisisthefirstreadyguard
{

word' [Wptr @ pw.Temp]
Areg'

}
else

Areg' ~ false
}
else

IntegerError

Areg
true

- a previous guard was selected

Breg'
Creg'

(continued)

undefined
undefined
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Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if Creg is not word aligned and Breg is not false
IntegerError signalled if Creg is not a legal channel address and Breg is not false

Comments:
Instruction is privileged
Secondary instruction
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: alt altend altwt enbc talt taltwt
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IdiS9

Code: 61 F3

267

disable grant I

- boolean guard is false

Description: Disable a resource channel guard in an alternative sequence. Initially Areg is the offset from
the byte following the a/tend to the start of the guarded process, Breg is the boolean guard and Creg is
a pointer to the resource data structure. If this is the first ready guard then the value in Areg is stored in
pw.Temp, and Areg is set to true. Note that this instruction should be used as part of an alternative se­
quence following an a/twt or ta/twt instruction.

Definition:
if (Breg = false)

Areg' Eo- false
else if (Creg does not cause Unalign trap)
{

if (word[Creg @ rds.Proc] = NotProcess.p)
Areg' Eo- false

else

word' [Creg @ rds.Proc] Eo- NotProcess.p

- guard already disabled

if (word[Creg @ rds.Front] = NotProcess.p) -this guard is not ready
Areg' Eo- false

else if (word [Wptr @ pw. Temp] = NoneSelected. 0) - this is the first ready guard

Areg' Eo- true
word' [Wptr @ pw.Temp] Eo- Areg

Breg'
Creg'

}
else

Areg' Eo- false

undefined
undefined

- a previous guard was selected

Error signals:
Priv/nstruction signalled if executed by a P-process
Unalign signalled if Creg is not word aligned and Breg is not fa/se

Comments:
Instruction is privileged
Secondary instruction
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: aft a/tend a/twt enbg talt taltwt
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IdiSS

Code: 23 FO

T9000 transputer instruction set manual

disable skip I

Description: Disable a 'skip' guard in an alternative sequence. Areg is the offset from the byte following
the a/tend to the start of the guarded process and Breg is the boolean guard. If this is the first ready guard
then the value in Areg is stored in workspace and Areg is set to true, otherwise Areg is set to fa/se. Note
that this instruction should be used as part of an alternative sequence following an a/twt or ta/twt instruc­
tion.

Definition:
if (Breg = false)

Areg' ~ false
else if (word[Wptr @ pw.Temp] ~ NoneSelected.o)

Areg' ~ false
else

word' [Wptr @ pw. Temp] Areg
Areg' true

Breg' ~ Creg
Creg' ~ undefined

Error signals:
Priv/nstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: aft a/tend a/twt enbs ta/t ta/twt

- boolean guard is false

- this is the first ready guard

- another guard was selected
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Idist

Code: 22 FE

269

disable timer I

Description: Disable a timer guard in an alternative sequence. Areg is the offset from the byte following
the a/tend to the start of the guarded process, Breg is the boolean guard and Creg is the time after which
this guard will be ready. If this is the first ready guard then the value in Areg is stored in pw.Temp, and
Areg is set to true. Note that this instruction should be used as part of an alternative sequence following
a ta/twt instruction.

Definition:
if (Breg = false)

Areg' E-- false
else if (word[Wptr @ pw.TLink]

Areg' E-- false
else if (word[Wptr @ pw.TLink]

TimeNotSet.p)

TimeSet.p)

- boolean guard is false

- no timer is ready

- a timer is ready

if not (word[Wptr @ pw.Time] after Creg)
Areg' E-- false

- but not this one

else if (word[Wptr @ pw.Temp] = NoneSelected.o) -this is the first ready guard

word' [Wptr @ pw.Temp] E-- Areg
Areg' E-- true

}
else

Areg' E-- false
}
else

Areg' E-- false

remove this process from timer list
Breg' undefined
Creg' E-- undefined

Error signals:
Priv/nstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Instruction is interruptible
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: a/tend enbt ta/t ta/twt

- a previous guard was selected
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Code: 22 Fe

T9000 transputer instruction set manual

divide I

Description: Divide Breg by Areg, with checking for overflow. The result when not exact is rounded to­
wards zero.

Definition:
if (Areg = 0) or ((Breg
{

Areg ~ undefined
IntegerOverflow

}
else

Areg , ~ Breg / Areg

Breg' ~ Creg
Creg' ~ undefined

Error signals:
IntegerOverflow can be signalled

Comments:
Secondary instruction

See chapter: 7

See also: rem

MostNeg) and (Areg -1) )
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Code: 25 FA

Description: Duplicate the top of the integer stack.

Definition:
Areg' Areg
Breg' ~ Areg
Creg' ~ Breg

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: fpdup pop rev

271

duplicate top of stack I
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!enbC

Code: 24 F8

T9000 transputer instruction set manual

enable channel I

Description: Enable a channel guard in an alternative sequence. Areg is the boolean guard and Breg
is a pointer to the channel. Note that this instruction should only be used as part of an alternative sequence
following an alt or talt instruction.

Definition:
if (Areg ~ false)
{

if (Breg does not cause Unalign trap)
{

if (Breg is internal channel)
{

if (word[Breg] = NotProcess.p)
word' [Breg] ~ WdescReg

else if (word[Creg] ~ WdescReg)
word' [Wptr @ pw.State] ~ Ready.p

}
else if (Breg is external channel)
{

request VCP to enable external channel

if (channel ready)
word' [Wptr @ pw.State] ~ Ready.p

}
else

IntegerError

-not ready

- not previously enabled

- determined by VCP

Breg'
Creg'

Creg
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if Breg is not word aligned and Areg is not false
IntegerError signalled if Breg is not a legal channel address and Areg is not false

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: alt altend altwt disc talt taltwt
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!enbg

Code: 61 F2

273

enable grant I

Description: Enable a resource channel guard in an alternative sequence. Areg is the boolean guard
and Breg is a pointer to the resource data structure. Note that this instruction should only be used as part
of an alternative sequence following an alt or talt instruction.

Definition:
if (Areg ~ false)
{

word' [Breg @ rds.Proc] ~ WdescReg

if (word[Breg @ rds.Front] ~ NotProcess.p)
word' [Wptr @ pw.state] ~ Ready.,p

Breg' ~ Creg
Creg , ~ undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Breg is not word aligned and Areg is not false

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8 and 12

See also: alt altend altwt disg talt taltwt
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lenbs

Code: 24 F9

T9000 transputer instruction set manual

enable skip I

Description: Enable a 'skip' guard in an alternative sequence. Areg is the boolean guard. Note that this
instruction should only be used as part of an alternative sequence following an alt or talt instruction.

Definition:
if (Areg ~ false)

word' [Wptr @ pw.State] E- Ready.p

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: alt altend altwt diss talt taltwt
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lenbt

Code: 24 F7

275

enable timer I

Description: Enable a timer guard in an alternative sequence. Areg is the boolean guard and Breg is
the time after which the guard may be selected. Note that this instruction should only be used as part of
an alternative sequence following a talt instruction; in this case the location pw.State will have been initial­
ized to Enabling.p and the pw.Tlink slot initialized to TimeNotSet.p.

Definition:
if (Areg ~ false)
{

if (word[Wptr @ pw.TLink] = TimeNotSet.p)
{

- this is the first enbt

word' [Wptr @ pw.TLink]
word' [Wptr @ pw.Time]

TimeSet.p
Breg

}
else if (word[Wptr @ pw.TLink] = TimeSet.p)
{

if (word[Wptr @ pw.Time] after Breg)
word' [Wptr @ pw.Time] ~ Breg

Breg' ~ Creg
Creg' ~ undefined

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: altend dist talt taltwt

- this is not the first enbt

- this enbt has an earlier time
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[endP

Code: F3

T9000 transputer instruction set manual

end process I

Description: Synchronize the termination of a parallel construct. When all branches have executed an
endp instruction a 'successor' process then executes. Areg points to the workspace of this successor pro­
cess. This workspace contains a data structure which holds the instruction pointer of the successor pro­
cess and the number of processes still active.

Definition:
if (Areg does not cause Unalign trap)
{

word' [Areg @ pp.Count] ~ word[Areg @ pp.Count] - 1

if (word' [Areg @ pp.Count] = 0)
{

IptrReg'
Wptr'

word[Areg @ pp. IptrSucc]
Areg

}
else

start next process

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if Areg is not word aligned

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point

See chapter: 8

See also: startp stopp
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leqcn

Code: Function C

Description: Compare Areg to a constant.

Definition:
if (Areg = n)

Areg' true
else

Areg' false

Error signals: none

Comments:
Primary instruction

See chapter: 7

277

equals constant I
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erdsq

Code: 62 FA

T9000 transputer instruction set manual

empty resource data structure queue

Description: Load the list pointers from the resource data structure (RDS) into Areg and Breg, and set
the RDS list to empty. Areg is a pointer to the RDS.

Definition:
Areg' word [Areg @ rds. Front]
Breg' ~ word[Areg @ rds.Back]

word' [Areg @ rds.Front] ~ NotProcess.p

Creg' ~ Breg

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if Areg is not word aligned

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12

See also: grant irdsq Idresptr mkrc stresptr unmkrc
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Ifdca

Code: 62 FO
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flush dirty cache address I

Description: If the cache line which contains the logical address specified in Areg is dirty, write the line
back to memory and mark it as clean; the line remains valid. Areg is incremented by the number of bytes
in a line. If executed by a P-process the address specified must be writable.

Definition:
if (line containing logical address Areg is valid and dirty)
{

write line back to memory
mark line as clean

Areg' ~ Areg + BytesperLine

Error signals:
AeeessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 15

See also: fdel iea iel
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IfdCI

Code: 62 F2

T9000 transputer instruction set manual

flush dirty cache line I

Description: If the cache line specified by Areg contains an address in the range specified by Breg and
Creg, and the cache line is dirty, write the line back to memory; the line remains valid. Increment Areg by
1.

Definition:
if ((Breg :::; addressinline Areg :::; Creg) and (line Areg is valid and dirty)
{

write line back to memory
mark line as clean

Areg' ~ Areg + 1

Error signals:
Privtnstruetion signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 15

See also: fdea iea iet
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[tmul
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fractional mUltiply I

Code: 27 F2

- MostNeg interpreted as -1MostNeg)

Description: Multiply Areg by Breg treating the values as fractions, rounding the result. The values in
Areg and Breg are interpreted as fractions in the range [-1, 1) - Le. the integer values divided by
2BitsPerWorcJ-1. The result is rounded: the rounding mode used is analogous to IEEE round nearest; that is
the result produced is the fraction which is nearest to the exact product, and, in the event of the product
being equidistant between two factions, the fraction with least significant bit 0 is produced.

Definition:
if (Areg = MostNeg) and (Breg
{

Areg' ~ undefined
IntegerOverflow

}
else

Areg' ~ (Breg x Areg) / 2BitsPerWord-l

Breg' ~ Creg
Creg , ~ undefined

Error signals:
IntegerOverflow can occur

Comments:
Secondary instruction

See chapter: 7
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Ifpabs

Code: 2D FB

Description: Make FPAreg positive.

Definition:
if (FPAreg isasignallingNaN)

FPAreg' ~ Q(FPAreg)
else if (FPAreg isaquietNaN)

FPAreg' ~ FPAreg
else if (FPAreg = -0.0)

FPAreg' ~ 0.0
else if (FPAreg < 0.0)

FPAreg' o. 0 -IEEE FPAreg
else

FPAreg' FPAreg

RoundMode' ~ (round to nearest'

T9000 transputer instruction set manual

floating point absolute I

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand

Comments:
Secondary instruction

See chapter: 11
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!fPadd

Code: 28 F7

Description: Add FPAreg to FPBreg.

Definition:
if (FPAreg isasignallingNaN)

FPAreg' E- Q(FPAreg)
else if (FPBreg isasignallingNaN)

FPAreg' E- Q(FPBreg)
else if (FPAreg isaquietNaN)

FPAreg' E- FPAreg
else if (FPBreg isaquietNaN)

FPAreg' E- FPBreg
else if (FPAreg and FPBreg are infinities of opposite sign)

FPAreg' E- AddOplnfsNaN
else

FPAreg' E- FPBreg +/EEE FPAreg
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floating point add I

FPBreg'
FPCreg'
RoundMode'

FPCreg
undefined
(round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by:

a signalling NaN as an operand
adding infinities of opposite sign

FPlnexact, FPOverflow, FPUnderflow can be signalled by +/EEE

FPError also signalled whenever FPlnvalidOp or FPOverflow are signalled

Comments:
Secondary instruction
For the operation to be defined the operands must both be the same precision

See chapter: 11
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fpadddbsn

Code: 20 FO

T9000 transputer instruction set manual

floating point add double producing single

Description: Add FPAreg to FPBreg, rounding the resultto single precision. The result is put into FPAreg
and FPCreg is popped into FPBreg.

Definition:
if (FPAreg isaNaN) or (FPBreg isaNaN)

FPAreg' ~ R64ToR32NaN
else if (FPAreg and FPBreg are infinities of opposite sign)

FPAreg' ~ AddOplnfsNaN
else

FPAreg' ~ single precision result of (FPBreg +IEEE FPAreg)

FPBreg'
FPCreg'
RoundMode'

FPCreg
undefined
'round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an ope'rand
FPlnvalidOp signalled by:

a signalling NaN as an operand
adding infinities of opposite sign

FPlnexact, FPOverflow, FPUnderflow can be signalled by +IEEE

FPError also signalled whenever FPlnvalidOp or FPOverflow are signalled

Comments:
Secondary instruction
For the operation to be defined the operands must both be double precision
Any NaN produced by +IEEE will be converted to R64ToR32NaN

See chapter: 11
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Ifpb32tor64

Code: 29 FA

285

BIT32 to REAL64 I

rea164(unsigned(word[Areg]))

Description: Load an unsigned 32 bit integer, from the word addressed by Areg, into FPAreg and convert
it to a double precision floating-point number.

Definition:
FPAreg'

Areg'
Breg'
Creg'
FPBreg'
FPCreg'
RoundMode'

Breg
Creg
undefined
FPAreg
FPBreg
(round to nearest'

Error signals:
Unalign signalled if address in Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 11
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fpchki32

Code: 20 FE

T9000 transputer instruction set manual

floating point check in range of INT32

Description: Check that the floating point integer value in FPAreg lies within the range of a signed 32
bit integer.

Definition:
if (_2 31 ::; FPAreg) and (FPAreg < 2 31 )

FPlnvalidOp

RoundMode' 'round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled if FPAreg is not in range
FPError also signalled whenever FPlnvalidOp signalled

Comments:
Secondary instruction
For the operation to be defined the initial value of FPAreg must be an integral value

See chapter: 11

See also: fpint fprtoi32
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fpchki64

Code: 20 FF

287

floating point check in range of INT64

Description: Check that the floating point integer value in FPAreg lies within the range of a signed 64
bit integer.

Definition:
if (_2 63 ~ FPAreg) and (FPAreg < 2 63 )

FPlnvalidOp

RoundMode' 'round to nearest'

Error signals:
FPError signalled by a NaN or an· infinity as an operand
FPlnvalidOp signalled if FPAreg is not in range
FPError also signalled whenever FPlnvalidOp signalled

Comments:
Secondary instruction
For the operation to be defined the initial value of FPAreg must be an integral value

See chapter: 11
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ItPdiV

Code: 28 Fe

T9000 transputer instruction set manual

floating point divide I

Description: Divide FPAreg into FPBreg. Note that dividing by zero (infinity) will produce a result of infin­
ity (zero) with the correct sign.

Definition:
if (FPAreg isasignallingNaN)

FPAreg' E- Q(FPAreg)
else if (FPBreg is a signalling NaN)

FPAreg' E- Q(FPBreg)
else if (FPAreg is a quiet NaN)

FPAreg' E- FPAreg
else if (FPBreg isaquietNaN)

FPAreg' E- FPBreg
else if (FPAreg = 0.0) and (FPBreg = 0.0)

FPAreg' E- DivZeroByZeroNaN
else if (FPAreg = 00) and (FPBreg = 00)

FPAreg' DivlnfBylnfNaN '
else

FPAreg' FPBreg ~EEE FPAreg

FPBreg'
FPCreg'
RoundMode'

FPCreg
undefined
'round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand, by (0.0 /IEEE 0.0) and (00 /IEEE 00)
FPlnexaet, FPDivideByZero, FPOverflow, FPUnderflow can be signalled by /IEEE

FPError also signalled whenever FPlnvalidOp, FPOverflow, or FPDivideByZero are signalled

Comments:
Secondary instruction
For the operation to be defined the operands must both be the same precision

See chapter: 11

See also: fpdivby2 fpexpdee32
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IfPdiVbY2

Code: 20 F1

Description: Divide FPAreg by two.

Definition:
if (FPAreg isasignallingNaN)

FPAreg' ~ Q(FPAreg)
else if (FPAreg isaquietNaN)

FPAreg' FPAreg
else

FPAreg' FPAreg /IEEE 2. 0

RoundMode' ~ 'round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand
FPlnexact, FPUnderflow can be signalled by /IEEE

Comments:
Secondary instruction

See chapter: 11

289

floating point divide by 2.0 I



FPAreg
FPAreg
FPBreg
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!fPdUP

Code: 2A F3

Description: Duplicate top of floating point stack.

Definition:
FPAreg'
FPBreg'
FPCreg'

RoundMode' ~ 'round to nearest'

Error signals: none

Comments:
Secondary instruction

See chapter: 11

See also: dup fprev

T9000 transputer instruction set manual

floating point duplicate I
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IfPeq

Code: 29 F5
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floating point equality I

Description: Implements (FPBreg = FPAreg) as perANSl/lEEE Std 754-1985 (Page 13, Table 4, line
1). The result of the comparison is loaded into Areg. .

Definition:
if (FPAreg isaNaN) or (FPBreg isaNaN)

Areg' ~ false
else if (FPBreg FPAreg)

Areg' true
else

Areg' false

FPAreg'
FPBreg'
FPCreg'
Breg'
Creg'
RoundMode'

FPCreg
undefined
undefined
Areg
Breg
'round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand

Comments:
Secondary instruction
For the operation to be defined the operands must both be the same precision

See chapter: 11
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fpexpdec32

Code: 2D F9

Description: Multiply FPAreg by 2-32.

Definition:
if (FPAreg is a signalling NaN )

FPAreg' ~ Q(FPAreg)
else if (FPAreg isaquietNaN)

FPAreg' FPAreg
else

FPAreg' FPAreg X,EEE 2-32

RoundMode' ~ 'round to nearest'

T9000 transputer instruction set manual

floating point divide by 232

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand
FPError also signalled whenever FPlnvalidOp signalled
FPlnexaet, FPUnderflow can be signalled by X,EEE

Comments:
Secondary instruction

See chapter: 11
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fpexpinc32

Code: 2D FA

Description: Multiply FPAreg by 232.

Definition:
if (FPAreg isasignallingNaN)

FPAreg' E- Q(FPAreg)
else if (FPAreg is a quiet NaN)

FPAreg' FPAreg
else

FPAreg' FPAreg XIEEE 2 32

RoundMode' E- 'round to nearest'

293

floating point multiply by 232

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand
FPlnexacf, FPOverflow, FPUnderflow can be signalled by xlEEE

FPError also signalled whenever FPlnvalidOp or FPOverflow are signalled

Comments:
Secondary instruction

See chapter: 11
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fpge

Code: 29 F7

19000 transputer instruction set manual

floating point greater than or equals

Description: Implements (FPBreg >= FPAreg) as per ANSI/IEEE Std 754-1985 (Page 13, Table 4, line
4). The result of the comparison is loaded into Areg.

Definition:
if (FPAregisaNaN) or (FPBregisaNaN)

Areg' ~ false
else if (FPBreg 2: FPAreg)

Areg' true
else

Areg' false

FPAreg'
FPBreg'
FPCreg'
Breg'
Creg'
RoundMode'

FPCreg
undefined
undefined
Areg
Breg
'round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a NaN as an operand

Comments:
Secondary instruction
For the operation to be defined the operands must both be the same precision

See chapter: 11
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IfP9t

Code: 29 F4
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floating point greater than I

Description: Implements (FPBreg > FPAreg) as per ANSI/IEEE Std 754-1985 (Page 13, Table 4, line
3). The result of the comparison is loaded into Areg.

Definition:
if (FPAreg isaNaN) or (FPBreg isaNaN)

Areg' ~ false
else if (FPBreg > FPAreg)

Areg' true
else

Areg' false

FPAreg'
FPBreg'
FPCreg'
Breg'
Creg'
RoundMode'

FPCreg
undefined
undefined
Areg
Breg
{round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by NaN as an operand

Comments:
Secondary instruction
For the operation to be defined the operands must both be the same precision

See chapter: 11
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Ifpi32tor32

Code: 29 F6

T9000 transputer instruction set manual

INT32 to REAL32I

Description: Load signed 32 bit value from the word addressed by Areg into FPAreg, converting it to
a single precision floating-point number. If this instruction is not preceded by an instruction to setthe round­
ing mode then it is equivalent to the sequence fpi32tor64; fpr64tor32. If the instruction is preceded by an
instruction to set the rounding mode, then the rounding mode is set after the load and before the conver­
sion to single precision (Le. fprx; fpi32tor32 is equivalent to fpi32tor64; fprx; fpr64tor32).

If an error occurs then the behavior is as if the equivalent instruction sequence had been executed, as
follows. A trap may occur during the load, in which case the state delivered to the trap-handler is the same
as if a trap had occurred during the execution of fpi32tor64. If the load is successful then a trap may occur
during the conversion to single precision, in which case the state delivered to the trap-handler is the same
as if fpi32tor64 (and possibly fprx) had been successful and a trap had occurred during a subsequent
fpr64tor32.

Definition:
FPAreg'

Areg'
Breg'
Creg'
FPBreg'
FPCreg'
RoundMode'

rea132(word[Areg])

Breg
Creg
undefined
FPAreg
FPBreg
'round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is protected
FPlnexact can be signalled by the conversion

Comments:
Secondary instruction

See chapter: 11

See also: fpi32tor64 fpr64tor32
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Code: 29 Fa
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INT32 to REAL64 I

rea164(word[Areg])

Description: Load signed 32 bit value from the word addressed by Areg into FPAreg, converting it to
a double precision floating-point number.

Definition:
FPAreg'

Areg'
Breg'
Creg'
FPBreg'
FPCreg'
RoundMode'

Breg
Creg
undefined
FPAreg
FPBreg
'round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 11



298

Ifpint

Code: 2A F1

T9000 transputer instruction set manual

round to floating integer I

Description: Convert FPAreg to an integer in floating point format using the current rounding mode.

Definition:
if (FPAreg isasignallingNaN)

FPAreg' ~ Q(FPAreg)
else if (FPAreg isaquietNaN) or (FPAreg 00)

FPAreg' FPAreg
else

FPAreg' fpint(FPAreg)

RoundMode' ~ 'round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand
FPlnexact can be signalled by the conversion

Comments:
Secondary instruction

See chapter: 11

See also: fprtoi32
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Ifp/dalJ

Code: 60 FE
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floating point load all I

Description: Load the entire FPU state from a 7 word block of memory (the floating-point state data struc­
ture) pointed to by Areg. Note that this instruction may change the rounding mode.

Definition:
FPstatusReg' ~ word[Areg @ 0]

if (FPstatusReg'3 = 1)
FPAreg' ~ {undefined)

else if (FPstatusReg'2 0)
FPAreg' word[Areg @ 1]

else
FPAreg' double[Areg @ 1]

if (FP.statusReg's = 1)
FPBreg' ~ {undefined)

else if (FPstatusReg'4 0)
FPBreg' word[Areg @ 3]

else
FPBreg' double[Areg @ 3]

if (FPstatusReg'7 = 1)
FPCreg' ~ {undefined)

else if (FPstatusReg'6 0)
FPCreg' word[Areg @ 5]

else
FPCreg' double[Areg @ 5]

if (( FPstatusReg' 1\ 3) = 0)
RoundMode' ~ 'round to zero'

else if (( FPstatusReg' 1\ 3) 1)
RoundMode' ~ 'round to nearest'

else if (( FPstatusReg' 1\ 3) 2 )
RoundMode' ~ 'round to plus infinity'

else if (( FPstatusReg' 1\ 3) = 3)
RoundMode' ~ 'round to minus infinity'

- single precision

- double precision

- single precision

- double precision

- single precision

- double precision

Areg'
Breg'
Creg'

Breg
Creg
undefined

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if any address accessed is protected

Comments:
Secondary instruction

See chapter: 11

See also: fpstall
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fpldnladddb

Code: 2A F6

T9000 transputer instruction set manual

floating point load non-local and add double

Description: Add the double precision floating point number addressed by Areg to FPAreg. FPCreg be­
comes undefined. If this instruction is not preceded by an instruction to set the rounding mode then it is
equivalent to the sequence fpldnldb; fpadd. If the instruction is preceded by an instruction to set the round­
ing mode, then the rounding mode is set after the load and before the add operation (Le. fprx; fpldnladddb
is equivalent to fpldnldb; fprx; fpadd).

If an error occurs then the behavior is as if the equivalent instruction sequence had been executed, as
follows. A trap may occur during the load, in which case the state delivered to the trap-handler is the same
as if a trap had occurred during the execution of fpldnldb. If the load is successful then a trap may occur
during the add, in which case the state delivered to the trap-handler is the same as if fpldnldb (and possibly
fprx) had been successful and a trap had occurred during a subsequent fpadd.

Definition:
if (double[Areg] is a signalling NaN)

FPAreg' ~ Q(double[Areg])
else if (FPAreg isasignallingNaN)

FPAreg' ~ Q(FPAreg)
else if (double[Areg] isaquietNaN)

FPAreg' ~ double [Areg]
else if (FPAreg isaquietNaN)

FPAreg' ~ FPAreg
else if (double [Areg] and FPAreg are infinities of opposite sign)

FPAreg' ~ AddOplnfsNaN
else

FPAreg' ~ FPAreg +/EEE double [Areg]

FPCreg'
Areg'
Breg'
Creg'
RoundMode'

undefined
Breg
Creg
undefined
'round to nearest'

Error signals:
Unalign signalled if the addr.ess in Areg is not word aligned
AccessViolation signalled in a P-process if any address accessed is protected
FPError signalled by a NaN or an infinity as an operand of the add
FPlnvalidOp signalled by:

a signalling NaN as an operand
adding infinities of opposite sign

FPlnexact, FPOverflow, FPUnderflow can be signalled by +/EEE

FPError also signalled whenever FPlnvalidOp or FPOverflow are signalled

Comments:
Secondary instruction
For the operation to be defined the initial value of FPAreg must be double precision

See chapter: 11

See also: fpldnldb fpadd
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fpldnladdsn

Code: 2A FA

301

floating point load non-local and add single

Description: Add the single precision floating point number addressed by Areg to FPAreg. FPCreg be­
comes undefined. If this instruction is not preceded by an instruction to set the rounding mode then it is
equivalent to the sequence fpldnlsn; fpadd. If the instruction is preceded by an instruction to set the round­
ing mode, then the rounding mode is set after the load and before the add operation (Le. fprx; fpldnladdsn
is equivalent to fpldnlsn; fprx; fpadd).

If an error occurs then the behavior is as if the equivalent instruction sequence had been executed, as
follows. A trap may occur during the load, in which case the state delivered to the trap-handler is the same
as if a trap had occurred during the execution of fpldnlsn. If the load is successful then a trap may occur
during the add, in which case the state delivered to the trap-handler is the same as if fpldnlsn (and possibly
fprx) had been successful and a trap had occurred during a subsequent fpadd.

Definition:
if (word[Areg] is a signalling NaN)

FPAreg' ~ Q(word[Areg])
else if (FPAreg isasignallingNaN)

FPAreg' ~ Q(FPAreg)
else if (word[Areg] isa quiet NaN)

FPAreg' ~ word[Areg]
else if (FPAreg is a quiet NaN)

FPAreg' ~ FPAreg
else if (word[Areg] and FPAreg areinfinitiesofoppositesign)

FPAreg' ~ AddOplnfsNaN
-else

FPAreg' ~ FPAreg +/EEE word[Areg]

FPCreg'
Areg'
Breg'
Creg'
RoundMode'

undefined
Breg
Creg
undefined
{round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is protected
FPError signalled by a NaN or an infinity as an operand of the add
FPlnvalidOp signalled by:

a signalling NaN as an operand
adding infinities of opposite sign

FPlnexact, FPOverflow, FPUnderflow can be signalled by +/EEE

FPError also signalled whenever FPlnvalidOp or FPOverflow are signalled

Comments:
Secondary instruction
For the operation to be defined the initial value of FPAreg must be single precision

See chapter: 11

See also: fpldnlsn fpadd
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fpldnldb

Code: 28 FA

19000 transputer instruction set manual

floating point load non-local double

Description: Load double precision floating point number into FPAreg from the pair of words addressed
by Areg.

Definition:
FPAreg'

FPBreg'
FPCreg'
Areg'
Breg'
Creg'
RoundMode'

double [Areg]

FPAreg
FPBreg
Breg
Creg
undefined
'round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if any address accessed is protected

Comments:
Secondary instruction

See chapter: 11
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fpldnldbi

Code: 28 F2
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floating point load non-local indexed double

Description: Load double precision floating point number into FPAreg from the pair of words of memory
offset by (2 x Breg) words from the address in Areg.

Definition:
FPAreg'

FPBreg'
FPCreg'
Areg'
Breg'
Creg'
RoundMode'

double [Areg @ (2 x Breg)]

FPAreg
FPBreg
Creg
undefined
undefined
(round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if any address accessed is protected

Comments:
Secondary instruction

See chapter: 11
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fpldnlmuldb

Code: 2A Fa

T9000 transputer instruction set manual

floating point load non-local and multiply double

Description: Multiply the double precision floating point number addressed by Areg to FPAreg. FPCreg
becomes undefined. If this instruction is not preceded by an instruction to set the rounding mode then it
is equivalent to the sequence fpldnldb; fpmul. If the instruction is preceded by an instruction to set the
rounding mode, then the rounding mode is set after the load and before the multiply operation (Le. fprx;
fpldnlmuldb is equivalent to fpldnldb; fprx; fpmul).

If an error occurs then the behavior is as if the equivalent instruction sequence had been executed as fol­
lows. A trap may occur during the load, in which case the state delivered to the trap-handler is the same
as if a trap had occurred during the execution of fpldnldb. If the load is successful then a trap may occur
during the multiply, in which case the state delivered to the trap-handler is the same as if fpldnldb (and
possibly fprx) had been successful and a trap had occurred during a subsequent fpmul.

Definition:
if (double [Areg] is a signalling NaN)

FPAreg' ~ Q(double[Areg])
else if (FPAreg isasignallingNaN)

FPAreg' ~ Q(FPAreg)
else if (double[Areg] isaquietNaN)

FPAreg' ~ double [Areg]
else if (FPAreg is a quiet NaN)

FPAreg' ~ FPAreg
else if (double[Areg] = 0.0) and (FPAreg = (0)

or (double[Areg] = (0) and (FPAreg = 0.0)
FPAreg' ZeroMullnfNaN

else
FPAreg' double [Areg] X,EEE FPAreg

FPCreg'
Areg'
Breg'
Creg'
RoundMode'

undefined
Breg
Creg
undefined
{round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process any address in accessed is protected
FPError signalled by a NaN or an infinity as an operand of the multiply
FPlnvalidOp signalled by a signalling NaN as an operand and by (00 X IEEE 0.0)
FPlnexact, FPOverflow, FPUnderflow can be signalled by x IEEE

FPError also signalled whenever FPlnvalidOp or FPOverflow are signalled

Comments:
Secondary instruction
For the operation to be defined the initial value of FPAreg must be double precision

See chapter: 11

See also: fpldnldb fpmul
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fpldnlmulsn floating point load non-local and multiply single

Code: 2A Fe

Description: Multiply the single precision floating point number addressed by Areg to FPAreg. FPCreg
becomes undefined. If this instruction is not preceded by an instruction to set the rounding mode then it
is equivalent to the sequence fpldnlsn; fpmul. If the instruction is preceded by an instruction to set the
rounding mode, then the rounding mode is set after the load and before the multiply operation (Le. fprx;
fpldnlmulsn is equivalent to fpldnlsn; fprx; fpmul).

If an error occurs then the behavior is as if the equivalent instruction sequence had been executed, as
follows. A trap may occur during the load, in which case the state delivered to the trap-handler is the same
as if a trap had occurred during the execution of fpldnlsn. If the load is successful then a trap may occur
during the multiply, in which case the state delivered to the trap-handler is the same as if fpldnlsn (and
possibly fprx) had been successful and a trap had occurred during a subsequent fpmul.

Definition:
if (word [Areg ] is a signalling NaN)

FPAreg' ~ Q(word[Areg])
else if (FPAreg isasignallingNaN)

FPAreg' ~ Q(FPAreg)
else if (word[Areg] isaquietNaN)

FPAreg' ~ word[Areg]
else if (FPAreg is a quiet NaN)

FPAreg' ~ FPAreg
else if (word[Areg] = 0.0) and -(FPAreg = (0)

or (word[Areg] = (0) and (FPAreg = 0.0)
FPAreg' ~ ZeroMullnfNaN

else
FPAreg' ~ word[Areg] x,EEE FPAreg

FPCreg'
Areg'
Breg'
Creg'
RoundMode'

undefined
Breg
Creg
undefined
(round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is protected
FPError signalled by a NaN or an infinity as an operand of the multiply
FPlnvalidOp signalled by a signalling NaN as an operand and by (00 X IEEE 0.0)
FPlnexact, FPOverflow, FPUnderflow can be signalled by X,EEE

FPError also signalled whenever FPlnvalidOp or FPOverflow are signalled

Comments:
Secondary instruction
For the operation to be defined the initial value of FPAreg must be single precision

See chapter: 11

See also: fpldnlsn fpmul
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fpldnlsn

Code: 28 FE

T9000 transputer instruction set manual

floating point load non-local single

Description: Load single precision floating point number into FPAreg from the word addressed by Areg.

Definition:
FPAreg'

FPBreg'
FPCreg'
Areg'
Breg'
Creg'
RoundMode'

word[Areg]

FPAreg
FPBreg
Breg
Creg
undefined
'round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 11
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fpldnlsni

Code: 28 F6

307

floating point load non-local indexed single

word[Areg @ Breg]

Description: Load single precision floating point number into FPAreg from the word offset by Breg words
from the address in Areg.

Definition:
FPAreg'

FPBreg'
FPCreg'
Areg'
Breg'
Creg'
RoundMode'

FPAreg
FPBreg
Creg
undefined
undefined
'round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if the address accessed is protected

Comments:
Secondary instruction

See chapter: 11
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Ifpldzerodb

Code: 2A FO

T9000 transputer instruction set manual

load zero double I

0.0

Description: Load zero as a 64 bit floating point number into FPAreg.

Definition:
FPAreg'

FPBreg' FPAreg
FPCreg' FPBreg
RoundMode' E-- 'round to nearest'

Error signals: none

Comments:
Secondary instruction

See chapter: 11

- single precision
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Ifpldzerosn

Code: 29 FF

Description: Load zero as a 32 bit floating point number into FPAreg.

Definition:
FPAreg'

FPBreg' FPAreg
FPCreg' FPBreg
RoundMode' Eo- 'round to nearest'

Error signals: none

Comments:
Secondary instruction

See chapter: 11

309

load zero single I

- single precision
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fplg

Code: 29 FB

T9000 transputer instruction set manual

floating point less than or greater than

Description: Implements (FPBreg < > FPAreg) as per ANSI/IEEE Std 754-1985 (Page 13, Table 4, line
8). The result of the comparison is loaded into Areg.

Definition:
if (FPAreg isaNaN) or (FPBreg isaNaN)

Areg' E- false
else if (FPBreg < > FPAreg)

Areg' true
else

Areg' false

FPAreg'
FPBreg'
FPCreg'
Breg'
Creg'
RoundMode'

FPCreg
undefined
undefined
Areg
Breg
'round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a NaN as an operand

Comments:
Secondary instruction
For the operation to be defined the operands must both be the same precision

See chapter: 11
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Itpmul

Code: 28 FB

Description: Multiply FPAreg by FPBreg.

Definition:
if (FPAreg is a signalling NaN)

FPAreg' ~ Q(FPAreg)
else if (FPBreg is a signalling NaN)

FPAreg' ~ Q(F?Breg)
else if (FPAreg is a quiet NaN)

FPAreg' ~ FPAreg
else if (FPBreg is a quiet NaN)

FPAreg' ~ FPBreg
else if (FPAreg = 0.0) and (FPBreg = 00)

or (FPAreg = 00) and (FPBreg = 0.0)
FPAreg' ZeroMullnfNaN

else
FPAreg' FPBreg x,EEE FPAreg

FPBreg' ~ FPCreg
FPCreg , ~ undefined
RoundMode' ~ 'round to nearest'
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floating point multiply I

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand and by (00 X IEEE 0.0)
FPlnexact, FPOverflow, FPUnderflow can be signalled by X,EEE

FPError also signalled whenever FPlnvalidOp or FPOverfl0w. are signalled

Comments:
Secondary instruction
For the operation to be defined the operands must both be the same precision

See chapter: 11

See also: fpexpinc32 fpmulby2
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fpmulby2

Code: 20 F2

Description: Multiply FPAreg by 2.

Definition:
if (FPAreg isasignallingNaN)

FPAreg' ~ Q(FPAreg)
else if (FPAreg is a quiet NaN)

FPAreg' FPAreg
else

FPAreg' FPAreg X,EEE 2.0

RoundMode ' ~ lround to nearest'

T9000 transputer instruction set manual

floating point multiply by 2.0

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand
FPlnexact, FPOverflow, FPUnderflow can be signalled by X,EEE

FPError also signalled whenever FPlnvalidOp or FPOverflow are signalled

Comments:
Secondary instruction

See chapter: 11
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Itpnan

Code: 29 F1

313

floating point NaN I

Description: Test whether FPAreg is a NaN. The result of the test is loaded into Areg.

Definition:
if (FPAreg isaNaN)

Areg' true
else

Areg' false

Breg' Eo- Areg
Creg' Eo- Breg
RoundMode' Eo- 'round to nearest'

Error signals: none

Comments:
Secondary instruction

See chapter: 11
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Ifpnotfinite

Code: 29 F3

T9000 transputer instruction set manual

floating point not finite I

Description: Test whether FPAreg is finite (not a NaN and not an infinity). The result of the test is loaded
into Areg.

Definition:
if (FPAreg is a NaN) or (FPAreg 00)

Areg' true
else

Areg' false

Breg' ~ Areg
Creg' ~ Breg
RoundMode' ~ 'round to nearest'

Error signals: none

Comments:
Secondary instruction

See chapter: 11
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fpordered

Code: 29 F2

315

floating point orderability

Description: Test if FPAreg and FPBreg can be ordered; Le. neither operand is a NaN. Implements
not(FPBreg? FPAreg) as per ANSI/IEEE Std 754-1985 (Page 13, Table 4, line 19). The result of the com­
parison is loaded into Areg.

Definition:
if (FPAreg isaNaN) or (FPBreg isaNaN)

Areg' false
else

Areg' true

Breg' ~ Areg
Creg' ~ Breg
RoundMode ' 'round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand

Comments:
Secondary instruction
For the operation to be defined the operands must both be the same precision

See chapter: 11
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fpr32tor64

Code: 2D F7
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floating point REAL32 to REAL64

Description: Extend single precision value in FPAreg to double precision.

Definition:
if (FPAreg is a signalling NaN)

FPAreg' rea164(Q(FPAreg))
else

FPAreg' rea164 (FPAreg)

RoundMode' E- Iround to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand

Comments:
Secondary instruction
For the operation to be defined the initial value of FPAreg must be single precision

See chapter: 11
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fpr64tor32

Code: 20 F8

317

floating point REAL64 to REAL32

Description: Round double precision value in FPAreg to single precision.

Definition:
if (FPAreg isaNaN)

FPAreg' R64ToR32NaN
else

FPAreg' rea132 (FPAreg)

RoundMode' ~ 'round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand
FPlnexact, FPOverflow, FPUnderflow can be signalled by the conversion
FPError also signalled whenever FPOverflow signalled

Comments:
Secondary instruction
For the operation to be defined the initial value of FPAreg must be double precision

See chapter: 11
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Ifprange

Code: 28 FD
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floating point range reduce I

Description: Calculate the values needed to perform range reduction on an argument. Remainder
FPBreg by FPAreg putting the remainder in FPAreg and the corresponding integer quotient (in floating
point format) into FPBreg. The remainder, r = x rem y, is defined by r = x - (y x n), where n is the integer
quotient (the nearest integer to the exact value x / y - calculated using 'round to nearest' mode).

Definition:
if ( FPAreg is a signalling NaN )
{

FPAreg'
FPBreg'

Q(FPAreg)
undefined

}
else if (FPBreg isasignallingNaN)
{

FPAreg'
FPBreg'

Q(FPBreg)
undefined

}
else if (FPAreg isaquietNaN)
{

FPAreg'
FPBreg'

FPAreg
undefined

}
else if (FPBreg is a quiet NaN)
{

FPAreg'
FPBreg'

FPBreg
undefined

}
else if (FPBreg = 00)
{

FPAreg'
FPBreg'

RemainderFromlnfNaN
undefined

}
else if (FPAreg = 0.0)
{

FPAreg'
FPBreg'

RemainderByZeroNaN
undefined

}
else if (quotient is out of range)
{

- see [Error signals] below

FPAreg'
FPBreg'

}
else

FPAreg'
FPBreg'

RangeQuotErrorNaN
undefined

FPBreg re~EEE FPAreg
fpint(FPBreg / FPAreg)

RoundMode' -<- {round to nearest'

(continued)
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Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by:

FPAreg = 0.0;
FPBreg = 00;
signalling Nans;
magnitude of the quotient exceeding 253_1 for double precision, or 224_1 for single precision

FPError also signalled whenever FPlnvalidOp signalled
FPUnderflow can be signalled by rem'EEE

Comments:
Secondary instruction
For the operation to be defined the operands must both be the same precision
Unlike fprem this instruction is not interruptible

See chapter: 11

See also: fprem
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Itprem

Code: 2C FF

T9000 transputer instruction set manual

floating point remainder I

Description: Remainder FPBreg by FPAreg; calculates the remainder when evaluating the integer quo­
tient of FPBreg divided by FPAreg. The remainder, r = x rem y, is defined by r = x ,- (y x n), where n is
the nearest integer (calculated using 'round to nearest' mode) to the exact value x / y.

Definition:
if (FPAreg isasignallingNaN)

FPAreg' ~ Q(FPAreg)
else if (FPBreg is a signalling NaN)

FPAreg' ~ Q(FPBreg)
else if (FPAreg is a quiet NaN)

FPAreg' ~ FPAreg
else if (FPBreg isaquietNaN)

FPAreg' ~ FPBreg
else if (FPBreg = 00)

FPAreg' ~ RemainderFromlnfNaN
else if (FPAreg = 0.0)

FPAreg' RemainderByZeroNaN
else

FPAreg' FPBreg re~EEE FPAreg

FPBre9' ~ FPCreg
FPCreg , ~ undefined
RoundMode' ~ 'round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by:

FPAreg = 0.0;
FPBreg = 00;

signalling Nans;
FPError also signalled whenever FPlnvalidOp signalled
FPUnderflow can be signalled by rem,EEE (if the underflow trap is enabled)

Comments:
Secondary instruction
For the operation to be defined the operands must both be the same precision
Instruction is inter-ruptible

See chapter: 11

See also: fprange
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Itprev

Code: 2A F4

Description: Swap the top two elements of the floating point stack.

Definition:
FPAreg'
FPBreg'

RoundMode' Eo- 'round to nearest'

Error signals: none

Comments:
Secondary instruction

See chapter: 11

See also: fpdup rev

321

floating point reverse I
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IfPrm

Code: 20 F5
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set rounding mode to round minus I

Description: Set rounding mode to 'round towards minus infinity' for the next floating point instruction.

Definition:
RoundMode' ~ (round to minus infinity'

Error signals: none

Comments:
Secondary instruction

See chapter: 11

See also: fprn fprp fprz
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fprn

Code: 20 FO
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set rounding mode to round nearest

Description: Set rounding mode to 'round towards nearest' for the next floating point instruction.

Definition:
RoundMode' Eo- (round to nearest'

Error signals: none

Comments:
Secondary instruction

See chapter: 11

See also: fprm fprp fprz
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!tprp

Code: 20 F4

T9000 transputer instruction set manual

set rounding mode to round plus I

Description: Set rounding mode to 'round towards plus infinity' for the next floating point instruction.

Definition:
RoundMode' ~ 'round to plus infinity'

Error signals: none

Comments:
Secondary instruction

See chapter: 11

See also: fprm fprn fprz
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Ifprtoi32

Code: 29 FD
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REAL to INT32 I

Description: Round FPAreg into an integer value (in floating point format) and check the result lies within
the range of a 32 bit signed integer. Unless an exception occurs, this instruction is equivalent to fpint;
fpchki32

Definition:
if (_2 31 ::; FPAreg') and (FPAreg' < 231 )

FPlnvalidOp

FPAreg'
RoundMode'

fpint(FPAreg)
{round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN or an infinity as an operand, or result not in range
FPError also signalled whenever FPlnvalidOp signalled
FPlnexact can be signalled by the conversion

Comments:
Secondary instruction

See chapter: 11

See also: fpint fpchki32
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Itprz

Code: 20 F6
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set rounding mode to round zero I

Description: Set rounding mode to 'round towards zero' for the next floating point instruction.

Definition:
RoundMode' ~ 'round to zero'

Error signals: none

Comments:
Secondary instruction

See chapter: 11

See also: fprm fprn fprp
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Ifpsqrt

Code: 2D F3

Description: Take the square root of FPAreg.

Definition:
if (FPAreg is a signalling NaN)

FPAreg' Eo- Q(FPAreg)
else if (FPAreg is a quiet NaN)

FPAreg' Eo- FPAreg
else if (FPAreg = + 00 )

FPAreg' Eo- + 00

else if (FPAreg = -0.0)
FPAreg' Eo- -0. 0

else if (FPAreg < 0.0)
FPAreg' NegSqrtNaN

else
FPAreg' sqroot(FPAreg)

RoundMode' Eo- (round to nearest'
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floating point square root I

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by a signalling NaN as an operand and by (FPAreg < 0)
FPError also signalled whenever FPlnvalidOp signalled
FPlnexact can be signalled when taking square root

Comments:
Secondary instruction

See chapter: 11
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Ifpstall

Code: 60 FF
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floating point store all I

Description: Store the entire FPU state in a 7 word block of memory (the floating-point state data struc­
ture) pointed to by Areg.

Definition:
word' [Areg @ 0] ~ FPstatusReg

if (FPstatusReg2 = 0)
word' [Areg @ 1] ~ FPAreg

else
double' [Areg @ 1] ~ FPAreg

if (FPstatusReg4 = 0)
word' [Areg @ 3] ~ FPBreg

else
double' [Areg @ 3] ~ FPBreg

else if (FPstatusReg6 = 0)
word' [Areg @ 5] ~ FPCreg

else
double' [Areg @ 5] ~ FPCreg

- single precision

- double precision

- single precision

- double precision

- single precision

- double precision

Areg'
Breg'
Creg'

FPAreg'
FPBreg'
FPCreg'

Breg
Creg
undefined

undefined
undefined
undefined

RoundMode' ~ 'round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if any address accessed is not writable

Comments:
Secondary instruction

See chapter: 11
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fpstnldb

Code: 28 F4

329

floating point store non-local double

Description: Store FPAreg as a double precision floating point number into the pair of words addressed
by Areg.

Definition:
double' [Areg] ~ FPAreg

Areg'
Breg'
Creg'
FPAreg'
FPBreg'
FPCreg'
RoundMode'

Breg
Creg
undefined
FPBreg
FPCreg
undefined
'round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if any address accessed is not writable

Comments:
Secondary instruction

See chapter: 11
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fpstnli32

Code: 29 FE

T9000 transputer instruction set manual

floating point store non-local INT32

Description: Convert the floating-point number in FPAreg to an integer value, rounding towards -00 and
then convert to a 64-bit twos-complement integer, storing the least significant 32-bits of this integer in the
location pointed to by Areg.

Definition:
word' [Areg] Eo- int64 (FPAreg) /\ (2 32_1)

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'
RoundMode'

FPBreg
FPCreg
undefined
Breg
Creg
undefined
'round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is not writable

Comments:
Secondary instruction

See chapter: 11
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fpstnlsn

Code: 28 F8

331

floating point store non-local single

Description: Store the single precision floating point number in FPAreg into the word addressed by Areg.

Definition:
word' [Areg] Eo- FPAreg

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'
RoundMode'

FPBreg
FPCreg
undefined
Breg
Creg
undefined
(round to nearest'

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is not writable

Comments:
Secondary instruction

See chapter: 11
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Ifpsub

Code: 28 F9

Description: Subtract FPAreg from FPBreg.

T9000 transputer instruction set manual

floating point subtract I

Definition:
if (FPAreg isasignallingNaN)

FPAreg' E- Q(FPAreg)
else if (FPBreg is a signalling NaN)

FPAreg' E- Q(FPBreg)
else if (FPAreg is a quiet NaN)

FPAreg' E- FPAreg
else if (FPBreg is a quiet NaN)

FPAreg' E- FPBreg
else if (FPAreg and FPBreg are infinities of opposite sign)

FPAreg' E- AddOplnfsNaN
else

FPAreg' E- FPBreg -IEEE FPAreg

FPBreg' E- FPCreg
FPCreg' E- undefined
RoundMode' E- (round to nearest'

Error signals:
FPError signalled by a NaN or an infinity as an operand
FPlnvalidOp signalled by:

a signalling NaN as an operand
subtracting infinities of opposite sign

FPlnexacf, FPOverflow, FPUnderflow can be signalled by -IEEE

FPError also signalled whenever FPlnvaJidOp or FPOverflow are signalled

Comments:
Secondary instruction
For the operation to be defined the operands must both be the same precision

See chapter: 11
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IgajW

Code: 23 Fe

333

general adjust workspace I

Description: Set the workspace pointer to the address in Areg, saving previous value in Areg. In pro­
tected mode a (recoverable) error occurs if the new workspace address is not writable. The state delivered
to the trap-handler in this case is the state before the instruction started.

Definition:
Wptr' Eo- Areg
Areg' Eo- wptr

Error signals:
Unalign signalled if the new workspace address is not word aligned
AccessViolation signalled in a P-process if the new workspace address is not writable

Comments:
Secondary instruction

See chapter: 7

See also: ajw call gcall
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Igcall

Code: F6
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general call I

Areg
IptrReg

Description: Jump to computed address in Areg, saving previous address in Areg.

Definition:
IptrReg'
Areg'

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: ajw call gajw ret
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Igoprot

Code: 60 FA

335

go protected I

Description: Start a P-process, continue execution of a P-process after it has trapped, or restart execu­
tion of an interrupted P-process. Initially, Areg is a pointer to a P-state data structure (PDS) and Breg is
a pointer to a region descriptor data structure. If the instruction causes a 'watchpoint' or 'single-step' trap,
then a 'context' trap is taken after the instruction has performed all its writes to memory; the stack state
delivered to the trap handler is the state before the instruction started.

Definition:
if (Areg does not cause Unalign trap and Breg does not cause Unalign trap)
{

if (ThReg ~ NotProcess.p)
word' [ThReg @ th.Cntl] ~ StatusReg

word' [Wptr @ pw. Iptr ] ~ IptrReg

if (not single step or watchpoint trap)
{

- process status/control bits only

WdescStubReg'
PstateReg'
Wptr'
IptrReg'
Areg'
Breg'
Creg'
StatusReg'

WdescReg
Areg
word[Areg @ ps.sWptr]
word[Areg @ ps.slptr]
word[Areg @ ps.sAreg]
word[Areg @ ps.sBreg]
word[Areg @ ps.sCreg]
sb. IsPprocessBit V

word [Areg @ ps. Cntl] - process status/control bits only

if (restarted process was interrupted)
{

Ereg'
EptrReg'
Xreg'

RegionRegO'
RegionRegl'
RegionReg2'
RegionReg3'

word[Areg @ ps.sEreg]
word[Areg @ ps.Eptr]
word[Areg @ ps.sXreg]

word[Breg @ pc.RegionRegO]
word[Breg @ pC.RegionReglJ
word[Breg @ pc.RegionReg2]
word[Breg @ pc.RegionReg3]

if (StatusReg' sb.wtchPntEnbl = 1)
{

WIReg'
WuReg'

enable interrupts

word[Areg @ ps.eWl]
word[Areg @ ps.eWu]
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Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the addresses in Areg or Breg are not word aligned

Comments:
Instruction is privileged
Secondary instruction
The ps.sWptr slot of the PDS must be word aligned
For stack extension on demand, the address read from the ps.sWptr slot of the PDS must be writable

See chapter: 9 and 10

See also: restart syscall tret
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Igrant

Code: 61 F1

337

grant resource I

Description: Grant a claim on a resource (a claim is made by a client process performing an output to
a resource channel). Areg is a pointer to the resource data structure and Breg points to a word where the
resource channel identifier is to be stored. If no client has made a claim then the process descriptor of the
server is saved and the server deschedules; otherwise the resource channel identifier of the first channel
on the list is saved, the channel is set back to normal mode and then removed from the list.

Definition:
if (Areg does not cause Unalign trap and Breg does not cause Unalign trap)
{

if (word[Areg @ rds.Front] = NotProcess.p)
{

word' [Areg @ rds.Proc] ~ WdescReg
word' [Wptr @ pw.Pointer] ~ Breg
start next process

}
else

word' [Breg] ~ word[RC @ rC.Id]
word' [RC @ rC.Id] NotProcess.p
word' [RC @ rc.Ptr] ~ NotProcess.p
remove RC from resource list

where RC is the resource channel data structure of channel at word [Areg @ rds. Front]

Areg'
Breg'
Creg'
FPAreg'
FPBreg'
FPCreg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the addresses in Areg and Breg are not word aligned

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point

See chapter: 12

See also: disg enbg mkrc out unmkrc vout
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Code: F9
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greater than I

Description: Compare top two elements of stack, returning true if Breg is greater than Areg.

Definition:
if (Breg > Areg)

Areg' true
else

Areg' false

Breg' .Eo- Creg
Creg' Eo- undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7
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Code: 25 FF
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greater than unsigned I

Description: Compare top two elements of stack, treating both as unsigned integers, returning true if
Breg is greater than Areg.

Definition:
if (Bregunsigned > Aregunsigned)

Areg' true
else

Areg' false

Breg' ~ Creg
Creg , ~ undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7
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Code: 62 F1
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invalidate cache address I

Description: Invalidate the cache line which contains the logical address specified in Areg then incre­
ment Areg by the number of bytes in a line. The cache line is not written back to memory, even if it is dirty.
If executed by a P-process the address specified must be writable.

Definition:
if (line containing logical address Areg is valid)

invalidate line

Areg I Eo- Areg + BytesPerLine

Error signals:
AccessViolation signalled in a P-process if the address in Areg is not writable

Comments:
Secondary instruction

See chapter: 15

See also: fdca icl
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Code: 62 F3

341

invalidate cache line I

Description: Invalidate cache line indicated by Areg if it contains an addresses between Breg and Creg
inclusive, then increment Areg by 1. The cache line is not written back to memory, even if it is dirty.

Definition:
if (( Breg ::; address in line Areg ::; Creg) and line is valid)

invalidate line

Areg' Eo- Areg + 1

Error signals:
Privlnstruetion signalled if executed by a P-process

Comments:
Secondary instruction

See chapter: 15

See also: fdel iea
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Code: F7
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input message I

Description: Input a message. The corresponding output is performed by an out, outward or outbyte
instruction, and must specify a message of the same length. Areg is the unsigned length in bytes, Breg
is a pointer to the channel and Creg is a pointer to where the message is to be stored. The process execut­
ing in will be descheduled if the channel is external or is not ready, and is rescheduled when the commu­
nication is complete.

Definition:
if (Breg does not cause Unalign trap)
{

if (Breg is not a legal channel address)
IntegerError

else
synchronize, and input Aregunsigned bytes from channel Breg to address Creg

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Breg is not word aligned
IntegerError signalled if the address in Breg is not a legal channel address

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point
Instruction is interruptible

See chapter: 8

See also: out vin
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Iinitvlcb

Code: 61 F6

343

initialize VLCB I

Description: Initialize virtual link control block (VLCB) of the virtual channel in Areg. The VLCB imple­
ments a virtual link and either the input channel or the output channel may be used as the parameter in
Areg. Breg is a pointer to the area of memory to be used as the packet buffer for the input channel.

Definition:
if (Areg does not cause Unalign trap and Breg does not cause Unalign trap)
{

if (Areg is virtual channel)
{

set buffer pointer to Breg
set header to null header
deactivate input and output channels
initialize input and output channels to 'empty'

}
else

IntegerError

Areg'
Breg'
Creg'

Creg
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the addresses in Areg or Bregare not word aligned
IntegerError signalled if the address in Areg is not a virtual channel

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12
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insertqueue

Code: 60 F2
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insert at front of scheduler queue

Description: Insert a list of processes at the front of the scheduling list of priority indicated by Areg, where
o indicates high priority and 1 indicates low priority. Breg and Creg are the front and back, respectively,
of the list to be inserted.

Definition:
if (Breg ~ NotProcess.p)
{

word' [Creg @ pw.Link] E- FptrReg[Areg]
FptrReg' [Areg] E- Breg

if (FptrReg[Areg] = NotProcess.p)
BptrReg'[Areg] E- Creg

Areg'
Breg'
Creg'

undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
The effect of the instruction is undefined if Areg does not contain 0 or 1
Breg and Creg must be word aligned

See chapter: 13

See also: swapqueue
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linSPhdr

Code: 28 Fe

345

inspect header I

Description: Inspect the header of the virtual link one of whose channels is pointed to by Areg to deter­
mine the link number, header length and offset.

Definition:
if (Areg does not cause Unalign trap)
{

if (Areg is virtual input channel or Areg is virtual output channel)
{

Areg , ~ number (0..3) ofphysical link used by virtual channel Areg

if (null header)
{

Breg'
Creg'

NullHeader
NullOffset

}
else if (long header)

Breg'
Creg'

}
else

Breg'
Creg'

}
else

IntegerError

header length of channel
header offset of channel

header length of channel
NullOffset

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if the address in Areg is not a virtual channel

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12

See also: readhdr sethdr writehdr
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Iintdis

Code: 2C F4
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interrupt disable I

Description: Disable interrupts until either an intenb instruction is executed or the process deschedules.
Timeslicing does not occur while interrupts are disabled. This instruction is only meaningful for low priority
processes.

Definition:
disable interrupts

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privi leged
Secondary instruction

See chapter: 13

See also: intenb settimeslice
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Iintenb

Code: 2C F5

347

interrupt enable I

Description: Enable interrupts. This ,instruction is only meaningful for low priority processes.

Definition:
enable interrupts

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 13

See also: intdis settimeslice
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lirdsq

Code: 62 FB
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insert at front of RDS queue I

Description: Insert a list of resource channels at the front of a resource data structure (RDS) list. Areg
is a pointer to the RDS, Breg is the address of the channel at the front of the resource channel list to be
inserted, and Creg is the address of the channel at the back of the list.

Definition:
word' [Areg @ rds.Front] E- Breg

if (word[Areg @ rds.Front] = NotProcess.p)
word' [Areg @ rds.Back] E- Creg

else
word' [RC @ rc.Ptr] E- word[Areg @ rds.Front]

where
for an external channel

RC = (( Creg - MinEventChannel) + ExternalRCbase)

for an internal channel
RC (Creg @ 1)

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned

Comments:
Instruction is privileged
Secondary instruction
Breg and Creg must be word aligned

See chapter: 12

See also: erdsq grant irdsq Idresptr mkrc stresptr unmkrc
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Code: Function 0

349

jump I

Description: Unconditional relative jump. The destination of the jump is expressed as a byte offset from
the first byte after the current instruction. j 0 causes a breakpoint.

Definition:
if (n = 0)

take a Ibreakpoint' trap
else

IptrReg' Eo- next instruction + n

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals: none

Comments:
Primary instruction
Instruction is a descheduling point
Instruction is a timeslicing point

See chapter: 7

See also: cj lend
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I'add

Code: 21 F6
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long add I

Description: Add with carry in and check for overflow. The result of the operation is the sum of Areg, Breg
and bit 0 of Creg.

Definition:
if (sum > MostPos)
{

Areg' E- sum - 2BitsPerWord

IntegerOverflow
}
else if (sum < MostNeg)

Areg' E- sum + 2BitsPerword

IntegerOverflow
}
else

Areg'

Breg'
Creg'

E- sum

undefined
undefined

where sum = Areg + Breg + Crego
- the value of surn is calculated to unlimited precision

Error signals:
IntegerOverflow can be signalled

Comments:
Secondary instruction

See chapter: 7

See also: Isum
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Code: F1

Description: Load the unsigned byte addressed by Areg into Areg.

Definition:
Areg' 0 •• 7

Areg , 8 .. BitSPerWord-l

Error signals:
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 7

See also: bsub devlb Ibx

351

load byte I
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Code: 28 F9

T9000 transputer instruction set manual

load byte and sign extend I

byte[Areg]
Areg' 7

Description: Load the byte addressed by Areg into Areg and sign extend to a word.

Definition:
Areg' 0 •• 7

Areg' 8 .. BitSPerWord-l

Error signals:
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 7

See also: bsub devlb Ib xbword
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Ilden

Code: Function 4

Description: Load constant into Areg.

Definition:
Areg'

353

load constant I

Breg'
Creg'

Areg
Breg

Error signals: none

Comments:
Primary instruction

See chapter: 7

See also: adc mint
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Ildchstatus

Code: 2C F3
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load channel status I

Description: Get the status of an external channel pointed to by Areg. After execution, Areg contains
the channel status. If the channel is in resource mode then Breg points to the resource data structure and
Creg contains the identifier given to the channel, otherwise Breg contains the process descriptor of the
process using the channel and Creg is undefined.

Definition:
if (Areg does not cause Unalign trap)
{

if (Areg is virtual channel)
{

Areg , ~ channel status

if (channel is stopping)
Breg' ~ NotProcess.p

else if (channel in resource mode)

Breg'
Creg'

}
else

Breg'
Creg'

word[RC @ rc.Ptr]
word[RC @ rC.Id]

process descriptor of process using channel
undefined

}
else if (Areg is event channel)

Areg' ~ channel status

if (channel in resource mode)
{

Breg'
Creg'

}
else

Breg'
Creg'

word[RC @ rc.Ptr]
word[RC @ rC.Id]

process descriptor ofprocess using channel
undefined

}
else if (Areg is hard channel)

Areg'

Breg'
Creg'

}
else

integerError

(continued)

channel status

process descriptor ofprocess using channel
undefined
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Definition (continued):

where RC = (( Areg - MinEventChannel) + ExternalRCbase)

If the channel is a hard link then the bits in Areg' are as follows:
o set if error detected

1-2 undefined
3 set if parity error detected
4 set if disconnect error detected

5-30 undefined .
31 0 (hard channel)

If the channel is a virtual channel or an event channel then the bits in Areg' are as follows:
o channel mode: 0 =deactivated; 1 =activated
1 set if channel mode = stopping
2 undefined
3 set if in resource mode
4 set if packet or acknowledge pending
5 set if schedule pending

6-30 undefined
31 channel type: 0 =event; 1 =virtual

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if the address in Areg is not an external channel

Comments:
Instruction is privi leged
Secondary instruction

See chapter: 12
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Ildent

Code: 2C FO

T9000 transputer instruction set manual

load message byte count I

Description: Load the number of bytes of data received by the previous vin instruction. This instruction
must be executed after a vin and before a descheduling point, or other instruction which changes the work­
space pointer, is executed.

Definition:
Areg' ~ word[Wptr @ pw.Length]

if (Areg' = LengthError.p)
IntegerError

Breg' ~ Areg
Creg' ~ Breg

Error signals:
Privlnstruction signalled if executed by a P-process
IntegerError signalled if the message was too long

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: vin vout
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Ideanf

Code: 28 FE

357

load from configuration register

Description: Read configuration register addressed by Areg into Areg. This instruction is only intended
for use during booting. It can be used by a running program but it will have a serious impact on interrupt
latency.

Definition:
Areg' E- ConfigReg[Areg]

Error signals:
Privlnstruction signalled if executed by a P-process
IntegerError signalled if Areg is not a valid readable configuration address

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12

See also: stconf Idmemstartval
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Ilddevid

Code: 21 27 Fe
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load device identity I

Deviceld

Description: See Idprodid. This instruction may be removed in future so Idprodid should be used instead.

Definition:
Areg'

Breg'
Creg'

Areg
Breg

Error signals: none

Comments:
Secondary instruction

See also: Idprodid
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Ildflags

Code: 28 F6

359

load error flags I

Description: Load the current error flags and trap enable bits into Areg. The other bits in Areg are set
to zero.

Definition:
Areg'

Breg'
Creg'

flag and trap enable bits from Stat u sReg

Areg
Breg

Error signals: none

Comments:
Secondary instruction

See chapter: 10

See also: stflags



360

Ildiff

Code: 24 FF
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long diff I

Description: Subtract unsigned numbers with borrow in. Subtract Areg from Breg minus borrow in from
Creg, producing difference in Areg and borrow out in Breg, without checking for overflow.

Definition:
if (diffunsigned :5 MostPosUnsigned)
{

Areg'unsigned ~ diffunsigned
Breg' ~ 0

}
else

Areg'unsigned ~ diffunsigned + 2BitsperWord

Breg' ~ 1

Creg , ~ undefined

where diffunsigned = Bregunsigned - Aregunsigned - Crego
- the value of di f f is calculated to unlimited precision

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: Isub
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IldiV

Code: 21 FA

361

long divide I.

Description: Divide the double length unsigned integer in Breg and Creg (most significant word in Creg)
by an unsigned integer in Areg. The quotient is put into Areg and the remainder into Breg. Overflow occurs
if either the quotient is not representable in a single word, or if a division by zero is attempted; the condition
for overflow is equivalent to Cre9Jnsigned :::: Are9Jnsigned.

Definition:
if (Cregunsigned ::::

IntegerOverflow
else

Areg ,unsigned

Breg'unsigned

Creg , ~ undefined

Aregunsigned)

longunsigned / Aregunsigned
longunsigned rem Aregunsigned

where longunsigned = (Cregunsigned X 2BitsPerWord ) + Bregunsigned
- the value of longunsigned is calculated to unlimited precision

Error signals:
IntegerOverflow can occur

Comments:
Secondary instruction

See chapter: 7

See also: Imul
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I'd' n

Code: Function 7
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load local]

word[Wptr @ n]

Description: Load local variable at specified word offset in workspace, into Areg.

Definition:
Areg'

Breg'
Creg'

Areg
Breg

Error signals:
AccessViolation signalled in a P-process if the address accessed is protected

Comments:
Primary instruction

See chapter: 7

See also: stl
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IldlP n

Code: Function 1

363

load local pointer I

Wptr @ n

Description: Load address of local variable at specified offset in workspace, into Areg.

Definition:
Areg'

Breg'
Creg'

Areg
Breg

Error signals: none

Comments:
Primary instruction

See chapter: 7

See also: Idl
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Idmemstartval

Code: 27 FE
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load value of MemStart address

Description: Load the address of the first free memory location (as defined in the MemStartconfiguration
register) into Areg.

Definition:
Areg'

Breg'
Creg'

MemStart

Areg
Breg

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12
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!Idnl n

Code: Function 3

Description: Load non-local variable at specified word offset from Areg, into Areg.

Definition:
Areg' ~ word[Areg @ n]

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if the address accessed is protected

Comments:
Primary instruction

See chapter: 7

See also: Idlldnlp stnl

365

load non-local I
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IldnlP n

Code: Function 5
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load non-local pointer I

Description: Load address at specified word offset from address in Areg, into Areg.

Definition:
Areg' E- Areg @ n

Error signals: none

Comments:
Primary instruction

See chapter: 7

See also: Idlp Idnl wsub
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IldPi

Code: 21 FB

367

load pointer to instruction I

Description: Load an address relative to the current instruction pointer into Areg. Areg contains a byte
offset which is added to the address of the first byte following this instruction.

Definition:
Areg' E- next instruction + Areg

Error signals: none

Comments:
Secondary instruction

See chapter: 7
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IldPri

Code: 21 FE
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load current priority I

Priority

Description: Load current process priority into Areg. This is zero for high priority and one for low priority.

Definition:
Areg'

Breg'
Creg'

Areg
Breg

Error signals: none

Comments:
Secondary instruction

See chapter: 8
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IldPrOdid

Code: 68 Fe

369

load product identity I

Deviceld

Description: Load a value (the device identity) indicating the processor type into Areg.

Definition:
Areg'

Breg'
Creg'

Areg
Breg

Error signals: none

Comments:
Secondary instruction
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Ildresptr

Code: 62 F8

T9000 transputer instruction set manual

load resource queue pointer I

Description: Load a pointer to the next channel in a resource channel list, after the channel pointed to
by Areg.

Definition:
if (Areg daes natcause Unalign trap)
{

if (Areg is event channel or Areg is internal channel or Areg is virtual input channel)
Areg' ~ word[RC @ rCQPtr]

else
IntegerErrar

where
far an external channel

RC = (( Areg - MinEventChannel) + ExternalRCbase)

far an internal channel
RC = Areg @ 1

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if the address in Areg is not a virtual input or event channel or a legal internal

channel address

Comments:
Instruction is privileged
Secondary instruction
The result of this instruction is undefined if:

channel Areg is the last channel in the list
the channel is idle
the channel is not in resource mode.

See chapter: 12

See also: erdsq irdsq stresptr
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Ildshadow

Code: 60 Fe

371

load shadow registers I

Description: Load some shadow registers (determined by Areg and Breg) from the block of store ad­
dressed by Creg. FPAreg.sh, FPBreg.sh and FPCreg.sh occupy 2 words each when stored. The float­
ing point registers must have been stored in the same form as is given by the stshadow instruction.

Definition:
if (Priority 1) or (Areg ~ Breg) or (Areg < 0) or (Breg > 7)

undefined effect
else

load the shadow registers between the shadow markers specified in Areg and Breg from
consecutive increasing addresses in the order listed below into the block of memory starting
at address Creg

markers registers
o -

RegionRegO.sh, RegionReg1.sh, RegionReg2.sh,
RegionReg3 . sh (4 words)

1
PstateReg. sh, WdescStubReg. sh (2 words)

2
ThReg. sh (1 word)

3
StatusReg. sh (1 word)

4
WdescReg.sh, IptrReg.sh, Areg.sh, Breg.sh, Creg.sh, Ereg.sh,
Xreg.sh, BMregO.sh, BMreg1.sh, BMreg2.sh, EptrReg.sh (11 words)

5
FPstatusReg. sh, FPAreg. sh, FPBreg. sh, FPCreg. sh (7 words)

6
WIReg. sh, WuReg. sh (2 words)

7

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Creg is not word aligned

Comments:
Instruction is privileged
Secondary instruction
The effect of the instruction is defined only when executed by a high-priority process

See chapter: 13

See also: stshadow
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[Idth

Code: 2C F2
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load trap handler I

ThReg

Description: Load the contents of the trap handler register into Areg.

Definition:
Areg'

Breg'
Creg'

Areg
Breg

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 10
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Ildtimer

Code: 22 F2

Description: Load value of current priority timer into Areg.

373

load timer I

Definition:
Areg'

Breg'
Creg'

ClockReg[Priority]

Areg
Breg

Error signals: none

Comments:
Secondary instruction

See chapter: 8

See also: sttimer tin
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[lend

Code: 22 F1
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loop end I

Description: Adjust loop count and index, and do a conditional jump. Initially Areg contains the byte offset
from the first byte following this instruction to the loop start and Breg contains a pointer to a loop end data
structure, the first word of which is the loop index and the second is the loop count. The count is decrem­
ented and, if the result is greater than zero, the index is incremented and a jump to the start of the loop
is taken. The offset to the start of the loop is given as a positive number that is subtracted from the instruc­
tion pointer.

Definition:
word' [Breg @ le. Count] Eo- word [Breg @ le. Count] - 1

if (word' [Breg @ le.Count] > 0)
{

word' [Breg @ le. Index] Eo- word [Breg @ le. Index] + 1
IptrReg' Eo- next instruction - Areg

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Unalign signalled if the address in Breg is not word aligned
AccessViolation signalled in a P-process if any address accessed is not writable

Comments:
Secondary instruction
Instruction is a descheduling point
Instruction is a timeslicing point

See chapter: 7

See also: cj j
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I/mul

Code: 23 F1

375

long multiply I

Description: Form the double length product of Areg and Breg, with Creg as carry in, treating the initial
values as unsigned.

Definition:
Areg ,unsigned

Breg ,unsigned

prOdunsigned rem 2Bitsperword

prOdunsigned / 2 BitsPerword

Creg' Eo- undefined

where prOdunsigned = (Bregunsigned x Aregunsigned) + Cregunsigned
- the value of prOdunsigned is calculated to unlimited precision

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: Idiv
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Code: 2C FA
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load sixteen I

Description: Load the unsigned 16 bit object addressed by Areg into Areg.

Definition:
Areg' o.. 15

Areg' 16 .. BitsPerWord-l

sixteen[Areg]
o

Error signals:
Unalign signalled if the address in Areg is not 16 bit aligned
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 7

See also: devls Isx ss ssub
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IIshI

Code: 23 F6

377

long shift left I

(long < < Aregunsigned) rem 2BitsperWord

( (long < < Aregunsigned) / 2BitsperWord) rem 2BitsPerword

Description: Logical shift left the double word value in Creg and Breg (most significant word in Creg)
by the number of places specified in Areg.

Definition:
Areg'
Breg'

Creg' undefined

where long = (Cregunsigned x 2BitsperWord) + Bregunsigned
- the value of long is calculated to double word precision

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: Ishr norm
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[/Shr

Code: 23 F5
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long shift right I

(long > > Aregunsigned) rem 2BitsPerWord

( (long > > Aregunsigned) / 2BitsperWord) rem 2BitsPerword

Description: Logical shift right the double word value in Creg and Breg (most significant word in Creg)
by the number of places specified in Areg.

Definition:
Areg'
Breg'

Creg' undefined

where long = (Cregunsigned X 2BitsperWord) + Bregunsigned
- the value of long is calculated to double word precision

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: IshI
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Itsub

Code: 23 Fa

379

long subtract I

Description: Subtract with borrow in and check for overflow. The result of the operation, put into Areg,
is Breg minus Areg, minus bit 0 of Creg.

Definition:
if (diff > MostPos)
{

Areg' ~ diff - 2BitsPerWord

IntegerOverflow
}
else if (diff < MostNeg)

Areg' ~ diff + 2BitsPerWord

IntegerOverflow
}
else

Areg' ~ diff

Breg'
Creg'

undefined
undefined

where diff = (Breg - Areg) - Crego
- the value of diff is calculated to unlimited precision

Error signals:
IntegerOverflow can be signalled

Comments:
Secondary instruction

See chapter: 7

See also: Idiff
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I/sum

Code: 23 F7
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long sum I

Description: Add unsigned numbers with carry in and carry out. Add Breg to Areg (treated as unsigned
numbers) plus carry in from Creg, producing the sum in Areg and carry out in Breg, without checking for
overflow.

Definition:
if (SUIr\.msigned > MostPosUnsigned)
{

Areg ,unsigned

Breg'
}
else

Areg ,unsigned

Breg'

Creg , ~ undefined

SUInunsigned - 2BitsPerWord

1

sUInunsigned
o

where SUInunsigned = Aregunsigned + Bregunsigned + Crego
- the value of S urn is calculated to unlimited precision

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: ladd
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Code: 2F F9

381

load sixteen and sign extend I

sixteen[Areg]

Areg'15

Description: Load the 16 bit object addressed by Areg into Areg and sign extend to a word.

Definition:
Areg' o.. 15

Areg' 16 .. BitsPerWord-1

Error signals:
Unalign signalled if the address in Areg is not 16 bit aligned
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary- instruction

See chapter: 7

See also: devls Is ss xsword
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Imint

Code: 24 F2

Description: Load the most negative integer into Areg.

Definition:
Areg'

T9000 transputer instruction set manual

minimum integer I

Breg'
Creg'

Areg
Breg

Error signals: none

Comments:
Secondary instruction

See chapter: 7



A T9000 instruction set reference guide

Imkrc

Code: 62 Fe

383

mark resource channel I

Description: Set the resource channel specified by Areg into resource mode. Breg is a pointer to a re­
source data structure (RDS) and Creg is the identifier to be given to the resource channel. If the channel
is empty it will become an idle resource channel. If the channel is waiting it will be added to the list waiting
on the RDS. .

Definition:
if (Areg does not cause Unalign trap)
{

if (Areg is virtual input channel or Areg is event channel or Areg is internal channel)
{

if (word[RC @ rC.Id] = NotProcess.p)
{

word' [RC @ rc.Id] Eo- Creg

if (Areg is internal channel)
{

if (word[Areg] = NotProcess.p)
{

word' [RC @ rc.Ptr] Eo- Breg
word' [Areg] Eo- ResChan.p

- channel is empty

- state = idle
}
else - client is waiting

add channel Areg to list on RDS pointed to by Breg
}
else

word' [RC @ rc.Ptr] E- Breg
put channel into resource mode

}
else

IntegerError

- Areg is an external channel

- state = queued

Areg'
Breg'
Creg'

undefined
undefined
undefined

where
for an external channel

RC = (( Areg - MinEventChannel) + ExternalRCbase)
for an internal channel

RC = Areg @ 1
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Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if the address in Areg is not a virtual input or event channel or a legal internal

channel address

Comments:
Instruction is privileged
Secondary instruction
The effect of the instruction is undefined if there is both a client waiting on the channel and a server
waiting on the RDS

See chapter: 12

See also: grant unmkrc



A T9000 instruction set reference guide

Imove

Code: 24 FA

385

move message I

Description: Copy Areg bytes to address Breg from address Creg. The copy is performed using the
minimum number of word reads and writes.

Definition:
if (source and destination overlap)

undefined effect

else for i = O.. (unsign(Areg) - 1)
byte' [Breg + i] ~ byte[Creg + i]

Areg'
Breg'
Creg'

undefined
undefined
undefined

Error signals:
AccessViolation signalled in a P-process if any address accessed is protected

Comments:
Secondary instruction
Instruction is interruptible
The effect of the instruction is undefined if the source and destination overlap

See chapter: 7

See also: devmove in move2dall out
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Imove2dall

Code: 25 FC
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20 block copy I

Description: Copy a 20 block of memory to another, non-overlapping, area using parameters set up by
move2dinit. The copy is performed using the minimum number of word reads and writes. Areg is the num­
ber of bytes in each row, Breg is the address of the destination, and Creg is the address of the source.

Definition:
if (source and destination overlap)

undefined effect

else for y = 0 .. (count-I)
for x = 0 .. (Aregunsigned -1)

byte' [Breg + (y x dstStride) + x] ~ byte [Creg+ (y x srcStride) + x]

where
count
dstStride
srcStride

BMregOunsigned
BMreg1
BMreg2

Areg'
Breg'
Creg'

BMregO'
BMreg1 '
BMreg2'

undefined
undefined
undefined

undefined
undefined
undefined

Error signals:
AccessViolation signalled in a P-process if any address accessed is protected

Comments:
Secondary instruction
Instruction is interruptible

See chapter: 7

See also: move2dinit
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move2dinit

Code: 25 FB

387

initialize data for 2D block move

Description: Set up the first three parameters for a 2D block move: Areg is the number of rows to copy,
Breg is the width of destination array, and Creg is the width of source array. This must be executed before
each 2D block move.

Definition:
BMregO'
BMregl'
BMreg2'

Areg'
Breg'
Creg'

Areg
Breg
Creg

undefined
undefined
undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: move2dall move2dnonzero move2dzero stmove2dinit
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move2dnonzero

Code: 25 FD

T9000 transputer instruction set manual

2D block copy non-zero bytes

Description: Copy non-zero valued bytes from a 2D block of memory to another, non-overlapping, area
using parameters set up by move2dinit. The copy is performed using the minimum number of word reads
and writes. Areg is the number of bytes in each row, Breg is the address of the destination, and Creg is
the address of the source.

Definition:
if (source and destination overlap)

undefined effect

else for y = 0 .. (count - 1 )
for x = 0 .. (Aregunsigned -1)

if (byte[Creg+ (yxsrcStride) +x] -;r: 0)
byte' [Breg+ (yxdstStride) +x] ~ byte[Creg+ (yX srcStride) +x]

where
count
dstStride
srcStride

BMregOunsigned
BMreg1
BMreg2

Areg'
Breg'
Creg'

BMregO'
BMreg1 '
BMreg2'

undefined
undefined
undefined

~ undefined
undefined
undefined

Error signals:
AccessViolation signalled in a P-process if any address accessed is protected

'Comments:
Secondary instruction
Instruction is interruptible

See chapter: 7

See also: move2dinit
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Imove2dzero

Code: 25 FE

389

2D block copy zero bytes I

Description: Copy zero valued bytes from a 20 block of memory to another, non-overlapping, area using
parameters set up by move2dinit. The copy is performed using the minimum number of word reads and
writes. Areg is the number of bytes in each row, Breg is the address of the destination, and Creg is the
address of the source.

Definition:
if (source and destination overlap)

undefined effect

else for y = 0 .. (count - 1 )
for x = 0 .. (Aregunsigned - 1 )

if (byte[Creg+ (yXsrcStride) +x] = 0)
byte' [Breg + (y XdstStride) + x] ~byte[Creg + (y X srcStride) + x]

where
count
dstStride
srcStride

BMreg0unsigned
BMregl
BMreg2

Areg'
Breg'
Creg'

BMregO'
BMregl'
BMreg2'

undefined
undefined
undefined

undefined
undefined
undefined

Error signals:
AccessViolation signalled in a P-process if any address accessed is protected

Comments:
Secondary instruction
Instruction is interruptible

See chapter: 7

See also: move2dinit
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ImUI

Code: 25 F3
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multiply I

Description: Multiply Areg by Breg, with checking for overflow.

Definition:
Areg' Areg xchecked Breg

Breg' Creg
Creg' undefined

Error signals:
IntegerOverflow can be signalled by xchecked

Comments:
Secondary instruction

See chapter: 7

See also: prod
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Inop

Code: 63 FO

Description: Perform no operation.

Definition:
no effect

Error signals: none

Comments:
Secondary instruction

391

no operation I
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Inorm

Code: 21 F9
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normalize I

Description: Normalize the unsigned double length number stored in Breg and Areg (most significant
word in Breg). The value is shifted left until the most significant bit is a one. The number of places shifted
is returned in Creg.

Definition:
if (Bregunsigned = 0) and (Areguns/~ned 0)

Creg' ~ BitsPerWord
else

Creg'
Areg , unsigned

Breg'unsigned

number of most significant zero bits in longunsigned
(longunsigned < < Creg') rem 2BitsPerWord

( (longunsigned < < Creg') / 2BitsperWord) rem 2BitsPerword

}
where longunsigned = (Bregunsigned X 2BitsperWord) + Aregunsigned

- the value of longunsigned is calculated to double word precision

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: Ishllshr shl shr
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Inot

Code: 23 F2

Description: Complement bits in Areg.

Definition:
Areg' ~ -- Areg

Error signals: none

Comments:
Secondary instruction

See chapter: 7

393
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Code: 24 FB

Description: Bitwise or of Areg and Breg.

Definition:
Areg' Breg V Areg

Breg' Creg
Creg , undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

T9000 transputer instruction set man:a; I
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[out

Code: FB

395

output message I

Description: Output a message (the corresponding input is performed by an in instruction, and must
specify a message of the same length). Areg is the unsigned length, Breg is a pointer to the channel, and
Creg is a pointer to the message. The process executing out will be descheduled if the channel is external
or is not ready; it is rescheduled when the communication is complete. This instruction is also used to syn­
chronize with an alternative or a resource.

Definition:
if (Breg does not cause Unalign trap)
{

if (Breg is not a legal channel address)
IntegerError

else
synchronize, and output Aregunsigned bytes to channel Breg from address Creg

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Breg is not word aligned
IntegerError signalled if the address in Breg is not a legal channel address

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point
Instruction is interruptible

See chapter: 8

See also: altwt enbc enbg grant in mkrc outbyte outword vout
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loutbyte
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output byte I

Code: FE

Description: Output the least significant byte of Areg to the channel pointed to by Breg (the correspond­
ing input is performed by an in instruction, and must specify a single byte message). The process execut­
ing outbyte will be descheduled if the channel is external or is not ready; it is rescheduled when the commu­
nication is complete. This instruction is also used to synchronize with an alternative or a resource.

Definition:
if (Breg does not cause Unalign trap)
{

if (Breg is not a legal channel address)
IntegerError

else
synchronize, and output least significant byte of Areg to channel Breg

word' [Wptr @ pw.Temp]
FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Breg is not word aligned
IntegerError signalled if the address in Breg is not a legal channel address

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point
Instruction is interruptible
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: altwt enbc enbg grant in mkrc out outword
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loutword

Code: FF

397

output word I

Description: Output the word in Areg to the channel pointed to by Breg (the corresponding input is per­
formed by an in instruction, and must specify a four byte message). The process executing outword will
be descheduled if the channel is external or is not ready; it is rescheduled when the communication is com­
plete. This instruction is also used to synchronize with an alternative or a resource.

Definition:
if (Breg does not cause Unalign trap)
{

if (Breg is not a legal channel address)
In(egerError

else
synchronize, and output Areg to channel Breg

word' [Wptr @ pw.Temp]
FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction .signalled if executed by a P-process
Unalign signalled if the address in Breg is not word aligned
IntegerError signalled if the address in Breg is not a legal channel address

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point
Instruction is interruptible
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: altwt enbc enbg grant in mkrc out outbyte
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Code: 27 F9

Description: Pop top element of integer stack.

Definition:
Areg' Breg
Breg' ~ Creg
Creg' ~ undefined

Error signals: none

Comments:
Secondary instruction.

See chapter: 7

See also: dup rev

T9000 transputer instruction set manual

pop processor stack I
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Iprod

Code: Fa

Description: Multiply Areg by Breg without checking for overflow.

Definition:
Areg' Areg x Breg

Breg' Creg
Creg' undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: mul

399

product I
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Ireadbfr

Code: 28 FD

T9000 transputer instruction set manual

read buffer pointer from VLCS!

Description: Get a pointer to the buffer (and the length of the packet in the buffer) of a virtual channel
pointed to by Areg. After the instruction Areg holds a pointer to the channel buffer, Breg holds the length
of the packet in the buffer and Creg indicates the state of the buffer: 0 (buffer is empty), 1 (last packet of
a message is present), or 2 (any other packet is present).

Definition:
if (Areg is virtual input channel)
{

Areg' E- address of channel buffer

if (buffer is empty)
{

Breg' 0
Creg' 0

}
else

Breg' E- length ofpacket in buffer

if (buffer contains last packet of a message)
Creg' 1

else
Creg' 2

}
else

IntegerError

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if the address in Areg is not a virtual input channel

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12
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Ireadhdr

Code: 61 F4

401

read virtual channel header I

Description: Copy the header from the virtual link one of whose channels is pointed to by Areg, to the
address pointed to by Creg. Breg contains the length of the header.

Definition:
if ((Areg is virtual input channel or Areg is virtual output channel)

and (Breg = header length) and header is not null)
copy header from VLCB of virtual channel Areg to address pointed to by Creg

else
IntegerError

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if:

the address in Areg is not a virtual channel
header is not null
Breg is not equal to the header length

Comments:
Instruction is privileged
Secondary instruction
Instruction is interruptible

See chapter: 12

See also: insphdr sethdr writehdr
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Irem

Code: 21 FF

T9000 transputer instruction set manual

remainder I

Description: Calculate the remainder when Breg is divided by Areg. The sign of the remainder is the
same as the dividend. The remainder, r = x rem y, is defined by r =x - (y x (x / y)).

Definition:
if (Areg = 0)
{

Areg E- undefined
IntegerOverflow

}
else

Areg' E- Areg rem Breg

Breg' E- Creg
Creg' E- undefined

Error signals:
IntegerOverflow signalled when a remainder by zero is attempted

Comments:
Secondary instruction

See chapter: 7

See also: div
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Iresetch

Code: 21 F2

403

reset channel I

Description: Reset the channel pointed to by Areg. Returns the channel to the empty state, without af­
fecting whether the channel is activated or deactivated. If the channel is a byte-stream channel then the
link hardware is reset and restarted. If the channel is a byte-stream channel that is not in byte-stream mode
then Areg becomes undefined, otherwise Areg returns the process descriptor of the process waiting on
the channel.

Definition:
if (Areg does not cause Unalign trap)
{

if (Areg is internal channel)
{

if (process waiting on channel Areg)
Areg' process descriptor of waiting process)

else
Areg' NotProcess.p

word' [Areg] ~ NotProcess.p
}
else if (Areg is virtual channel)
{

if (process waiting on channel Areg)
Areg' process descriptor of waiting process)

else
Areg' NotProcess.p

reset virtual channel
}
else if (Areg is byte-stream channel)
{

if (channel not in byte-stream mode)
Areg' ~ undefined

else if (process waiting on channel Areg)
Areg' process descriptor of waiting process)

else
Areg' NotProcess.p

reset link hardware
}
else

IntegerError

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if the address in Areg is not a legal channel address

Comments:
Instruction is privileged
Secondary instr~ction

See chapter: 12

See also: setchmode stopch
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I restart

Code: 62 FE

T9000 transputer instruction set manual

restart I

Description: Restart execution of an interrupted L-process or null process. Areg is a pointer to a P-state
data structure (PDS) which contains the state of the interrupted process (which will have been obtained
using stshadow). The trap-handler of the restarted process will be the trap-handler of the process which
executes restart. The control word of the PDS contains the state which will be loaded into the StatusReg
when the restarted process begins executing. Note that information loaded from the control word includes
the timeslice disabled bit and the interrupt state. These fields will contain the values which were present
when the interrupt occurred. If the instruction causes a 'watchpoint' or 'single-step' trap, then a 'context'
trap is taken after the instruction has performed all its writes to memory; the stack state delivered to the
trap handler is the state before the instruction started.

Definition:
if (Areg does not cause Unalign trap)
{

if (ThReg ~ NotProcess.p)
word' [ThReg @ th.Cntl] ~ StatusReg

if (not single step or watchpoint trap)
{

Wptr' word[Areg @ ps .sWptr]
IptrReg' word [Areg @ ps.slptr]
Areg' word[Areg @ ps.sAreg]
Breg' word[Areg @ ps.sBreg]
Creg' word [Areg @ ps.sCreg]
StatusReg' word[Areg @ ps.Cntl]

if (restarted process was interrupted)
{

- process status/control bits only

. - process status/control bits only

Ereg'
EptrReg'
Xreg'

word[Areg @ ps.sEreg]
word[Areg @ ps.Eptr]
word[Areg @ ps.sXreg]

if (StatusReg , sb. wtchPntEnbl = 1)
{

WIReg'
WuReg'

enable interrupts

word[Areg @ ps.eWl]
word[Areg @ ps.eWu]

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned

Comments:
Instruction is privileged
Secondary instruction
The ps.sWptr slot of the PDS must be word aligned

See chapter: 13



word[Wptr @ 0]
Wptr @ 4
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Iret

Code: 22 FO

Description: Return from subroutine and deallocate workspace.

Definition:
IptrReg'
Wptr'

Error signals:
AccessViolation signalled in a P-process if the address accessed is protected

Comments:
Secondary instruction

See chapter: 7

See also: ajw call

405

return I
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I rev

Code: FO

Description: Swap top two elements of integer stack.

Definition:
Areg' ~ Breg
Breg' ~ Areg

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: dup pop fprev

T9000 transputer instruction set manual

reverse I
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Irunp

Code: 23 F9

407

run process I

Description: Schedule a (descheduled) process. The process descriptor of the process is in Areg; this
identifies the process workspace and priority. The instruction pointer and trap handler are loaded from the
processes workspace data structure.

Definition:
Put process Areg onto back of appropriate scheduling list

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: endp startp stopp
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Code: 23 FB

T9000 transputer instruction set manual

store byte I

Description: Store least significant byte of Breg into the byte of memory addressed by Areg.

Definition:
byte' [Areg] Eo- Brego .. 7

Areg'
Breg'
Creg'

Creg
undefined
undefined

Error signals:
AccessViolation signalled in a P-process if the address in Areg is not writable

Comments:
Secondary instruction

See chapter: 7

See also: bsub devsb Ib Ibx ss stnl
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ISelth

409

select trap handler I

Code: 60 F9

Description: Install a new trap handler (pointed to by Areg) for the current process. If the trap handler
is in use, the current process is added to the trap handler list and descheduled. If the instruction causes
a 'single-step' or 'watchpoint' trap, then a 'context' trap is taken after the status register has been saved,
but before the new trap handler has been selected; the stack state delivered to the trap handler is the state
before the instruction started.

Definition:
if (Areg does not cause Unalign trap)
{

if (ThReg :;r. NotProcess.p)
word' [ThReg @ th.Cntl] E- StatusReg

if (not single step or watchpoint trap)
{

ThReg' E- Areg

if (ThReg' = NotProcess.p)
StatusReg' E- default control word

- process status/control bits only

else if ((word[ThReg' @ th.Cntl] A sb.ThlnUse) = 0)
{

StatusReg' E- word[ThReg' @ th.Cntl]

if (word [ ThReg , @ th. Cntl ] sb. wtchPntEnbl

{
1 )

- process status/control bits only

}
else

WIReg'
WuReg'

word[ThReg' @ th.eWl]
word[ThReg' @ th.eWu]

word' [Wptr @ pw.lptr]
word' [Wptr @ pw.TrapHandler]
put process on trap handler list

IptrReg
ThReg'

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point

See chapter: 10

See also: Idth tret
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Isetchmode

Code: 61 F7

T9000 transputer instruction set manual

set channel mode I

Description: Activate or deactivate a virtual or event channel, or start or reset a byte-stream channel.
Areg points to an external channel. If Breg is false initially then the instruction deactivates a virtual or event
channel, or resets a byte-stream channel. If Breg is true then the instruction activates a virtual or event
channel, or starts a byte-stream channel.

Definition:
if (Areg does not cause Unalign trap)
{

if (Areg is not external channel)
IntegerError

else if (Breg = false)
deactivate channel or reset link

else if (Breg = true)
{

if (Areg is virtual channel) and (header is null)
IntegerError

else
activate channel or start link

}
else

IntegerError

Areg'
Breg'
Creg'
}

Creg
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if:

Breg is not 0 or 1
the address in Areg is not an external channel
a virtual channel with a null header is restarted

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12

See also: resetch stopch
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Isethdr

Code: 61 Fa

411

set virtual channel header I

Description: Set the physical link number and header type of the virtual link one of whose channels is
pointed to by Areg. Breg holds the physical link number and Creg holds a word offset from HdrAreaBase.
The link number of the channel is set to the initial value of Breg unless Breg is Nul/Header, when the null
heaoer is set..The header offset of the channel is set to the initial value of Creg unless Creg is Nul/Offset,
in which case the offset is unchanged.

Definition:
if (Areg does not cause Unalign trap)
{

if not (Areg is virtual input channel or Areg is virtual output channel)
IntegerError

else if (MinLink ::; Breg) and (Breg ::; MaxLink)

if (0 ::; Creg) and (Creg ::; MaxHeaderOffset)
{

set header link number to Breg
set header offset to Creg

}
else if (Creg = NullOffset)

set header link number to Breg
else

IntegerError
}
else if (Breg = NullHeader)
{

if ( input channel active or output channel active)
IntegerError

else
set null header

}
else

IntegerError

Areg'
_Breg'
Creg'

undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if:

the address in Areg is not a virtual channel
Breg or Creg contain illegal values

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12

See also: insphdr readhdr writehdr
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Isettimeslice

Code: 28 FO

T9000 transputer instruction set manual

set timeslicing status I

Description: Enable or disable timeslicing of the current process, depending on the value of Areg, and
set Areg to indicate whether timeslicing was enabled or disabled prior to execution of the instruction. If
Areg is initially false timeslicing is disabled until either the process deschedules or timeslicing is enabled.
If Areg is initially true timeslicing is enabled. This instruction is only meaningful when run at low priority.

Definition:
if (Areg = false)

disable timeslicing
else if (Areg = true)

enable timeslicing
else

undefined effect

if timeslicing was previously enabled
Areg' true

else
Areg' false

Error signal$:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 13

See also: intdis intenb
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ISh'

Code: 24 F1

413

shift left I

Description: Logical shift left Breg by Areg places, filling with zero bits. If the initial Areg is not between
oand 31 then the result is zero.

Definition:
if (0 ::; Areg ::; 31)

Areg' Breg < < Areg
else

Areg' 0

Breg'
Creg'

Creg
undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See a·lso: Ishllshr norm shr
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IShr

Code: 24 FO

T9000 transputer instruction set manual

shift right I

Description: Logical shift right Breg by Areg places, filling with zero bits. If the initial Areg is not between
oand 31 then the result is zero.

Definition:
if (0 :::; Areg :::; 31)

Areg' Breg > > Areg
else

Areg' 0

Breg'
Creg'

Creg
undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: ./sh//shr norm sh/
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Isignal

Code: 60 F4

Description: Signal (or V) on the semaphore pointed to by Areg.

Definition:
if (Areg does not cause Unalign trap)
{

if (word[Areg @ s.Front] = NotProcess.p)
word' [Areg @ s.Count] ~ word[Areg @ s.Count] +checked 1

else
remove process from front of semaphore list and put on scheduling list

415

signal I

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerOverflow can be signalled by +checked

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: wait
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Code: 2C Fa

T9000 transputer instruction set manual

store sixteen I

Description: Store bits 0..15 of Breg into the sixteen bits of memory addressed by Areg.

Definition:
sixteen' [Areg] ~ Brego .. 15

Areg'
Breg'
Creg'

Creg
undefined
undefined

Error signals:
Unalign signalled if the address in Areg is not 16 bit aligned
AccessViolation signalled in a P-process if the address in Areg is not writable

Comments:
Secondary instruction

See chapter: 7

See also: devss Idlp Idnlp Is Isx sb stl stnl ssub
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ISSUb

Code: 2C F1

417

sixteen SUbS~

Description: Generate the address of the element which is indexed by Breg, in an array of 16-bit objects
pointed to by Areg.

Definition:
Areg' Areg + (2 x Breg)

Breg' Creg
Creg , undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: bent bsub went wsub wsubdb
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Istartp

Code: FD

T9000 transputer instruction set manual

start process I

Description: Create and schedule a process at the current priority. Initially Areg is a pointer to the work­
space of the new process and Breg is the offset from the next instruction to the instruction pointer of th'e
new process. The new process inherits the trap handler of the current process.

Definition:
if (Areg does not cause Unalign trap)
{

word' [Areg @ pw. Iptr ] Eo- next instruction + Breg

word' [Areg @ pw.TrapHandler] Eo- ThReg

put process Areg onto the back of the scheduling list for the current priority

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: endp runp
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stconf

Code: 28 FF

419

store to configuration register

Description: Write Breg into the configuration register addressed by Areg. This instruction is only in­
tended for use during booting. It can be used by a running program but it will have a serious impact on
interrupt latency.

Definition:
ConfigReg'[Areg] ~ Breg

Areg'·
Breg'
Creg'

Creg
undefined
undefined

Error signals:
Privlnstruetion signalled if executed by a P-process
IntegerError signalled if Areg is not a valid writable configuration address or register is write-locked

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12

See also: Ideonf
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Istflags

Code: 28 F7

T9000 transputer instruction set manual

store error flags I

Description: Set the error flags and error trap enable bits to the values of the corresponding bits in Areg.

Definition:
StatusReg' ~ flag and trap enable bits from Areg

Areg'
Breg'
Creg'

Breg
Creg
undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 10

See also: Idflags
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Istl n

Code: Function D

421

store local I

Description: Store Areg into the local variable at the specified word offset in workspace.

Definition:
word' [Wptr @ n] ~ Areg

Areg'
Breg'
Creg'

Breg
Creg
undefined

Error signals:
AccessViolation signalled in a P-process if the address accessed is not writable

Comments:
Primary instruction

See chapter: 7

See also: devsw Idlldlp sb ss stnl
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Istmove2dinit

Code: 61 FO

T9000 transputer instruction set manual

store move2dinit data I

Description: Save the state loaded into the processor by the move2dinit instruction to the move data
structure pointed to by Areg.

Definition:
word' [Areg @ bmr.count] ~ BMregO
word' [Areg @ bmr.DeltaD] BMregl
word' [Areg @ bmr.DeltaS] ~ BMreg2

Areg'
Breg'
Creg'

Breg
Creg
undefined

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if any address accessed is not writable

Comments:
Secondary instruction

See chapter: 13

See also: move2dinit
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Istnl n

Code: Function E

Description: Store Breg into non-local variable at specified word offset from Areg.

Definition:
word' [Areg @ n] ~ Breg

423

store non-local I

Areg'
Breg'
Creg'

Creg
undefined
undefined

Error signals:
Unalign signalled if the address in Areg is not word aligned
AccessViolation signalled in a P-process if the address accessed is not writable

Comments:
Primary instruction

See chapter: 7

See also: devsw Idlp Idnlp sb ss stl
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!stOPCh

Code: 61 FE

T9000 transputer instruction set manual

stop virtual channel I

Description: Stop a virtual channel pointed to by Areg. If the channel is an input channel it will continue
to acknowledge incoming data packets but will otherwise ignore them. The channel will remain in this state
until the channel is reset. If it is an output channel it ensure~ no acknowledge is outstanding for a data
packet sent on this channel before allowing the process executing this instruction to continue.

Definition:
if (Areg does not cause Unalign trap)
{

if (Areg is virtual channel)
stop channel

else
IntegerError

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if the address in Areg is not a virtual channel

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point

See chapter: 12

See also: resetch setchmode
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!stopp

Code: 21 F5

425

stop process I

Description: Terminate the current process, saving the current IptrReg and ThReg for later use. The
StatusReg is also saved if the process has a non-null trap handler.

Definition:
start next process

word' [Wptr @ pw. Iptr] ~ next instruction
word' [Wptr @ pw.TrapHandler] ~ ThReg
if (ThReg :;e. NotProcess.p)

word' [ThReg @ th.Cntl] ~ StatusReg - process status/control bits only

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point

See chapter: 8

See also: endp runp startp
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stresptr

Code: 62 F9

T9000 transputer instruction set manual

store resource queue pointer

Description: Store Breg in the rc.Ptr slot of the resource channel pointed to by Areg. This instruction
should only be used on a resource channel which is in a detached queue, Le. after the queue has been
detached by execution of erdsq.

Definition:
if (Areg does not cause Unalign trap)
{ .

if (Areg is internal channel or Areg is virtual input channel or Areg is event channel)
{

word'[RCDS @ rc.ptr] E- Breg

Areg'
Breg'
Creg'

}
else

IntegerError

Creg
undefined
undefined

where
for an external channel

RCDS = (( Areg - MinEventChannel) + ExternalRCBase)

for an internal channel
RCDS = Areg @ 1

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if Areg is not a virtual input or event channel or a legal internal channel address

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12

See also: erdsq grant irdsq Idresptr mkrc unmkrc
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Istshadow

Code: 60 FD

427

store shadow registers I

Description: Store some shadow registers (as determined by Areg and Breg) into the block of store ad­
dressed by Creg. FPAreg.sh, FPBreg.sh and FPCreg.sh occupy 2 words each when stored. The float­
ing point registers are stored in the same form as is used by the fp/dall instruction.

Definition:
if (Priority 1) or (Areg ~ Breg) or (Areg < 0) or (Breg > 7)

undefined effect
else

store the. shadow registers between the shadow markers specified in Areg and Breg in consecutive
increasing addresses in the order listed below into the block of memory starting at address Creg

markers registers
o -

RegionRegO.sh, RegionReg1.sh, RegionReg2.sh,
RegionReg3. sh (4 words)

1
PstateReg. sh, WdescStubReg. sh (2 words)

2
ThReg. sh (1 word)

3
StatusReg. sh (1 word)

4
WdescReg.sh, IptrReg.sh, Areg.sh, Breg.sh, Creg.sh, Ereg.sh,
Xreg.sh, BMregO.sh, BMreg1.sh, BMreg2.sh, EptrReg.sh (11 words)

5
FPstatusReg. sh, FPAreg. sh, FPBreg. sh, FPCreg. sh (7 words)

6
WIReg. sh, WuReg. sh (2 words)

7

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Priv/nstruction signalled if executed by a P-process
Unalign signalled if the address in Creg is not word aligned

Comments:
Instruction is privileged
Secondary instruction
The effect of the instruction is defined only when executed by a high-priority process

See chapter: 13

See also: /dshadow
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I5 ttimer

Code: 25 F4

T9000 transputer instruction set manual

store timer I

Description: Initialize timers. Set the low and high priority clock registers to the value in Areg and start
them ticking and scheduling ready processes.

Definition:
ClockReg'[O] Areg
ClockReg'[l] Areg
start timers

Areg'
Breg'
Creg'

Breg
Creg
undefined

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 13
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I sub

Code: Fe

Description: Subtract Areg from Breg, with checking for overflow.

429

subtract I

Definition:
Areg'

Breg'
Creg'

Breg -checked Areg

Creg
undefined

Error signals:
IntegerOverflow can be signalled by -checked

Comments:
Secondary instruction

See chapter: 7

See also: diff add
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Isum

Code: 25 F2

T9000 transputer instruction set manual

sum I

Description: Add Areg and Breg, without checking for overflow.

Definition:
Areg' Breg + Areg

Breg' Creg
Creg , undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: add bsub
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IswaPbfr

Code: 61 F9

431

swap buffer pointer in VLCB I

Description: Store address of the packet buffer pointed to by Breg into the VLCB of the virtual input chan­
nel pointed to by Areg. A pointer to the previous packet buffer is returned in Areg.

Definition:
if (Areg does not cause Unalign trap and Breg does not cause Unalign trap)
{

if (Areg is virtual input channel)
{

set packet buffer for channel Areg to address in Breg
Areg , ~ address ofprevious packet buffer of channel Areg

}
else

IntegerError

Breg'
Creg'

Creg
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the addresses in Areg and Breg are not both word aligned
IntegerError signalled if the address in Areg is not a virtual input channel

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12
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Iswapqueue

Code: 60 FO

T9000 transputer instruction set manual

swap scheduler queue I

FptrReg[Areg]
BptrReg[Areg]
Breg
Creg

Description: Swap the scheduling list of priority indicated by Areg, where 0 indicates high priority and
1 indicates low priority. Breg and Creg are the front and back, respectively, of the list to be inserted. The
old front and back pointers are returned in the Areg and Breg, respectively.

Definition:
Areg'
Breg'
FptrReg' [Areg]
BptrReg' [Areg]

Creg , Eo- undefined

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Breg and Creg must be word aligned

See chapter: 13

See also: insertqueue swaptimer
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[swaptimer

Code: 60 F1

433

swap timer queue I

Description: Swap the timer list of priority indicated by Areg and update the alarm register for the new
list. An initial Areg of value 0 indicates high priority and 1 indicates low priority. Breg is the front pointer
of the list to be inserted. The old front pointer is returned in the Areg.

Definition:
if (Breg ~ NotProcess.p)

TNextReg'[Areg] ~ word[Breg @ pw.Tirne]

Areg'
TptrReg' [Areg]

Breg , ~ undefined
Creg' ~ undefined

TptrReg[Areg]
Breg

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Breg must be word aligned.

See chapter: 13

See also: swapqueue
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Isyscall

Code: 60 F8

T9000 transputer instruction set manual

system calli

Description: Take a trap, indicating 'system call' as the reason.

Definition:
take a 'syscall' trap

Error signals: none

Comments:
Secondary instruction

See chapter: 10

See also: goprot tret
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Italt .

Code: 24 FE

435

timer alt start I

Description: Start of timer alternative sequence. The pw.State location of the workspace is set to En­
abling.p, and the pw.TLink location is set to TimeNotSet.p.

Definition:
enter alternative sequence

word' [Wptr @ pw.State]
word' [Wptr @ pw.TLink]

Enabling.p
TimeNotSet.p

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: alt altend altwt disc disg diss dist enbc enbg enbs enbt taltwt
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Italtwt

Code: 25 F1

T9000 transputer instruction set manual

timer alt wait I

Description: Wait until one of the enabled guards of a timer alternative has become ready and initialize
pw.Temp for use during the disabling sequence. If the alternative has no ready guard but may become
ready due to a timer, th-e process is placed onto the timer list.

Definition:
if (word[Wptr @ pw.State] = Ready.p)

word' [Wptr @ pw.Time] E- ClockReg[Priority]
else if (word[Wptr @ pw.Tlink] = TimeNotSet.p)
{

word' [Wptr @ pw.State] E- Waiting.p
deschedule process and wait for one of the guards to become ready

}
else if (word[Wptr @ pw.Tlink] = TimeNotSet;p)
{

if (ClockReg[Priority] after word[Wptr @ pw.Time]
{

word' [Wptr @ pw.State]
word' [Wptr @ pw.Time]

}
else

Ready.p
CloqkReg[Priority]

word' [Wptr @ pw.Time] E- (word[Wptr @ pw.Time] + 1)
insert this process into timer list with alarm time (word [Wptr @ pw. Time] + 1)
if (no guards ready)

{
word' [Wptr @ pw.State] E- Waiting.p
deschedule process and wait for one of the guards to become ready

}
else

undefined effect·

word' [Wptr @ pw.Temp] E- NoneSelected.o

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point
Instruction is interruptible
Uses the pw.Temp and pw.State slots in the process workspace

See chapter: 8

See also: alt altend altwt disc disg diss dist enbc enbg enbs enbt talt
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Itestpranal

Code: 22 FA

437

test processor analyzing I

Description: Load true into Areg if an error has occurred since the processor was last reset. This instruc­
tion is only intended for use during booting. It can be used by a running program but it will have a serious
impact on interrupt latency.

Definition:
if error since last reset

Areg' true
else

Areg' false

Breg' ~ Areg
Creg' ~ Breg

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
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Itimeslice

Code: 60 F3

T9000 transputer instruction set manual

timeslice I

Description: For an L-process, put the current process on the back of the scheduling list. For a P-pro­
cess, take a timeslice trap.

Definition:
put current process on back of list
start next process

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals: none

Comments:
Secondary instruction
Instruction is a descheduling point
This instruction is unaffected by the current priority or by disabling timeslicing or interrupts

See chapter: 13
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Code: 22 FB

439

timer input I

Description: If Areg is after the value of the current priority clock, deschedule until current priority clock
is after the time in Areg.

Definition:
if not (ClockReg[Priority] after Areg)

word' [Wptr @ pw.State] E- Enabling.p
word' [Wptr @ pw. Time] E- (Areg + 1)
insert this process into timer list with time of (Areg + 1) and start next process

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point
Instruction is interruptible
Uses pw.State slot in the process workspace

See chapter: 8

See also: enbt dist Idtimer talt taltwt
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Itret

Code: 60 FB

T9000 transputer instruction set manual

trap return I

Description: Return from trap handler and mark it as 'not in use'. If Areg is zero then restart the process
which signalled the trap or start a process, with the current priority. If Areg is not zero then terminate the
current process. The process executing this instruction must have a null trap handler and the Wptr must
contain the address of a trap handler data structure (THDS). -

Definition:
if (ThReg ~ NotProcess.p)

IntegerError
else

if (word[Wptr @ th.Fptr] ~ NotProcess.p)
{

move processes waiting for trap handler to front of current priority scheduling list
word' [Wptr @ th.Fptr] ~ NotProcess.p

if (Areg 0)
{

Wptr' word [Wptr @ th.sWptr]
IptrReg' word[Wptr @ th.slptr]
Areg' word [Wptr @ th.sAreg]
Breg' word [Wptr @ th.sBreg]
Creg' word[Wptr @ th.sCreg]
StatusReg' word [Wptr @ th.Cntl]
ThReg' Wptr

if (StatusReg , sb. wtchPntEnbl = 1)
{

WIReg' word [Wptr @ th.eWl]
WuReg' word [Wptr @ th.eWu]

}
else

start next process

word [Wptr @ th. Cntl] sb. ThInUse ~ 1

Error signals:
Privlnstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
The th.sWptr slot of the THDS must be word aligned

See chapter: 10

See also: goprot Idth syscall

- process status/control bits only
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[unmkrc

Code: 62 FD

441

unmark resource channel I

Description: Set the resource channel specified by Areg into normal mode. If the resource channel is
idle it will become an empty channel. If the resource channel is queued it will become a waiting channel.

Definition:
if (Areg does not cause Unalign trap)
{ ,

if (Areg is virtual input channel or Areg is event channel or Areg is internal channel)
{

if (word[RCDS @ rc.Id] ~ NotProcess.p)
{

word'[RCDS @ rc.Id] ~ NotProcess.p

if (Areg is internal channel)
{

if (word[Areg]
word' [Areg]

ResChan.p)
NotProcess.p

}
else

put channel into normal mode

}
else

IntegerError

where
for an external channel

RCDS = (( Areg - MinEventChannel) + ExternalRCbase)

for an internal channel
RCDS = Areg @ 1

Areg'
Breg'
Creg'

Breg
Creg
undefined

Error signals:
Privlnstructionsignalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if Areg is not a virtual input or event channel or a legal internal channel address

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12

See also: erdsq grant irdsq Idresptr mkrc stresptr



442

Ivin

Code: 61 Fe

T9000 transputer instruction set manual

variable-length input message I

Description: Input a message. The corresponding output is performed by a vout. Areg is the unsigned
maximum message length in bytes, Breg is a pointer to the channel and Creg is a pointer to where the
message is to be stored. The process executing vin will be descheduled if the channel is external or is not
ready, and is rescheduled when the communication is complete.

Definition:
if (Breg does not cause Unalign trap)
{

if (Areg = MostPosUnsigned)
IntegerError

else if (Breg is not a legal channel address)
IntegerError

else if (length of message is greater than Aregunsigned)
{

word' [Wptr @ pw.Length] E- LengthError.p
Areg bytes of store starting at address Creg E- undefined
start next process

}
else

synchronize and input length of message bytes from channel Breg to address Creg
word' [Wptr @ pw. Length] E- length of message

word' [Wptr @ pw. Pointer] E- undefined
FPAreg' undefined
FPBreg' undefined
FPCreg' undefined
Areg' undefined
Breg' undefined
Creg' undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Breg is not word aligned
IntegerError signalled if:

Areg is equal to MostPosUnsigned
the address in Breg is not a legal channel address

Comments:
Instruction is privi leged
Secondary instruction
Instruction is a descheduling point
Instruction is interruptible

See chapter: 8

See also: in Ident vout
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IVDut

Code: 61 FD

443

variable-length output message I

Description: Output a variable length message. The corresponding input is performed by a vin instruc­
tion. Areg is the unsigned length, Breg is a pointer to the channel, and Creg is a pointer to the message.
The process executing vout will be descheduled if the channel is externar or is not ready; it is rescheduled
when the communication is complete. This instruction is also used to synchronize with an alternative or
a resource.

Definition:
if (Breg does not cause Unalign trap)
{

if (Breg is not a legal channel address)
IntegerError

else
synchronize and output Aregunsigned bytes to channel Breg from address Creg

word' [Wptr @ pw.Length]
word' [Wptr @ pW.Pointer]

undefined
undefined

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Breg is not word aligned
IntegerError signalled if the address in Breg is not a legal channel address

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point
Instruction is interruptible
Transfer is undefined if message length exceeds maximum allowed by vin

See chapter: 8

See also: altwt enbc enbg grant mkrc out outbyte outword vin
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Iwait

Code: 60 F5

T9000 transputer instruction set manual

wait I

Description: Wait (or P) on the semaphore pointed to by Areg.

Definition:
if (Areg does not cause Unalign trap)
{

if (word[Areg @ s.Count] = 0)
put process on back of semaphore queue
start next process

else
word' [Areg @ s.Count] E- word[Areg @ s.Count] -checked 1

FPAreg'
FPBreg'
FPCreg'
Areg'
Breg'
Creg'

undefined
undefined
undefined
undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if address in Areg is not word aligned
IntegerOverflow can be signalled by -checked

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point

See chapter: 8

See also: signal



(AregA WordSelectMask) / BytesPerWord
Areg A ByteSelectMask
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Iwent

Code: 23 FF

Description: Convert the byte offset in Areg to a word offset and a byte selector.

Definition:
Areg'
Breg'

445

word count I

Creg' Breg

Error signals: none

Comments:
Secondary instruction

See chapter: 7
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writehdr

Code: 61 F5

T9000 transputer instruction set manual

write virtual channel header

Description: Assign a packet header to the virtual link one of whose channels is pointed to by Areg. Breg
is the unsigned length of the header and Creg is a pointer to the data to be written in the header.

Definition:
if (Areg does not cause Unalign trap)
{

if (Areg is virtual input channel or Areg is virtual output channel)
copy new header from address Creg to header area of virtual channel Areg

else
IntegerError

Areg'
Breg'
Creg'

undefined
undefined
undefined

Error signals:
Privlnstruction signalled if executed by a P-process
Unalign signalled if the address in Areg is not word aligned
IntegerError signalled if:

the address in Areg is not a virtual channel;
the header is too long to be a short header and no header offset has been set using sethdr;
the unsigned length in Breg is zero or greater than the maximum header length

Comments:
Instruction is privileged
Secondary instruction
Instruction is interruptible

See chapter: 12

See ah~o: insphdr readhdr sethdr
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IWSUb

Code: FA

447

word subscript I

Description: Generate the address of the element which is indexed by Breg, in the word array pointed
to by Areg.

Definition:
Areg' Areg + (BytesPerWord x Breg)

Breg' Creg
Creg' undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: bsub Idlp Idnlp ssub went wsubdb



448

IWSUbdb

Code: 28 F1

T9000 transputer instruction set manual

form double word subscript I

Description: Generate the address of the element which is indexed by Breg, in the double word array
pointed to by Areg.

Definition:
Areg' Areg @ (2 x Breg)

Breg' Creg
Creg , undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: bsub ssub went wsub
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IXbword

Code: 28 Fa

449

sign extend byte to word I

AregO .. 7
Areg7

Description: Sign-extend the value in the least significant byte of Areg into a signed integer.

Definition:
Areg' 0.. 7

Areg' 8.. BitSPerWord-l

Error signals: none

Comments:
Secondary instruction

See chapter: 7
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IXdble

Code: 21 FD

19000 transputer instruction set manual

extend to double I

Description: Sign extend the integer in Areg into a double length signed integer.

Definition:
if (Areg ~ 0)

Breg' 0
else

Breg' -1

Creg' ~ Breg

Error signals: none

Comments:
Secondary instruction

See chapter: 7
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Ixor

Code: 23 F3

Description: Bitwise exclusive or of Areg and Breg.

Definition:
Areg' Breg 0 Areg

Breg' Creg
Creg' undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

451

exclusive or I



452

Ixsword

Code: 2F Fa

T9000 transputer instruction set manual

sign extend sixteen to word I

Description: Sign extend the value in the least significant 16 bits of Areg to a signed integer.

Definition:
Areg' o.. 15
Areg , 16 .. BitSPerWord-l

Error signals: none

Comments:
Secondary instruction

See chapter: 7

Arego .. 15
Areg15
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Ixword

Code: 23 FA

453

extend to word I

Description: Sign extend an N bit signed number in Breg into a full word. To indicate the value of N, bit
N-1 of Areg is set to 1 - all other bits must be O.

Definition:
if (Areg is a not powerof2)

Areg , ~ undefined
else if (Areg = MostNeg) - N is BitsPerWord

Areg' ~ Breg
else if (Breg ;::: 0) and (Breg < Areg) BregN bitsandpositive

Areg' ~ Breg
else if (Breg ;::: Areg) and (( Breg > > 1) < Areg) Breg N bits and negative

Areg' Breg (Areg < < 1)
else Breg more than N bits

Areg , undefined

Breg' ~ Creg
Creg , ~ undefined

Error signals: none

Comments:
Secondary instruction
The result of the instruction is undefined if:

Areg is not a power of 2
Breg does not have its most significant (BitsPerWord-N) bits set to zero

See chapter: 7
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B T9000 instruction set sorted by op-code

B.1 Primary functions

Function Mnemonic Name
code

0 j jump

1 Idlp load local pointer

2 pfix prefix

3 Idnl load non-local

4 Ide load constant

5 Idnlp load non-local pointer

6 nfix negative prefix

7 Idl load local

a ade add constant

9 call call

A ej conditional jump

8 ajw adjust workspace

C eqe equals constant

0 stl store local

E stnl store non-local

F opr operate

Table 8.1 Instructions encoded as primary functions

B.2 Secondary functions

B.2.1 Instructions encoded without using prefix

Operation Memory Mnemonic Name
code code

00 Fa rev reverse top of stack

01 F1 Ib load byte

02 F2 bsub byte subscript

03 F3 endp end process

04 F4 diff difference

05 F5 add add

06 F6 geall general call

07 F7 in input message

08 Fa prod product

09 F9 gt greater than
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Operation Memory Mnemonic Name
code code

OA FA wsub word subscript

OB FB out output message

00 FO startp start process

OF FF outword output word

OE FE outbyte output byte

OC FC sub subtract

Table B.2 Instructions encoded without using prefix

8.2.2 Instructions encoded using prefix

Operation Memory Mnemonic Name
code code

12 21F2 resetch reset channel

13 21F3 csubO check subscript from 0

15 21F5 stopp stop process

16 21F6 ladd long add

19 21F9 norm normalize

1A 21FA Idiv long divide

1B 21FB Idpi load pointer to instruction

10 21FO xdble extend to double

1E 21FE Idpri load current priority

1F 21FF rem remainder

20 22FO ret return

21 22F1 lend loop end

22 22F2 Idtimer load timer

2A 22FA testpranal test processor analyzing

2B 22FB tin timer input

2C 22FC div divide

2E 22FE dist disable timer

2F 22FF disc disable channel

30 23FO diss disable skip

31 23F1 Imul long multiply

32 23F2 not bitwise not

33 23F3 xor exclusive or

34 23F4 bent byte count

35 23F5 Ishr long shift right

36 23F6 IshI long shift left

37 23F7 Isum long sum

38 23F8 Isub long subtract



B T9000 instruction set sorted by op-code

Operation Memory Mnemonic Name
code code

39 23F9 runp run process

3A 23FA xword sign extend to word

38 23F8 sb store byte

3C 23FC gajw general adjust workspace

3F 23FF went word count

40 24FO - shr shift right

41 24F1 shl shift left

42 24F2 mint minimum integer

43 24F3 alt alt start

44 24F4 altwt alt wait

45 24F5 altend alt end

46 24F6 and and

47 24F7 enbt enable timer

48 24F8 enbe enable channel

49 24F9 enbs enable skip

4A 24FA move move message

48 24F8 or or

4C 24FC esngl check single

40 24FO eent1 check count from 1

4E 24FE talt timer alt start

4F 24FF Idiff long diff

51 25F1 taltwt timer alt wait

52 25F2 sum sum

53 25F3 mul multiply

54 25F4 sttimer store timer

56 25F6 eword check word

5A 25FA dup duplicate top of stack

58 25F8 move2dinit initialize data for 20 block move

5C 25FC move2dall 20 block copy

50 25FO move2dnonzero 20 block copy non-zero bytes

5E 25FE move2dzero 20 block copy zero bytes

5F 25F5 gtu unsigned greater than

72 27F2 fmul fractional multiply

74 27F4 ereword calculate CRC on word

75 27F5 erebyte calculate CRC on byte

76 27F6 bitent count bits set in word

77 27F7 bitrevword reverse bits in word

78 27F8 bitrevnbits reverse bottom n bits in word

79 27F9 pop pop_ processor stack
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Operation Memory Mnemonic Name
code code

7E 27FE Idmemstartval load value of memstart address

81 28F1 wsubdb form double word subscript

82 28F2 fpldnldbi floating point load non-local indexed
double

84 28F4 fpstnldb floating point store non-local double

86 28F6 fpldnlsni floating point load non-local indexed
single

87 28F7 fpadd floating point add

88 28F8 fpstnlsn floating point store non-local single

89 28F9 fpsub floating point subtract

8A 28FA fpldnldb floating point load non-local double

8'S 28FS fpmul floating point multiply

8C 28FC fpdiv floating point divide

80 28FO fprange floating point range reduce

8E 28FE fpldnlsn floating point load non-local single

91 29F1 fpnan float~ng point NaN

92 29F2 fpordered floating point orderability

93 29F3 fpnotfinite floating point not finite

94 29F4 fpgt floating point greater than

95 29F5 fpeq floating point equality

96 29F6 fpi32tor32 INT32 to REAL32

97 29F7 fpge floating point greater than or equals

98 29F8 fpi32tor64 INT32 to REAL64

9A 29FA fpb32tor64 BIT32 to REAL64

9S 29FS fplg floating point less than or greater
than

90 29FO fprtoi32 REAL to INT32

9E 29FE fpstnli32 floating point store non-local INT32

9F 29FF fpldzerosn load zero single

AO 2AFO fpldzerodb load zero double

A1 2AF1 fpint round to floating integer

A3 2AF3 fpdup floating point duplicate

A4 2AF4 fprev floating point reverse

A6 2AF6 fpldnladddb floating point load non-local and add
double

A8 2AF8 fpldnlmuldb floating point load non-local and mul-
tiply double

AA 2AFA fpldnladdsn floating point load non-local and add
single

AC 2AFC fpldnlmulsn floating point load non-local and mul-
tiply single
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Operation Memory Mnemonic Name
code code

BO 2BFO settimesliee set timeslicing status

B6 2BF6 Idflags load error flags

B7 2BF7 stflags store error flags

B8 2BF8 xbword extend byte to word

B9 2BF9 Ibx load byte extended

BA 2BFA eb check byte

BB 2BFB ebu check byte unsigned

BC 2BFC insphdr inspect header

BO 2BFO readbfr read buffer pointer from VLCB

BE 2BFE Ideonf load from configuration register

BF 2BFF steonf store to configuration register

CO 2CFO Ident load message byte count

C1 2CF1 ssub 16 bit word subscript

C2 2CF2 Idth load trap handler

C3 2CF3 Idehstatus load channel status

C4 2CF4 intdis interrupt disable

C5 2CF5 intenb interrupt enable

C7 2CF7 eir check in range

C8 2CF8 ss store 16 bit word

C9 2CF9 ehantype channel type

CA 2CFA Is load 16 bit word

CC 2CFC eiru check in range unsigned

CF 2CFF fprem floating point remainder

00 20FO fprn rounding mode to round nearest

01 20F1 fpdivby2 floating point divide by 2.0

02 20F2 fpmulby2 floating point multiply by 2.0

03 20F3 fpsqrt floating point square root

04 20F4 fprp rounding mode to round plus

05 20F5 fprm rounding mode to round minus

06 20F6 fprz rounding mode to round zero

07 20F7 fpr32tor64 REAL32 to REAL64

08 20F8 fpr64tor32 REAL64 to REAL32

09 20F9 fpexpdee32 floating point divide by 232

OA 20FA fpexpine32 floating point multiply by 232

OB 20FB fpabs floating point absolute

OE 20FE fpehki32 check in range of INT32

OF 20FF fpehki64 check in range of INT64

FO 2FFO devlb device load byte

F1 2FF1 devsb device store byte
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Operation Memory Mnemonic Name
code code

F2 2FF2 devIs device load sixteen

F3 2FF3 devss device store sixteen

F4 2FF4 devlw device load word

FS 2FFS devsw device store word

F8 2FF8 xsword sign extend 16 bit word

F9 2FF9 Isx load sixteen and sign extend

FA 2FFA cs check 16 bit word

FB 2FFB csu check 16 bit word unsigned

17C 2127FC Iddevid load device identity

Table B.3 Instructions encoded using prefix

8.2.3 Instructions encoded using negative prefix

Operation Memory Mnemonic Name
code code

-01 60FF fpstall floating-point store all

-02 60FE fpldall floating-point load all

-03 60FO stshadow store shadow registers

-04 60FC Idshadow load shadow registers

-OS 60FB tret trap return

-06 60FA goprot go protected

-07 60F9 selth select trap handler

-08 60F8 syscall system call

-OB 60FS wait wait

-oC 60F4 signal signal

-00 60F3 timeslice timeslice

-OE 60F2 insertqueue insert at front of scheduler queue

-OF 60F1 swaptimer swap timer queue

-10 60FO swapqueue swap scheduler queue

-12 61FE stopch stop virtual channel

-13 61FD vout variable-length output message

-14 61FC vin variable-length input message

-17 61F9 swapbfr swap buffer pointer in VLCB

-18 61F8 sethdr set virtual channel header

-19 61F7 setchmode set channel mode

-1A 61F6 initvlcb initialize VLCB

-1B 61FS writehdr write virtual channel header

-1C 61F4 readhdr read virtual channel header

-1D 61F3 disg disable grant
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Operation Memory Mnemonic Name
code code

-1E 61F2 enbg enable grant

-1F 61 F1 grant grant resource

-20 61FO stmove2dinit store move2dinit data

-21 62FF causeerror cause error

-23 62FD unmkrc unmark resource channel

-24 62FC mkrc mark resource channel

-25 62FB irdsq insert at front of RDS queue

-26 62FA erdsq empty RDS queue

-27 62F9 stresptr store resource queue pointer

-28 62F8 Idresptr load resource queue pointer

-2C 62F4 devmove device move

-2D 62F3 icl invalidate cache line

-2E 62F2 fdcl flush dirty cache line

-2F 62F1 ica invalidate cache address

-30 62FO fdca flush dirty cache address

-40 63FO nop no operation

-84 62FO Idprodid load product identity

Table B.4 Instructions encoded using negative prefix
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I Instruction index

A
adc n, 22, 34, 229

add, 34,230

ajw n, 22, 52, 231

alt, 87,232

altend, 87,233

altwt, 87, 234

and, 35,235

B
bcnt, 36, 236

bitcnt, 63, 237

bitrevnbits, 63, 238

bitrevword, 63,239

bsub, 37, 240

c
call n, 22, 52,241

causee"o~ 122,242

cb, 49,243

cbu, 49,244

ccnt1, 58, 245

chantype, 185,246

cir, 58,247

ciru, 58, 248

cj n, 22, 41,249

crcbyte, 63, 250

crcword, 63, 251

cs, 49,252

csngl, 50, 253

csu, 49,254

csubO, 58, 255

cword, 50, 256

D
devlb, 60,257

devis , 60,258

devlw, 60,259

devmove, 60,- 260

devsb, 60,261

devss, 60, 262

devsw, 60, 263

diff, 34, 41, 264

disc, 87, 185,265

disg, 87, 176,267

diss, 87, 268

dist, 87, 269

div, 34,270

dup, 28,271

E
enbc, 87, 185,272

enbg, 87, 176, 273

enbs, 87, 274

enbt, 87, 275

endp, 70, 276

eqc n, 22, 41,277

erdsq, 176, 278

F
fdca, 213,279

fdcl, 213,280

fmu/, 35, 281

fpabs, 132, 282

fpadd, 131, 283

fpadddbsn, 141,
147,284

fpb32tor64 , 141, 285

fpchki32 , 140, 286

fpchki64 , 140, 287

fpdiv, 131, 288

fpdivby2, 132,289

fpdup, 128, 290

fpeq, 136,291

fpexpdec32 , 132,
292

fpexpinc32 , 132,293

fpge, 136,294

fpgt, 136, 295

fpi32tor32 , 141, 296

fpi32tor64 , 141, 297

fpint, 140,298

fpldall, 144, 196,
299

fpldnladddb, 132,
147,300

fpldnladdsn, 132,
147,301

fpldnldb, 128, 302

fpldnldbi, 128,303

fpldnlmuldb, 132,
147,304

fpldnlmulsn, 132,
147,305

fpldnlsn, 128, 306

fpldnlsni, i 28, 307

fpldzerodb, 129, 308

fpldzerosn, 129,309

fplg, 136,310

fpmu/, 131, 311

fpmulby2, 132,312

fpnan, 139,313

fpnotfinite, 139, 314

fpordered, 136,315

fpr32tor64 , 140, 316

fpr64tor32, 140,317

fprange, 133,318

fprem, 131,320

fprem, 133, 147

fprev, 128, 321

fprm, 131,322 .

fprn, 131,323

fprp, 131,324

fprtoi32 , 140, 147,
325

fprz, 131,326

fpsqrt, 132, 327

fpstall, 144, 196,
328

fpstnldb, 129, 329

fpstnli32 , 140, 330

fpstnlsn, 129,331

fpsub, 131,332

G
gajw, 52, 333

gcall, 52, 334

goprot, 105, 122,
201,335

grant, 176, 337

gt, 41,338

gtu, 41,339

ica, 213,340

icl, 213, 341

in, 76, 185, 342

initvlcb, 166, 188,
343

insertqueue, 204,
344

insphdr, 166, 188,
345

intdis, 202,346

intenb, 202,347

irdsq, 176,348

J
j n, 22, 41, 349

L
ladd, 46, 350

Ib, 28,351

Ibx, 28,352
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Ide n, 22, 28,353

Idehstatus, 186,354

Ident, 77, 356

Ideonf, 159,357

Iddevid, 224,358

Idflags, 122, 359

Idiff, 46, 360

Idiv, 47,361

Idl n, 22, 28, 362

Idlp n, 22, 28, 363

Idmemstartval, 160,
364

Idnl n, 22, 36, 365

Idnlp n, 22, 36, 366

Idpi, 37, 367

Idpri, 70, 368

Idprodid, 224,369

Idresptr, 176, 186,
370

Idshadow, 198, 371

Idth, 122,372

Idtimer, 83, 204,
373

lend, 51,374

.fmul, 47,375

Is, 28,376

IshI, 48, 377

Ishr, 48, 378

Isub, 46, 379

Isum, 46,380

Isx, ·28, 381

M
mint, 37,382

mkre, 176, 186,383

move, 39, 385

move2dall, 61,386

move2dinit, 61,
196,387

move2dnonzero, 61,
388

move2dzero, 61,
389

mul, 34,390

N
nfix, 21

nop,391

norm, 49,392

not, 35,393

o
opr, 22

or, 35,394

out, 76, 185, 395

outbyte, 79, 185,
396

outword, 79, 185,
397

p
pfix, 21

pop, 28,398

prod, 34, 399

R
readbfr, 166, 188,

400

readhdr, 166, 188,
401

rem, 34,402

reseteh, 183, 185,
403

restart, 201, 404

ret, 52,405

rev, 28,406

runp, 70, 407

5
sb, 28,408

selth, 122, 409

setehmode, 166,
186,410

sethdr, 166, 188,
411

settimesliee, 68,
202,412

shl, 35,413

shr, 35,414

signal, 86,415

ss, 28,416

ssub, 37,417

startp, 70,418

steonf, 159,419

stflags, 122, 420

stl n, 22, 28,421

stmove2dinit, 196,
422

stnl n, 22, 36,423

stopeh, 184, 188,
424

stopp, 70, 425

stresptr, 176, 186,
426

stshadow, 198,427

sttimer, 68, 204,
428

sub, 34,429

sum, 34,430

swapbfr, 166, 188,
431

swapqueue, 204,
432

swaptime~ 204,433

sysea11, 105, 122,
434

T
talt, 87, 435

taltwt, 87,436

testpranal, 437

timesliee, 68, 202,
438

tin, 83,439

tret, 122,440

u
unmkre, 176, 186,

441

v
vin, 77, 185,442

vout, 77, 185,443

w
wait, 86, 444

went, 36, 445

writehdr, 166, 188,
446

wsub, 37, 447

wsubdb, 37, 448

x
xbword, 49, 449

xdble, 50,450

xor, 35,451

xsword, 49, 452

xword, 50, 453
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Symbols
218

" 219

{}, 227

@, 219

Numbers
2 dimensional block move, 61

process state, 196

A
AccessVio/ation, 11 7, 21 6

activated, 157

active process, 66

active set, 6, 66

adc n, 22, 34,229

add, 34,230

address
calculation, 219
channel, 157
logical, 98
misalignment, 117
physical, 98

address alignment, 12
list of instructions, 13

address formation, 37

address translation, 98

address(variab/e) , 29

addressing, 11, 36

AFTER, 84

after, 226

ajw n, 22, 52,231

alarm registers, 18

alarm-time, 84

ALT, 91

aft, 87,232

a/tend, 87, 233

alternative, 86
degenerate, 92
guards, 86

instructions, 88
outputting on internal chan-

nel, 90
priority, 93
replicated, 92
sequence, 87
synchronization, 75
waiting, 90
workspace, 88

a/twt, 87, 234

AND, boolean, 43

and, 226

and, 35,235

Areg, 16, 27

arithmetic
boolean, 42
checked integer, 34, 225
fixed point, 35
floating-point, 131, 225

with NaN operands, 148
fractional, 35
integer, 34
long integer, 46
modulo, 34, 224
signed integer, 34
unchecked integer, 34, 224
unsigned integer, 34

arrays, 36, 38
assignment, 39
floating-point, 129
length, 39

assignment
array, 39
byte, 29
multiple, 39
single word, 29

B
back pointer registers, 18

bent, 36,236

BITAND, 226

bitcnt, 63, 237

BITNOT, 226

BITOR, 226

bitrevnbits, 63,238

bitrevword, 63,239

BitsPerByte, 223

BitsPerWord, 223

bitwise logic instructions, 35

BITXOR, 226

block move, 39
one dimensional, 39
two dimensional, 61

block move registers, 17

block structured languages,
53

BMregO..2, 16

boolean
AND, 43
arithmetic, 40, 42
negation, 41
operations, 43
OR, 43

BptrRegO..1, 18, 66

breakpoint
cause of trap, 113
mechanism, 207

Breg, 16,· 27

bsub, 37, 240

buffer (packet), 153, 166,
167, 168

byte addressing, 11

byte arrays, 39

byte assignment, 29

byte selector, 11

byte transfer, 79

byte-stream, mode, 155,
158, 165

byte-stream channels, 73
implementation of, 155

ByteMode, 165

ByteSelectMask, 223

BytesPerLine, 223

BytesPerVLCB, 223

BytesPerWord, 223

c
cache, 211

instructions, 213
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main, 212
workspace cache, 212

call n, 22, 52, 241

calling a function, 57

calling techniques, 54

CASE, 44

causee"o~ 122,242
cause of trap, 113

cb, 49,243

cbu, 49,244

ccnt1, 58, 245

channel, implementation of
byte-stream, 155
event, 155
internal, 79
virtual, 152

channel address space, 157

channels, 7, 73, 151
activation modes, 157, 187

setting, 168, 187
compilation and configura-

tion of, 151
external, 152
initialization of internal, 79
instructions according to

usage, 185
mapping and configuration,

157
modes of operation, 157,

187
normal mode, 157
resetting, 182, 183
resource. See resource

channels
resource mode, 157
states, 157, 187
timeout, 182
types of, 73, 186, 187

chantype, 185,246

checked arithmetic, 34, 225

checking message lengths,
58

checking subscripts, 58

cir, 58,247

ciru, 58,248

cj n, 22, 41,249

claim, 95

client-server model, 93
types of server, 178
unwanted clients, 181

ClockRegO..1, 18

clocks, 68, 83
clock registers, 18
clock tick, 68

Code, in instruction descrip-
tions, 215

coding of instruction, 21, 215

command messages, 157

Comments, in instruction de-
scriptions, 215, 217

comments, in instruction de­
scriptions, 218

communication, 7, 73, 76
failure, 182
fixed-length, 76
on a guarded internal chan­

nel, 90
restarting process after fail­

ure, 184
variable-length, 77
zero-length, 78

comparison
floating-point, 136
IEEE anomalies,. 139
IEEE implementation, 137
integer, 40
modulo, 84

compilation, channels, 151

concurrency, 65, 71

conditionals, 40, 42, 43

conditions, in instruction de-
scriptions, 227

ConfigReg, 220

configuration of channels,
151, 157

configuration registers, 157,
220
loading and reading, 159

constants, 3
loading, 27, 33
machine constant defini­

tions, 224
used in instruction descrip­

tions, 223

context switch, 189

full, 198
partial, 189

context trap, 210

control bits, 18

control link, 8

control word
P-state, 103
trap-handler, 108

conventions, 3

conversion
object length, 49
type, 227

CPeek, 157

CPoke, 157

GRG evaluation, 63

crcbyte, 63, 250

crcword, 63,251

Creg, 16, 27

cs, 49,252

csngl, 50, 253

csu, 49,254

csubO, 58, 255

current process, 66

cword, 50, 256

cyclic time, 84

D
data packet, structure, 153

data representation, 11

data structure, trap-handler,
107

data structures, 3
loop end, 51
P-state, 103
parallel process, 70
process workspace, 65
region descriptor, 104
resource, 96
resource channel, 96, 221
semaphore, 86

data-transfer, 39, 73
single byte, 79
single word, 79

deactivated, 157
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Deactivated.p, 224

deadlock, 6

Definition, in instruction de-
scriptions, 215, 216

deschedule, 6

descheduled process, 67

descheduling
effect on FP stack, 143
process state, 67, 189
with single-step or watch-

point, 210

descheduling points, 67, 217
list of, 67

Description, in instruction de­
scriptions, 215

device access instructions,
59

device identity, 224

device-only access, 101

DeviceId, 224

devlb, 60, 257

devIs , 60,258

devlw, 60,259

devmove, 60, 260

devsb, 60, 261

devss, 60, 262

devsw, 60,263

diff, 34, 41,264

disabling in alternative, 90,
91
grant, 178

Disabling.p, 224

disc, 87, 185,265

disg, 87, 176, 267

diss, 87, 268

dist, 87, 269

div, 34,270

dup, 28,271

dynamic allocation of work­
space; 56

E
else, 227

empty, 157

enabling in alternative, 89,
91
grant, 178

Enabling.p, 224

enbc, 87, 185,272

enbg, 87, 176, 273

enbs, 87, 274

enbt, 87, 275

encoding of instruction, 21

encoding of instructions, 215

end-of-message token, 153

end-of-packet token, 153

endp, 70,276

EOM token, 153

EOP token, 153

EptrReg, 16

eqc n, 22, 41,277

erdsq, 176, 278

Ereg, 16

error
cause of trap, 113
flags, 117
indication of, 119
link, 154
restarting process after,

195, 196
signals, 116
type, 120

error checking instructions,
57

error pointer
L-process, 109
P-process, 104

Error signals, in instruction
descriptions, 215, 216

error signals, 8, 116, 216
effect of, 118
exceptions, 126

et.ErrorType , 120, 146

evaluation

467

floating-point, 130
function, 57
integer, 30
subscripts, 38

event channels, 73
implementation of, 155
resource, 173

exception handling, 145
compound instructions, 147
fprem, 147

execute permission, 101

executing process, 66

execution
loading process state, 189
of process, 6, 66

expression depth, 30

expression evaluation, 31
using functions, 57

expressions
floating-point, 130
integer, 30

external channels, 152

ExternalRCbase, 160

F
false, 224

representation of, 41
signal if, 58

fdca, 213,279

fdcl, 213,280

fixed point arithmetic, 35

fixed-length communication,
76

flags, 18
error and exception, 117·

floating-point
arrays, 129, 130
class analysis, 139
comparison, 136
dyadic arithmetic, 131
exception handling, 145
exceptions, 126

process state, 195
expressions, 130
formats, 125, 127
instructions, 125
load and operate, 132



468 T9000 transputer instruction set manual

manipulation of stack, 127
monadic arithmetic, 132
operations with NaN oper-

ands, 148
operators, 225
pointer, 128
register loading and storing,

128
remainder and range, 133
rounding mode, 131
sign bit manipulation, 133
square root, 133
stack, 17
stack registers, 127
state, 146
state and status word, 143
storing and loading state,

144, 196
type conversion, 139

flush dirty cache instructions,
213

fmu/, 35,281

fonts, use of, 3

footnotes, 4

forming address, 37

fpabs, 132, 282

fpadd, 131,283

fpadddbsn, 141, 147,284

FPAreg, 16, 127

fpb32tor64 , 141, 285

FPBreg, 16, 127

fpehki32 , 140,286

fpehki64 , 140, 287

FPCreg, 16, 127

fpdiv, 131, 288

fpdivby2, 132, 289

FPDivideByZero, 117, 126,
216

fpdup, 128,290

fpeq, 136,291

FPError, 117, 126, 216

fpexpdee32 , 132,292

fpexpine32 , 132, 293

fpge, 136,294

fpgt, 136, 295

fpi32tor32 , 141 , 296

fpi32tor64 , 141, 297

FPlnexaet, 117, 126, 216

fpint, 140, 298

fpint ( ), 227

FPlnvalidOp, 117, 126, 216

fpldall, 144, 196, 299

fpldnladddb , 132, 147,300

fpldnladdsn, 132, 147,301

fpldnldb, 128,302

fpldnldbi, 128, 303

fpldnlmuldb, 132, 147,304

fpldnlmulsn, 132, 147, 305

fpldnlsn, 128, 306

fpldnlsni, 128, 307

fpldzerodb, 129, 308

fpldzerosn, 129, 309

fplg, 136, 310

fpmu/, 131, 311

fpmulby2, 132,312

fpnan, 139,313

fpnotfinite, 139, 314

fpordered, 136,315

FPOverflow, 117, 126, 216

fpr32tor64 , 140, 31 6

fpr64tor32 , 140, 31 7

fprange, 133,318

fprem, 131,320

fprem, 133, 147

fprev, 128, 321

fprm, 131,322

fprn, 131,323

fprp, 131,324

fprtoi32 , 140, 147,325

fprz, 131,326

fpsqrt, 132, 327

fpstall, 144, 196, 328

FPstatusReg, 16

fpstnldb, 129,329

fpstnli32 , 140, 330

fpstnlsn, 129, 331

fpsub, 131, 332

FptrRegO..1, 18, 66

FPUnderflow, 117, 126, 216

fractional arithmetic, 35

front pointer registers, 18

function call, 57

'Function' code, in instruction
descriptions, 215

function evaluation, 57

functions, 56
in instruction descriptions,

227

future, 83

G
gajw, 52,333

geall, 52,334

goprot, 105, 122, 201, 335

grant, 176, 337

graphics support, 61

grouper, 9

gt, 41,338

gtu, 41,339

H
handshake, event channel,

156

HdrAreaBase, 160

header, null, 169

header (packet), 153, 166,
167, 168
labelling, 164

header region, 160

HeaderLength, 165

iea, 213,340.

ie/, 213, 341
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identifier store address, 176

identity, of device, 224

idle, 157

IEEE, operators, 225

IEEE floating-point
arithmetic, 125

implementation of, 125
exceptions, 126
implementation of compari­

sons, 137
~mplementation of handler,

146
operations, 125
word format, 125

IF, 43

if, 227

ignorant server, 180

illegal instruction, 117

IIlegallnstruetion, 117

in, 76, 185, 342

initializing an internal channel,
79

initvleb, 343

input, 76

insertqueue, 204,344

insphdr, 166, 188, 345

instruction, illegal, 117

instruction component, 21

instruction data value, 21

instruction encoding, 21, 215

instruction pointer, 27
of supervisor, 104
trap-handler, 109

ins.truction protection, 97

INT to REAL conversion, 141

int64 ( ), 227

intdis, 202, 346

integer
comparison, 40
expressions, 30
length conversion, 49

integer length conversion, 12

integer overflow, 117

integer stack
loading sequences, 32
registers, 17, 27

IntegerError, 117, 216

IntegerOverflow, 117, 216

intenb, 202,347

internal channels, 73
implementation of, 80

internal registers, 17

interrupt point, 69

interruptible instructions, 217
list of, 69

interruption, 68
enabling and disabling, 202
process state, 198
restarting process after,

200

interrupts, using events as,
156

invalidate cache instructions,
213

IptrReg, 16, 27

irdsq, 176, 348

iteration, 51

J
j n, 22, 41, 349

jump table, 45

jumps, 40, 42

L
L-process, 69

ladd, 46, 350

Ib, 28,351

Ibx, 28, 352-

Ide n, 22, 28,353

Idehstatus, 186,354

Ident, 77, 356

Ideonf, 159, 357

Iddevid, 358
values returned, 224

469

Idflags, 122,359

Idiff, 46, 360

Idiv, 47,361

Idl n, 22, 28, 362

Idlp n, 22, 28,363

Idmemstartval, 160, 364

Idnl n, 22, 36, 365

Idnlp n, 22, 36, 366

Idpi, 37, 367

Idpri, 70, 368

Idprodid, 369
values returned, 224

Idresptr, 176, 186, 370

Idshadow, 198, 371

Idth, 122, 372

Idtimer, 83, 204, 373

le.LoopEndSlot, 51, 220

lend, 51,374

length of array, 39

LengthError.p, 224

library linkage, 54

link, 7

list
scheduling, 66, 203
timer, 85, 203

Iittle-endian, 11

livelock, 6

Imul, 47,375

loading
additional state, 196

. current time, 84
floating-point stack, 128
operands, 32
parameters, 53
shadow state, 198

loading sequences, integer
stack, 32

local, variables, 27, 65

LocalizeError, 165

logic
bitwise instructions, 35
shift instructions, 35

logical
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address, 98
region, 99

long arithmetic, 46

long header, 154, 168

long shifts, 47

loop end data structure, 51

loops, 51

L-process, 7
restarting after interruption,

201
single-step, 208
trap, 107, 111, 191
watchpoint, 209

Is, 28,376

Ishl, 48, 377

Ishr, 48, 378

Isub, 46, 379

Isum, 46,380

Isx, 28,381

M
main cache, 212

mapping functions, virtual link,
160

mapping of channel address-
es, 162

A4axHeaderOffset, 223

A4axLink, 223

A4axPacketLength, 223

memory
management, 97
map, 159
model, 59
protection, 98
regions, 99
representation of, 219

memory semantics error, 121
process state, 196

MemStart, 160

message lengths, checking,
58

A4inEventChannel, 223

MinlnvalidChannel, 160

A4inLink, 223

mint, 37,382

minus, 35

A4inVirtuaIChannel, 223

misalignment, address, 117

miss, 211

mkrc, 176, 186, 383

modulo arithmetic, 34, 224

modulo comparison, 84

A4ostNeg, 223

A4ostPos, 223

A4ostPosUns~ned, 223

move, 39,385

move2dal/, 61, 386

move2dinit, 61, 196, 387

move2dnonzero, 61, 388

move2dzero, 61, 389

mul, 34,390

multiple assignment, 39

multiple length arithmetic, 46

multiple length shifts, 47

N
N-bit object arithmetic, 51

negation, 35
boolean, 41

next instruction, 218

nfix, 21

non-local variables, 36

NoneSelected.o, 224

nop,391

norm, 49, 392

normal mode, channel, 157

normalizing, 49

not, 226

not, 35,393

Not-a-Number
implementation of, 148

list of special quiet NaNs,
148

representation of, 126

notation, 3

NotProcess.p, 22~

null descriptor, 101

null header, 169

null process, the, 66

null trap-handler, 110
trapping to, 121

Nul/Header, 224

Nul/Offset, 224

o
object length conversion, 49

objects, 11, 218

occam
as meta language, 3
as source language, 3

omniscient server, 179

op-code, 215
instructions sorted by, 455

operands
in instruction descriptions,

215
primary instructions, 22
secondary instructions, 32

operators, 224
in instruction descriptions,

226

opr, 22, 217

OR, boolean, 43

or, 226

or, 35,394

out, 76, 185, 395

outbyte, 79, 185, 396

output, 76

outputling, to guarded internal
channel, 90

outword, 79, 185, 397

overflow checking, integer,
34

p
P-process
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restarting after interruption,
201

single-step, 207
trap, 193
watchpoint, 209

packet, 153
buffer, 153, 160, 166,

167, 168
structure of data, 153

PAR, 3, 71

parallel assignment, 39

parallel process data struc-
ture, 70

parallel processes, schedul-
ing, 70

parameters to procedure, 53

partword arithmetic, 51

past, 83

pc.RegionDescriptorSlot,
105, 222

PDS, 103
creation of, 104

pfix, 21

physical address, 98

physical link, 152

pipeline, 9

pointer
floating-point, 128
trap-handler, 8, 107

pop, 28,398

pop, 27

pp.ParalleIProcessSlot, 70,
220

P-process, 7
trap, 97, 112

predecessor process, 72

prefixing, 21, 23

PRI ALT, 93

primary instructions, 22, 217

prime notation, in instruction
descriptions, 219

Priority, 19

priority, 66, 68, 73, 218

privileged instructions, 97,
217

Privlnstruction, 117, 216

procedure call, 52

procedures, 52

procedures as parameters,
55

process, 5, 65
current, 66
descheduled, 67
descriptor, 19, 217
execution, 6, 66
initiation, 69, 73
interruption, 68, 200
L-process, 69
model, 5
the null, 66
P-process, 97
priority, 68, 218
restarting after communica­

tion failure, 182
restarting after error, 195,

196
termination, 69, 73

process state, 6, 15, 189,
217
20 block move, 196
additional, 196
descheduling, 189
execution, 189
floating-point, 196
in instruction descriptions,

216
L-process trap, 191
P-process trap, 193

process workspace data
structure, 65

prod, 34, 399

product identity, 224

program notation, 3

protected mode, 7, 97

protection, 97
instructions used for, 105
the mechanism, 97
memory, 98
of instructions, 97
protection bit, 19

ps.PstateSlot, 103, 221

P-state
control word, 103

471

data structure, 103

PstateReg, 17, 102

push, 27

pw.Link, 66

pw.ProcessWorkspaceSlot,
65, 220

Q

Q(), 227

queue manipulation
resource, 177
scheduling list, 203
timer list, 203

queued, 157

queued process, 66

quiet NaN, 126
list of machine generated,

148

R
range checking, 58

range reduction, floating­
point, 134

rc.ResourceChanneISlot, 96,
221

RODS, 104

rds.ResourceSlot, 96, 221

read-only access, 101

readbfr, 166, 188, 400

readhdr, 166, 188, 401

reading the time, 84

Ready.p, 224

real arrays, 129, 130

REAL to INT conversion, 140

REAL to REAL conversion,
140

REAL32, 125

rea132 ( ), 227

REAL64, 125

rea164 ( ), 227

region descriptor, 101
data structure, 104
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registers, 102

region descriptor registers,
17

RegionRegO..3, 17, 102

regions of memory, 99

register field, 19

registers, 3, 15
floating-point stack, 127
in instruction descriptions,

216
integer stack, 27
region descriptor, 102
state, 15
other, 17

rem, 226

rem,EEE, 226

rem, 34,402

remainder
floating-point, 133
integer, 34

REPEAT •• UNTIL, 43

replicated alternative, 92

replicators, 51, 92

representing memory, in
instruction descriptions,
219

ResChan.p, 224

resetch, 183, 185, 403

resetting a channel, 182,
183

resource
data structure, 96
instructions, 175
mechanism, 95
mode, 157
synchronization, 75

resource channel, 93, 173
data structure, 96, 221

placement, 173, 174
event, 173
identifier, 96
implementation of, 173
overview, 179
reverse channel, 174
usage of, 178

restart, 201, 404

restarting process after

communication failure, 182
error, 195, 196
interruption, 200

ret, 52,405

return from procedure, 53

rev, 28,406

reverse channel, 174

robust server, 181

rotation, 48

rounding mode, floating-point,
131

running process, 66

runp, 70, 407

s
s.SemaphoreSlot, 86, 221

sb, 28,408

sb.StatusOrControIBit, 19

scheduled process, 66

scheduling, 66
lists, 66, 203
parallel processes, 70

scheduling list, 6

secondary instructions, 22,
217

See chapter, in instruction
descriptions, 215

selth, 122, 409

semaphore, 85
data structure, 86

SEQ, 3

sequential operations, 27

setchmode, 166, 186,410

initvlcb, 166, 188

sethdr, 166, 188,411

settimeslice, 68, 202, 412

shadow, state, 17, 69

shadow registers, saving and
reloading, 198

shared memory, 61

sharing a trap-handler, 110

shifts, long, 47

shl, 35,413

short header, 154, 168

shr, 35,414

sign bit manipulation, floating-
point, 133

sign extension, 12

signal, 86,415

signal if false, 58

signal if true, 58

signalling NaN, 126

signalling of errors, 116

signed integer arithmetic, 34

simple synchronization, 74

single-step
cause of trap, 113
mechanism, 207
process state, 196
trap enable bit, 19

size of workspace, 65

special pointer values, 11

sqroot ( ), 227

square root, 133

ss, 28,416

ssub, 37, 417

stack
floating-point, 127
integer, 27

stack extension, 98

stack operations, 27

stack registers, 17

start next process, 218

startp, 70,418

state
floating-point, 143, 146
L-process, 108
P-process, 103
shadow, 198

static chain, 53

status
bits, 18
floating-point status word,

143

StatusReg, 16, 18
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stconf, 159,419

stflags, 122, 420

stl n, 22, 28,421

stmove2dinit, 196, 422

stnl n, 22, 36,423

stopch, 184, 188,424

stopp, 70, 425

stopping, 157

stopping a virtual channel,
182, 184

Stopping.p, 224

storing from floating-point
stack, 129

stresptr, 176, 186,426

structures, 36

stshadow, 198, 427

sttimer, 68, 204, 428

stub, 7

stub process, 55

sub, 34,429

subscript evaluation, 38

subscripts, 36, 38, 58
in instruction descriptions,

218

successor process, 70

sum, 34,430

supervisor, 7, 97
exiting from, 113
instruction pointer, 104
workspace, 104

swapbfr, 166, 188,431

swapqueue, 204, 432

swaptimer, 204, 433

synchronization, 6, 7, 73

sysca11, 105, 122, 434
cause of trap, 113

T
t.TrapReason, 116

T805 compatibility, error han­
dling, 121

table of constants, loading
from, 33

talt, 87,435

taItwt, 87, 436

termination,S, 69, 7'3

terminology, 3

testpranal, 437

th.TrapHandlerSlot, 108,
222

THDS, 107
creation of, 109

ThReg, 16

tick, 68

time, 83
alarm-time, 84
reading, 84
starting, 205

TimeNotSet.p, 224

timer
input, 84, 85
list pointer registers, 18
lists, 85, 203

TimeSet.p, 224

timeslice, 68, 202, 438

timesliced process, 6

timeslicing, 6, 42, 43, 51,
68
cause of trap, 113
effect on FP stack, 143
enabling and disabling, 202
forcing a timeslice, 202
points, 68, 217
process state, 194
starting, 205
timeslice disable bit, 19
with single-step or watch-

point, 209

tin, 83,439

TnextRegO..1, 18

token, 153

TptrRegO..1, 18

transferring data, 39

trap reason, 116

trap-handler
changing trap-handler, 109
control word, 108

473

data structure, 107
exiting from, 113
instruction pointer, 109
null, 110
pointer, 8, 107
queue, 109
workspace, 109

traps, 7
a comparison, 112
causes, 113
enable bits, 118
exception handling, 145
floating-point state, 144
for multiple reasons, 114
indication of cause, 114
instructions, 122
L-process, 107, 111, 191
P-process, 97, 112, 193
process state, 191
to null trap-handler, 121

tret, 122, 440

true, 224
representation of, 41
signal if, 58

two dimensional block move,
61

type conversion, 139, 227

u
Unalign, 117, 216

unaligned address detection,
12

unary minus, 35

unchecked arithmetic, 34,
224

undefined, 218

undefined values, 3, 218

under protection, 7, 97

underflow, implementation of,
127

unmkrc, 176, 186, 441

unsigned, 219

unsigned arithmetic, 34

unsigned(), 227

unwanted client, 181

v
variable-length communica­

tion, 77



474 T9000 transputer instruction set manual

variables
local, 27, 65
non-local, 36

VCP, 153

VCPcommand, 165

VCPLinkO..3HdrOffset, 161

VCPLinkO..3MaxHeader,
165

VCPLinkO..3MinHeader, 165

VCPLinkO..3Mode, 165

vin, 77, 185, 442

virtual channel processor,
153

virtual channels, 73
implementation of, 152
stopping, 182, 184

virtual link, number, 160

virtual mode, 153, 165

VLCB, 154
null header, 169
setting up, 166

vout, 77, 185,443

w
wait, 86, 444

waiting, 157

waiting in alternative, 90

Waiting.p, 224

watchpoint
cause of trap, 113
in a P-process, 104
in an L-process, 109
mechanism, 208
process state, 196
registers, 17
trap enable and pending bit,

19

went, 36,445

WdescReg, 217

WdescReg, 16, 19

WdescStubReg, 17, 102

WHILE, 43

WIReg, 16

word address, 11

word arrays, 38

word assignment, 29

word normalization, 49

word rotation, 48

word transfer, 79

WordSeleetMask, 223

workspace, 19, 27, 28
address, 217
adjustment, 52
after call, 52
cache, 212
during alternative, 88
dynamic allocation, 56, 98
of supervisor, 104
of trap-handler, 109

pointer, 27
process workspace data

structure, 65
size, 65

workspace 0, 29, 53, 65

wptr, 217

Wptr, 19, 27

write permission, 101

write-back cache, 212

writehdr, 166, 188,446

write-through cache, 212

wsub, 37,447

wsubdb, 37,448

WuReg, 16

x
xbword, 49, 449

xdble, 50,450

xor, 35,451

Xreg, 16

xsword, 49, 452

xword, 50, 453

z
zero-length communication,

78
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