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A trap from an L-process normally results in a context switch to a trap-handler, and a trap from a P-process
results in a context switch to its supervisor.

The conditions that can cause a trap include:

• debug conditions - The IMS T9000 provides facilities to insert breakpoints in code, employ a
single-step mode, and set up watchpointing for access to a specified area of memory.

• errors and IEEE floating-point (fp) exceptional conditions

• system call - A trap may be forced by explicitlyexecution of an instruction (sysca/~.

• timeslice - A timeslice causes a trap when running under protection.

Detection of these conditions facilitates the implementation of error-handlers, debugging tools, IEEE ex­
ception-handlers, operating systems etc.

The errors (and floating-point exceptions) which can be signalled are shown in table 3.1. All of these 'error
signals' cause a trap unless this facility is disabled by the user. Some of them set flags in the status register
if a trap is not taken. This is discussed fully in chapter 10.

error signal brief description

IntegerOverflow integer overflow or integer divide-by-zero

IntegerError integer error other than IntegerOverflow - e.g. explicitly checked
or explicitly set error, misuse of channel

Unalign address of instruction operand is not aligned to the correct
boundary

IIlegallnstruction attempt to execute an illegal instruction

Privlnstruction attempt to execute a privileged instruction in protected mode

AccessViolation attempt to access a memory protected or non-existent address

FPError floating-point 'error'

FPlnvalidOp IEEE floating-point 'invalid operation'

FPDivideByZero IEEE floating-point 'divide by zero'

FPOverflow IEEE floating-point 'overflow'

FPUnderflow IEEE floating-point 'underflow'

FPlnexact IEEE floating-point 'inexact result'

Table 3.1 Definition of errors signalled by the IMS T9000

Associated with an L-process is a 'trap-handler pointer'. This is either the address of a trap-handler data
structure (THDS) or is a null pointer. A THDS may be shared with a number of other L-processes and
contains: status information for the processes that use it, control information which specifies the condi­
tions that cause a trap, and identification of t~e trap-handler code which is executed when a trap occurs
from one of these processes.

Associated with a P-process is a pointer to a P-state data structure (PDS). This contains: status informa­
tion for the P-process and control information which specifies the conditions that cause a trap.

3.4 Configuration of control system

There are two additional links on the IMS T9000, that are used to send and receive hardware control in­
formation. These 'control links' make it possible for a controlling processor to control and monitor a series
of IMS T9000-family devices in a subsystem connected by the control links. This control network is entirely
independent of the data network which is connected by data links, and thus guarantees the integrity of
the control system.
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There is a set of commands that is used for transfer of control information. It includes commands to: reset
a processor, read or write data to a specified address, and transmit boot-code. When one of these com­
mands is sent on a control link, it is preceded by header information to identify the destination processor.

A full description of the IMS T9000 control system and the associated command set is given in The T9000
Hardware Reference Manual.

3.5 Instructions and pipelining

The CPU of the IMS T9000 has a superscalar pipelined micro-architecture, which enables concurrent
execution of instructions on a single transputer. A group of instructions can be issued to this pipeline on
every transputer cycle, and since a large proportion of the IMS T9000 instructions require only one cycle
to complete execution, this means that on average several instructions are executed in each cycle.

There is also a mechanism (grouper) which examines the sequence of instructions and divides these into
optimal groups for concurrent execution. This 'grouper' takes account of which operations can occur con­
currently in the pipeline.

The existence of the grouper means that the programmer need not have any knowledge of the pipelined
architecture. It is entirely transparent to the user. He does not have to specify the groups or the order in
which they are executed.
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4 Addressing and data representation

11

The IMS T9000 transputer is a 32-bit word machine, with byte addressing and a 4 Gbyte address space.
This chapter explains how data is loaded from and stored into that address space, explains how signed
arithmetic is represented, and defines the arithmetic significance to ordering of data items.

4.1 Word address and byte selector

A machine address is a single word of data which identifies a byte in memory - Le. a byte address. It com­
prises two parts, a word address and a byte selector. The byte selector occupies the two least significant
bits of the word; the word address the thirty most significant bits. An address is treated as a signed value,
the range of which starts at the most negative integer and continues, through zero, to the most positive
integer. This enables the standard comparison functions to be used on pointer (address) values in the
same way that they are used on numerical values.

Certain values can never be used as pointers because they represent reserved addresses at the bottom
of memory space. They are reserved for use by the processor and initialization. In this text, names are
used to represent these and other values (e.g. NotProcess.p, Disabling.p). A full list of names and values
of constants used in this book is given in tables A.13 and A.12 (appendix A).

4.2 Ordering of information

The transputer is 'Iittle-endian' - Le. less significant data is always held in lower addresses. This applies
to bits in bytes, bytes in words and words in memory. Hence, in a word of data representing an integer,
one byte is more significant than another, if its byte selector is the larger of the two. Figure 4.1 shows the
ordering of bytes in words and memory for the IMS T9000. Note that this ordering is compatible with Intel
processors, but not Motorola or SPARC.

memory
(bytes)

X+7

X+6

X+5

X+4

X+3

X+2

X+1

X+O

words (wordlength is 32 bits)

MSB LSB

bit 131 X+7 24 123 X+6 16 11S X+5 8 1 zX+4 0 I

MSB LSB

bit 131 X+3 24 123 X+2 16 11s X+1 8 I 7 X+O 0 I

X is a word-aligned byte address

X+n is the byte n bytes past X

Figure 4.1 Bytes in memory and words

4.3 Words, objects and signed integers

Most instructions that involve fetching data from or storing data into memory, use word aligned addresses
(Le. bits 1 and 0 are set to 0) and load or store four contiguous bytes. However, there are some instructions
that can manipulate part of the bit pattern in a word, and a few that use double words.
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A data item that is represented in two contiguous bytes, is referred to as a16-bit object. This can be stored, ­
either in the least significant 16-bits of a word location, or in the most significant 16 bits, hence addresses
of such locations are16-bit aligned (Le. bit 0 is set to 0).

A data item that is represented in in two contiguous words, is referred to as a 64-bit object or a double
word.

Similarly, a data item represented in a single byte is sometimes referred to as an a-bit object.

Signed integers and sign extension

A signed integer is stored in twos-complement format and may be represented by an N-bit object. Most
commonly a signed integer is represented by a single word (32-bit object), but as explained, it may be
stored, for example, in a 64-bit object, a 16-bit object, or an a-bit object. In each of these formats, all the
bits within the object contain useful information.

Consider the example shown in figure 4.2, which shows how the value -10 is stored in a 32-bit register,
firstly as an a-bit object and secondly as a 32-bit object. Observe that bits 31 to a are meaningful for a
32-bit object but not for an a-bit object. These bits are set to 1 in the 32-bit object to preserve the negative
sign of the integer being represented.

bit position

I these bit values not related to integer value

31 a 7 0

signed integer value (-10) stored as an a-bit object (byte)

[TID -----'
bit position 31 a 7 0

signed integer value (-10) stored as a 32-bit object (word)

Figure 4.2 Storing a signed integer in different length objects

The length of the object that stores a signed integer can be increased (Le. the object size can be in­
creased). This operation is known as 'sign extension'. The extra bits that are allocated for the larger object,
are meaningful to the value of the signed integer. They must therefore be set to the appropriate value.
The value for all these extra bits is in fact the same as the value of the most significant bit - Le. the sign
bit - of the smaller object. The IMS T9000 provides instructions that sign extend to 32 bits and 64 bits.
These are described in chapter 7.

4.4 Unaligned address detection

Instructions that address words or 16-bit objects expect the addresses to be aligned on 4-byte and 2-byte
boundaries respectively. This requires bits 0 and 1 to be set to 0 for an address operand of a word instruc­
tion or bit 0 to be set to 0 for an address operand of a 16-bit object instruction. If the processor detects
a bad address alignment while executing an instruction, then it signals Unalign.

The user can specify the action that the processor takes when Unalign is signalled: either

• a trap is taken, or

• the address is re-aligned by setting the bottom bit to '0' for a 16-bit object, or the bottom two bits
to '0' for a word.

See chapter 10 for details on trap enabling.
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The word instructions to which this applies are:-

Idnl stnl chantype devlw devsw

disc disg enbc enbg endp

erdsq gajw goprot grant in

initvlcb insphdr irdsq Idcf1status Idresptr

Idshadow lend mkrc out outbyte

outword readbfr readhdr resetch restart

selth setchmode sethdr signal startp

stmove2dinit stopch stresptr stshadow swapbfr

unmkrc vin vout wait writehdr

fpb32tor64 fpi32tor32 fpi32tor64 fpldall fpldnladddb

fpldnladdsn fpldnldb fpldnldbi fpldnlmuldb fpldnlmulsn

fpldnlsn fpldnlsni fpstall fpstnldb fpstnli32

fpstnlsn

The16-bit object instructions to which this applies are:-

13

Idevls devss Is Isx ss
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This section introduces the IMS T9000 registers. The registers listed here are those visible to the program­
mer. Firstly the set of registers known as state registers are presented and discussed. These fully define
the state of the executing process. Secondly the other registers of interest to the programmer, are pres­
ented. The function of each register is detailed later in the book as each register is first encountered in
the context of a machine instruction.

5.1.1 State registers

The state of an L-process at any instant is defined by the contents of the machine registers listed in table
5.1. For a P-process the state also includes the contents of the registers listed in table 5.2. These registers
may be referred to as 'state registers' to distinguish them from registers that are not part of the process
state. The 'register' column gives the abbreviated name of the register. The 'full name/ description' column
provides the full textual name which is usually used when referencing a register in this manual; and where
unclear, a brief description of the information contained in this register. The 'shadow register' column
states the abbreviated name of the associated shadow register (explained below).
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register full name / description process modes shadow register

StatusReg status register StatusReg.sh

WdescReg workspace descriptor register - contains the process des- WdescReg.sh
criptor of the currently executing process

IptrReg instruction pointer register - pointer to next instruction to IptrReg.sh
be executed

Areg integer stack register A Areg.sh

'Breg integer stack register B Breg.sh

Creg integer stack register C Creg.sh

ThRegt trap-handler register - pointer to the current THOS (trap- ThReg.sh
handler data structure)

FPstatusReg floating-point status register - indicates type of value in FPstatusReg.sh
each FP register and the current rounding mode

FPAreg floating-point stack register A FPAreg.sh

FPBreg floating-point stack register B FPBreg.sh

FPCreg floating-point stack register C FPCreg.sh

BMregO 20 block move control register 0 BMregO.sh

BMreg1 20 block move control register 1 BMreg1.sh

BMreg2 20 block move control register 2 BMreg2.sh

WIReg watchpoint lower bound register WIReg.sh

WuReg watchpoint upper bound register WuReg.sh

Ereg+ internal register Ereg.sh

Xreg+ internal register Xreg.sh

EptrReg error pointer register EptrReg.sh

t contains trap-handler pointer of supervisor when executing a P-process

+ Ereg and Xreg are internal registers which the processor uses to store temporary values during the execution of
some instructions. The processor saves their contents when an instruction is interrupted and restores the registers to their pre-
vious state when it is restarted. The actual data values are of no use to the programmer.

Table 5.1 Registers that define the machine state - state registers
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RegionRegO region descriptor register 0 - contains the region descrip- RegionRegO.sh
tor for protection region 0

RegionReg1 region descriptorregister 1 - contains the region descrip- RegionReg1.sh
tor for protection region 1

RegionReg2 region descriptor register 2 - contains the region descrip- RegionReg2.sh
tor for protection region 2

RegionReg3 region descriptor register 3 - contains the region descrip- RegionReg3.sh
tor for protection region 3

PstateReg protected state register - pointer to the current PDS (P- PstateReg.sh
state data structure)

WdescStubReg workspace descriptor stub register - contains the process WdescStubReg.sh
descriptor of the supervisor

Table 5.2 Extra registers that define the P-process state - state registers

Hence depending on the mode in which the process is currently executing, the process state is defined
by a slightly different set of registers. For example the region descriptor registers are listed in table 5.2
because their contents may be valid while a P-process is executing, but their contents are irrelevant when
an L-process is executing.

Register grouping

It is convenient for use now and elsewhere in this manual to refer to certain related registers by a group
name. These names are intended to be intuitive, but table 5.3 clarifies.

register group name

integer stack (registers)

floating-point stack (registers)

stack (registers)

floating-point registers

block move registers

watchpoint registers

region descriptor registers

internal registers

registers include in group

Areg, Breg, Creg

FPAreg, FPBreg, FPCreg

integer stack registers, floating-point stack registers

floating-point stack registers, FPstatusReg

BMregO, BMreg1, BMreg2

WIReg, WuReg

RegionRegO, RegionReg1, RegionReg2, Region­
Reg3

Ereg, Xreg

Table 5.3 Register group names

Shadow registers

When a high priority process interrupts a low priority process, the state of the currently executing process
needs to be saved. For this purpose, a 'shadow register' is provided for each state register. On interrupt,
the content of each register is copied into its shadow. On return from an interrupt the state of the inter­
rupted process is copied back from the shadow registers. The content of the shadow registers is therefore
only valid during an interrupt. A high priority process may manipulate the shadow registers with the instruc­
tions Idshadow and stshadow. Details of these are provided in section 13.3.

5.1.2 Other machine registers

There are several other registers which the programmer needs to know about. These are not part of the
process state, and hence are not state registers and do not have shadow registers. They are presented
in table 5.4.
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register full name / description

FptrRegO high priority front pointer register - contains pointer to first process on
the high priority scheduling list

FptrReg1 low priority front pointer register - contains pointer to first process on
the low priority scheduling list

BptrRegO high priority back pointer register - contains pointer to last process on
the high priority scheduling list

BptrReg1 low priority back pointer register - contains pointer to last process on
the low priority scheduling list

ClockRegO high priority clock register - contains current value of high priority clock

ClockReg1 low priority clock register - contains current value of low priority clock

TptrRegO high priority timer list pointer register - contains pointer to the first pro-
cess on the high priority timer list

TptrReg1 low priority timer list pointer register - contains pointer to the first pro-
cess on the low priority timer list

TnextRegO high priority alarm register - contains the time of the next process on
the high priority timer queue

TnextReg1 low priority alarm register - contains the time of the next process on
the low priority timer queue

Table 5.4 Other machine registers

5.2 Process status and control bits

The status register (StatusReg) contains status and control information for the current process. The
32-bit word held in the status register comprises 'status bits' ('flags') and 'control bits'. Status bits describe
current state, such as the mode of operation (protected/unprotected) and any errors which may have oc­
curred. Control bits specify future behavior which may occur, such as trapping and timeslicing.

The process status and control bits are shown in table 5.5. The meaning and function of each bit is detailed
later in the book when each bit is first encountered in the context of a machine instruction. Bits within the
status register that are not shown in table 5.5, have reserved use.

• Prior to executing an L-process, the processor loads these bits from the THDS (trap-handler data
structure) for that process into the status register. When this process is descheduled or trapped,
the processor writes these bits back from the status register into the THDS. Hence these bits
are local to L-processes which are associated with a particular trap-handler.

• The situation is similar for a P-process, but in this case, the bits are loaded from and written to
the PDS(P-state data structure). The status and control bits here are local to P-processes which
share a particular supervisor.
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bit number status bit name full name / description

2 sb.FPErrorFlag floating-point error flag - indicates, when set,
that a floating-point error has occurred

3 sb.FPErrorTeBit floating-point error trap enable bit - specifies,
when set, that if a floating-point error occurs, the
current process will be trapped

6 sb.lntOvFlag integer overflow flag

7 sb.lntOvTeBit integer overflow trap enable bit

8 sb.FPlnOpFlag floating-point invalid operation flag

9 sb.FPlnOpTeBit floating-point invalid operation trap enable bit

10 sb.FPDivByZeroFlag floating-point divide by zero flag

11 sb.FPDivByZeroTeBit floating-point divide by zero trap enable bit

12 sb.FPOvFlag floating-point overflow flag

13 sb.FPOvTeBit floating-point overflow trap enable bit

14 sb.FPUndFlag floating-point underflow flag

15 sb.FPUndTeBit floating-point underflow trap enable bit

16 sb.FPlnexFlag floating-point inexact result flag

17 sb.FPlnexTeBit floating-point inexact result trap enable bit

19 sb.UnalignTeBit unaligned address trap enable bit

25 sb.TimesliceDisabledBit timeslice disable bit - specifies, when set, that
timeslicing cannot occur

26 sb.StepBit single-stepping trap enable bit - specifies, when
set, that a single-step trap will be taken at the
end of the current instruction

27 sb.lsPprocessBit protection bit - indicates, when set, that the pro-
cessor is running under protection

29 sb.WtchPntEnbl watchpoint trap enable bit - specifies, when set,
that watchpointing is enabled

30 sb.WtchPntPend watchpoint trap pending flag - indicates, when
set that a watchpoint trap will be taken at the end
of the current instruction

Table 5.5 Process status and control bits

Sometimes in this manual it is stated that under certain circumstances, the status register is loaded with
the 'default control word'. This means that all bits in the status register are set to 0 with the exception of
bit7, sb.lntOvTeBit, which is set to 1. In particular, the default control word is loaded when an L-process
executes with a null trap-handler.

5.3 The process descriptor and its associated register fields

In order to identify a process completely it is necessary to know: its workspace address (in which the byte
selector is always 0), and its priority (high or low). This information is contained in the process descriptor.
The process descriptor of the currently executing process is held in the workspace descriptor register
(WdescReg) .

The workspace descriptor register is formed from a pointerto the process workspace or-ed with the priority
indicator at bit O. Often it is required to use or update only some part of the workspace descriptor register,
so two 'register fields': Wptr and Priority are defined so that the following invariants are obeyed.
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Wptr

Priority
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WdescReg /\ (NOT 3)

WdescReg /\ 1

31

Wptr points to the current process workspace, which is always word-aligned. Priority is the priority of the
currently executing process where the value 1 indicates low priority and 0 indicates high priority. Bit 1 is
always set to 0t.

___________w_o_r_ks_p_ac_e_a_d_dr_e_ss ---'GE
210

Figure 5.1 Constituents of a process descriptor

t In preliminary revisions of the IMS T9000 (viz versions a and ~), bit 1 may be set to 1.
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The transputer encoding is designed so that the most commonly executed instructions occupy the least
number of bytes. This chapter describes the encoding mechanism and explains how it achieves this.

A sequence of single byte 'instruction components' is used to encode an instruction. The IMS T9000 inter­
prets this sequence at the instruction fetch stage of execution. Most users (working at the level of micro­
processor assembly language) need not be aware of the existence of instruction components a~d do not
need to think about the encoding. The first section (6.1) has been included to provide a background. The
following section (6.2) need only concern the reader that wants to implement a code generator.

6.1 Instruction encoding

6.1.1 An instruction component

Each instruction component is one byte long, and is divided into two 4 bit parts. The four most significant
bits of the byte are a function code, and the four least significant bits are used to build an 'instruction data
value'. .

I function I data
bit 7 4 3 0

The representation provides for sixteen instruction components (one for each function), each with a data
field ranging from 0 to 15.

There are three categories of instruction component. Firstly there are those that specify the instruction
directly in the function field. These are used to implement 'primary instructions'. Secondly there are the
instruction components that are used to extend the instruction data value - this process of extension is
referred to as 'prefixing'. Thirdly there is the instruction component operate (opr) which specifies the
instruction indirectly using the 'instruction data value'. opr is used to implement 'secondary instructions'.

6.1.2 The instruction data value and prefixing

The data field of an instruction component is used to create an 'instruction-data value'. Primary instructions
interpret the instruction data value as the operand of the instruction. Secondary instructions interpret it
as the operation code for the instruction itself.

The instruction data value is a signed integer that is represented as a 32-bit word. For each new instruction
sequence, the initial value of this integer is zero. Since there are only 4 bits in the data field of a single
instruction component, it is only possible for most instruction components to initially assign an instruction
data value in the range 0 to 15. However two instruction components are used to extend the range of the
instruction data value. Hence one or more prefixing components may be needed to create the correct
instruction data value. These are shown in table 6.1 and explained below.

mnemonic name

pfix prefix

nfix negative prefix

Table 6.1 Prefixing instruction components

All instruction components initially load the four data bits into the least significant four bits of the instruction
data value.

pfix loads its four data bits into the instruction data value, and then shifts this value up four places. nfix
is similar, except that it complements the instruction data valuet before shifting it up. Consequently, a se­
quence of one or more prefixes can be included to extend the value. Instruction data values in the range
-256 to 255 can be represented using one prefix instruction.

t Note that it inverts all 32 bits of the instruction data value.
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When the processor encounters an instruction component other than pfix or nfix, it loads the data field
into the instruction data value but doesn't shift it because the instruction encoding is now complete and
the instruction can be executed. When the processor is ready to fetch the next instruction component, it
starts to create a new instruction data value.

6.1.3 Primary Instructions

Research has shown that computers spend most of the time executing instructions such as: instructions
to load and store from a small number of 'local' variables, instructions to add and compare with small
constants, and instructions to jump to or call other parts of the program. For efficiency therefore, the trans­
puter encodes these directly as primary instructions using the function field of an instruction component.

Thirteen of the instruction components are used to encode the most important operations performed by
any computer executing a high level language. These are used (in conjunction with zero or more prefixes)
to implement the primary instructions. Primary instructions interpret the instruction data value as an oper­
and for the instruction. The mnemonic for a primary instruction will therefore normally include a this oper­
and - n - when referenced.

The mnemonics and names for the primary instructions are listed in table 6.2. Their usage and behavior
are given in chapter 7.

mnemonic name

aden add constant

ajwn adjust workspace

ealln call

ej n conditional jump

eqen equals constant

jn jump

Iden load constant

Idl n load local

Idlp n load local pointer

Idnl n load non-local

Idnlp n load non-local pointer

stl n store local

stnl n store non-local

Table 6.2 Primary instructions

6.1.4 Secondary instructions

The transputer encodes all other instructions (secondary instructions) indirectly using the instruction data
value.

Iname
opr

Imnemonic

The remaining instruction component - opr - causes the instruction data value to be interpreted as the
operation code of the instruction to be executed. This selects an operation to be performed on the values
held in the integer or floating-point stacks. This allows a further 16 operations to be encoded in a single
byte instruction. However the prefix instructions can be used to extend the instruction data value, allowing
any number of operations to be performed.
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Secondary instructions do not have an operand specified by the encoding, because the instruction data
value has been used to specify the operation.

To ensure that programs are represented as compactly as possible, the operations are encoded in such
a way that the most frequent secondary instructions are represented without using prefix instructions.

6.1.5 Summary of encoding

The encoding mechanism has important consequences.

• Firstly, it simplifies language compilation, by providing a completely uniform way of allowing a
primary instruction to take an operand of any size up to the processor word-length.

• Secondly, it allows these operands to be represented in a form independent of the word-length
of the processor.

• Thirdly, it enables any number of secondary instructions to be implemented.

The following provides some simple examples of encoding:­

• The instruction Ide 17 is encoded with the sequence

pfix 1; Ide 1

• The instruction add is encoded by

oprS

• The instruction and is encoded by

opr46

which is in turn encoded with the sequence

pfix 2; opr 14

To aid clarity and brevity, prefix sequences and the use of opr are not explicitly shown in this guide. Each
instruction is represented by a mnemonic, and for primary instructions an item of data, which stands for
the appropriate instruction component sequence. Hence in the above examples, these are just shown as:
Ide 17, add, and and. (Also, where appropriate, an expression may be placed in a code sequence to repre­
sent the code needed to evaluate that expression.)

6.2 Generating prefix sequences

Generating a prefix sequence to create an instruction data value is extremely tedious - especially when
the value is negative. Prefixing is intended to be performed by a compiler (or assembler). Prefixing by hand
is not advised!

Normally a value can be loaded into the instruction data value by a variety of different prefix sequences.
It is important to use the shortest possible sequence as this enhances both code compaction and execu­
tion speed. The best method of optimizing object code so as to minimize the number of prefix instructions
needed is shown below.

6.2.1 Prefixing a constant

The algorithm to generate a constant instruction data value e for a function op is described by the following
recursive function.

prefix( op, e) =IF
e < 16AND e ~ 0
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op(e)
e ~ 16

prefix( pfix, e ~ 4); op( e 1\ # F)
e < 0

prefix( nfix, ( ....... e) ~ 4); op( e 1\ # F )

where op( e) is the instruction component with function code op and data field e, ....... is a bitwise
NOT, and ~ is a logical shift right.

6.2.2 Evaluating minimal symbol offsets

Several primary instructions have an operand that is an offset between the current value of the instruction
pointer and some other part of the code. Generating the optimal prefix sequence to create the instruction
data value for one of these instructions is more complicated. This is because two, or more, instructions
with offset operands can interlock so that the minimal prefix sequences for each instruction is dependent
on the prefixing sequences used for the others.

For example consider the interlocking jumps below which can be prefixed in two distinct ways. The instruc­
tions j and cj are respectively jump and conditional jump. These are explained in more detail later. The
sequence

cj +16; j -257

can be coded as

pfix 1; cj 0; pfix 1; nfix 0; j 15

but this can be optimized to be

cj 15; nfix 15; j 1

which is the encoding for the sequence

cj +15; j -255

This is because when the two offsets are reduced, their prefixing sequences take 1 byte less so that the
two interlocking jumps will still transfer control to the same instructions as before. This compaction of non­
optimal prefix sequences is difficult to perform and a better method is to slowly build up the prefix se­
quences so that the optimal solution is achieved. The following algorithm performs this.

Associate with each jump instruction or offset load an 'estimate' of the number of bytes required
to code it and initially set them all to O.

2 Evaluate all jump and load offsets under the current assumptions of the size of prefix sequences
to the jumps and offset loads

3 For each jump or load offset set the number of bytes needed to the number in the shortest se­
quence that will build up the current offset. t

4 If any change was made to the number of bytes required then go back to 2 otherwise the code
has reached a stable state.

The stable state that is achieved will be the optimal state.

Steps 2 and 3 can be combined so that the number of bytes required by each jump is updated as the offset
is calculated. This does mean that if an estimate is increased then some previously calculated offsets may
t Where the code being analyzed has alignment directives, then it is possible that this algorithm will not reach a stable state. One
solution to this, is to allowthe algorithm to increase the instruction size but notallow itto reduce the size. This is achieved by modifying
stage 3to choose the larger of: the currently calculated length, and the previously calculated length. This approach does not always
lead to minimal sized code, but it guarantees termination of the algorithm.
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have been invalidated, but step 4 forces another loop to be performed when those offsets can be cor­
rected.

By initially setting the estimated size of offsets to zero, all jumps whose destination is the next instruction
are optimized out.

Knowledge of the structure of code generated by the compiler allows this process to be performed on indi­
vidual blocks of code rather than on the whole program. For example it is often possible to optimize the
prefixing in the code for the sub-components of a programming language construct before the code for
the construct is optimized. When optimizing the construct it is known that the sub-components are already
optimal so they can be considered as an unshrinkable block of code.

This algorithm may not be efficient for long sections of code whose underlying structure is not known. If
no knowledge of the structure is available (e.g. in an assembler), all the code must be processed at once.
In this case a code shrinking algorithm where in step one the initial number of bytes is set to twice the
number of bytes per word is used. The prefix sequences then shrink on each iteration of the loop. 1 or
2 iterations produce fairly good code although this method will not always produce optimal code as it will
not correctly prefix the pathological example given above.
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This chapter introduces and describes the instructions that perform sequential operations within a process
- Le. instructions that do not depend on or control any other processes. It also describes the integer stack
architecture, and explains how expressions can be evaluated on this stack. (For details on the floating­
point stack and associated instructions, refer to chapter 11.)

7.1 Registers

The following registers are referred to in sequential operations

IptrReg
Areg
Breg
Creg

contains a pointer to next instruction to be executed - the instruction pointer
integer stack register A
integer stack register B
integer stack register C

as well as the following register field

Wptr contains a pointer to current process workspace - the workspace pointer

Wptr is used as a base from which the local variables of a process can be addressed (see section 5.3).

Integer stack

Areg, Breg and Creg are organized as a three word stack. Instructions that load Areg, push Breg into
Creg and Areg into Breg. Instructions that store Areg, pop Breg into Areg and Creg into Breg, leaving
Creg undefined. The effects of this are shown in figures 7.1 and 7.2.

Before

Areg
Breg
Creg

push x onto stack
a
b
c

After

Areg
Breg
Creg

x
a
b

Figure 7.1 Effect of pushing value onto integer stack

Before After
a popped off stack

Areg a Areg b
Breg b Breg c
Creg c Creg undefined

Figure 7.2 Effect of popping value from integer stack

7.2 Local variables and constants, and stack operations

The instructions shown in table 7.1 include: instructions for loading and storing local workspace values
(local variables), instructions for loading and storing bytes and 16-bit objects, and instructions for manipu­
lating the values in the integer stack.
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mnemonic name

Iden load constant

Idl n load local

stl n store local

Idlp n load local pointer

Ib load byte

Ibx load byte and sign extend

sb store byte

Is load sixteen

Isx load sixteen and sign extend

ss store sixteen

rev reverse

pop pop processor stack

dup duplicate top of stack

Table 7.1 Instructions that can be used for loading, storing and manipulating the integer stack

The most common operations performed by a program are loading and storing one of a small number of
variables, and loading small literal values. The Ide n instruction pushes the operandt n onto the integer
stack. This enables values between 0 and 15 to be loaded into the integer stack using a single byte instruc­
tion.

The Idl n, stl nand Idlp n instructions all address words in memory relative to the workspace pointer Wptr.
The first 16 locations can be identified using a single byte instruction. A local variable held in workspace
location n can be pushed onto the integer stack by

Idl n

and the address of that variable can be pushed by

Idlp n

The value of the variable can be set to a value popped from the stack by

stl n

Note that for the purposes of this text, Idl X denotes loading the value from a local variable X. Similarly
Idlp X denotes loading the address of a local variable X, and stlX denotes storing a value into a local vari­
able X. In all three cases, the operand Xcan be can be interpreted as the appropriate constant offset from
Wptr that will enable these primary instructions to locate the actual stored location of a local variable X.

Ib and Ibx load the byte at the address in Areg, into the integer stack.lb replaces the address in Areg with
the byte stored at that address, treating it as as an unsigned integer by setting the twenty-four most signifi­
cant bits in Areg to O.lbx is similar to Ib, but treats the byte as a signed integer in twos-complement format,
and hence sign extends the representation by setting the twenty-four most significant bits in Areg to the
same value as the most significant bit of the byte (see section 4.3). Breg and Creg are unaffected by these
operations.

sb writes the least significant byte in Breg to the location addressed by Areg. It pops Creg up into Areg,
leaving Breg and Creg undefined.

t Where 'operand' is used in the text, this refers to the instruction data value, which is constructed as described in section 6.1.2. In

summary, for an operand between 0 and 15, this can be coded into the data field of a single instruction component (one byte). Oper­

ands outside this range can be coded using pfix or nfix beforehand.




