ihmos:

THE T9000
TRANSPUTER
INSTRUCTION SET
MANUAL

1st edition 1993

r“ THOMSON
MI]@E&@IEILE@FR@MU@S
OMSON Microelectronics Grou

INMOS transputer databook series

Transputer Databook

Military and Space Transputer Databook

Transputer Development and iq Systems Databook
Transputer Applications Notebook: Architecture and Software
Transputer Applications Notebook: Systems and Performance
T9000 Transputer Hardware Reference Manual

T9000 Transputer Instruction Set Manual

T9000 Development Tools — Preliminary Datasheets

INMOS reserves the right to make changes in specifications at any time and without notice. The
information furnished by INMOS in this publication is believed to be accurate; however, no responsibility
is assumed for its use, nor for any infringement of patents or other rights of third parties resuiting from
its use. No licence is granted under any patents, trademarks or other rights of INMOS.

INMOS Limited 1993

® MNMOS', 1ms, occam and DS-Link are trademarks of INMOS Limited.

Ly, 353 THOMEON s 2 registered trademark of the SGS-THOMSON Microelectronics Group.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.
INMOS document number: 72 TRN 240 01
ORDER CODE:DBT9000UMST/1

Printed in ltaly

Contents overview

07 11 (=T 3 iili
Listoftablesc.ccuiniiiiiii i i it eeara i ix
1 Introduction ... i e 1
2 Notation, conventions and terminologyccoiiiinnaan. 3
3 AN OVEIVIBWiitiiiin i aaina e saarnnenasnnrsrsnnnnnsnnnn 5
4 Addressing and data representationo 11
5 Registers, status bits and control bitsol 15
" 6 Instruction representation 21
7 Sequential operationsttt i e 27
8 Concurrent proCesSesvvruuuucrrrrrnnannrerrrnnannrnnsnns 65
9 Protection and memory managementciiiiiiiirannanns 97
10 Thetrapmechanismc.ciiiiiiniiiieinn i ieeiiiennannnnnnns 107
11 Floating-point instructionscccoiiiiiiiiiiiiiiiiiieennnns 125
12 Channelsciiiiiiiiiii it it n s e 151
13Processstateccociiiiiiiiiii i i i s 189
14 Debugging mechanismscoiiinrriiininnrrrrnnnnnnrennnns 207
15 Cacheinstructionsc. i i s 21
A T9000 instruction set referenceguideccciiieiieianinn. 215
B T9000 instruction set sorted byop-codecceiiiiiennnnn 455
Instruction indeXcoiiiiiiiin it aincran s asnsnnaannnns 463

T9000 transputer instruction set manual

Contents

Listoftablesooiimiii i it e et nanna e
1 Introductiont e
2 Notation, conventions and terminologycccciiiiinnaiinns
3 AN OVeIVIEW .. .vtiniiiin i ieanin s anann s eaananssnnnnnnnnnsrennns
3.1 PrOCESSES . .
3.1.1 The occam process modelt it

3.1.2 Implementation of processest

3.2 COMMUNICALION ...ttt e

£ 70 N I =T oL
3.4 Configuration of control system
3.5 Instructions and pipelining

4 Addressing and data representation il
4.1 Word address and byte selector

4.2 Ordering of iNformationccoo i e

4.3 Words, objects and signed integersc. i
4.4 Unaligned address detectiono i

5 Registers, status bits and control bitscevevernnenn..
5.1 Maching registers i e
511 Stateregisters ... e

512 Other machineregisters o

52 Process status and control bits

5.3 The process descriptor and its associated registerfields

6 Instruction representation i i iiiii i
6.1 INStruction enCOdiNg vt e
6.1.1 An instruction componentt e

6.1.2 The instruction data value and prefixing

6.1.3 Primary InStructions i e

6.1.4 Secondary instructions e

6.1.5 Summary of encoding e

6.2 Generating prefiXx SEQUENCESottt e
6.2.1 Prefixingaconstant s

6.2.2 Evaluating minimal symbol offsets L.

7 Sequentialoperationsl i i e s
7.1 Registers

7.2 Local variables and constants, and stack operations000..

7.3 Integerstack evaluation

© o N ~Noo g O

11

1
11
11
12

15

15

15
17
18

19

21

21

21
21
22
22
23
23
23
24

27

27
27
30

T9000 transputer instruction set manual

7.4
7.5

7.6
7.7

7.8

7.9

7.10
7.11

712

7.13
7.14
7.15

7.3.1 Loading operands s
7.3.2 Tablesof constants ... e
7.3.3 Single length signed integer arithmetic
7.3.4 Single length modulo integer arithmetic
7.3.5 UNary minus e
7.3.6 Fractional arithmetic i
7.3.7 Bitwise logicand shifts i
Non-local variables ...t
Arrays and SUDSCHIPESvut i
7.5.1 Countingbytesandwords e
752 Forming addresses e
753 AT Y L
7.5.4 Transferringarray elementsuuuiii i
Multiple assignment e
Comparisons and JUMPS ce ettt
7.71 Representation oftrueandfalset
7.7.2 COMPANISONS ..\ttt et ettt e s
7.7.3 Implementation of languages with different representations of
trueandfalse
7.7.4 Boolean negation e
7.7.5 Jump and conditional jump ...
7.7.6 Evaluation of boolean expressionsccoiiiiiiiiiiiiiiaa.n
7.7.7 Conditional transfer of control i,
7.7.8 Compiling CASE statementst
Long arithmeticand shifts oo i i
7.81 Multiple length addition and subtraction
7.8.2 Multiple length multiplication and division
7.8.3 Multiple length shifts i
7.8.4 NOrmalizingt s
Object length CONVErsion ... e
791 Conversion between 8/16-bit object and word representations
7.9.2 Conversion between single word and double word representations
7.9.3 General conversion between N-bit object and word representations
Replication
PrOCEOUNES e
7.11.1 Adjusting Workspace ... s
711.2 Calland returno e
7113 Use of (WPIr+0) ... e
7.11.4 Loading parameters ...
7115 Thestaticchain e
7.11.6 Othercallingtechniques it
7.11.7 Other workspace allocation techniquescoout.
FUNCHONS ... e
7121 Callingafunction ... e
7122 Singleresultfunctions e
Error checking instructions o i
Device access iNStructions ...
Specialist inStructions e
7.15.1 Two dimensional block move oo

7.15.2 Bit manipulation and CRC evaluationo,

32
33
34
34
35
35
35
36

36

36
37
38
39
39

40

41
41

41
41
42
42
43
44
46
a6
47
47
49
49

49
50
50
51

52

52
52
53
53
53
54
56
56

57
57
57

59
61

61
63

Contents v
8 CONCUIreNt ProCeSSeSvviiiiierrrcannrrreaannsesnaceasrssnnnnnn 65
8.1 {4041 o= Lo T 65
8.1.1 Process workspace data structure i, 65

8.1.2 Size Of WOTKSPACEottt i e 65

8.2 Scheduling and Priorityoorriei i e 66
8.2.1 The current process, the null process, and scheduling lists 66

8.2.2 Descheduling e e e 67

8.2.3 - Rescheduling after communication.................. 67

8.24 Clocks and timeslicingt i 68

8.2.5 Priorities and interruption e 68

8.2.6 Scheduling/descheduling of L-processesccviiennn.. 69

8.3 Initiation and termination of Processes i e 69
8.3.1 Scheduling parallel processesouviiiiiiii i i 70

8.3.2 Other scheduling instructions ittt 73

8.4 Channel communication, synchronization and data-transfer 73
8.4.1 Channels 73

8.42 Synchronization i 74

8.4.3 CommUNICAtIoONt e 75

8.4.4 Implementation of channels oL 79

8.5 TN .. e e 83
’ 8.5.1 Pastand futlureot e 83
8.5.2 Readingthe clockc..iiiiiiiii it 84

8.5.3 Timer iNPUt ... e e 84

8.5.4 . Timerlists e 85

8.6 SEMAPNOIES . ..t e 85
8.7 Alternative input 86
8.7.1 Theoccam ALT CONSIIUCE oot 86

8.7.2 The ‘alternative sequence’ottt 87

8.7.3 Execution of the alternative sequence coiviiinn. 89

8.74 Compilingan ALT statement o it 91

8.7.5 Trapping degenerate alternativeso, 92

8.7.6 Replicated ALT e 92

8.7.7 PRI AL e e e 93

8.8 Resource channels e e e 93
8.8.1 Theclient-servermodel i i 93

8.8.2 Resource mechanism and data structures 95

9 Protection and memory management iiiiiiieeaans 97
9.1 Themechanism e 97
9.2 Instruction protection — privileged instructions 0o .. 97
9.3 Address translation, memory protection, and stack extension 98
9.4 RegiONS ..o 99
9.5 Regiondescriplors 101
9.6 Registers ... 102
9.7 DatastrUCIUresot 102
9.7.1 P-state data structure (PDS) 103

9.7.2 Region descriptor data structure (RDDS)ccoviiiiieinnnn. 104

9.8 INSHUCHIONSt e 105

Vi T9000 transputer instruction set manual

10 Thetrapmechanismc.ciiiiiiiiiii i iaiia i eanasnenns 107
10.1 Thetrap-handler. i 107
10.1.1 The THDS (trap-handler data structure) 107
10.1.2 Sharing a trap-handler data structure 110
10.1.3 Thenulltrap-handler i et 110
10.2 State storage and retrieval when atrapistaken 110
10.3 Trap causes and signalling of €rrorst 113
10.3.1 TraP CAUSES ..o v ittt ettt et e 113
10.3.2 Signallingof errors 116
10.3.3 Nulltrap causes 121
10,4 INSIUCHIONS ... e 122
11 Floating-point instructions iiiiiiiiiiecrianenan 125
11.1 IEEE floating-point arithmetic o 125
11.2 The implementation of IEEE floating-point arithmetic on the IMS T9000 125
11.2.1 Formats ... 125
11.2.2 Floating-point operations ...t 125
11.2.3 EXCEPHONS ... 126
11.2.4 Not-a-Number representations (NaNs), 126
11.2.5 Implementation of underflow i, 127
11.3 Floating-point stack e 127
11.4 Loading and storing floating-pointvalues i 128
11.4.1 Loading 128
T1.4.2 SHOMNG ..ot 129
11.5 Compiling floating-point expressionsc..ovii it i, 130
11.6 Floating-pointroundingmode i 131
11.7 Floating-point arithmetic instructions L. 131
11.7.1 Dyadic operations i 131
11.7.2 Monadic operations i 132
11.8 Remainder and range inStructions i 133
11,9 COMIPANSONS . o . ittt e et 136
11.9.1 Comparison instructionsc it e 136
11.9.2 Implementation of IEEE comparisonso 137
11.9.3 Someanomaliesoviiiiiii e 139
1110 Class @nalysisttt e e 139
1111 TYP@ CONVEISION . .o\t e e e e e 139
11.11.1 REALto REAL CONVErSIONSot e 140
11.11.2 REALOINT CONVErsions ...t 140
11.11.3 INTto REAL CONVEISIONS vtet et e e 141

11.12 Floating-point state 143
11.12.1 Floating-point status word 143
11.12.2 Saving the floating-pointstate 143
11.12.3 Instructions for saving and loading floating-pointstate 144
11.13 Exception handling mechanism i i 145

11.13.1 State delivered by floating-point exception

— Implementing an |IEEE (trap) handler 146
11.13.2 Someanomalies ... e 147
11.14 Implementation of NaNs i i 148

Contents Vii

12 Channelsooiiiiiiiii i iiaiiin i te et e n s 151
12.1 Compilation and configuration of channels —an overview 151
12.2 Externalchannels e 152

12.2.1 Virtualchannels 152
12.2.2 Byte-streamchannels i 155
12.2.3 Eventchannels i e s 155
12.3 Channel states and modes of operation i, 157
12.3.1 Normal channelstateso i i 157
12.3.2 Resource channelstates i, 157
12.3.3 Virtual and event channel activationmodes 157
12.4 Channel configuration and mappingcoviii i e 157
12.4.1 Configuration register instructions oL 159
12.4.2 Configuration registers used for memory mapping 160
12.4.3 Virtual link mapping functions i i 160
12.4.4 Packetheaderlabellingo 164
12.5 Other configuration registers for settingup linksand VCP 165
12.6 Setting up the virtual link control blocks o i i i 166
12.6.1 Instructions for settingupa VLCB 166
12.6.2 Nullheader 169
12.6.3 AN EXamPle . ..o 169
12.7 Resource channels 173
12.7.1 Implementation of internal resource channels 173
12.7.2 Implementation of external resourcechannels 173
12.7.3 Reversechannel i 174
12.7.4 Instructions for setting and using the resource mechanism 175
12.7.5 Usageofresourcechannelsccouiiiiiiiinininnnnnnns 178
12.8 Resettingand stoppingachannel i i i 182
12.8.1 Dealing with a communication failure 182
12.8.2 Recovering the use of a virtual channel which is in operation 184
12.9 Channel instructions accordingtousagec.coiirrii i, 185
12.9.1 Instructions that can be appliedto allchannels 185
12.9.2 Instructions that can be applied to resource channels 186
12.9.3 Instructions that can be applied to externalchannels 186
12.9.4 Instructions that can be applied to virtual channels 188

13 Process stateco it i i r e 189
13.1 Context SWitChing 189
13.2 Partial context switch — descheduling and trappingia. 189

13.2.1 Descheduling and execution of the nextprocess 189

13.2.2 TraPPING . ov e 191

13.2.3 Instructions that are used to store and retrieve additional state 196

13.3 Full context switch —interruption i i 198
13.4 Restarting an interruptedprocess P 200
13.5 Enabling and disabling interruption and timeslicing, and forcing a timeslice 202
13.6 Scheduling list and timer list queue manipulation 203

14 Debugging mechanismscoiiiiiiiiiiiiiinninsrisiinnnnnas 207

141 BreakpointS . ..o s 207

Viii T9000 transputer instruction set manual

14.2 Single-steppPingttt e e 207
14.2.1 Single-stepping @ P-processcciii i 207
14.2.2 Single-stepping an L-processccoviiiiieiiiiineninninnan. 208
1423 Early'single-step’trap ...t e 208
14.3 WatChpOintS ... i 208
14.3.1 Watchpointing a P-processcooiiiiiiiii i 209
14.3.2 Watchpointingan L-processo i 209

14.4 Single-stepping and watchpointing an L-process — some special considerations 209

15 Cacheinstructionsttt ittt i eeaaaeas 211
15,1 Workspace cache i e 212
152 Main Cache 212
153 INSHUCHONS e e e 213

A T9000 instruction set referenceguideccciiiiiiiiiiinaann. 215
AA INtrodUCHiONo e e 215

A1 Instruction name e 215
A1.2 GO0 .t e e 215
A1.3 DesCriPtiON ..o e 215
Al4 Definition 216
A.1.5 Errorsignals ... 216
A.1.6 COMMBNES . . e e s 217
A2 Notationo i 217
A21 Thetransputerstate i e 217
A22 General .. e 218
A.2.3 Undefinedvalues oo 218
A24 Data types . . . e 218
A25 Representing memoryt e 219
A2.6 The configuration subsystem i e 220
A2.7 CoNStants 220
A.2.8 OPEIatOrS ..ottt e R, 224
A29 FUunCtions e 227
A.210 Conditions toinstructions ... 227
A3 Instruction setdefinitions 229

B T9000 instruction set sorted byop-codecciiiiiiinnn. 455
B.1 Primary funclions i e 455
B.2 Secondary funCliONS it e 455

B.2.1 Instructions encoded without using prefix 455
B.2.2 Instructions encoded using prefixo i i 456
B.2.3 Instructions encoded using negative prefix il 460
Instruction index ... i i ittt it iaa e 463

List of tables

Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

3.1
5.1
5.2
5.3
5.4
5.5
6.1
6.2
7.1

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Definition of errors signalled by the IMST9000c.ovviiniennnnnn.

Registers that define the machine state —

stateregisters

Extra registers that define the P-process state — state registers

Register groupnames
Other machine registers
Process status and control bits
Prefixing instruction components
Primary instructions

Instructions that can be used for loading, storing and

Register loading sequences

manipulating the integer stack

Single length signed integer arithmetic instructions
Single length modulo integer arithmetic instructions
Special instruction for fixed point arithmetic fractional multiply

Bitwise logic and shift instructions
Non-local load and store instructions ...

Instructions that provide processor wordlength characteristics

Subscript addressing instructions
instruction that performs block transfer . .

Comparisons and conditional behavior instructions

Long arithmetic instructions
Long arithmetic instructions
Long shift instructions

Instruction for normalizing double lengthvalue,
Instructions used for converting between bytes, 16-bit objects and words

Instructions for conversion between single word and double word representation

Instructions for conversion between word and N-bit object representation

Conditional replication instruction
Loop end data structure
Instructions for implementing procedures

Instructions that may explicitly signal IntegerError

Device access instructions

Two dimensional block transfer instructions
Instructions that perform bit manipulation and CRC evaluation
Word offsets and names for data slots in a L-process workspace

List of descheduling points

Instructions which relate to the timer and timeslicing

Timeslicingpoints
List of interruptible instructions

Instructions for starting and terminating processes

Paraliel process data structure
Fixed length i/o operation instructions . . .
Variable length i/o operation instructions

16
17
17
18
19
21
22

28
33
34
34
35
35
36
36
37
39
41

46
47
48
49
49
50
50
51

51

52
58
60
61

63
65
67
68
68
69
70
70
76
77

X T9000 transputer instruction set manual
Table 8.10 Single byte transfer instructions 79
Table 8.11 Instructions which use the on-chipclocks oo, 83
Table 8.12 Word offsets and names for data slots in a semaphore data structure 86
Table 8.13 Semaphore operation instructions i i 86
Table 8.14 Instructions required to implement an alternative sequence 87
Table 8.15 Resource data structure (RDS)ot 96
Table 8.16 Resource channel data structure ian. 96
Table 9.1 Region addressest 99
Table 9.2 Registers used by protection mechanism 102
Table 9.3 P-state data structure (or PDS) i 103
Table 9.4 Region descriptor data structure oL 105
Table 9.5 Instructions used for switching to and from protected mode e 105
Table 10.1 Trap-handler data structure (or THDS) ... 108
Table 10.2 General trap causes and their abbreviations, 113
Table 10.3 Trap causes that can occur simultaneously 114
Table 10.4 Bit mapping of trap reason delivered inAreg 115
Table 10.5 Possible trap reasons as loaded into Aregwhen aistaken 116
Table 10.6 Definition of errors signalled by the IMST9000 117
Table 10.7 Flags and the error signals that cause themtobeset 118
Table 10.8 Error trap enable bits and error signals that cause a trap when bitsareset 118
Table 10.9 Effect of signalling errors e 119
Table 10.10 Possible error types as loaded into Breg when atrapistaken 120
Table 10.11 Instructions used in conjunction with trap-handling 122
Table 11.1 Signals raised when an |IEEE exceptional condition is detected 126
Table 11.2 Instructions which are used to directly manipulate the floating-point stack 128
Table 11.3 Floating-point load instructionso, 128
Table 11.4 Instructions for loading floating-pointzero oL 129
Table 11.5 Floating-point store instructions i 129
Table 11.6 Rounding mode setting instructions o i 131
Table 11.7 Arithmetic instructions with two floating-point operands 131
Table 11.8 Floating-point load and operate instructions 132
Table 11.9 Arithmetic instructions with one floating-pointoperand 132
Table 11.10 Signals raised and result of fpsqrt instruction 133
Table 11.11 Floating-point remainder and range reduction instructions 133
Table 11.12 Signals raised and result of fprem instruction 134
Table 11.13 Signals raised and result of fprange instruction L 135
Table 11.14 Floating-point comparison instructionso Ll 136
Table 11.15 Results of comparison instructions for all possible relations 137
Table 11.16 Signals raised by comparison instructions, for various operand conditions 137
Table 11.17 Code sequences that should be used to implement IEEE comparisons 138
Table 11.18 Class analysis instructionsc.c.oiiiiiiiiie i, 139
Table 11.19 Real to real conversion instructions i i 140
Table 11.20 Real to integer conversion instructions i it 140

List of tables Xi

Table 11.21 Integer to real conversion instructionso i, 141
Table 11.22 The format of the floating-point statusword 143
Table 11.23 The floating-point rounding mode fieldvalues 143
Table 11.24 The floating-point type IOl VAIUBS ...ttt 143
Table 11.25 Floating-point state instructionso i i 144
Table 11.26 Floating-point state data structure il 145
Table 11.27 Effect of signals raised due to detection of exceptional conditions 145
Table 11.28 Exceptional conditions and errortypes i 146
Table 11.29 Quiet NaNs generated when FPInvalidOp is signalled but no trap is taken 148
Table 11.30 Behavior of monadic floating-point operations for NaN input 149
Table 11.31 Behavior of dyadic floating-point operations for NaN inputs 149
Table 12.1 Configuration instructions i e 159
Table 12.2 Bit fields in registers VCPIink0-3Modeccvviiiiiin i, 165
Table 12.3 Bit fields in the VCPcommand registero .. 165
Table 12.4 Instructions used for setting up and manipulatingthe VLCB 166
Table 12.5 Meaning of value loaded into Creg by readbfr 168
Table 12.6 Instructions used for resource mechanism it 176
Table 12.7 Bit settings for virtual/event channel statusinAreg 187
Table 12.8 Bit settings for byte-stream channel status inAreg 188
Table 13.1 State register values when a process is descheduled 190
Table 13.2 Register values after loading state for execution of process 190
Table 13.3 State register values before and after an L-processtrap 191
Table 13.4 State register values before and after a tret instruction 192
Table 13.5 State register values before and after a supervisortrap 193
Table 13.6 State regiéter values before and after a goprot instruction 194
Table 13.7 Instructions for storing/retrieving extrastate 196
Table 13.8 Block move datastructure 197
Table 13.9 Shadow register instructions e 198
Table 13.10 Instructions for restarting interrupted processes o oL 201
Table 13.11 Timeslice and interrupt instructionso it 202
Table 13.12 Instructions used to manipulate scheduling and timerlists 204
Table 151 CacheinStructionsc.eeiuniiniiiie it 213
Table A Loop end data structureo e 220
Table A2 Word offsets and names for data slots in a L-process workspace 220
Table A3 Parallel process data structure i 220
Table A4 Word offsets and names for data slots in a semaphore data structure 221
Table A5 Resource data structure (RDS) ...t 221
Table A.6 Resource channel data structureo i i i 221
Table A7 P-state data structure (or PDS) i 221
Table A.8 Region descriptor data structureol 222
Table A9 Trap-handler data structure (or THDS) ...t 222
Table A.10 Floating-point state data structure il 222

Table A.11 Block movedatastructure i e 223

Xii T9000 transputer instruction set manual
Table A.12 Constants used in the instruction descriptions 223
Table A.13 Constants used withinthe T9000ottt e 224
Table A.14 Deviceidentity values e 224
Table A.15 Operators used in the instruction descriptions 226
Table B.1 Instructions encoded as primary functions oot 455
Table B.2 Instructions encoded without usingprefix 456
Table B.3 Instructions encoded using prefix 460
Table B.4 Instructions encoded using negative prefix 461

1 Introduction 1

1 Introduction

This book describes each instruction in the IMS T9000 instruction set and explains the context within
which that instruction is used. It is essentially divided into two parts: a narrative that introduces each
instruction within a logical group of instructions, and a reference section that gives a code-like specification
of each instruction with a cross reference to the narrative.

[For details of the T9000 products and devevlopment tools, refer to The T9000 Hardware Reference
Manual.]

This is a useful document to all transputer users, but it is aimed in particular at the following.

« the high-level programmer who wants to use low-level code inserts to enhance the performance
of his code

« the compiler writer

« the operating system or run-time kernel writer
« the writer of high-level debugging tools

o the writer of run-time support libraries

e the writer of bootstrap code

The high-level programmer in a language such as C might find that, either his particular compiler is limited
in certain respects, or a particular piece of code is time critical, and may hence need to write a low-level
code sequence. Provided that the compiler/linker system that he is using enables him to write instruction
level sequences into his program, he can overcome such difficulties. For this though he needs a good
understanding of the capabilities and range of the entire instruction set.

A compiler writer needs to understand the exact action of each instruction in order to write the code gen-
eration part of his program.

The writer of a run-time kernel needs to understand the transputer’s scheduling mechanism and the
instructions which enable him to implement his own scheduling/interrupt scheme.

Similarly the writer of run time support libraries may need to write time critical code at assembly level.

The writer of a debugging tool needs to be able to control low-level context switching (e.g. forimplementing
breakpoints/single-step) and needs to be able to access and manipulate certain registers and data struc-
tures.

Bootstrap code must usually be very compact code and requires some machine specific instructions
which are not available in high-level programming languages. For these reasons, a bootstrap program is
written at assembly code level and the writer of the program needs to be familiar with the processor’s
instruction set.

In the narrative part of the book, the art of programming the IMS T9000 is considered subject by subject.
Each subject introduces certain instructions. This provides the reader with the purpose for the instructions
as they are introduced and describes any environmental issues, such as data structures and register/data-
structure pre-conditions. Some of these subjects are of interest to all IMS T9000 users while some are
of specific interest to certain categories of reader.

Chapters 3 to 8 should be read by all transputer programmers who are likely to need to know anything
about the instruction set. The basic concepts of the IMS T9000 are introduced, including: addressing,
instruction representation, processes, registers, communication, and the instructions which are essential
for sequential and concurrent programming. These chapters may also be of interest to high-level program-
mers or system designers who would like a general background on how the IMS T9000 works.

Chapters 9 and 10 are concerned with running code under protection, implementing a memory manage-
ment scheme, and handling errors or unexpected behavior. They are of primary interest to operating sys-
tem writers.

2 T9000 transputer instruction set manual

Chapter 11 describes the support for floating-point arithmetic and is of interest to compiler writers, for im-
plementing mathematical run-time library support, and to programmers who are required to write IEEE
floating-point exception-handlers.

Chapter 12 discusses how channels are used to communicate between transputer processes. In particu-
lar, it describes virtual channels, event channels and resource channels. This information is needed if writ-
ing a program to configure a network of transputers (a configurer).

Chapter 13 overviews the various context switches and associated state storage and retrieval mecha-
nisms. These include traps, high-priority process interruption (and return), descheduling and timeslicing.
Instructions are described which enable process queues to be manipulated and interrupts/timeslices to
be enabled/disabled.

Chapter 14 discusses the various mechanisms available for monitoring the behavior of a process as it
runs, including: breakpointing, watchpointing, single-stepping. The instructions and mechanisms here are
of interest to the programmer implementing debugging tools.

Chapter 15 provides a brief overview of the memory architecture and describes the instructions that can
be used to invalidate and flush the main cache.

Appendix A is the instruction reference section. It lists all the IMS T9000 instructions in alphabetical order.
For each instruction, there is a short English description, a pseudo-code description, and list of pre-condi-
tions, a list of any conditions which may be set by the instruction, and cross reference to the page(s) in
the narrative section of the book where the instruction is introduced.

Appendix B provides a tabulated list of all the instructions in ascending order of operation codes. This list
is useful for disassembly of instruction code. That is, it provides the user with the information needed to
convert from a hex code sequence to an instruction code sequence.

2 Notation, conventions and terminology 3

2 Notation, conventions and terminology

This chapter introduces and explains some of the conventions, terminology and special notations used
throughout the book.

Instructions

The mnemonic and full name for each IMS T9000 instruction are given when the instruction is first
introduced. All succeeding references to instructions use the mnemonic which is written in italic font and
lower case —e.qg. st/ n.

Registers

The registers referenced in this text are those described in section 5.1. Usually a reference to a register
uses its textual description. For example, ThReg is referred to as the ‘trap-handler register’. Sometimes
however this would be unwieldy and the shortened name is given (e.g. Areg is usually used in preference
to the integer stack A-register). Registers are written in bold font with an initial capital letter.

Undefined values

In the definition of some instructions the values left in certain registers are said to be undefined. This
means that those values are implementation dependent, and are not even guaranteed to be consistent
within an implementation. No application should attempt to make use of the value that any version of a
transputer implementation happens to provide.

Constants

Some special constant names are used throughout the book. A full list of these is given in tables A.12 and
A.13 (appendix A). They are written in italic font — e.g. BytesPerWord.

Bits

Where a particular bit value is established by the machine, the text usually explicitly states the value to
which it is set. For example ‘the trap-handler in use bit is set to 1’. Occasionally however, where this be-
comes cumbersome, the convention is used that the word ‘set’ implies ‘set to 1’ and the words ‘reset’ or
‘cleared’ imply ‘setto 0.

Data structures

Some instructions use data structures for storage and retrieval of data. Data structures are introduced
in the text as required, but the entire set of data structures is duplicated in appendix A. The following ex-
plains the conventions used to describe a data structure.

A data structure within the context of this document is a contiguous block of store that comprises a number
of ‘slots’. A slot normally contains a machine word. The address of the structure is a-pointer to a location
in the vicinity of this block. Each slot has a defined word offset from that address. In a description of the
data structure, a name for each slot is provided as well as an offset. Slots are then referred to by name.
Slot names are written in bold font.

For example, the process workspace data structure is presented in section 5.3. Given this, the phrase
‘the pw.lIptr slot of the process workspace data structure’ refers to the slot addressed by the process work-
space (data structure) offset by —1 word (i.e. the process workspace byte address minus 4).

Program notation

The occam language is used in this book both as a ‘source language’ to represent program constructs
and program fragments to be compiled, and as a ‘meta-language’ to represent algorithms to produce com-
piled code and other examples. These two uses of occam are distinguished by the use of an italic font
for meta-language occam as in

X:=a+b

4 T9000 transputer instruction set manual

and a teletype font for source language occam as in
X :=a+b

A detailed knowledge of occam is not required. Unfamiliar constructs and operations are explained before
use. However, an important semantic difference between occam and most other high level languages,
is that statements may be executed sequentially or concurrently. This is shown syntactically by use of SEQ
and PAR constructs.

For example, the two statements in

SEQ
a::=a+1
b :=a+b
are executed sequentially. This is implicitly assumed in most high level programming languages, in which
a group of statements (without jumps) are executed in the order in which they are encountered. This

compares with the occam code

PAR
a:=a+1
b:=b +1

in which the two statements are executed concurrently.
More generally

SEQ
Spred
PAR
Py
P
Pn
SSUCC
means that the processes which are enclosed by the PAR construct (Py, P» ... P,) are run concurrently,
but as a whole are run sequentially between the execution of Spreq and Ssyec. In practice the processes
may not be able to execute simultaneously (unless there is more than one CPU), and so a looser specifica-
tion of the PAR construct is: none of the processes within the construct may start until the predecessor
process (Spreq) has been executed, and successor process (Ssycc) may not execute until all the processes
within the construct have terminated. Note that this does not say anything about when or where these
processes are executed.

Note that an italic font is used for ‘meta-variables’ inside source language — e.g. the processes F; in the
above.

The source language occam is the occam 2 language as defined in the occam 2 Reference Manual. The
meta-language occam is based on occam 2 with some restrictions removed and extensions added to en-
able certain algorithms to be expressed more simply.)

Footnotes

Footnotes are used occasionally to provide more detail and background information to avoid breaking the
flow of the main text.

Where there is just a single reference to a footnote, the footnote is positioned at the bottom of the page
on which that reference is made. It is referenced using a symbol superscript such as: 1, 1, ¥, .

Where there is more than one reference to a footnote, the footnote is positioned at the end of the chapter
in which the references are made. It is referenced using a numeric superscript.

3 An overview 5

3 An overview

This chapter gives an overview of the IMS T9000 and introduces some of the concepts used thfoughout
the book. No detailed explanation is given because each of these topics is discussed in later chapters.

The IMS T9000 transputer is a 32-bit microprocessor with on-chip hardware support for floating-point
arithmetic. As such a single unit can be used as a very fast sequential microprocessor. However, there
are a number of advanced features which characterize the IMS T9000.

* Ahardware scheduling mechanism means that the processor can appear to run many processes
concurrently. At a high level, this can be achieved either with an operating system kernel, or with
a language which has a model of concurrency (e.g. occam, parallel C).

¢ On-chip serial communication engines (data links) make it easy for connected IMS T9000 pro-
cessors to communicate data and implement true concurrency.

¢ A separate communications processor multiplexes messages across these serial links. Any
number of messages can be simultaneously transmitted to any number of external destination
processes, and the means by which this is achieved is transparent to the programmer.

* An easy 1o use trap-handling mechanism provides for error detection and debugging, and sup-
ports |IEEE floating-point exception handling.

* There is a workspace cache which allows very fast (single-cycle) access to local variables.

¢ There is on-chip memory which can be used as cache, fast static RAM or a combination of the
two. This gives accelerated access to non-local code or data.

« A pair of control links is provided for transfer of control and boot information. These are entirely
independent of the data links, hence enhancing system reliability.

* Aninternal pipelined architecture means that instruction sequences can be grouped so that sev-
eral operations can occur simultaneously.

This chapter introduces some of these features and the concepts that utilize them.

3.1 Processes

This section firstly describes the occam process model, and secondly introduces the IMS T9000 imple-
mentation of processes.

A single transputer can efficiently implement the occam process model, by sharing processor time be-
tween concurrent processes. Also a network of transputers can be used to implement the occam process
model with improved performance, by running communicating processes on different transputers.

Note that although the transputer has been carefully designed to implement the occam model of pro-
cesses, the user is not restricted to this process model. For example communication between processes
on the same IMS T9000 tranputer can be achieved via shared variables protected by semaphores.

3.1.1 The occam process model

In the occam process model, a process starts, performs a number of actions, and then either stops or
terminates successfully. Each action is either an assignment, an input or an output. An assignment sets
the value of a variable, an input receives a value from a channel, and an output sends a value to a channel.
The variable set by an assignment should not be accessible to any other process — the only method of
transferring information from one process to another should be by using a channel.

At any time between it starting and terminating successfully a process may be ready to communicate on
one or more of its channels. Each channel provides one way communication between two processes.

6 T9000 transputer instruction set manual

Communication is synchronized. If a channel is used for input in one process and output in another then
communication takes place when both processes are ready. The inputting and outputting processes then
proceed with the value output being copied from the outputting process to the inputting process.

Externally a process may be seen as being a ‘black box’ that, after starting, may or may not wish to commu-
nicate along one or more of its channels until it terminates successfully. In order to perform the task it is
designed to achieve, a correctly functioning process normally communicates data with the processes con-
nected to it, and then terminates successfully. However, a process can indefinitely fail to communicate.
This failure of communication can be due to internal deadlock (where all internal processes are waiting
to communicate with each other), internal livelock (where internal processes are only communicating with
themselves and never communicate with the outside world) or due to the process ceasing to execute with-
out terminating successfully (in occam this is the STOP process).

The internal state of a process is not visible to the outside world and all interactions with the process occur
via channel communication. This process model removes the problems associated with variable sharing.

3.1.2 Implementation of processes

A single IMS T9000 can implement the occam model of a process, and can simulate concurrent execution
of a number of such processes.

At any point in time a transputer can only be executing a single process. This is referred to as the ‘current
process. The current process usually executes for a finite petiod of time. It ceases to be the current pro-
cess if it is descheduled (i.e. stops executing).

The following may cause the process to deschedule.

« Execution has reached a point where the process must wait for action by another process (e.g.
a communication or semaphore).

« Execution has reached a point where the process must wait for a timer.

¢ The process has had its fair share of execution time and must temporarily give way to another
process. When this occurs, the process is said to have been ‘timesliced’.

* The process has executed an instruction which explicitly forces the current process to be
stopped or terminated, or forces another process to start executing.

Sometimes the current process must give way temporarily to a more urgent (higher priority) process which
requires execution. This is referred to as an ‘interrupt’.

Because more than one process may be ready to execute, the transputer provides scheduling lists. When-
ever a process becomes ready to execute, it is placed at the end of a scheduling list. When this occurs,
the process is said to be ‘scheduled’. The processor automatically timeslices the execution of scheduled
processes, and so over a period of time, this gives the appearance of more than one process running si-
multaneously. The set of processes that is either executing, interrupted or on a scheduling list, is referred
to as the ‘active set’.

Two scheduling lists are maintained by the transputer: a list of low priority processes and a list of high
priority processes. When the processor deschedules the current process, it loads the state of the process
at the front of the high priority scheduling list, or if there are no high priority processes scheduled, it loads
the state of the process at the front of the low priority scheduling list. It then starts to execute that process.
No low priority process can be executed until the high priority list is empty.

By default, whenever there is a process on the high priority list, any currently executing low priority process
is interrupted. However a low priority process can explicitly disable interruption and timeslicing on the IMS
T9000. A high priority process cannot be timesliced or interrupted.

The processor can monitor a process for certain error conditions, debug conditions etc. and can optionally
cause a context switch or cause the machine to halt. When this occurs, the process is said to have taken
a ‘trap’.

3 An overview 7

A T9000 process can run in trusted mode or in protected mode. In trusted mode, it is called an L-process,
and in protected mode, it is called-a P-process. A process is always an L-process when it is loaded for
execution. It may become a P-process while it is executing, but always reverts to an L-process before it
is descheduled. An L-process can implement local trap-handling, by having a trap-handler associated with
it. The trap-handler is discussed later, but amongst other things, it contains status and control bits for the
L-processes which use it.

The capacity to run a process under protection (in protected mode) enables the programmer to write-pro-
tect and/or execute-protect regions of memory. When a process is running in protected mode, the L-pro-
cess that invoked the mode is referred to as the ‘supervisor’ (or ‘stub’) of the P-process which is currently
executing. The protected mode also provides memory mapping, by mapping logical addresses to a physi-
cal address. Some of the IMS T9000 instructions cannot be executed under protection. These are called
‘privileged instructions’.

3.2 Communication

Processes communicate via channels. A channel is a unidirectional point-to-point medium of communica-
tion, which may be between processes running on the same transputer (internal), between processes on
different transputers (external), or between a process on a transputer and an external device. Internal
communication is achieved via memory transfer. External communication is achleved via special purpose
on-chip hardware, known as (data) links.

The instructions used for communication are the same, regardless of whether the channel is internal or
external; the channel address is used by the processor to determine the action to be performed. This al-
lows a procedure to be compiled without knowledge of whether its parameter channels are implemented
by memory locations or by external links.

Channel communication incorporates synchronization and data-transfer. Synchronization ensures that
data-transfer takes place only when both the inputting and outputting processes are ready. When one of
the two processes wants to communicate (using an input or output instruction), it must wait until the se-
cond process is also ready.

There are three synchronization mechanisms available when using channels on the IMS T9000.

« Simple synchronization — This is the simplest form of synchronization. The first process to at-
tempt communication (input or output) is descheduled and the processor starts to execute the
next process on the scheduling list. When the second process becomes ready (performs an out-
put or input), the channel is ready for data-transfer.

¢ Alternative synchronization — For processes that want to select an input communication from
several possibilities, the IMS T9000 provides a series of instructions known as the ‘alternative
sequence’. In this mechanism one of several possible communication channels is selected for
data-transfer.

* Resource synchronization — For a client-server model, the IMS T9000 provides a resource
mechanism, whereby certain channels can be set to ‘resource mode’. A queue of clients can thus
be associated with each resource (server). The mechanism ensures that channel communica-
tions to a particular server are selected one at a time. When a channel is selected, it is ready for
data-transfer. A channel which can be set to resource mode is called a ‘resource channel'.

When communication has completed, the processor ensures that both communicating processes are
scheduled.

For processes running on the same processor, there is also an n-valued semaphore mechanism provided
on the IMS T9000 .
3.3 Traps

Atrapis an unexpected change of flow of execution, which can occur in any process, due to the occurrence
of various conditions. The user may specify for some of these conditions whether or not a trap is taken.

8 T9000 transputer instruction set manual

Atrap from an L-process normally results in a context switch to a trap-handler, and a trap from a P-process
results in a context switch to its supervisor.

The conditions that can cause a trap include:

« debug conditions — The IMS T9000 provides facilities to insert breakpoints in code, employ a
single-step mode, and set up watchpointing for access to a specified area of memory.

« errors and |IEEE floating-point (fp) exceptional conditions
« system call — A trap may be forced by explicitly execution of an instruction (syscall).
« timeslice — A timeslice causes a trap when running under protection.

Detection of these conditions facilitates the implementation of error-handlers, debugging tools, IEEE ex-
ception-handlers, operating systems etc.

The errors (and floating-point exceptions) which can be signalled are shown in table 3.1. All of these ‘error
signals’ cause a trap unless this facility is disabled by the user. Some of them set flags in the status register
if a trap is not taken. This is discussed fully in chapter 10.

error signal brief description

IntegerOverflow integer overflow or integer divide-by-zero

IntegerError integer error other than IntegerOverflow — e.g. explicitly checked
or explicitly set error, misuse of channel

Unalign address of instruction operand is not aligned to the correct
boundary

lllegalinstruction attempt to execute an illegal instruction

Privinstruction attempt to execute a privileged instruction in protected mode

AccessViolation attempt to access a memory protected or non-existent address

FPError floating-point ‘error’

FPinvalidOp |EEE floating-point ‘invalid operation’

FPDivideByZero IEEE floating-point ‘divide by zero’

FPOverflow IEEE floating-point ‘overflow’

FPUnderflow IEEE floating-point ‘underflow’

FPinexact IEEE floating-point ‘inexact result’

Table 3.1 Definition of errors signalled by the IMS T9000

Associated with an L-process is a ‘trap-handler pointer’. This is either the address of a trap-handler data
structure (THDS) or is a null pointer. A THDS may be shared with a number of other L-processes and
contains: status information for the processes that use it, control information which specifies the condi-
tions that cause a trap, and identification of the trap-handler code which is executed when a trap occurs
from one of these processes.

Associated with a P-process is a pointer to a P-state data structure (PDS). This contains: status informa-
tion for the P-process and control information which specifies the conditions that cause a trap.

34 Configuration of control system

There are two additional links on the IMS T9000, that are used to send and receive hardware control in-
formation. These ‘control links’ make it possible for a controlling processor to control and monitor a series
of IMS T9000-family devices in a subsystem connected by the control links. This control network is entirely
independent of the data network which is connected by data links, and thus guarantees the integrity of
the control system.

3 An overview 9

There is a set of commands that is used for transfer of control information. It includes commands to: reset
a processor, read or write data to a specified address, and transmit boot-code. When one of these com-
mands is sent on a control link, it is preceded by header information to identify the destination processor.

A full description of the IMS T9000 control system and the associated command set is given in The T9000
Hardware Reference Manual.

3.5 Instructions and pipelining

The CPU of the IMS T9000 has a superscalar pipelined micro-architecture, which enables concurrent
execution of instructions on a single transputer. A group of instructions can be issued to this pipeline on
every transputer cycle, and since a large proportion of the IMS T9000 instructions require only one cycle
to complete execution, this means that on average several instructions are executed in each cycle.

There is also a mechanism (grouper) which examines the sequence of instructions and divides these into
optimal groups for concurrent execution. This ‘grouper’ takes account of which operations can occur con-
currently in the pipeline.

The existence of the grouper means that the programmer need not have any knowledge of the pipelined
architecture. lt is entirely transparent to the user. He does not have to specify the groups or the order in
which they are executed.

10

T9000 transputer instruction set manual

4 Addressing and data representation 11

4 Addressing and data representation

The IMS T9000 transputer is a 32-bit word machine, with byte addressing and a 4 Gbyte address space.
This chapter explains how data is loaded from and stored into that address space, explains how signed
arithmetic is represented, and defines the arithmetic significance to ordering of data items.

4.1 Word address and byte selector

A machine address is a single word of data which identifies a byte in memory —i.e. a byte address. It com-
prises two parts, a word address and a byte selector. The byte selector occupies the two least significant
bits of the word; the word address the thirty most significant bits. An address is treated as a signed value,
the range of which starts at the most negative integer and continues, through zero, to the most positive
integer. This enables the standard comparison functions to be used on pointer {address) values in the
same way that they are used on numerical values.

Certain values can never be used as pointers because they represent reserved addresses at the bottom
of memory space. They are reserved for use by the processor and initialization. In this text, names are
used to represent these and other values (e.g. NotProcess.p, Disabling.p). A full list of names and values
of constants used in this book is given in tables A.13 and A.12 (appendix A).

4.2 Ordering of information

The transputer is ‘little-endian’ — i.e. less significant data is always held in lower addresses. This applies
to bits in bytes, bytes in words and words in memory. Hence, in a word of data representing an integer,
one byte is more significant than another, if its byte selector is the larger of the two. Figure 4.1 shows the
ordering of bytes in words and memory for the IMS T9000. Note that this ordering is compatible with Intel
processors, but not Motorola or SPARC.

memory
(bytes) words (wordlength is 32 bits)
X+7 MSB LSB
X+6 — it [31X47 o4 [oa X46 16 L1 X455 | 7 X+dq]
X+5
X+4
X+3 MSB LSB
X+2 — it [31 X+3 24 |25 X+2 16 JisX+1g | 7X+00]
X+1
X+0

Xis aword-aligned byte address

X+n is the byte n bytes past X

Figure 4.1 Bytes in memory and words

4.3 Words, objects and signed integers

Most instructions that involve fetching data from or storing data into memory, use word aligned addresses
(i.e. bits 1 and 0 are set to 0) and load or store four contiguous bytes. However, there are some instructions
that can manipulate part of the bit pattern in a word, and a few that use double words.

12 T9000 transputer instruction set manual

A data item that is represented in two contiguous bytes, is referred to as a16-bit object. This can be stored, -
either in the least significant 16-bits of a word location, or in the most significant 16 bits, hence addresses
of such locations are16-bit aligned (i.e. bit 0 is set to 0).

A data item that is represented in in two contiguous words, is referred to as a 64-bit object or a double
word.

Similarly, a data item represented in a single byte is sometimes referred to as an 8-bit object.
Signed integers and sign extension

A signed integer is stored in twos-complement format and may be represented by an N-bit object. Most
commonly a signed integer is represented by a single word (32-bit object), but as explained, it may be
stored, for example, in a 64-bit object, a 16-bit object, or an 8-bit object. In each of these formats, all the
bits within the object contain useful information.

Consider the example shown in figure 4.2, which shows how the value —10 is stored in a 32-bit register,
firstly as an 8-bit object and secondly as a 32-bit object. Observe that bits 31 to 8 are meaningful for a
32-bit object but not for an 8-bit object. These bits are set to 1 in the 32-bit object to preserve the negative
sign of the integer being represented.

these bit values not related to integer value [1[1[1[1]0]1[1]0]
bit position 31 8 7 0

signed integer value (—10) stored as an 8-bit object (byte)

[1]1] ENENERENERCIENERY

bit position 31 8 7 0

signed integer value (—10) stored as a 32-bit object (word)

Figure 4.2 Storing a signed integer in different length objects

The length of the object that stores a signed integer can be increased (i.e. the object size can be in-
creased). This operation is known as ‘sign extension’. The extra bits that are allocated for the larger object,
are meaningful to the value of the signed integer. They must therefore be set to the appropriate value.
The value for all these extra bits is in fact the same as the value of the most significant bit —i.e. the sign
bit — of the smaller object. The IMS T9000 provides instructions that sign extend to 32 bits and 64 bits.
These are described in chapter 7.

4.4 Unaligned address detection
Instructions that address words or 16-bit objects expect the addresses to be aligned on 4-byte and 2-byte
boundaries respectively. This requires bits 0 and 1 to be set to O for an address operand of a word instruc-

tion or bit 0 to be set to 0 for an address operand of a 16-bit object instruction. If the processor detects
a bad address alignment while executing an instruction, then it signals Unalign.

The user can specify the action that the processor takes when Unalign is signalled: either
e atrapistaken, or

« the address is re-aligned by setting the bottom bit to ‘0’ for a 16-bit object, or the bottom two bits
to ‘0’ for a word.

See chapter 10 for details on trap enabling.

4 Addressing and data representation

13

The word instructions to which this applies are:—

Idni stnl chantype deviw devsw
disc disg enbc enbg endp
erdsq gajw goprot grant in
initvicb insphdr irdsq Idchstatus Idresptr
Idshadow lend mkre out outbyte
outword readbfr readhdr resetch restart
selth setchmode sethdr signal startp
stmoveZ2dinit stopch stresptr stshadow swapbfr
unmkre vin vout wait writehdr
fob32tor64 fpi32tor32 fpi32tor64 foldall foldnladddb
foldnladdsn foldnldb foldnldbi foldnimuldb foldnimulsn
foldnisn fpldnisni fpstall fostnldb fpstnli32
fpstnisn

The16-bit object instructions to which this applies are:—
devis devss Is Isx ss

T9000 transputer instruction set manual

5 Registers, status bits and control bits 15

5 Registers, status bits and control bits

5.1 Machine registers

This section introduces the IMS T9000 registers. The registers listed here are those visible to the program-
mer. Firstly the set of registers known as state registers are presented and discussed. These fully define
the state of the executing process. Secondly the other registers of interest to the programmer, are pres-
ented. The function of each register is detailed later in the book as each register is first encountered in
the context of a machine instruction.

5.1.1 State registers

The state of an L-process at any instant is defined by the contents of the machine registers listed in table
5.1. For a P-process the state also includes the contents of the registers listed in table 5.2. These registers
may be referred to as ‘state registers’ to distinguish them from registers that are not part of the process
state. The ‘register’ column gives the abbreviated name of the register. The ‘full name / description’ column
provides the full textual name which is usually used when referencing a register in this manual; and where
unclear, a brief description of the information contained in this register. The ‘shadow register’ column
states the abbreviated name of the associated shadow register (explained below).

16 T9000 transputer instruction set manual
register full name / description process modes shadow register
StatusReg status register StatusReg.sh
WdescReg workspace descriptor register — contains the process des- | WdescReg.sh
criptor of the currently executing process
IptrReg instruction pointer register — pointer to next instruction to IptrReg.sh
be executed
Areg integer stack register A Areg.sh
‘Breg integer stack register B Breg.sh
Creg integer stack register C Creg.sh
ThReg' trap-handler register — pointer to the current THDS (trap- ThReg.sh
handler data structure)
FPstatusReg floating-point status register — indicates type of value in FPstatusReg.sh
each FP register and the current rounding mode
FPAreg floating-point stack register A FPAreg.sh
FPBreg floating-point stack register B FPBreg.sh
FPCreg floating-point stack register C FPCreg.sh
BMreg0 2D block move control register 0 BMreg0.sh
BMreg1 2D block move control register 1 BMreg1.sh
BMreg2 2D block move control register 2 BMreg2.sh
WIReg watchpoint lower bound register WIReg.sh
WuReg watchpoint upper bound register WuReg.sh
Ereg* internal register Ereg.sh
Xregi internal register Xreg.sh
EptrReg error pointer register EptrReg.sh
T contains trap-handler pointer of supervisor when executing a P-process
¥ Ereg and Xreg are internal registers which the processor uses to store temporary values during the execution of

some instructions. The processor saves their contents when an instruction is interrupted and restores the registers to their pre-
vious state when it is restarted. The actual data values are of no use to the programmer.

Table 5.1

Registers that define the machine state — state registers

5 Registers, status bits and control bits 17

RegionReg0 region descriptor register 0 — contains the region descrip- | RegionReg0.sh
tor for protection region 0

RegionReg1 region descriptor register 1 — contains the region descrip- | RegionReg1.sh
tor for protection region 1

RegionReg2 region descriptor register 2 — contains the region descrip- | RegionReg2.sh
tor for protection region 2

RegionReg3 region descriptor register 3 — contains the region descrip- | RegionReg3.sh
tor for protection region 3 ,

PstateReg protected state register — pointer to the current PDS (P- PstateReg.sh

state data structure)

WdescStubReg | workspace descriptor stub register — contains the process | WdescStubReg.sh
descriptor of the supervisor

Table 5.2 Extra registers that define the P-process state — state registers

Hence depending on the mode in which the process is currently executing, the process state is defined
by a slightly different set of registers. For example the region descriptor registers are listed in table 5.2
because their contents may be valid while a P-process is executing, but their contents are irrelevant when
an L-process is executing.

Register grouping

It is convenient for use now and elsewhere in this manual to refer to certain related registers by a group
name. These names are intended to be intuitive, but table 5.3 clarifies.

register group name registers include in group

integer stack (registers) Areg, Breg, Creg

floating-point stack (registers) | FPAreg, FPBreg, FPCreg

stack (registers) integer stack registers, floating-point stack registers

floating-point registers floating-point stack registers, FPstatusReg

block move registers BMreg0, BMreg1, BMreg2

watchpoint registers WIiReg, WuReg

region descriptor registers RegionReg0, RegionReg1, RegionReg2, Region-
Reg3

internal registers Ereg, Xreg

Table 5.3 Register group names
Shadow registers

When a high priority process interrupts a low priority process, the state of the currently executing process
needs to be saved. For this purpose, a ‘shadow register’ is provided for each state register. On interrupt,
the content of each register is copied into its shadow. On return from an interrupt the state of the inter-
rupted process is copied back from the shadow registers. The content of the shadow registers is therefore
only valid during an interrupt. A high priority process may manipulate the shadow registers with the instruc-
tions ldshadow and stshadow. Details of these are provided in section 13.3.

5.1.2 Other machine registers

There are several other registers which the programmer needs to know about. These are not part of the
process state, and hence are not state registers and do not have shadow registers. They are presented
in table 5.4.

18 T9000 transputer instruction set manual

register full name / description

FptrReg0 high priority front pointer register — contains pointer to first process on
the high priority scheduling list

FptrReg1 low priority front pointer register — contains pointer to first process on
the low priority scheduling list

BptrReg0 high priority back pointer register — contains pointer to last process on
the high priority scheduling list

BptrReg1 low priority back pointer register — contains pointer to last process on
the low priority scheduling list

ClockReg0 high priority clock register — contains current value of high priority clock

ClockReg1 low priority clock register — contains current value of low priority clock

TptrReg0 high priority timer list pointer register — contains pointer to the first pro-
cess on the high priority timer list

TptrReg1 low priority timer list pointer register — contains pointer to the first pro-
cess on the low priority timer list

TnextReg0 high priority alarm register — contains the time of the next process on
the high priority timer queue

TnextReg1 low priority alarm register — contains the time of the next process on
the low priority timer queue

Table 5.4 Other machine registers

5.2 Process status and control bits

The status register (StatusReg) contains status and control information for the current process. The
32-bit word held in the status register comprises ‘status bits’ (‘flags’) and ‘control bits’. Status bits describe
current state, such as the mode of operation (protected/unprotected) and any errors which may have oc-
curred. Control bits specify future behavior which may occur, such as trapping and timeslicing.

The process status and control bits are shown in table 5.5. The meaning and function of each bit is detailed
later in the book when each bit is first encountered in the context of a machine instruction. Bits within the
status register that are not shown in table 5.5, have reserved use.

» Prior to executing an L-process, the processor loads these bits from the THDS (trap-handler data
structure) for that process into the status register. When this process is descheduled or trapped,
the processor writes these bits back from the status register into the THDS. Hence these bits
are local to L-processes which are associated with a particular trap-handler.

* The situation is similar for a P-process, but in this case, the bits are loaded from and written to
the PDS (P-state data structure). The status and control bits here are local to P-processes which
share a particular supervisor.

5 Registers, status bits and control bits

19

bit number | status bit name full name / description

2 sh.FPErrorFlag floating-point error flag — indicates, when set,
that a floating-point error has occurred

3 sb.FPErrorTeBit floating-point error trap enable bit — specifies,
when set, that if a floating-point error occurs, the
current process will be trapped

6 sb.IntOvFiag integer overflow flag

7 sb.IntOvTeBit integer overflow trap enable bit

8 sh.FPInOpFlag floating-point invalid operation flag

9 sbh.FPInOpTeBit floating-point invalid operation trap enable bit

10 sh.FPDivByZeroFlag floating-point divide by zero flag

11 sb.FPDivByZeroTeBit floating-point divide by zero trap enable bit

12 sb.FPOvFlag floating-point overflow flag

13 sb.FPOvTeBit floating-point overflow trap enable bit

14 sb.FPUndFlag floating-point underflow flag

15 sb.FPUndTeBit floating-point underflow trap enable bit

16 sbh.FPInexFlag floating-point inexact resuit flag

17 sb.FPInexTeBit floating-point inexact result trap enable bit

19 sb.UnalignTeBit unaligned address trap enable bit

25 sb.TimesliceDisabledBit timeslice disable bit — specifies, when set, that
timeslicing cannot occur

26 sh.StepBit single-stepping trap enable bit — specifies, when
set, that a single-step trap will be taken at the
end of the current instruction

27 sb.IsPprocessBit protection bit — indicates, when set, that the pro-
cessor is running under protection

29 sh.WtchPntEnbl watchpoint trap enable bit — specifies, when set,
that watchpointing is enabled

30 sbh.WitchPntPend watchpoint trap pending flag — indicates, when
set that a watchpoint trap will be taken at the end
of the current instruction

Table 5.5 Process status and control bits

Sometimes in this manual it is stated that under certain circumstances, the status register is loaded with
the ‘default control word’. This means that all bits in the status register are set to 0 with the exception of
bit 7, sb.IntOvTeBit, which is set to 1. In particular, the default control word is loaded when an L-process
executes with a null trap-handler.

5.3 The process descriptor and its associated register fields

In order to identify a process completely it is necessary to know: its workspace address (in which the byte
selector is always 0), and its priority (high or low). This information is contained in the process descriptor.
The process descriptor of the currently executing process is held in the workspace descriptor register
{(WdescReg).

The workspace descriptor register is formed from a pointer to the process workspace or-ed with the priority
indicator at bit 0. Often it is required to use or update only some part of the workspace descriptor register,
so two ‘register fields: Wptr and Priority are defined so that the following invariants are obeyed.

20 T9000 transputer instruction set manual

Whptr WdescReg A (NOT 3)

Priority = WdescReg A 1

Whptr points to the current process workspace, which is always word-aligned. Priority is the priority of the
currently executing process where the value 1 indicates low priority and 0 indicates high priority. Bit 1 is

always set to 0T,

priority

workspace address 0

2 1 0

31

Figure 5.1 Constituents of a process descriptor

1 In preliminary revisions of the IMS T9000 (viz versions o and [3), bit 1 may be set to 1.

6 Instruction representation 29

6 Instruction representation

The transputer encoding is designed so that the most commonly executed instructions occupy the least
number of bytes. This chapter describes the encoding mechanism and explains how it achieves this.

A sequence of single byte ‘instruction components’ is used to encode an instruction. The IMS T9000 inter-
prets this sequence at the instruction fetch stage of execution. Most users (working at the level of micro-
processor assembly language) need not be aware of the existence of instruction components and do not
need to think about the encoding. The first section (6.1) has been included to provide a background. The
following section (6.2) need only concern the reader that wants to implement a code generator.

6.1 Instruction encoding

6.1.1 An instruction component

Each instruction component is one byte long, and is divided into two 4 bit parts. The four most significant
bits of the byte are a function code, and the four least significant bits are used to build an ‘instruction data
value’.

| function | data |
bit 7 4 3 0

The representation provides for sixteen instruction components (one for each function), each with a data
field ranging from O to 15.

There are three categories of instruction component. Firstly there are those that specify the instruction
directly in the function field. These are used to implement ‘primary instructions’. Secondly there are the
instruction components that are used to extend the instruction data value — this process of extension is
referred to as ‘prefixing’. Thirdly there is the instruction component operate (opr) which specifies the
instruction indirectly using the ‘instruction data value’. opr is used to implement ‘secondary instructions’.

6.1.2 The instruction data value and prefixing

The data field of an instruction component is used to create an ‘instruction data value’. Primary instructions
interpret the instruction data value as the operand of the instruction. Secondary instructions interpret it
as the operation code for the instruction itself.

The instruction data value is a signed integer that is represented as a 32-bit word. For each new instruction
sequence, the initial value of this integer is zero. Since there are only 4 bits in the data field of a single
instruction component, it is only possible for most instruction components to initially assign an instruction
data value in the range 0 to 15. However two instruction components are used to extend the range of the
instruction data value. Hence one or more prefixing components may be needed to create the correct
instruction data value. These are shown in table 6.1 and explained below.

mnemonic name
pfix prefix
nfix negative prefix

Table 6.1 Prefixing instruction components

Allinstruction components initially load the four data bits into the least significant four bits of the instruction
data value.

pfix loads its four data bits into the instruction data value, and then shifts this value up four places. nfix
is similar, except that it complements the instruction data value' before shifting it up. Consequently, a se-
quence of one or more prefixes can be included to extend the value. Instruction data values in the range
—256 to 255 can be represented using one prefix instruction.

1 Note that it inverts all 32 bits of the instruction data value.

22 T9000 transputer instruction set manual

When the processor encounters an instruction component other than pfix or nfix, it loads the data field
into the instruction data value but doesn't shift it because the instruction encoding is now complete and
the instruction can be executed. When the processor is ready to fetch the next instruction component, it
starts to create a new instruction data value.

6.1.3 Primary Instructions

Research has shown that computers spend most of the time executing instructions such as: instructions
to load and store from a small number of ‘local’ variables, instructions to add and compare with small
constants, and instructions to jump to or call other parts of the program. For efficiency therefore, the trans-
puter encodes these directly as primary instructions using the function field of an instruction component.

Thirteen of the instruction components are used to encode the most important operations performed by
any computer executing a high level language. These are used (in conjunction with zero or more prefixes)
to implement the primary instructions. Primary instructions interpret the instruction data value as an oper-
and for the instruction. The mnemonic for a primary instruction will therefore normally include a this oper-
and — n — when referenced.

The mnemonics and names for the primary instructions are listed in table 6.2. Their usage and behavior
are given in chapter 7.

mnemonic name

ade n add constant
awn adjust workspace
calln call

¢n conditional jump
eqgen equals constant
jn jump

Iden load constant
ldln load local

Idip n load local pointer
Ildnln load non-local
ldnip n load non-local pointer
stln store local

stnln store non-local

Table 6.2 Primary instructions

6.1.4 Secondary instructions

The transputer encodes all other instructions (secondary instructions) indirectly using the instruction data
value.

mnemonic name

opr operate

The remaining instruction component — opr — causes the instruction data value to be interpreted as the
operation code of the instruction to be executed. This selects an operation to be performed on the values
held in the integer or floating-point stacks. This allows a further 16 operations to be encoded in a single
byte instruction. However the prefix instructions can be used to extend the instruction data value, allowing
any number of operations to be performed.

6 Instruction representation 23

Secondary instructions do not have an operand specified by the encoding, because the instruction data
value has been used to specify the operation.

To ensure that programs are represented as compactly as possible, the operations are encoded in such
a way that the most frequent secondary instructions are represented without using prefix instructions.

6.1.5 Summary of encoding
The encoding mechanism has important consequences.

« Firstly, it simplifies language compilation, by providing a completely uniform way of allowing a
primary instruction to take an operand of any size up to the processor word-length.

¢ Secondly, it allows these operands to be represented in a form independent of the word-length
of the processor.

¢ Thirdly, it enables any number of secondary instructions to be implemented.
The following provides some simple examples of encoding:—
e The instruction /dc 17 is encoded with the sequence
pfix 1; idc 1
¢ The instruction add is encoded by
opr5
e The instruction and is encoded by
opr 46
which is in turn encoded with the sequence
pfix 2; opr 14

To aid clarity and brevity, prefix sequences and the use of opr are not explicitly shown in this guide. Each
instruction is represented by a mnemonic, and for primary instructions an item of data, which stands for
the appropriate instruction component sequence. Hence in the above examples, these are just shown as:
Idc 17,add, and and. (Also, where appropriate, an expression may be placed in a code sequence to repre-
sent the code needed to evaluate that expression.)

6.2 Generating prefix sequences

Generating a prefix sequence to create an instruction data value is extremely tedious — especially when
the value is negative. Prefixing is intended to be performed by a compiler (or assembler). Prefixing by hand
is not advised!

Normally a value can be loaded into the instruction data value by a variety of different prefix sequences.
It is important to use the shortest possible sequence as this enhances both code compaction and execu-
tion speed. The best method of optimizing object code so as to minimize the number of prefix instructions
needed is shown below.

6.2.1 Prefixing a constant

The algorithm to generate a constant instruction data value e for a function op is described by the following
recursive function.)

prefix(op, e) = IF
e < 16ANDe =0

24 T9000 transputer instruction set manual

op(e)
e =16

prefix(pfix, e > 4);0op(e N\ #F)
e<o0

prefix(nfix, (—~e) > 4);0p(e N #F)

where op(e) is the instruction component with function code op and data field e, ~ is a bitwise
NOT, and > is a logical shift right.

6.2.2 Evaluating minimal symbol offsets

Several primary instructions have an operand that is an offset between the current value of the instruction
pointer and some other part of the code. Generating the optimal prefix sequence to create the instruction
data value for one of these instructions is more complicated. This is because two, or more, instructions
with offset operands can interlock so that the minimal prefix sequences for each instruction is dependent
on the prefixing sequences used for the others.

For example consider the interlocking jumps below which can be prefixed in two distinct ways. The instruc-
tions j and ¢j are respectively jump and conditional jump. These are explained in more detail later. The
sequence

cj +16; j 257
can be coded as
pfix 1; ¢j 0; pfix 1; nfix 0; j 15
but this can be optimized to be
cj 15, nfix 15;j 1
which is the encoding for the sequence
¢j +15; j-255

This is because when the two offsets are reduced, their prefixing sequences take 1 byte less so that the
two interlocking jumps will still transfer control to the same instructions as before. This compaction of non-
optimal prefix sequences is difficult to perform and a better method is to slowly build up the prefix se-
quences so that the optimal solution is achieved. The following algorithm performs this.

1 Associate with each jump instruction or offset load an ‘estimate’ of the number of bytes required
to code it and initially set them all to 0.

2 Evaluate all jump and load offsets under the current assumptions of the size of prefix sequences
to the jumps and offset loads

3 For each jump or load offset set the number of bytes needed to the number in the shortest se-
quence that will build up the current offset.

4 [f any change was made to the number of bytes required then go back to 2 otherwise the code
has reached a stable state.

The stable state that is achieved will be the optimal state.

Steps 2 and 3 can be combined so that the number of bytes required by each jump is updated as the offset
is calculated. This does mean that if an estimate is increased then some previously calculated offsets may
T Where the code being analyzed has alignment directives, then it is possible that this algorithm will not reach a stabie state. One
solutiontothis, isto allow the algorithm to increase the instruction size but not allow it to reduce the size. This is achieved by modifying
stage 3 to choose the larger of: the currently calculated length, and the previously calculated length. This approach does not always

lead to minimal sized code, but it guarantees termination of the algorithm.

6 Instruction representation 25

have been invalidated, but step 4 forces another loop to be performed when those offsets can be cor-
rected.

By initially setting the estimated size of offsets to zero, all jumps whose destination is the next instruction
are optimized out.

Knowledge of the structure of code generated by the compiler allows this process to be performed on indi-
vidual blocks of code rather than on the whole program. For example it is often possible to optimize the
prefixing in the code for the sub-components of a programming language construct before the code for
the construct is optimized. When optimizing the construct it is known that the sub-components are already
optimal so they can be considered as an unshrinkable block of code.

This algorithm may not be efficient for long sections of code whose underlying structure is not known. If
no knowledge of the structure is available (e.g. in an assembler), all the code must be processed at once.
In this case a code shrinking algorithm where in step one the initial number of bytes is set to twice the
number of bytes per word is used. The prefix sequences then shrink on each iteration of the loop. 1 or
2 iterations produce fairly good code although this method will not always produce optimal code as it will
not correctly prefix the pathological example given above.

26

T9000 transputer instruction set manual

7 Sequential operations 27

7 Sequential operations

This chapter introduces and describes the instructions that perform sequential operations within a process
—i.e. instructions that do not depend on or control any other processes. It also describes the integer stack
architecture, and explains how expressions can be evaluated on this stack. (For details on the floating-
point stack and associated instructions, refer to chapter 11.)

7.1 Registers
The following registers are referred to in sequential operations

IptrReg contains a pointer to next instruction to be executed — the instruction pointer

Areg integer stack register A
Breg integer stack register B
Creg integer stack register C

as well as the following register field

Wptr contains a pointer to current process workspace — the workspace pointer

Wptr is used as a base from which the local variables of a process can be addressed (see section 5.3).
Integer stack

Areg, Breg and Creg are organized as a three word stack. Instructions that load Areg, push Breg into
Creg and Areg into Breg. Instructions that store Areg, pop Breg into Areg and Creg into Breg, leaving
Creg undefined. The effects of this are shown in figures 7.1 and 7.2.

Before After

push x onto stack
Areg = a Areg = X
Breg = b Breg = a
Creg = ¢ Creg = b

Figure 7.1 Effect of pushing value onto integer stack

Before After
a popped off stack
Areg = a Areg = b
Breg = b Breg = C
Creg = C Creg = undefined

Figure 7.2 Effect of popping value from integer stack

7.2 Local variables and constants, and stack operations

The instructions shown in table 7.1 include: instructions for loading and storing local workspace values
(local variables), instructions for loading and storing bytes and 16-bit objects, and instructions for manipu-
lating the values in the integer stack.

28 T9000 transputer instruction set manual

mnemonic name

Iden load constant

Idln load local

stln store local

Idip n load local pointer

b load byte

Ibx load byte and sign extend
sb store byte

Is load sixteen

Isx load sixteen and sign extend
ss store sixteen

rev reverse

pop pop processor stack

dup duplicate top of stack

Table 7.1 Instructions that can be used for loading, storing and manipulating the integer stack

The most common operations performed by a program are loading and storing one of a small number of
variables, and loading small literal values. The /dc n instruction pushes the operandJr n onto the integer
stack. This enables values between 0 and 15 to be loaded into the integer stack using a single byte instruc-
tion.

The Idi n, stl n and Idip n instructions all address words in memory relative to the workspace pointer Wptr.
The first 16 locations can be identified using a single byte instruction. A local variable held in workspace
location n can be pushed onto the integer stack by

Idin

and the address of that variable can be pushed by
Idip n

The value of the variable can be set to a value popped from the stack by
stin

Note that for the purposes of this text, /al X denotes loading the value from a local variable X. Similarly
Idip X denotes loading the address of a local variable X, and st/ X denotes storing a value into a local vari-
able X. In all three cases, the operand X can be can be interpreted as the appropriate constant offset from
Whtr that will enable these primary instructions to locate the actual stored location of a local variable X.

Ib and Ibx load the byte at the address in Areg, into the integer stack. /b replaces the address in Areg with
the byte stored at that address, treating it as as an unsigned integer by setting the twenty-four most signifi-
cantbits in Areg to 0. /bx is similar to /b, but treats the byte as a signed integer in twos-complement format,
and hence sign extends the representation by setting the twenty-four most significant bits in Areg to the
same value as the most significant bit of the byte (see section 4.3). Breg and Creg are unaffected by these
operations.

sb writes the least significant byte in Breg to the location addressed by Areg. It pops Creg up into Areg,
leaving Breg and Creg undefined.

T Where ‘operand’ is used in the text, this refers to the instruction data value, which is constructed as described in section 6.1.2. In
summary, for an operand between 0 and 15, this can be coded into the data field of a single instruction component (one byte). Oper-
ands outside this range can be coded using pfix or nfix beforehand.

7 Sequential operations 29

Is and Isx load the 16-bit object at the address in Areg, into the integer stack. /s replaces the address in
Areg with the 16-bit object stored at that address, treating it as as an unsigned integer by setting the six-
teen most significant bits in Areg to 0. /sx is similar to /s, but treats the 16-bit object as a signed integer
in twos-complement format, and hence sign extends the representation by setting the sixteen most signifi-
cant bits in Areg to the same value as the most significant bit of the 16-bit object. Breg and Creg are unaf-
fected by these operations.

ss writes the 16-bit object in Breg (two least significant bytes) to the location addressed by Areg. It pops
Creg up into Areg, leaving Breg and Creg undefined.

rev swaps the contents of Areg and Breg.
pop forces the integer stack to be popped as shown in figure 7.2.

dup takes a copy of the content of Areg and pushes this onto the integer stack, hence leaving two identical
values in Areg and Breg.

Single word and byte assignment
Single words, 16-bit objects, and bytes may be assigned using the load and store instructions.
Word assignment

If x and y are both single word variables and e is a word valued expression then compiled code for word
assignments

X:=y = ldly; stl x
X:=e = e, stl x
Byte assignment

If a and b are both single byte variables and e is a byte valued expression then compiled code for byte
assignments are

b:=a
b:=e

address(a); Ib; address(b); sb
e; address(b); sb

nn

where address(variable) is discussed below.
Address calculation

In the previous example, the function address(variable) is introduced. This will be used in subsequent ex-
amples to represent the instruction sequence required to push onto the integer stack, the address of the
memory location used to store variable. How this function is compiled depends on a number of things such
as: the locality of the variable (local/non-local), the size of the variable, and the packing of the variable.
If a word variable is in local workspace, then its address can be loaded into the stack using

e.g. address(variable) = Idip variable

This can also be used to obtain the address of local byte variables if each byte variable is word-aligned.
Butif byte variables are packed contiguously in memory, then their addresses can be obtained in the same
way as addresses of byte array elements. This and similar addressing issues are discussed in section
752,

Use of (Wptr+0)
The location (Wptr+0) is used as a temporary store by certain instructions. These are
outword, outbyte, altwt, taltwt, disc, dist, disg, diss, and altend.

If any of these instructions are being used, then local variables should be allocated from (Wptr+1) rather
than (Wptr+0). See also section 8.1.1.

30 T9000 transputer instruction set manual

7.3 Integer stack evaluation

Integer expression evaluation and address calculation is performed using the integer stack. (The floating-
point stack can be used for floating-point arithmetic — see chapter 11.) For example, the evaluation of oper-
ators with two integer operands is performed by instructions that operate on the values of Areg and Breg.
The result is left in Areg, and Creg is popped into Breg leaving Creg undefined.
A compiler loads a constant expression C using

Ilde C

(or by loading from a constant table — see section 7.3.2). It loads an expression consisting of a single local
variable using

Idl x
Methods for loading non-local variables, array elements and function calls are given in later sections.

Evaluation of expressions sometimes requires the use of temporary variables in the process workspace,
but the number of these can be minimized by careful choice of the evaluation order.

Let depth(e) be the number of stack locations needed for the evaluation of expression e, defined by

depth(constant) = 1
depth(variable) = 1
depth(function call) = ‘infinite’
depth(e1 op e2) = IF
depth(e1) > depth(e2)
depth(e1)
depth(el) < depth(e2)
depth(e2)
TRUE

depth(el) + 1

That is, if the depth required for each expression is the same, then one extra stack location is required
to store the result of the first expression, while the second expression is being evaluated. If the stack re-
quirements for each expression are different, then the total stack requirement is the larger stack require-
ment of the individual expressions. This is only the case if care is taken over the order of evaluation. Note
that ‘infinite’ should be taken as meaning greater than any finite depth — because a function call does not
preserve values on the stack (for further explanation, see section 7.12.2).

Letthe function eval(e, r) evaluate expression e where there are r registers available to perform the evalu-
ation. Where this expression is an operation on two sub expressions —e1 op e2 —it is efficiently evaluated
by the following algorithm, where commutes(op) is true if op commutes and false otherwise, and max(v1,
v2) is the larger value of v and v2.

7 Sequential operations 31

IF
max(depth(e1), depth(e2)) < r —i.e. depth of both expressions is less than r’ — the
— number of registers available
IF
depth(e2) > depth(el)
IF
commutes(op)
eval(e2, r); eval(el, r—1); op
TRUE
eval(e2, r), eval(el, r—1), rev; op (1)
[depth(e2) < depth(el)]
eval(el, r); eval(e2 r—1); op
max{(depth(e1), depth(e2)) = r
IF
depth(e2) = depth(el)
IF
depth(e1) = r —i.e. both depths = r
eval(e2, r); stl temp; eval(et, r); Idl temp; op
TRUE —i.e. (depth(el) < r) AND depth(e2) =r
IF
commutes(op)
eval(e2, r), eval(el, r—1); op
TRUE ie. operation doesn’t commute
eval(e2, r); eval(el, r—1); rev; op
depth(e2) < depth(el)
IF
depth(e2) = r —je. bothdepths = r
IF
commutes(op)
eval(el, r); stl temp; eval(e2, r); Idl temp, op
TRUE
eval(e2, r); stl temp; eval(et, r); Idl temp, op
TRUE —i.e. (depth(e2) < r) AND depth(el) =r
eval(el, r); eval(e2 r-1); op

where (11, 12; .. . ; In) represents a sequence of instructions.

The justification of this is as follows. If the depth of both expressions is less than the number of registers
available (r), then there is no need to store the result of the first evaluation in a temporary variable. The
deeper expression is evaluated first to ensure that the operation evaluates in the least number of stack
registers. If this were not done then the total depth requirement would have to be incremented due to the
extra location for storing the result of the first evaluation. If both expression depths are as great as r, then
a local variable (temp) must be used to store the result of the first expression. It is again better to evaluate
the expression with the larger depth if possible, because this minimizes the number of local variables re-
quired. If only one of the expressions is as great as r, then provided that expression is evaluated first, there
is no need to store its result in a local variable.

In the cases where a temporary variable temp is required to hold the value of the first expression in the
evaluation of e op e2, then that variable can be used as a temporary variable in the evaluation of first
expression. Also a temporary variable used in the evaluation of first expression and not used to hold its
result can be used in the evaluation of second expression.

32 T9000 transputer instruction set manual

The code sequence
(e2; el; rev; op)

at (1) in the above algorithm, can be optimized further to
(e1; e2; op)

removing the execution of the rev instruction. But be aware that the latter uses an extra stack register,
and so there is trade-off here between evaluation depth and code size.

7.3.1 Loading operands

The three registers of the integer stack are used to hold operands of instructions, and the first three param-
eters of procedure calls. Evaluation of an operand or parameter may involve the use of more than one
register. Care is needed when evaluating such operands to ensure that the first operand to be loaded is
not pushed off the bottom of the integer stack by the evaluation of later operands. The processor does
not detect stack overflow.

Three registers are available for loading the first operand, two registers for the second and one for the
third. Consequently, the instructions are designed so that Creg holds the operand which — on average
— is the most complex, and Areg the operand which is the least complex.

Insome cases, itis necessary to evaluate the Areg and Breg operands in advance, and to store the results
in temporary variables. This can sometimes be avoided using the reverse instruction. The following se-
quences may be used to load the operands A, B and C into Areg, Breg and Creg.

1 CBA

2 C; A B;rev

3 B;C;rev;A

4 A; C;rev; B; rev

The choice of loading sequence, and of which operands should be evaluated in advance is determined
by the number of registers required to evaluate each of the operands. In particular, if C requires more
than two registers it must be loaded before A and B. If A or B requires more than two registers it must
be evaluated before C and may need to be stored in a temporary variable if C requires more than two
registers.

7 Sequential operations 33

registers temp load instructions
required sequence
Cc B A b a
<2]| 1 1 1 C B A
1 2 2 C; A B; rev
1 >2 4 A; C; rev; B; rev
2 1 1 C B A
2 2 * 1 A;stla; C; B; Idla
2 >2 * 1 A;stla; C; B; Idl a
>2 1 3 B, C; rev; A
>2 2 * 3 A; stla; B; C; rev; Idl a
>2 | 2 * 3 A; stla; B; C; rev; Idl a
>2 1 1 1 C B A
1 2 2 C; A B rev
1 >2 * 1 A;stla; C; B; Idl a
2 1 1 C B A
2 2 * 1 A; stla; C; B; Idl a
2 >2 * 1 A;stla; C; B; Idla
>2 1 * 1 B; st b, C; ldl b; A
>2 2 * 2 B; stl b; C; A; ldl b; rev
>2 | >2 * * 1 A; stla; B; stl b; C;IdI b; Idl a

Table 7.2 Register loading sequences

Table 7.2 gives the instruction sequences needed for loading three operands into the integer stack, where
the number in the ‘load sequence’ column refers to the list above. The columns labelled ‘temp’ indicate
where a local variable is needed to temporarily save an operand value in the load sequence. The variable
‘a’ is used to store operand ‘A’ and the variable ‘b’ is used to store operand ‘B’.

7.3.2 Tables of constants

The transputer instruction set has been optimized so that the loading of small constants can be coded
compactly — for example it allows the loading of constants between 0 and 15 to be coded in a single byte.
Analysis of programs shows that such small constants occur markedly more frequently than large
constants. However when a large constant does need to be loaded the necessary prefix sequence may
be long. Other techniques may be more efficient in these cases.

A simple mechanism to increase the code compactness is to use a table of constants. This is implemented
by storing all the long constants into a lookup table. The address of this table is held in a local variable
which is used to index the array — this table and all its constant entries must be aligned on a word bound-
ary. Then to load the constant from the nth entry in the constant table stored at address constants_ptr the
following code would be used

Idl constants_ptr; Idnl n
where the instruction /dn/ n is explained in section 7.4.

This code sequence only takes 2 bytes, provided constants_ptr is less than 16 words from the workspace
pointer address and there are no more than 16 wordlength constants. At worse it is unlikely to take more
than 4 bytes. Hence, if a constant takes 4 or more bytes to load using /dc then this sequence often im-
proves code compactness — especially if the constant is used more than once.

34

7.3.3 Single length signed integer arithmetic

Single length arithmetic with error (overflowT) checking is provided by the operations listed in table 7.3.
Each of these instructions signal IntegerOverflow (see section 10.3.2) ifthe operation overflows or a divide

by zero is attempted.

mnemonic name

aden add constant
add add

sub subtract

mul multiply

div divide

rem remainder

T9000 transputer instruction set manual

Table 7.3 Single length signed integer arithmetic instructions

The primary instruction adc allows a constant value ¢ (the instruction operand) to be added to Areg by
adc c. Breg and Creg are unaffected.

The instruction sequence
Idi X; 1dl'Y; op

where op is one of: add, sub, mul, div, rem, evaluates the expression
XopY

i.e. it takes the value in Breg as the lefthand operand and the value in Areg as the righthand operand,
and loads the resultinto Areg. The content of Creg is popped into Breg leaving Creg undefined. Of these,
add and mul are commutative.

If ade, add, sub or mul causes overflow, then IntegerOverflow is signalled, and the result is truncated so
as to fit into 32 bits (but see note 1 at the end of the chapter).

The result of div is the integer division rounded towards zero (truncated). If it causes overflow, then Integer-
Overflow is signalled and the result is undefined. Overflow can occur only if the divisor (Areg) is zero, or
if the dividend (Breg) is MostNeg and the divisor is —1.

The result of rem is the remainder of the integer division of the two operands. The sign is always the same
as the dividend (Breg), regardless of the sign of the divisor (Areg). If the divisor is O then IntegerOverflow
is signalled and the result is undefined.

7.3.4 Single length modulo integer arithmetic

Single length arithmetic (with overflow ignored) is provided by

mnemonic name
sum sum

diff difference
prod product

Table 7.4 Single length modulo integer arithmetic instructions

The results of sum, diff and prod are the same as add, sub and mul respectively, but IntegerOverflow is
never signalled. Of these, sum and prod are commutative.

T In general, ‘overflow’ is said to have occurred if the actual result of an operation cannot be represented by its destination type.

7 Sequential operations 35

7.3.5 Unary minus

The expression (—e) can be evaluated with overflow checking by
e; not; adc 1

or
Ide 0; e; sub

The first sequence, using not, requires one less stack register than the second [not is a bitwise inversion
which is fully defined in subsection 7.3.7.]. However the second sequence will execute significantly faster
on the IMS T9000. :

The expression can be evaluated without overflow checking by

Idc 0; e; diff

7.3.6 Fractional arithmetic

Many applications, such as scientific function evaluation, use fixed point arithmetic. To enable this to be
performed efficiently on the IMS T9000, a fractional multiply instruction is included in the instruction set.

mnemonic name

fmul fractional multiply

Table 7.5 Special instruction for fixed point arithmetic fractional multiply

fmul is a commutative arithmetic operator that interprets Areg and Breg as fixed point numbers lying in
the range —1 <\ x < 1. The value associated with each register is 231 times its signed integer value. fmu/
returns the rounded fixed point product of these values in Areg and pops Creg up into Breg. The rounding
is performed in Round-to-Nearest mode as in ANSI/IEEE 754—1985 arithmetic.

Attempting (—1) fmul (—1) produces an undefined result and signals IntegerOverflow, as +1 cannot be rep-
resented in this format — this is the only case in which fmu/ can overflow.

7.3.7 Bitwise logic and shifts

Bitwise logic and shift operations are provided by the instructions listed in table 7.6.

mnemonic name

and and

or or

xor exclusive or
not bitwise not
shi shift left
shr shift right

Table 7.6 Bitwise logic and shift instructions

The not operation has only one operand that is taken from Areg. The result of this, which is a bitwise inver-
sion of all bits in the operand, is loaded into Areg, leaving Breg and Creg unaffected.

and, or and xor have two operands that are taken from Areg and Breg. For each, the result, which is a
bitwise logical operation on the two operations, is loaded into Areg. The data previously held in Creg, is
loaded into Breg, leaving Creg undefined. These operations are commutative.

36 T9000 transputer instruction set manual

The shift operations (sh/ and shr) shift the operand in Breg by the number of bits specified by the unsigned
integer in Arngr and put the result in Areg. The vacated bit positions are filled with zero bits. If Areg is
zero, the result is the initial value of Breg. When the value in Areg is greater than the number of bits in
the object being shifted, the result of the operation is zero. Areg can be checked to signal IntegerError
on such out of range shifts using the csub0 operation which is described later (section 7.13). The data
previously held in Creg, is loaded into Breg, leaving Creg undefined.

7.4 Non-local variables

The ‘local’ operations /dl n, st/ n and /dip n address words in memory relative to Wptr. This is useful for
accessing local variables. For accessing non-local variables, a level of indirection is required.

mnemonic name

Idnl n load non-local

stnln store non-local

Idnip n load non-local pointer

Table 7.7 Non-local load and store instructions

The primary instructions listed intable 7.7 perform ‘non-local’ operations in a similar way to their ‘local’
counterparts except that they access a word address relative to Areg rather than Wptr. This base address
and the word offset specified by the operand of the instruction (n), form the non-local address which speci-
fies the location referenced by these load and store instructions.

Idnip n loads the non-local address into Areg. /dn/ n loads the content of the location specified by the non-
local address into Areg. For both these instructions, Breg and Creg are unaffected. stn/ n writes the con-
tent of Breg into the location specified by the non-local address. It also pops Creg into Areg leaving Breg
and Creg undefined. /dn/ and stni signal Unalign if the address in Areg is not word-aligned.

An element in an array is accessed by calculating the offset of the element from the base address of that
array. These non-local load and store instructions can therefore be used on non-local data structures.

7.5 Arrays and subscripts

The addressing instructions provide access to items in data structures using short sequences of single
byte instructions. They also allow the representation of data structure access to be independent of the
wordlength of the processor. (The latter characteristic is not important if writing code specifically for the
IMS T9000, but may be of importance when considering portability to transputers that have a different
wordlength.)

7.5.1 Counting bytes and words

mnemonic name
bent byte count
went word count

Table 7.8 Instructions that provide processor wordlength characteristics

The bent instruction multiplies Areg by the number of bytes in a word (i.e. by 4 for the IMS T9000). It is
particularly used for producing the length in bytes of a multiword data item. The result is loaded into Areg,
leaving Breg and Creg unaffected.

The went instruction enables an address to be decdmposed into its component word address and byte
selector as defined in section 4.1. went takes an address in Areg and returns the word address in Areg
1 Note that the time that the IMS T9000 takes to execute these instruction is constant, whereas on the T2/T4/T8-series transputer,

the time is proportional to the value in Areg.

7 Sequential operations 37

and the byte selector in Breg, where the word address is sign extended (i.e. bits 31 and 30 are set to the
same binary value as bit 29). The value previously held in Breg, is pushed into Creg.

7.5.2 Forming addresses

mnemonic name

Idpi load pointer to instruction
mint minimum integer

bsub byte subscript

ssub sixteen subscript

wsub word subscript

wsubdb form double word subscript

Table 7.9 Subscript addressing instructions
The address of a local workspace location is loaded using the /dlp instruction {described in section 7.2).

Similarly, the address of a location in the program being executed can be obtained by the /dpi operation
as follows. The address of the location x bytes past the next instruction (which is itself pointed to by the
instruction pointer register) can be pushed onto the integer stack by

Ide x; Idpi
For example, the address of a label L can be loaded by

Ide (L—M); Idpi
M:

where the label M is the address of the instruction that follows the /dpi instruction. Firstly the offset in bytes
from M to L is loaded into Areg. The /dpi then uses this offset and the value in the instruction pointer regis-
ter (which will be the address of label M) to load the address of label L into Areg. This technique is useful
for generating relocatable code. Breg and Creg are unaffected.

The lowest address in memory can be pushed onto the integer stack by mint. This is particularly useful
for forming the address of a communication link. (It is equivalent to /dc MostNeg.)

The wsub, bsub, ssub and wsubdb instructions interpret Areg as the address of the beginning of a vector
of data objects, and Breg as an index into that vector. After execution, Areg holds the address of the in-
dexed element, and Creg is popped into Breg leaving Creg undefined. The purpose of these instructions
is to calculate the address of a selected element of a vector, which begins at the address pointed to by
Areg and stores its elements in contiguous space from that address. They simplify access to vectors of
various sized data elements. For example wsubdb makes it easier to access vectors of REAL64s and
INT64s.

bsub is used for vectors comprising bytes (8-bit objects). The operation performed by bsub is to add the
integer in Breg to the address in Areg (without overflow checking).

ssub is used for vectors comprising 16-bit objects. The operation performed by ssub is to multiply the inte-
ger in Breg by two and to add this to the address in Areg (without overflow checking).

wsub is used for vectors comprising words (32-bit objects). The operation performed by wsub is to mulitiply
the integer in Breg by four and to add this to the address in Areg (without overflow checking).

wsubdb is used for vectors comprising double words (64-bit objects). The operation performed by wsubdb
is to multiply the integer in Breg by eight and to add this to the address in Areg (without overflow checking).

The user should also be aware that application of these instructions as described makes the best use of
the processor pipeline. For example bsub is functionally equivalent to sum, but the former will be more

38 T9000 transputer instruction set manual

efficiently grouped, in the superscalar architecture of the IMS T9000, when calculating the address of an
element in a vector of bytes.

7.5.3 Arrays

Access to a component of an array can be split into two sections. Firstly the address of the component
must be constructed, and then the transfer of data to or from that component must be performed.

Evaluating a subscript
Array subscripts can be evaluated efficiently using the prod instruction. If array A has been declared by
[S41..- [Sh}INTA:

where §; (i = 1..n) are the dimensions, then one way of arranging this in store is to have all elements of
the array in a contiguous block. Let’s choose to have the elements in the rightmost dimension stored adja-
cently. For example figure 7.3 shows the elements of a particular three dimensional array (Array) stored
in this way.

Array[1][1]1[2]
Array[1][1]1{1]
Array[11[1](0]

Array[1][0][2]] contiguous
) . Array[1][0][1]| locations for
[2][2]1{3]INT Array: 'r:;:r::j;ng Array[1][0](0]| wordsin
addresses Array[0][1][2]| memory

Array[O0][1][1]| space
Array[0][1][0]
Array[0][0][2]
Array[0][0][1]
Array[0][0][0]

Figure 7.3 A possible method of storing an array of integers
Now if an access is required to such an array,
Aleq]... [en]
then the code to evaluate the subscript is
Idc S»; e4; prod; es; add; Idc Ss; prod; . . . ; ey add

For example to evaluate the subscript for element Array[1]1[0]1[2] (where Array is declared as in fig-
ure 7.3), the code sequence is

Idc 2; 1; prod; 0; add; Idc 3; prod; 2; add

which evaluates to 8, which as can be seen from figure 7.3, is the correct offset from the bottom location
of the block.

There is no need for the multiplication to check for overflow as this should be checkable during compilation.
Mechanisms for range checking the actual subscripts are given later.

Accessing a word addressed array

Let Wa_pir be a pointer to an array (Wa) that starts at a word boundary, and in which all component types
are measured in words. Let e be a subscript expression. The address of component e of Wa is

e; Wa_ptr; wsub

or

7 Sequential operations 39

Wa_ptr; Idnip e
if e is a constant expression.
Accessing a byte addressed array

Similarly, let Ba_ptr be a pointer to an array (Ba) which may start at any byte location, and in which each
component type is measured in bytes. Let e be a subscript expression. The address of component e of
Bais

e; Ba_ptr; bsub

7.5.4 Transferring array elements

An extra function is introduced here for use in this section and section 8.4.3. The function length(block)
returns the length of block in bytes, where block is a block of data that may correspond to a variable, a
data structure, a channel etc.

Let Xb be a variable or expression, the length in bytes of which is given by the value of the expression
b. Then

length(Xb) = b

Let Xw be a variable or expression, the length in words of which is given by the value of the expression
w. Then

length(Xw) = w; bent

If the value of w and the wordlength is known by the compiler, then the value can be loaded directly into
the integer stack using /dc n. For example, for the IMS T9000,

length(Xw) = Idc (w X 4)

Block transfer

mnemonic name

move move message

Table 7.10 instruction that performs block transfer

Once the address of the array element has been evaluated, its length in bytes is required to enable it to
be transferred using the instruction move, or using the communication instructions described in section
8.4.3.

Assignment of arrays is achieved with the block move instruction move. This interprets Areg as an un-
signed integer representing the number of bytes to be transferred, Breg as the destination address, and
Creg as the source address. It hence moves Areg bytes of data starting at address Creg to address Breg.
Allinteger stack registers are undefined after execution. This instruction is interruptible (see section 8.2.5).

vl :=v2 = address(v2); address(v1), length(v1); move

where address(v) is defined on page 29 and length(v) is compiled as described above. The two arrays
must not overlap — if they do, the effect of the move instruction is not defined. In particular the move
instruction cannot be used to initialize a region of memory by moving from one location to an overlapping
location.

7.6 Multiple assighment

Previous sections have detailed how single assignments to variables, array elements and arrays can be
compiled. The compilation of multiple assignments is more complex.

40 T9000 transputer instruction set manual

In occam, the multiple assignment
Vi, ..o, Vhe=Eq, ... ,Ej

is defined as being equivalent to

Tq tempq:
T, tempp:
SEQ
PAR
tempy := Ej
temp, := Ej
PAR
Vi := tempq
Vi = tempn
where the parallel separation rules of occam apply so that multiple assignments are restricted to those
whose ‘expanded’ version is a valid occam program. T4 . .. T, are type definitions of the appropriate
types.

Because the final assignments are performed as if in a PAR construct they are guaranteed not to interfere
— i.e. one assignment cannot affect the destination of another — so that they can be compiled as a se-
quence of assignments. Hence the multiple assignment can be compiled as

assign(temp4, Eq); . .. ; assign{tempy, Ep);

assign(V4, temp4), . . . ; assign(V, tempy)
where

assign(V, E)

represents the compiled code for
V := E
as detailed in subsection 7.5.4.

This can be optimized by re-ordering the two assignment sequences to enable registers to be used instead
of some of the temporary variables.

For example,
a, b :=c¢, d
can be optimized from

Idic; Idl d; stl t;; stl ts;
Idl t;; Idl to; stl a; st/ b

to

Idl ¢; Idl d; stl b; stl a

7.7 Comparisons and jumps

Comparisons and conditional behavior are provided by the instructions listed in table 7.11.

7 Sequential operations] 41

mnemonic name

eqen equals constant

diff difference

gt greater than

gtu greater than unsigned
jn jump

cn conditional jump

Table 7.11 Comparisons and conditional behavior instructions

7.71 Representation of true and false

The IMS T9000 uses 0 as false and 1 as true. These values are generated by predicate operations (for
example comparisons).

It is easy to implement programming languages that use a different representation of true and false as
shown in section 7.7.3.

7.7.2 Comparisons

The primary instruction eqc n loads Areg with a truth value — true if Areg is initially equal to the instruction
operand (n), false otherwise. Breg and Creg are unaffected.

diff, gt and gtu take integer operands in Areg and Breg and produce a boolean result which is loaded into
Areg. They also load the value in Creg into Breg, leaving Creg undefined.

diff (introduced in section 7.3.4) can be used as a ‘not equals’ function. It loads false into Areg when the
values initially held in Areg and Breg are the same.

The gt instruction loads Areg with frue if Breg > Areg, false otherwise.

Similarly gtu loads Areg with true if the unsigned value of Breg is greater than the unsigned value of Areg;
false otherwise.

7.7.3 Implementation of languages with different representations of true and false

When true and false are represented by 1 and 0 respectively, these values can be loaded with single byte
load constant instructions. However it is also possible to represent true by a value other than 1. In particu-
lar, using

eqc X; not; ade 1
and
gt not; adc 1
in place of egc X and gt respectively, does not affect the representation of a false result, but changes the
representation of frue to —1, which is used in some programming languages.
7.7.4 Boolean negation

The above implementation of the boolean type (section 7.7.1) enables a boolean negation to be repre-

sented as follows.
+(X)
2(~(X))

(X; eqec 0)
(X;eqc0,eqc0) = X

42 T9000 transputer instruction set manual

The symbol ‘-’ will be used henceforth where a boolean negation is required in a code sequence. This is
merely to aid clarity.

7.7.5 Jump and conditional jump
The are two relative jump instructions. Both are primary instructions.

The unconditional jump instruction, j n, adds its operand (n) to the address of the instruction immediately
following it and puts the result into IptrReg, thus transferring execution to another part of the program.
It leaves the integer and floating-point stacks undefined. This instruction should never be used with a zero
operand except where a breakpoint is requiredT.

When executed in an L-process, j n allows the current process to deschedule (after the jump) if the current
timeslice has been exceeded, ensuring that there is an opportunity to deschedule once each time round
aloop. (This is one of two instructions that have this property. Such instructions are referred to as ‘timeslic-
ing points’. See section 8.2.4.)

The conditional jump instruction, ¢j n, performs a jump if the value in Areg is 0 and does not affect the
integer stack; but otherwise pops the value in Areg off the integer stack and continues with the next
instruction. Consequently ¢cj n serves as ‘jump if false’ provided that the language being implemented inter-
prets O as false (see section 7.7.1).

The ¢j instruction never deschedules the process. The sequence
Ide 0; ¢j L

can be used in place of
jL

if it is important that descheduling does not occur. This will cause the value 0 to have been pushed onto
the integer stack when execution reaches L. This 0 value can be removed, if necessary, by making the
first instruction after L a pop which will restore Areg and Breg to the values they held before the jump —
however any value in Creg will have been lost.

7.7.6 Evaluation of boolean expressions

The following shows the correspondence between occam expressions and instructions. X and Y are ex-
pressions, and K a constant. The symbol ‘-’ is a boolean negation (see subsection 7.7.4).

TRUE = Idc1

FALSE = JdcO

NOTX = ~(X)

X=Y = XY diff eqc0
X<>Y = X Y diff eqc 0)
X=K = XepecK
X<>K = -(X eqcK)
X>Y = XY:gt

X<Y = Y Xgt
X>=Y = ~(Y;Xg
X<=Y = XY gl

Further optimizations can be made to the ‘not equals’ comparison when followed by a conditional jump.
X<>Y;gL = XY diffglL
X<>0¢L = XL

1 The instruction j n has a dual use. Its normal use is an unconditional jump; but if its operand (n) is zero, then it causes a breakpoint
to oceur, by forcing a trap to be taken. The latter use is detailed in chapter 14.

7 Sequential operations 43

Evaluation of AND and OR

For evaluation of boolean AND and OR operations, the instruction sequence depends on whether or not
strict or non-strict evaluation is used. In occam, evaluation is non-strict and the following short-circuit tech-
nique must be used.

XORY
XAND Y

= (X gL (V) L) (1)

- X, Cj L; \/, L

The following laws should be applied to the compilation of conditional expressions before code is gener-
ated to ensure that the jump is taken as early as possible.

2(X AND Y) = (-X)OR(7Y) = -~(XqgL Y L)
(X ORY) = (~X)aND (-Y) = -G gL ~(Y)L]
(XORY);GL = (-X;c¢M Y cL; M:

(XANDY); GiL = XL Yl

In other languages, evaluation of booleans is strict (for example, ADA gives the programmer the choice)
and so both expressions in dyadic logical operations may need to be evaluated.

For example where false is represented by 0, and true is represented by any fixed bit pattern other than
0 (e.g. true is always 1, or frue is always —1), then the following transformations apply

XORY = XBITORY
XANDY = XBITANDY

and the bitwise instructions given in section 7.3.7 can be used:

XORY = X Y;or
XANDY = X;Y;and

Note that even for some non-strict evaluations, the above sequence may be preferable. Where Y'is a sim-
ple boolean expression such as a local variable, its evaluation does not cause any side-effects, and so
it does no harm to implement a non-strict evaluation using a bitwise operation.
7.7.7 Conditional transfer of control
The conditional expressions used in a conditional branch of an IF construct are compiled as follows
IFE E c¢L;
P = P; j END;
L:
where the label END: is at the end of the code for the IF construct.
The compilation of a WHILE loop is
WHILE E L: E; ¢j END;
P = P;jL
END:

Note that this loop includes an unconditional jump. The presence of this ensures that rescheduling can
take place should the loop continue for longer than a single timeslice.

The compilation of 2 REPEAT .. UNTIL loop is
REPEAT iK
P = L: E; eqc 0; ¢j END
UNTIL E K PjL

END:

44 T9000 transputer instruction set manual

7.7.8 Compiling CASE statements

The CASE statement is a special form of conditional transfer where the transfer is determined by compar-
ing an expression to a number of constants.

When compiling the process

CASE X

the expression x is evaluated and stored in a local variable by
x; stl selector
Then each branch of the CASE statement

Cl{y «o« ;Cp
P

can be compiled by

ldl selector; Idc c;; diff; cj L;
Idi selector; Idc cp; diff; ¢f L,

Idl selector; eqc ¢y, ¢f M;
L: P;jJEND;
M:

where the label END: is placed at the end of the CASE statement.
Optimized compilation of CASE

The compilation method given above will produce inefficient code for large CASE statements. To produce
more efficient code the following rules can be used.

First build up a set of pairs of selector values and processes, consisting of every selector value in the CASE
statement along with its associated process — the process part of each pair can be represented by the
offset to the start of the compiled code for that process. Then the following rules can be used.

1 If there are 3 entries or less then use the method as described above.

2 If there are 12 entries or less then use a binary search to limit the number of comparisons re-
quired.

3 For more than 12 entries attempt to use a jump table. The offset of the start of each selected
process is placed in the table against each selector value. Entries that do not match a selector
inthe CASE statement must contain the offset of an error handler process. This jump table should
be the largest table such that about 1 of the entries are filled. This compilation strategy is then
recursively called to handle the two ends. The gcall (section 7.11) and Idpi (section 7.5.2) instruc-
tions, can be used to jump to the selected piece of code.

The choice of 3 or less processes, 12 or less processes and 1 filled table are the values used in current
INMOS occam compilers.

Consider compiling the CASE expression
CASE X

Cq
P4

Cn
Pn

7 Sequential operations

45

where, for brevity, it is assumed that all the case selectors are already in increasing order.

Three entries or less

This case is compiled as

Four to twelve entries
This case is compiled as

IF
X<=cn
2

IF
X <= ¢q
7
... elc.
X> ca
7
. etc.
X> cn

. ol

etc.

Using a jump table

Assume that ¢; . . . ¢y form a 3 filled jump table. Then the case is compiled as

IF
X<c
CASE X
Cq
Py

Ci1
Piy
X>cm
. .. Similar
TRUE
. . . jump table code

where jump table code is

X; Ide cy; diff; Idc jump_size; prod; Idc (jump_table—M); Idpi

M: bsub; gcall;
jump_table:
jcase O;jcase_1; ... ;jcase_k
ERROR: ... error code
Li: ... code for P,
Lm: ... code for Pp,

The code at jump_table consists of a sequence of jump instructions which transfer control to the relevant

branchLi ... Lmorto ERROR. The destination, case_x, of each of these jumps is Lj if ¢;is equal to (¢; + x)
and is ERROR otherwise.

46 T9000 transputer instruction set manual

The code at ERROR should be the same code as used at the end of an IF statement where all the condi-
tionals have been false. The bsub, Idpi and gcall instructions are explained in other sections.

All the jumps in the jump_table code must be encoded to the same length (jump_size bytes) to enable
them to be accessed as a byte array. nop, which a single byte instruction that performs no operation, can
be used to ensure this where different operands require a different amount of prefixing.

Also note that in the special case where jump_size is 1, Idc jump_size; prod’ can be removed from the
sequence, and where jump_size is 2, 4 or 8, ‘ldc jump_size; prod’ can be removed provided bsub is re-
placed with ssub, wsub, or wsubdb respectively.

7.8 Long arithmetic and shifts

7.8.1 Multiple length addition and subtraction

Signed addition and subtraction can be performed on values longer than a word using the instructions
shown in table 7.12.

mnemonic name

Isum long sum

Idiff long difference
ladd long add

Isub long subtract

Table 7.12 Long arithmetic instructions

The ladd and /sub instructions are used for the final step of a signed multiple length addition or subtraction.
The other steps can be performed using /sum and Idiff. For all four instructions, there are two single word
integer operands held in Areg and Breg, and a carry (or borrow) operand held in the least significant bit
of Creg (i.e. Creggp, — all other bits in Creg are ignored) .

The Isum instruction forms (Breg + Areg) + Creggp leaving the least significant word of the result in Areg
and the most significant (carry) bit in the least significant bit of Breg (all other bits in Breg are set to 0).
Creg becomes undefined.

Similarly, the /diff instruction forms (Breg ~ Areg) — Creg,sy, leaving the least significant word of the result
in Areg and the borrow bit in the least significant bit of Breg (all other bits in Breg are set to 0). Creg be-
comes undefined.

The ladd instruction sets Areg to (Breg + Areg) + Cregg,. If this instruction causes overflow (i.e. the re-
sult is greater than MostPos or less than MostNeg), it signals IntegerError, and the result is truncated so
as to fit into 32 bits (but see note 1 at the end of the chapter). Breg and Creg become undefined.

The Isub instruction sets Areg to (Breg — Areg) — Creg,,. If this instruction causes overflow, it signals
IntegerError, and the result is truncated so as to fit into 32 bits (but see note 1 at the end of the chapter).
Breg and Creg become undefined.

Addition of two double length signed values with overflow checking can therefore be compiled as follows

Ide 0;
Idl Xio; Id! Y\, Isum; stl Zo;
Idi X, Idl Yy ladd; stl Zy;

[The subscripts ‘lo’ and ‘hi’, used here and in subsequent text, specify the less and more significant word
respectively, of the double word variable with which they are associated.]

Subtraction of two double length values without overflow checking is compiled as

Idc 0;
Il X; 1dll Yo, 1dliff: st Zpo;
Idl X Ial Yy, Idiff; stl Zy;

7 Sequential operations 47

with the final borrow left in Areg.

7.8.2 Multiple length multiplication and division

The long multiplication and division instructions are

mnemonic name
Imul long multiply
Idiv long divide

Table 7.13 Long arithmetic instructions

The Imul instruction muitiplies two single word unsigned operands in Areg and Breg, and adds the single
word ‘carry’ operand in Creg to form a double length unsigned result. The most significant (carry) word
of the result is left in Breg, the least significant in Areg. No overflow is possible so an error cannot be
signalled by this instruction. Multiplication of a single length unsigned value X by a double length unsigned
value Y can be performed by

Idc 0;
Idl X; lal Yo, Imul; stl Zio;
Idl)(, Idl Yhir. /ITIU/,' st Zhi

which leaves the ‘carry’ in Areg.

Double length unsigned multiplication is not quite so obvious. The product of two unsigned double length
words X and Y —i.e.

XY = (%3292 + Xo). (Yni-2%2 + Vo)
= (Xpi. Yhi)-25% + (Xpi. Yio + Xio- Yhi)-2%2 + (Xo-Yio)

can be coded as follows.

Ide 0;

Idl Xio; ldl Yo, Imul; st Zg

Idl X\o, ldl Yy Imul; rev; st Z»

Idl Xy, Idl Yo, Imul; stl Zy;

Idl Xy Idl Yy Imul; rev; stl Zs;
Idc O; rev; Idl Z5; Isum; stl Zo;

ldl Z5; sum; stl Z3

This gives a quadruple length unsigned resuit Z.

The Idiv instruction divides the double length unsigned value held in Breg and Creg (most significant word
in Creg) by the single length unsigned value in Areg. The quotient is left in Areg with the remainder in
Breg. Overflow occurs if the result cannot be represented as an unsigned single word value and Infeger-
Overflow is signalled. Division of a double length value X by a single length value Y to produce a double
length result Z can be performed by

Idc 0;

ldl Xy, Idl'Y; Idiv; stl Zy;

Idl Xio; Idl'Y; Idiv; stl Z)o
which leaves the remainder in Areg.

Both imul and /div leave Creg undefined.

7.8.3 Multiple length shifts

The long shift instructions are

48 T9000 transputer instruction set manual

mnemonic name
Ishi long shift left
Ishr long shift right

Table 7.14 Long shift instructions
The Ishl and Ishr instructions both shift the double length value held in Breg and Creg (most significant
word in Creg) . Vacated bit positions are filled with zero bits. The number of bit positions shifted is the
unsigned value of Areg. If Areg is zero, then the result is the unshifted value, and if Areg is greater than
the number of bits in a double length word, then the result is zero. The result is leftin Areg and Breg (most

significant word in Breg). (The value of Areg can be checked in advance by using the csub0 instruction
— see section 7.13.) Both instructions leave Creg undefined.

The value held in a double length variable X can be shifted n places left by
Idl Xy 1dl Xio; Idl n; Ishi; stl X, st Xp

The value held in a double length variable X can be shifted n places right with the shift length checked
by the following code. This will signal IntegerError if the shift length is notin the range 0 .. 2 x BitsPerWord.

Idl n; Idc (2 x BitsPerWord + 1), csub0;
Idl Xy Idl X\o; 1dl n; Ishi;
stl Xo; St X
Single length arithmetic shifts
The value held in a single length variable X can be arithmetically shifted n places right by
Idl X; xdble; Idl n; Ishr; stf X
and by n places left by
Idl X; xdble; Idl n; Ishi; csngl; st X
where xdble and csngl are explained in section 7.9.2.
In the first example here, the integer in Areg is sign extended to a 64-bit object in Breg and Areg. When
the long shift operation is executed, the extra bits are shifted from Breg to Areg. This may be used for

dividing an integer by a ‘power of 2’ divisor, because the sign of the dividend is preserved in the result.

The second example can be used similarly for multiplying by a ‘power of 2’ factor. csngl also checks for
an out-of-range result —i.e. an integer which is not representable in 32 bits.

Single length rotation
The value held in a single length variable X can be rotated n places right by
Idl X; Ide 0; Idl n; Ishr; or; st X
and by n places left by
Idc 0; Idl X; Idl n; Ishl; or; st X
If the rotate length is not guaranteed to lie in the range 0 << n < BitsPerWord then the length should be
masked with (BitsPerWord — 1), which produces the shift length modulo BitsPerWord. This is because

the Ishl or Ishr will lose the bits in the word being rotated. BitsPerWord can be evaluated by

Idc 8; bent

7 Sequential operations 49

bent multiplies the value in Areg by the number of bytes per word?.

The long shifts can also be used to perform extraction and insertion of bit fields, even where these cross
word boundaries in memory.

7.8.4 Normalizing

mnemonic name

norm normalize

Table 7.15 Instruction for normalizing double length value

The norm instruction normalizes the unsigned double length value in Areg and Breg (most significant
word in Breg) . The double length value held in Areg and Breg is shifted left until the most significant bit
of the value is one. The shifted double length value remains in Areg and Breg. The number of bits shifted
is left in Creg. If the double length value is initially zero, Creg is set to twice the number of bits in a word.

7.9 Object length conversion

Section 4.3 explains that data can be represented in various sized objects. This section describes the
instructions that can be used to convert between these representations.

Most of the transputer integer arithmetic instructions operate on signed integers held in the integer stack
registers as 32-bit objects, and produce results in this form. A few of the instructions operate on or produce
results as 64-bit objects held in two of the 32-bit stack registers. The IMS T9000 therefore provides instruc-
tions that allow an integer to be sign extended to 32-bits or 64-bits, as well as instructions that allow a
program to check that an integer can be represented in a smaller object than the object in which itis cur-
rently represented.

Object length conversion is also important for conversion of high level language data types.

7.9.1 Conversion between 8/16-bit object and word representations

To enable integer representations to be converted between bytes, 16-bit objects, and words, the IMS
T9000 provides the instructions shown in table 7.16.

8-bit object 16-bit object
mnemonic name mnemonic name
xbword sign extend byte to word xsword sign extend sixteen to word
cb check byte cs check sixteen
cbu check byte unsigned csu check sixteen unsigned

Table 7.16 Instructions used for converting between bytes, 16-bit objects and words

xbword extends a signed 8-bit object (byte) in Areg to a signed word. It achieves this by examining bit
7 of Areg and setting the more significant bits in the word to the same value. The previous values of bits
8 to 32 in Areg are overwritten. Breg and Creg are unaffected by this operation.

xsword extends a signed16-bit object in Areg to a signed word. It achieves this by examining bit 15 of Areg
and setting the more significant bits in the word to the same value. The previous values of bits 16 to 32
in Areg are overwritten. Breg and Creg are unaffected by this operation.

cb examines the value in Areg to ensure that it is representable as a signed 8-bit value. If itis greater than
or equal to—128 (—27) and less than +128 (+27), then the value is legal. Otherwise integerError is signalled.
All integer stack registers are unaffected by this operation.

T This is not strictly necessary if it is known that the code is to be run on the IMS T9000, since the wordlength is known to be 32 bits.
However use of bent and other wordlength dependentinstructions, can be used to make code portable to machines of differentword-
length.

50 T9000 transputer instruction set manual

cs examines the value in Areg to ensure that it is representable as a signed 16-bit value. If it is greater
than or equal to—32768 (—215) and less than +32678 (+215), then the value is legal. Otherwise IntegerError
is signalled. All integer stack registers are unaffected by this operation.

cbu examines the value in Areg to ensure that it is representable as an unsigned 8-bit value. If it is greater
than or equal to 0 and less than +256 (+28), then the value is legal. Otherwise IntegerError is signalled.
All integer stack registers are unaffected by this operation.

csu examines the value in Areg to ensure that it is representable as an unsigned 16-bit value. If it is greater
than or equal to 0 and less than +65536 (+216), then the value is legal. Otherwise IntegerError is signailed.
All integer stack registers are unaffected by this operation.

Hence for example, where variables are stored as 16-bit objects in local workspace,
a=>b+c

can be coded as
Idlp b; Isx; Idip c; Isx; add; cs; Idip a; ss

where the integers are signed, or
Idlp b; Is; ldlp c; Is; add; csu; Idip a; ss

if the integers are unsigned.

Note that in these examples, the 16-bit objects are stored on word (32-bit) boundaries making it possible
to use /dlp n to calculate the object address (see page 29).

7.9.2 Conversion between single word and double word representations

mnemonic name
xdble extend to double
csngl check single

Table 7.17 Instructions for conversion between single word and double word representation

The instruction xdble sign extends a single word to a double word — i.e. it changes the representation of
a signed integer from a 32-bit object in Areg to a 64-bit object in Areg and Breg (most significant word
in Breg). It achieves this by examining bit 31 of Areg and setting all bits in Breg to the same value. The
data previously held in Breg is pushed into Creg.

Conversely, csngl reduces the representation of a signed integer from double word in Areg and Breg to
a single word in Areg. An IntegerError is signalled if the integer value falls outside the range of values
representable in a single word. Creg is popped into Breg leaving Creg undefined.

7.9.3 General conversion between N-bit object and word representations

mnemonic name
xword extend to word
cword check word

Table 7.18 Instructions for conversion between word and N-bit object representation

The instruction xword sign extends an N-bit object to a word —i.e. it changes the representation of a signed
integer from an N-bit object to a 32-bit object (see section 4.3). The instruction cword checks that the
signed integer represented in a single word can be represented in an N-bit object. For these instructions,

7 Sequential operations 51

an N-bit object is assumed to be of any length between 1 bit and 32 bits, and assumed to occupy the least
significant bits in a word.

The two operands of xword are an N-bit object in Breg and a length specified in Areg. The length of the
N-bit object is specified by the bit pattern of the most negative integer representable in the N-bit object
—i.e. bit N—1 is set and all other bits are clear. The representation of a signed integer (currently in Areg)
can therefore be extended from a 10-bit object to a word by

Idc #200; xword

Similarly, the two operands of cword are a signed integer represented in a single word in Breg, and a length
specified (as above) in Areg. The result, left in Areg, is the (unchanged) value of Breg and IntegerError
is signalled if the integer cannot be represented in the N-bit object. The following code can be used to
determine whether a signed integer (currently in Areg) can be represented in a 4-bit object.

Idc #8; cword
Two signed integers X and Y, represented as 3-bit objects, can be added and checked for overflow by
X; Idc #4,; xword;
Y; Idc #4; xword;
add; Idc #4; cword
7.10 Replication

Héplicators may be implemented by using the loop end instruction.

mnemonic name
lend loop end

Table 7.19 Conditional replication instruction

A loop is controlled by a loop end data structure, the format of which is shown in table 7.20. The le.Count
slot contains the number of iterations left to perform, and so the user should initialize this to the total num-
ber of iterations required. The le.Index slot can-be used to hold a control variable, and so the user should
initialize this (if required) to the value that such a variable should take in the first iteration of the loop.

word offset | slot name purpose
0 le.Index contains the loop control variable
1 le.Count contains number of iterations left to perform

Table 7.20 Loop end data structure

The lend instruction interprets Breg as a pointer to the loop end data structure and Areg as the number
of bytes from the start of the next instruction to the start of the loop. The start of the loop normally will be
before the lend instruction in memory so the offset for this ‘conditional jump’ is measured in the opposite
direction to the offsets for the other jump instructions (viz. j n and ¢j n).

 lend signals Unalign if the loop end data structure is not word aligned, and signals AccessViolation if the
data structure is protected. The contents of the integer and floating-point stack registers are undefined
after execution.

lend decrements the le.Count slot. If the number of iterations remaining (i.e. the value of le.Count aiter
the decrement) is less than or equal to zero then execution passes to the next instruction. If the number
of iterations remaining is greater than zero, then the processor increments le.Index and subtracts Areg
from IptrReg. Note that, like the jump instruction (j — section 7.7.5), lend is a timeslicing point and causes
the process to reschedule if the looping process has exceeded its timeslice, again ensuring that there is
an opportunity to timeslice each time round a loop. '

52 T9000 transputer instruction set manual

As an example take the occam replicated SEQ construct. This is compiled as

SEQi=aFORN a; stli; n; stl i+1;
P ldli+1; ¢j END;
= L: P;
Idip i; Ide (END-L); lend;
END:

Where it is clear that n is not zero the following may be used

SEQ/=aFORN a; stli; n; st/ i+1;
P L: P;
= Idlp i; Ide (END-L); lend;
END:

The same basic instruction sequence may be used to implement an occam replicated IF, ALT or PAR, and
to initialize arrays of channels.

The count of iterations (n) to perform should be positive. When the number of iterations is the result of
an expression then it may be necessary to add some range checking to cause an error or skip the loop
if this evaluates to a negative value. If n is negative in the first example above, then the loop executes once
before the lend instruction causes the loop to end. A negative count value should probably be treated as
an error, though this depends on the definition of loops in the language being compiled. To check for a
negative n, the first line of the above sequence should be amended to

a; stl i; n; mint; csubQ; stl i+1;

where csub0 is explained in section 7.13.

7.11 Procedures

The instructions in table 7.21 are used to implement procedures.

mnemonic name

call n call

geall general call

awn adjust workspace

gajw general adjust workspace
ret return

Table 7.21 Instructions for implementing procedures

7.11.1 Adjusting workspace

The primary instruction ajw n adjusts the value of the workspace pointer by the number of words in its
operand value —n. Workspace should be claimed by using a negative value and released by using a posi-
tive value.

7.11.2 Call and return

The primary instruction call n adjusts the workspace pointer downwards, allocating four new locations into
which it stores the three integer stack registers and the instruction pointer (return address) — the return
address is also left in Areg by the instruction. The operand to the call —n —is added to IptrReg to produce
the address of the procedure being called.

The state of the workspace after the call instruction is as shown below

7 Sequential operations 53

Saved values
Wptr+4 (= old Wptr)

Wptr+3 Creg
Wptr+2 Breg
Wptr+1 Areg
Wptr+0 IptrReg

The ret instruction restores the IptrReg from the Wptr+0 slot and adjusts the workspace pointer upwards,
to deallocate the four locations. A procedure that requires more workspace will normally include ajw
instructions to allocate and deallocate space. When the ret instruction is executed, the programmer must
ensure that

¢ the Wptr+0 holds the return address

« any workspace claimed by the procedure should have been released so that the Wptr has re-
turned to the value it held at the start of the procedure.

The ret instruction does not affect the integer stack, which can therefore be used to return up to three
values to the calling procedure.

7.11.3 Use of (Wptr+0)
The location (Wptr+0) is used as a temporary store by certain instructions. These are
outword, outbyte, altwt, taltwt, disc, dist, disg, diss, and altend.

Any procedure that uses one of these instructions must allocate an extra workspace slot for this use of
(Wptr+0) so that the return address is not overwritten. Workspace is allocated by the ajw instruction (see
also section 8.1.1).

7.11.4 Loading parameters

It is convenient to load the first three parameters of the procedure into the integer stack registers, and to
arrange the workspace of the calling procedure so that the additional parameters can be stored in loca-
tions 0, 1, ... of the workspace before the procedure is called. In this way, the called procedure will be
entered with its parameters stored in consecutive locations starting at workspace location 1. To enable
the procedure to access non-local variables the parameters of a procedure should include a link to the
environment in which the procedure was declared. This is discussed in section 7.11.5.

7.11.5 The static chain

The scope rules of block structured languages can be implemented using a static chain. This involves
passing a single pointer as a parameter whenever a procedure is called. The ‘non-local’ load, store and
pointer operations described in section 7.4, can then be used to access variables declared in an enclosing
block.

Variable access via the static chain

Access via the static chain is provided by the /dnl, stn/ and ldnip instructions. Let n be the lexical level of
the current procedure, and S; the offset of the lexical link at level /. Then access to a location x at level
n—1 is provided by

Idl Sy ldnix —to load a variable
Idl Sy, ldnip x ~ — to load a pointer to a variable
ldl S, sinl x ~ — to store a variable

Similarly, access to a location y at level n—2 is
Idl Sy; Idnl Sy_4; Idnl y

etc.

54 T9000 transputer instruction set manual

Forming a static link

When a procedure P is called, the static link for the call of P must be computed. Let n be the lexical level
of the current procedure, and m the lexical level of P. If m = n+1 the new link is computed by (Idip x) with
x chosen so that P can access all of its global variables, channels etc. Otherwise the new link is computed
as the value of the link location at level m. With S; as above, this can be obtained by

IF
m=n+1
Idip x
m=n
1dl S,
m=n-1
Idl Sy, Idnl Sp_4
m=n-2
Idl Sy, Idnl Sp_4; Idnl S,

etc.
Passing the static link as a parameter
The static link for the called procedure, and the first two parameters are loaded into the integer stack, using
a loading sequence as described above. The remaining parameters are each evaluated and stored in
workspace locations starting from 0 before calling the procedure with a call instruction. In this way the

procedure will see the return address at workspace 0, the static link at workspace 1 and the parameters
at workspace 2 and onwards.

7.11.6 Other calling techniques

The geall instruction enables any type of procedure call to be constructed as a sequence of instructions.
Its only effect is to exchange the IptrReg and Areg registers. The entry point of the procedure to be called
can therefore be computed in the same way as an expression. If necessary, another gcall instruction can
be used later to return to the calling procedure if the return address, held in Areg, is saved on entry to
the procedure.

It is possible to compile a procedure so that it can be called using either a call or a gcall instruction. Both
the call and gcall instructions leave the return instruction pointer in Areg. Consequently, if the first instruc-
tion in the called procedure is (stl 0), the return instruction pointer will be saved in the appropriate location
in the calling workspace. The calling code may then execute either

call relative_address_of_procedure
or the sequence
ajw —4; stl 1; stl 2; stl 3; absolute_address_of _procedure; gcall

If using call, it is not strictly necessary for the procedure to execute (st/ 0), but by executing this one extra
instruction, it means that the code does not have to distinguish between the calling methods. The proce-
dure should however assume that there are no useful values in the integer stack after this operation. Note
that when using geall, the calling code must first adjust its workspace pointer using (ajw —4), and then ex-
plicitly store the first three actual parameters in workspace locations 1, 2 and 3, as this is-not be done by
gcall. The ret instruction in the called procedure can then be used in the normal way irrespective of how
the procedure was called. However, better ways of dealing with gcall are described below.

Efficiency will be improved if all procedures can assume they have been call-ed and methods similar to
the ones described below are used in cases where a gcall is necessary. Combinations of the call and gcall
instructions can be used to provide efficient implementation of procedure parameters, or for runtime link-
ing of separately compiled procedures.

Library linkage

Most high level languages have a library system associated with them. Programs are able to make use
of procedures from a library of standard procedures. To prevent the code size becoming too large the li-

7 Sequential operations 55

brary procedures are not put into the compiled code until it is linked. This involves extracting the relevant
library procedures from the libraries and ‘linking’ all the calls to those procedures in the compiled code to
the correct address. Initially it might seem that all the code needs to be scanned for these library calls so
that the link address can be instantiated but there is a simple mechanism making use of call and; to handle
this.

Consider the compilation of a program which somewhere includes a call to the library procedure
lib_proc_1.

Each library call is compiled into a call to a ‘stub’ at the end of the program associated with that library
call. The first call to any library procedure will cause the compiler to create a stub for that procedure. A
stub is a sequence of bytes into which a short piece of code will be placed by the linker so a sufficient
number of bytes need to be reserved for this. So between compilation and linkage the code might look
like

call lib_proc_1_stub;

lib_proc_1_stub: — n bytes reserved;

When the program is linked the linker inserts the code
joffset to_lib_proc 1 _code

into the stub. Hence the calls inside the program will transfer control to this stub and the jump will then
transfer control to the library procedure. Thej instruction makes the code relocatable. The process might
be timesliced on the j instruction but, since the call has already stored the integer stack into workspace,
this is not important. The parameter passing of the original call has been undisturbed so that the return
address still points back into the program (and not to the stub) . However since the j instruction may be
timesliced the value of Areg on entry to the library procedure cannot be guaranteed to be the return
address. This means that library routines called by this mechanism cannot be written to be gcall-able. If
this is required then a larger stub that explicitly adjusts the workspace, gcalls the library routine and then
returns to its call, could be used; but this is more expensive.

In the scheme described above 8 bytes should be reserved for each stub on a 32 bit transputer as the
offset could possibly have 32 significant bits needing 7 prefixes before the j. (4 bytes are required on a
16 bit transputer.) The final linked code of the example above is

call ;ib_proc_ 1_stub;

lib_proc_1_stub: j offset_to_lib_proc_1;

Procedures as parameters

Calling a procedure that has itself been passed as a parameter needs to be compiled with a gcall instruc-
tion, because its address cannot be compile time evaluated. Although this gcall can be made to look like
a call by the methods above there is a more efficient way that uses a call to set up the parameters. Again
this uses a call to a program stub. If an invocation of this procedure (which has been passed as a parame-
ter) has itself got n parameters then this can be compiled by invoking a stub using call. This call should
pass n+1 parameters where the last parameter is the address of the procedure. The stub then loads this
n+1 parameter into Areg and performs a gcall. This has the same effect as a normal call to the procedure.

For example consider the following fragment of ‘C’ that uses a pointer to a function (£_ptr), to make a
dereferenced call.

void (*kf_ptr)(... formal list of n parameters ...);

56 T9000 transputer instruction set manual

(kf_ptr)(... actual parameter list ...)
/* call of function through ‘f ptr’ */

Assuming that there are at least 3 formal parameters (i.e. n = 3), the call may be compiled as

Idl f_ptr; — where f_ptr’ contains the absolute address of the function
stl (n-3); — store as the n+1" parameter — N.B. first 3 parameters
— are loaded onto the integer stack, 4th parameter
— is stored at workspace O etc.
... load other parameters as normal
call f_stub

f. stub: ldl (n+1) — call has moved the workspace down four slots
geall

If there are less than 3 parameters, the function address is passed in the integer stack.

7.11.7 Other workspace allocation techniques

The gajw instruction exchanges the contents of Wptr and Areg, allowing workspaces to be allocated dy-
namically, and allowing dynamic switching between existing workspaces.

If a process workspace holds a pointer to a new workspace, then
Idl Whew gajw; stl Woig

changes to the new workspace and stores a pointer to the old workspace. The old workspace can be re-
stored by

ldl Woiw gajw
In addition, the old workspace can be accessed from the new workspace, using

ldl Weyg Idnl x
Idl Wyy; stnl x
Idl Weg; ldnip x

7.12 Functions

The instructions explained in section 7.11 can also be used to implement a function. Up to 3 results of size
less than or equal to the wordlength of the transputer can be returned from a function in the integer stack
—the ret instruction does not affect the registers. Further results, or results larger than the wordlength,
can be returned by passing into the function the addresses of places to store these results as extra param-
eters.

The occam function is used for purposes of illustration (for simplicity, it is assumed that the first 3 results
can be returned in registers):

Tis «++ s Ty FUNCTION F (V4, ..., Vp)
local variable declarations
VALOF
P
RESULTEq, ... , Ep

can be compiled as

ajw —local_variables;
P;

7 Sequential operations 57

assign(results,Ey); . . . ; assign(resulty, Ep,)
Ey Ey Ey;

ajw local _variables;

ret

where
assign(V,E)
is the code for the assignment
V:=E
andresulty, ... ,resulty are the addresses of the result stores passed as extra parameters to the function.

One of the loading sequences described earlier may be required if the expressions returned in the regis-
ters contain evaluations. Since the values returned by a multiple result function, will be assigned to vari-
ables in a multiple assignment which assigns in parallel, it is always possible to evaluate the results in any
order. Inthis way cases can be handled where the results returned in the registers are not the first 3 results.

7.12.1 Calling a function

If the function has more than 3 results, then those results which cannot be passed in the integer stack
should be assigned using ‘call by reference’. The addresses of these result variables, as well as the func-
tion’s parameters and the static link, must therefore be passed to the function. As with procedures the first
three of these should be loaded into the integer stack before the call instruction which automatically stores
them in the workspace. The remainder of the ‘parameters’ passed should be loaded into the workspace
before call is executed. When the function returns, the results whose addresses were passed will already
have been stored so all that remains is to store the (up to) 3 results returned in the integer stack.

For example the function call
Vi, oo v Vm:=F(Ey, ..., Ep)
could be compiled by

Eystlo; ... ; Ey stl (n-3);

genaddr(Vy); stl (n-2); . .. ; genaddr(Vyy), stl ((m+n)—6);
Eo; Ey; static_link; call F;

stl Vy; stl Vo, stl Vg

where genaddr(X) is the code needed to form the address of X. The compiler must have already allocated
sufficient workspace for the parameters that are stacked explicitly. For simplicity it has been assumed that
Vi ... Vzare all local variables whose values can be returned in a register.

7.12.2 Single result functions

In most programming languages, a function that returns a single result can be used in an expression as
well as in an assignment.

A common form of function returns a single value contained in a word — the mechanism described above
will return this in Areg. When compiling expressions (using the algorithm described in section 7.3.1), the
depth of such a function call should be taken as being infinite — i.e. deeper than any other form of expres-
sion. This is because the function call will always lose any other information in the registers. By giving it
infinite depth the expression compilation algorithm will never call a function while another expression result
is being held in a register.

7.13 Error checking instructions

The instructions listed in table 7.22 can explicitly check for integer errors. The following text describes
these instructions and demonstrates how they may be used. If conditions are such that IntegerError is
signalled, this causes a trap to be taken. A general treatment of trap-handling is given in chapter 10.

58 T9000 transputer instruction set manual

mnemonic name

csub0 check subscript from 0
cent1 check count from 1

cir check in range

ciru check in range unsigned

Table 7.22 Instructions that may explicitly signal IntegerError
Subscript checking, sign checking and ‘signal if true’

The csub0 instruction signals IntegerError if the unsigned value of Breg is greater than or equal to the
unsigned value of Areg. The value in Areg is popped from the stack by this instruction.

It can be used to check subécript operations. An expression £ can be checked to signal IntegerError if
it is greater than or equal to S by

E; S; csub0

If A is an array of S words subscripted from 0, and E an expression, then A[E] can be translated into the
range checked access

E; S; csub0; A; wsub; Idni 0

Note that the csub0 instruction traps both an overlarge subscript and a negative subscript; since, when
considered as unsigned values, all negative values are greater than any positive value.

Similarly csub0 can test an expression (E) for a negative integer value with
E; mint; csub0

The bit pattern for MostNeg is 100..0. Since csub0 treats its operands as unsigned integers, it will in this
example signal IntegerError for any bit pattern which has the msb (most significant bit) set to 1. In twos
complement format, this represents all negative numbers.

It can test a boolean expression for true with
E; Idc 1; csub0

This sequence signals IntegerError if E is any value other than 0; but since 0 is the representation of false,
it performs a ‘signal if frue’ operation on the boolean valued expression E. It also signals IntegerError if
E is outside the range of boolean values (i.e. not 0 or 1).

Checking message lengths and ‘signal if false’

The cent1 instruction signals IntegerError if the unsigned value of Breg is greater than the unsigned value
of Areg or is less than 1 (viz. 0). That is, it checks that Breg is in the range 1 to Areg inclusive. The value
in Areg is popped from the stack by this instruction.

It can test a boolean expression for false with
E; Idc 1; centt

This sequence signals IntegerError if E is not 1; but since 1 is the representation of true, it performs a
‘signal if false’ operation on the boolean valued expression E. It also signals IntegerError if E is outside
the range of boolean values (i.e. not 0 or 1).

General range checking

The cir instruction signals IntegerError if the signed value of Creg is greater than the signed value of Breg
oris less than the signed value of Areg. That is, it checks that Creg is in the range Areg to Breg inclusive.
The range values in Areg and Breg are popped from the stack by this instruction.

7 Sequential operations 59

ciru is similar to cir, but uses unsigned comparisons of the values.

Both instructions may be used to check whether the result of an expression is in the correct range before
using it further. For example a signed expression E can be checked by signalling /ntegerError if it is not
in the range Siower t0 Sypper—

E; Sypper; Siower; Cir
For example in Pascal, if an array (&) is declared as
VAR A: ARRAY[—27:104] OF INTEGER;

then to load an element of that array (A[i]), compile as

Idl i; — load index

Idc 104; Idc —27; cir; — check that index is within range of array
Idl a; adc 27; wsub; — load address of element

ldnl 0 — load element

7.14 Device access instructions

The previously described memory access instructions use the following memory model: a read instruction
applied to a particular location should return the last value written to that location by a write instruction.
This says nothing about whether the value is actually stored in main memory by the write, nor does it say
anything about the temporal order of reading and writing in relation to other instructions.

If a memory address is being handled by one of the main cache banksT, then data written to this address
may not get written back to main memory before a subsequent access to the same address. This means,
for example, in a sequence where a read is made between two writes to the same location —

Idc A; Idl Location1; stnl 0; — store constant A into
— Location1

ldl Locationt; Idnl O; Idl Location2; stnl 0; — load content of Location? and (2)
— store elsewhere (Location2)

Idl B; Idi Location1; stnl O; — store constant B into Location1

—that although the read returns the last value written to the location before the read (A), the main memory
location itself may never have actually held this value.

Where a sequence of instructions writes data to different memory locations, assumptions cannot be made
about the order in which those locations are assigned data. For example, it cannot be assumed in the se-
quence

Ide A; Idl Location; stnl 0; — store constant A into Location (3)
Idl (Location+1); ldnl 0 — load content of Location+1

that the write to location at Location is made before the read from Location+1.

The above behavior may cause problems where external devices are memory mapped. The behavior of

such devices is often strictly defined by the ordering of read and write cycles to locations mapped onto

ports within the device, and itis important that all data written to a memory mapped location is really copied

to the device. For this reason, the IMS T9000 includes within its instruction set, special instructions for

accesses to memory mapped devices. These are shown in table 7.23. Note however that these instruc-
. tions may also be used to access non-device locations.

T Foraresumé of the cache, refer to chapter 15. For a more detailed presentation of the memory architecture, refer to sections Pro-
grammable memory interface and Instruction and data cache of The T9000 Hardware Reference Manual and to chapter 15 of this
book.

60 T9000 transputer instruction set manual

mnemonic name

deviw device load word
devis device load sixteen
devib device load byte
devsw device store word
devss device store sixteen
devsb device store byte
devmove device move

Table 7.23 Device access instructions

The device instructions deviw, devis, devib, devsw, devss, devsb, and devmove use the same registers
as memory instructions ldnl 0, Is, Ib, stnl 0, ss, sb, and move respectively, and in the context of the memory
model described above, they have the same behavior.

It is possible to ensure that certain areas of memory are reserved for access by device instructions only.
The programmable memory interface (PMI) can allocate memory banks as ‘device memory’. This is ex-
plained in section Programmable memory interface of The T9000 Hardware Reference Manual. Also,
when running under protection a region descriptor register can mark a region as ‘device access only’, so
that a P-process trap is caused if a non-device instruction makes an access. This is explained in section
9.5.

The behavior therefore of the device instructions with respect to main memory may be different to their
memory instruction counterparts. Firstly, the instructions guarantee that for memory marked by the PMI
as ‘device memory’, writes and reads are made to the main memory. Therefore the sequence

Idc A; Idl Location1; devsw;
Idl Location1; deviw; IdI Location2; devsw;
Idl B; Idl Location1; devsw

(compare with sequence 2 above) is guaranteed to make a write, a read and another write to the actual
memory location —in particular it will always write the constant A to main memory on the first write. Second-
ly these instructions guarantee that reads and writes to specified locations occur in the same sequence
that they appear in the code sequence — e.g. the sequence

Idl Location; devsw;
ldl (Location+1); deviw

(compare with sequence 3 above) ensures that the write to location at Location is made before the read
from Location+1.

devmove performs the minimum number of reads and writes required to copy the block of data. It guaran-
tees that each successive read is from a location with a higher address (more positive) than the previous
read, and similarly ensures that each successive write is to a location with a higher address than the pre-
vious write. The processor reads and writes complete words of data (rather than bytes), and so where
a transfer is from a source block that is not aligned to word boundaries, it is necessary for the processor
to read two words from the source before it can form a complete word to write to the destination. This
instruction is interruptible (see section 8.2.5).

Where a combination of normal memory access instructions and device access instructions is used, the
following rules apply.

e |tis guaranteed that a device load instruction is executed after all normal memory load instruc-
tions that appear before the device load in the code sequence, and it is executed before all normal
memory load instructions that appear after it.

» ltis guaranteed that a device store instruction is executed after all normal memory store instruc-
tions that appear before the device store in the code sequence, and it is executed before all nor-
mal memory store instructions that appear after it.

7 Sequential operations 61

This feature can be utilized in the following shared memory system example. Consider two processors
sharing a particular area of memory. (See figure 7.4.) Each processor can only write to this area when
it has been granted permission to do so. This permission is requested by polling on a specified ‘permission’
memory location using a device load instruction. If this has the special Available value, then the processor
can claim write permission by writing its own identity into the location with a device store instruction, and
can then proceed to write to the shared area using normal memory store instructions. When it has finished
writing to shared memory, it writes Available back to the ‘permission location’ using a device store instruc-
tion. The other processor, which may now be polling this location, cannot write to the shared memory area
until it finds the value Available.

Each processor therefore makes a device read and a device write prior to reading from or writing to shared
memory. It also makes a device write when it has finished writing to shared memory. The above guaran-
tees thus ensure that the processor does not make any reads from shared memory before it has success-
fully polled and cannot make any writes to shared memory before it has written back its own identity, and
also ensure that the processor does not make any writes to shared memory after it has released its write
privilege.

e \ N
processor 1 Dermission ¥ processor 2

use de\{ice store shared poll permission
instruction to write memory location using de-

special value — vice load instruction
Available — when prior to writing to
writing has finished shared memory

Figure 7.4 A shared memory example

7.15 Specialist instructions

7.15.1 Two dimensional block move

Graphical applications often require the movement of two dimensional blocks of data to perform window-
ing, overlaying etc. The transputer contains instructions to perform efficient copying, overlaying and clip-
ping of graphics data based on byte sized pixels.

mnemonic name

moveZ2dinit initialize data for 2D block move
move2dall 2D block copy

move2dnonzero | 2D block copy non-zero bytes
move2dzero 2D block copy zero bytes

Table 7.24 Two dimensional block transfer instructions

A two dimensional array can be implemented by storing rows adjacently in memory. Given any two 2 di-
mensional arrays implemented in this way, the instructions provided can copy a section (a block) of one
array to a specified address in the other.

62 T9000 transputer instruction set manual

To perform a two dimensional move, 6 parameters are required — see figure 7.5. These are
* The address of first element of the source block to be copied. This is called the source address.
e The address of first element of the destination block. This is called the destination address.
* The number of bytes in each row in the block to be copied. This is called the width of the block.
* The number of rows in the block to be copied. This is called the length of the block.
e The number of bytes in each row in the source array. This is called the source stride.

¢ The number of bytes in each row in the destination array. This is called the destination stride.

f— widith —»

TR i
length | "~ P .
source N
—L address destination
address

j«—— source stride —»| |«—— destination stride—»|

Figure 7.5 Two dimensional block move

The two stride values are needed to allow a block to be copied from part of one array to another array where
the arrays can be of differing size.

The move2dinit instruction sets up 3 of these parameters. It takes the source stride from Creg and writes
this into BMReg2, it takes the destination stride from Breg and writes this into BMReg1, and it takes the
length from Areg, and writes this into BMRegO0. This must be performed before every two dimensional
block move. The integer stack register values are interpreted as unsigned integers, and are undefined
after execution,

Each of the 2D block move instructions (move2dall, move2dnonzero, move2dzero) has the source ad-
dress in Creg, the destination address in Breg and the width in Areg (interpreted as an unsigned integer).
These instructions are interruptible (see section 8.2.5), and undefine the integer stack and block move
registers after execution.

move2dall copies the whole of the block of length rows each of width bytes from the source to the destina-
tion.

move2dnonzero copies the non zero bytes in the block leaving the bytes in the destination corresponding
to the zero bytes in the source unchanged. This can be used to overlay a non rectangular picture onto
another picture.

move2dzero copies the zero bytes in the block leaving the bytes in the destination corresponding to the
non zero bytes in the source unchanged. This can be used to mask out a non rectangular shape from a
picture.

7 Sequential operations 63

The current process must not be descheduled between the move2dinit instruction and the actual 2D move
instruction.

None of the two dimensional moves has any effect if either the width or length of the block to copy is equal
to zero. Also a two dimensional block move only makes sense if the source stride and destination stride
are both greater or equal to the width of the block being moved. The effect of the two dimensional moves
is undefined if the source and destination blocks overlap.

7.15.2 Bit manipulation and CRC evaluation

The instructions listed in table 7.25 allow efficient implementation of some of the low level bit manipulation
required in communication protocols etc.

mnemonic name

bitent count bits set in word
bitrevword reverse bits in a word
bitrevnbits reverse bottom n bits in word
creword calculate CRC on word
crcbyte calculate CRC on byte

Table 7.25 Instructions that perform bit manipulation and CRC evaluation

bitcnt counts the number of bits that are set in Areg, adds this to the integer in Breg, and returns the result
in Areg. Creg is popped up into Breg. The use of a register to accumulate the total number of bits set
means that this instruction can be used in an inline sequence or a loop to count bits set in an array of words
efficiently. Note that a loop using lend cannot be used as this has the potential of timeslicing. This instruc-
tion has applications in pattern matching and image recognition.

bitrevword reverses the bit pattern of the word held in Areg. Breg and Creg are left unchanged. bitrevnbits
reverses the bottom Areg bits in Breg, zeroing all other bits, leaving the result in Areg and popping Creg
up into Breg. This result is undefined if Areg is greater than the wordlength, or is negative.

These instructions are useful when interfacing the ‘little-endian’ transputer with other systems that are
‘big-endian’.

creword and crebyte are component instructions in the calculation of the cyclic redundancy check word
for a message. This method for checking the correctness of data that has been communicated is based
on polynomial division. Both instructions take the data to be processed in Areg — though for crcbyte it
must be in the most significant byte of the word. Breg contains the CRC that has already been generated
and Creg contains the generator. The instruction calculates the CRC by iterating a loop for BitsPerWord
or BitsPerByte iterations. The CRC for one bit is performed by shifting Breg and Areg left one place as
a double word quantity (most significant word in Breg) then xor-ing Creg into the resulting Breg if the bit
shifted out of Breg was set to 1. At the end the new CRC word generated in Breg is left in Areg and the
generator is left in Breg.

Calculating the CRC of a message

The creword and crebyte instructions are designed to be used sequentially in in-line code to enable effi-
cient generation of the CRC of a message.

If a message is word aligned and is a multiple of BytesPerWord long, then the CRC can be calculated by
loading the generator and the first word of the message into the integer stack. Then each remaining word
in turn is loaded and creword applied to it.

64 T9000 transputer instruction set manual

The CRC generation can be coded into a loop using /end. Areg and Breg must be preserved over the lend
_instruction in two locals as the process could be timesliced. The following code would evaluate the CRC
of a word aligned message mess of len words.

Idc 0; st LEDS; Idl len; stl LEDS+1; — set up ‘loop end data structure’
Idc generator; Idc O;
stl temp_crc; stl temp_generator; — store CRC accumulation (initially zero)
— and generator into temporary variables
L: ldl temp_generator; — load CRC generator
ldl LEDS; Idl message; wsub; ldnl 0; — load loop control variable and load

— word from message indexed by
— that variable

idl temp_crc; rev; — load CRC accumulation
creword;
stl temp_crc; st temp _generator; — store CRC accumulation and
— generator into temporary variables
Idip LEDS; Idc (END-L); lend; — load pointer to ‘loop end data structure’
' — and ‘jump offset’ prior to testing for loop
—end

END:

If the message is not word aligned then more care is needed. crcbyte is used to handle any non-word-
aligned bytes at either end of the message.

The overhead involved in handling the loop can be reduced by putting more than one creword in-line inside
the loop body.

Remember that the transputer is totally ‘little-endian’ in that more significant data is always to the left of
less significant data or at a more positive address. This applies to bits in bytes, bytes in words and words
in arrays.

Communications protocols and standard CRCs differ widely in the way they order data so that to calculate
the CRC of amessage it will often be necessary to use the bitrevword and bitrevnbits instructions to handle
this. Care is needed to ensure that the CRC being calculated is the same as that required and that data
is communicated in the correct order. Many protocols make claims of being ‘little-endian’ or ‘big-endian’
but this is not always totally correct — for example the CRC is sometimes in the opposite orientation to
the data.

1. If IntegerOverflow is signalled for these instructions, then a result is returned in Areg if and only if trapping is disabled. If a trap
is taken, then the contents of the integer stack are undefined when presented to the trap-handler/supervisor. This is discussed in
detailsin section 13.2.2. [fnotrap is taken, thenthe result represents the number that would be obtained from repeatedly subtracting
232from (oradding 232to) the positive (or negative) number which should be yielded mathematically (ifthere were noimplementation
restrictions), until the resultis in the range —23 to (231 —1). Hence, for adc, add, ladd, sub and Isub, the difference between the result
and the required result is —232 (or +232), and for mul the difference is n232, where n is an integer.

8 Concurrent processes 65

8 Concurrent processes

The transputer is capable of running many processes concurrently. This concept is introduced in section
3.1. The following chapter explains the scheduling mechanism that enables the machine to do this, and
discusses how processes communicate.

8.1 Workspace

A process workspace consists of a vector of words in memory. It is used to hold the local variables and
temporary values manipulated by the process. The workspace is organized as a falling stack, with ‘end
of stack’ addressing; that is the local variables of a process are addressed as positive offsets from the
workspace pointer. Space is allocated and deallocated explicitly using the adjust instructions, and is also
allocated implicitly by the procedure call and return instructions.

8.1.1

When a process is descheduled, its workspace pointer is stored as part of the process descriptor (see
section 5.3). Certain key data words are stored below the workspace address. This is referred to as the
process workspace data structure.

Process workspace data structure

The following slot names are used to name locations relative to a process workspace for an L-process.

word offset | slot name purpose
0 pw.Temp slot used by some instructions for storing temporary values
—1 pw.Iptr the instruction pointer of a descheduled process
—2 pw.Link the address of the workspace of the next process in schedul-
ing list
pw.Count message length in variable length communication
-3 pw.TrapHandler pointer to trap-handler data structure (THDS)
—4 pw.Pointer saved pointer to communication data area
pw.State saved alternative state
pw.Length length of message received in variable length communication
-5 pw.TLink i’:lddress of the workspace of the next process on the timer
ist
-6 pw.Time time that a process on a timer list is waiting for
Table 8.1 Word offsets and names for data slots in a L-process workspace

In the text, a reference such as ‘the pw.Length slot of the process workspace’, would mean the address
at an offset of —4 words (—16 bytes) from the workspace address of the process.

Note that in some cases, a word offset is shared by more than one slot name. This is because the location
specified by such an offset is used for a number of different purposes at different times. For example when
the pw.Count slot contains information about the message length, the process is not on a scheduling list
and so the location is not required to contain pw.Link information.

A small number of instructions — outword, outbyte, altwt, taltwt, disc, dist, disg, diss, and altend — make
use of pw.Temp. A process must therefore ensure that workspace 0 (Wptr+0) is not in use when execut-
ing an output instruction, or during the disabling part of an alternative sequence (see section 8.7). Also,
care is needed to ensure that the return address of a procedure call, which is stored at (Wptr+0) on entry
to the procedure, is not lost.

8.1.2

To ensure that the process workspace data structure is not overwritten, each process must be allocated
workspace in addition to that for the local variables. The extra locations are immediately below the work-
space pointer address, held in Wptr.

Size of workspace

66 T9000 transputer instruction set manual

process with no i/o 3 words
process with only unconditional i/o using in and out, or vin and vout 4 words!
process with only unconditional i/o using outbyte or outword 4 words
process with alternative input 4 words"
process with timer input 6 words
process with alternative timer input 6 wordst

8.2 Scheduling and priority

The concept of scheduling lists and the two priority levels provided by the machine, were introduced in
section 3.1. This section provides some more detail on scheduling, descheduling, timeslicing and inter-
rupts.

8.2.1 The current process, the null process, and scheduling lists

The descriptor (see section 5.3) of the process that is currently ‘executing’ is held in the workspace des-
criptor register (WdescReg). This process is referred to as the ‘current process’. If the ‘null process’ is
executing (i.e. no process is executing) then the workspace descriptor register contains the special vaiue
NotProcess.p. In section 3.1, the term ‘active set’ was defined. A process is in the active set if.—

e it is the current process,
e itis the interrupted process, or
« itis on one of the scheduling lists.

When a process belongs to this set it may be described as ‘running’, ‘scheduled’, or ‘active’. A process
on one of the scheduling lists may be described as ‘queued’.

The processor maintains two lists of processes which are ready to run, one for each priority level. Each
listis a linked list of workspace data structures for processes which are ready to be executed, notincluding
the current or interrupted processes. When a process is run, it is added to the end of the appropriate list.
When the current process is timesliced, it is placed at the end of the appropriate scheduling list and the
new current process is taken from the front of the list.

The front pointer registers, FptrReg0 and FptrReg1, contain the workspace pointers for the next process
to be executed at high and low priority respectively. Similarly the back pointer registers, BptrReg0 and
BptrReg1, contain the workspace pointers for the last process on each list. Each queued process (except
the last in each list) holds, in the pw.Link slot of the process workspace data structure (section 8.1.1),
a pointer to the workspace of the next process scheduled at the same priority.

The scheduler operates in such a way that non-executing processes do not consume any processor time.
Figure 8.1 shows the workspace area and code for processes P, Q, R and S, where S is the currently
executing process, and P, Q and R are active, awaiting execution. Only the low priority process queue
registers are shown; the high priority processes are queued and executed in a similar manner.

T In addition to the befow workspace data structure, these processes also use the pw.Temp slot (not included in the above figures).
For example, a process cannot use pw.Temp as a local variable while performing an alternative input.

8 Concurrent processes 67

workspaces code
registers
pw.Iptr
FptrReg1 P pw.Link ——I
BptrReg1 pw.Iptr
Q pw.Link ‘|
pw.Iptr
R
Wptr S
IptrReg

Figure 8.1 Linked scheduling list
Manipulating the scheduling lists

The instructions swapqueue and insertqueue have been provided for manipulation of the scheduling lists.
They are described in section 13.6.

8.2.2 Descheduling

When a process ceases to be the current process, it is said to be ‘descheduled’. As described in section
3.1, a process may be descheduled for a number of reasons. Descheduling can only occur after execution
of certain instructions. These are called ‘descheduling points’ and are listed in table 8.2. Some of these
instructions have not yet been introduced and are left to later sections.

J altwt enap grant in
lend out outbyte outword selth
stopch stopp taltwt timeslice tin
vin vout wait

Table 8.2 List of descheduling points

When a process is descheduled, its instruction pointer is stored in the pw.lptr slot of the process work-
space data structure and execution of the process is suspended. The integer and floating-point stack reg-
isters are not saved when a process is descheduled. This means that an L-process must not attempt to
transfer any information in these stacks across any descheduling points. If the process is descheduled,
other processes may corrupt the stacks before it is rescheduled. [Note that this is not a concern for P-pro-
cesses because these do not deschedule. When a P-process takes a trap, the integer state is saved in
the P-state data structure.]

8.2.3 Rescheduling after communication

When a .communication completes, the waiting process is placed on the end of the relevant scheduling
list. The transputer determines the priority of this process by examining the least significant bit of its des-
criptor (refer to section 5.3). If the waiting process is a high priority process and the transputer is currently
running a low priority process, then the waiting process interrupts the current process.

68 T9000 transputer instruction set manual

8.2.4 Clocks and timeslicing

mnemonic name

sttimer store timer

timeslice timeslice
settimeslice set timeslicing status

Table 8.3 Instructions which relate to the timer and timeslicing

The processor contains two clock registers, one for each priority. These registers start incrementing after
the processor has been reset only after a store timer — sttimer — instruction has been executed. sttimer
is described in section 13.6.

The high priority clock register ticks (increments) every 1us and the low priority clock increments every
64us.

After every 256 ticks of the high priority clock (i.e. 256 us), a timeslice period is said to have ended. When
two timeslice periods have ended while the same low priority process has been continuously executing,
the processor will force a timeslice at the next timeslicing point. For an L-process, the only timeslicing
points are the instructions j or lend — i.e. the processor may timeslice after execution of either of these
instructions. For a P-process, a timeslicing point is any point at which an interrupt can occur — including
during execution of an interruptible instruction (section 8.2.5). See table 8.4.

timeslicing point note
jT
lend

all interrupt points (see sec- | protected mode only
tion 8.2.5)

T exceptj 0 — see section 10.3.1

Table 8.4 Timeslicing points

For a low priority L-process, atimeslice forcibly deschedules the current process, and immediately resche-
dules it by placing it at the end of the low priority scheduling list. The next waiting process becomes the
current process. Note that since j and lend may cause a current L-process to deschedule, they are also
descheduling points and so have been included in the list given in table 8.2. The same consideration there-
fore holds for stack corruption across timeslicing points as across descheduling points (see subsection
8.2.2).

For a low priority P-process, a timeslice causes a trap to the supervisor.
The processor does not timeslice high priority processes.

In low priority processes, timeslicing can be disabled with the seftimeslice instruction. This is discussed
in section 13.5.

A timeslice can be forced by execution of the timeslice instruction. This will force a timeslice to be taken
by a high (as well as a low) priority process; and is effective whether or not timeslicing or interrupts are
enabled. This is discussed in more detail in section 13.5.

Processes that are not timesliced execute until they are descheduled for another reason (e.g. communica-
tion), unless they are interrupted.

Operations for reading the clock values and comparing these values, are described in section 8.5.

8.2.5 Priorities and interruption

The processor can execute processes at one of two priority levels, one level for urgent (high priority) pro-
cesses, one for less urgent (low priority) processes. A high priority process will always execute in prefer-

8 Concurrent processes 69

ence to a low priority process if both are able to do so. If a high priority process becomes able to run whilst
a low priority process is executing, the low priority process is temporarily stopped — ‘interrupted’ — and
the high priority process is executed. When there are no high priority processes able to run, the interrupted
process continues executing.

A low priority process may be interrupted after it has completed execution of any transputer instruction.
Furthermore, to minimize the time taken for an interrupting high priority process to start executing, the
potentially time consuming instructions shown in table 8.5 are interruptible — i.e. they may be interrupted
in the middle of execution. (Some of these instructions have not yet been introduced and are left to later
sections.) The points at which a process may be interrupted — i.e. at the end of any instruction or during
execution of an interruptible instruction — are referred to as ‘interrupt points’.

move move2dall move2dzero moveZdnonzefo

in vin out outbyte outword vout
tin taltwt dist

forem

readhdr writehdr

Table 8.5 List of interruptible instructions

When an interrupt occurs, the process state of the currently executing low priority process, is saved into
shadow registers (section 5.1.1), and the high priority process starts to execute. This state is known as
the ‘shadow state’. Execution of the low priority process is interrupted until no high priority processes are
able to run; at which point, the state registers are reloaded from the shadow registers, and execution of
the interrupted process continues. There can only ever be at most one interrupted process. Note that the
interrupted process is not placed onto the low priority scheduling list.

8.2.6 Scheduling/descheduling of L-processes

As mentioned in section 3.1, the processes which are queued on the IMS T9000 scheduling lists are
known as L-processes. The status and control bits that relate to an L-process are discussed in section
5.2. The following discusses the scheduling and descheduling mechanisms.

Prior to executing any L-process, the processor loads the trap-handler pointer (stored in the pw.TrapHan-
dler slot) into the trap-handler register. This is a pointer to an area of store called a trap-handler data struc-
ture (THDS) (detailed in section 10.1.1), which identifies the trap-handler to be run if a trap occurs while
running this L-process. Such a trap-handler may be shared by any number of L-processes. Amongst other
information, the THDS holds the status and control bits for the L-processes which share it, and upper and
lower addresses which specify a watchpoint region (see chapter 14 for further details). When the proces-
sor loads the trap-handler register, it also loads the status and control bits for the process from the THDS
into the status register, and loads the watchpoint registers (WIReg and WuReg) if appropriate. When an
L-process is descheduled, the processor copies the status and control bits from the status register into
the THDS. These status and control bits are therefore local to all L-processes which share the trap-han-
dler, and the mechanism described ensures that the status is preserved through execution of other pro-
cesses which do not share that trap-handier.

8.3 Initiation and termination of processes

All processes must have an area of memory reserved as their workspace — this holds the process’ local
variables etc. The allocation of space to concurrent processes can often be performed by a compiler, elimi-
nating the overheads of dynamic storage allocation. However, the transputer instructions also allow fully
dynamic process initiation and termination.

Initiation and termination of concurrent process can be performed by the instructions shown in table 8.6.
With the exception of /dpri, all these instructions are privileged.

T Interruption cannot occur after prefix instruction components (see chapter 6). Hence for a secondary instruction, it can only occur
during (if interruptible} or after the opr instruction component.

70 T9000 transputer instruction set manual

mnemonic name

startp start process

endp end process

runp run process

stopp stop process

Idpri load current priority
ldth load trap-handler

Table 8.6 Instructions for starting and terminating processes

8.3.1 Scheduling parallel processes

The instruction sfartp can be used to run a process in parallel. This can be repeatedly executed to run
several processes concurrently. Each parallel process signals completion of execution with the instruction
endp. The latter instruction interacts with a parallel process data structure to achieve correct synchroniza-
tion.

Setting up the parallel process data structure

The parailel process data structure is shown in table 8.7. This must be word-aligned. The pp.Count slot
holds an unsigned count of the number of parallel processes that have not yet terminated. It should hence
be initialized to the number of processes that are to be run concurrently. The pp.lptrSuce slot should be
setto point to the first instruction to be executed by the ‘successor process’ (i.e. the process that runs when
all the parallel processes have terminated).

This data structure also becomes the workspace of the successor process.

word offset | slot name purpose
1 pp-Count contains unsigned count of parallel processes
0 pp.IptrSucc contains pointer to first instruction of successor process

Table 8.7 Parallel process data structure
Starting a concurrent process

The instruction starfp schedules a new concurrent process of the same priority as the current process.
Breg contains the offset from the address of the next instruction to the first instruction of the new process.
Areg contains the address of the workspace of the new process — this must be a word-aligned address.
The processor schedules this new process by placing it at the end of the appropriate scheduling list, and
initializing its processes workspace data structure with pw.lptr set to the absolute address of the first
instruction, and pw.TrapHandler pointing to the data structure of current trap-handler (hence the new pro-
cess will share the current trap-handler). This instruction does not deschedule the current process, but
it does undefine the integer and floating-point stack registers.

Terminating a concurrent process

The instruction endp terminates the current process, which is one from a set of processes running concur-
rently. Areg contains a pointer to the parallel process data structure (see table 8.7).

endp has the effect of decrementing the value held in the pp.Count slot of the parallel process data struc-
ture. If the value of pp.Count is1 before execution, indicating that the current process is the last of the
concurrent processes to terminate, then it starts the successor process.

8 Concurrent processes 71

Compiling PAR

In a high-level language that supports concurrency, there may be a parallel construct. In occam this is the
PAR construct (see chapter 2).

PAR
Py
Ps

P
startp and endp can be used to implement this. Consider the following high-level code.

SEQ
PredProc
PAR
ParProcA
ParProcB
ParProcC
SuccProc

An example of how this may be implemented is shown below. An explanation is given in the paragraphs
that follow and the workspace layout is illustrated in figure 8.2.

PredProc; — process PredProc

Idc 3; stl 1; — store parallel process count into the pp.Count of the
— parallel process data structure (in this case
— the current process workspace)

Idc (L5—L6); Idpi; — store the address of instruction to be executed after the
L6: stlO; — parallel construct, into pp.IptrSucc
Ide (L1-L2); — load into the integer stack, the offset address of the first
— instruction of process ParProcA
Idip WA; — load into the integer stack, the workspace address of
— process ParProcA
startp; — run process ParProcA
L2: ldc (L3—L4); — load into the integer stack, the offset address of the first
instruction of process ParProcB
Idip WB; — Ioad into the integer stack, the workspace address of
— process ParProcB
startp; — run process ParProcB
L4: ParProcC; — process ParProcC
ldip 0; — load into the integer stack, the address of the parallel

— process data structure (in this case the
— same as the current process workspace)

endp; — terminate ParProcC
L1: ParProcA; — process ParProcA
ldip —WA; — load into the integer stack, the address of the parallel

— process data structure (in this case the
— same as the workspace used by PredProc)

enap; — terminate ParProcA
L3: ParProcB; — process ParProcB
ldip —WB; — load into the integer stack, the address of the parallel

— process data structure (in this case the
— same as the workspace used by PredProc)
endp; — terminate ParProcB
L5: SuccProc; — process SuccProc

72 T9000 transputer instruction set manual

pp.Count __I Parallel Process
WPP: |_pp.lptrSucc data structure

workspace area for: PredProc,
ParProcA, and SuccProc

WPP + WA: T

workspace area for ParProcB

WPP + WB:

workspace area for ParProcC

Figure 8.2 Example of workspace layout for compiling parallel processes

where WPP is the workspace address of PredProc, WA is the offset from the workspace of PredProc to
that of ParProcA, and WB is the offset from the workspace of PredProc to that of ParProcB.

The ‘predecessor process’ (i.e. the process that sets up the parallel construct) must set up the parallel
process data structure before it schedules the other concurrent processes. Note, when the predecessor
has finished starting all the parallel processes, that it will itself become a component of the parallel
construct. It must therefore include itself in the parallel process count when assigning pp.Count.

In this example, the processes PredProc, ParProcC and SuccProc share the same workspace. Firstly the
code representing the process PredProc (the predecessor processor) runs. Then the three parallel pro-
cesses (ParProcA, ParProcB and ParProcC) run concurrently. Finally when all three of these processes
have terminated, the process SuccProc runs.

Since the parallel process data structure provides the workspace of the successor process (SuccProc),

" and (in this example) the successor process has the same workspace as the predecessor process (Pred-
Proc), the latter initializes the data structure by setting (Wptr+1) (which is the equivalent to pp.Count)
and (Wptr+0) (which is the equivalent to pp.IptrSucc), to the required values.

In general, there is for each parallel process (component of the parallel construct), a start sequence, the
code for the process itself, and a terminating sequence. The start sequence is executed by the predeces-
sor process, and comprises loading the integer stack with the appropriate parameters and executing
startp. Note that ParProcA and ParProcB are by default, processes with the same priority as PredProc
(and hence ParProcC, which inherits the priority of PredProc). The terminating sequence is executed by
the parallel process component itself, and comprises loading the integer stack with a pointer to the parallel
process data structure (workspace address of the continuation process) and executing endp. SuccProc
will not start until ParProcA, ParProcB and ParProcC have all terminated. Note that ParProcC does not
have a start sequence because it automatically supercedes the current process (PredProc), but it does
have a terminating sequence because this is essential for synchronization.

Since the processes ParProcA, ParProcB and ParProcC are run concurrently, it is not known which pro-
cess will finish executing first. The endp instructions may thus be executed in any order. The concurrent
scheduling of processes has been described in section 8.2.

8 Concurrent processes 73

Be aware that the above is just one way that a parallel construct could be implemented. The continuation
process SuccProc could for example use a completely different workspace to PredProc.

8.3.2 Other scheduling instructions

The runp instruction schedules an L-process, the descriptor of which is held in Areg. The workspace point-
er field in this process descriptor points to a process workspace data structure, in which the pw.lIptr slot
contains the value to be loaded into IptrReg when the process is scheduled, and the pw.TrapHandler
slot contains a pointer to a THDS. runp can be used to start an L-process at either priority level by setting
or clearing the priority bit in the process descriptor in Areg. This instruction does not deschedule the cur-
rent process, but it does undefine all integer and floating-point stack registers.

The instruction stopp simply terminates the current process, saving the value of IptrReg and ThReg in
the process workspace data structure. The process is not put onto the scheduiing lists so to restart it a
runp instruction is needed.

The instruction /dpri pushes the value of Priority (the priority of the current process — see section 5.3) onto
the integer stack.

The instruction /dth pushes the pointer to the THDS (see section 3.3) of the current process onto the inte-
ger stack. More detail on this instruction and other trap-handling instructions are given in chapter 10.

If J is a variable holding the address of the first instruction of a new process, and W holds the address
of a workspace for the process, then the following code sequence will start a process that shares its trap-
handler with the current process and has the same priority.

Idth; ldl W; stnl —3; — store a pointer to the current process’s THDS into the
— pw.TrapHandler slot of the new process’s
— workspace data structure (W)
Idl J; Idl W; stnl —1; — store the address of the first instruction that the new process
— should execute (J) in the pw.Iptr slot of its
workspace data structure (W)

dl W; — load the workspace address into the integer stack

Idpri; or; — form process descriptor by combining the workspace -
— address with the priority of the current process

runp; — schedule the L-process specified by the descriptor formed
— above

If it is known that the current priority is high, then
Idth; Idl W; stnl =3; Idl J; Idl W; stnl —1; Idl W; runp;

will start an L-process at the same priority, sharing the same trap-handler. Here, because W is word-
aligned, the bottom bit of the process descriptor, which represents Priority, is 0O (hence specifying high

priority).

8.4 Channel communication, synchronization and data-transfer

Section 3.2 introduces the concepts of channel communication, synchronization and data-transfer. This
section introduces the various channel implementations, discusses synchronization, details the different
types of channel communication, and finally explains how internal channels are implemented and initial-
ized.

8.4.1 Channels

A channel is used for synchronization and data-transfer between two processes. It may be implemented
either by a word in memory — for communication between processes on the same transputer (internal
channel), or by an external link — for communication between transputers or between a transputer and

74 T9000 transputer instruction set manual

an external device (external channel). A channel is uniquely identified by a ‘channel address’. For aninter-
nal channel, the channel address corresponds to amemory location which may be allocated by the compil-
er. For an external channel, the channel address belongs to a range of addresses reserved for external
channels (this is discussed further in chapter 12).

A process can be written and compiled without knowledge of whether its channels are connected to other
processes on the same transputer, or other transputers. The same instruction sequence is used in both
cases. That s, a process that uses instructions to communicate on a channel, does not need to know how
the channel is implemented. However some instructions can only be used on specified implementations.
The various implementations for channels are: internal channels, virtual channels, byte-stream channels,
and event channels. Virtual, byte-stream and event channels are referred to generically as external chan-
nels. The instructions determine the channel implementation at run-time.

¢ An internal channel (sometimes referred to as a soft channel) connects processes that are on
the same processor.

« Avirtual channel allows communication between processes on different IMS T9000 transputers.
These transputers do not have to be directly connected, provided there is a connecting path via
a communications network.

¢ A byte-stream channel allows communication between a process on an IMS T9000 transputer
and a process on a neighboring T2/T4/T8-series transputer. (N.B. Links between these transput-
ers must be connected via a system protocol converter. See the IMS C100 data sheet — docu-
ment number 42 1475 01 — for details.)

¢ An event channel allows a communication between a process and an external device. This type
of channel can carry no message: it is purely for synchronization. For example one use of the
event channel is as an external interrupt input.

8.4.2 = Synchronization

Before data-transfer can occur, there must be synchronization between the inputting and outputting pro-
cess. The general philosophy is that there are always two sides to any communication, i.e. an input and
an output. There are three ways of achieving synchronization, which are specific to channels. (More gen-
erally the semaphore mechanism provided on the IMS T9000 — section 8.6 — can also be considered as
a synchronization mechanism.)

Simple synchronization

Simple synchronization occurs when one process is executing an input instruction, and another process
executing an output instruction, on the same channel.

When a communication instruction is executed (either input or output) on a channel, the action taken de-
pends on the type of channel and on whether or not a complementary communication instruction (output
or input respectively) has already been executed on that channel.

If a process executes a communication instruction on

(i) aninternal channel on which there has been no previous complementary execution of a commu-
nication instruction

(i) an external channel

then the process is descheduled. That is, the current process is descheduled until the another process
executes the other communication instruction. By the time the process is rescheduled, the data-transfer
will have occurred.

If, when a process executes a communication instruction on an internal channel, there has been a comple-
mentary execution of a communication instruction on the same channel, then the data-transfer can take
place immediately.

8 Concurrent processes 75

For simple synchronization, the only instructions that are required are the input and output instructions
which also handle the data-transfer. No extra instructions are needed to establish the communication. This
is not the case with the other forms of synchronization which are discussed below.

Alternative synchronization

The transputer provides a synchronization mechanism that enables one channei to be selected for input,
from a number of ‘alternatives’. That is, several inputs are considered for synchronization, but only one
is selected. If no inputs are ready immediately, then the inputting process is descheduled until one is ready.
Each input has an associated piece of code that is run if selected. When an input is selected, the inputting
process synchronizes with the process that has executed an output instruction on the same channel, and
the data-transfer can be completed by the selected code segment. The instructions that are used to imple-
ment this synchronization are known as ‘the alternative sequence’. The mechanism and related instruc-
tions are described in greater detail in section 8.7.

The alternative sequence thereby gives the user the capability of implementing a construct where one
communication is selected from several possibilities (e.g. the occam ALT construct).

Resource synchronization
Resource synchronization provides a means of implementing many-to-one communication.

One commonly occurring concurrent process paradigm is known as the client-server model. In this model,
there may be several processes acting as servers and several processes acting as clients to those serv-
ers. Any one of the clients may at any time want to communicate with any one of the servers. Since any
server can be accessed by a number of clients, it may receive requests at a faster rate than it can deal
with them.

The resource mechanism provides a direct way of implementing the client-server model. It provides a re-
source queue (data structure), which can be associated with a server, so that channel connections can
be allocated in a fair way. It also provides a resource mode for channels that are to be used in this way.
A channel in resource mode is associated with a particular resource. When an output is made on such
a channel, the behavior depends on whether the resource is waiting. If it is, then the communication can
be immediately synchronized ready for data-transfer. Otherwise, the outputting process (client) is desche-
duled, and the channel is attached to the resource queue until it is selected. If the inputting process (server)
is ready but has no clients to service, then this is descheduled until a client becomes ready (makes a
‘claim’). The name given to a channel which can be set to resource mode, is a ‘resource channel’. This
is described in greater detail in section 8.8.

8.4.3 Communication

The three synchronization mechanisms discussed in section 8.4.2, can all be used in conjunction with
zero, fixed or variable length communication.

* In zero-length communication, there is synchronization but no data-transfer (no message is
passed). It is just used to synchronize the processes which are connected by the channel on
which the communication occurs. Zero-length communication can occur on internal channels,
virtual channels or event channels, but cannot occur on byte-stream channels.

« In fixed-length channel communication, there is synchronization and data-transfer. The data-
transfer requires both communicating processes to have knowledge of the length of the message
that is to be transferred. Fixed-length communication can occur on internal channels, virtual
channels or byte-stream channels, but cannot occur on event channels.

¢ Invariable-length communication, there is synchronization and data-transfer. The data-transfer
requires only the outputting process to have knowledge of the length prior to transfer, while the
inputting process specifies a maximum allowable length. The actual message length is commu-
nicated to the inputting process at the time of transfer, along with the message itself. Variable-
length communication can occur on internal channels or virtual channels, but cannot occur on
event channels or byte-stream channels.

76 T9000 transputer instruction set manual

Itis guaranteed that both processes are in the active setimmediately after completion of any of these com-
munications. If a process had been descheduled while waiting for the process at the other end to communi-
cate, then this process is rescheduled by its host processor.

Occam has operations which directly implement input from and output to a channel to enable synchro-
nized transfer of messages between concurrent processes. The syntax for each operation is as follows,
where <channel> specifies a channel which has previously been declared using the keyword CHAN, and
<message> is the data which is to be transferred.

input <channel> ? <message>
output <channel> ! <message>

These operations are used below to demonstrate the IMS T9000 communication instructions: in, out, vin,
vout, outbyte, and outword.

If the receiving process knows the length of the message that is to be received, fixed-length communica-
tion can be used. Otherwise, either the length of the communication must be communicated first, or vari-
able-length communication must be used.

N.B. ltis not recommended that a message length larger than half of the address space (2 Gbytes) is used
to transfer data in the same processor memory space — hence message transfer on internal channels
should adhere to this.

Fixed-length communications

mnemonic name
in input message
out output message

Table 8.8 Fixed length i/o operation instructions

A process inputs a message of known size by executing the instruction in. The process loads:—
« the address of the destination buffer (where the message is to be stored) into Creg,
« the address of the channel into Breg,
¢ and the length of message in bytes (as an unsigned integer) into Areg;
and then executes in. For example
c?v = address(v); address(c); length(v); in
where the address is defined on page 29 and length is defined in section 7.5.4.

If the channel is an internal channel that has already had an output performed on it, then there is a mes-
sage waiting and this is transferred to the buffer specified by Areg and Creg. If the channel is an external
channel or an empty internal channel then the process stores the pointer to the destination buffer in the
pw.Pointer slot of the process workspace data structure, and deschedules.

A process outputs a message of known size by executing instruction out. The process loads:—

« the address of the source buffer (where the message is currently stored and from where it is to
be copied) into Creg,

¢ the address of the channel into Breg,
* and the length of message in bytes (as an unsigned integer) into Areg;
and then executes out. For example

clv = address(v); address(c); length(v); out

8 Concurrent processes 77

If the channel is an internal channel that has already had an input performed on it, then there is a destina-
tion buffer ready and the message specified by Areg and Creg is transferred to this buffer. If the channel
is an external channel or an empty internal channel then the process stores the pointer to the message
in the pw.Pointer slot of the process workspace data structure, and deschedules. (There are further con-
siderations for the output instruction if the channel is a resource channel or has been enabled by an enbc
instruction, but this detail is left until those mechanisms are explained.)

The contents of the integer and floating-point stack registers are undefined after execution of in or out.
These instructions are privileged and interruptible, and are descheduling points. They signal IntegerError
if Breg does not contain a valid channel address (see section 12.4), and signal Unalign if the channel ad-
dress is not word-aligned. Both the input and output ends of a communication should have the same value
in Areg when executing in and out. These instructions may be applied to any channel (internal or external).

If different lengths are specified by the in and out instructions, then the behavior is undefined.

Variable-length communications

mnemonic name

vin variable-length input message
vout variable-length output message
Ident load message byte count

Table 8.9 Variable length i/o operation instructions

The previous type of communication is called fixed-length because both the sending and receiving pro-
cess need to know the length of the message prior to transfer. In variable-length communication, it is only
necessary for the sending process to know the exact length of the message prior to transfer (although
the receiving process must know the maximum length). If the in and out instructions are to be used for
transferring variable-length messages, then some protocol is needed by which the length is communi-
cated before the actual message. The IMS T9000 provides three more instructions to obviate the need
for such protocol.

To allow the secure and efficient communication of variable length data, the vin and vout instructions may
be used instead of in and out. vout may send a message of any length. vin provides an input buffer to
receive the message. When the transaction is complete, the inputting process can find out the length of
the message using a special instruction for that purpose (/dent). These instructions may be applied to inter-
nal channels, virtual channels or event channels.

When both a vin and a vout instruction have been executed by processes referring to the same channel,
data is transferred from the outputting process to the inputting process in a similar way to a communication
which uses in and out. However, in the case where the length specified by vout exceeds that specified
by vin, the message cannot be transferred. Whether or not the data-transfer has been successful, it is
guaranteed that both processes are in the active set immediately after the communication. An additional
instruction, Ident, is provided to enable the inputting process to determine how much data (if any) has been
transferred or whether an error has occurred. Note that it is not possible to mix the use of fixed length and
variable length transfer in a single communication. For example if out is used to transmit a message, it
is not possible to receive that message with vin.

The mechanism for a variable length communication is similar to that described for a fixed-length commu-
nication. The following descriptions detail the differences.

vin
A process inputs a message of variable length by executing the instruction vin. The process loads:—
+ the address of the destination buffer (where the message is to be stored) into Creg,

« the address of the channel into Breg,

78 T9000 transputer instruction set manual

* and an unsigned integer representing the maximum message length in bytes into Areg;

prior to executing vin. The maximum message length must be less than MostPosUnsigned. The values
in the integer and floating-point stack registers are destroyed by the instruction.

This instruction is privileged, interruptible and a descheduling point. It signals IntegerError if Areg contains
MostPosUnsigned. It also signals IntegerError if Breg does not contain a valid channel address, and sig-
nals Unalign if the channel address is not word-aligned.

When vin is executed, the behavior depends on whether or not the message being received is longer than
the maximum length Areg. The data is only transferred successfully if message length is less than or equal
to the maximum. There is a special pw.Length slot in the workspace to give information about the length
or error status of the message.

When the communication is successful, the complete message is transferred into the destination buffer
and the length of the message is stored in the pw.Length slot.

If the message is too long, the complete message cannot be received and a special value LengthError.p
is written into the pw.Length slot to indicate that there has been an error. Whether or not part of the mes-
sage is received, is undefined. Data is never written into any part of memory not specified by the input
process, hence ensuring that buffer overflow does not occur.

vout

A process outputs a message in a variable-length communication by executing the instruction vout. The
process loads:—

» the address of the source buffer (where the message is currently stored and from where it is to
be copied) into Creg,

« the address of the channel into Breg,
« and an unsigned integer representing the message length in bytes into Areg;

prior to executing vout. The values in the integer and floating-point stack registers are destroyed by the
instruction.

This instruction is privileged, interruptible and a descheduling point. It signals IntegerError if Breg does
not contain a valid channel address, and signals Unalign if the channel address is not word-aligned.

Where the value in Areg is longer than the maximum message length specified by the receiving process,
the complete message cannot be sent. Whether or not part of the message is sent, is undefined.

Ident

Ident pushes the length of a successiully received message onto the integer stack. Otherwise, it signals
IntegerError to indicate that the previous vin instruction did not successfully receive a message because
the message available on the channel was too long.

The processor obtains the message length from the pw.Length slot of the current process workspace
data structure (pointed to by Wptr), and this is copied into Areg. Hence if the communication is unsuccess-
ful, it copies the special value LengthError.p onto the stack.

Note that for this instruction to yield correct information, it should be used after vin and before any subse-
quent descheduling point, timeslicing point, adjust workspace operation or procedure call. Itis a privileged
instruction. .

Zero-length communications

Where synchronization is required between processes, but no message needs to be transferred, zero-
length communication can be used. This comprises the synchronization stage of a channel communica-

8 Concurrent processes 79

tion but not the data-transfer. Either of the above pairs of communication instructions can be used for zero-
length communication —i.e. infout or vin/vout. In both cases the message length must be set to zero when
passed to the appropriate instructions.

Zero-length is the only form of communication which is allowed on an event channel, because messages
cannot be transferred on these channels. (If a non-zero message length is specified on an event channel,
then a zero length communication will still occur.)

Zero-length communication cannot occur on byte-stream channels because synchronization cannot oc-
cur unless at least one byte of data is transferred.

Single word and byte transfer

The common cases of single word and byte transfer can be optimized.

mnemonic name
outbyte output byte
outword output word

Table 8.10 Singie byte transfer instructions
Byte transfer

outbyte outputs the single byte in the least significant byte of Areg down the channel specified in Breg.
It uses the slot pw.Temp as a temporary variable. The three most significant bytes of Areg are ignored.

Ifa and b are both single byte elements and e is a byte valued expression then compiled code for the trans-
fers are

c?b = address(b); address(c); Idc 1; in
cte address(c); e; outbyte

Word transfer

outword outputs the single word in Areg down the channel specified in Breg. It uses the slot pw.Temp
as a temporary variable.

If x and y are both single word elements and e is a word valued expression then compiled code for the
transfers are

Cc? X
cte

address(x); address(c); Idc BytesPerWord; in
address(c); e; outword

[When the target wordlength is unknown (e.g. for code that must operate on transputers of different word-
lengths), single word channel input can be generalized to

address(x); address(c); Idc 1; bent; in

outbyte and outword are privileged instructions, and are descheduling points. They signal IntegerError
if Breg does not contain a valid channel address, and signal Unalign if the channel address is not word-
aligned. :

8.44 Implementation of channels
Initializing internal channels

In ahigh-level language that supports concurrency, there may be a data type that supports message pass-
ing. In occam there is a channel type, which is declared with the keyword CHAN. The INMOS ‘C’ compiler
also provides a channel type — Channel. A channel provides unbuffered, unidirectional point-to-point
communication of values between two concurrent processes.

80 T9000 transputer instruction set manual

An internal channel is represented by a word in memory. The address of this word is the channel address,
which is passed via Breg in the communication instructions. Before a memory location can be used as
a channel, it must be initialized to NotProcess.p to indicate that no process is waiting for communication
on that channel. This value can be obtained by the mint instruction. It is convenient to do this when a chan-
nel declaration is executed. For example

CHAN OF PROTOCOL ¢ :
mint; stl c; — initialize channel by setting memory address
— corresponding to channel to
— NotProcess.p

or

[n]CHAN OF PROTOCOLc :

Idc O; stl (LEDS+le.Index); — set up the loop end data structure with initial
Idc n; st (LEDS+le.Count); — Index=0 and Count=n

L: mint; Idl ¢; Idl (LEDS+le.Index); — initialize channel at memory word address
wsub; stnl 0; — (c+/ndex)
Idip LEDS; Idc (END-L); lend; — load the address of the loop data structure

— and the offset for the next instruction
— into the integer stack prior to
— executing lend

END:

The input and output instructions use the memory location (channel word) to provide synchronized com-
munication between two concurrent processes. After each communication, the store location is returned
to its initial value, NotProcess.p. This general mechanism of message transfer across internal channels
is discussed below in more detail.

Implementation of internal channel communication

An internal communication occurs when two processes on the same processor communicate. Because
a transputer is only executing one process at any time, one of these two processes will become ready to
communicate first. For example, in figure 8.3, process P is about to execute an output instruction, specify-
ing a message to be transferred.

process P channel memory
registers
Areg: count
message
Breg: channel empty
(NotProcess.p)
Creg: pointer

Figure 8.3 Output to empty channel

When the first process to become ready to communicate executes its communication instruction, the
transputer will find the value NotProcess.p in the channel word — this signifies that the other process is
not ready to communicate.

8 Concurrent processes 81

The process then

» copies the current process descriptor from the workspace register (WdescReg) into the channel
word

« writes the address of its communication area to the pw.Pointer slot of the current process work-
space data structure — if the first communication instruction is an input, this will be a pointer to
the buffer area where the message should be placed when received — if the first communication
instruction is an output, this will be a pointer to the message that needs to be transmitted

» (for variable-length only) writes length / maximum length of message into the pw.Count slot of
the current workspace data structure

+ deschedules itself

Figure 8.4 shows the state after output has executed.

process P channel
workspace
pw.Temp)
message
pw.lptr
pw.Pointer

Figure 8.4 Process descriptor of first process left in channel

When the second process to become ready to communicate executes its communication instruction, the
transputer reads the value in the channel word and finds the value is a process descriptor (i.e. not NotPro-
cess.p), thus identifying the process that is waiting to communicate. Figure 8.5 shows process Q about
to input from the channel that is being output to by process Q.

82

T9000 transputer instruction set manual

process P channel process Q memory
workspace registers
Areg: count
pw.Temp P
Breg: channel message
pw.iptr
Creg: pointer
pw.Pointer
message
receive
area
Figure 8.5 Input from waiting channel

The second process then

¢ (for variable-length only) writes the message length (or LengthError.p) into pw.Length of the cur-

rent process workspace

* resets the value of the channel word to NotProcess.p

¢ (provided message length does not exceed maximum) performs a block move using its source
ordestination address, its length, and the destination or source address in the workspace pointed

to by the channel word

¢ reschedules the first process

Figure 8.6 shows process P and the channel and memory state when process Q has completed its input

instruction.

8 Concurrent processes 83

process P channel memory
workspace
— pw.Temp empty
scheduling (NotProcess.p)
list message
pw.lptr
pw.ink | Soheduling \>
4
message
has been
transferred

Figure 8.6 Message transfer complete
External channels

For communication between processes on different transputers, or communication between a process
and a non-transputer device, external channels must be used. There are three types of external channel:
virtual channels, event channels and byte-stream channels. The implementation details of these are dis-
cussed in chapter 12.

In summary, a channel may be implemented as: internal, virtual, byte-stream or event; where virtual, byte-
stream and event channels are forms of external channel. Synchronization is achieved via: the simple
mechanism, the alternative mechanism or the resource mechanism. Communication may be: zero-
length, fixed-length or variable-length. The channel can be considered as the medium of message transfer
while the type of synchronization and communication refers to the usage of that medium.

8.5 Time
On a transputer, time is cyclic. There are two clock registers, one for each priority level, ClockRegg and

ClockReg+. The high priority clock ClockRegq increments every 1us. The low priority clock ClockReg;
increments every 64us. Whenever ClockReg = MostPos, it is ‘incremented’ to MostNeg.

mnemonic name
Idtimer load timer
tin timer input

Table 8.11 Instructions which use the on-chip clocks

8.5.1 Past and future
For each priority level, ‘future’ and ‘past’ are defined as follows.
(ClockReg PLUS MostNeg) < past < ClockReg
ClockReg < future = (ClockReg PLUS MostPos)

84 T9000 transputer instruction set manual

ClockReg

past future

ClockReg + MostNeg

That is, all times which are between (ClockReg PLUS MostNeg) and ClockReg are considered to be in
the past, and those which are between (ClockReg PLUS 1) and (ClockReg PLUS MostPos) are con-
sidered to be in the future.

The AFTER relation

Care is needed when operating on cyclic quantities such as time. The usual ‘greater than’ relation is re-
placed by the relation AFTER which is defined by

(XAFTER) = ((x MINUS y) > 0)

and can be translated into
X; y; diff; Ide 0; gt

The usual transitive property does not hold for the after relation, that is:
(X AFTER y) A (y AFTER z) does not imply (x AFTER z)

A consequence of this property of cyclic time is that a group of times are only unambiguous if they are
all contained within a half cycle of timer ticks — i.e. within a range of size (MostPos — MostNeg) + 2.

8.5.2 Reading the clock

The current value of the processor clock can be read by executing a ‘load timer’ instruction /dtimer. This
reads the value of the high priority clock when executed in a high priority process and the low priority clock
when executed in a low priority process, and pushes this onto the integer stack.

8.5.3 Timer input

A process can arrange to perform a ‘timer input’, in which case it will become ready to execute after a
specified time has been reached.

The timer input instruction, tin, requires a time to be supplied in Areg. This time is referred to as the ‘alarm-
time’ and it specifies that the process should not be in the active set up to and including that time. If this
time is in the ‘past’ — i.e. ClockReg AFTER Areg — then the instruction has no effect. If the time is the
current time or it is in the ‘future’ —i.e. Areg = ClockReg or Areg AFTER ClockReg — then the process
is descheduled. The process is rescheduled when the specified time is reached (i.e. the value in the ap-
propriate clock register is AFTER the alarm-time). The process will not necessarily start to execute immedi-
ately itis scheduled, as other processes may already be waiting on the scheduling list. Consequently when
the process starts to execute, the value in the clock may be some time after the time specified in the timer
input.

tin is therefore a descheduling point, and is privileged and interruptible. The integer and floating-point
stacks are left undefined by this instruction, even if the time specified is in the past.

8 Concurrent processes 85

For example the following code sequence executed in a low priority process would cause the process to
be descheduled for (at least) one second by waiting for 7000000 + 64 (= 15625) ticks of the clock.

Idtimer; Idc 15625; sum; tin

Note that when dealing with time the unsigned modulo arithmetic operations sum, diff, must be used rather
than add and sub which would cause an arithmetic overflow when the value representing the time wrapped
round from MostPos to MostNeg.

8.5.4 Timer lists

The following provides some background information on the mechanism of the timer lists which are used
to ensure that processes are rescheduled at the correct time, having been descheduled by a tin or taltwt
(see section 8.7) instruction.

Each priority level has a timer list. Each timer list contains information about processes that are waiting,
and is represented as a linked list of process workspace data structures. The address of the workspace
of the head of each timer list is stored in one of the timer list pointer registers: TptrReg0 for high priority,
and TptrReg1 for low priority. The linked list is implemented by storing the address of the next workspace
in the pw.TLink slot of a process workspace. The alarm-time for each process is stored in the in pw.Time
slot. This is the time at which the process will become ready — so if a process executes

Ide X; tin

the time (X+1) will be entered into pw.Time slot. The end of a timer list is signified by a link address of
NotProcess.p.

Each list is ordered so that each process in the list is waiting for a time no earlier than that of the process
before it and no later than that of the process after it. For each list, the time of the first process — the next
time that is required — is stored in a alarm register: TnextReg0 for high-priority, and TnextReg1 for low-
priority.

Timer input

When a timer input is performed — either because of a tin instruction or by a timer guard in an alternative
sequence (see section 8.7) —then the process is inserted into the relevant timer list. This involves search-
ing down the list until the time requested lies between the times of two adjacent entries so that when the
process is inserted there, the ordering of the list is maintained. This means that instructions that manipu-
late the timer lists take (on average) time proportional to the length of the timer lists. Because of this, these
instructions are interruptible.

Manipulating the timer lists

The instruction swaptimer has been provided for manipulation of the timer lists. It is described in section
13.6.

8.6 Semaphores

Semaphores were introduced in 1965 by E.W. Dijkstra as a means of controlling the execution of concur-
rent processes. An n-valued semaphore ensures that from the set of processes that are waiting on that
semaphore, at most n can run concurrently. If a process has a critical piece of code which must only
execute when the semaphore allows it to, then the code waits on the semaphore before commencing, and
signals to the semaphore when it has finished.

The IMS T9000 transputer provides an efficient implementation of an n-valued semaphore for processes
on the same processor. signal and wait instructions (table 8.13) are provided which operate on a data
structure which may be located at any word aligned address in memory. A semaphore is implemented by
a three word data structure. The word locations in the data structure are shown in table 8.12. The data
structure must be initialized with the s.Count slot set to n for an n-valued semaphore and with the s.Front
slot set to NotProcess.p.

86 T9000 transputer instruction set manual

word offset | slot name purpose
2 s.Back back of waiting queue
1 s.Front front of waiting queue
0 s.Count number of extra processes that the semaphore will allow to
continue running on a wait request

Table 8.12 Word offsets and names for data slots in a semaphore data structure

When a process executes a wait instruction, it will only be able to proceed without delay provided there
are currently less than n processes that have claimed the semaphore —i.e. the number of wait instructions
executed on the semaphore by all processes, does not exceed by more than n, the number of signal
instructions executed by all processes. If this is not the case, the process executing the current wait
instruction is temporarily descheduled. If further processes execute wait instructions prior to a signal
instruction, they will also be descheduled and all such processes are placed in a queue awaiting restart.
For each signal instruction that is received, a queued process is restarted. In summary, a process can
claim a ‘run slot’ from the n available, using wait , and it can free that slot for another process using signal.

mnemonic name
wait wait
signal signal

Table 8.13 Semaphore operation instructions

Both instructions are privileged and require a semaphore data structure address in Areg. All integer and
floating-point stack registers are left undefined after these operations.

The wait instruction examines the value of the counter in s.Count. If this is greater than zero, then it decre-
ments this count and takes no further action. In this case the executing process is free to continue. If the
counter is equal to zero, then the current process is descheduled and appended to the end of the process
queue pointed to by s.Front and s.Back. Hence by implication, this instruction is a descheduling point.

The effect of signal is to allow one extra process to execute a wait without being suspended. Unless
s.Front contains the value NotProcess.p, it contains a process descriptor and the process that it describes
can be run. Hence this process is removed from the front of the semaphore queue and is rescheduled.
If s.Front contains the special value NotProcess.p, then there are no processes waiting. The action taken
in this case, is to increment the value in s.Count. If the count overflows, then IntegerOverflow is signalled.

A semaphore may be shared between processes of different priorities, but processes are removed from
the semaphore in the order that they are queued, rather than in priority order.

8.7. Alternative input

The ALT construct in occam allows a process to make a choice over its future behavior dependent on the
readiness of other concurrent processes to communicate with it.

It can be implemented by the instruction set in one of two ways. The first method is the more direct one
and uses the instruction set ‘alternative sequence’, described in this section. The second method is by
using resource channels and this is described in section 8.8.

8.7.1 The occam ALT construct
In occam the construct which describes an alternative is called the ALT construct, the syntax of which is
ALT ALT
Co Go

: which expands to :
Cn Gn

8 Concurrent processes 87

Each G, P; (i = 0 to n) pair is referred to as ‘component alternative’ i — or C;. Gj is a ‘component guard’
and P is the ‘component process’ which is executed if component/ is selected. Just one of the component
alternatives is selected, namely, any component whose guard happens to be ready. If no guard is ready
then the process waits until one is.

Each component may have one of the following ‘guards’ where e is a boolean expression.

skip component e & SKIP
P
channel component c? v es&c?v
P P
timer component fimer? AFTERt e & timer? AFTER!
P P

The skip guard is ready whenever e is true. The channel guard is ready when both e is true and the input
channel is ready to receive. The timer guard is ready when both e is frue and the alarm-time has expired.

Guards which do not have a boolean conjunct to them have TRUE & implicitly added.

c?v = TRUE &C?V
P P

timer? AFTERt = TRUE & timer? AFTER{
P P

8.7.2 The ‘alternative sequence’

The instruction set ‘alternative sequence’ is a sequence of instructions that can be used to select one of
the component alternatives, and initiate execution of the instruction sequence associated with that alter-
native.

The list of instructions which may be used in an alternative sequence is shown in table 8.14. These instruc-
tions are privileged.

mnemonic name

alt alt start

altwt alt wait

altend alt end

talt timer alt start
taltwt timer alt wait
enbs enable skip
diss disable skip
enbc enable channel
disc disable channel
enbt enable timer
dist disable timer
enbg enable grant
disg disable grant

Table 8.14 Instructions required to implement an alternative sequence

The occam ALT (or similar high-level construct) can be implemented by: an ait (or talt) instruction, a se-
quence of enable instructions (one for each component guard), an altwt (or taltwi) instruction, a sequence

88 T9000 transputer instruction set manual

of disable instructions (one for each component guard) and an altend instruction. Hence the chronological
order of events is:

« The alt (or talt) instruction signifies the start of the sequence.

e For each guard of the ALT, there is an enabling sequence, which uses one of the instructions:
enbs, enbc, enbt, enbg.

* An altwt (or taltwt) instruction forces the current process to deschedule until one of the guards
is ready.

* There is for each guard a disabling sequence, which uses one of the instructions: diss, disc, dist,
disg.

* The altend instruction signifies the end of the alternative sequence, and the code for the selected
component is run.

The order in which the alternatives are enabled is unimportant, but the order in which they are disabled
determines the priority of the alternatives. The first ready alternative to be disabled is selected. If none
of the component alternatives is a timer component, then the instructions alt and altwt must be used; other-
wise the instructions falt and taltwt must be used instead.

Workspace pointer during selection

The workspace pointer must have the same value at each of the alt, altwt, altend instructions and the en-
able and disable instructions. It may however be changed, for example, while evaluating an argument to
an enable instruction. However, the user must not change the pw.State slot of the process workspace
data structure between execution of alt and altend, and when the alternative sequence has a timer compo-
nent, the user must not change either pw.State or pw.TLink between talt and altend. The slot pw.Temp
has a special use, and so must not be written to, and is not preserved over the disabling sequence (from
the altwt instruction to the altend instruction).

Instructions

The effect of alt, is to put the special value Enabling.p into the pw.State slot of the process workspace.
The talt instruction is similar but it also puts the special value TimeNotSet.p into the pw.TLink slot. This
indicates that there is a timer component in the alternative sequence, which has not yet been enabled.
The stack registers are not affected by these instructions.

For all four enabling instructions (enbs, enbc, enbt, enbg), the boolean expression value of the guard is
passed in Areg. If the boolean in Areg is true then that guard is ‘enabled’.

enbs enables the guard by placing Ready.p into the pw.State slot of the process workspace data
structure.

For enbe, the channel address is passed in Breg. If the specified channel is ready to communi-
cate, then the instruction sets the pw.State slot to the special value Ready.p to indicate that this
is the case.

For enbt, the time at which the component process should be run (if selected) is passed in Breg.
The instruction sets the pw.TLink slot of the process workspace data structure to TimeSet.p to
indicate a timer component has been enabled in the alternative sequence. It also stores the
alarm-time value, passed in Breg, in the pw.Time slot of the process workspace data structure,
unless there is already an earlier time value stored in that slot.

enbg will be described in section 12.7.

enbs has no effect on any of the values in the integer stack. enbc, enbt and enbg leave the boolean value
in Areg, and pop the value held in Creg into Breg leaving Creg undefined.

The altwt instruction examines the pw.State slot of the process workspace. If it contains the special value
Ready.p, then at least one of the guards is ready and so the instruction takes no further action. Otherwise

8 Concurrent processes 89

the instruction sets the pw.State slot to the special value Waiting.p and deschedules the current process
until one of the guards becomes ready. The integer and floating-point stacks are left undefined by this
instruction, even if one of the guards is ready.

The taltwt instruction is similar to altwt but if no communication channels are ready, then it also considers
the case where timer guards have been enabled. If the alarm-time recorded in the pw.Time slot is in the
past, then the pw.State slot is set to Ready.p the current process continues. If the alarm-time is in the
future, then the process is put onto the timer list and descheduled. As for altwt, the integer and floating-
point stacks are left undefined, even if one of the guards is ready. taltwt is interruptible.

For the disabling instructions (diss, disc, dist, disg), Areg contains an offset from the instruction following
the altend to the start of the code for that branch of the alternative, and Breg contains the boolean expres-
sion value of the guard.

For disc, the channel address is passed in Creg.

For dist, the alarm-time is passed in Creg (this should be the same as the time passed for the
enbt). If the process is still on the timer list, it is removed. dist is interruptible.

disg will be described is section 12.7.

The first ready component alternative to be disabled is selected. The code offset for the selected compo-
nent is loaded from Areg into pw.Temp. These instructions: return a boolean in Areg which is true only
if that branch of the alternative is the one to have been selected, and leave Breg and Creg undefined.

The instruction altend marks the end of the alternative sequence. When this is executed one of the guards
has been selected by the disabling sequence. This instruction forces a jump to the code associated with
the selected guard. altend achieves this by adding the offset for this code, held in pw.Temp, to the address
of the next instruction, and loading the result into IptrReg. Note that if the selected guard is a channel,
then the alternative sequence does not perform the data-transfer. This should be done by an input instruc-
tion in the component process.

enbc and disc signal IntegerError if the channel parameter is not a legal channel address, and signal Unal-
ign if the channel address is not word-aligned.

8.7.3 Execution of the alternative sequence

Section 8.7.2 describes the code necessary to implement an alternative sequence. This section overviews
the changes that are made to the process workspace data structure and to the channel words during the
execution of this sequence.

The three phases of enabling, waiting and disabling are considered separately.

The value held in the pw.State slot of the process workspace data structure, is known as the ALT state
of the alternative, and it has one of the following values

Enabling.p = MostNeg+1
Waiting.p = MostNeg+2
Ready.p = MostNeg+3

pw.State has the same offset in the process workspace data structure, as pw.Pointer, but because none
ofthe above values is a valid pointer to an input message buffer, an outputting process is able to distinguish
between an unconditional input and .an alternative input on the channel.

In addition for a timer component, the timer list link, held in the pw.TLink slot, has one of the following
values

TimeSet.p = MostNeg+1
TimeNotSetp = MostNeg+2
Enabling

An alternative is enabling between the execution of the alf or talt instruction and the start of the execution
of the altwt or taltwt instruction.

90 T9000 transputer instruction set manual

The processor sets the ALT state (pw.State slot) to Enabling.p to indicate that the guards of an alternative
construct are being enabled. If any guard is immediately ready — e.g. is a SKIP guard or a channel guard
on a ready channel — then this location is set to Ready.p to indicate that a guard is ready.

Timer alternatives

Arecord of the earliest timer guard yet encountered is kept during the enabling sequence of a timer alter-
native. The pw.TLink slot contains TimeNotSet.p until the first timer guard is enabled and then it contains
TimeSet.p with pw.Time containing the earliest time encountered.

Waiting

An alternative is waiting between the start of execution of the aftwt or taltwt instruction and the start of the
next instruction.

The processor initializes the pw.Temp slot to NoneSelected.o to indicate that no branch has yet been se-
lected. If the ALT state (pw.State slot), is not Ready.p then the processor sets this to Waiting.p and des-
chedules the process.

Any communication to a waiting alternative causes the ALT state to be set to Ready.p. When one of the
alternative guards becomes ready the process executing the alternative is rescheduled. The waiting peri-
od ends when this process comes to the front of its scheduling list and starts to execute.

Timer alternatives

If no other guards are ready, an additional check is made to see if the earliest enabled time is earlier than
the current time. If so, the process is not descheduled and the ALT state is set to Ready.p as a timer guard
is ready. If a guard is ready then the current time is recorded in the pw.Time slot to indicate when the timer
finished waiting. If no guard is ready then the process is descheduled and inserted into the appropriate
timer list.

Disabling

An alternative is disabling between the execution of the instruction after the altwt or taltwt instruction and
the execution of the alfend instruction.

When a guard becomes ready the disabling sequence is executed. When the first ready guard is disabled,
the offset to the component process code is stored in pw.Temp to indicate that it has been selected.

Timer alternatives

If necessary, the current process is removed from the appropriate timer list. The current process will not
be on the timer list if one of the timer guards is ready.

Communication on a guarded internal channel

For an internal channel, the action of an output instruction when outputting to an alternative input, is slightly
different from its action when outputting to an unconditional input. (Note however that this is transparent
to the outputting process.) The following describes the various assignments that are made to the channel.

If there is no process descriptor in the channel when it is enabled, then enbc leaves the descriptor of the
current (inputting) process in the channel.

When an outputinstruction is executed on the channel, if there is no process descriptor held in the channel,
then the descriptor of the outputting process is left there and the process deschedules as for simple syn-
chronization. However, if there is a process descriptor held in the channel, then the pw.Pointer/pw.State
slot of the process workspace data structure is examined. If the value is a valid pointer to a message buffer,
then this is a simple synchronization, and the data-transfer occurs as described previously. Otherwise the
value in pw.State is the ALT state, and the inputting process is operating an alternative sequence. Hence,
the communication does not occur as the guard has not yet been selected.

8 Concurrent processes 91

* [Ifthe ALT state is Enabling.p, then the inputting process is enabling, but has not yet found a guard
that is ready. Since there is now a channel ready to communicate, the ALT state is changed to
Ready.p.

o |fthe ALT state is Waiting.p, then the inputting process is descheduled and waiting for a guard
to become ready. Since there is now a channel ready to communicate, the ALT state is changed
to Ready.p and the inputting process is rescheduled.

« Ifthe ALT state is Ready.p, then there is another guard ready in the alternative sequence, and
the inputting process is already aware of this, so the ALT state does not need to be modified.

In each case, the outputting process leaves its own descriptor in the channel and deschedules itself.

When the inputting process subsequently executes disc, the presence in the channel, of a descriptor that
is not of the current (inputting) process, will indicate that this guard is ready. If the inputting process selects
this guard (in the disabling sequence), then a subsequent input instruction will transfer the data and re-
schedule the outputting process.

8.7.4 Compiling an ALT statement

Section 8.7.1 introduces the occam ALT construct. To translate this, each component alternative requires
an enabling sequence, enable(C;), a disabling sequence disable(C;,offset), and a process sequence, pro-
cess(C;). These sequences are defined later. The ALT statement presented in subsection 8.7.1, can then
be translated as follows.

alt;
enable(Cgy); enable(Cy); ... enable(Cy);
altwt;
disable(Co, PO-A); disable(C4, P1-A);. .. ; disable(C,, Pn-A);
altend
A:
PO: process(Cq); j END;
P1: process(C1), j END;
Pn: process(Cy,); j END;
END:

Note that talt and tfaltwt would need to be used if any of the guards G; is a timer guard.
Enabling and disabling component alternatives

Component alternatives are enabled and disabled by the following sequences of instructions

component - C enable/disable sequence
e & SKIP 1 enable(C) = e; enbs
P . disable(C, L) = e; L; diss
esc?v : enable(C) = ¢, e, enbc
P : disable(C,L) = ¢ e L; disc
e & timer? AFTERt : enable(C) = 1 e, enbt
P . disable(C,L) = t e L; dist

where L is the offset from the instruction which follows altend to the start of the instruction sequence corre-
sponding to process P.

92 T9000 transputer instruction set manual

Component alternative process sequences

For the component alternative which has a channel communication guard, the process P should be pre-
ceded by the input instruction. The following shows this.

component — C process sequence
e & SKIP 1 process(C) = P;

P
e&c?v 1 process(C) = c?v; P;

P

e & timer? AFTERt : process(C)
P

il
Y

where c? v is translated by fixed or variable input as described in section 8.4.3.

8.7.5 Trapping degenerate alternatives

It is possible for all the guards of an alternative to fail due to all the boolean components being false. In
some circumstances this might need to be reported as an error, because the alternative can never pro-
ceed. Each enable instruction terminates with the value of its boolean expression in Areg. This can be
used during the enabling sequence to detect whether the boolean expressions in all the alternatives are
false. For example

alt;
enable(Cy); stl F;
enable(C4); Idl F; or; stl F;

enable(Cy); Idl F; or; Idc 1; ccnt1;
altwt

Thus the ccnt? instruction will signal IntegerError if the disjunct of all the boolean components is false.
This uses the temporary local variable F to evaluate the disjunct. This is so that its value is preserved in
the event of the process descheduling, or integer stack pushing. If it is known that none of the enabling
sequences can cause the process to be descheduled, and the evaluation of the two operands to the enable
requires no more than two registers, then the following sequence could be used .

alt;
enable(Cy);
enable(C,); or;

enable(Cy); or; Idc 1; ccnt1;
altwt
8.7.6 ~ Replicated ALT
An ALT construct in occam can use a replication sequence.

ALT/=bFORC ALT/=bFORC
G which expands to Gi
P

The enabling sequence for this involves using a loop round the enable guard instructions. This is achieved
using /end as described in section 7.10.

The disabling sequence for a replicated ALT is more complex as the value of the control variable i for the
branch selected must be passed into the execution of P. Each disable instruction terminates with Areg

8 Concurrent processes 93

holding true if the alternative is selected, and false otherwise. This allows the disabling sequence for a
replicated alternative to record the selected value of the control variable. The disabling sequence for C,
is

disable(Cy); ¢cj M; Idl i; stl selected i; M:

where the selected process P(i) will use selected i as its constant .

8.7.7 PRIALT
In occam, there is also a PRI ALT construct.

PRI ALT
Go
Po

Gn
P
This is similar to an ALT construct, but gives priority to its components in the order that they are listed.
Hence if two guards become ready at the same time, then the first component listed (of the two whose
guards are ready) in the PRI ALT construct is selected. For an ordinary ALT construct, the selected compo-
nent is indeterminate when more than one guard is ready (although this may be determinate for particular
compiler implementations).

This is easy to implement with the alternative sequence. Each component should be disabled in the same
order as they are listed in the occam construct. The first guard found to be ready in the disabling sequence,
is the one whose component is selected. This provides the required priority ordering.

8.8 Resource channels

The synchronization mechanism provided by resource channels has been introduced in section 8.4.2 as
a means of allowing many-to-one communication. This section presents a particular programming prob-
lem for which resource channels can be used to solve, further explains the mechanism, and gives the re-
quired data structures.

8.8.1 The client-server model
The problem

In concurrent programming, it is often the case that several processes require a communication path to
the same process. It may be for example, that there is a central resource such as a printer which is being
controlled by a process, and there are several other processes which are potential users of this resource.
This is referred to as a client-server model, where the user processes are the clients, and the process
controlling the resource is the server. At a high-level this is most easily demonstrated in occam.

94

T9000 transputer instruction set manual

PROC Server([]CHAN OF ANY in)
SEQ
WHILE Serving
declarations
ALT i = 0 FOR SIZE in
in[i]}? Message
Serve(Message, i)

PROC Client(CHAN OF ANY out)
declarations
SEQ
out! Message

[n]CHAN OF ANY client.to.server:
PAR
declarations
Server(client.to.server)
PAR 1 = 0 FOR n
Client(client.to.server[i])

In this example, a single Server process is running concurrently with n Client processes. Each client
is connected to the server via an element of the array of channels, client.to.server, and the only
action by the client in which we are interested, is an output on that channel which sends a message to
the server. The message may be anything from a single byte token, to a large message with complex pro-
tocols. The server executes a continuous loop, and in each branch of the loop, it waits for a message to
be received from one of its clients. When it receives a message, it executes a procedure (Serve) dedi-
cated to handling that message on behalf of the client.

In practice there may be many servers, each of which has a set of clients, where these sets may not be

mutually exclusive.

8 Concurrent processes 95

The solution

One way to implement this model in the transputer instruction set is with an ‘alternative sequence’ (de-
scribed elsewhere —see section 8.7). The disadvantage of this is that for a large n, each loop of the alterna-
tive may take a long time to run, because every channel must be explicitly enabled and disabled.

A better approach (for large n) is to implement every channel as a resource channel; and to associate each
of these with the server process. The following describes how this can be achieved with the IMS T9000
instruction set, and the next section gives an overview of the data structures and state assignments. Fur-
ther implementation details and full descriptions of the associated instructions are given in section 12.7.

The coding of an outputting process is independent of the synchronization mechanism. The only require-
ment is that an extra two words are reserved for each channel that is to be used as a resource channel.
The client process therefore tries to communicate with a server using a normal output instruction (out,
outbyte, outword, vout). There is nothing then to prevent the channel from being used for either normal
channel communication or resource channel communication. Such a channel is thus considered to have
two modes of operation: ‘normal mode’ and ‘resource mode'’. It is in fact possible to change the mode of
a channel after the client has executed the out instruction (while the client process is descheduled).

The server process, which has several clients inputting information via channels, can set any number of
these to resource mode, using the instruction mkrc. When the server is ready to receive an input from one
of these channels, it executes a grant instruction. If none of the resource channels are ready to communi-
cate then the server process is descheduled until one of the clients does try to communicate. If one or
more have already tried to output, then one of them is selected. In either case, when the server is ready
to proceed, it should then execute an input instruction (in, vin) on the selected channel. The grant instruc-
tion also sets the channel back to normal mode, so it must be explicitly set back to resource mode before
attempting another resource communication.

Note that although the resource mechanism has been proposed as an alternative forimplementing an ALT
construct, itis not as general as the ‘alternative sequence’. In particular: (i) it cannot easily implement bool-
ean guards (i) the Serve procedure (in the above example) cannot use the other components of channel
array client.to.server.

In this example the server knows all it needs to know about its clients. This is the ‘omniscient server’ that
is described in section 12.7.5, which also presents some other uses of resource channels.

8.8.2 Resource mechanism and data structures

Aresource is represented in memory by a ‘resource data structure’ (RDS). The format of the RDS is shown
in table 8.15, which also shows how this data structure should be initialized. The RDS is resident on the
memory of the transputer that hosts the server process. When a client process becomes ready to output,
it executes an output instruction specifying the resource channel address.

claim

If the channel specified by an output instruction is in resource mode, then the processor makes a ‘claim’
to the resource on behalf of the client. That is:—

¢ If there is a waiting server, then it is granted an immediate communication.

¢ Otherwise it is attached to the end of a queue of waiting clients (or the front of that queue if there
are no others waiting). The first and last channels on this queue are pointed to by the rds.Front
and rds.Back slots of the RDS respectively.

When the server process becomes ready to communicate, it executes a grant instruction (for full details
of this instruction, see section 12.7.4), supplying a pointer to the RDS. The first channel on the queue is
removed and that channel is made ready to communicate. If there is no client process ready when a server
executes a grant, then the server’s descriptor is left in the rds.Proc slot of the RDS and the server is des-
cheduled until the next client output.

96 T9000 transputer instruction set manual

word offset | slot name purpose initial value
2 rds.Back pointer to back of resource channel queue any
1 rds.Front pointer to front of resource channel queue NotPro-
cess.p
0 rds.Proc process descriptor of server NotPro-
cess.p

Table 8.15 Resource data structure (RDS)

To implement a channel that can be set to resource mode, it is necessary to allocate a resource channel
data structure. This is shown in table 8.16, which also shows how this data structure should be initialized.

The re.ld slot is used to indicate the mode of the channel. If it has the special value NotProcess.p, then
the channel is in normal mode, but if it has any other value then it is in resource mode. Because a channel
is in normal mode when its memory space is first allocated, the rc.ld slot should always be initialized to
NotProcess.p. The instruction mkre (see section 12.7.4) will set this to a unique ‘resource channel identifi-
er’ when setting the channel to resource mode. mkrc must never assign the value NotProcess.p to the
resource channel identifier.

When the channel is in resource mode, the slots are used as follows. Prior to making an output on a re-
source channel, the re.Ptr slot points to the RDS. Where a channel is linked into a resource channel queue
on an RDS as described above, re.Ptr points to the next channel in the queue. The ‘resource channel
identifier’, which is held in the re.ld slot, is written to the location specified as a parameter to the grant
instruction, when the latter selects this channel. It can then be used by the server process, to determine
the channel address for the subsequent input instruction.

word offset | slot name purpose initial value
1 rc.ld resource channel identifier / mode indicator NotPro-
cess.p
0 rc.Ptr pointer to RDS or next resource channel any

Table 8.16 Resource channel data structure

Very often the identifier stored in the resource channel data structure will be the channel address itself.
If this is returned by the grant instruction, it is easy for the subsequent input instruction, to input from the
correct channel. In some circumstances however, it may be more convenient for this to be an integer that
represents an offset in a channel array. Such an index can have a dual use. Firstly it may be used to calcu-
late the actual channel address from a base address, or as an index into a table of channel addresses.
Secondly it may be used as a parameter to the subsequent procedure, perhaps to enable the procedure
to identify the requesting client. An example of this is the parameter / in procedure Serve above.

The positioning of the resource channel data structure, the implementation of channels in resource mode,
and the instructions applicable to the use of resource channels, are fully described in chapter 12.

9 Protection and memory management 97

9 Protection and memory management

The protection and memory management mechanism on the IMS T9000 provides:
* instruction protection — preventing interference between executing processes
* memory protection — allowing regions of memory to be write and/or execute protected
¢ memory management — provides mapping from logical to physical address space

These features are available when running code ‘under protection’ (we sometimes say running in ‘pro-
tected mode’, or running a P-process). They are designed to support the development and debugging of
programs, to allow the safe execution of insecure languages, and to support address translation. The
mechanism does not provide virtual memory, or page-based memory protection, but does provide for
stack extension when the stack overflows the region allocated for it — hence allowing dynamic allocation
of a calling stack.

N.B. A P-process should not be considered as ‘protected’; it is the supervisor and the other transputer
processes that are protected from the P-process. Furthermore, a P-process should not be considered as
a distinct process, but as a mode of a transputer process (where the L-process is the other mode).

9.1 The mechanism

Any L-process can cause the IMS T9000 to run code under protection, acting as the ‘supervisor’ of that
code. A supervisor is responsible for initializing and maintaining two data structures. The first of these is
the PDS (P-state data structure) which is primarily used for storing the state of the P-process. The second
is the region descriptor data structure which contains information controlling memory protection and
memory mapping. (More detail on these data structures is given in section 9.7.) Provided that these data
structures are initialized correctly, execution by the supervisor of the instruction goprot, puts the machine
into protected mode. The priority of the process executing under protection is unchanged from that of the
supervisor.

The process then continues to run under protection (as a P-process) until it takes a trap. A number of differ-
ent conditions can cause a ‘P-process trap’. These are:—

« the occurrence of an error, which includes accessing an illegal address (AccessViolation) or
executing a privileged instruction (Privinstruction),

» the expiry of a timeslice period (see section 8.2.4),
» the execution of the syscall instruction (system call), or
¢ adebugging event (breakpoint, watchpoint, single-step, causeerror).

(More detail on trap causes is provided in section 10.3.) When a P-process traps, it restarts its supervisor
atthe instruction following goprot. The supervisor then has access (via the PDS) to the state of the process
prior to the trap. If the code running under protection causes an error, the supervisor is able to handle the
error much as a trap-handler is able to handle an error caused by an L-process. (More detail on state stor-
age and the trap mechanism is given in section 10.2 and section 13.2.)

A trapped P-process can be restarted by the supervisor, using goprot.

9.2 Instruction protection — privileged instructions

Code run under protection is prevented from interfering with the execution of other processes in the trans-
puter. This is achieved because only a subset of the transputer instruction set may be executed under
protection. The set of instructions that may not be executed under protection are known as ‘privileged
instructions’. These include all scheduling and communication instructions and all instructions that config-
ure the transputer.

98 T9000 transputer instruction set manual

If a P-process attempts to execute a privileged instruction, then it signals Privinstruction and traps to its
supervisor. Note that in this case, the supervisor has enough information to execute the instruction on
behalf of the P-process if required.

The complete list of privileged instructions is:—

alt altend altwt chantype disc

disg diss dist enbc enbg

enbs enbt endp erdsq fdel

goprot grant icl in initvicb
insertqueue insphdr intdis intenb irdsq
Idchstatus Ident Idconf Idmemstartval Idresptr
ldshadow ldth mkrc out outbyte
outword readbfr readhdr resetch restart
runp selth setchmode sethdr settimeslice
signal startp stconf stopch stopp
strespir stshadow sttimer swapbfr swapqueue
swaptimer talt taltwt testpranal tin

tret unmkrc vin vout wait
writehdr

9.3 Address translation, memory protection, and stack extension

When code is running under protection all addresses are treated as logical addresses and are translated
into physical addresses before access is made to memory. Each such address should be within one of
four logical address regions, the range of which is specified by four words called ‘region descriptors’ which
are contained in special-purpose registers called the region descriptor registers. If an instruction specifies
an address that is notin one of these logical regions, then it signals Access Violation. Each descriptor spec-
ifies the size of its associated region and the mapping that is used by the hardware to translate logical
addresses to a physical addresses. The region of memory which is thus mapped to by the descriptor is
referred to as a physical address region.

A region descriptor also contains protection information, stating whether the locations within that region
are read-only or read-write, whether or not instructions may be fetched from that region, and whether or
not device access instructions must be used to access these locations. Each address access (whether
read, write or instruction fetch) is therefore checked by the hardware to ensure that there is not a protection
violation. If an error is detected, then AccessViolation is signalled and a P-process trap is taken.

In addition to checking the validity of memory accesses, whenever a non-privileged instruction adjusts the
workspace pointer (Wptr), the hardware checks that the new value in Wptr is the address of a writable
location (if this were not the case then the stack would be read-only) and is not a location reserved for a
device. If in protected mode, a call, ajw or gajw instruction causes the workspace pointer to address an
invalid location then it traps to the supervisor. When a trap is taken as a result of such a workspace adjust-
ment, the supervisor can restart execution of the error causing instruction in protected mode after extend-
ing the region. In this way it is possible to execute stack extension on demand. This is the only case where
it is possible to restart an instruction which has trapped due to a non-floating-point error. (See section
13.2.2 for further details.)

The IMS T9000 allows independent relocation of each region. A region may be of size 2" bytes, with a
minimum size of 256 bytes (64 words) and a maximum size of 230 bytes. A region of size 2" bytes may
be translated onto any 2" byte boundary in the physical address space. It is the programmer’s responsibil-
ity to ensure that the physical address regions do not overlap.

9 Protection and memory management 99

9.4 Regions

In protected mode, the logical address space is divided into four address quarters. Associated with each
quarter is a logical address region, which is specified by a region descriptor. Each region is sized, posi-
tioned, assigned access permissions; and addresses within each region are independently translated.
The two most significant bits of a logical address determine which region is being referenced. The terms
region 0, region 1, region 2, and region 3 are used to refer to the regions having addresses with the most
significant bits set to 00, 01, 10 and 11 respectively. It is not possible to access addresses outside these
regions.

The region associated with each quarter of the address space occupies either the top 2" addresses or the
bottom 2" addresses within that quarter. The size and position of the region is fully specified by the region
descriptor. Table 9.1 and figure 9.1 show the range of accessible (legal) addresses for each region.

positioned from top of address positioned from bottom of ad-
quarter dress quarter
region | size most positive most negative most positive most negative
address address address address
0 2l 230 1 2302 2l—1 0
1 2k 2811 231 ok 230 4 2k 4 230
2 an —230 1 —230 _on —231 . 2n_1 281
3 2m —1 —2om —230 . om_1 230
Table 9.1 Region addresses

A consequence of this is that, except for when the maximal sized region (230 bytes) is in use, it is possible
to ensure that the addresses 0 and #80000000, which are commonly used as nuil pointers, do not corre-
spond to legal addresses and so access to such an address is immediately detected as a violation.

100

T9000 transputer instruction set manual

quarter 1 : 01xx........ %

quarter 0 : 00xx........ %

quarter 3 : 11XX....... .Y

quarter 2 : 10xx

2314

231 _ ok
non-accessible
memory
230 _ 1
230 _ ol

non-accessible
memory

non-accessible
memory

non-accessible
memory

280 4 2k 4

230 E

non-accessible
memory

21

non-accessible
memory

—230 1 om _4

— 230

non-accessible
memory

non-accessible
memory

_ 081 yon_ 4

_o31 [

regions positioned at top

regions positioned at bottom

Figure 9.1

Position of region addresses in logical memory space

9 Protection and memory management 101

9.5 Region descriptors

A region descriptor defines the size of a region, the position of the logical region, the address translation,
and the write, execute and device permissions associated with that region.

A region descriptor is a single word which specifies a region of size 27, where the minimum allowed value
of n is 8. It contains the following fields.

¢ bit 0 indicates whether writes may be made to the region (1 = write-permit)
¢ bit 1 indicates whether instructions may be fetched from the region (1 = execute-permit)
« bit 2 indicates the position of the logical region (1 = top, 0 = bottom)

< bit 3 indicates whether non-device instructions are allowed to access locations within the region
(1 = device-access-only)

¢ bits 4 to n—2 must be set to 0
« bit n—1 specifies the size of the region — it is set to 1 to indicate that the region size is 27

* bits nto 31 specifies the address of the physical region to which the logical region should be relo-
cated — these bits replace the corresponding bits in the logical address which is being translated

A region may be disabled by setting the region descriptor to the special value #8000000, the ‘null descrip-
tor’. This sets the region to zero size. That is, there are no accessible addresses in the quarter of the ad-
dress space associated with this descriptor. The region is ‘disabled’.

A descriptor with a form different to that described above is invalid and must not be used. Also the behavior
is undefined if the two physical address regions overlap. No two distinct logical addresses may translate
to the same physical address.

The above mechanism is illustrated in the following diagram.

logical address rr p...p base address

bit 31, 30 bit 29 down to bitn bit (n—1) down to bit 0

region descriptor relocation 1 0..0 dip|x|w
bit 31 downto bitn bit (n—1) down to bit 0
physical address relocation base address
bit 31 down to bitn o bit (n—1) down to bit0

Figure 9.2 Logical to physical address translation

The next diagram gives a specific example where the logical address #BFFFF1C5 is translated to the
physical address #002831C5. Region 2 is being used here, its size is 4096 (212), it is positioned at the
top of the address quarter, and is read-only executable, and is not memory mapped to a device area.

102 T9000 transputer instruction set manual

logical address | 10 | 11 1111 1111 1111 1111 | 0001 1100 1001
- B e EE—
region base address
RegionReg2 0000 0000 00101000 0011 | 1000 0000 | 0110
D relocation size permissions/position
physical address 0000 0000 00101000 0011 | 0001 1100 1001
relocation base address

Figure 9.3 An example of logical to physical address translation

Note that for the logical address to be valid, bits n to 29 must be 1s if the position bit (bit 2) in the region
descriptor is set to 1, and must be 0s if the position bit is 0. Otherwise AccessViolation is signalled.

9.6 Registers

The IMS T9000 has several registers which are used only by the protection mechanism. The following
text describes the contents of these registers whilst the code is running under protection.

register name / description

RegionReg0 region descriptor register 0

RegionReg1 region descriptor register 1

RegionReg2 region descriptor register 2

RegionReg3 region descriptor register 3

PstateReg protected state registér — pointer to the P-state data structure
WdescStubReg | process descriptor of the supervisor

Table 9.2 Registers used by protection mechanism

The RegionRegX register contains the region descriptor for region X. This information is loaded from the
region descriptor data structure on execution of goprot. As described above, the region descriptor defines
the size, position, physical address and permissions of a region as a single word.

The PstateReg register contains a pointer to the P-state data structure (detailed in section 9.7).

The WdescStubReg register contains the process descriptor of the supervisor while the code is running
under protection.

9.7 Data structures

This section describes the two data structures that need to be initialized prior to starting a P-process for
the first time with goprot:

+ The P-state data structure

e The region descriptor data structure

9 Protection and memory management 103

9.71 P-state data structure (PDS)

The data structure referred to as the P-state data structure (or PDS) is shown in table 9.3.

word offset |slot name purpose

10 ps.sXreg internal state — loaded into / stored from Xreg when pro-
tected mode entered/exited in the middle of executing an
interruptible instruction

9 ps.sEreg internal state — loaded into / stored from Ereg when pro-
tected mode entered/exited in the middle of executing an
interruptible instruction

8 ps.sCreg P-process C register — loaded into / stored from integer
stack C register when protected mode entered/exited

7 ps.sBreg P-process B register — loaded into / stored from integer
stack B register when protected mode entered/exited

6 ps.sAreg P-process A register — loaded into / stored from integer
stack A register when protected mode entered/exited

5 ps.slptr P-process instruction pointer — loaded into / stored from
instruction pointer register when protected mode en-
tered/exited

4 ps.sWptr P-process workspace pointer — loaded into / stored

from Wptr when protected mode entered/exited

3 ps.eWu upper bound of P-process watchpoint region — may be
loaded into upper watchpoint register when protected
mode entered

2 ps.eWI lower bound of P-process watchpoint region — may be
loaded into lower watchpoint register when protected
mode entered

1 ps.Eptr pointer to instruction causing trap — foaded into / stored
from error pointer register when protected mode en-
tered/exited

0 ps.Cntl control word

Table 9.3 P-state data structure (or PDS)

This section describes very generally the source/destination of data loaded into / copied from this data
structure. There are several anomalies, and for a thorough understanding of state storage and retrieval,
refer to section 13.2.2. For discussion of the trapping mechanism, also refer to chapter 10.

The control word: ps.Cntl

When a process starts to execute under protection, the processor loads the process status and control
bits from the P-state control word (the ps.Cntl slot of the PDS) into the status register (StatusReg). The
control word thus determines the conditions under which the P-process traps or sets flags (see section
10.3). When the process takes a P-process trap, these status and control bits are written back into the
control word in the PDS.

[The order of bits within the control word is the same as the status and control bits in the status register,
as set out in table 5.5.]

P-process state: ps.sWptr, ps.siptr, ps.sAreg, ps.sBreg, ps.sCreg, ps.sEreg, ps.sXreg

The state of the P-process is loaded from the PDS when goprot is executed. The processor loads the con-
tents of the ps.sWptr and ps.slptr slots into Wptr and IptrReg respectively, and loads the contents of
ps.sAreg, ps.sBreg and ps.sCreg into the integer stack. When a P-process takes a trap back to its su-

104 T9000 transputer instruction set manual

pervisor, the processor saves the contents (at the time of the trap) of all these registers, in the appropriate
slots of the PDS. When a supervisor starts a P-process for the first time, it is usually the case that only
ps.sWptr and ps.slptr contain useful information (see below: Creation of a PDS). Note also if a trap is
taken in the middle of an interruptible instruction, that the internal registers are saved in ps.sEreg and
ps.sXreg, and are reloaded from those slots if the trapped P-process is restarted.

Trap causing instruction: ps.Eptr

When a P-process takes a trap, the address of the trap causing instruction (which is held in EptrReg),
is written into the ps.Eptr slot. [This is different to the content of the ps.slptr slot (see above), into which
is stored the address of the instruction which was due to be executed next.] This error pointer is not loaded
back into EptrReg unless goprot is being used to restart an interrupted process (see section 13.4).
Watchpoints: ps.eWI and ps.eWu

If watchpoints are enabled in the P-state control word (sh.WtchPntEnbl is set to 1), then when a process
starts to execute under protection, the contents of the ps.eWI and ps.eWu slots are loaded into the watch-
point registers (WIReg and WuReg respectively). These addresses specify the lower bound and upper
bound of the watchpoint region. While enabled, any instruction writing to a location in this region causes
the process to take atrap. Note, that since the processor is in protected mode, the watchpoint region speci-
fies logical addresses.

More details on watchpointing are provided in chapter 14.

The supervisor workspace

While the process is executing under protection, the process descriptor of the supervisor is held in
WdescStubReg (see section 9.6). The processor reloads this descriptor into the workspace descriptor
register when the P-process takes a trap.

The supervisor’s instruction pointer

While the process is executing under protection, the instruction pointer of the supervisor is stored in the
pw.Iptr slot of the supervisor’s workspace data structure. The processor reloads the instruction pointer
register (IptrReg) with the content of pw.Iptr when the P-process takes a trap.

Creation of a PDS

Any suitably sized word-aligned block of store may be used as a P-state data structure.

When goprot is used to start a P-process for the first time, it is always necessary to ensure that the ps.Cntl,
ps.sWptr and ps.slptr slots are initialized correctly with:—

¢ ps.Cntl specifying the conditions under which a trap should be taken,
* ps.sWptr pointing to the workspace of the P-process, and
» ps.slptr pointing to the next instruction which will be executed under protection.

N.B. When the machine switches to protected mode, the values that have been loaded from ps.sWptr
and ps.slptr are treated as logical addresses.

9.7.2 Region descriptor data structure (RDDS)

The data structure referred to as the region descriptor data structure is shown in table 9.4.

9 Protection and memory management 105

word offset | slot name purpose

3 pc.RegionReg3 | loaded into region descriptor register 3 when pro-
tected mode entered

2 pc.RegionReg2 |loaded into region descriptor register 2 when pro-
tected mode entered

1 pc.RegionReg1 |loaded into region descriptor register 1 when pro-
tected mode entered

0 pc.RegionReg0 |loaded into region descriptor register 0 when pro-

tected mode entered

Table 9.4 Region descriptor data structure

Any suitably sized word-aligned block of store may be used as a region descriptor data structure. ltis nec-
essary to initialize the data structure with region descriptor information for each quarter of the address
space. Its contents are then loaded into the region descriptor registers as indicated in the table.

9.8 Instructions

The following instructions are used to switch to and from protected mode. (Execution of syscall is just one
of the causes of a trap to the supervisor. The others are listed in section 10.3.1.)

mnemonic name
goprot go protected
syscall system call

Table 9.5 Instructions used for switching to and from protected mode
goprot

goprot starts execution of code in protected mode. It is a privileged instruction. Before it is executed, Areg
contains a word-aligned address that points to a PDS (P-state data structure). Breg contains a word-
aligned address that points to a region descriptor data structure. goprot can thus be used to

» start a P-process for the first time
» restart a P-process that has been trapped
« restart a P-process that has been interrup’(edJr
The following paragraphs describe how goprot saves and loads state.

The current state of the L-process is saved. If the process has a trap-handler, then the trap, watchpoint,
timeslice and single-step enable bits, and all flags in the status register (StatusReg) are written into the
th.Cntl slot of the THDS (see section 10.1.1). The content of the instruction pointer register (IptrReg) is
copied into the pw.Iptr slot of the local workspace. The content of the workspace descriptor register is
copied into the workspace descriptor stub register (WdescStubReg). Note that the content of the trap-
handler register (ThReg) does not need to be saved because this register is not affected when the ma-
chine is running under protection.

The processor then loads the state of the P-process. The address of the PDS (P-state data structure)
contained in Areg is loaded into the protected state register (PstateReg). The four words stored in the
region descriptor data structure (pointed to by Breg — table 9.4) are loaded into the corresponding region

descriptor registers. The contents of the ps.sWptr and ps.slptr slots of the PDS are copied into Wptr
T N.B. Unless the shadow state is altered, the state of an interrupted P-process is automatically reloaded from the shadow registers
whenthere are no high priority processes running—i.e. goprotis notrequired. However a program such as an operating systemkernel
might be required to store the shadow state and restart the interrupted process later. goprot can be used for this. See section 13.4
for details on this application.

106 4 T9000 transputer instruction set manual

and the instruction pointer register (IptrReg); and the ps.sAreg, ps.sBreg and ps.sCreg slots are copied
into the integer stack registers. The trap, watchpoint, timeslice and single-step enable bits and all flags
are loaded into the status register, from the ps.Cntl slot of the PDS. Also if the watchpoint enable bit
(sb.WtchPntEnbl) is set, the contents of the ps.eWI and ps.eWu slots are loaded into the watchpoint
registers (WIReg and WuReg). The new workspace area specified by the address held in ps.sWptr
should be writable, otherwise AccessViolation will be signalled as soon as a local variable is stored. Fur-
thermore, this address must be word-aligned otherwise undefined behavior will result.

If goprot is restarting the code at an instruction that has been interrupted or timesliced in the middle of
execution, then it loads the contents of the ps.sEreg and ps.sXreg slots into the internal registers (Ereg
and Xreg respectively).

The protection bit in the status register (sh.IsPprocessBit) is set and the processor begins to execute,
under protection, the code specified by the PDS.

Section 10.4 describes what happens when this instruction triggers a single-step or watchpoint trap.

syscall

When syscall is executed in protected mode, the effect is to force a trap to the supervisor. More detail on
this is provided in section 10.4.

10 The trap mechanism 107

10 The trap mechanism

When a process takes a trap, control is transferred in one of the following ways.

machine executing an L-process — control is transferred to trap-han-
with a trap-handler specified dler of L-process

machine executing an L-process . machine is halted

with a null trap-handler

machine executing a P-process - control is transferred to supervisor

of P-process

The first two are referred to as L-process traps, and the third is referred to as a P-process trap.
The following provides a complete description of traps including:

* an overview of the L-process traps including the trap-handler data structure (a similar overview
of the P-process trap is given in chapter 9);

« details on the state storage and retrieval when a trap is taken;
* a comprehensive list of trap causes and errors;

¢ alist of the instructions that may be used when dealing with traps, together with a description
for each.

10.1 The trap-handler

All L-processes have associated with them, a ‘trap-handler pointer’. For the currently executing process,
this is held in the trap-handler register (ThReg). For a non-executing process, it is stored in the
pw.TrapHandler slot of the process workspace. Normally an L-process has an associated trap-handler,
in which case the trap-handler pointer is the address of a trap-handler data structure (THDS), which itself
provides a pointer to the trap-handler code to be run when a trap is taken. More than one L-process may
share a trap-handler. Alternatively, an L-process may have a null trap-handler, in which case its
trap-handler pointer is a null-pointer and has the special value NotProcess.p.

10.1.1 The THDS (trap-handler data structure)

For an L-process to be associated with a trap-handler, its trap-handler pointer must be the word aligned
address of a THDS.

A THDS records the state of the trapped process, and provides a pointer to the trap-handler code which
runs when a trap is taken. Its complete construction is shown in table 10.1.

108 T9000 transputer instruction set manual

word offset | slot name purpose

11 th.sCreg L-process C register — stored from / loaded into integer
stack C register when trap-handler entered/exited

10 th.sBreg L-process B register — stored from / loaded into integer
stack B register when trap-handler entered/exited

9 th.sAreg L-process A register — stored from / loaded into integer
stack A register when trap-handler entered/exited

8 th.slptr L-process instruction pointer — stored from / loaded into
instruction pointer register when trap-handler entered/
exited

7 th.sWptr L-process workspace pointer — stored from / loaded

into Wptr when trap-handler entered/exited

6 th.eWu upper bound of L-process watchpoint region — may be
loaded into upper watchpoint register when an L-pro-
cess is executed’

5 th.ewl lower bound of L-process watchpoint region — may be
loaded into lower watchpoint register when an L-pro-
cess is executed?

4 th.Eptr pointer to instruction causing trap — stored from error
pointer register when trap-handler entered
th.Bptr back of trap sharing process queue
th.Fptr front of trap sharing process queue
1 th.Iptr trap-handler instruction pointer — loaded into instruction

pointer register when trap-handler entered
0 th.Cnti control word

Table 10.1 Trap-handler data structure (or THDS)

This section describes very generally the source/destination of data loaded into / copied from this data
structure. There are several anomalies, and for a thorough understanding of state storage and retrieval,
refer to section 13.2.2. For discussion of the trapping mechanism, also refer to later sections in this chap-
ter.

The control word: th.Cnti

When the processor starts execution! of an L-process, it loads the process status and control bits from
the trap-handler control word (the th.Cntl slot of the THDS) into the status register (StatusReg). The con-
trol word thus determines the conditions under which the L-process traps or sets flags (see section 10.3).
When the process takes an L-process trap, these status and control bits are written back into the control
word in the THDS.

[The order of bits within the control word is the same as the status and control bits in the status register,
as set out in table 5.5.]

There is a extra bit in the control word known as the trap-handler in use bit (sb.ThinUse — bit 31). This
bit is not loaded into the status register. It provides an interlock which prevents two or more processes
that share a trap-handler from simultaneously requiring use of that trap-handler. The processor achieves
this by setting the bit to 1 when a trap-handler is entered and clearing it when the trap-handler is exited.
(See below.)

L-process state: th.sWptr, th.slptr, th.sAreg, th.sBreg, th.sCreg

When an L-process takes a trap, its current state is saved in the THDS. The workspace and instruction
pointer are saved in th.sWptr and th.slptr respectively. The integer stack is saved in th.sAreg, th.sBreg
and th.sCreg. The processor restores this state to the processor if it is required to restart the trapped pro-
cess on return from the trap.

10 The trap mechanism 109

The trap-handler’s instruction pointer: th.Iptr

The instruction pointer (i.e. the entry point) of the trap-handler code is stored in the th.Iptr slot. When an
L-process takes a trap, the content of th.Iptr is copied into the instruction pointer register (IptrReg).

Trap causing instruction: th.Eptr

When an L-process takes a trap, the address of the instruction that caused the trap (which is held in Eptr-
Reg), is written into the th.Eptr slot. [This is different to the content of the th.slptr slot (see above), into
which is stored the address of the instruction that was due to be executed next.]

Watchpoints: th.eWl and th.eWu

If watchpoints are enabled in the trap-handler control word (sb.WtchPntEnbl is set to 1), then when an
L-process starts execution!, the contents of the th.eWI and th.eWu slots are loaded into the watchpoint
registers (WIReg and WuReg respectively). These addresses specify the lower bound and upper bound
of the watchpoint region. While enabled, any instruction writing to a location in this region causes the pro-
cess to take a trap.

More details on watchpointing are provided in chapter 14.
The trap-handler queue: th.Fptr and th.Bptr

Before the processor executes an L-process it checks the trap-handler in use bit to determine whether
or not the trap-handler is in use. If the trap-handler is in use then the process is appended to the trap-han-
dler queue. (If an L-process were executed while its trap-handler was in use by another process, then the
trap-handler could not be invoked if a trap occurred.) This queue is specified by a front pointer (th.Fptr)
and a back pointer (th.Bptr) and is linked in the same manner as the high and low priority scheduling lists
(see section 8.2.1). When the trap-handler is exited, the entire trap-handler queue is inserted at the front
of the appropriate priority scheduling list (i.e. the same priority at which the trap-handler is running).

The trap-handler workspace

When an L-process takes a trap, the processor loads the workspace pointer register field (Wptr)Jr with
the content of the trap-handler register (ThReg). Hence the trap-handler can immediately use the area
below the THDS as its workspace.

Since a trap-handler’s workspace pointer initially points to the THDS, the trap-handler code must avoid
corrupting this information. In particular, if any of the trap-handler’s instructions use workspace location
0 (pw.Temp — see section 8.1.1), then the code should firstly adjust the workspace pointer (e.g. execute
ajw —1) so that it points to a free memory location. Likewise, the workspace pointer must be adjusted if
local variables are allocated.

The trap-handler’s ‘trap-handler’

The trap-handler itself initially executes with a null trap-handier, and so the trap-handler register is loaded
with NotProcess.p.

Creation of a THDS

Any suitably sized word-aligned block of store may be used as a trap-handler data structure. The area
below this block will also initially be the trap-handler workspace when an L-process takes a trap (although
the trap-handler code may change this on entry). The block must be initialized: with the th.Fptr slot set
to NotProcess.p to indicate that the trap-handler queue is empty, with the th.Iptr slot set to the appropriate
address for the trap-handler code, and with the trap-handler in use bit (sb.ThinUse) of the control word
set to 0, the flags set appropriately, and the other bits selecting traps as desired. If watchpointing is se-
lected in the control word, then the th.eWI and th.eWu slots should be set to define the watchpoint region.

Changing a trap-handler

There are two instructions that an L-process may use to manipulate its trap-handler. The first is load trap
handler - Idth and the second is select trap handler - selth. These are detailed in section 10.4.

1 The process priority is not changed when the context changes to a trap-handier.

110 T9000 transputer instruction set manual

10.1.2 Sharing a trap-handler data structure

Itis possible to a share a THDS (trap-handler data structure) between any number of processes. However,
there are certain restrictions

¢ The processes sharing a THDS must be of the same priority.

« All processes sharing a THDS also share the control word in the THDS, which implies that they
all have the same traps enabled (floating-point, watchpoint etc.).

Note that it is possible to change the status and control bits in the status register while a process
is executing; but be aware that iffwhen a timeslice or trap subsequently occurs, some of these
bits are written back into the th.Cntl slot of the THDS and hence are shared by all processes
which use this trap-handler.

The IMS T9000 will not executet a process if its trap-handler is currently in use¥ by another process. This
ensures that when a process takes a trap, a second process cannot take a trap to the same trap-handler
whilst the first trap is being handled. This restriction is enforced automatically by the IMS T9000 scheduler
as described in section 10.1.1.

10.1.3 The null trap-handler

Ifthe trap-handier pointer of an L-process is the special value NotProcess.p, then it has a null trap-handler.
Before the process is executed:

¢ The null trap-handler value (NotProcess.p) is loaded into the trap-handler register.

¢ The status register (StatusReg) is loaded with the default control word (see section 5.2). This
specifies that the only enable option that is selected is the integer overflow trap (sb.IntOvTeBit
is set to 1). Hence an L-process executing with the null trap-handler, does not trap on floating-
point exceptional conditions and misalignment errors, and does not have watchpointing enabled.

If an L-process takes a trap while a null trap-handler is installed (a null trap), the processor is halted.

The main use of the null trap-handler is to provide some way of executing L-processes without a trap-han-
dler (often just for short periods). This can be essential. For example, trap-handlers (which are themselves
run as L-processes) must always be ready to execute, and cannot therefore themselves have a trap-han-
dler when first invoked. If this were allowed, it might be that the secondary trap-handler (i.e. the trap-han-
dler’s trap-handler) would be in use by another process at the time that the primary trap-handler was in-
voked. The primary trap-handler would then not be ready to execute. However although a trap-handler
must have a null trap-handler at the time of invocation, it is perfectly acceptable to provide it with its own
trap-handler while it is executing (making use of the select trap handler instruction — see section 10.4).

10.2 State storage and retrieval when a trap is taken

When an L-process takes a trap, it relinquishes control to its trap-handler (or halts the machine if there
is a null trap-handler specified). This is referred to as an L-process trap.

When a P-process takes a trap, it relinquishes control to its supervisor. This is referred to as a P-process
trap.

T Note carefully the word ‘execute’ here. The transputer will schedule a process (i.e. place its process on the scheduling list) without
checking whether its trap-handler is in use. It is only when it starts execution of the process (i.e. install it as the current process) that
it checks. It will at this point prevent the process from being executed if a process sharing the same THDS has trapped.

1 Theterm ‘trap-handier in use’ means that a trap has already been taken to the trap-handler specified by that particular trap-handler
data structure, butthe corresponding ‘trap return’ instructions (tret) has not yet been executed. However, itis possible for two L-pro-
cesses with different trap-handler data structures, to use the same trap-handler code. That is, the th.Iptr slot can be a pointer to the
same code in two or more trap-handler data structures. L-processes can thus share the same trap-handler code, without sharing
workspace. There is norestriction on execution of L-processes which share trap-handler code but have separate trap-handler data
structures.

10 The trap mechanism 11

Except when a null trap is taken (see section 10.3.3), the reason for the trap is encoded in Areg, and if
the trap has been caused by an error, the type of error is encoded into Breg. Creg is left undefined. This
section provides some detail on state storage? and retrieval, and a comparison between the two types
of trap.

Ifatrap occurs as a result of a floating-point exception, then prior to taking the trap, the state of the floating-
point unit is restored to the state that it had before the floating-point operation (refer to section 11.13 for
more details).

THDS PDS

trap-handler .

Whptr, IptrReg Whptr, IptrReg

Areg, Breg, Creg, Areg, Breg, Creg,
EptrReg, EptrReg,

status and control bits status and control bits

L-process trap P-process trap

An L-process trap

“When an L-process takes a trap, the action depends on the trap-handler pointer (stored in the trap-handler

register — ThReg). If it points to a THDS, then the current state is stored and the trap-handler state is set
up as described below. If the trap-handler pointer is the special constant NotProcess.p, which signifies
that there is a null trap-handler, then the machine halts (takes a null trap).

The THDS (trap-handler data structure) which is pointed to by the trap-handler register is used both to
save the state of the L-process when it takes a trap, and to contain the necessary details required to invoke
the trap-handler.

The contents of the instruction pointer register (IptrReg), Wptr, and integer stack registers are all written
into the THDS. This action cannot signal a watchpoint or AccessViolation. The address of the instruction
that has caused the trap (held in EptrReg) is written into the th.Eptr slot. The error, watchpoint, timeslice
and single-step trap enable bits and all error flags in the status register (StatusReg) are written into the
th.Cntl slot. Also the trap-handler in use bit (sb.ThinUse) is set in this slot (to prevent execution of the
processes which share this trap-handler).

The workspace pointer and instruction pointer of the trap-handler are (re)installed: the content of the trap-
handler register is copied into the workspace pointer register field (Wptr); and the content of the th.Iptr
slot is copied into the instruction pointer register. Observe that the process priority bit of the workspace
descriptor register is left unaltered. The trap-handler continues to run as an L-process at the same priority.

112 T9000 transputer instruction set manual

The trap-handler register is given the special constant value (NotProcess.p) which signifies that the trap-
handler itself initially has a null trap-handler. The status register is loaded with the default control word (all
zeroes except for sb.IntOvTeBit).

A P-process trap

When a P-process takes a trap, the current state is stored and the supervisor’s state is retrieved as de-
scribed below.

The PDS (P-state data structure) which is pointed to by the protected state register (PstateReg), is used
both to save the state of the P-process when it takes a trap, and to contain the necessary details required
to restart its supervisor.

The contents of the instruction pointer register (IptrReg), Wptr, and the integer stack registers are all writ-
teninto the PDS. This action cannot signal a watchpoint or AccessViolation. The address of the instruction
that has caused the trap (held in EptrReg) is written into the ps.Eptr slot. The error, watchpoint, timeslice
and single-step trap enable bits, and all error flags in the status register (StatusReg) are written into the
ps.Cntl slot. If the trap is taken in the middle of an interruptible instruction (i.e. due to a timeslice), then
the contents of internal registers Ereg and Xreg are saved in the ps.sEreg and ps.sXreg slots of the PDS
respectively.

The workspace pointer and instruction pointer of the supervisor are reinstailed: the content of the work-
space descriptor stub register (WdescStubReg) is copied into workspace descriptor register; and the
content of the pw.lptr slot of the supervisor’s workspace data structure, is loaded into the instruction point-
er register.

If the trap-handler register points to a THDS, then the supervisor has a trap-handler installed and its state
is restored from the THDS as follows. The error, watchpoint, timeslice and single-step trap enable bits and
all error flags are loaded into the status register, from the th.Cntl siot of the THDS, and the sb.IsPpro-
cessBit is reset. Also if the watchpoint trap enable bit (sb.WtchPntEnbl) is set, the contents of the th.eWI
and th.eWu slots in the THDS are loaded into the watchpoint registers (WIReg and WuReg).

Ifthe supervisor’s trap-handler pointer has the special constant value NotProcess.p, then it has a null trap-
handler and so the status register is loaded with the default control word (all zeroes except for sb.IntOvTe-
Bit).

A comparison
It is useful to observe the similarities and differences in behavior between the above two mechanisms.

¢ For each there is a data structure which is used to store the state of the process when trapped.
This state is required if it is necessary to examine the process state and/or it is required to restart
the process at the point where the trap was taken.

* Inboth data structures, the control word, the workspace pointer, the instruction pointer, the inte-
ger stack registers and the address of the trap causing instruction for the trapped process are
stored automatically.

* The THDS address is held in the trap-handler register, whereas the PDS address is held in the
protected state register.

* The workspace pointer of the trap-handler is held in the trap-handler register, whereas the work-
space pointer of the supervisor is held in the workspace descriptor stub register.

« The instruction pointer for the trap-handler code is held in a slot in the THDS, but the instruction
pointer for the supervisor is held in the supervisor’'s workspace data structure.

* When a trap-handler is started, this must itself have a null trap-handler, and so in order to load
the correct state when an L-process traps to its trap-handler, the processor only needs to install
the workspace pointer and instruction pointer, and to set the status register to a default control
word. However a supervisor may have its own THDS, and so when a P-process traps to its super-

10 The trap mechanism 113

visor, it is also necessary to load the process bits from the control word of its THDS and, if ap-
propriate, load the watchpoint registers.

Exiting from a trap-handler or a supervisor

When a trap-handler has performed its function, it must execute fret (the ‘trap return’ instruction — see
section 10.4), which may either:—

« terminate the execution of the process which trapped, or
¢ continue its execution.

If Areg is 0 when tret is executed, then the process is continued from the point where it trapped, otherwise
it is terminated. The workspace pointer register field (Wptr) should hold the address of the THDS when
fret is executed. fret must be executed (as opposed to stopp) even when the trapped process is not to
be restarted. This ensures that the ‘trap-handler in-use’ bit is reset, and any accumulated process queue
is transferred to the scheduling list.

A supervisor restarts a trapped P-process with the goprot instruction.
More details on these instructions are given in section 10.4.
Extra state storage and retrieval

Observe that the floating-point and block move register state is not automatically saved when a trap is
taken. There is no need for the mechanism to do so, because this state is not overwritten by the context
change. However subsequent execution may overwrite the contents of the floating-point and block move
registers at any time, so it is left to the trap-handler or supervisor to save and restore this state using
instructions included for the purpose. Refer to section 13.2.3.

10.3 Trap causes and signalling of errors

This section is concerned with the events that can cause a process to take a trap, or set flags. The descrip-
tion applies to both P-process traps and L-process traps, unless explicitly stated.

10.3.1 Trap causes

As summarized in the introduction to this chapter, there are two types of trap. When an L-process is
executing, a trap transfers control to its trap-handler (L-process trap), and when a P-process is executing,
atrap returns control to its supervisor. This subsection considers the various trap causes, discusses which
of these can occur simultaneously, and explains how these causes are presented to the trap-handler or
supervisor.

The events that can cause traps are given in table 10.2 and explained below.

name notes

single-step

error

syscall (system call)
causeerror
breakpoint
watchpoint

timeslice P-process trap only

Table 10.2 General trap causes and their abbreviations

T unless the trap-handler has modified the th.slptr slot

114 T9000 transputer instruction set manual

If a process has single-stepping enabled, as indicated by the single-stepping trap enable bit (see section
14.2) in the status register, then it takes a trap when it has finished executing any instruction.

If an error (or a floating-point exceptional condition) is detected, then this is signalied and may cause a
trap. There are a number of such ‘signals’ and these are considered separately in section 10.3.2.

When a process executes syscall, causeerror (see section 10.4) or the breakpoint instruction (j0), then
it traps to its trap-handler or supervisor.

If a process has watchpointing enabled, as indicated by the watchpoint trap enable bit (see section 14.3)
in the status register, then it takes a trap if an instruction attempts to write to an address in the watchpoint
region.

When a timeslice becomes due while a low priority P-process is executing, then the P-process traps to
its supervisor at the next interrupt point.

Traps for multiple reasons
The trap causes listed above may not be unique (i.e. there may be more than one cause of a trap).

Table 10.3 shows which trap causes can occur together. An entry of ‘Y’ indicates that the two trap causes
can be coincident, an entry of ‘N’ that they cannot.

single-step error syscall | causeerror | breakpoint | watchpoint timeslice®

single-step - Y Y Y Y Y v¥
error Y - N N N \4 N
syscall Y N - N N N N
causeerror Y N N - N N N
breakpoint Y N N N — N N
watchpoint Y \4 N N N - Y#
timeslice* v# N N N N v# -

T a watchpoint can only be coincident with an error (viz. AccessViolation) in a P-process

1 a timeslice only causes a trap from a P-process

Table 10.3 Trap causes that can occur simultaneously
Indication of cause of traps

The trap-handler or supervisor must be able to determine the trap cause (or causes). The reporting of the
reason for a trap is essentially the same for both an L-process trap and a P-process trap. Firstly, the ad-
dress of the instruction that caused the trap and/or the address of the next instruction to be executed are
written into the handler’s data structure. Secondly, two values are used to convey why the instruction
trapped; the first, delivered in Areg (see table 10.5), indicates the trap reason, the second, delivered in
Breg (see section 10.3.2) indicates which type of error (if any) has occurred.

The address of the trap causing instruction is written into th.Eptr of the THDS for an L-process trap, or
to ps.Eptr of the PDS for a P-process trap. The only times where this information is not valid is when a
P-process trap has been taken between instructions due to a timeslice, or when a memory semantics error
has occurred (see page 120).

Itis possible that an L-process is due to be descheduled when itis trapped. More specifically, descheduling
can be coincident with a single-step or a watchpoint (if the process workspace data structure is watch-
pointed). Although the descheduling action is not a trap cause, this information is encoded into the the
word delivered in Areg. The trap-handler is then aware that the trapped process cannot be immediately
restarted on trap return.

Similarly, it is possible for an L-process trap to occur from an instruction that would normally change the
context of the process. More specifically, goprot, selth (which changes the trap-handler —see section 10.4)

10 The trap mechanism 115

and restart (which restarts an interrupted L-process — see section 13.4) can cause a single-step or watch-
point trap. In this situation, these instructions simply take a trap after they have written the current state
into the control word of the trap-handler data structure. Itis then left to the trap-handler to change the con-
text. Although the context change is not a trap cause, this information is encoded into the the word deliv-
ered in Areg. The trap-handler is then aware that the trapped process cannot be restarted using tret.

The trap reason value, delivered in Areg, is encoded as shown in table 10.4.

field bit 4 bits 3 .. 1 bit 0
meaning 1: single-step 000: error 1: watchpoint
0: not single-step 001: breakpoint 0: not watchpoint

010: none of this set
011: timeslice

100: syscall

101: deschedule
110: causeerror

111: context

Table 10.4 Bit mapping of trap reason delivered in Areg

This coding uses 5 bits which allows 32 possible values. Of these only 23 can ever occur, according to
the combinations of trap causes that can occur simultaneously (as given in table 10.3). (Note that the trap
causes encoded by bits 3 .. 1 cannot be coincident.) Table 10.5 summarizes.

116 T9000 transputer instruction set manual

trap reason trap reason symbol meaning note

value (hex)

0 (#00) t.Error error

1 (#01) t.WatchError watchpoint and error ' P-process trap only

2 (#02) t.Break breakpoint

3-4 (#03-#04) invalid

5 (#05) t.Watch watchpoint

6 (#06) t.Time timeslice P-process trap only

7 (#07) t.WatchTime watchpoint and timeslice P-process trap only

8 (#08) t.Scall syscall

9-10 (#09-#10) invalid

11 (#0B) t.watchDesch watchpoint and deschedule L-process trap only

12 (#0C) t.Cerror causeerror

13-14 (#0D-#0E) invalid

15 (#OF) t.WatchContext watchpoint and context L-process trap only

16 (#10) t.StepError single-step and error

17 (#11) t.StepWatchError single-step, watchpoint and error | P-process trap only

18 (#12) t.StepBreak single-step and breakpoint

19 (#13) invalid

20 (#14) t.Step single-step

21 (#15) t.StepWatch single-step and watchpoint

122 (#16) t.StepTime single-step and timeslice P-process trap only

23 (#17) t.StepWatchTime s:_ngle-step, watchpoint and time- | P-process trap only
slice

24 (#18) t.StepScall single-step, syscall

25 (#19) invalid

26 (#1A) t.StepDesch single-step and deschedule L-process trap only

27 (#1B) t.StepWatchDesch single-step, watchpoint and des- | L-process trap only
chedule

28 (#1C) t.StepCerror single-step and causeerror

29-31 (#1D) invalid

30 (#H1E) t.StepContext single-step and context L-process trap only

31 (#1F) t.StepWatchContext single-step, watchpoint and con- | L-process trap only
text

Table 10.5 Possible trap reasons as loaded into Areg when a is taken

10.3.2 Signalling of errors

A process executing on an IMS T9000 can detect a variety of errors. The precise errors that a particular
process detects depend on the mode of the process (i.e. L-process or P-process). The signalling of certain
errors may cause a trap to be taken, or flags to be set within the status register. This is controlled by the
setting of bits known as ‘error trap enable bits’. This subsection presents these flags and trap enable bits,
and details the different types of errors.

10 The trap mechanism 117

The errors, that a process executing on the IMS T9000 can detect, are:—

« errors that are explicitly set or checked — These are caused by the execution of an error setting
instruction (e.g. causeerror — see section 10.4) or by error detection instructions. An example
of the latter is an array subscript error detected by a csub0 instruction.

» integer overflow — This is signalled when there is an integer overflow or integer division by zero.

+ misalignment — This is signalled when a instruction attempts to load or store a 32-bit or 16-bit
object from a byte address that is not 32-bit or 16-bit aligned.

« attempt to execute illegal instruction — This is signalled when opr is executed with an invalid oper-
and —i.e. not an instruction.

« attempt to execute privileged instruction in protected mode
¢ access violation in protected mode

« floating-point exceptional conditions — The IMS T9000 can detect the conditions specified as ex-
ceptional conditions by the IEEE floating-point standard. These are ‘invalid operation’, ‘divide by
zero’, ‘overflow’, ‘underflow’ and ‘inexact result’. In addition to these it also detects a condition
called, ‘floating-point error’. The latter is detected whenever an arithmetic operation has as an
operand, an infinity or a not-a-number, and when the conditions ‘invalid operation’, ‘divide by
zero’, or ‘overflow’ are true. (Detection of ‘floating-point error’ ensures compatibility with the treat-
ment of floating-point errors by the IMS T805.)

* memory semantics violation — see page 120

The detection of any of these distinct operating conditions is signalled, either by the setting of one or more
flags, or by a trap being taken. The complete set of ‘error signals’ are defined in table 10.6.

error signal brief description note

IntegerOverflow integer overflow or integer divide-by-zero

IntegerError integer error other than IntegerOverflow — e.g. explicitly
checked or explicitly set error, misuse of channel

Unalign address of instruction operand is not aligned to the cor-
rect boundary

lllegallnstruction attempt to execute an iliegal instruction

Privinstruction attempt to execute a privileged instruction in protected | P-process trap only
mode

AccessViolation attempt to access a memory protected or non-existent | P-process trap only
address

FPError floating-point ‘error’

FPinvalidOp IEEE floating-point ‘invalid operation’

FPDivideByZero |EEE floating-point ‘divide by zero’

FPOverflow IEEE floating-point ‘overflow’

FPUnderflow |IEEE floating-point ‘underflow’

FPinexact IEEE floating-point ‘inexact result’

Table 10.6 Definition of errors signalled by the IMS T9000

IntegerError and IntegerOverflow are sometimes referred to generically as integer errors, and FPError,
FPinvalidOp, FPDivideByZero, FPOverflow, FPUnderflow and FPInexact are referred to as floating-point
exceptional conditions.

Flags

Various bits within the status register (StatusReg) are reserved as flags. (See section 5.2.) These are
set when certain errors are signalled as outlined in table 10.7. More than one error may be signalled by
an instruction, and more than one flag may be set; however no flags are set if a trap is taken2.

118 T9000 transputer instruction set manual

name error signals notes

sb.IntOvFlag IntegerOverflow

sbh.FPErrorFlag FPError corresponds to IMS T805 floating-point
error flag

sb.FPInOpFlag FPinvalidOp

sh.FPDivByZeroFlag | FPDivideByZero

sb.FPOvFlag FPOverflow

sb.FPUndFlag FPUnderflow

sb.FPInexFlag FPInexact

Table 10.7 Flags and the error signals that cause them to be set

Error trap enable bits

Various bits within the status register (StatusReg) are reserved as error trap enable bits. (See section
5.2.) Table 10.8 shows which error signals cause a trap to be taken when each of these bits is set.

name error signals
sb.IntOvTeBit IntegerOverflow
sb.UnalignTeBit Unalign
sb.FPErrorTeBit FPError
sb.FPInOpTeBit FPinvalidOp
sbh.FPDivByZeroTeBit | FPDivideByZero
sb.FPOvTeBit FPOverflow
sb.FPUndTeBit FPUnderflow
sb.FPInexTeBit FPInexact

Table 10.8 Error trap enable bits and error signals that cause a trap when bits are set

If a trap for a certain error signal is explicitly disabled, and a trap does not occur for any other reason, then
the instruction completes execution, and a flag is set according to table 10.7 (although there is no flag for
Unalign). If the trap is enabled, a value is presented to the trap-handler or supervisor (in Breg) to indicate
the error that has occurred (see later — table 10.10).

Observe that although two types of integer error have been classified (table 10.6), it is only possible to
selectively enable trapping on the IntegerOverflow error. Usually an integer error is either very serious
(e.g. arange check fails) or is deliberate (e.g. if forced by the causeerror instruction). In these cases the
error cannot be ignored and the option to disable traps is not provided. For the potentially less serious
integer errors such as arithmetic overflow and division by zero, this option is provided with sb.IntOvTeBit.

10 The trap mechanism 119

Effect of error signals

Table 10.9 summarizes the effect of each of the error signals.

error signal extra condition for trap to be taken flags set if trap not taken
IntegerOverflow sb.IntOvTeBit sb.IntOvFlag
IntegerError truet not applicable
Unalign sb.UnalignTeBit none
Ilegalinstruction true’ not applicable
Privinstruction in protected mode none
AccessViolation in protected mode none

FPError sb.FPErrorTeBit sh.FPErrorFlag
FPinvalidOp sb.FPINnOpTeBit sb.FPInOpFlag
FPDivideByZero sb.FPDivByZeroTeBit sb.FPDivByZeroFlag
FPOverflow sbh.FPOvTeBit sb.FPOvFlag
FPUnderflowt sb.FPUndTeBit sb.FPUndFlag
FPInexact sb.FPInexTeBit sh.FPInexFlag

T To comply with the IEEE standard, FPUnderflow is signalled on detection of ‘tininess’ if trapping is enabled, but other-
wise on detection of ‘tininess’ and ‘inexact’. See section 11.2.5.

1 i.e. atrap is always taken when these errors are signalled.

Table 10.9 Effect of signalling errors

When an error is signalled, a trap is taken if the appropriate trap enable bit is set according to table 10.9.
For some signals (viz. IntegerError, lllegallnstruction, Privinstruction, and AccessViolation), there is no
trap enable bit. These signals always cause a trap to occur. Privinstruction and AccessViolation can only
be generated when running under protection.

If an L-process has the null trap-handler, the signalling of integerError, IntegerOverflow or lllegallnstruc-
tion causes the processor to stop*. (Note that there is no equivalent to a null trap-handler when running
a P-process. A trap always returns control to its supervisor.)

Indication of which errors (if any) have caused the trap

When an error causes a process to take a trap, the processor loads a unique value into Breg to indicate
which particular error was the cause. A complete list of the values that may be loaded into Breg, is given
in the first column of table 10.10. The second column of this table gives the symbol for each error. The
third column states the condition that causes each error to occur. The fourth column shows the meaning
of each error.

¥ In this way, the execution of an L-process without a trap-handler is compatible with the execution of process on the IMS T805 in
‘halt-on-error’ mode.

120 T9000 transputer instruction set manual
error type error type symbol condition for trap to occur error meaning
value (hex)
0 (#00) et.NoError any non-error trap reason trap has not been
caused by an error
1 (#01) et.Privinstruction Privinstruction attempt to execute a
(when running under protection) privileged instruction
in protected mode
2 (#02) et.lllegalinstruction Illegalinstruction attempt to execute
illegal instruction
3 (#03) et.Unalign Unalign AND sb.UnalignTeBit address of instruc-
tion operand is not
aligned to the cor-
rect boundary
4 (#04) et.AccessViolation AccessViolation attempt to access a
(when running under protection) memory protected
or non-existent ad-
dress
5 (#05) et.IntegerError IntegerError integer error, not in-
dicated by integer
overflow
6 (#06) et.IntegerOverflow IntegerOverflow AND sb.IntOvTe- |integer overflow or
Bit integer divide-by-
zero
#07) et.FPError FPError AND sb.FPErrorTeBit floating-point error’
8 (#08) et.FPInvalidOp FPinvalidOp AND sb.FPInOpTeBit (IEEE floating-point
AND ‘invalid operation’
(NOT ‘conditions for et.FPError’)
9 (#09) et.FPDivideByZero FPDivideByZero AND IEEE floating-point
sbh.FPDivByZeroTeBit ‘divide by zero’
AND
(NOT ‘conditions for et.FPError’)
10 (#0A) et.FPOverflow FPOverflow AND sb.FPOvTeBit |I|EEE floating-point
AND ‘overflow’
(NOT ‘conditions for et.FPError’)
11 (#0B) et.FPUnderflow FPUnderflow AND sb.FPUndTeBit | IEEE floating-point
AND ‘underflow’
(NOT ‘conditions for et.FPError’)
12 (#0C) |et.FPInexact FPInexact AND sb.FPInexTeBit |IEEE floating-point
AND ‘inexact result’
NOT (‘conditions for et.FPError’ OR
‘conditions for et. FPOverflow’ OR
‘conditions for et.FPUnderflow’)
13 (#0D) |et.MemSemError see below memory semantics
error
T This is not an IEEE exception. See section 11.13 for more details.

Table 10.10 Possible error types as loaded into Breg when a trap is taken

Because of the concurrent nature of instruction execution in the pipeline, it is not always possible for the
processor to instantly determine the exact instruction that has caused an error. The processor may need
to re-execute some of the most recently executed instructions, one atatime. It should be able to reproduce
the same error and thereby take a trap with the correct error type value. This behavior is transparent to

10 The trap mechanism 121

the user. However it is possible that on re-execution, the error does not occur because the same values
have not been read from memory. This is known as a memory semantics error and can only happen if

(i) there is a memory fault, or
(i) a memory location has changed.
The following might cause the latter, but these practices should be avoided.

» Jocations that are used by external channels — The data in locations below MemStart (see section
12.4) may change asynchronously. In particular, the programmer should not attempt to directly
access a virtual link control block or a packet buffer associated with a virtual link while that link
is communicating. If this is attempted then there is no guarantee that two consecutive reads from
such locations will yield the same data, and so a memory semantics error might occur.

« memory mapped device in uncached memory — A memory mapped device should be marked
as ‘device memory’. As explained in section 7.14, this ensures that only device instructions are
used to access a device. A memory semantics error cannot occur when a device instruction is
executed. However, if a normal load instruction is used to read from a device, this might result
in a memory semantics error.

* sharing memory between processors — Care must be taken if using transputers in a shared
memory system. One scheme to ensure that a memory semantics error does not occur, is to
follow the procedure described in section 7.14. However if a program allows a piece of shared
memory to be written by another processor while it is reading from that memory, a memory se-
mantics error might occur.

If the processor detects such a memory semantics violation, it presents the special error type
et.MemSemError to the trap-handler in place of the original error. But note that a memory semantics error
will only occur as a result of the processor attempting and failing to determine the initial error that caused
the trap.

T8-series compatible error handling

For an L-process with a trap-handler data structure, it is possible to detect the same errors that would be
detected on a T8-series transputer. This is ensured by enabling integer overflow trapping, disabling mis-
alignment trapping and all the floating-point traps.

For an L-process with a null trap-handler the error handling is compatible with an IMS T805 in halt-on-error
mode.

Summary

Any error flag can only be set by a unigue error signal (see table 10.7), but note that more than one flag
may be set if more than one signal is raised.

Similarly, when a trap is taken, all error types that may be presented in Breg, are due to a unique error
signal: Inthis case however, when more than one signalis raised concurrently, only one ‘error’ is presented
to the trap-handler or supervisor. If an error is signalled and the corresponding trap enable bit(s) is set,
then a trap is taken. If this is the only signal with its trap enable bit set, then this is the error presented to
the trap-handler or supervisor in Breg. If there is more than one error signal with its trap enable bit set,
then the error type presented in Breg is determined according to the conditions listed in table 10.10. For
a full explanation of the precedence rules, refer to section 11.13.

10.3.3 Null trap causes

Only a subset of the trap causes listed in table 10.2 can cause a trap to occur while a process has a null
trap-handler. More explicitly, it is possible for ‘syscall’, ‘causeerror’, ‘breakpoint’ and ‘error’ traps to be tak-
en, but it is not possible for a ‘watchpoint’ or ‘single-step’ trap to be taken.

122 T9000 transputer instruction set manual

When a process is first installed with a null trap-handler, the status register is set to the ‘default control
word’ (see section 5.2). Hence the only error signals that are initially trapped are IntegerError, IntegerOv-
erflow and lllegallnstruction. A process can however explicitly set the the error trap enable flags using the
stflags instruction. So for example a null trap can be forced when Unalign is signalled. Note that stflags
does not change the values of the single-step and watchpoint trap enable bits, so single-step and watch-
point traps can never occur when a null trap-handler is being used.

Since a null trap causes the processor to halt, it is not possible to determine the trap reason and error type
until the processor is rebooted. This is discussed in the Control system chapter of The T9000 Hardware
Reference Manual.

10.4 Instructions

The instructions listed in this section are relevant to the use of traps.

mnemonic name

syscall system call
causeerror causeerror

tret trap return

goprot go protected

Idth load trap-handler
selth select trap-handler
Idflags load error flags
stflags store error flags

Table 10.11 Instructions used in conjunction with trap-handling
syscall
The user can force control to be transferred to a trap-handler or supervisor by executing syscall.

syscall forces the current process to take a trap. Hence in an L-process it transfers control to the trap-han-
dler (or takes a null trap), and in a P-process it returns control to the supervisor. Unless a null trap is taken
(see section 10.3.3), the reason for the trap is delivered in Areg (see table 10.5) to inform the trap-handler
or supervisor why a trap has been taken. The only trap cause that can occur simultaneously with syscall
is a ‘single-step’ because, if enabled, this occurs after all instructions. The trap reason assigned to Areg
is therefore either t.Scall or t.StepScall. The state is saved as for all traps, and this can be inspected or
manipulated by the trap-handler or supervisor. The error type et.NoError is loaded into Breg. Creg is left
undefined.

Note that when a trap is taken, the integer stack is stored into the THDS or PDS. This enables the execut-
ing process to pass up to three parameters if required.

For more detail on state storage and retrieval, refer to section 10.2.
causeerror

A program can simulate the occurrence of an error with the causeerror instruction. The instruction obtains
the type of error to simulate from the value held in Areg. This value should correspond to one of the error
types given in table 10.10. If it does not, then causeerror signals IntegerError.

causeerror forces the current process to take a trap. Hence in an L-process it returns control to the trap-
handler (or takes a null trap), and in a P-process it returns control to the supervisor. The reason for the
trap is delivered in Areg (see table 10.5) to inform the trap-handler or supervisor why a trap has been tak-
en. The only trap cause that can occur simultaneously with causeerror is a ‘single-step’ because, if en-

10 The trap mechanism 123

abled, this occurs after all instructions. The trap reason assigned to Areg is therefore either t.Cerror or
t.StepCerror. The state is saved as for all traps, and this can be inspected or manipulated by the trap-han-
dler or supervisor. The type of the error being simulated (i.e. the value initially in Areg) is loaded into Breg.
Creg is left undefined.

Note that this instruction forces a trap to be taken regardless of whether trapping has been enabled for
the particular error that is being simulated.

For more detail on state storage and retrieval, refer to section 10.2.
tret

tret is used to return from a trap-handler. If the value stored in Areg is zero then it returns control to the
L-process that has its state stored in the THDS. Otherwise it allows the next process on the scheduling
list to be executed. Before tret is executed, the workspace pointer register field (Wptr) should hold the
address of the THDS (trap-handler data structure) for the current trap-handler. The following paragraphs
describe how tret saves and loads state.

The current state of the trap-handler, including the workspace pointer and the instruction pointer, are not
saved. The trap-handler in use bit (sb.ThinUse) is reset in the th.Cntl slot of the THDS to signify that the
trap-handler is no longer in use. If the THDS has accumulated a local process queue pointed to by the
th.Fptr and th.Bptr slots, then this entire queue is placed on the front of the scheduling list of the appropri-
ate priority (i.e. the same priority as the trap-handler).

If the value held in Areg is non-zero, then the processor terminates the trapped L-process, and starts to
execute the next process on the scheduling list.

If the value in Areg is zero, then the processor reloads the registers with the state saved in the THDS.
The address of the THDS contained in Wptr is copied into the trap-handler register (ThReg). The contents
of the th.sWptr and th.slptr slots of the THDS are copied into Wptr and the instruction pointer register
(IptrReg); and the th.sAreg, th.sBreg and th.sCreg slots are copied into the integer stack registers. The
error, watchpoint, timeslice and single-step trap enable bits, and all error flags are loaded into the status
register, from the th.Cntl slot of the THDS. If the watchpoint trap enable bit (sb.WtchPntEnbl) is set, the
contents of the th.eWI and th.eWu slots are copied into the watchpoint registers (WIReg and WuReg).

tret is a privileged instruction. Prior to executing tret, the trap-handler itself must have a null trap-handler.
If this is not the case (i.e. ThReg holds a value other than NotProcess.p) then the instruction signals /nteg-
erError. If the trap-handler queue is non-empty when tret is executed, then the contents th.Fptr and
th.Bptr slots must be word aligned otherwise the behavior of the instruction is undefined. Note that pro-
vided these slots are initialized correctly, they will always be word aligned unless explicitty manipulated
by the user.

goprot

When goprot is executed, the IMS T9000 begins to execute in protected mode. More detail on this is pro-
vided in section 9.8.

If this instruction triggers a-single-step or watchpoint trap, then it does not start the P-process. The trap
delivers in Areg, one of the trap reasons t.WatchContext, t.StepContext or t.StepWatchContext.

Idth

Idth pushes a copy of the trap-handler pointer (held in the trap-handler register — ThReg) on to the integer
stack. This instruction must be used if the current process needs the address of its THDS. It may, for exam-
ple, be necessary to store this for later use, if a new trap-handler is to be installed (see selth). It is a privi-
leged instruction.)

selth

The selth instruction can be used to change the trap-handler of the current process. Its action is to load
the trap-handler register (ThReg) with the value held in Areg. The current process status and control bits

124 T9000 transputer instruction set manual

are saved in the old trap-handler (THDS) and new values for these bits are loaded from the new trap-han-
dler. This instruction undefines the integer and floating-point stacks. It is privileged, and is a descheduling
point.

If the value currently held in the trap-handler register is the special constant NotProcess.p, which repre-
sents the null trap-handler, then it is not necessary to store any status information. Otherwise the error,
watchpoint, timeslice and single-step trap enable bits, and all error flags in the status register (StatusReg)
are written into the th.Cntl slot of the current trap-handler.

If this instruction triggers a single-step or watchpoint trap, then it does not install the new trap-handler.
The trap delivers in Areg, one of the trap reasons t.WatchContext, t.StepContext or t.StepWatchCon-
text.

Assuming a trap is not taken, the value in Areg is loaded into the trap-handler register. This value is either
the word-aligned address of the THDS for the new trap-handler, or is the special value indicating a null
trap-handler. (If address held in Areg is not word-aligned, then undefined behavior will result.) If the new
trap-handler specified is the null trap-handler then the default control word is loaded into the status regis-
ter. Otherwise, unless the new trap-handler is in use, the trap, watchpoint, timeslice and single-step trap
enable bits, and all flags are loaded into the status register, from the th.Cntl slot of the new THDS. if the
watchpoint trap enable bit (sb.WtchPntEnbl) is set, the contents of the th.eWI and th.eWu slots are
loaded into the watchpoint registers (WIReg and WuReg). If the new trap-handler is currently in use, then
the current instruction pointer (content of iptrReg) and the new value in the trap-handler register are saved
in the pw.Iptr and pw.TrapHandler slots below the local workspace; and the current process is desche-
duled and appended to the queue of that trap-handler.

Note that the state of the old trap-handler is saved into the old control word before the state is loaded from
the new control word. This implies that if Areg specifies the existing trap-handler, the instruction does not
affect the status register. selth can therefore not be used to change the contents of the status register
without changing the trap-handler.

Idflags

The instruction /dflags copies all the error flags and error trap enable bits from the status register
(StatusReg) into the corresponding bit positions in Areg. All other bits in Areg are set to 0. The values
previously held in Areg and Breg are pushed into Breg and Creg respectively. N.B. This instruction only
writes into Areg, the bits listed in tables 10.7 and 10.8 which do not include sb.StepBit and
sb.WtchPntEnbl.

stflags

The action of the stflags instruction is to overwrite the error flags and error trap enable bits in the status
register with the values specified at the corresponding bit positions in Areg. The setting of the other bits
in Areg is ignored. The integer stack is popped one level by this operation, leaving the value Creg unde-
fined. N.B. This instruction only writes into Areg, the bits listed in tables 10.7 and 10.8 which do not include
sbh.StepBit and sb.WtchPntEnbl. Single-stepping and watchpointing can only be enabled by writing to
the trap-handler (or supervisor) control word. (See also chapter 14.)

T When selth is executed, there will never be any processes on the queue of the trap-handler which is being replaced, because the
trap-handler cannot be in use. By definition, it is not being used by the current process, and if any other process were using it, the
current process wouldn’t have been allowed to execute.

1. ‘starts execution’ in this context means installs the L-process as the current process. This may occur either when an L-process
comes to the front of the scheduling list, or when a trapped L-process is restarted.

2. Although this chapter generally discusses process state storage when a trap occurs, the details of state storage are different for
various types of trap —in particular traps caused by errors or floating-point exceptions. These anomalies are thoroughly presented
in section 13.2.2.

11 Floating-point instructions 125

11 Floating-point instructions

11.1 IEEE floating-point arithmetic

Parts of this chapter assume a thorough understanding of the ANSI/IEEE standard 754-1985 —An Ameri-
can national standard for binary floating-point arithmetic. Henceforth, this will be referred to as ‘the IEEE
standard’ or simply ‘the standard’.

In summary, the standard specifies:—
e single and double precision floating-point number formats

= arithmetic operations: add, subtract, multiply, divide, square-root, remainder; and compare op-
erations

¢ conversions between integer and floating-point formats
¢ conversions between different floating-point formats

« floating-point exceptions and the behavior required of an implementation when certain excep-
tional conditions occur

It also states that there should be
» two representations of zero (+0),
* two infinities (4-o0) and

« two types of special symbol — quiet NaNs (not-a-numbers) and signalling NaNs.

11.2 The implementation of IEEE floating-point arithmetic on the IMS T9000

11.21 Formats

The IMS T9000 implements single precision and double precision formats of floating-point numbers as
described in the IEEE standard. It does not implement the extended formats.

Single precision (REAL32) and double precision (REAL64) values are stored in the following formats

‘ s I exp | frac

bit 0

where s is the sign bit, exp is the exponent and frac is the fraction. For single precision, s is 1 bit wide,
exp is 8 bits wide and frac is 23 bits wide. For the double precision, s is 1 bit wide, exp is 11 bits wide and
frac is 52 bits wide. Whenever the exp field is not 0 the actual fraction of the number represented has an
‘implied’ 1 placed on the left of the frac value.

A floating-point value is given by

val | s‘ expl frac (= 1) x Ofrac x 2'-b#, ifexp = O;

l {(— 1)s X 1.frac x 29 ~bias jfexp = O,

where bias is 127 for single precision and 1023 for double precision

11.2.2 Floating-point operations

A floating-point operation is one of the operations described in section 5 of the IEEE standard. All of these
operations are implemented by floating-point instructions described in this chapter.

126 T9000 transputer instruction set manual

The following sets of floating-point instructions implement floating-point operations: the arithmetic instruc-
tions (including fprem and fprange), the comparison instructions, and real to real type conversion instruc-
tions (including fpint, fortoi32 and foadddbsn'). The full list of instructions that implement floating-point
operations is therefore:—

fpadd fpldnladdsn formulby2 foeq for32tor64
fosub foldnladddb fpdivby2 fogt for64tor32
fornul foldnimulsn ~ foexpinc32 foge foint!

fodiv foldnimuldb foexpdec32 folg fortoiz2!
forem fpabs foordered foadddbsn’
forange fosqrt

11.2.3 Exceptions
IEEE exceptions

In accordance with the IEEE standard, there are a number of conditions — referred to as ‘(floating-point)
exceptional conditions’ —that are detected. Detection of each of these conditions causes one of the signals
described in section 10.3.2. These are reproduced in table 11.1.

signal exception for which condition has
been detected

FPinvalidOp |EEE ‘floating-point invalid operation’

FPDivideByZero ||EEE ‘floating-point divide by zero’

FPOverflow |IEEE ‘floating-point overflow’

FPUnderflow IEEE ‘floating-point underflow’

FPIneXact |IEEE ‘floating-point inexact result’

Table 11.1 Signals raised when an IEEE exceptional conditidn is detected
One of two actions is taken as a result of such a detection.

* atrapistaken— Control is transferred to a trap-handler or supervisor which deals with the excep-
tion.

« aflagis set —If the trap is not selected, the appropriate flag is set, and for floating-point instruc-
tions that deliver a floating-point result, that result is defined as follows:for ‘(floating-point) T invalid
operation’ the result is a quiet not-a-number, for a ‘divide by zero’ or a ‘floating-point overflow’
the result is an infinity, and for an ‘underflow’ or an ‘inexact result’ the result is the correctly
rounded value.

Special exceptional condition — FPError

The IMS T9000 provides an additional exceptional condition — FPError. This is signalled when either a
not-a-number or an infinity is used as an operand to a floating-point operation, or when one or more of
the conditions FPInvalidOp, FPOverflow, or FPDivideByZero is detected. This allows the user to make
use of a simpler means of indicating ‘errors’, as discussed in section 11.13.

This chapter does not explicitly list exceptional conditions for each instruction. They are however compre-
hensively listed in appendix A.

11.2.4 Not-a-Number representations (NaNs)

The |EEE standard provides a special category of floating-point ‘value’— namely, a ‘not-a-number’ (abbre-
viated to ‘NaN’). There are two types of NaNs: signalling NaNs and quiet NaNs. They are represented by
floating-point number with its exponent field set to to all ‘1’s and with a non-zero fraction field.

1 ‘floating-point’ will be excluded from now on when referring to the IEEE exceptions, except for ‘floating-point overflow’ which could
be confused with its integer equivalent.

11 Floating-point instructions 127

« signalling NaN

The occurrence of a signalling NaN as the operand of any floating-point operation signals
FPinvalidOp.

The IMS T9000 implements signalling NaNs as having the most significant bit of their fraction
part set to 0.

s quiet NaN

The occurrence of a quiet NaN as an operand to any floating-point operation is not necessarily
an exceptional condition.

The IMS T9000 implements quiet NaNs as having the most significant bit of their fraction part
setto 1.

Where a floating-point dyadic operation is required to return a floating-point value, it has the following be-
havior with regard to Not-a-Number operands. If only one operand is a NaN, then if it is a quiet NaN then
it is returned as the result, whereas if it is a signalling NaN, a quiet version of that NaN is returned. This
ensures that NaNs propagates through expressions. If both operands are NaNs then to meet the IEEE
standard, one must be returned — the IMS T9000 produces results according to the following rules. If both
operands are quiet NaNs, then the result is the NaN in FPAreg. If the operand in FPAreg is a signalling
NaN, then the result is a quiet version of that NaN. Otherwise the result is a quiet version of the NaN in
FPBreg. (See section 11.14 for more detail.)

For every other case where a floating-point operation signals FPInvalidOp and requires a floating-point
result, a unique quiet NaN results if trapping is disabled. In this way if the result of an operation is a Not-a-
Number it is possible to detect what type of error has occurred. (See also section 11.14.)

11.2.5 Implementation of underflow

The IEEE standard defines two criteria for detecting ‘underflow’: ‘tininess’ and ‘loss of accuracy’. For the
‘underflow’ trap to be taken, it is sufficient that ‘tininess’ has been detected. For the ‘underflow’ flag to be
set, both ‘tininess’ and ‘loss of accuracy’ must have been detected.

Section 7.4 of the [EEE standard gives the implementor the choice between detecting tininess before or
after rounding. The IMS T9000 detects tininess after rounding. This applies whether or not the underflow
trap is enabled.

The standard also gives the implementor the choice of detecting loss of accuracy via denormalization loss
or inexact result. The IMS T9000 detects loss of accuracy via inexact result.

11.3 Floating-point stack

In addition to the three deep stack of integer registers — Areg, Breg and Creg (see section 7.1) — the
processor contains a three deep stack of floating-point registers:

FPAreg floating-point stack register A
FPBreg floating-point stack register B
FPCreg floating-point stack register C

Each floating-point register can hold either a single precision or a double precision value® and has a tag
associated with it (stored in the floating-point status register) which signifies the precision of the value it
contains. The floating-point stack behaves in a similar manner to the integer stack. When a value is loaded
in FPAreg the values in FPAreg and FPBreg are pushed down into FPBreg and FPCreg respectively.
When a value is stored from FPAreg, FPBreg is popped into FPAreg and FPCreg into FPBreg.

Manipulation of floating-point stack

The instructions listed in table 11.2 provide direct manipulation of the floating-point stack. They correspond
to the integer instructions rev and dup (see section 7.2), but operate on the floating-point stack as opposed
to the integer stack.

T The single and double precision formats supported are as specified in the IEEE 754 standard.

128 T9000 transputer instruction set manual

mnemonic name
forev floating-point reverse
fpdup floating-point duplicate

Table 11.2 Instructions which are used to directly manipulate the floating-point stack
forev swaps the contents of FPAreg and FPBreg, not affecting FPCreg.

fodup takes a copy of the content of FPAreg and pushes this into the floating-point stack, leaving two iden-
tical values in FPAreg and FPBreg, and the old value of FPBreg in FPCreg.

11.4 Loading and storing floating-point values

This section introduces the instructions that are used to store floating-point values in memory, or to load
values into the floating-point stack. Both single precision and double precision floating-point values are
considered. Single precision format floating-point values are represented in memory within a single ma-
chine word (32-bit). Double precision format floating-point values are represented in memory by two con-
tiguous machine words. The word that contains the sign bit is held at the memory location with the higher
address of the two.

Addresses for loading and storing floating point values are formed on the integer stack, and floating-point
values are transferred between the addressed memory locations and the floating point stack. A ‘floating-

point pointer’ is the address of the location(s) that holds a floating-point number. For a double precision
floating-point number, this is a pointer to the memory location with the lower address of the two.

11.4.1 Loading

The instructions used to load floating-point numbers into the floating-point stack, are shown in table 11.3.

mnemonic name

fpldnisn floating-point load non-local single

fpldnidb floating-point load non-local double
fpldnisni floating-point load non-local indexed single
foldnldbi floating-point load non-local indexed double

Table 11.3 Floating-point load instructions
fpldnisn or fpldnidb respectively load single or double precision floating-point values from memory into the
floating-point stack. These instructions read the floating-point value from the location(s) specified by the
floating-point pointer in Areg. The new floating-point value is pushed onto the floating-point register stack
(see section 11.3). The integer stack is popped to remove the pointer in Areg.

These instructions signal Unalign if the address in Areg is not word-aligned. The double precision load
instructions do not insist that the address is two-word-aligned.

For example to load the content of (Wptr+5) as a single precision value onto the floating-point stack the
instruction sequence below is used.

Idip 5; fpldnisn

The state of the two stacks during this sequence is shown in figure 11.1.

11 Floating-point instructions 129

Areg = a FPAreg = fa (Wptr+5) : X
Breg =b FPBreg = fb
Creg=c FPCreg =fc

Idip 5
Areg = Wptr+5 FPAreg =fa (Wptr+5) : X
Breg=a FPBreg = b
Creg=> FPCreg =fc

foldnisn
Areg =a FPAreg = X (Wptr+5) : X
Breg=b FPBreg =fa
Creg = undefined FPCreg = 1b

Figure 11.1 Stack use in floating-point load
To aid code compactness in loading from arrays, two indexed floating-point loads are provided.

fpldnisni
foldnidbi

wsub; fpldnisn
wsubdb; fpldnidb

The following sequences can be used for loading from component XJe] of a floating-point array X, where
e is an integer expression for the array index.

e; Idip X; fpldnisni — where X is a REAL32 array
e; Idip X; fpldnidbi — where X is a REAL64 array
Loading constants

There is no special instruction for loading an arbitrary constant into the floating-point stack. A constant
must be in memory, prior to loading into the stack. This is most conveniently achieved by forming a pointer
into a table of constants.

Since 0.0 is a common constant, two instructions fpldzerosn and fpldzerodb (shown in table 11.4) are pro-
vided to load single and double precision 0.0.

mnemonic name
foldzerosn load zero single
foldzerodb load zero double

Table 11.4 Instructions for loading floating-point zero

11.4.2 Storing

The instructions used to store floating-point numbers in memory, are shown in table 11.5.

mnemonic name
fpstnlsn floating-point store non-local single
fpstnidb floating-point store non-local double

Table 11.5 Floating-point store instructions

fpstnlén or fpstnidb respectively save single or double precision floating-point values into memory from
the floating-point stack. These instructions store the floating-point value held in FPAreg into the location(s)

130 T9000 transputer instruction set manual

specified by the floating-point pointer in Areg. Both integer and floating-point stacks are popped to remove
the data that has just been used.

These instructions signal Unalign if the address in Areg is not word-aligned. The double precision store
instructions store onto any word boundary.

The compiler is expected to ensure that single precision data is stored with a fostn/sn and double precision
with a fpstnidb. The processor makes no check on the correctness of the precision, and the behavior of
mismatched stores is undefined — the compiler should prevent this from happening.

The following instruction sequence stores the double precision value in FPAreg to the word address
(Wptr+7) — N.B. the double word value is stored in (Wptr+7) and (Wptr+8).

Idip 7; fostnidb

The state of the two stacks during this sequence is shown in figure 11.2.

Areg = a FPAreg= fa (Wptr+7) : x
Breg = b FPBreg= 1b (Wptr+8) : y
Creg= ¢ FPCreg= fc
idip 7
Areg = Wptr+7 FPAreg= fa (Wptr+7) : x
Breg= a FPBreg= fb (Wptr+8) - y
Creg= b FPCreg= fc
fostnidb
Areg= a FPAreg= 1 (Wptr+7) : lower 32 bits of fa
Breg = b FPBreg= fc (Wptr+8) : top 32 bits of fa
Creg = undefined FPCreg = undefined

Figure 11.2 State of stacks in floating-point store

Storing to arrays is similar to loading from arrays except that there are no store indexed instructions. The
following sequences can be used for storing to component Xfe] of a floating-point array X.

e; ldip X; wsub; fpstnisn — where X is a REAL32 array

e; ldip X; wsubdb; fostnidb — where X is a REAL64 array

11.5 Compiling floating-point expressions

Compilation of expressions to be evaluated on the floating-point stack can be done in much the same way
as for integer expressions.

A compiler loads a variable, X, by loading into the floating-point stack, the memory address allocated to
that variable

address2(X); foldnisn — for single precision X
address(X); foldnldb — for double precision X

A compiler best loads floating-point constants by arranging all constants in a table. The folldwing code
loads a constant C that is positioned at offset Constantc from the a table with base address Constants.

Idip Constants; Idnip Constantc; foldnisn — for single precision
ldlp Constants; ldnip Constantc; fpldnidb — for double precision

11 Floating-point instructions 131

N.B. As for the integer table of constants (described in section 7.3.2), this table and the floating-point
constants within it must be word-aligned.

An expression e7 op e2 is evaluated as shown in the algorithm in section 7.3, but the following sequences
are replaced.

rev becomes fprev
stl temp becomes Idip temp; fpstnl
Idl temp becomes Idip temp; fpldnl

where fpstnl and fpldni here stand for either the single or double precision load or store instruction depend-
ing on the type of the value being placed in a temporary variable.

When FPAreg and FPBreg need to be loaded with specific values — e.g. for a comparison — then code
sequences similar to those given in the section on loading integer operands can be used (section 7.3.1).

11.6 Floating-point rounding mode

When an operation yields a floating-point result, this result is by default rounded to the nearest represent-
able value to the exact result (Round-to-nearest). The IEEE standard does however provide three other
rounding modes. The IMS T9000 provides instructions to set the mode for execution of the subsequent
instruction.

mnemonic name

forn set rounding mode to round nearest
forz set rounding mode to round zero
forp set rounding mode to round plus
form set rounding mode to round minus

Table 11.6 Rounding mode setting instructions

The floating-point rounding mode is reset to Round-to-nearest at the end of all other floating-point instruc-
tions (except fpidall). To use any other rounding mode, one of the set rounding instructions listed in table
11.6 should be executed before the floating-point operation. These explicitly set the rounding mode. If
there is no explicit selection of a rounding mode then the mode is Round-to-nearest.

Round-to-zero mode provides truncation, while the Round-to-plus-infinity and Round-to-minus-infinity
modes have their uses in interval arithmetic and elsewhere.
11.7 Floating-point arithmetic instructions

Floating-point expression evaluation is performed using the floating-point stack. This section introduces
instructions that are used for

¢ dyadic floating-point arithmetic — arithmetic instructions with two floating-point operands

¢ monadic floating-point arithmetic — arithmetic instructions with one floating-point operand

11.7.1 Dyadic operations

mnemonic name

fpadd floating-point add
fosub floating-point subtract
fomul floating-point mulitiply
fodiv floating-point divide
forem floating-point remainder

Table 11.7 Arithmetic instructions with two floating-point operands

132 T9000 transputer instruction set manual

The dyadic floating-point arithmetic instructions are listed in table 11.7. These instructions evaluate
FPBreg op FPAreg leaving the result in FPAreg, and popping FPCreg into FPBreg like the integer arith-
metic instructions. (Refer also to section 11.7.2 which describes some multiply and divide instructions that
have one user specified operand and one implicit operand.)

The same instructions are used for single and double precision arithmetic instructions. The arithmetic
instructions return the result as defined by the IEEE 754 standard. They assume both operands are of
the same format — if not the result is undefined. For each instruction the destination (result) of the opera-
tion is the same format as its operands.

For a full discussion of forem and the associated instruction fprange, refer to section 11.8.

Load and operate instructions

mnemonic name

fpldnladdsn floating-point load non-local and add single
foldnladddb floating-point load non-local and add double
fpldnimulsn floating-point load non-local and multiply single
foldnimuldb floating-point load non-local and multiply double

Table 11.8 Floating-point load and operate instructions

To make the floating-point code more compact some common pairs of instructions can be replaced with
a single instruction. The load and operate instructions shown in table 11.8 are equivalent to the instruction
pairings shown below. These are the four instructions with the greatest effect on the size of code.

(fprx); fpldniaddsn
(fprx); fpldniadddb
(forx); foldnimulsn
(fprx); foldnimuldb

foldnisn; (fprx); fpadd
foldnldb; (fprx); fpadd
foldnlsn; (fprx); fomul
foldnldb; (fprx); fomul

where the optional instruction ‘fprx’ is one of the rounding mode instructions explained in section 11.6.

Prior to executing any of these instructions, the first operand has already been loaded onto the floating-
point stack. Therefore the floating-point data being loaded must have the same precision as the data in
FPAreg. Otherwise the operation is undefined. That is FPAreg must contain singte precision data prior
to execution of fpldnladdsn and fpldnimulsn, and must contain double precision data prior to execution
of fpldnladddb and fpldnimuldb.

11.7.2 Monadic operations

mnemonic name
fomulby2 floating-point multiply by 2
fodivby2 floating-point divide by 2

foexpinc32 floating-point multiply by 232
foexpdec32 | floating-point divide by 232
foabs floating-point absolute value
fosqrt floating-point square root

Table 11.9 Arithmetic instructions with one fioating-point operand

The monadic fioating-point arithmetic instructions are listed in table 11.9. These instructions take the value
of the operand from FPAreg and load the result into FPAreg, overwriting the operand value. The other
floating-point stack registers are unaffected.

11 Floating-point instructions 133

Multiplying and dividing by special values

Multiplication and division by 2.0 are common. Two instructions fomulby2 and fpdivby2 perform these op-
erations. These are considerably faster than loading 2.0 and doing an fomul or fpdiv as they operate direct-
ly on the data in FPAreg.

Similarly multiplication and division by 232 are provided by fpexpinc32 and foexpdec32 mainly for use in
the conversion routines.

Sign bit manipulation

fpabs replaces FPAreg with its absolute value. i.e. it makes the sign bit positive, except when the operand
is a NaN. For a NaN, the sign bit is left unaltered.

Square root instruction

This section and section 11.8 use tables to document the effect of instructions in terms of signals and re-
sults for various operand values. The symbol ‘NaN’ in the ‘operand conditions’ column means either a quiet
NaN or a signalling NaN. The meaning of ‘finite_num’ is any floating-point value that is not zero, = infinity
or NaN, while the meaning of any means literally any possible bit pattern. Where ‘finite_num’ or O are speci-
fied without a sign in the ‘operand conditions’ column, this means that the condition includes both positive
and negative values. Where no sign is included in the ‘result’ column, the result is the same sign as the
first (or only) operand in the ‘operand conditions’ column. Where there can be no meaningful result for the
operation, the processor generates a quiet NaN. A full list of NaNs that the processor may produce is
shown in table 11.29.

fpsqrt takes the a single floating-point operand and calculates the square root of this value. The result and
signals raised are shown in table 11.10.

operand conditions signals result (square root)
SQRT FPAreg

SQRT(NaN) as detailed in section 11.14 as detailed in section 11.14
SQRT(—) FPinvalidOp, FPError NegSgrtNaN
SQRT(+) FPError + 0
SQRT(-0) none -0
SQRT(+0) none +0
SQRT(—finite_num) FPinvalidOp, FPError NegSqrtNaN
SQRT(+finite_num) none’ SQRTgge(+finite_num)
t FPInexact may be signalled

Table 11.10 Signals raised and result of fpsqrt instruction

11.8 Remainder and range instructions

This section gives a detailed treatment of the dyadic operation fprem (already introduced in section 11.7.1)
and the associated instruction fprange (table 11.11).

mnemonic name
forem floating-point remainder
fprange floating-point range reduce

Table 11.11 Floating-point remainder and range reduction instructions

134 T9000 transputer instruction set manual

forem
The operation REM as as defined in the IEEE 754-1985.

The instruction forem calculates the remainder when evaluating the integer quotient of FPBreg divided
by FPAreg. The result is loaded into FPAreg. The value of FPCreg is popped into FPBreg and FPCreg
is left undefined by this instruction. The operands must either both be single precision or both be double
precision floating-point numbers, otherwise the result is undefined. The integer stack is unaffected.

The instruction is interruptible. Floating-point exceptional conditions are signalled according to table
11.12. The result of REM is always exact.

operand conditions signals result (remainder)
FPBreg REM FPAreg
NaN REM any as detailed in as detailed in section 11.14
any REM NaN section 11.14
OREMO 1| FPinvalidOp, RemainderByZeroNaN
finite_num REM 0 | FPError
+ © REM 0O 1| FPinvalidOp, RemainderFrominfNaN
=+ oo REM finite_num | FPError
+ © REM £ «]
+0REM £ » FPError 0
finite_num REM = o FPError » finite_num
finite_num; REM finite_num, FPUnderflow! not applicable’
(if underflow occurs)
finite_numy REM finite_num, none finite_numy REMggg finite_nums
(no underflow)
T As the result cannot be ‘inexact’, REM cannot underflow unless a trap is taken. The condition is therefore only applicable if the
‘underflow’ trap is enabled. See also section 11.13.2.

Table 11.12 Signals raised and result of forem instruction
fprange
The instruction fprange is similar to fprem, but has two essential differences:—

* In addition to calculating the remainder, it produces the integer quotient result (in floating-point
format).

« It has a limited range of operation. The integer quotient must be less than or equal to 2241 for
single precision arithmetic, or less or equal to than 253—1 for double precision.

forange takes the top two floating-point operands on the floating-point stack and calculates the integer
quotient and remainder when dividing the value in FPBreg by the value in FPAreg. The quotient is loaded
into FPBreg and the remainder is loaded into FPAreg. Because the quotient is given by this instruction,
it is suitable for use in range reduction (for example in trigonometric functions). The operands must be
of the same precision, otherwise the result is undefined. FPCreg and the integer stack are unaffected by
this instruction.

Note that whereas forem is interruptible, this instruction is not. This is because the maximum execution
time for fprange is much shorter than forem. Floating-point exceptional conditions are signalled as shown
in table 11.13.

T In summary, when y = 0, the remainder r = x REM y is defined by

r=x—yXn
where n is the nearest integer to the exact value x/y.

11 Floating-point instructions 135
operand conditions signals result result
FPBreg RANGE FPAreg (remainder) (integer quo-
tient)
NaN RANGE any as detailed in as detailed in sec- undefined
any RANGE NaN section 11.14 tion 11.14
-0 RANGE 0 1| FPInvalidOp, RemainderByZero- undefined
finite_num RANGE 0] FPError NaN
+ o RANGE 0 1| FPinvalidOp, RemainderFrominf- undefined
+ o RANGE finite_num | FPError NaN
+ o RANGE &+ =]
-0 RANGE - FPError -0 +0
—0 RANGE +® FPError -0 -0
+0 RANGE - FPError +0 -0
+0 RANGE +o FPError +0 +0
—finite_num RANGE - FPError —finite_num +0
—finite_num RANGE +® FPError —finite_num -0
+finite_num RANGE - FPError +finite_num -0
+finite_num RANGE + FPError +finite_num +0
finite_num; RANGE finite_num, FPUnderflow’ not applicable’ not applicable’
(if underfiow occurs)
finite_numy RANGE finite_nums FPInvalidOp, RangeQuotError- undefined
(integer quotient not in range of FPError NaN
destination)
finite_numy RANGE finite_num, none finite_numy finite_numy
(no underflow and integer REMieee INT_DIV¢
quotient within range of destination) finite_numo finite_nums
T As the results cannot be ‘inexact’, RANGE cannot underflow unless a trap is taken. The condition is therefore only applicable if
the ‘underflow’ trap is enabled.
} floating-point representation of the nearest integer to the exact value of finite_numj /finite_num, — if the exact value is equidistant
from two integers, then the even integer is chosen

Table 11.13 Signals raised and result of fprange instruction
As an example of the use of the fprange instruction, consider the following.
example — use of fprange for range reduction

An occam implementation of sine where SINEPRIM is a function that evaluates sines over [, n] could
be

REAL32 FUNCTION SINE(VAL REAL32 X)
VAL REAL32 Two.Pi IS 6.283185307 (REAL32):
REAL32 Reduced.X:
VALOF
Reduced.X := X REM Two.Pi
RESULT SINEPRIM(Reduced.X)

However in practice the value of 2xt that would be used (Two.Pi) would not be exact. As the quotient (X
REM Two.Pi) increased this error in 2 would be reflected in an increasingly large error in Reduced. X —
i.e. the value used in the primary range calculation would become inaccurate. Suppose in this example
that the value nrga 32 is used to derive Two.Pi where

136 T9000 transputer instruction set manual

TREAL32 =T+ €
then the reduced range of X evaluates to
Reduced. X=X-m X Two.Pi
=X-m X 2 X nggas2
=X-2m X (m+¢)
=(X-2m X w)—2m X ¢
So the Reduced.X calculated consists of the true reduced argument plus the error term -2m Xe. Asm
is INT%) this error grows unacceptably large as X grows — for example at X = 100x the error is 6 bits.
To get around this problem an approximation to this error can be added back to the remainder by multiply-
ing an approximation of & byINT(%)n. In effect this is using a value of & with twice as many significant bits
as the format provides.
This error correction is needed in all the standard functions so support for it is useful. When calculating
aremainder the quotientis also being developed so the fprange instruction returns the quotient in FPBreg.
If Xis very much larger than Y'then INT(’l—,‘) cannot be exactly represented in the floating-point format. Suffi-

cient conditions for FPBreg to contain the quotient after the remainder are that (X.exp — Y.exp) is less than
23 for single precision and 52 for double precision values. If this is the case then a fast and accurate range

reduction of X into | - 1Y, 1Y]can be implemented by

address(X); foldnisn; — load X into floating-point stack
address(Y); foldnisn; — load Y into floating-point stack
forange; fprev; — execute ‘range’ operation and reverse
— order of ‘quotient’ and ‘remainder’ in stack
address(Y.error); fpldnisn; — load Y.error (the known error in Y due to loss
— of precision) into floating-point stack
fomul; fpadd; — calculated (X REM Y) + Y.error X (X/Y)
address(Y); foldnisn; forem — perform an extra REM Y (see below)

The final fporem is required because after adding the error term the result may possibly lie just outside the
range [— %Y %Y] If Y has last bit accuracy then this can be corrected by taking the remainder by Y. In
this sequence, since the proximity of the first operand can be guaranteed, fprem executes very quickly.

Note that both fprem and fprange can only signal FPUnderflow if the ‘underflow’ trap is enabled. This is
because although they can produce a tiny non-zero result, it is not possible for either of these operations
to lose precision. For the ‘underflow’ flag to be set, precision must have been lost. Whereas for an ‘under-
flow’ trap to be taken, it is sufficient for the result be tiny and non-zero.

11.9 Comparisons

11.9.1 Comparison instructions
The IMS T9000 provides the comparison instructions shown in table 11.14.

fogt, foge, foeq and fplg perform (FPBreg comp FPAreg). fpordered tests if FPAreg and FPBreg can be
‘ordered’ in the IEEE sense.

mnemonic name

fpeq floating-point equality

fogt floating-point greater than

foge floating-point greater than or equals
fplg floating-point less than or greater than
foordered floating-point orderability

Table 11.14 Floating-point comparison instructions

11 Floating-point instructions 137

Each instruction implements a comparison of two operands. The left hand operand is taken from FPBreg
and the right hand operand is taken from FPAreg. The two operands are popped from the floating-point
stack in all the comparison instructions except fpordered for which the floating-point stack is unaffected
by execution. The operands must be of the same precision, otherwise the result is undefined. Every com-
parison instruction returns a boolean result, which is pushed onto the integer stack.

ey«

The instructions: fpeq, fpgt, fpge and fplg implement the IEEE comparison operations ‘=, *>’, ‘>="and ‘<>’
respectively. If one or both of the operands is a NaN, then the result is false. When neither operand is a
NaN, the result of these instructions is as would be expected from the following predicate.

— < —finite_num < -0 = +0 < +finite_num < + o

foordered implements the IEEE ‘NOT(?)’ operation, where *?" is the |IEEE ‘unordered’ relation. A relation
is ordered provided that both operands are numeric floating-point values. foordered therefore always eval-
uates to true provided neither operand is a NaN. This instruction can be used to filter out the case where
the result of another comparison instruction is false because of a NaN operand. It does not pop the floating-
point stack.

Table 11.15 summarizes the results of these instructions. The relationship between any two floating-point
numbers is one and only one of the four relations shown in the table: ‘greater than’, ‘less than’, ‘equal’ or
‘unordered’. That is, these relations are mutually exclusive. The table shows the result returned by each
comparison instruction for each of these relations. For example if the number in FPBreg is ‘less than’ the
number in FPAreg, then fpeq, fogt and fpge return false in Areg, whereas fplg and fpordered return true.

i . IEEE relations
instruction . s
ad hoc greater than | less than equal unordered

foeq = false false true false
fogt > true false false false
foge >= true false true false
folg <> true frue false false
foordered NOT(?) true true true false

Table 11.15 Results of comparison instructions for all possible relations

The conditions for which these instructions raise signals are shown in table 11.16.

instruction signal raised if either signal raised if either signal raised if either
operand is a signalling operand is a quiet NaN operand is an infinity
NaN but neither operand is a | but neither operand is a
signalling NaN NaN

foeq FPinvalidOp, FPError FPError
FPError

fogt FPinvalidOp, FPinvalidOp, FPError
FPError FPError

foge FPinvalidOp, FPinvalidOp, FPError
FPError FPError

folg FPinvalidOp, FPinvalidOp, FPError
FPError FPError

fpordered FPinvalidOp, FPError FPError
FPError

Table 11.16 Signals raised by comparison instructions, for various operand conditions

11.9.2

Implementation of IEEE comparisons

The five instructions described in section 11.9.1, are provided as primitives for building comparison opera-
tions. The comparisons given in the IEEE standard can be constructed from these instructions. This is

138 T9000 transputer instruction set manual

shown in table 11.17. For the code sequences in this table, the following shorthand is used for loading a
floating-point number into the floating-point register.

fld(X, Y) is defined as ‘load X into FPBreg and load Y into FPAreg using suitable
instructions as described elsewhere’

IEEE ad_hoc > |< |=|? | FPInvalidOp |code sequence
comparison
A > B |T|F|F|F yes fld(A, B); fpgt
NOTA > B) |F(T(T|T yes fld(A, B); fogt; eqc 0
A >= B |T|F|T|F yes fld(A, B); foge
NOT(A >= B) |F|T|F|T yes fld(A, B); foge; eqc 0
A < B FIT|F|F yes fld(B, A); fogt
NOTA < B) |T|F|T|T yes fld(B, A), fogt; eqc O
A <= B FI{T|T|F yes fld(B, A); foge
NOT(A <= B) |T|F|F|T yes fld(B, A); foge; eqc 0
A < B |T|T|F|F yes fld(A, B); folg
NOT(A <> B) [F(F|T|T yes fld(A, B); fplg; eqc 0
A <=> B |[T|T|T|F yes fid(A, B); foordered:; fogt; ort
NOT(A <=> B) |F|F|F|T yes fld(A, B); foordered; fpgt; or; eqc ot
A 2?2 B |[F|F|F|T no fid(A, B); foordered; eqc 0F
NOTA ? B) |T{T|TIF no fid(A, B); foordered:
A ?27<> B |T|T|F|T no fld(A, B), freq; eqc 0
A = B |[F|F|T|F no fld(A, B); foeq
A 7> B |T|F|F|T no fld(B, A); fpordered; ¢j end; foge;
end: eqc 0’
NOTAA ?> B) |FIT|T|F no fld(B, A); fpordered; cj end; fpge;
end: <next_instr>
A ?7>= B |T|F|T|T no fld(B, A); fpordered; cf end; fogt;
end: eqc ot
NOT(A ?>= B) |[F|T|F|F no fld(B, A); foordered; cj end; fpgt;
end: <next_instr>
A ?2%< B FIT|F|T no fld(A, B); foordered; cj end; fpge;
end: egcO'
NOT(A ?< B) |T|F|T|F no fld(A, B); fpordered; cj end; foge;
end: <next_instr>
A 7<= B F(T|T|T no fid(A, B); fpordered; cf end; fogt;
end: eqc ot
NOT(A 7<= B) [T|F|F|F no fld(A, B); fpordered; cj end; fpgt;
end: <next_instr>
A 7= B F{F|T|T no fld(A, B); fpordered; eqc 0; fpeq; or
NOT(A ?= B) (T|T|F|F no fld(A, B); fpordered; fpeq; eqc 0; and
T leaves two values on the floating-point stack
1 fogt forces FPInvalidOp to be signalled for unordered
T leaves two values on the floating-point stack only if the predicate is ‘unordered’

Table 11.17 * Code sequences that should be used to implement IEEE comparisons

11 Floating-point instructions 139

N.B. Remember (section 11.9.1) that either X and Y must both be single precision, or they must both be
double precision. Otherwise the behavior of the comparison instructions is undefined.

11.9.3 Some anomalies

It is important when using the comparison instructions, that the user fully understands which instructions
to use for the correct treatment of NaNs.

If all NaNs are to be treated as errors, then it does not matter what result is returned from an ‘unordered’
relation —e.g.

(A>B) is equivalent to NOT(B>=A)] only if not considering
(A>=B) is equivalent to NOT(B > A) [result for a NaN operand
(A=B) is equivalent to NOT(A<>B) |

In this case the code can use either fogt or foge (with or without a logical inversion as appropriate) for any
of the comparisons: >’, ‘<=", ‘<’ and ‘>="; and can use either fpeq or fplg (with or without a logical inversion
as appropriate) for the comparisons: ‘=" and ‘<>’.

However, often the above rules do not apply, since if either operand is a NaN, the result should be false
for the comparisons: '=', ‘<>’, >’, ‘<=', '<’and >="—e.g.

(A>B) is not equivalentto NOT(B>=A) | in the general case where

(A >=B) is not equivalentto NOT(B > A) | NaN operands are considered

(A=B) is not equivalentto NOT(A<>B) |

For this reason it is essential to make the correct choice of instructions for these comparisons — i.e. as
shown in table 11.17.

Furthermore when implementing the IEEE comparisons that test for ‘unordered’ (those that have “?’ in
table 11.17), FPInvalidOp should not be signalled (unless one of the operands is a signalling NaN). The
instructions fpgt, foge and fplg signal FPInvalidOp when one of the operands is a quiet NaN, and so execu-
tion of these instructions should be avoided for these comparisons if the relation is unordered — e.g.

(A>B) is not equivalentto NOT(B ?7>= A)
(A>=B) is not equivalentto NOT(B 7> A)

If in any doubt, use the sequences recommended in table 11.17.

11.10 Class analysis

mnemonic name
fonan floating-point NaN
fonoffinite floating-point not finite

Table 11.18 Class analysis instructions

The instructions shown in table 11.18 are provided to allow a rudimentary check to be made on the class
ofthe value held in FPAreg. They push a boolean value into Areg and do not affect the floating-point stack.

fonan tests to see if FPAreg is a Not-a-Number and fpnotfinite tests to see if FPAreg is not finite —i.e.
is a Not-a-Number or an infinity.
11.11 Type conversion

The transputer has facilities to enable conversions between the integer types (represented by single word
and double word formats) and the floating-point types (represented by single precision and double preci-

140 T9000 transputer instruction set manual

sion formats). Several instructions are provided to perform the component parts of the various conver-
sions. Each conversion can be constructed by using a suitable sequence of these components.

11.11.1 REAL to REAL conversions

mnemonic name
for32tor64 floating-point REAL32 to REAL64
for64tor32 floating-point REAL64 to REAL32

Table 11.19 Real to real conversion instructions

The two instructions fpr32tor64 and fpré4tor32 (table 11.19) convert the floating-point value in FPAreg
from one floating-point format to the other. fpr32tor64 is an exact conversion involving no rounding.
for64tor32 rounds during the conversion so a set rounding mode instruction must precede it if a rounding
mode other than Round-to-nearest is required.

The behavior of these instructions is undefined if FPAreg does not initially hold the correct precision float-
ing-point data — i.e. for fpr32tor64 it must hold a single precision value, and for fpr64tor32 it must hold a
double precision value.

An infinity is represented in the IEEE standard by a floating-point number with maximum exponent but
zero fraction. A Not-a-Number has a maximum exponent but a non-zero fraction. When converting from
one format to the other, infinities are preserved. When a Not-a-Number is converted from single precision
(REAL32) to double precision (REAL64), it is converted to a quiet NaN (if it isn't already quiet). When a
double precision NaN is converted to single precision, it always becomes R64ToR32NaN, which is itself
a quiet NaN. (See section 11.14 for full details).

11.11.2 REAL to INT conversions

mnemonic name

fpint round to floating integer

fochki32 floating-point check in range of INT32
fochki64 floating-point check INT64

fprtoi32 REAL to INT32

fpstnli32 floating-point store non-local INT32

Table 11.20 Real to integer conversion instructions

fpint converts a floating-point number to an integer value in the same floating-point format. This is the
‘Round Floating-Point Number to Integer Value’ function specified by the IEEE standard. It takes the value
in FPAreg and rounds it, according to the current rounding mode, to an integer value. If a rounding mode
other than Round-to-nearest is required for the conversion then this instruction should be preceded im-
mediately by the mode selection instruction. For example if FPAreg contained 345.678 then after

forz; fpint
FPAreg would contain 345.0.

fochki32 and fpchki64 check that the floating-point value in FPAreg (regardless of precision) lies in the
range of the relevant integer type. If the value lies outside the range then FPInvalidOp and FPError are
signalled.

To aid code compactness the most common floating-point to single word integer case

fpint; fpchki32

11 Floating-point instructions 141

can be replaced with the single instruction
fprtoi32

fpstnli32 firstly converts the floating-point number in FPAreg to an integer value, rounding towards —c.
It then converts the number to a 64-bit twos-complement integer, and stores the least significant 32-bits
of this integer in the location pointed to by Areg.

The behavior of this instruction is only defined if FPAreg contains a floating-point number, the integer part
of which lies within the range of a 64-bit integer. Note that this excludes infinities and NaNs.

Code sequences for the conversions to integer from floating-point are shown below. Note that rounding
to an integer must be performed by fpint (or fortoi32) as described above prior to applying the rest of the
conversion sequence.

« floating-point variable (fp) to single word integer, Round-to-nearest mode, error checked, storing
the result in X:

address3(fp); foldnl™; fortoi32; address(X); fostnli32

» floating-point variable (fp) to doubie word integer, truncated (Round-to-zero mode), unchecked,
storing the result in Y:

address(fp); foldnl; forz; fpint; fpdup; address(Y); dup; fostnli32; Idnip 1; fpexpdec32; fpstnli32

In this sequence, the floating-point number is duplicated using fpdup. The first copy of the num-
ber is used to convert the less significant part of the number. The second copy of the number
divided by 232 using foexpdec32 prior to conversion in order to yield the more significant part of
the number.

11.11.3 INT to REAL conversions

mnemonic name

pi32tor64 INT32 to REAL6G4

fpi32tor32 INT32 to REAL32

fpb32tor64 BIT32 to REAL64

fpadddbsn floating-point add double producing single

Table 11.21 Integer to real conversion instructions

The various integer to real type conversions can be provided by code sequences using the instructions
listed in table 11.21. The following describes each instruction and provides suggested sequences for these
conversions. Each sequence should be followed by code to store the converted value into its destination
if necessary. Where required the rounding mode for the conversion can be set.

Single word integer to double precision floating-point

fpi32tor64 takes the single word integer value from the address contained in Areg and converts this to
a double precision floating-point number in FPAreg. This is an exact conversion (i.e. no rounding is re-
quired).

For example a single word integer (int32) is converted to a double precision floating-point number by
address4(int32); fpi32tor64
Single word integer to single precision floating-point

The sequence
T foldnl is defined on page 131

142 T9000 transputer instruction set manual

fpi32tor64; (fprx); for64tor32

where the optional instruction ‘fprx’ is one of the rounding mode instructions explained in section 11.6,
converts a single word integer to a single precision floating-point number. But this can be replaced by the
shorter equivalent sequence

(fprx); fpi32tor32

fpi32tor32 takes the single word integer value from the address contained in Areg and converts this
(rounding if necessary) to a single precision floating-point number in FPAreg. This is preceded by a round
mode selection instruction if a rounding mode other than Round-to-nearest is required.

For example a single word integer (inf32) is converted to a single precision floating-point number in Round-
to-zero mode by the sequence

address2(int32); forz; fpi32tor32
Double word integer to double precision floating-point

A conversion from double word integer to double precision floating-point is performed by converting each
word of the double word integer to double precision and adding them together. The more significant word
is converted to floating-point by fpi32tor64 and the less significant word by fpb32tor64.

fob32tor64 takes the unsigned 32 bit value from the address contained in Areg and converts this to a
double precision floating-point number of the same value in FPAreg. This is an exact conversion.

Hence the following instruction sequence converts from double word integer (int64) to double precision
floating-point using Round-to-nearest mode.

address2(int64); dup; fob32tor64; Idnlp 1; foi32tor64; foexpinc32; foadd

Here, firstly the less significant word of the double word integer is converted by fpb32for64 as an unsigned
integer to double precision floating-point format. Secondly the more significant word is converted by
fpi32tor64 as a signed integer, and then muitiplied by 232. The two results are summed to give the double
precision representation. This last action may cause the result to be rounded.

Double word integer to single precision floating-point

fpadddbsn adds two double precision floating-point numbers in FPAreg and FPBreg to produce a correct-
ly rounded single precision value in FPAreg. FPCreg is popped into FPBreg leaving FPCreg undefined.
This should be preceded by a round mode selection instruction if a rounding mode other than Round-to-
nearest is required.

Both operands must be double precision, otherwise the result is undefined. FPInvalidOp is caused by sig-
nalling NaNs and adding infinities of opposite sign. If either operand is a NaN then the result is
R64ToR32NaN.

For example, using the following sequence, a double word integer (int64) is converted to a single precision
floating-point number in Round-to-minus-infinity mode.

address2(int64); dup; fob32tor64; Idnip 1, foi32tor64; foexpinc32; form; foadddbsn

The user may instead be tempted here to use the same conversion sequence as that described for conver-
sion from double integer to double floating-point, followed by an fpré4tor32 instruction. This would not be
accurate since rounding would occur after both fpadd and fpr64tor32; the fpadddbsn removes this double
rounding.

In the conversions from double word integer, the round mode selection takes place immediately before
the results from converting the two halves of the double word integer are added together as the sub-con-
versions from integer to floating-point are exact.

11 Floating-point instructions 143

11.12 Floating-point state

The floating-point state comprises the content of the floating-point stack, and the floating-point status
word. The latter, which contains rounding mode and precision information, is discussed below, as are the
effects of descheduling, interrupting, and trapping on the floating-point state, and the instructions that can
be used to store and load this state.

11.12.1 Floating-point status word

The currently executing process has a floating-point status word associated with it. This is stored within
the floating-point status register (FPstatusReg). Its format is shown in table 11.22. This shows that four
pieces of information are stored in this word: the floating-point rounding mode, and the type of floating-
point value stored in each floating-point stack register.

field (bit numbers) meaning

01 rounding mode

2-3 type of floating-point value in FPAreg
4-5 type of floating-point value in FPBreg
6-7 : type of floating-point value in FPCreg
8 to 31 reserved — read and write as zeros

Table 11.22 The format of the floating-point status word

The rounding mode may be one of the four modes specified by IEEE 754. This is encoded into a two bit
field and the binary value for each mode is shown in table 11.23. Although the rounding mode is reset after
execution of every instruction (section 11.6), the mode needs to be stored as part of the shadow state
when an instruction is interrupted.

value |meaning
0 IEEE round zero

1 |IEEE nearest
2 |IEEE round + infinity
3 IEEE round — infinity

Table 11.23 The floating-point rounding mode field values

The format of the floating-point value stored in any of the floating-point stack registers, can be single preci-
sion or double precision. This information is represented as shown in table 11.24.

value | meaning

0 single precision — IEEE format 32-bit floating-point number
1 double precision — IEEE format 64-bit floating-point number
2 reserved
3 reserved

Table 11.24 The floating-point type field values

11.12.2 Saving the floating-point state
Timeslicing and descheduling

In the same manner that information must not be left on the integer stack when a process may be desche-
duled, care must be taken with the floating-point stack.

144 T9000 transputer instruction set manual

The floating-point registers are not saved when a process is descheduled. This is the same as for the inte-
ger registers. To take account of this a compiler must ensure that at all descheduling points, there is no
information being stored on the floating-point stack. Any data that is needed later must be stored in tempo-
rary variables.

When a process is scheduled it can make no assumptions about the contents of the floating-point regis-
ters. If floating-point arithmetic is to be used then data needs to be loaded into the floating-point registers
thus setting the round mode to Round-to-nearest. Hence the value of the rounding mode when a process
is scheduled, and by implication when a process is descheduled, is irrelevant.

interrupts

When a high priority process interrupts a low priority process the fioating-point state is copied into shadow
registers and retrieved when control is returned to the low priority process. The conditions required to en-
sure correct behavior of low priority processes are sufficient to ensure correct behavior of high priority pro-
cesses.

Traps
When a process traps, the trap-handler or supervisor can store the floating-point state by executing fostall.
Conversely when returning from the trap, the state can be reloaded with fp/dall. These instructions are

explained in section 11.12.3, and an explanation of how they would normally be used is given later in sec-
tion 13.2.3.

11.12.3 Instructions for saving and loading floating-point state

mnemonic name
fostall floating-point store all
foldall floating-point load all

Table 11.25 Floating-point state instructions
fpstall

The instruction fpstall stores the floating-point register values into the data structure addressed by the
pointer in Areg. The floating-point stack is undefined, and the integer stack is popped leaving Creg unde-
fined.

The data structure pointed to by Areg contains seven words of data. The instruction writes the floating-
point status word (see section 11.12.1) into the single word fp.FPstatusReg slot of the data structure.
It then writes the current value of each floating-point stack register into the other three slots. Each of these
slots is two words wide so that double precision floating-point values can be stored. Where a floating-point
stack register holds single precision data, this is loaded into its two word slot at the location with the lower
address. This is summarized in table 11.26.

fpldall

The instruction fp/dall loads the floating-point register values from the data structure addressed by the
pointer in Areg. The integer stack is popped leaving Creg undefined.

The data structure pointed by Areg contains seven words of data. The instruction loads the floating-point
status word (see section 11.12.1) from the single word fp.FPstatusReg slot of the data structure. It then
restores each floating-point stack register from the other three slots. This is summarlzed in table 11.26.
Note that an effect of this instruction is that the rounding mode may change.

11 Floating-point instructions 145

word offset | siot name purpose
5 fp.FPCreg loaded into / stored from floating-point stack regis-
ter C by fpldall / fpstall
3 fp.FPBreg loaded into / stored from floating-point stack regis-
ter B by foldall [fpstall
1 fp.FPAreg loaded into / stored from floating-point stack regis-
: ter A by fpldall / fostall
0 fp.FPstatusReg | loaded into / stored from floating-point status regis-
ter by fpldall | fpstall

Table 11.26 Floating-point state data structure

11.13 Exception handling mechanism

This section discusses the IMS T9000 exception handling mechanism and explains how to implement an
IEEE trap handler. The term ‘T9 exception handler’ is used here to mean trap-handler or supervisor de-
pending on whether a trap has been taken from an L-process or P-process. The term ‘|EEE (trap) handler’
refers the the ‘trap-handler’ specified in the standard (section 8).

The IMS T9000 has a flag and a trap enable bit associated with each of the floating-point exceptions. When
the IMS T9000 detects an exceptional condition, it raises one of the signals shown in table 11.27. These
exceptional conditions represent a subset of the error conditions that are detected by the IMS T9000. (A
more general treatment of signalling and handling of errors is given in section 10.3.) Table 11.27 states
for each signal, which flag is set, or under what circumstances a trap is taken.

signal extra condition for trap to be taken flags set if trap not taken
FPError sh.FPErrorTeBit sb.FPErrorFlag
FPInvalidOp sb.FPInOpTeBit sb.FPInOpFlag
FPDivideByZero sb.FPDivByZeroTeBit sb.FPDivByZeroFlag
FPOverflow sb.FPOvTeBit sb.FPOvFlag
FPUnderflow! sb.FPUndTeBit sb.FPUndFlag
FPlnexact sb.FPInexTeBit sh.FPInexFlag

T To comply with the |IEEE standard, FPUnderflow is signalled on detection of ‘tininess’ if trapping is enabled, but other-
wise on detection of ‘tininess’ and ‘inexact’.

Table 11.27 Effect of signals raised due to detection of exceptional conditions

The IMS T9000 provides a general floating-point exception (‘floating-point error’) as an alternative (sim-
pler) method of handling exceptions. If enabled, this exception occurs when FPError is signalled. The
conditions that cause this signal are a superset of the conditions which cause FPInvalidOp, FPDivideByZ-
ero and FPOverflow signals. FPError is also signalled when a NaN (either signalling or quiet) or an infinity
is used as an operand of a floating-point operation. This is of interest to the user who does not want to
analyze the type of exception, butis just interested in detecting any extraordinary floating-point conditions.
For example many high-level languages treat these conditions as errors. However note that FPUnderflow
and FPInexact do not cause ‘floating-point error’, so if these conditions need to be detected, then this must
be done explicitly (by enabling the respective traps or examining the flags).

[The ‘floating-point error’ exception is extra to the IEEE specification, and provides compatibility with the
IMS T805 floating-point error flag. The latter treats FPInvalidOp, FPDivideByZero, FPOverflow and the
use of any NaN or infinity as an operand to a floating-point operation as a floating-point error. The IMS
T9000 retains compatibility with the IMS T805 by providing a flag and a trap enable bit associated with
the T805 error conditions. These are the sh.FPErrorFlag and the sb.FPErrorTeBit which are used to
implement ‘floating-point error’.]

146 T9000 transputer instruction set manual

Exceptions are either represented by the setting of a flag or by the occurrence of a trap. Unless a trap is
taken, the flag reserved for that exception is set (table 11.27). If the trap is enabled, a value is presented
to the T9 exception handler (in Breg) to indicate the exception that has occurred (table 11.28), but no flags
are set.

error type error type symbol condition for trap to occur error meaning
value (hex)
7 (#07) et.FPError FPError AND sb.FPErrorTeBit “floating-point error’T
8 (#08) et.FPInvalidOp FPinvalidOp AND sb.FPInOpTeBit | IEEE ‘floating-point
AND invalid operation’
(NOT ‘conditions for et.FPError’)
9 (#09) et.FPDivideByZero FPDivideByZero AND IEEE ‘floating-point
sh.FPDivByZeroTeBit divide by zero’
AND
(NOT ‘conditions for et.FPError’)
10 (#0A) |et.FPOverflow FPOverflow AND sb.FPOvTeBit AND | IEEE ‘floating-point
(NOT ‘conditions for et.FPError’) overflow’
11 (#0B) et.FPUnderflow FPUnderflow AND sb.FPUndTeBit |IEEE ‘floating-point
AND underflow’
(NOT ‘conditions for et.FPError’)
12 (#0C) |et.FPInexact FPinexact AND sb.FPInexTeBit IEEE ‘floating-point
AND inexact result’
NOT (‘conditions for et.FPError’ OR
‘conditions for et.FPOverflow’ OR
‘conditions for et.FPUnderflow’)
T This is not an IEEE exception. See above.

Table 11.28 Exceptional conditions and error types

When a floating-point instruction is executed, it is possible for more than one signal to be raised. More
precisely: an FPError can coincide with FPInvalidOp, FPDivideByZero, FPOverflow, or FPInexact, an
FPOverflow can coincide with FPInexact; and an FPUnderflow can coincide with an FPInexact.

However, only one error type value (first column of table 11.28) is provided to the T9 exception handler
and this value is supplied according to these rules: where there is any conflict, the ‘floating-point error’
takes precedence, followed by ‘floating-point overflow’ or ‘underflow’ (these are mutually exclusive), fol-
lowed by ‘inexact’. The precedence of the IEEE exceptions is that set out in the IEEE 754 standard. (N.B
These precedence rules are incorporated into the column labelled ‘conditions for trap to occur’ in table
11.28.) In contrast, when traps have not been enabled, the signalling of multiple floating-point exceptional
conditions gives rise to the setting of all the corresponding flags.

For example, consider what happens if say both FPOverflow and FPInexact are signailed. While sb.FPEr-
rorTeBit is set, it is et.FPError which is presented to the T9 exception handler (loaded into Breg). If on
the other hand, this bit is not set, but both sb.FPOvTeBit and sb.FPInexTeBit are set, then et.FPOver-
flow is presented since this has the higher priority. If only sh.FPInexTeBit is set, et.FPInexact is pres-
ented. In all these cases, no flags are set as a result of these error signals because a trap is taken. Finally
if no trap enable bits are set, then a flag is set for each error according to table 11.27.

Thus if any of the trap enable bits are set such that a single exceptional condition causes a trap to be taken,
then the number for that exception is presented to the T9 exception handler. If more than one trap enabled
exceptional condition is signalled, then only one exception is presented to the T9 exception handler ac-
cording to the above precedence rules. If a trap is not taken, a flag is set for each exception.

11.13.1 State delivered by floating-point exception — Implementing an IEEE (trap) handler

Where a trap occurs as a result of a floating-point exceptional condition, the floating-point state is restored
to the state that was present before the operation was performed’ (but see section 11.13.2). This state
can be stored in the appropriate data structure using fpstall (section 11.12.3).

11 Floating-point instructions 147

Itis therefore straightforward for the T9 exception handler to invoke an IEEE handler, passing via parame-
ters the information that the standard requires to be delivered to an IEEE handler. The floating-point state
can be used to calculate this information as described below. Where itis necessary to re-execute a trapped
instruction, the instruction opcode can be obtained from the location pointed to by the address in the
th.Eptr (or ps.Eptr) slot, and the initial state can be reloaded with fpldall.

* All exceptional conditions signalled by the instruction can be ascertained by examining the flags
(using stflags) having re-executed the instruction with traps disabled.

¢ The kind of operation performed can be ascertained by examining the instruction’s opcode.

* The destination’s format can be determined by examining the floating-point status word and the
instruction’s opcode.

¢ The operand values are part of the restored floating-point state.

« For ‘inexact’, the result to be delivered to the IEEE handler (correctly rounded) can be obtained
by re-executing the instruction with traps disabled.

¢ For ‘overflow’ and ‘underflow’, the result to be delivered to the IEEE handler can be computed
from the original values.

Finally when the IEEE handler has fully analyzed the trap cause, the T9 exception handler might for exam-
ple be required to present its own result for the instruction. It may do this as follows:—

* by loading the floating-point stack and floating-point status register with the appropriate data (us-
ing fpldall)

¢ by setting the appropriate flags in the status register (using /dflags and stflags) to indicate which
exceptional conditions have been detected

¢ by restarting the code from the correct point by executing tret (or goprot).

11.13.2 Some anomalies
Compound instructions

Care must be taken with the compound instructions — namely: fpldnladdsn, foldnladddb, foldnimuisn,
foldnimuldb, fpi32tor32 and fprtoi32. Either stage of these two-part instructions can cause a trap. The pro-
cessor behaves in the same way that it would if both instructions (that the compound instruction replaces)
were executed separately.

For the load and operate instructions (foldniaddsn, foldniadddb, foldnimulsn and foldnimuldb), floating-
point exceptional conditions can only be signalled by the operate part of the instruction (i.e. add or multi-
ply). When a trap is taken due to such a signal, the state delivered is the state prior to the operate part.
This is similar for fpi32tor32 (which is equivalent to fpi32tor64 followed by for64tor32) since fpi32tor64 can-
not cause a floating-point trap.

fprtoi32 (which comprises fpint and fpchki32) can signal floating-point exceptional conditions in either op-
eration. The state delivered is the floating-point state before the trap causing part of the instruction was
executed. Similarly, the trap behavior of fpadddbsn is the same as the behavior of the sequential execution
of fpadd and fpr64tor32, even though the function is slightly different.

fprem

The possible exceptions for fprem are ‘underflow’ and ‘invalid operation’. The only time that the initial oper-
ands are notrestored is when fprem has caused an ‘underflow’ trap. In this case, the initial value is restored
to FPAreg (the divisor), but the value restored to FPBreg may be less than the initial value (the dividend)
by a multiple of the value in FPAreg. For ‘underflow’ (as well as ‘overflow’, and ‘inexact’) traps, the IEEE

T This implies that the result of a floating-point operation is only delivered if a trap is not taken.

148 T9000 transputer instruction set manual

standard requires that the correctly rounded result is presented to the IEEE handler. This can still be
achieved for fprem by re-executing the instruction with traps disabled. For ‘invalid operation’ (as well as
‘divide by zero’), the standard requires that the initial operands are presented to the IEEE handler. This
can be achieved for forem (as for all instructions) because the initial values are restored when an ‘invalid
operation’ trap is taken.

11.14 Implementation of NaNs

Section 11.2.3 explains that if a trap is not taken when a ‘invalid operation’ occurs, then any floating-point
result should be a NaN. Since this NaN is the result of an operation, it must also be a quiet NaN (in accor-
dance with the |IEEE standard). Under these circumstances, the IMS T9000 therefore generates one of
the values listed in table 11.29. These are the only NaNs generated by the IMS T9000 unless one of the
operands is a NaN (discussed later).

error constant name single double precision val-

precision ue (quiet NaN)

value

(quiet NaN)
divide zero by zero DivZeroByZeroNaN #7FC00000 | #7FF80000 00000000
divide infinity by infinity DivinfByInfNaN #7FE00000 #7FFC0000 00000000
multiply zero by infinity ZeroMulInfNaN #7FD0000 #7FFA0000 00000000
addition of opposite infinities or | AddOpInfsNaN #7FC80000 | #7FF90000 00000000
subtraction of like infinities
negative square root (non-zero) | NegSqrtNaN #7FC40000 |#7FF88000 00000000
REALG64 (double precision) to R64ToR32NaN #7FC20000 (not applicable)
REAL32 (single precision) NaN
conversion
remainder from infinity RemainderFrominfNaN | #7FC04000 | #7FF80800 00000000
remainder by zero RemainderByZeroNaN | #7FC02000 |#7FF80400 00000000
quotient out of range in result of | RangeQuotErrorNaN #7FC01000 | #7FF80200 00000000
forange

Table 11.29 Quiet NaNs generated when FPInvalidOp is signalled but no trap is taken

When a NaN is changed from single precision to double precision (for32tor64), the sign bit is set to 0, the
exponent field is extended from eight ‘1’s to eleven ‘1’s (to maintain the representation as a NaN), and
the ‘value’ of the fraction field is maintained by setting the 29 least significant bits to 0. The most significant
bit of the fraction field is set to 1 to ensure that it is a quiet NaN. The same meaning (e.g. divide zero by
zero) is thus preserved.

When a NaN (either a signalling or quiet) is used as an operand to a floating-point operation, then FPError
is signalled. (This causes ‘floating-point error’ — if enabled — which provides compatibility with the IMS
T805 transputer. It is not an IEEE exceptional condition.) Also, if a signalling NaN is used as an operand
to a floating-point operation, then FPInvalidOp is signalled.

Tables 11.30 and 11.31 show the signals raised and the values returned (unless atrap is taken) when NaNs
are present as the inputs to floating-point operations!. Q(value) means that the signalling NaN value is
converted to a quiet NaN (by setting the most significant bit of its fraction). The word ‘number’ means a
floating-point representation that is not a NaN.

T This does not apply to fpadddbsn, which returns the quiet NaN R64ToR32NaN if either of its operands is a NaN.

11 Floating-point instructions 149

input signals result

(unless trap taken)
signalling NaN FPinvalidOp, FPError Q(input)
quiet NaN FPError input

Table 11.30 Behavior of monadic floating-point operations for NaN input

inputs signals result

A B (unless trap taken)
signalling NaN signalling NaN FPinvalidOp, FPError Q(A)

signalling NaN quiet NaN FPinvalidOp, FPError Q(A)

quiet NaN signalling NaN FPinvalidOp, FPError Q(B)

quiet NaN quiet NaN FPError A

signalling NaN number FPinvalidOp, FPError Q(A)

quiet NaN number FPError A

number signalling NaN FPinvalidOp, FPError Q(B)

number quiet NaN FPError B

Table 11.31 Behavior of dyadic floating-point operations for NaN inputs

The stack manipulation instructions, the class analysis instructions, the load and store instructions, fpldall,
fostall, the integer to real conversion instructions (except foadddbsn), and the real to integer conversion
instructions (except foint and fortoi321), are not classified as floating-point operations and so do not cause
FPinvalidOp or FPError when there is a NaN (of any kind) present as an input, nor do they convert a signal-
ling NaN to a quiet NaN.

Note that since a signalling NaN is never generated by the machine, when one is detected it must have
been either created explicitly or created accidentally (e.g. uninitialized or retyped data). The programmer
can hence take advantage of the detection of signalling NaNs. For example it might be useful to ‘initialize’
floating-point data to signalling NaNs, so that if this data is used prior to being assigned a proper floating-
point number, then this is signalled.

1. fpintis grouped with the ‘real to integer’ type conversion instructions because it is used in those conversion sequences. However
it does itself produce a result in floating-point format, and so is a floating-point operation. fprtoi32 is a compound instruction which
incorporates fpint and so this part of the instruction is afloating-point operation. Similarly foadddbsn is grouped with the ‘integertoreal’
type conversion instructions because it is used in those conversion sequences, but this has floating-point operands and floating-point
results and so is also classified as a floating-point operation.

2. address(X) loads into the integer stack, the address of the slot that holds variable X — see section 29.

150 T9000 transputer instruction set manual

12 Channels 151

12 Channels

The concepts of channels and communication between transputer processes were introduced in section
3.2, and more detail was provided in section 8.4, which also considered the implementation issues for
internal channels. This chapter gives more detail on the three types of external channel and considers
some of the implementation details of various communications on these channels. It also considers how
to reset a channel in the event of failure; it provides further details on implementation of resource channels,
including the instructions which are required; and finally it describes some other instructions which relate
to channel communication.

12.1 Compilation and configuration of channels — an overview

Before considering the details of communication between processes, it is worthwhile having a general pic-
ture of the sort of scheme that could be used to produce machine code for a network of IMS T9000 trans-
puters. The example given is not the only approach that can be taken but it demonstrates some of the
principles which should be understood when designing tools for such a network. The description is based
on a process/channel model which can be described directly in occam, but can also be implemented in
other high-level languages.

In this system, there are two tools provided to produce machine code and data structures from a high-level
description. Firstly there is a compiler, which compiles segments of code and assumes that this code is
to be placed on a single transputer. Secondly there is a configurer which maps these segments onto a
network of transputers.

The code generated by a compiler is always targeted onto. a single transputer. This is referred to as an
‘SC (separately compiled) unit’. It may consist of any number of parallel (or ‘concurrent’) processes, but .
execution of these processes is only concurrent in concept, since they are all sharing the same CPU. The
channels that connect the processes within an SC unit, can all be implemented as internal channels as
it is known that each end of the channel is connected to a process that is on the same transputer. (See
figure 12.1.) Itis therefore possible to allocate these channels at compile time to channel words in memory.
The SC unit may also have channels as external variables or parameters. The compiler does not know
if these are internal or external channels. They will connect to processes in other SC units, but it does not
know whether or not the code for that unit will be loaded onto the same transputer. It therefore leaves the
allocation of these to the configurer.

either internal or
external channels

~internal channels

~ -

Figure 12.1 An SC unit — a separately compiled unit of code

152 T9000 transputer instruction set manual

Network mapping of processes onto transputers can be described by:—
¢ a high-level description of how the SC units are connected,
¢ a network description that describes the hardware, and
e a mapping from one to the other.

This is illustrated by the small example shown in figure 12.2. The configurer takes this information and
deduces where to place each SC unit and how to implement the channels which connect the SC units.
Note that the channels between SC units on different transputers, are implemented as external channeis,
while the channels between the SC units on the same processes are implemented as internal channels.

internal
,channels
() - s TN
T Q rocess
v) \\ P
external
- \\ channels | |) C\) SC unit
¥
L SE——
[N / T9000
\ / - transputer
~__ S

Figure 12.2 A small network

The instructions which are used to communicate between processes (in, out, outbyte, outword, vin, vout,
disc, enbc), do not need to know the type of the channel. One of the parameters that is passed to them
in the integer stack, is the channel address. The value of this address enables the processor to determine
the type of the channel, and act accordingly. Therefore when writing the process code, or designing the
code generator of a compiler, the programmer does not need to know the channel type.

The scheme described above assumes that the configuration is static —i.e. it does not change as the pro-
gram is run on the network. A more complicated system might require processes to be dynamically loaded
and channel connections to be made and broken under the control of a distributed operating system. This
is equally achievable with a network of IMS T9000 transputers.

12.2 External channels

As introduced in section 3.2, a channel can either be internal (a communication path between processes
on the same processor) or external (a communication path between processes on different processors).
The implementation of internal channels is discussed in section 8.4. This section describes the three types
of external channel: virtual channels, byte-stream channels, and event channels.

The processor determines the type of the channel from the instruction’s channel address parameter. The
channel address mapping is given in subsection 12.4.

A transputer has 4 physical (data) links. Each of these can either be used for virtual channels or for byte-
stream channels, but not both.

12.2.1 Virtual channels

A virtual channel can connect any two processes in a network of IMS T9000 transputers and IMS C104
dynamic routing devices. The processors that host the processes do not have to be adjacent, provided

12 Channels 153

there is a connecting path through the network. This path must be specified by a ‘packet header’ which
is associated with the virtual channel. The inputting end of each channel must have a buffer specified
which is capable of storing the maximum sized packet expected. This section provides the background
needed to set up and use virtual channels.

A virtual channel is referenced by using one of the virtual channel addresses (see section 12.4), and the
physical link associated with that channel should be set to ‘virtual mode’ by configuring the appropriate
VCP link mode register (see section 12.5). Acommunication must never be attempted on a virtual channel
for which the physical link hasn’t been set to virtual mode.

The IMS T9000 incorporates a hardware communications processor, called the Virtual Channel Proces-
sor (VCP), which is able to multiplex any number of virtual channels over each physical link. Each mes-
sage is split into a sequence of packets, and packets from different messages may be interleaved over
each physical link. Interleaving packets from different messages allows any number of processes to com-
municate simultaneously via each physical link. IMS T9000 transputers may be connected directly or via
a network of IMS C104 dynamic routing devices. Communication channels can be established between
any two processes regardless of where they are physically located, or whether the channels are routed
through a network. Thus, programs can be independent of network topology.

In order that the VCP of the receiving transputer can distinguish packets that are part of different mes-
sages, each received packet contains one or two bytes that identify a virtual input channel of the receiving
transputer. When a packet is transmitted it may also contain information to route the packet through a
packet switching network of IMS C104s. The combination of any routing information and the identification
of the virtual input channel of the receiving transputer is called the packet header. Every packet of a mes-
sage ends with an end—of—packet (EOP) token, except the last packet which ends with an end—of-mes-
sage (EOM) token.

The maximum length of data in each packet is 32 bytes (excluding the header and the EOP/EOM token).
All but the last packet of a message contain the maximum amount of data; the last contains the maximum
amount of data or less. Each packet has the structure illustrated in figure 12.3. The header bytes (contain-
ing routing and channel information) are transmitted first, followed by the data bytes of the packet (if any),
followed by the encoded end of packet marker. The VCP can thus encode short messages (not longer
than 32 bytes) in a single packet.

The message protocol details are not required by the programmer but the interested reader is referred
to the Communications chapter of The T9000 Hardware Reference Manual.

header data bytes (up to 32 bytes) end of packet

Figure 12.3 Structure of a packet

The VCP enforces a high-level protocol on each virtual channel. Each packet of data sent along a virtual
channel must be acknowledged before the next is sent to ensure that no data is lost. An acknowledge
packet is sent automatically by the VCP of the receiving IMS T9000. The transmitting IMS T9000 waits
for the last packet to be acknowledged prior to rescheduling the outputting process, hence ensuring syn-
chronized communication. Data packets on a virtual channel are acknowledged by the VCP by sending
acknowledge packets on another virtual channel back to the VCP which sent them. This acknowledge-
ment is process-to-process and is transparent to intermediate network components.

Virtual channels always occur in pairs between pairs of communicating processors, with one virtual chan-
nelin each direction. If a message is being communicated in one direction, the virtual channel in the oppo-
site direction is used to return acknowledge packets to the sender. The pair of associated virtual channels
is referred to as a virtual link. A virtual link can transfer messages in both directions at the same time with
data packets and acknowledge packets being interleaved on both of the virtual channels. Because virtual

154 T9000 transputer instruction set manual

channels are always paired in this way it is not necessary to include source information in the packets.
Thus packet headers need only represent their destinations.

When the CPU of one transputer performs an output instruction (output, outbyte, outword or variable out-
put), its VCP sends the first packet of the message to another transputer on a virtual channel. When the
VCP of the second transputer receives the packet, it uses the packet header to identify the virtual channel
on which the packet was received. If a process on the second transputer has performed an input instruc-
tion on the channel, the data contained in the packet is stored in the data space of the inputting process.
If there is no process ready to receive the first packet, then it is placed in an in-store packet buffer
associated with the virtual link. When the inputting process becomes ready, the first packet is copied from
the buffer into the data space of the process and an acknowledge packet is sent. This buffer is transparent
to the communicating processes because it is empty when the input process is active.

In order that the data contained in a buffer is not overwritten, the VCP of a transputer that has sent one
packet of a message on a virtual channel to another transputer, does not send another packet on that
channel until it receives an acknowledgment that a process on the second transputer has become ready
to receive the message.

Virtual link control blocks

For each virtual link, a data structure, called a virtual link control block (VLCB), is stored in the memory
of both transputers connected by that link. A VLCB stores information to control the operation of the virtual
link; itis 8 words long and aligned on an 8-word boundary. The details of the information stored in this block
are private to the VCP and of no interest to the programmer, but the following provides a brief description
of its usage and type of information that it holds.

A number of instructions (described in section 12.6.1) are provided on the IMS T9000 for manipulating
VLCBs. These instructions may be used to establish the virtual links, dynamically alter the connections,
activate, deactivate and reset the channels, place channels into resource mode, and assist in the
debugging parallel programs.

The physical links are shared by a number of virtual links by threading on linked lists, the control blocks
of the virtual links waiting to use the physical links.

Each VLCB has slots to store the process descriptors of the processes (if any) sending and/or receiving
messages on the virtual link. These slots may be referred to as the channel words for the virtual output
and virtual input channels respectively.

To enable the first packet of any message to be received at any time on a virtual input channel, it is neces-
sary to have a buffer area to hold that packet until the receiving process is ready to transfer the message
into the data area specified by the input instruction. The address of this buffer, which must be word-aligned,
is copied into the VLCB from Breg, when initvich is executed (see section 12.6.1).

The virtual link’s header contains routing information for its output channel’s forward path and its input
channel’s acknowledge path. The VLCB specifies this header which is included with each packet sent.

« Ifaheader is up to 3" bytes long it is held in the VLCB itself. This is known as a ‘short header’.

¢ If a header is longer than 3t bytes, it is held in a special region of memory. This is known as a
‘long header’. For a long header, the VLCB holds the length of the header and an offset to the
location in memory where it may be found.

The VLCB marks the header as a null header when initialized by initvicb. The encoding of short headers,
where possible, within the VLCB saves a memory access on every packet sent.

In addition to the 8 word VLCB, there may be another two words for the resource channel data structure
ifthe receiving channel is aresource channel, but these are held in a separate area of memory (see section
12.4).

Errors

The VCP can detect a length overrun on an input. This is dealt with by recording an invalid message length
(LengthError.p) in the pw.Length slot of the inputting process workspace data structure. The process
T This value could change in future revisions of the IMS T9000.

12 Channels 155

must recognize and handle the error after it has been rescheduled, which it can do with the /dcnt instruc-
tion.

Other VCP and link errors are fully discussed in the Communications and Data/Strobe links chapters of
The T9000 Hardware Reference Manual.

12.2.2 Byte-stream channels

A communication on a byte-stream channel is between processes on adjacent processors. That is, the
processors’ links must be physically connected (via a system protocol convertor or a link adaptor). The
variable-length communication instructions cannot be used on byte-stream channels.

A byte-stream channel is referenced by using one of the byte-stream channel addresses (see section
12.4), and the physical link associated with that channel should be set to ‘byte-stream mode’ by configur-
ing the appropriate VCP link mode register (see section 12.5). This mode of operation enables the IMS
T9000 to communicate with a T2/T4/T8-series transputer, via the IMS C100 system protocol convertor.
It does not provide a communication channel between adjacent IMS T9000 transputers. A communication
must never be attempted on a byte-stream channel for which the physical link hasn’t been set to byte-
stream mode.

Output to a byte-stream channel

When an output communication instruction is executed on a byte-stream channel, the current process
descriptor (content of the workspace descriptor register), the pointer to the message source, and the mes-
sage length are saved, and the process is descheduled. The current process descriptor is copied into the
relevant link channel word (see section 12.4).

When all the message has been output and the final acknowledge received, the process is rescheduled
and the link channel word reset to NotProcess.p.

Input from a byte-stream channel

When an input communication instruction is executed on a byte-stream channel, the current process des-
criptor, the pointer to the message destination and the message length are saved, and the process is des-
cheduled. The current process descriptor is copied into the relevant link channel word.

When all the message has been input and the final acknowledge received the process is rescheduled and
the link channel word reset to NotProcess.p.

12.2.3 Event channels

The event-in pins (Eventin0, Eventin1, Eventin2, Eventin3) and event-out pins (EventOut0, Event-
Out1, EventOut2, EventOut3) provide an asynchronous handshake interface between external events
and internal processes. Event channels provide process synchronization but cannot transfer any data.
Each pair of event-in and event-out pins (0 to 3) can act independently as either an input or an output event
channel, but not both.

Input event channel

When an external event takes an event-in pin high, the associated external event channel be-
comes ready. A process may have already performed an input on this channel. In this case, the
process is rescheduled and the associated event-out pin is set high. If there has not yet been
an input on that channel, then the processor does not set the event-out pin high until one occurs.

The processor then resets the event-out pin to low when it sees the event-in pih go low. See fig-
uret2.4.

Output event channel

When a process performs an output on an event channel, the IMS T9000 asserts the event-out
pin and deschedules that process. This action instructs the external hardware, which connects

156 T9000 transputer instruction set manual

to the event pins, to perform an action. When the processor sees a low-to-high transition on the
associated event-in pin, it reschedules the process and sets the event-out pin to low. The external
device should then lower the signal on the event-in pin to complete the handshake. See figure
12.4.

If no process performs an output on a particular event channel, then the event-out pin for that
event is never be taken high. The event-out pins are taken low when reset occurs or when a re-
setch instruction (see section 12.8.1) is executed on that channel.

Input event channel

Eventln

External hardware asserts Eventin

EventOut f \

T9000 acknowledges event request

Output event channel

Eventin

External hardware acknowledges event request

EventQut

T9000 asserts EventOut

Figure 12.4 Event channel full handshake

The addresses of these event channels are shown in figure 12.8. For each pair, the input channel is one
channel address word lower than its corresponding output channel. This is consistent with the channel
address space for virtual channels and byte-stream channels. Note also ‘that channel address
#780000020 is an event input channel, and this is consistent with the T2/T4/T8-series transputer.

When the state of an event channel is empty (this and other channel states/modes are defined in section
12.3), the channel word has the value NotProcess.p. If the state is waiting (inputting, outputting or en-
abled) then it contains the process descriptor of the communicating process. If the event channel is in the
resource mode idle state, then it contains the value ResChan.p. The reverse channel word — that is, the
other channel word of the input/output pair — holds the value NotProcess.p when the event channel is acti-
vated. When the channel is deactivated, it holds the special value Deactivated.p. Hence for an event chan-
nel to be initialized ready for communication, both the forward and reverse channel words should be as-
signed the value NotProcess.p. This is achieved by applying to the channel address, the instructions
resetch and setchmode which are detailed elsewhere in this chapter.

Use of event channels as interrupts

These channels can be used to handle external interrupts. In real-time applications, it is important for a
processor to be able to respond quickly to a signal from an external device. Input event channels can thus
be used as interrupt pins with a full handshake facility. The following procedure explains how to do this.

An interrupt handler, implemented as a high priority process, should execute an input instruction on an
input event channel. If the associated event-in pin is low, then this process is descheduled. It takes no
T #n represents a hexadecimal value.

12 Channels 157

further action unless that pin goes high. If it does, then the high priority process is rescheduled, and pro-
vided that the processor is currently executing a low priority process and interruption is enabled, an inter-
rupt will occur at the next interrupt point. The high priority interrupt handler then resumes execution.

12.3 Channel states and modes of operation

12.3.1 Normal channel states

A ‘normal’ channel is defined as a channel which cannot be in resource mode. Such a channel can be
essentially in one of two states: empty or waiting. Prior to receiving its first communication, the state of
the channel is described as empty. When a single communication instruction (input or output) has been
applied to that channel, its state is described as waiting. A channel is also waiting if it has been enabled
in an alternative sequence. It remains in the waiting state until the communication is synchronized with
the second communication instruction.

A virtual channel may also be in a third state: stopping. This is a ‘winding down’ state which is necessary
when a virtual channel is stopped. When an input channel is stopping, any received packets are acknowl-
edged. When an output channel is stopping, any packet queued will not be sent, but the channel must
receive an acknowledge for any packet which has already been sent.

12.3.2 Resource channel states

Aresource channel (as explained in section 8.8) has two modes: normal mode and resource mode. Within
each of these modes the channel may be in one of two states.

In normal mode the resource channel behaves identically to a ‘normal’ channel.

In resource mode, the synchronization mechanism of the resource channel is as described in section 8.8.
Prior to receiving an output, the state of the channel is described as idle. When an output instruction is
applied to a resource channel, a ‘claim’ is made for the resource. If the server process is waiting on the
resource, then the ‘claim’ is granted, and the channel is returned to normal mode. Otherwise, the channel
is put on the resource queue and the state is described as queued.

12.3.3 Virtual and event channel activation modes
Each end of a virtual or event channel can be either ‘activated’ or ‘deactivated’.
Both ends of the channel must be activated for communication to occur.

No communication can occur while either end of the channel is deactivated, but no state or data is lost.
This puts the channel in temporary suspension. For example, a virtual channel remains deactivated until
it is known that the virtual link headers have been set up correctly at both ends. When deactivated, an
output channel cannot send any data packets, and cannot cause the VCP to schedule a process. If a pack-
et is received on a deactivated input channel, then it is stored as normal, but no acknowledge packet is
sent, and no scheduling actions can occur.

12.4 Channel configuration and mapping

The VCP and CPU (in common with a number of other sub-systems of the IMS T9000) are controiled via
registers in a configuration space. The registers are accessed via the Idconf and stconf instructions, or
via CPeek and CPoke command messages (described in the Control system chapter of The T9000 Hard-
ware Reference Manual) received along control link CLink0. This subsection describes some of these
configuration registers and also defines the relationship between the addressing of channels and the ad-
dressing of memory.

A channel address is the value used to access a channel in a communication instruction. The IMS T9000
channel address space is shown in figure 12.5. The special channel address names, MemStart and

158 T9000 transputer instruction set manual

MininvalidChannel, are introduced later in this section. MinVirtualChannel and MinEventChannel are
constants defined in section A.2.7 of appendix A.

Event channels are always accessed via event channel addresses. The physical data links are normally
accessed via virtual channel addresses. However, each IMS T9000 physical link may be set to operate
in ‘byte-stream mode’ for use in mixed transputer systems. They are then accessed via the byte-stream
channel addresses.

channel address
internal channels
MemStart
illegal channels
MininvalidChannel
virtual channels
MinVirtualChannel #80000040
events channels
MinEventChannel #80000020
byte-stream channel inputs
#80000010
byte-stream channel outputs
MostNeg #80000000

Figure 12.5 IMS T9000 channel address space

The IMS T9000 memory space is shown in figure 12.6. The special memory address names, MemStart,
HdrAreaBase and ExternalRCbase, are introduced later in this section.

The user must not directly access the memory space below MemStart. To examine and assign the channel
control information, the user should execute the instructions described in section 12.6.1 which access this
area via the channel address space.

12 Channels

159

memory address

MemStart

HdrAreaBase

ExternalRCbase

MostNeg

process workspace

packet buffer region

header region

resource channel
data structures

virtual link control blocks

byte-stream and event
channel control words

access via
special
instructions

(base of memory)

Figure 12.6 IMS T9000 memory map

Note that a virtual channel address does not equate to the memory address of the VL.CB which implements

that virtual channel.

12.4.1 Configuration register instructions

mnemonic

name

stconf

Idconf

store to configuration register

load to configuration register

Table 12.1 Configuration instructions

A complete list of the configuration registers and their addresses is given in the Configuration register ref-
erence guide chapter of The T9000 Hardware Reference Manual. The instructions in table 12.1 are used
to write data to and read data from these registers.

stconf loads the data held in Breg into the configuration register specified by the configuration write-ad-

dress in Areg. Creg is popped into Areg leaving Breg and Creg undefined.

Idconfreads the data held in the configuration register specified by the configuration read-address in Areg,
and loads this into Areg. Breg and Creg are unaffected.

Both instructions are privileged. They both signal IntegerError if an invalid configuration address is passed

in Areg.

160 T9000 transputer instruction set manual

12.4.2 Configuration registers used for memory mapping
Free memory start value register

The register MemStart holds a pointer to the start of free memory —MemStart. This identifies the first word
of memory that is not used by the VCP for implementation of external channels. An example of setting
this register up is given on page 169.

The communications instructions operate by treating all channel addresses at or above MemStart as inter-
nal channels —that is channels between processes executing on the same processor. All channel commu-
nications below this address are transferred to the VCP, after checking for illegal addresses.

mnemonic name
Idmemstartval load value of MemStart address

The Idmemstartval instruction can be used to obtain the free memory start value. This pushes MemStart
onto the integer stack. It is a privileged instruction.

Packet buffers

Each virtual link must have an allocated packet buffer, which may be placed in any area of memory space
that is not reserved for other use. An efficient strategy is to use maximum size (8 word) packets and align
these to cache lines (4 words) in a region below MemStart but above the region allocated for headers.

Minimum invalid virtual channel address register

There is a range of channel addresses below MemStart that do not correspond to valid external channels.
The memory below the equivalent memory address MemStart normally contains virtual link control blocks
and headers. The lowest channel address that corresponds to an invalid channel address — Minlnvalid-
Channel — is held in the minimum invalid channel address register (MinlnvalidChannel). An example of
setting this register up is given on page 169.

External resource channel base address register

Aresource channel is a channel that may be in normal mode or resource channel mode. Itis implemented
in the same way as a normal channel, but has an additional two word resource channel data structure
(RCDS — see sections 8.8 and 12.7 on resources). For resource channels connecting processes on the
same processor (i.e. internal resource channels), the RCDS is contiguous with the word used as the chan-
nel. For resource channels connecting processes on different processors (i.e. external channels) an
RCDS is associated with each input virtual resource channel and event input resource channel. These
extra words are allocated together in a block, and the base of the block (Externa/lRCbase), which must
be word-aligned, is defined by the external resource channel base address register (ExternalRCbase).

Header region word offset base register

If the header associated with a virtual output channel is longer than three bytes, it is not held in the VLCB
associated with that channel, but resides in a separate region of store —the ‘header region’. The base of
this region — HdrAreaBase — is defined by the header base address register (HdrAreaBase) and must
be word aligned. -

12.4.3 Virtual link mapping functions
Allocation of virtual link numbers

Any two virtual channels that have source and destination processes on opposing transputers can be
paired together and assigned to a unique virtual link on each transputer. Figure 12.7 shows a small network
of processes statically connected via virtual links across a communications network. Each virtual link is
given a ‘virtual link number’.

12 Channels

161

communications network
_ZIEETTEEIIS
/’—_‘\</// N >
— e~ = NN
- “~<¢ O~ NN
v e /s N N \
s / /
s 4 s h — \
-
/ Y / |) ~
' I
v. link 0 v. link 1 v. link 1 v.link0 v.link 1 V. link 0
on on on on on on
tptr. A tptr. A tptr. B tptr. B tptr. C tptr. C
Q) (N L Y L N g
internal internal
channel channel
transputer A transputer B transputer C

Figure 12.7 Network of processes connected by virtual channels

NB1: It does not matter if the source end of one channel and the destination end of another channel in
a virtual link pair are connected to different processes, provided that these processes are on the same
transputer. For example virtual link 0 on transputer A pairs two channels that connect to different pro-
cesses.

NB2: If it is not possible to pair a virtual channel with a return channel, then that channel must be given
a virtual link to itself on each transputer. For example there is only one channel between virtual link 0 on
tranputer B and virtual link 1 on transputer C. But be aware that the return path is still used to transmit
acknowledges so it is essential that both links are assigned the correct headers.

Mapping packet headers to virtual link numbers

When a packet is received via a physical link, the VCP converts the header number to a virtual link number,
by subtracting the value stored in the appropriate header offset register.

The header offset registers (VCPLinkOHdrOffset, VCPLink1HdrOffset, VCPLink2HdrOffset,
VCPLink3HdrOffset) are each programmed with an offset. The number of the virtual link to which a pack-
et is directed is calculated by the VCP hardware using the following mapping function: —

virtual link number = (Header — HeaderOffsetN)
where HeaderOffsetN is the content of the header offset register for physical link N via which the packet
was received.

Section 12.4.4 briefly illustrates how this mapping is put into effect for message routing.

162 T9000 transputer instruction set manual

N.B. The header offset value would normally be expected to be no greater than the header value. However
where this is not the case the VCP applies the following mapping function when calculating the virtual link
number:—

virtual link number = (Header + 216 — HeaderOffsetN) rem 216
where rem is the integer remainder operator — i.e. it performs a modulo 218 subtraction.

Mapping virtual channel addresses to virtual link numbers

When an instruction references a virtual channel address, the processor automatically converts this ad-
dress to the number of the virtual link associated with that channel. This mapping is given arithmetically
by:—

virtual link number = (‘virtual channel address’ — MinVirtualChannel) + 8 (4)
because there are 2 channels mapped to each link, and each channel address is separated by 4.

Hence channel addresses #80000040 and #80000044 are implemented by virtual link 0 and #80000048
and #8000004C are implemented by virtual link 1.

Mapping virtual link number to VLCB memory address

For each IMS T9000 in a network, the VLCB for its virtual link 0 is positioned in memory immediately above
its byte-stream and event channel words at MinVirtualChannel, and is aligned to an eight word boundary
(see figure 12.8). The VLCB for virtual link 1 is positioned immediately above virtual link 0 and so is also
eight word aligned. All other VLCBs are stacked thus in ascending order of virtual link numbers.

The VCP maps each virtual link to its VLCB address by the formula:—
VLCB memory address = MinVirtualChannel + (‘virtual link number’ X BytesPerVLCB)
where MinVirtualChannel is #80000040 and BytesPerVLCB is 32 for the IMS T9000.

N.B. The user does not need to know this mapping function, but may need to know that 8 words are allo-
cated for each virtual link in order to determine the required value of ExternalRCbase (see figure 12.6).

Figure 12.8 shows the mapping of channel addresses and header numbers to virtual link numbers, and
also shows how each virtual link is allocated a unique VLCB. The example given shows 3 virtual links (6
virtual channels) using 2 words for long headers.

12 Channels

163

#800000BO|__

channel space

internal channels

virtual link
number

Mem©Start

#800000AC!__
#800000A8 | __
#800000A4 |
#800000A0 |
#8000009C|
#80000098 |
#80000094 |
#80000090 |
#8000008C|
#80000088 |
#80000084 |
#80000080 |
#8000007C|
#80000078 |
#80000074 |
#80000070 |___
#8000006C|__
#80000068 |
#80000064 |
#80000060 |
#8000005C|
#80000058

illegal channel
addresses

#80000054 |
#80000050 |
#8000004C|__
#80000048 |
#80000044 |
#80000040

virtual channel
addresses

#8000003C|
#80000038 |
#80000034 |__
#80000030 |
#8000002C|
#80000028 |
#80000024 |
#80000020

event channel
addresses

#8000001C|__
#80000018 |
#80000014 | __
#80000010 |__
#8000000C|
#80000008 |
#80000004 | _
#80000000

byte-stream
channel
addresses

channel/memory
address

memory space

header region

resource channel
data structures

VLCB for
virtual link 2

VLCB for
virtual link 1

[TTTTTI

VLCB for
virtual link 0

[T

event channel
control words

byte-stream
channel control
words

Figure 12.8 Mapping of channel addresses and header numbers to the memory address of

the VLCB

164 T9000 transputer instruction set manual

12.4.4 Packet header labelling

There are two strategies that the programmer might adopt for routing messages in a network of IMS T9000
transputers and IMS C104 packet routing switches:—

e header deletion with local link numbering
e global link numbering.

In header deletion, the header comprises two parts. The first part of the header specifies the destination
transputer. The IMS C104 packet routing switches are programmed to remove this part of the header prior
to routing the rest of the packet to the destination processor. Hence the receiving processor just sees the
second part of the header. This ‘local header’ is used to calculate the virtual link number and hence the
memory address of the VL.CB using the above mapping functions. In this system, the header offset values
are usually set to zero. The local headers correspond to the virtual link numbers and there need be no
correlation between the local header value and the number of the physical link on which the packet was
received. Note that a header is transmitted in ascending order of byte significance, and so the routing
header should be placed below the local header in memory when the header is written (see writehdr in
section 12.6.1).

In global link numbering, each end of every virtual link in the network is given a unique destination address.
This address is then used as the header. The IMS C104 packet routing switches are not programmed to
delete headers in this system and so each packet is routed with its header according to the interval label-
ling mechanism described in The IMS C104 Datasheet. Provided that the receiving header addresses of
the virtual links are such that the range of header addresses received on each physical link is contiguous,
it is always possible for the IMS C104 packet routing switches to correctly route all messages. By setting
the correct header offset value for each physical link, the IMS T9000 can calculate the virtual link number
and hence the memory address of the VLCB using the above mapping functions. .

For example consider the IMS T9000 shown in figure 12.9. The network is configured such that only mes-
sages with headers within a fixed range are received on each physical link.

headers 0..7
link 0
link 3 T9000 headers 32..39
headers 96..103 link 1
link 2

headers 64..71

Figure 12.9 An IMS T9000 receiving packets with headers in specified ranges

If the contents of the header offset registers are set as

VCPLinkOHdrOffset = 0

VCPLink1HdrOffset = 24
VCPLink2HdrOffset = 48
VCPLink3HdrOffset = 72

12 Channels 165

then the header to link mapping would be

virtual links 0..7
virtual links 8..15
virtual links 16..23
virtual links 24..31

headers 0..7
headers 32..39
headers 64..71

headers 96..103

Vi

12.5 Other configuration registers for setting up links and VCP

Packet header limit registers

The base and limit of packet headers which are acceptable on each physical link are stored in the header
lower limit registers (VCPLinkOMinHeader, VCPLinkiMinHeader, VCPLink2MinHeader,
VCPLink3MinHeader) and the header upper limit registers (VCPLinkOMaxHeader, VCPLink1Max-
Header, VCPLink2MaxHeader, VCPLink3MaxHeader). Out of range headers cause the associated
packets to be discarded and, unless the LocalizeError flag (see under ‘VCP link mode register’ in this
section) is set, generate link errors. These registers can be used for enhanced system security.

VCP link mode register

The VCP link mode registers (VCPLinkOMode, VCPLink1Mode, VCPLink2Mode, VCPLink3Mode)
contain information about the physical links 0 to 3 respectively.

Bit Bit field Function

0 ByteMode when set to 1, the associated physical link is set to operate in byte-
stream mode — otherwise it is set to operate in virtual mode

1 LocalizeError when set to 1, link errors detected by the VCP are no longer reported

to the control unit— see also the Communications chapter of The T9000
Hardware Reference Manual

2 Headerlength programs the expected length of the incoming packet header (1 or 2
bytes) for each physical link

0 1 byte header

1 2 byte header

Table 12.2 Bit fields in registers VCPlink0-3Mode
VCP command register

The VCP command register (VCPcommand) enables commands to be issued to the VCP. Each bit of
the register corresponds to a command, see table 12.3 below. The command is executed when the bit
is set. Each write to the register can set only one bit.

It is important that the the VCP is not started until the VLCBs have been set up. An example is shown on
page 171. For further details on starting, stopping and resetting the VCP, refer to the Communications
chapter of The T9000 Hardware Reference Manual.

Bit Bit field Function
0 Reset Reset the VCP — stops the VCP and resets the registers to their
undefined level 2 state.
Start Start the VCP
2 Stop Stop the VCP ‘cleanly’ so that channel states are preserved. The VCP
accepts messages currently in transit but no new messages can be
sent.

Table 12.3 Bit fields in the VCPcommand register

166 T9000 transputer instruction set manual

12.6 Setting up the virtual link control blocks

12.6.1 Instructions for setting up a VLCB

To set up virtual channel communication, it is necessary to provide each VLCB with: a physical link num-
ber, header information, and buffer information for input channels. Although it is useful to understand the
contents of the VLCB as described in section 12.2.1, it is not necessary for the programmer to know its
precise structure and memory map. The IMS T9000 provides a set of privileged instructions that allow
the user to set up the VLCB. These are listed in table 12.4 and explained below.

mnemonic name

initvicb initialize vicb

sethdr set virtual channel header
writehdr write virtual channel header
readhdr read virtual channel header
insphdr inspect virtual channel header
readbfr read buffer pointer from VLCB
swapbfr swap buffer pointer in VLCB
setchmode set channel mode

Table 12.4 Instructions used for setting up and manipulating the VLCB

The instructions initvicb, sethdr, writehdr, swapbfr and setchmode are used for setting up the VLCB. The
instructions readhdr, insphdr, swapbfr and readbfr are used for analyzing the current state of the VLCB.

initvicb

initvich initializes the VLCB associated with the channel specified in Areg. It also associates the word-
aligned packet buffer specified in Breg with the VLCB, and ensures that the VLCB marks the header as
a null header (see section 12.6.2). Both the virtual input and the virtual output channels associated with
this VLCB are deactivated by the instruction. Areg inherits the value of Creg leaving Breg and Creg unde-
fined. The example shown on page 171 illustrates the use of this instruction.

If the packet buffer specified in Breg is not word-aligned, then the instruction signals Unalign.
sethdr

sethdr establishes the physical link number and header type for the VLCB associated with the channel
specified in Areg. Breg holds the physical link number to be associated with the VLCB, or a special value
— NullHeader — to indicate that a null header is required (see section 12.6.2). Creg holds the word offset
into the header region to specify the location of the header, or it contains a special value — NullOffset —
to indicate that the header is a short header. The integer stack is left undefined after execution. The exam-
ple shown on page 171 illustrates the use of this instruction.

If the unsigned value passed in Breg is greater than or equal to the number of physical links (4) and is
not equal to NullHeader, then sethdr signals IntegerError. If the unsigned value passed in Creg is greater
than the maximum header region word offset — MaxHeaderOffset — and is not equal to NullOffset, then
the instruction signals IntegerError. It only sets to a null header if both input and output channels for the
VLCB are deactivated. If this is not the case, it signals IntegerError.

If Breg contains the value NullHeader, then the VLCB marks the header as a null header.

If Breg contains a valid physical link number (0 ... 3), then sethdr records this in the VLCB. If Creg contains
a valid header region word offset (0 ... MaxHeaderOffset), then it also records this in the VLCB. Note care-
fully that this offset is a word offset and not a byte offset. The absolute address of the header in the header

12 Channels 167

region is (HdrAreaBase + ‘header region word offset’ X 4). If Breg contains a valid physical link number
and Creg contains NullOffset, then the link number is recorded in the VLCB but there is no offset to be
recorded.

writehdr

writehdr assigns a packet header to the VLCB associated with the channel specified in Areg. Breg holds
the length in bytes of the header. Creg holds the address of the data area where the header is stored.
The integer stack is left undefined after execution. The example shown on page 171 illustrates the use
of this instruction.

If the value passed in Breg is zero, or is greater than the maximum header length (#FF), then writehdr
signals IntegerError. If the value passed in Breg is greater than the maximum short header length (3) but
the VLCB has not been set up (using sethdr) with a header region word offset, then the instruction signals
IntegerError. The instruction is interruptible.

Prior to execution of this instruction, the header is stored in a contiguous block that is Breg bytes long
and begins at the address held in Creg.

If the header length in Breg is in the range 1 to 3, then the header is a short header, and so is stored in
the VLCB. The length of the header and the header itself are copied into the VLCB, from Breg and data
area pointed to by Creg.

If the header length in Breg is greater than 3, then the header is a long header. This length is written into
the VLCB. The VLCB should have already been initialized with a header region word offset (using sethdr),
which identifies the place where the header should be stored. The header is copied to that header region,
from the data area pointed to by Creg.

A packer header is transmitted in ascending order of byte significance, and so the byte pointed to by Creg
will be the first byte transmitted.

readhdr

readhdr copies the packet header of the VLCB associated with the channel specified in Areg, into an area
of store beginning at the address held in Creg. Breg holds the length in bytes of that header. The integer
stack is left undefined after execution.

If the value passed in Breg is not equal to the header length, then the instruction signals IntegerError. If
the VLCB has been set to a null header, then the instruction signals IntegerError. The instruction is inter-
ruptible.

Ifthe header length in Breg is in the range 1 to 3, then the header is a short header. The header is therefore
copied from the VLCB to the block pointed to by Creg.

If the header length in Breg is greater than 3, then the header is a long header. The header is therefore
copied from the special header region, to the block pointed to by Creg.

insphdr

insphdr loads the integer stack with information stored in the VLCB associated with the channel specified
in Areg. It loads Areg with the number of the physical link (0 ... 3) on which the specified channel
communicates, loads Breg with the length in bytes of the header, and loads Creg with the header region
word offset (if applicable).

If the header is a null header, then NullHeader is loaded into Breg and NullOffset is loaded into Creg. If
the header is a short header then the its length in bytes is loaded into Breg, and NullOffset is loaded into
Creg. If the header is a long header, then the length is loaded to Breg, and the header region word offset
is loaded into Creg.

swapbfr

swapbfr exchanges the buffer pointer in Breg with the buffer pointer of the VLCB associated with the input
channel specified in Areg.

168 T9000 transputer instruction set manual

The instruction signals IntegerError if the channel address is not a virtual input channel address, and
signals Unalign if the packet buffer specified in Breg is not word-aligned.

The buffer pointer held in Breg is written into the word in the VLCB reserved for the buffer pointer. This
establishes a (new) buffer pointer for the VLCB. Any pointer which may have been previously associated
with the VLCB is loaded into Areg.

Breg inherits the value previously in Creg, and Creg is left undefined after execution.
readbfr

readbfr loads into the integer stack, the buffer pointer, buffer length and received packet status of the
VLCB associated with the input channel specified in Areg. Areg is loaded with the buffer pointer. Breg
is loaded with length in bytes of the packet currently stored in the buffer. Creg is loaded with an integer
representing the receive state.

The instruction signals IntegerError if the channel address is not a virtual input channel address.

The receive state in Creg is as coded in table 12.5.

receive state | meaning
code

0 no packet —- there is no packet currently
stored in the buffer

1 last packet — the packet stored in the buffer is
the last packet in the message

2 other packet — there is a packet in the buffer
but it is not the last packet of the message

Table 12.5 Meaning of value loaded into Creg by readbfr
setchmode

sefchmode activates the virtual channel specified by the channel address in Areg if Breg holds the value
true, or deactivates the channel if it hold the value false. Areg inherits the value previously in Creg, and
Breg and Creg are left undefined after execution. The example shown on page 172 illustrates the use
of this instruction.

If the channel address in Areg associates with a VLCB that has a null header when a channel is being
activated, then the instruction signals IntegerError. Also if the value in Breg is not true or false, then it
signals IntegerError. setchmode can also be used on an event or a byte-stream channel (see section
12.9.3), but signals IntegerError if the channel address is not an external channel address.

Ifthe channel address is that of a virtual channel (with a non-null header), then the VCP records the activa-
tion mode of the channel in the VLCB.

Programming for independence of short/long header knowledge

There is no guarantee that future versions of the IMS T9000 will have the same maximum short header
length — namely 3 for the current version. It may be prudent therefore for programs not to assume this
value. .

It is possible to set up a header using sethdr and writehdr without knowledge of the maximum length of
a short header. To do this, it should firstly be assumed that the header is a long header and sethdr should
be used to reserve this space in the header region. writehdr then writes the header either into this space
ifitis a long header or into the VLCB if it is a short header. Finally, insphdr can be used to determine wheth-
er or notthe header is along or short header, allowing the unused memory in the header region to be freed
if it is a short header.

12 Channels 169

12.6.2 Null header

When a VLCB is first created or is cleared using initvich, the channels associated with it are deactivated,
and there is no header information — i.e. it has a ‘null header’.

Itis guaranteed whenever a virtual link has a null header, that the virtual channels using the link are deacti-
vated. This prevents communication on these channels and, before communication instructions can use
them, it is necessary to install the virtual link with a header using sethdr and writehdr. The channels can
then be activated using setchmode.

Note if setchmode attempts to activate a virtual link that has a null header, then it signals IntegerError.
Also, sethdr signals IntegerError if either of the channels associated with the specified virtual link are acti-
vated. These instructions thus ensure that a null header cannot be installed with activated channels.
12.6.3 An example

This subsection presents a small example for setting up the virtual links control blocks as well as their
associated buffers. Some assumptions are made as a starting point:—

¢ no virtual input channels are to be used as resource channels

» all headers are short headers

¢ the number of virtual links is known and is stored in a local variable — NumVirtualLinks

An outline of this procedure is:
SEQ

... set up configuration registers
... stop the VCP
.. set up virtual link control blocks

... start the VCP
.. activate channels

Each stage is described in more detail below.
Set up configuration registers and pointer to packet buffer region

In this example the channel and memory maps are to be set up as shown in figure 12.10. There is no
requirement for a resource channel data structure region or a header region; none of the virtual channels
are resource channels and all headers are short headers to be saved in the virtual link control blocks.

170 T9000 transputer instruction set manual

channel address memory address
internal channels

MemStart MemStart

packet buffer region

illegal channels

BufferBase
MininvalidChannel VLCBs
virtual channels
MinVirtualChannel
event and byte stream byte-stream and event
channels channel control words
MostNeg MostNeg

Figure 12.10 Example channel and memory maps

The configuration registers that need to be assigned, are: MemStart, and MininvalidChannel. It is also
necessary to assign a variable — BufferBase — that points to the start of the packet buffer region.

The value MininvalidChannel can be calculated from knowledge of the number of virtual links —
NumVirtualLinks. Equation (4) above shows that the mapping from virtual channel addresses to virtual
link numbers is obtained by dividing by 8. This mapping can be used reciprocally to determine the minimum
invalid channel address from the number of virtual links. .

Idl NumVirtualLinks; — calculate the offsét address from the minimum virtual
Ide 8; prod; — channel to the first invalid channel address;
Ide MinVirtualChannel; sum; — add offset to minimum virtual channel address

— to obtain the first invalid channel address;
Ide MininvalidChannelConfigAddr; — store MinlnvalidChannel into configuration register;
stconf; :

The buffer region is placed immediately above the VLCB region. The address of the start of this region
— BufferBase — can be calculated from knowledge of the number of virtual links and the number of words
that should be allocated for each VLCB. :

Idl NumVirtualLinks;

Idc BytesPerVLCB;

prod; — calculate total number of bytes required for VLCB region;

ldl MinVirtualChannel; — calculate memory address above VLCB region

sum; — (N.B. would be ExternalRCbase if resource channels
— were being used);

stl BufferBase

MemStart can be calculated from knowledge of BufferBase, and the size of each packet buffer; in this
example each packet buffer is allocated enough memory for a maximum sized packet — MaxPacket-
Length.

12 Channels 171

Idl NumVirtualLinks;

Ide MaxPacketlLength;

prod; — calculate total number of bytes required for buffer region;
Idl BufferBase; sum — calculate memory address above buffer region;

Idc MemStartConfigAdadr; — store MemStart into configuration register;

stconf;

Stop the VCP

It is advisable to ensure that the VCP has been reset and then put into the waiting state before configuring
the processor’s virtual channels.

Ide 1;

Ide VCPcommandConfigAddr; — set bit ‘0’ in VCPcommand to reset
steconf; — the VCP — see table 12.3;

Idtimer;

Idc WaitTimeForVCPreset;

sum;

tin; — wait for VCP to be reset

lde 0; .

Idc VCPcommandConfigAddr; — clear bit ‘0’ in VCPecommand to return
stconf; — the VCP to waiting state;

The value of WaitTimeForVCPreset depends on the priority of the current process. The VCP needs at
most 20us for the reset to be effective. At low priority therefore, set WaitTimeForVCPreset to 2, and at
high priority, set it to 21.

Set up virtual link control blocks and packet buffers

In this example, when this code is loaded into memory space, it is followed by a block of encoded data
that comprises a 3 block data structure for each virtual link to be set up. Each data structure holds the
following information that is needed for loading into each VLCB.

word offset | slot name purpose
2 HeaderOffset header to be associated with virtual link
1 HeaderLenOffset length of the header in bytes (must be < 3) —N.B.
must be stored from least significant end of word
0 PhyLinkOffset number specifying physical link on which virtual link will
transmit packets

These data structures are stored contiguously from memory label VLCBdata_/label. Note that this informa-
tion could be stored in a more compact form. For example, the length of the header (which in this example
will never be more than 3) and the physical link number could be coded in 4 bits rather than 2 words. How-
ever this would require masking to extract the information, and this example has been intentionally simpli-
fied.

Ide 0; st (LEDS+le.Index); — set up ‘loop end data structure’;

ldl NumVirtualLinks; stl (LEDS+le.Count);

Idc MinVirtualChannel; — initialize CurrentVirtualChannel,

stl CurrentVirtualChannel; — a variable that is going to be used to
— point to each virtual output channel
—in turn;

Idl BufferBase; — initialize CurrentBuffer_ptr, a variable

st/ CurrentBuffer_ptr; — that is going to be used to point to each

— buffer area in turn;

172 T9000 transputer instruction set manual

Idc (VLCBdata_label — Nextinst _label) — initialize CurrentVLCBdata ptr, a variable
Idpi — that is going to be used to point to the

Nextinst_label: — VLCB information data structure for
stl CurrentVLCBdata_pir; — each virtual link;

LOOP:
fdl CurrentBuffer_ptr; — load pointer to buffer area
Id! CurrentVirtualChannel; — load the virtual channel address;
initvich; — initialize VLCB for the ‘current channel’

— and set up its packet buffer;
Ilde NullOffset; — all headers are short headers in this
— example;

ldl CurrentVLCBdata_ptr; — load the physical link number for this
Idnl PhyLinkOffset; — virtual link;
IdI CurrentVirtualChannel; — load the virtual channel address;
sethdr; — set up the virtual channel header;
ldl CurrentVILCBdata_ptr;
Idnip HeaderOffset; — load pointer to the short header;
Idl CurrentVLCBdata_ptr;
ldnl HeaderLenOffset; ~— load pointer to the header length;
IdI CurrentVirtualChannel; — load the virtual channel address;
writehdr; — write header into VLCB;
Idl CurrentVirtualChannel; — adjust the current virtual channel
Idnip 2; — address to that of the next virtual
stl CurrentVirtualChannel; — input channel;
Idi CurrentVLCBdata_ptr; — adjust CurrentVLCB_ptr to point to
Idnip 3; — the next VLCB information
st CurrentVLCBdata_pir; — data structure;
Idl CurrentBuffer_ptr;
Idc MaxPacketLength; sum; — adjust CurrentBuffer_ptr to point to
stl CurrentBuffer_ptr; — the next buffer area;
Idip LEDS; Idc (END — LOOP)
lend — test for last iteration;

END:

Nextinst_label: — load encoded VLCB data here;

Start the VCP

Now that the virtual link control blocks and their associated buffers have been assigned, the VCP can be

started.

Ide 2;

Ide VCPcommandConfigAddr;

steonf;

— set bit ‘1’ in VCPcommand to start

— the VCP - see table 12.3;

Activate channels

Finally the virtual channels can be activated.

12 Channels 173

Idc O; stl (LEDS+le.index); — set up ‘loop end data structure’ —
Idl NumVirtualLinks; — N.B. the number of virtual links is multiplied
Idi 2; prod; stl (LEDS+le.Count); — by 2 to obtain the number of virtual channels;
Ide MinVirtualChannel; — initialize CurrentVirtualChannel, a
stl CurrentVirtualChannel; — a variable that is going to be used to
-— point to each virtual output channel
—in turn;
LOOFP: Idc true;
Idl CurrentVirtualChannel;
setchmode; — activate channel;

Idl CurrentVirtualChannel;
Idnip 1;
st CurrentVirtualChannel; — increment to next virtual link;

Idip LEDS; Idc (END — LOOP)
lend
END:

12.7 Resource channels

Section 8.8 introduced the concept of a resource and discussed its purpose and application. Resource
channels can be implemented on internal, virtual and event channels. This section provides details. it also
explains how a reverse channel from server to client can be implemented. it describes all the instructions
which are used in conjunction with resource channels. Finally it describes how resource channels should
be used to implement various client-server models.

12.7.1 Implementation of internal resource channeis

To implement an internal resource channel, a resource channel data structure (RCDS — presented in sec-
tion 8.8.2) should be positioned immediately above the word in memory used to implement an internal
channel (refer to section 8.4.4). The latter can still be used as a normal channel word, but holds the special
value ResChan.p, when the channel is in idle state. If the channel word has this value when an output
instruction is executed, then the processor recognizes that it is in resource mode, and a ‘claim’ (this opera-
tion is defined in section 8.8.2) is made on behalf of the client process executing the output instruction.

12.7.2 Implementation of external resource channels
A virtual input resource channel

A communication on a virtual channel can be queued on a resource data structure in exactly the same
way as a communication on an internal channel.

The resource (and server process) is on the the same transputer as the receiving end of the virtual chan-
nel, and so it is on this processor that the communication is queued. It is therefore only the input channel
which needs to be in resource mode.

Toimplement a virtual input resource channel, an RCDS should be associated with the VLCB for that chan-
nel. The positioning of this virtual RCDS is discussed below under ‘Placement of resource channel data
structures for external channels’. When an input is received while this channel is in resource mode, the
VCP makes a ‘claim’ on behalf of that channel to the resource specified by the re.Ptr slot. The action taken
then is as described in section 8.8.2.

An event resource channel

A communication on an event channel can be queued on a resource in exactly the same way as a commu-
nication on an internal channel or a virtual channel.

174) T9000 transputer instruction set manual

To implement an event resource channel, an RCDS should be associated with the that event channel. The
positioning of this event RCDS is discussed below under ‘Placement of resource channel data structures
for external channels’. When an input is received while this channel is in resource mode, the processor
makes a ‘claim’ on behalf of that channel to the resource specified by the re.Ptr slot. The action taken
then is as described in section 8.8.2.

Placement of resource channel data structures for external channels

The resource channe! data structures for external channels are located in a separate area to their
associated channel data structures — i.e. the RCDS for a resource input channel is not contiguous with
the VLCB for that channel, and the RCDS each event channel is not contiguous with the channel word
for that channel. The area which stores these data structures is the ‘external RCDS block’ and begins at
the memory address stored in the external resource channel base address register (ExternalRCbase).
This address should be set up by the program responsible for allocating virtual channels and resource
channels. Although this area can be placed anywhere, it is best placed below MemStart. The programmer
must also be aware of the other structures which are mapped below MemStart (see figure 12.8).

There is a one to one sequential correspondence between each external RCDS and its associated exter-
nal channel (refer again to figure 12.8). That is, the first two words in-the external RCDS block are the
RCDS for event input channel 0 (channel address #80000020), the next two words for event input channel
1 {(channel address #80000028) etc. The first two words after the four event resource channel data struc-
tures are the RCDS for the first virtual input channel (channel address #80000040), the next two for the
second virtual input channel (channel #80000048) and so forth.

Observe that if say the tenth virtual input channel (channel address #80000088) is used as a resource
channel, then space must be reserved in the external RCDS block for all the event resource channel data
structures and the first nine virtual resource channel data structures. This is the case whether or not any
these other channels are being used as resource channels. It therefore makes good sense in terms of
memory space economy, to map all the virtual input channels used as resource channels onto to the low-
est address channels possible (from channel address #80000040 upwards), and similarly for event chan-
nels.

12.7.3 Reverse channel

Where a server process is inputting a message on a resource channel, it is often convenient to use the
channel address immediately above the input channel, as an output channel to the client process. This
channelis referred to as the ‘reverse channel’. For a virtual channel, the reverse channel is the other chan-
nel (i.e. the output channel) in the pair of channels implemented by the virtual link. For an internal channel,
the reverse channel word is the rc.Ptr slot of the resource channel data structure, and so it is only under
certain circumstances that this can be used as a reverse channel.

When the resource channel is in normal mode, it is not associated with an RDS and cannot be on a re-
source queue, and so the re.Ptr slot of the RCDS is not used to hold a pointer. Hence, since this slot is
positioned immediately above the channel word for an internal resource channel, it may be used as the
reverse channel provided that the channel is in normal mode.

For example consider the following piece of occam code for a client and server model.

PROC Server([]CHAN OF ANY in, out)
WHILE TRUE
.. declarations
ALT i = 0 FOR SIZE in
in[i1]? message
SEQ
Task(message, i)
out[i]! task complete

12 Channels 175

PROC Client(CHAN OF ANY out; in)
... declarations
SEQ

out! message
in? task _complete

[n]CHAN OF ANY client.to.server, server.to.client:
PAR
declarations
Server(client.to.server, server.to.client)
PAR i = 0 FOR n
Client(client.to.server[i], server.to.client[i])

In this example, the client sends a message to the server and waits for a response (task_complete),
indicating that the server has performed its task, prior to continuing. The server receives the message,
performs the task and acknowledges completion to the client. If this is implemented with the resource
mechanism, then the reverse channel can be used for each component of server.to.client. This
is possible because the grant instruction sets the channel to normal mode. Conversely observe that itisn’t
possible to use the rc.Ptr slot as a reverse channel until the grant instruction has been executed. In prac-
tice, the reverse channel should not be used before an input instruction has been executed on the ‘forward’
channel, because this would result in deadlock.

Note that as far as the server is concerned, it does not need to know whether the reverse channel is an
internal channel or an external (virtual) channel. In both cases, the channel address of the reverse channel
is immediately above the input channel in channel address space.

12.7.4 Instructions for setting and using the resource mechanism

This section contains a description of the instructions which are specifically used in conjunction with the
resource mechanism. This is followed by some rules on how some of these should be used. The
instructions covered here are shown in table 12.6. These instructions assume that the resource channel
and resource data structures have been allocated as described earlier.

176 T9000 transputer instruction set manual

mnemonic name

mkre mark resource channel

grant grant resource

unmkrc unmark resource channel

erdsq empty resource data structure queue
irdsq insert at front of RDS queue

Idresptr load resource queue pointer

stresptr store resource queue pointer

enbg enable grant

disg disable grant

Table 12.6 Instructions used for resource mechanism
mkrc

mkre takes as its parameters: a channel address in Areg, a pointer to an RDS in Breg and a resource
channel identifier in Creg. The instruction sets the channel to resource mode by associating it with the
RDS, and giving it an identifier. If there has already been an output to this channel, then the resource chan-
nel is linked into the RDS. The stack is left undefined after this operation.

mkrc is a privileged instruction. If the value in Areg is not word aligned, then the instruction signals Unalign;
and if the value is not a valid internal, virtual or event channel address, then it signals IntegerError.

If the re.ld slot already contains a resource channel identifier (i.e. it does not contain NotProcess.p), then
the channel is already in resource mode and so the instruction has no effect. Otherwise, the following oc-
curs. The resource channel identifier (Creg) is assigned to the re.ld slot. The state of the channel is ex-
amined to determine whether or not the channel is empty or waiting. If it is empty, then the rc.Ptr slot is
assigned the RDS pointer (Breg), and the the state becomes idle. If it is waiting, the resource channel
is attached to the end of the RDS queue and the state becomes queued.

For an internal channel that is empty or an external channel (virtual or event input), the channel word is
set to ResChan.p. This is not the case for an internal channel which is waiting, because the memory word
is used to store the process descriptor of the outputting process.

mkrc should not be applied to a channel that has been put into the waiting state by an input instruction.
It may be applied to a channel which is waiting due to an output instruction, but it may not be applied when
both the channel is waiting and the resource has a waiting server. This is because the instruction does
not perform a complete ‘claim’; it just attaches the channel to the resource queue. This only needs to be
considered in practice, when a controller process (see section 12.7.5) is executing a mkrc instruction; be-
cause when a server executes mkrc, it cannot be waiting, and similarly when a client executes mkrc, there
cannot be an output pending. '

grant

grant takes as its parameters: the address of the RDS in Areg, and the ‘identifier store address’ in Breg,
where the identifier store address is the address of a memory location where the result of the instruction
is to be stored. If there is no client waiting for the resource, then the current process deschedules, other-
wise the resource channel identifier associated with the client is written into the identifier store address,
and the resource channel of that client is set back to normal mode. The the integer and floating-point
stacks are left undefined after this operation.

grantis a privileged instruction. If the value in Areg or Breg is not word aligned, then the instruction signals
Unalign.

The instruction inspects the RDS queue. If it is empty, then the current process is descheduled, leaving
a copy of its process descriptor in the rds.Proc slot of the RDS, and the identifier store address in the

12 Channels 177

pw.Pointer slot of the process workspace. If there is one or more resource channels in the RDS queue,
then: the processor: removes the channel at the front of the queue, writes the resource channel identifier
(value held in the re.ld slot) into the identifier store address, sets the channel back to normal mode by
setting the re.ld slot to NotProcess.p, and initializes the reverse channel by setting the re.Ptr slot to Not-
Process.p.

In order to complete the communication, it is necessary for an input instruction to be subsequently
executed.

unmkre

unmkre takes as its parameters a channel address in Areg. The instruction sets the specified resource
channel to normal mode. The value in Areg is popped from the stack leaving Creg undefined.

unmkre is a privileged instruction. If the value in Areg is not word aligned, then the instruction signals
Unalign; and ifthe value is not a valid internal, virtual or event channel address, then it signals IntegerError.

If the value held in the slot re.ld is NotProcess.p, then the channel is already in normal mode, and no fur-
ther action is taken. Otherwise, the channel is set to normal mode by assigning NotProcess.p to the re.ld
slot. If the channel is idle, it is set to the empty state, and if the channel is queued it is set to the waiting
state.

Note that the resource channel identifier is removed whether or not the channel is on the queue. It is as-
sumed that under normal circumstances, when one resource channel is unmarked, all other resource
channels that might be on the queue are also unmarked. This includes any channels that may happen
to have made ‘claim’s while the queue is being unmarked. The communications on unmarked channels
must be completed as normal channel communications.

erdsq

erdsq takes as its parameter, a pointer to an RDS in Areg. The instruction empties the queue associated
with the RDS specified, and pushes the front and back pointers of the queue that is removed on to the
integer stack. The value previously in Breg is pushed into Creg.

erdsq is a privileged instruction. If the value in Areg is not word aligned, then the instruction signals Unal-
ign.

The instruction loads the value held in the rds.Front slot into Areg and stores the special value
NotProcess.p into the slot; and also loads the value held in rds.Back into Breg.

irdsq !

irdsq takes as its parameter, a pointer to an RDS in Areg, and pointers to a linked list of resource channels
in Breg and Creg. The instruction concatenates the specified linked list onto the front of the list (if there
is one) already associated with the specified RDS. The stack is left undefined after this operation.

irdsq is a privileged instruction. If the value in Breg or Creg is not word aligned, then the behavior is unde-
fined, and if the value in Areg is not word aligned, then the instruction signals Unalign.

The front pointer of the new queue is passed to this instruction in Breg and is written into the rds.Front
slot of the RDS specified by Areg. If the previous front pointer was NotProcess.p, then the resource queue
was empty, at the time of execution, and so the back pointer of the new queue, which is passed in Creg,
is written into the rds.Back slot of the RDS. If the resource queue is non-empty at the time of execution,
then it is concatenated onto the end of the new queue by setting the rc.Ptr slot of the last channel of the
new queue (pointed to by Creg) to the previous value of the rds.Front slot.

Idresptr

Idresptr takes as its parameter in Areg the address of a queued resource channel. The instruction loads
into Areg, the address of the next channel in the resource queue. The values in Breg and Creg are unaf-
fected.

178 T9000 transputer instruction set manual

Idresptr is a privileged instruction. If the value in Areg is not word aligned, then the instruction signals
Unalign; and if the value is not a valid internal, virtual or event channel address, then it signals IntegerError.

The value held in the re.Ptr slot of the channel specified, is loaded into Areg, overwriting that channel
address currently stored in that register. If the channel is queued, then the address is either that of the
next channel on the queue, or is undefined if the channel is the last in the queue. The result is also unde-
fined if the channel is idle or if it is in normal mode.

stresptr

stresptr takes as its parameters: the address of a queued resource channel in Areg, and a new channel
address Breg. The instruction places the resource channel pointed to by Breg behind the resource chan-
nel pointed to be Areg, in the resource queue. The value in Creg is popped into Areg, leaving Breg and
Creg undefined.

stresptr is a privileged instruction. If the value in Areg is not word aligned, then the instruction signals
Unalign; and if the value is not a valid internal, virtual or event channel address, then it signals IntegerError.

The value contained in Breg is written into the re.Ptr slot of the channel specified by Areg, overwriting
the value currently stored in that location.

enbg

enbg takes as its parameters: in Areg —the boolean expression value of a component guard, and in Breg
—address of an RDS. If the value held in Areg is true, then the instruction enables the specified resource
as part of the alternative sequence described in section 8.7.2. Areg is unaffected by this instruction, and
Creg is popped into Breg, leaving Creg undefined.

enbg is a privileged instruction. If the value in Breg is not word aligned, then the instruction signals Unalign.

If Areg is true, then the resource is enabled as follows. The current process descriptor is written into the
rds.Proc slot of the RDS. If there is a client already on the queue, then the value Ready.p is written into
the pw.State slot of the current process workspace.

disg

disg takes as its parameters: in Areg — an offset from the start of the instruction following the altend to
the start of the code for that branch of the alternative, in Breg — the boolean expression value of a compo-
nent guard, and in Creg — address of an RDS channel address. If the value held in Areg is true, then the
instruction disables the specified resource as part of the alternative sequence described in section 8.7.2.
If this component alternative is selected, then Areg is loaded with true, otherwise it is loaded with false.
Creg is popped into Breg, leaving the former undefined.

disg is a privileged instruction. If the value in Breg is not word aligned, then the instruction signals Unalign.

If the value held in Breg is initially fa/se, then this is not changed and the component alternative cannot
be selected. If Breg is true, then the resource is disabled as follows. The resource server’s process des-
criptor is read from the rds.Proc slot of the RDS. If this isn’t a valid process descriptor, then the resource
must have already been disabled, and so this component cannot be selected. Otherwise the rds.Proc
slot is assigned the value NotProcess.p. If there are no clients on the queue then this component alterna-
tive is not ready and cannot be selected. If there is at least one client in the queue, then this component
is ready and available for selection. It is only selected if it is the first ready component to be disabled.

In order to complete the communication if the component is selected, itis necessary for grant and an input
instruction to be executed in the component branch code.

12.7.5 Usage of resource channels

This section describes the ways in which the resource channel instructions of the T9000 are intended to
be used.

12 Channels 179

Overview of Resource Channels

In summary, resource channels are a means of synchronizing many ‘client’ processes with a single ‘serv-
er’ process in an efficient way. The processes may be on the same or different transputers. The synchro-
nization is achieved by means of instructions which manipulate data structures in the memory of the IMS
T9000 where the server process resides, together with the mechanism of virtual channels.

When a resource channel has both been put into resource mode, i.e. associated with a specific RDS and
been output to by a client process, this combination of events is called a ‘claim’. The RDS may have a
queue of resource channels which have performed ‘claim’s upon it. When a server executes grant on the
RDS, it obtains the next resource channel to have made a ‘claim’. It can then synchronize with (and receive
data from) the client which is outputting to that resource channel and interact with it until it wishes to service
the next client. '

To increase the flexibility of servers, the whole RDS can be treated as one branch of an alternative. One
server can thus service more than one RDS.

General comments about usage of resource instructions
‘Listed here are some general comments about how instructions must be used with resources.

The client-server model which is described in section 8.8, may or may not have an extra process which
controls the connections between the clients and servers. For the purposes of this text, this process is
called a ‘controller’. (It would typically be part an operating system.)

The instructions out, vout, outbyte and outword, which perform a ‘claim’ operation for the resource on be-
half of the channel, are executed by a client. They may also be performed by a server on the reverse chan-
nel, but only after the server has received the resource channelidentifier of the forward channel via execu-
tion of a grant instruction. In the latter case, there is no ‘claim’ operation because the reverse channel is
a normal channel (not a resource channel).

The instructions grant, in, vin, enbg, disg, mkrc and unmkrc are executed by a server. in and vin may also
be performed by a client, on the reverse channel, but only after the client has performed an output instruc-
tien. mkre and unmkrc may also be performed by a controller.

This instructions erdsq, irdsq, Idresptr and strespir are expected to be used by a controller, for queue
inspection and manipulation. The resource queue can be extracted with erdsq, examined and/or manipu-
lated with /dresptr and stresptr, and restored to the resource with irdsq. When the queue is taken away
from the resource, no grants by the server should be permitted, because the server is assumed not to be
waiting for a ‘claim’ when the queue is returned. This can be readily enforced with a binary semaphore
(see section 8.6). Idresptr and stresptr should only be applied to channels that are in a queue which has
been removed from a resource by the erdsg instruction. Since /dresptr does not return a useful result when
the channel is last in the queue, then it should not be applied to such a channel. This can be avoided by
comparing the channel address with that of the queue’s back pointer prior to execution.

The controller may also want control of which resource channels should be in resource/normal mode and
when. For this purpose, the controller would make use of the instructions mkre and unmkre.

The instructions enbg and disg should be used a part of the alternative sequence described in section
8.7.2. This allows the alternative and resource synchronization mechanisms to be mixed (see section
8.4.2). This would be needed for example where implementing an occam ALT which has lots of channel
guards (the resource mechanism can be used for these) together with some timer guards or SKIP guards.
The code associated with the guard needs to execute a grant instruction and an inputinstruction in exactly
the same way as any other server.

Omniscient Servers

The most straightforward usage of the resource channel mechanism is as a more efficient replacement
for a replicated ALT. This is the example illustrated in section 8.8.1. It is repeated below.

T Note that the same resource channel might be associated with different ‘RDS'’s at different times, different client processes might
use the same resource channel at different times, and different server processes might use the same RDS at different times..
¥ But is also possible for a server to manipulate the queue on behalf of a controller.

180 T9000 transputer instruction set manual

PROC Server([]CHAN OF ANY in)
SEQ
WHILE Serving
declarations
ALT i = 0 FOR SIZE in
in[i]? Message
Serve(Message, i)

PROC Client(CHAN OF ANY out)
. declarations
SEQ

out! Message

[n]CHAN OF ANY client.to.server:
PAR
. declarations
Server(client.to.server)
PAR 1 = 0 FOR n
Client(client.to.server[i])

The channels client.to.server must be resource channels —that is a resource channel data struc-
ture must be allocated and initialized. When the process Server executes the ‘WHILE Serving’ loop,
an RDS must be allocated and initialized, and the resource channels must be set into resource mode by
mkre. The server process is able to do this because it knows all the resource channels (it is ‘omniscient’).
This means that the client processes can be compiled without knowledge of whether they will be served
using the alternative or the resource mechanism; this knowledge is restricted to the server. In order to
support the full generality of this situation, the server gives each resource channel an identifier from which
it can reconstruct the channel (in simple cases it can simply be the channel address). It is this resource
channel identifier that is delivered to server when it does a grant on the RDS. Note, however, that this
mechanism will not implement all varieties of replicated ALT; for example it is difficult to.use it if there are
boolean guards, and it is an absolute restriction that the process server does not use any of the other
channels client.to.server[]],j # i.

Inside the loop, instead of enabling and disabling the whole array of channels (as required for the alterna-
tive sequence), the server merely has to execute the sequence

grant;

Address(RCidentifier, ChannelAddress);
Input(ChannelAddress, Message);
Serve(Message, RCidentifier);

mkre

grant returns the channel RCidentifier. This is used by Address to determine to determine
ChannelAddress. Input uses an input instruction to receive a Message from the channel. This is passed
to Serve which serves the client. Finally mkrc returns the channel to resource mode so that the client can
be served again in the future.

When server exits the ‘WHILE Serving’loop, it must put each channelin the the array back into normal
mode by applying the unmkrc to each one; unless the client.to.server channels go out of scope,
or it is known that another process is going to use the same RDS with the same set of resource channels
(for example if there is an enclosing loop).

Ignorant Servers

An alternative usage of the resource mechanism is to implement servers that do not know who their clients
are, nor even how many there may be (‘ignorant servers’). In this case the client process must know that

12 Channels 181

it is going to use a resource channel, and what the address of the RDS is. Provided it is on the same pro-
cessor as the server, the client can allocate a resource channel for itself, associate it with the RDS by using
mhkre, and put itself on the queue by outputting. However, the resource channel data structure must be
on the same processor as the server and mkrc must be executed there, clients on remote processors must
rely on an auxiliary process to assist them in establishing their connection to the server. Since we may
also wish to allocate the virtual channels dynamically, the most general sequence of events is as follows:

« The client process makes a request to a ‘controlling process’ on its processor. Note that it can
do this by dynamically allocating an internal resource channel and queueing itself on an RDS
used by its controller.

« This controller communicates (along a pre-existing virtual channel) with a controlling process on
the same processor as the server; the controlling processes each allocate a VLCB and set up
the headers thereof so as to form a virtuat link.

+ The controlier on the server’s processor executes mkrce to link the newly-established input virtual
channel with the server’s RDS.

* The controller on the client’s processor now replies to the client’s request by giving it the address-
es ofthe channels (both halves of the virtual link) along which it can communicate with the server.

If the client happens to be on the same processor as the server, the two controlling processes are one
and the same, and this process can allocate an internal resource channel for the client. In this situation
neither the client nor the server need know where the other is located. In environments which are not com-
pletely dynamic, some or all of this sequence of operations can be performed by a compiler so as to reduce
or eliminate the need for ‘controlling processes’.

Note that it is ilfegal for a controlling process to apply mkrc to a waiting resource channel (because it cannot
be sure that server is not also waiting for a client).

It might also be unwise to apply unmkre to a queued channel if the server is ignorant. The problem here
is that the although unmkre changes the mode of queued channel from resource to normal, it doesn’t actu-
ally remove it from the queue. It does however remove the client’s resource channel identifier from the
resource channel data structure, so when the channel reaches the from of the queue, an execution of grant
by the server will yield a null identifier (NotProcess.p). An omniscient server would be able to handle this,
but an ignorant server might not.

Robust Servers

Whether a server is omniscient or ignorant, it may be required to make it tolerate the failure of a client.
This would certainly be the case if the server were a component of an operating system which communi-
cates with user programs. There are two ways to achieve this:

1 Restrict the way in which clients are allowed to interact with the server so that once a client has
made a ‘claim’ on the server it is guaranteed to complete its interaction correctly. This could be
achieved by means of library procedures etc.

2 Make the server able to recover from a failure. This would require that the main body of the server
always records enough information about its status so that it can be re-started, and any inconsis-
tencies tidied up (close any open files or whatever), and that it has another component (which
may be part of an operating system) that notices when the main body has failed (e.g. by timeout)
and re-starts it.

Unwanted Clients

In an operating system (o/s) environment it is necessary to be able to remove processes that are part of
a failed (or aborted) program. In the case of resources, one solution is for the o/s to inform the server of
the identity of the unwanted process(es), and then wait until it comes to the front of the queue. This implies
an unbounded wait, however, so instructions (erdsq, Idresptr etc.) are provided to allow the RDS queue
to be scanned for unwanted resource channels, and for them to be unlinked from the queue. This operation

182 T9000 transputer instruction set manual

can either be performed by the server itself, or by another process (e.g. part of the o/s). However if it is
performed by another process, it is essential that the server is prevented from performing a grant on the
RDS until the operation is complete. This can be achieved by guarding the RDS with a semaphore which
the server must obtain before performing a grant. This imposes an overhead on the operation of the server,
but permits the processing of the queue to proceed whilst the server is still interacting with a client.

Note that since it is unknown whether the unwanted resource channel is idle or queued, unmkrc must be
applied to it before the queue is scanned, otherwise the resource channel can make a ‘claim’ which can
‘slip by’ the scanning operation. Having applied unmkre, it might be sensible to determine whether or not
it is idle or queued before it was unmarked. This is achieved either by inspecting the resource channel
data structure if the channel is an internal channel, or by executing /dchstatus (see section 12.9.3) if the
channel is external. Then the resource queue need only be inspected if the channel is queued.

If the removal of unwanted clients is to be combined with the second strategy for constructing robust serv-
ers, it will be necessary for the server to record the identity of the client which it is serving. It may also be
necessary to protect this value with a semaphore in order to ensure atomic access.

12.8 Resetting and stopping a channel

T9000 links have been engineered so that when used within a system of devices connected on a printed
circuit board or via a backplane, they are extremely reliable. When used within their specification, the links
implement arbitrary numbers of virtual channels as dependably as the memory implements an arbitrary
number of variables.

In other circumstances, such as communication between a development system and a target system, or
communication via an unreliable interconnect, it is still possible to use transputer links. However, this re-
quires careful programming and the use of special instructions.

Evenin an ideal environment it may be necessary to recover the use of correctly functioning virtual chan-
nels which are in operation, for example when a distributed operating system kills a collection of communi-
cating processes. Again, this requires careful programming and the use of special instructions.

12.8.1 Dealing with a communication failure
Detecting communication failure

Communication failures will, of necessity, vary from system to system. In a development system con-
nected to a target system, an error in the target’s software may prevent a communication with the develop-
ment system from occurring; in a system where links may be unplugged, communications may start but
fail to complete. For many systems, use of timeouts, and checking lengths of messages received is suffi-
cient to detect failure; this normally requires the use of an additional process operating concurrently with
the communicating process. The following example uses a timeout to detect the failure of an output:—

CHAN OF BOOL completed:
PAR
SEQ
c! message
completed! TRUE
ALT
completed? ok
... completed communication
TIME? AFTER timeout
... failure detected

Having determined that a communication failure has occurred, there are two actions that may be required.
The first is to allow the process whose communication has failed to resume execution; the second is to
recover use of the channel.

Restarting processes

The example above cannot terminate when a communication failure occurs because the outputting pro-
cess never completes. The resetch instruction permits the process that detected the failure to recover the

12 Channels 183

descriptor of the outputting process. The outputting process can then be run, enabling it to complete. At
the same time, resetch resets the channel so that should the communication subsequently complete the
outputting process will not be scheduled a second time.

resetch

mnemonic name

resetch reset channel

resetch takes as its parameter a channel address in Areg. |t returns a value in Areg, leaving Breg and
Creg unaffected.

This is a privileged instruction. It signals Unalign if the channel address is not word aligned. It signals Integ-
erError if the address is not a channel address.

For an internal channel the channel word is set to NotProcess.p and the previous value of the channel
word is returned in Areg.

For a byte-stream channel in byte-stream mode, the corresponding link is reset and restarted. If a commu-
nication was in progress the descriptor of the process communicating is returned in Areg; otherwise Not-
Process.p is returned in Areg.

For a byte-stream channel not in byte-stream mode, the corresponding link is reset and restarted, and
Areg is undefined.

A virtual or event channel is reset into the empty state. If a communication was in progress the descriptor
of the process communicating is returned in Areg; otherwise NotProcess.p is returned in Areg.

The following example shows the two processes that must be run in parallel to allow continuation after
the communication failure.

The first process attempts to output the message and then signals to the other process.
Process 1 — outputting process (this must start to execute before the controlling process)

SEQ
c! message
completed! TRUE

The second process either receives the signal or times out. If it times out it resets the channel on which
the communication is being attempted. If the communication happens to complete after the timeout but
before the the channel is reset, the outputting process will be rescheduled and resetch will deliver the value
NotProcess.p. The process descriptor returned by resetch is run unless it is NotProcess.p. In either case
a signal will then be received from the outputting process. The following calls two procedures which are
described below.

Process 2 — controlling process

ALT
completed? ok
SKIP
TIME? AFTER timeout
INT pid:
SEQ
resetch(¢, pid)
IF
pid = NotProcess.p
SKIP
TRUE
run(pid)
completed? done
ok := FALSE

184 T9000 transputer instruction set manual

The procedure resetch has two parameters. The first parameter is a value parameter, and is the channel
address which is loaded into Areg before application of the resetch instruction. The second parameter
is a variable parameter, and is the value loaded into the integer stack as a result of the resetch instruction.

The procedure run has one parameter. This is a value parameter, and is the descriptor of the communicat-
ing process which is loaded into Areg before application of the runp instruction.

Note that it is essential that the outputting process executes the output instruction before the second pro-
cess starts to execute. This ensures that resetch is not applied before the communication has been at-
tempted.

Restarting communication

If the processes communicating over an external channel wish to reuse the channel after they have each
recovered from a communication failure, they must both apply resetch again. Each process must allow
sufficient time between its applications of resetch to ensure that

(i) the other process has already performed its first reset, and
(i) the channel has become completely quiescent.

Virtual channels cannot successfully be reused unless the underlying hardware is functioning correctly.
For example, if a link has been unplugged, it must be reconnected and restarted.

12.8.2 Recovering the use of a virtual channel which is in operation

In a complex system the use of timeouts, as described above, is complicated as detailed knowledge about
the whole system is needed to compute the timeout periods. However, in the absence of communication
failure, a distributed operating system can recover a virtual channel which may be in use, without timeouts.

To recover a virtual channel it is not sufficient to put each end of the channel into the empty state because
there may still be data or acknowledge packets in transit. The stopch instruction can be used to ensure
that there are no further packets in transit. The channel can then be made ready for reuse.

To know that there are no packets in transit it is only necessary to wait for the output end of the channel
to arrive at the state where every packet sent has been acknowledged. Thus it is necessary to ensure that
all data packets sent are acknowledged. Consequently, recovering use of the virtual channel involves ac-
tion by a process at each end. The process at the output end has to wait until every data packet has been
acknowledged; the process at the input end has to ensure that they are acknowledged. In each case this
is achieved by the process executing a stopch instruction.

stopch

mnemonic name

stopch stop virtual channel

stopch takes as its parameter a virtual channel address in Areg. It leaves the integer and floating—point
stacks undefined.

The instruction signals Unalign if the channel address is not word aligned, and signals /ntegerError if the
channel address is not a virtual channel address. It is a privileged instruction. It may also deschedule the
current process if the channel is an output channel, and so it is a descheduling point.

If the channel is a virtual input channel then any further packets received on the channel are acknowl-
edged, but otherwise ignored, until resetch is applied. The process is not descheduled.

If the channel is a virtual output channel, the behavior depends upon whether or not there is an output
in progress. If there is no output in progress the instruction completes without taking any further action.
Otherwise the process is descheduled. When every packet sent has been acknowledged the process is
rescheduled and the channel is left in the empty state.

12 Channels 185

To put the input end of the channel in an emply state, the process at the input end has to execute resetch
after the process at the output end has completed its execution of stopch. In the following example this
is achieved by means of a communication on another channel.

Process 1 — controlling process used to stop a virtual output channel on processor 1
SEQ
establish that output channel is to be stopped
stopch(channel) — described below
completed! 0

Process 2 — controlling process used to stop a virtual input channel on processor 2

INT ANY:
SEQ
establish that input channel is to be stopped
stopch(channel) — described below
completed? ANY

resetch(channel, ANY) — described in section 12.8.1

These processes call two procedures that are not defined in the code. resetch is described in section
12.8.1. stopch is described below.

The procedure stopch loads its single value parameter into Areg and applies the stopch instruction. The
resetch procedure is the same as before but observe that the variable parameter returned (aNY) is not
used.

12.9 Channel instructions according to usage

This section groups all instructions that reference channel addresses according to their usage. It includes
some instructions that have been described in chapter 8, some instructions that have been described in
this chapter, and a few that have not yet been described. Full descriptions are included for instructions
that have not been previously described.

12.9.1 Instructions that can be applied to all channels

The following instructions may be applied to all channels except vin and vout which cannot be applied to
byte-stream channels, and resetch which cannot be applied to event channels.

mnemonic name

in input message

out output message

outbyte output byte

outword output word

vin variable-length input message
vout variable-length output message
enbc enable channel

disc disable channel

resetch reset channel

chantype channel type

They are privileged instructions.

These instructions have the following in common.

186 T9000 transputer instruction set manual

¢ They have a channel address parameter passed to them via one of the integer stack registers.
e They signal Unalign if the channel address is not word aligned.
¢ They signal IntegerError if the channel address does not specify a channel.

in, out, outbyte, outword, vin, vout, enbc and disc are described in chapter 8. resetch is described in sec-
tion 12.8.1.

chantype

chantype (channel type) takes the channel address in Areg and assigns frue to Areg if the channel is inter-
nal, or false if it is an external channel. Breg and Creg are unaffected by this operation.

This is a privileged instruction.

12.9.2 Instructions that can be applied to resource channels

All the instructions in this category are applied to resource channels, and so can be applied to internal
channels, virtual input channels and event channels.

mnemonic name

mkre mark resource channel
unmkre unmark resource channel
Idresptr load resource queue pointer
stresptr store resource queue pointer

They have the following in common.
¢ They are privileged instructions.
¢ They have a channel address parameter passed to them in the integer stack register A.
* They signal Unalign if the channel address is not word aligned.

e They signal IntegerError if the channel address does not specify an internal channel, a virtual
input channel, or an event channel.

They are described in section 12.7.4.

12.9.3 Instructions that can be applied to external channels

The following instructions may only be applied to external channels.

mnemonic name
setchmode set channel mode
Idchstatus load channel status

These instructions have the following in common.
» They are privileged instructions.
* They have a channel address parameter passed to them in the integer stack register A.
* They signal Unalign if the channel address is not word aligned.

* They signal IntegerError if the channel address does not specify an external channel.

12 Channels 187

The channels modes and states referenced below are defined in section 12.3.
setchmode

setchmode has been described in section 12.6.1 for use on a virtual channel. It can also be applied to event
and byte-stream channels.

setchmode either activates the event channel specified by the channel address in Areg if Breg holds the
value true, or deactivates the channel if it holds the value false. Areg inherits the value previously in Creg,
and Breg and Creg are left undefined after execution. The reverse event channel word (i.e. the word used
to store the process descriptor etc. when the event is used to communicate in the opposite direction) is
used to store the activation state. If activation has been requested, then NotProcess.p is loaded into the
reverse channel word. If deactivation has been requested, then Deactivated.p is loaded into the reverse
channel word.

If the channel address is that of a byte-stream channel, then the processor either starts the physical link
associated with that channel address if Breg holds the value true, or resets the physical link if Breg holds
the value false. The behavior of this instruction does not depend on the mode of the physical link —i.e.
it starts/resets channel when it is in either virtual or byte-stream mode.

Idchstatus

Idchstatus takes as its parameter an external channel address in Areg. The instruction loads status in-
formation into the integer stack. /dchstatus is a privileged instruction. The format of the information re-
turned depends on whether the channel is a virtual channel, an event channel or a byte-stream channel.

For a virtual channel and an event channel, the status word returned in Areg is as shown in table 12.7.
The state is determined by examining the VLCB for a virtual channel, or the channel words for an event
channel.

bit number description
0 activation mode: ‘1’ = activated, ‘0’ = deactivated
1 set if channel stopping
3 channel in resource mode
4 set if packet or acknowledge pending
‘5 set if schedule pending
31 channel type: ‘1’ = virtual, ‘0’ = event

Table 12.7 Bit settings for virtual/event channel status in Areg

The instruction has the following effect when examining a virtual input channel or an event input channel.
If the channel is empty or stopping, then it loads NotProcess.p into Breg and undefines Creg. If the chan-
nel is waiting, then it loads the process descriptor of the inputting process into Breg and undefines Creg.
If the channel is in resource mode, then it loads the content of rc.Ptr slot into Breg and the content of rc.ld
into Creg.

The instruction has the following effect when examining a virtual output channel or an event output chan-
nel. If the channel is empty, then it loads NotProcess.p into Breg and undefines Creg. If the channel is
waiting, then it loads the process descriptor of the outputting process into Breg and undefines Creg.

For a byte-stream channel, the status word returned in Areg is as shown in table 12.8. The state is estab-
lished by the VCP.

188 T9000 transputer instruction set manual

bit number description
0 set if error detected (i.e. parity or disconnect)
3 set if parity error detected
4 set if disconnect error detected
31 always 0 (indicates byte-stream channel)

Table 12.8 Bit settings for byte-stream channel status in Areg

The instruction has the following effect when examining a byte-stream channel. If the channel is empty,
then it loads NotProcess.p into Breg and undefines Creg. If the channel is waiting, then it loads the pro-
cess descriptor of the communicating process into Breg and undefines Creg.

12.9.4 Instructions that can be applied to virtual channels

The following instructions may only be applied to virtual channels.

mnemonic name

initvicb initialize vicb

sethdr set virtual channel header
writehdr write virtual channel header
readhdr read virtual channel header
insphdr inspect virtual channel header
readbfr read buffer pointer from VLCB
swapbfr swap buffer pointer in VLCB
stopch stop virtual channel

All these instructions have the following in common.
* They are privileged instructions.
¢ They have a channel address parameter passed to them in the integer stack register A.

A VLCB controls the communication of an input and output channel pair. Each of these virtual
channels have a different channel address (the input channel has an even address and the output
has an odd address). In these instructions, the address of either channel can be used to identify
the channel’s controlling VLCB.

* They signal Unalign if the channel address is not word aligned.
¢ They signal InftegerError if the channel address does not specify a virtual channel.

These instructions are described in section 12.6.1 except stopch which is described in section 12.8.2.

13 Process state 189

13 Process state

This chapter provides detail on state changes that can be caused by various mechanisms of the processor
or explicitly by execution of certain instructions. It reviews the various forms of context switch that can
occur, including how to access and manipulate process state under certain circumstances; it explains how
timeslicing and interruption can be disabled; and it presents the instructions that can be used to manipulate
the scheduling and timer lists.

Prior to reading this chapter, the reader should be familiar with chapter 5, and sections 8.2, 8.3 and 8.5
of chapter 8, as well as sections 9.7 and 10.1.

131 Context switching

Chapter 5 introduced the registers that completely define the processor’s state. Because the transputer
is a machine that can run many processes concurrently by time-sharing execution, it is required to save
and/or reload the contents of these registers, as the current process is changed. This change of state is
known as a context switch.

There are broadly speaking two types of context switch on the IMS T9000. There is a partial context
switch, which stores some part of the state. This is used for scheduling/descheduling including timeslicing
between processes, and for the trap mechanism. There is also a full context switch, which stores the entire
state of the current process. This is used when a low-priority process is interrupted by a high-priority pro-
cess. The next two sections consider these separately.

13.2 Partial context switch — descheduling and trapping

When a context switch occurs, it is not always necessary or efficient to store the entire process state. A
partial context switch occurs when

¢ The current process is descheduled. This may be because
» it is waiting to communicate with another process
» it is waiting on a semaphore
e it is waiting on a timer
e itis being timesliced

« it has executed an instruction that explicitly forces the current process to be stopped
—e.g. stopp, endp

e Atrap is being taken or returned from.

In each of these cases, part of the current state is saved, and is often replaced with the contents of a data
structure defining the state of another context.

The data saved/reloaded in a context switch due to descheduling are values contained in: the workspace
descriptor register, the instruction pointer register, the status register, and the trap-handler register.

The'data saved/reloaded in a partial context switch due to the trap/protection mechanism are as for des-
cheduling/scheduling, but in addition include the values contained in the integer stack registers.

A trap-handler or supervisor can optionally save/reload the floating-point and 2D block move state of its
subordinate process(es). Special instructions are provided for this.

13.2.1 Descheduling and execution of the next process

When an L-process is descheduled, the instruction pointer and the trap-handler pointer are both saved
in data slots immediately below the workspace area of the process being descheduled. Also, the process

190 : T9000 transputer instruction set manual

status and control bits (see section 5.2) are saved in the th.Cntl slot of the THDS. These bits are not saved
if a null trap-handler has been specified. Table 13.1 summarizes. The process descriptor (content of
WdescReg), which uniquely identifies that process, is usually saved somewhere but its exact storage
location depends on why the process is being descheduled. For example if the process has descheduled
due to communication, the descriptor is stored in the channel word. The descriptor is not saved if the pro-
cess has been explicitly descheduled with with a stopp, endp, or restart instruction.

Observe that all other state information is lost when a process is descheduled. The points at which a pro-
cess may be descheduled are called descheduling points and these are listed in section 8.2.2. It is left
to the programmer to ensure that no important information is in any of the other state registers when a
process is descheduled. In particular, it is important that if an expression is being evaluated across a des-
cheduling point, that any intermediate results are stored in local variables rather than in the registers.

register old register value

StatusReg the process status and control bits are saved in
the th.Cntl slot of the THDS, unless the process
has a null trap-handler, in which case, these bits
are unsaved

WdescReg saved somewhere — see above

IptrReg ' saved in pw.lIptr slot! of process workspace data
structure

ThReg (for an L-process) saved in pw.TrapHandler siot! of process work-

space data structure

all other state registers unsaved
1 values are not saved when descheduled by endp or restart instruction

Table 13.1 State register values when a process is descheduled

To execute an L-process, the workspace pointer is removed from the front of the scheduling list and loaded
into the workspace descriptor register. Given the workspace address, the process then determines the
instruction pointer and trap-handler of the new process, from the process workspace data structure. The
processor then loads the process status and control bits into the status register, and may load the watch-
pointregisters with the values stored in the THDS. If a null trap-handler has been specified, then the status
register is loaded with the default control word. Table 13.2 summarizes.

register new register value

StatusReg the process status and control bits are loaded
from the th.Cntl slot of the THDS — otherwise,
unless the process has a null trap-handler, in
which case, the status register is loaded with the
default control word

WdescReg the Wptr register field is loaded with a new value
from the front of the current scheduling list

IptrReg loaded with content of the pw.lptr slot of the pro-
cess workspace data structure of new process

ThReg loaded with pw.TrapHandler slot of process
workspace data structure

WIReg if watchpointing is specified in the trap control
word, loaded with content of the th.eWI

WuReg if watchpointing is specified in the trap control

word, loaded with content of the th.eWu

Table 13.2 Register values after loading state for execution of process

13 Process state 191

13.2.2 Trapping

State storage and retrieval for the trap mechanisms is described in chapter 10. This information is re-
peated here with more detail in tabular form. Tables 13.3 and 13.4 show the state storage and retrieval
for an L-process trap and execution of tret. Tables 13.5 and 13.6 show the state storage and retrieval for
a P-process trap and execution of goprot.

Most traps are taken at the end of the instruction that causes the trap. The state delivered to the trap-han-
dler or supervisor is therefore the state after execution of this instruction. There are some traps for which

this is not true, and this is discussed later with other anomalous issues.

L-process trap

register old register value new register value
StatusReg process status and control bitsT are default control word
saved in the th.Cntl slot of the THDST
WdescReg the workspace pointer field of this reg- | the workspace pointer field of this reg-
ister is saved in the th.sWptr slot of ister is loaded with the address of
the THDS THDS
IptrReg saved in the th.slptr slot of the THDS* | loaded with the content of the th.Iptr
slot of the THDS
Areg saved in the th.sAreg slot of the trap reason
THDS*T
Breg saved in the th.sBreg slot of the error type
THDS*'
Creg saved in the th.sCreg siot of the undefined
THDS*T
ThReg copied into Wptr NotProcess.p
FPstatusReg not saved unchanged*™ or restored*
FPAreg not saved unchanged* " or restored*
FPBreg not saved unchanged®T or restored*
FPCreg not saved unchanged® T or restored*
BMreg0 unchanged® " unchanged*
BMreg1 unchanged* ¥ unchanged® "
BMreg2 unchanged* " unchanged® "
WIReg not saved undefined
WuReg not saved undefined
EptrReg saved in the th.Eptr slot of the THDS* | undefined
all other state not saved undefined
registers
1 all bits listed in table 5.5 except the sb.WtchPntPend bit — see ‘Single-step and watchpoint traps’, page 196
1 iftrapis duetofloating-point exception, then the content is restored to value that register had prior the floating-point
operation that trapped — see section 11.13 and ‘Trapping a floating-point exception’, page 195
* undefinediftrapis duetoanon-recoverable error—see ‘Trapping duetonon-floating-pointerrors—non-restartable’,
page 195
T undefined when a memory semantics error causes a trap — see ‘Memory semantics error’, page 196
% notsaved if trap is due to a recoverable error — see ‘Trapping due to non-floating-point errors — restartable’, page
195
% maynotpointto exactly the rightinstruction whenamemory semantics error causes atrap—see ‘Memory semantics
error’, page 196

Table 13.3 State register values before and after an L-process trap

192

T9000 transputer instruction set manual

For the ‘trap return’ mechanism, the value in Areg at the time the instruction is executed, determines
whether or not the trapped process is to be restarted. If Areg is zero, then it is not restarted, and the next
process on the scheduling list is executed. The new register values in this case are those shown in table -
13.2. If Areg is non-zero, then the trapped state is reloaded as shown in table 13.4.

register old register value new register value

StatusReg any bits overwritten are not saved process status and control bits are
loaded from the th.Cntl slot of the
THDS#

WdescReg the workspace pointer register field of | the workspace pointer field of this reg-

this register (Wptr) is saved in ThReg | ister is loaded with the content of the

th.sWptr slot of the THDS¥

IptrReg not saved loaded with the content of the th.slptr
slot of the THDS*

AReg not saved loaded with the content of the th.sAreg
slot of the THDS¥

BReg not saved loaded with the content of the th.sBreg
slot of the THDS?

CReg not saved loaded with the content of the th.sCreg
slot of the THDS*

ThReg not saved loaded with the content of Wptrt

WIReg not saved if watchpointing specified, then loaded
with content of the th.eWI slot of the
THDS*

WuReg not saved if watchpointing specified, then loaded
with content of the th.eWu siot of the
THDS*

all other state not saved undefined

registers

1 all bits listed in table 5.5 except the sb.WtchPntPend bit — see ‘Single-step and watchpoint traps’, page 196
1 new register values here are only applicable if Areg is O when fret is executed — otherwise see table 13.2

Table 13.4 State register values before and after a tret instruction

13 Process state

193

P-process trap

register old register value new register value
StatusReg process status and control bitsT are sh.IsPprocessBit is cleared — other-
saved in the ps.Cntl slot of the PDST wise as for loading and executing an
L-process — see table 13.2
WdescReg the workspace pointer field of this reg- | loaded with the content of WdescStu-
ister is saved in the ps.sWptr slot of bReg
the PDS
IptrReg saved in the ps.slptr slot of the PDS¥ | loaded with the content of the pw.lptr
slot of the process workspace data
structure of the supervisor
Areg saved in the ps.sAreg slot of the trap reason
PDs*"
Breg saved jn the ps.sBreg slot of the error type
PDS*
Creg saved in the ps.sCreg slot of the undefined
PDS*T
ThReg unaffected same as old value
FPstatusReg not saved unchanged** or restared*
FPAreg not saved unchanged* " or restored*
FPBreg not saved unchanged* " or restored*
FPCreg not saved unchanged*Jr or restored*
BMreg0 unchanged"*’Jr unchanged"*’Jr
BMreg1 unchanged”*" unchanged* "
BMreg2 unchanged* " unchanged*’ -
WIReg not saved as for loading and executing an L-pro-
cess — see table 13.2
WuReg not saved as for loading and executing an L-pro-
cess — see table 13.2
Ereg copied into ps.sEreg slot of PDS® undefined
Xreg copied into ps.sXreg slot of PDS® undefined
EptrReg saved in the ps.Eptr slot of the undefined
PDS*
PstateReg
WdescStubReg | copied into WdescReg undefined
all other state not saved undefined
registers

page 195

195

T all bits listed in table 5.5

1 iftrapis duetofloating-point exception, then the contentis restored to value that register had prior the floating-point
operation that trapped — see section 11.13 and ‘Trapping a floating-point exception’, page 195

* undefinediftrapis duetoanon-recoverable error—see ‘Trapping due to non-floating-point errors—non-restartable’,

T undefined when a memory semantics error causes a trap — see ‘Memory semantics error’, page 196
¥ notsaved iftrap is due to a recoverable error — see ‘Trapping due to non-floating-point errors — restartable’, page

% maynotpointto exactlythe rightinstruction when amemory semantics error causes atrap —see ‘Memory semantics
error’, page 196; and is undefined when a timeslice trap is taken

< only saved when trap occurs in the middle of an interruptible instruction

Table 13.5 State register values before and after a supervisor trap

194 T9000 transputer instruction set manual

register old register value new register value

StatusReg as for descheduling an L-process — see | process status and control bitsT are

table 13.1 loaded from the ps.Cntl slot of the

PDS and sb.IsPprocessBit is set

WdescReg saved in WdescStubReg the workspace pointer field of this reg-
ister is loaded with the content of the
ps.sWptr slot of the PDS

IptrReg as for descheduling an L-process — see | loaded with the content of the ps.siptr

table 13.1 slot of the PDS

AReg saved in PstateReg loaded with the content of the ps.sA-
reg slot of the PDS

BReg not saved loaded with the content of the
ps.sBreg slot of the PDS

CReg not saved loaded with the content of the
ps.sCreg slot of the PDS

ThReg unaffected same as old value

WIReg not saved if watchpointing specified, then loaded
with content of the ps.eWI slot of PDS

WuReg not saved if watchpointing specified, then loaded
with content of the ps.eWu slot of PDS

Ereg not saved loaded with the content of the ps.sEr-
eg slot of PDS¥

Xreg not saved loaded with the content of the
ps.sXreg slot of PDS*

EptrReg not saved loaded with the content of the ps.Eptr
slot of the PDS*

RegionReg0 not saved loaded with the content of the pc.Re-
gionReg0 slot of the RDDS

RegionReg1 not saved loaded with the content of the pc.Re-
gionReg1 slot of the RDDS

RegionReg2 not saved loaded with the content of the pc.Re-
gionReg2 slot of the RDDS

RegionReg3 not saved loaded with the content of the pc.Re-
gionReg3 slot of the RDDS

PstateReg not saved loaded with the content of Areg — ad-
dress of PDS

WdescStubReg | not saved loaded with the content of WdescReg

all other state not saved undefined

registers

1 all bits listed in table 5.5
+ only reloaded when restarting an interrupted instruction — see section 13.4

Table 13.6 State register values before and after a goprot instruction

Timeslicing from protected mode

Whereas for a low priority L-process, timeslicing can only occur at a timeslicing point, for a low priority
P-process, timeslicing can occur at any interrupt point. It is thus possible to ensure that a user task (imple-
mented as a P-process) cannot hog machine time. This is important for untrusted code. A timeslice in
protected mode causes a P-process trap. A trap may thus occur after any instruction or indeed in the
middle of any interruptible instruction. The state delivered to the supervisor is the current process state
at the time the trap is taken.

13 Process state 195

aside: The integer stack does not have to be preserved when an L-process is descheduled for a timeslice.
This is because the points at which a timeslice can occur are restricted. For a P-process, timeslicing is
not restricted in this way and so the integer state is stored in the PDS by the trap mechanism.

Trapping a floating-point exception

When a floating-point operation causes a trap, the machine restores the floating-point state to the state
as it was before the operation. That is, the floating-point stack, the floating-point status register, and the
floating-point flags are restored. The remaining (non-floating-point) state delivered to the trap-handler or
supervisor, is the state at the time the trap is taken. It is then left to the trap-handler or supervisor to deliver
the correct result to an IEEE handler. (See section 11.13.)

Trapping due to non-floating-point errors — non-restartable

In general it is not possible to recover from an instruction that traps due to an error that isn't a floating-point
exception (but see ‘Trapping due to non-floating-point errors — restartable’). For such traps the contents
of the following registers are not saved: integer stack registers, floating-point registers, block move regis-
ters and internal registers. But the trap does deliver to the trap-handler or supervisor, the remaining state
atthe time the trap is taken —i.e. the status bits, the workspace descriptor, the instruction pointer, the error
pointer and the trap-handler pointer. If an error occurs during the fetch stage of instruction execution, then
the next instruction due to be executed is still the instruction that is being fetched, and so the error pointer
and instruction pointer will have the same value.

Trapping due to non-floating-point errors — restartable

For traps caused by certain errors, it is possible to restart the trapped process. When such errors occur,
the process state delivered to the supervisor (or trap-handler) is the state as it was before the instruction
was executed. However the instruction pointer is not saved. The following gives details for this class of
error.

* Section 9.3 explains that when instructions call, ajw or gajw are executed in protected mode, Ac-
cessViolation is signalled if the new workspace pointer is not writable. When the supervisor has
taken corrective action, it can re-execute the trapped instruction by restarting the P-process us-
ing goprot. Before executing goprot the supervisor must copy the error instruction pointer, which
has been saved in ps.Eptr, into ps.slptr.

* Section 9.2 explains that some instructions cannot be executed when running under protection.
An attempt to execute any one of these ‘privileged’ instructions causes Privinstruction to be sig- .
nalled and a trap to be taken. This enables the supervisor to take corrective action (for example
execute the instruction on behalf of the P-process) and to restart the P-process from the instruc-
tion following the privileged instruction using goprot. Before executing goprot the supervisor must
copy into ps.slptr, the error instruction pointer, which has been saved in ps.Eptr. N.B. When a
privileged instruction is trapped, the stored error pointer is the address of the next instruction to
be executed.

« Similarly if a process attempts to execute an an illegal instruction (i.e. an invalid opcode), then
the process traps. This enables the trap-handler (or supervisor) to take corrective action and re-
start the trapped process from the following instruction using tret or goprot. Before executing tret
(or goprot) the trap-handler (or supervisor) must add the instruction length (in bytes) to the error
instruction pointer, which has been saved in th.Eptr (or ps.Eptr,) and write the result into th.slptr
(or ps.slptr).

Instructions that explicitly cause traps

The instructions j 0 (breakpoint), syscall and causeerror, which explicitly force a trap to be taken, deliver
to the trap-handler or supervisor, the state affer the instruction is executed. Since these instructions do
no more than take a trap, the only change that these instructions make to the current process state during
their execution, is to adjust the instruction pointer register to the address of the next instruction to be
executed.

196 T9000 transputer instruction set manual

Context traps

If single-step is enabled or a watchpoint occurs when goprot, selth, or restart is executed, then a ‘context’
trap is taken, as discussed in section 10.3.1. Under these conditions therefore, the state is saved as for
‘Instructions that explicitly cause traps’ (described above).

Single-step and watchpoint traps

Single-step and watchpoint traps are usually taken between instructions. They therefore deliver the state
exactly as it is affer an instruction has been executed.

An L-process can only trap at the end of an instruction®. However, a timeslice may cause a P-process to
trap in the middle of an instruction, delivering to the supervisor, the current process state at the time the
trap is taken. Hence, if a timeslice is due in the middle of an interruptible instruction, when single-stepping
a P-process, then a single-step and timeslice trap is taken (t.StepTime is presented to the supervisor).
Similarly if a timeslice is due in the middle of an interruptible instruction when a watchpoint is pending, then
a watchpoint and timeslice trap is taken (t. WatchTIme is presented to the supetrvisor). A watchpoint trap
isinthis case not taken at the end of the instruction unless another watchpoint is detected after the instruc-
tion resumes execution.

When a watchpoint is detected, the watchpoint trap pending flag (sb.WtchPntPend) is set in the status
register. When a trap is taken, this flag is cleared before saving to the control word of the THDS or PDS.
If a watchpoint is pending when an instruction is interrupted then sb.WtchPntPend is saved in the shadow
state, and this is reloaded into status register when the instruction resumes. Hence, even if an instruction
is interrupted, a pending watchpoint causes a watchpoint trap at the end of that instruction (or at the next
timeslice).

Memory semantics error

When a memory semantics error occurs (see page 120), it is not possible for the machine to determine
the exact address of the instruction that caused the error. The address that it loads into the error pointer
slot of the THDS or PDS points to a location that is near to and not before the error causing instruction,
but is not guaranteed to point to the actual iocation. The instruction pointer register, the integer stack regis-
ters, the floating-point registers, the block move registers and the internal registers are not saved. It is not
possible to restart a process that has caused a memory semantics error.

13.2.3 Instructions that are used to store and retrieve additional state

A point to note from tables 13.3 and 13.5 is that the floating-point registers and block move registers con-
tain valid state of the trapped process after a trap has been taken. These registers are not used to establish

- a new environment for the trap-handler or supervisor, so there is no need for the mechanism to deliver
this state in a data structure. However instructions are provided for a program to store this state in data
structures for later use, and complementary instructions are available for reloading the registers with the
preserved state. These are listed in table 13.7 (fpstall and fpldall are introduced in section 11.12.3.). Typi-
cally, the trap-handler or the supervisor executes fpstall and stmove2dinitimmediately after atrap. Similar-
ly fpldall and moveZ2dinit are executed prior to restarting the trapped process. (A convenient place to store
this extra state, might be immediately after the THDS or PDS. The programmer is, however, given the
freedom to choose the location.)

Ifitis known that the trapped process does not have any floating-point or block move state, then execution
of these instructions may be omitted.

mnemonic name

fostall floating-point store all

foldall floating-point load all
stmoveZ2dinit store move2dinit data
moveZdinit initialize data for 2D block move

Table 13.7 Instructions for storing/retrieving extra state

T although it may complete execution of an instruction prematurely if an error is detected

13 Process state 197

fpstall and fpldall
These instructions are described in section 11.12.3.
stmove2dinit

The instruction stmove2dinit stores the block move register values into the empty data structure ad-
dressed by the pointer in Areg. The integer stack is popped leaving Creg undefined.

If the content of Areg is not word aligned, then Unalign is signalled. When executed in a P-process, if any
part of the vector is protected, then AccessViolation is signalled.

The data structure pointed to by Areg should be able to store three words of data. The instruction stores
the contents of the block move registers: BMreg0, BMreg1 and BMreg2 in the three siots of this structure
This is summarized in table 13.8.

word offset | slot name purpose

2 bmr.DeltaS | stmove2dinit copies the content of 2D block move con-
trol register 2 into this slot

1 bmr.DeltaD | stmove2dinit copies the content of 2D block move con-
trol register 1 into this slot

0 bmr.Count stmoveZ2dinit copies the content of 2D block move con-
trol register 0 into this slot

Table 13.8 Block move data structure
moveZ2dinit

moveZ2dinit is documented in section 7.15.1. Observe that it is complementary to stmoveZ2dinit in much
the same way that fp/dall is complementary to fpstall. However a data structure is not used. Instead the
block move registers are loaded with the contents of each of the integer stack registers. The integer stack
is undefined after execution.

an example

For example the following extract of code may be used in a supervisor, where BMDS _piris a variable hold-
ing the address of a three word block move data structure (BMDS) of the form shown in table 13.8, and
FPDS_ptr is a variable holding the address of a seven word floating-point data structure (FPDS) of the
form shown in table 11.26. These and other variables used in this sequence are local variables.

Idl BMDS_ptr; Idnl bmr.DeltaS;
Idl BMDS_ptr; Idnl bmr.DeltaD;
Idl BMDS_ptr; Idnl bmr.Count;
moveZ2dinit;

ldl FPDS_ptr;
foldall;

ldl RDDS_ptr; Idl PDS_ptr;
goprot;
stl TrapReason; stl ErrorType;

Idl FPDS_pitr;
fpstall;

ldl BMDS_ptr;
stmoveZ2dinit

Initially this sequence loads the block move state. Td achieve this it loads the data in each slot of the BMDS
into the integer stack, prior to executing move2dinit. It then loads the floating-point state more simply by

198 T9000 transputer instruction set manual

loading the address of the FPDS into Areg and executing fp/dall. The RDDS and PDS pointers are loaded
into the integer stack as described in chapter 9 prior to executing goprot which runs a P-process under
protection. When that P-process traps, control returns to the instruction following goprot. The trap and
error reasons, which are left in the integer stack by the trap mechanism, are saved in local variables. The
floating-point and block move state is then saved back into their data structures using fpstall and
stmove2dinit respectively.

13.3 Full context switch — interruption

An interrupt may occur at any interrupt point (see section 8.2.5). When a high priority process interrupts
a low priority process, the entire state of the low priority process is saved. The value in each state register
is loaded into its shadow register at the time of interrupt. This is known as a full context switch.

The state of the new high priority process is installed according to table 13.2.

When there are no more high priority processes to be executed, the transputer copies the contents of the
shadow registers back into the main registers and restarts the interrupted low priority process. The com-
plete state of the interrupted process is reloaded by this operation, and as far as the low priority processes
are concerned nothing has changed, unless a high priority process has explicitly changed the shadow
state.

Instructions are provided to enable the high priority process to inspect, save, and/or manipulate the values
held in these shadow registers. A debugging tool for example may need these instructions to examine the
state of the interrupted process. Also an operating system kernel may want to save the interrupted state
for reloading later, and in the meantime restart a different process at low priority. More details are given
on the latter application in section 13.4.

Instructions for saving and reloading shadow state

The instructions that give access to the shadow registers are listed in table 13.9. stshadow makes the
shadow state visible by storing it in memory. This may, for example, need to be inspected or saved for
later use. ldshadow is complementary to stshadow in that it loads the shadow registers from memory. This
allows the state of the low priority process to be modified, or even a different low priority process to be
started on return from interrupt. These instructions are only meaningful when executed in a high priority
process.

mnemonic name
Idshadow load shadow registers
stshadow store shadow registers

Table 13.9 Shadow register instructions

Figure 13.1 groubs the shadow registers into the order in which they are saved with the stshadow instruc-
tion, and the order in which they are loaded with the Idshadow instruction. The shadow register index mark-
ers shown in the figure, are used by the instructions to specify which blocks of registers are to be saved
or loaded.

13 Process state

199

shadow marker shadow register

0 —mm—»
RegionReg0.sh
RegionReg1.sh
RegionReg2.sh
RegionReg3.sh

i —mm»
PstateReg.sh
WdescStubReg.sh

2 ———
ThReg.sh

38 —0—— » g

. StatusReg.sh

—_—

WdescReg.sh
IptrReg.sh
Areg.sh
Breg.sh
Creg.sh
Ereg.sh
Xreg.sh
BMregO0.sh
BMreg1.sh
BMreg2.sh

5 EptrReg.sh

- .
FPstatusReg.sh
FPAreg.sh
FPBreg.sh
FPCreg.sh

6 — —

WIReg.sh
WuReg.sh

7] —

words in slot

—_ ot

—_

ST G G AT I T U QT G (T Gy

NN =

—-

71
1

11

Figure 13.1 Order in which shadow registers are stored

Prior to executing either of these instructions, the integer stack registers are set up as follows.

Areg marker specifying start of first shadow group to be loaded or stored

Breg marker specifying end of last shadow group to be loaded or stored
Creg pointer to the first location to be read from or written to

The range of registers is specified by the shadow markers held in Areg and Breg. The registers specified
by the instructions are those grouped between these markers according to figure 13.1. (Note that the
markers are between register groups to avoid ambiguity.) Hence if the value in Areg is 5 and the value

in Breg is 6, then this specifies the floating-point shadow registers.

The shadow register instructions are privileged. Their behavior is undefined when executed by a low prior-
ity process. Their behavior is also undefined if the values held in Areg and Breg do not satisfy the certain
criteria — namely, Areg should be greater than or equal to 0 and should less than Breg, Breg should be

less than or equal to 7.

200 T9000 transputer instruction set manual

stshadow

stshadow stores the contents of the shadow registers specified by the shadow markers held in Areg and
Breg, into the contiguous block of memory beginning at the address in Creg. The integer and floating-point
stack registers are undefined after execution of stshadow.

The contents of the shadow registers are stored into the contiguous block of store that starts atthe address
stored in Creg. Data is stored into this block according to the order shown in figure 13.1. For example if
the region descriptor registers are specified, then the content of RegionReg0.sh is stored at the first word
location in the block, the content of RegionReg1.sh is stored at the second word location in the block,
etc. The number of words required for storing the data in each register is also shown figure 13.1. Observe
that, the floating-point stack registers are double word registers and so consume two word locations each
in the data block. All other registers are single word registers.

Where the interrupted process is the null process (i.e. no low priority process had been executing), this
in indicated by the workspace descriptor shadow register having the value NotProcess.p and the status
shadow register having the value 0.

Idshadow

Idshadow loads the contents of the locations within the contiguous block of memory beginning at the ad-
dress in Creg, into the shadow registers specified by the shadow markers held in Areg and Breg. The
integer and floating-point stack registers are undefined after execution of Idshadow.

The shadow registers are loaded from the contiguous block of store that starts at the address stored in
Creg. The order of the data held in this block determines the resultant shadow state, according to figure
13.1. For example if only the watchpoint registers are specified, then WiReg.sh is loaded with the content
of the first word location in the block, and WuReg.sh is loaded with the content of the second word location
in the block. The floating-point stack registers are double word registers and so consume two words of
data each from the data block. All other registers are single word registers.

If any of the shadow registers WdescReg.sh, ThReg.sh, PstateReg.sh, or WdescStubReg is not word
aligned, or the priority bit of WdescReg.sh or WdescStubReg.sh is not ‘1’ (low), then undefined behavior
will occur.

13.4 Restarting an interrupted process

It has previously been described how the instructions fret and goprot are respectively used to restart a
trapped L-process and a trapped P-process. This section explains how to restart an interrupted process.
If a process that has just been interrupted, is to be restarted, then there is no problem because its state
is stored in the shadow registers and will be automatically reloaded when the current high priority process
deschedules orterminates. However, if it is required to restart a process that is not the currently interrupted
process, then one of the two methods described in this section can achieve this.

Use of Idshadow

One way of restarting an interrupted process (either P-process or L-process), is via starting up another
high priority process (using runp). The job of this process is then to reload the shadow state from the saved
data structure of the interrupted process. For this it uses the Idshadow instruction. It should then terminate
itself (using stopp) hence allowing the low priority state to be reloaded by the processor.

This method of reloading interrupted state is in one way more straightforward than the method described
next, because the /dshadow instruction complements stshadow. The saved data need not be manipulated
between these two instructions.

The disadvantage is that it is necessary to run an extra process at high priority, to force the transputer to
reload the interrupted state from the shadow registers.

Use of goprot and restart

An alternative way of restarting an interrupted P-process or L-process is by using goprot and restart (table
13.10) respectively. They use the P-state data structure (PDS), which is described in section 9.7.1.

13 Process state 201

mnemonic name
goprot go protected
restart restart

Table 13.10 Instructions for restarting interrupted processes
goprot

goprot is fully described in section 9.8. As well a (re)starting a trapped P-process, it can be used to restart
an interrupted P-process.

Note that when a subsequent trap occurs, control will be returned to the process that executed goprot,
and the process state will be saved in the P-state data structure specified by that instruction. Thus if it is
required to return control to the same supervisor that would have handled traps prior to the interrupt, then
this supervisor must execute the goprot. A separate code sequence can be used for setting up the restart,
but a jump must be made to the supervisor for the actual restart. The following example demonstrates.

supervisor: Idl RDDS_ptr — load pointer to region descriptor data structure — RDDS
Idl PDS ptr — load pointer to P-state data structure — PDS
goprot — restart P-process

restarter: ... set up PDS and RDDS
... load WdescStubReg of interrupted process into Areg (from shadow state)
Idc (4) — load workspace pointer mask
and — extract workspace pointer from process descriptor
gajw — set to supervisor’s workspace
j supervisor — jump to supervisor

The ‘restarter’ is the code responsible for restarting the interrupted P-process. It firstly loads the PDS with
the shadow state for the P-process. It then adjusts the workspace pointer to that of the ‘supervisor’, and
makes a jump to the entry point in the code of the supervisor where the P-process is restarted. PDS_ptr
and RDDS ptr are local variables that hold pointers to the P-state data structure and region descriptor
data structure respectively. The supervisor loads these into the integer stack and restarts the P-process
using goprot.

restart

The restart instruction restarts an interrupted L-process in the same way that goprot restarts an interrupted
P-process (except that there is no requirement for Breg to hold an RDDS pointer because relocation and
protection are not applicable to an L-process). The state of the process should therefore be loaded into
a PDS in exactly the same way as for a P-process, and a pointer to this should be held in Areg when the
instruction is executed. Note that this is a secondary use for the PDS because in this case it is used to
hold L-process state rather than P-process state.

This instruction saves the current state according to table 13.1. The new state is loaded according to table
13.6 except that PstateReg, WdescStubReg, and the region descriptor registers are not applicable for
restarting an L-process.

restart does not change the value of the trap-handler register, and so an L-process started with restart
has the same trap-handler as the process that starts it. It may therefore be necessary to install the trap-
handler for the interrupted L-process (using selth) before starting it with restart.

If restart triggers a single-step or watchpoint trap, then it does not restart the L-process. The trap delivers
in Areg, one of the values t.WatchContext, t.StepContext or t.StepWatchContext.

202 T9000 transputer instruction set manual

If an interrupted process is to be restarted using one of these instructions, then the high priority process
that caused the interruption must extract the state from the shadow registers using stshadow. At some
later stage, this state must be written into the PDS that is specified in Areg by goprot or restart.

It may be necessary to reload the floating-point and 2D block move state as described earlier (using fostall
etc.). This state should be reloaded immediately before execution of goprot or restart and it shouid be
saved when an interrupt occurs.

13.5 Enabling and disabling interruption and timeslicing, and forcing a timeslice

By default, a low priority process is timesliced (section 8.2.4), and can be interrupted (section 8.2.5). How-
ever, timeslicing and interruption can be explicitly disabled.

mnemonic name

settimeslice set timeslicing status
timeslice - | timeslice

intdis interrupt disable
intenb interrupt enable

Table 13.11 Timeslice and interrupt instructions

Instructions used to disable and enable timeslicing and interruption, and for forcing a timeslice, are shown
in table 13.11, and described below, but firstly the following general points should be noted.

When the currently executing process enables (or disables) timeslicing, this action also enables (or dis-
ables) timeslicing for all the other processes that share the same trap-handler. The timeslice enable/dis-
able state is indicated by the timeslice disable bit (sb.TimesliceDisabledBit) in the status register —i.e.
when timeslicing has been disabled, this bit is set. This is a process control bit and so gets saved when
a trap occurs.

When interruption has ben disabled, neither interrupts nor timeslices are allowed to occur. Interruption is
automatically re-enabled when a process is descheduled. Interruption or timeslicing cannot be disabled
while running under protection.

settimeslice

settimeslice can be used both to prevent timeslicing and to allow timeslicing. The value passed in Areg
specifies which is required. If Areg is false, timeslicing is disabled, and if Areg is true, timeslicing is en-
abled. After execution of the instruction, Areg holds a value to indicate whether or not timeslicing was
previously enabled (again false means disabled and true means enabled). Breg and Creg are unaffected
by this instruction.

This instruction is privileged and is only meaningful when run in a low-priority process. If Areg does not
contain false or true when it is executed, the behavior is undefined.

If prior to execution, the sb.TimesliceDisabledBit was set then Areg is loaded with false to indicate that
timeslicing was disabled. If prior to execution, the sb.TimesliceDisabledBit was reset then Areg is
loaded with true to indicate that timeslicing was enabled. If prior to execution, the value false was present
in Areg, then sb.TimesliceDisabledBit is set to 1 to indicate that timeslicing is now disabled. If prior to
execution, the value true was present in Areg, then sb.TimesliceDisabledBit is set to 0 to indicate that
timeslicing is no longer disabled.

timeslice

timeslice forces a timeslice to be taken, regardless of whether timeslicing or interruption is enabled. The
instruction requires no stack parameters.

13 Process state 203

This can be executed from a high or low priority process. It is a descheduling point. A side-effect of this
is that when executed from a low priority L-process, it will cause interruption to be enabled (because the
current process is descheduled).

When executed from an L-process at either low or high priority, the current process is descheduled and
rescheduled, hence placing it at the back of the current priority scheduling list. The integer and floating-
point stacks are not preserved. When executed from a P-process at either low or high priority, a trap is
taken and a special value is presented to the supervisor in Areg, indicating that the reason for the trap
was a timeslice.

intdis

intdis disables interruption and timeslicing. It requires no parameters and does not affect the integer stack.
This instruction is privileged and is only meaningful when run in a low-priority L-process.

intenb

intenb enables interruption. It requires no parameters and does not affect the integer stack.

This instruction is privileged and is only meaningful when run in low-priority L-process.

Remember that disabling interruption forces timeslicing to be disabled; but provided that the timeslice dis-
able bit is 0, intenb also re-enables timeslicing.

Additional timeslicing considerations

When a low priority L-process is executed with a null trap-handler, timeslicing is enabled by default. It can
be explicitly disabled, but if the process is descheduled or trapped, timeslicing will again be enabled when
it restarts. This implies that a trap-hander will always start executing with timeslicing enabled, because
it must itself have a null trap-handler. But if it subsequently installs a trap-handler for itself (using sefth)
it will inherit the timeslice enable/disable state specified by that trap-handler.

If an interrupt occurs, the entire content of the status register is preserved via its shadow register. There-
fore, when the low priority process resumes, timeslicing is as it was when the interrupt occurred (unless
explicitly manipulated by a high priority process).

The timeslice clock continues to count while timeslicing is disabled. If a timeslice is due when timeslicing
is enabled, a timeslice will be taken at the next timeslicing point (or at the next interrupt point if running
under protection). Furthermore, a timeslice trap does not reset the timeslice clock, and so if the timeslice
clock indicates that a timeslice is due while executing a P-process, it will still indicate that a timeslice is
due after the timeslice trap has been taken. Assuming therefore that it has timeslicing enabled, the super-
visor will timeslice at the next timeslicing point. Note however that this may not be the case when a time-
slice trap is forced by execution of timeslice.

Alternative means of disabling timeslicing

Where a process requires a short sequence of its code to execute without descheduling, the settimeslice
instruction described above should be used. However in applications that require an entire process to be
executed without timeslicing, there is an alternative method.

The trap-handler (or supervisor) can disable timeslicing in a subordinate L-process (or P-process) by set-
ting the timeslice disable bit (sb.TimesliceDisabledBit) in the control word prior to executing tret (or go-
prot). When the processor executes an L-process (or P-process), it loads the timeslice disable bit from
the control word of the process’s THDS (or PDS) into the status register.

13.6 Scheduling list and timer list queue manipulation

Before reading this section, the reader should be familiar with sections 8.2.1, 8.3 and 8.5.

204 T9000 transputer instruction set manual

As well as the instructions described for initiation and termination of processes (section 8.3), the IMS
T9000 provides two instructions for explicit manipulation of the scheduling lists. These provide more con-
trol over the scheduling mechanism. This is of particular interest to the operating system programmer.

Similarly, as well as the timer instructions described in section 8.5, the IMS T9000 also provides instruc-
tions to manipulate the timer lists and restart the clocks.

It is safe to manipulate either scheduling list or either timer list from either priority. It is usual to manipulate
the lists from the same or higher priority. It would not be normal practice for a low priority process to manip-
ulate the high priority list. However, bear in mind that if a high-priority queue is installed by a low priority
process, an interrupt will result as soon as the list has been modified (unless interruption has been dis-
abled).

The programmer must be aware that the scheduling or timer lists may asynchronously change as a resutft
of the communication or timer mechanism recognizing ready processes, but it is guaranteed that while
a list manipulation instruction is being executed, the list specified by the instruction cannot be changed
by these mechanisms. However between instructions, there is the potential for interruption or timeslicing.
If a sequence of manipulation instructions is being executed, it may be necessary to disable interruption
and timeslicing (using the instructions described in section 13.5). Note however that queues can still
change while interruption is disabled.

The instructions that can be used to manipulate the scheduling lists and the timer lists, are shown in table
13.12, and are described below. For each of these instructions, if a specified queue has a front pointer
value NotProcess.p (the null process), then the queue is empty.

mnemonic name

swapqueue swap scheduler queue
insertqueue insert at front of scheduler queue
swaptimer swap timer queue

Idtimer load timer

sttimer store timer

Table 13.12 Instructions used to manipulate scheduling and timer lists
swapqueue

The instruction swapqueue takes the following parameters. Areg indicates the priority of the scheduling
list to be swapped (0 for high and 1 for low). Breg contains a pointer to the workspace of the first process
in the new queue. Creg contains a pointer to the workspace of the last process in the new queue. After
execution, the new queue is installed as the scheduling list for the specified priority and pointers of the
old scheduling list are held in Areg and Breg. Creg is left undefined.

This instruction is privileged. If Areg initially has a value other than 0 or 1, then the behavior is undefined.
Unless Breg specifies an empty queue {(NotProcess.p), the instruction has an undefined effect if the point-
ers in Breg or Creg are not word aligned. Note that the queue pointers are guaranteed to be word aligned
for all queues generated by the processor.

The front pointer register of the appropriate priority takes the value initially in Breg, and Areg is assigned
the initial value of the front pointer register. Similarly the back pointer register of the appropriate priority
takes the value initially in Creg, and Breg is assigned the initial value of the back pointer register.

insertqueue

The instruction insertqueue takes the following parameters. Areg indicates the priority of the scheduling
list to be extended. Breg contains a pointer to the workspace of the first process in the queue to be in-
serted. Creg contains a pointer to the workspace of the last process in the queue to be inserted. After
execution, the queue is inserted at the front of the scheduling list for the specified priority. The integer stack
is left undefined.

13 Process state 205

This instruction is privileged. If Areg initially has a value other than 0 or 1, then the behavior is undefined.
If Breg initially contains NotProcess.p, then the insert queue is empty and the instruction has no effect.
Unless Breg specifies an empty queue (NotProcess.p), the instruction has an undefined effect if the point-
ers in Breg or Creg are not word aligned. Note that the queue pointers are guaranteed to be word aligned
for all queues generated by the processor.

The front pointer register of the appropriate priority takes the value initially in Breg. If the initial value of
the front pointer register was NotProcess.p, then the initial scheduling list was empty, and the back pointer
register is assigned the initial value of Creg. If the initial scheduling list was not empty, then the initial value
of the front pointer register is stored in the pw.Link slot of the process workspace pointed to by Creg,
thereby linking the original list on to the end of the newly inserted queue.

swaptimer

The instruction swaptimer takes the following parameters. Areg indicates the priority of the timer list to
be swapped (0 for high and 1 for low). Breg contains a pointer to the workspace of the first process in the
new queue. After execution, the new queue is installed as the timer list for the specified priority and the
front pointer of the old timer list is held in Areg. Breg and Creg are left undefined.

This instruction is privileged. If Areg initially has a value other than 0 or 1, then the behavior is undefined.
Unless Breg specifies an empty queue (NotProcess.p), the instruction has an undefined effect if the point-
er in Breg is not word aligned. Note that queue pointers are guaranteed to be word aligned for all queues
generated by the processor.

The front pointer register of the appropriate priority takes the value initially in Breg, and Areg is assigned
the initial value of the front pointer register. The timeout register of the appropriate priority is loaded with
the first time on the new list, which is obtained from the pw.Time slot of the workspace of the process at
the front of the list.

note: The timer mechanism will only work correctly if the timer list is linked in chronological order. This can
be guaranteed if the newly installed list has been previously created by the processor using tin etc. (section
8.5).

Idtimer

The Idtimer instruction reads the time of the current priority clock, where the current priority is the priority
of the executing process. The value in the appropriate clock register is pushed into the integer stack.

sttimer

The sttimer instruction starts both high and low priority clocks. The value in Areg at the time of execution,
is assigned to both clock registers. Areg is then popped from the integer stack, leaving Creg undefined.
This is a privileged instruction.

This needs to be executed before any timer operations are executed, and furthermore because the time-
slicing mechanism uses these clocks, no timeslicing will occur before it is executed. For these reasons
the instruction is usually executed by the bootstrap code. However, execution of this instruction can be
repeated, hence resetting the clocks to the value in Areg.

206 : T9000 transputer instruction set manual

14 Debugging mechanisms 207

14 Debugging mechanisms

Section 10.3.1 introduced seven trap causes. Three of these are specifically provided to support program
debugging — namely: breakpoints, watchpoints, and single-stepping. This chapter discusses how each
of these are used to monitor both P-processes and L-processes. It also considers some subtleties that
occur when a process is due to deschedule or change context at the time of a trap.

14.1 - Breakpoints

@ trap-handler

breakpoint (j 0) tret breakpoint (f 0)

P-process @

A breakpoint can be used to debug a program by deliberately diverting control from the process in which
it appears. It is normally inserted by a debugger, in place of an existing instruction, which should be re-
placed at a later time. A breakpoint instruction is implemented by a dual use of the jump instruction. Thus,
the otherwise redundant instruction j 0, is interpreted as a breakpoint. This is coded in a single byte and
hence can always substitute any single instruction. The action is to cause a trap to be taken to its supervi-
sor if the process is a P-process or to its trap-handler if the process is an L-process.

goprot

The only other trap that can occur at the same time as a breakpoint trap, is a single-step trap. The trap
delivers a reason in Areg for the supervisor or trap-handler to inspect. This wilt be one of the trap reasons
t.Break or t.StepBreak (see table 10.5). It also delivers et.NoError to Breg.

14.2 Single-stepping

@ trap-handler

single-step tret single-step

P-process @

goprot

14.2.1 Single-stepping a P-process

A supervisor can single-step a P-process by setting to ‘1’ the single-stepping trap enable bit (sb.StepBit)
of control word in the PDS for that P-process. Provided this bit is set, when the supervisor executes goprot
to (re)start the P-process, the latter will trap back to the supervisor when it has executed a single instruc-
tion.

When the P-process trap saves the process state, it writes the address of the next instruction to be
executed into the ps.slptr slot of the PDS. Successive executions of goprot by the supervisor thus allow
a sequence of instructions to be executed in the P-process.

The trap delivers a reason in Areg for the supervisor to inspect. It may be that there is more than one
cause. The instruction being single-stepped may have caused an error, may have indicated that a time-
slice is due, or may have written to a watchpointed location (see section 14.3); or it could be one of the
instructions syscall, j 0 (breakpoint), or causeerror, which all force a trap to be taken. If one of more of these
trap conditions has been detected as well as the single-step, then these are encoded in the trap reason.

208 T9000 transputer instruction set manual

The trap also delivers the error type in Breg. For example if an add instruction causes an integer overflow,
it delivers t.StepError to Areg and et.IntegerOverflow to Breg (see tables 10.5 and 10.10). If no error
occurs during execution of a single-stepped instruction, the trap delivers the type code et.NoError.

14.2.2 Single-stepping an L-process

Atrap-handler can single-step an L-process by setting to ‘1’ sb.StepBit of controi word in the THDS. Pro-
vided this bit is set, when the trap-handler executes tret to restart the L-process, the latter will trap back
to the trap-handler when it has executed a single instruction.

When the L-process trap saves.the process state, it writes the address of the next instruction to be
executed into the th.slptr slot of the THDS. Successive executions of tret by the trap-handler thus allow
a sequential sequence of instructions to be executed in the L-process.

The trap delivers a reason in Areg for the trap-handler to inspect. It may be that there is more than one
cause. The instruction being single-stepped may have caused an error, or may have written to a watch-
pointed location (see section 14.3); or it could be one of the instructions syscall, j 0 (breakpoint), or cau-
seerror, which all force a trap to be taken. If one of more of these trap conditions has been detected as
well as the single-step, then these are encoded in the trap reason. Furthermore, it may be that certain
instructions are due to deschedule or context change and so this information is also encoded (this is dis-
cussed in section 14.4).

The trap also delivers the error type in Breg. For example if an fpsub instruction causes floating-point un-
derflow, it delivers t.StepError to Areg and et.FPUnderflow to Breg (see tables 10.5 and 10.10). If no
error occurs during execution of a single-stepped instruction, the trap delivers the type code et.NoError.

14.2.3 Early ‘single-step’ trap

If single-stepping is enabled then a trap occurring for any other reason, after the single-stepped instruction
has started execution, is also coded as a single-step trap. For example if a timeslice trap is taken from
a P-process in the middle of an instruction that is being single-stepped, then the reason for the trap is
t.StepTime (see table 10.5). Provided single-stepping is still enabled when this instruction is restarted,
a single-step trap will still be taken when the instruction has finished execution. However if a P-process
timeslice trap is taken after the completion of goprot but before the first instruction of the P-process starts
execution, then this is not coded as a ‘single-step’ trap.

14.3 Watchpoints

@ trap-handler

watchpoint

goprot J watchpoint tret

Atrap-handler or supervisor can monitor a specified region of the address space for write operations made
by its subordinate L-process or P-process. This ‘watchpointed region’ is specified by a lower bound watch-
point register (WIReg) and an upper bound watchpoint register (WuReg). The addresses in these regis-
ters must be word-aligned, and the address in WuReg must be greater than or equal to the address in
WIReg. If the watchpoint trap enable bit (sb.WtchPntEnbl) in the status register is set, then any instruc-
tion, attempting to write to an address between and including those addresses in these registers, causes
a trap to occur. Hence any instruction that performs a write operation can cause a watchpoint trap to be
taken.

This section explains how a trap-handler or supervisor can set up this mechanism.

14 Debugging mechanisms 209

14.3.1 Watchpointing a P-process

The watchpointed region is specified for a P-process by loading ps.eWu and ps.eW| with the upper and
lower addresses respectively. A supervisor can then watchpoint a P-process by setting to ‘1’ the watch-
point trap enable bit of control word in the PDS for that P-process. Provided this bitis set, when the supervi-
sor executes goprotto (re)start the P-process, the latter will trap back to the supervisor when an instruction
makes a write to the watchpointed region. Because the processor is operating under protection, the ad-
dresses in ps.eWu and ps.eWI are logical addresses, and the specified watchpointed region is a logical
address region.

The trap delivers a reason in Areg for the supervisor to inspect. It may be that there is more than one
cause. The instruction that caused the watchpoint also may have caused an error, may have indicated
that a timeslice is due, or may have been single-stepped (see section 14.2). If one of more of these trap
conditions has been detected as well as the watchpoint, then these are encoded in the trap reason.

14.3.2 Watchpointing an L-process

The watchpointed region is specified for an L-process by loading th.eWu and th.eWI with the upper and
lower addresses respectively. A trap-handler can then watchpoint an L-process by setting to ‘1’ the watch-
point trap enable bit of control word in the THDS for that L-process. Provided this bit is set, when the trap-
handler executes tret to (re)start the L-process, the latter will trap back to the trap-handler when an instruc-
tion makes a write to the watchpointed region.

Since a number of L-processes can share the same trap-handler, it is possible for the same trap-handier
to watchpoint a collection of L-processes.

The trap delivers a reason in Areg for the trap-handler to inspect. It may be that there is more than one
cause. The instruction that caused the watchpoint also may have caused an error, or may have been
single-stepped (see section 14.2). If one of more of these trap conditions has been detected as well as
the watchpoint, then these are encoded in the trap reason. Furthermore, it may be that certain instructions
are due to deschedule or context change and so this information is also encoded (this is discussed in sec-
tion 14.4).

When a watchpoint is detected, the trap always occurs after the instruction has been executed, unless
one of the other trap conditions has caused a trap to occur earlier than this. For example if a timeslice trap
is taken from a P-process in the middle of an instruction, when a watchpoint is pending, then the reason
for the trap is t.WatchTime (see table 10.5). When the instruction is restarted, there will no longer be a
watchpoint pending, and so a watchpoint trap will not occur at the end of the instruction, unless another
watchpoint is detected before completion of execution.

The trap also delivers the error type in Breg. Even when no error occurs at the same time as a watchpoint,
it delivers the type code et.NoError.

14.4 Single-stepping and watchpointing an L-process — some special considerations

A trap-handler that is monitoring an L-process using single-stepping or watchpointing, needs to take ac-
count of the special behavior of certain instructions. Some instructions cause a process to timeslice (see
section 8.2.4), some instructions cause a process to deschedule (see section 8.2.2), and some instruc-
tions cause other context swaps. Each of these are considered in this section.

Note that for a P-process, this is not a problem. If a timeslice is due, this causes a trap to be taken at the
next interruptible point, but otherwise a P-process does not deschedule or context change.

Timeslicing

If a timeslice is due prior to taking a watchpoint or single-step trap, then it is still due after the trap —i.e.
a timeslice is taken at the next timeslice point.

210 T9000 transputer instruction set manual

Note that timeslicing is always enabled by the trap mechanism — see section 13.5. If for example there
is a timeslice due but timeslicing is disabled, then a trap will re-enable timeslicing and the trap-handler will
by default timeslice at the next timeslicing point. If this is not required then the trap-handler must explicitly
disable timeslicing before executing a timeslicing point.

Descheduling

When a descheduling point (other than a timeslice point) takes a watchpoint or single-step trap, then this
information is encoded into the trap reason (e.g. t.StepDesch). The trap-handier may then deal with this
accordingly. Typically it will load ‘1’ into Areg prior to executing trap return to prevent the process from
restarting.

Context changes

When single-stepping or watchpointing an L-process, the instructions goprot, restart and selth must be
treated with care, because under normal circumstances these instructions would cause a change of con-
text and so it would be unclear as to where control is transferred when the trap is taken.

For this reason, when goprot, restart and selth cause a single-step or watchpoint trap, these instructions
are not executed in the normal way. They simply deliver the state to the current trap-handler, indicating
in the trap reason code that a context change was due to occur. It is thus left to the trap-handler to act
on this information. Note that a watchpoint trap is caused if the control word of the current trap-handler
is being watchpointed.

When an L-process traps while executing seith, it traps to the trap-handler that it had before the instruction
was executed. The new trap-handler is not selected. If the trap-handler is required to install a new trap-
handler on behalf of the trapped process, then it must change the context of that process. It can do this
by adjusting the trapped process’s workspace data structure and restarting the process. The instruction
pointer should therefore be copied from th.slptr to pw.Iptr of the workspace data structure, and the new
trap-handler should be copied from th.sAreg to pw.TrapHandler. The address of the workspace data
structure is held in th.sWptr. This address should then be loaded into Areg prior to execution of runp which
will restart the process with the new trap-handler. Note that this procedure forces the process executing
selth to be descheduled, whereas this is not necessarily the case when no trap is taken. When the trap-
handler executes tret, it should ensure that ‘1’ is loaded into Areg to prevent the process continuing execu-
tion with the original context.

When an L-process traps while executing goprot, it traps to the trap-handler that it has before the instruc-
tion is executed. The P-process does not start to execute. There are a number of ways that the trap-han-
dler might wish to handle this depending on the full reasons for the trap and the requirements of the code
behavior. The following discusses two options that can be implemented for a single-step trap: (i) it might
be required to single-step the P-process, (ii) it might be required to let the P-process execute without step-
ping and for stepping the resume when control has returned to the L-process (the supervisor).

In order to single step the P-process, the trap-handler can be made to act as its supervisor. The address
of the PDS for the P-process can be retrieved from th.sAreg. sb.StepBit should be set to ‘1’ in the control
word of the PDS. The address of the PDS should be loaded into Areg, and the address of the RDDS (re-
gion descriptor data structure) should be loaded into Breg from th.sBreg. The trap-handler is then ready
to execute goprot. This can then be repeated to single-step sequential instructions in the P-process as
described in section 14.2.1.

In order to bypass single-stepping of the P-process, is necessary to clear sb.StepBit in the control word
of the THDS. To re-execute goprot in the trapped process, the address of the trapped instruction should
be specified as the next instruction by copying th.Eptr into th.slptr, prior to executing tret. In addition to
this it is also necessary to provide an indication to the trap-handier of when the P-process traps back to
the supervisor, so that single-stepping can be restarted. A breakpoint inserted at the instruction following
goprot provides this indication.

15 Cache instructions . 211

15 Cache instructions

The performance of a computer system can be improved by providing a memory ‘cache’. A cache is a
fast access memory separate from main memory. It contains a copy of the data stored in selected loca-
tions of main memory, and is designed such that at any time, the contents of the most frequently accessed
locations are held in cache. Access to these locations can then be made to the cache rather than to main
memory, thus reducing access time.

When a location is accessed for reading or writing, the processor examines the cache to determine wheth-
er or not there is a copy of the data for that location currently in the cache. If not this is known as a cache
‘miss’. On a miss, the data is read from the external memory location, and if the location being accessed
is one that can be associated with the cache —i.e. it is ‘cacheable’ — then the contents of a fixed area of
memory (often called a ‘line’) containing that location are copied into the cache.

CPU
read local read local write write
workspace |
cache
uncacheable read uncacheable write
main cache
cache cache
read ‘ write
main memory

Figure 15.1 Memory architecture

The IMS T9000 has two memory caches: a workspace cache, and a main cache. Figure 15.1 shows the
memory architecture. The workspace cache is a ‘write-through’ cache, whereas the main cache is a ‘write-
back’ cache. This chapter explains these two different schemes, and describes the instructions that are

212 T9000 transputer instruction set manual

used to flush and invalidate the main cache. Refer to the Instruction and data cache and Programmable
memory interface chapters of The T9000 Hardware Reference Manual for a more detailed presentation
of the memory architecture.

15.1 Workspace cache

The workspace cache is used to provide fast access to local variables. It can cache (i.e. hold a copy of)
the first 32 words relative to the current workspace pointer (i.e. memory in the range Wptr @ 0 to
Wptr @ 31 —see section A.2.5 for an explanation of this notation). Each cache location is marked as inval-
id (i.e. empty) until an access is made to the associated memory location. When the workspace is ad-
justed, all new locations’in the 32 word range are marked as invalid.

If the memory location being read is within the first 32 words in the local workspace then /d/ operates as
follows:—

« [f the data for the specified location is not already cached, it copies the data to the workspace
cache and marks this data as valid, before loading into the integer stack.

¢ Ifthe data is already cached it loads directly from the workspace cache.

When the processor writes a whole word (e.g. stl, stn/, move) to any of the first 32 words in the local work-
space, it writes this data to both the workspace cache and the main cache / main memory. This data is
marked as valid in the workspace cache after this operation. The workspace cache is thus always consis-
tent with main memory, hence whenever data is read from either main memory or cache it is known that
this data will be correct. This is known as a ‘write-through’ cache.

A location that is cached by the workspace cache becomes uncached and its associated cache slot is
marked as invalid, when an instruction (sb or ss) writes only part of a word.

Note that the load instructions ldnl, Ib, Ibx, Is, Isx always load from main cache / main memory —i.e. they
do not read data from the workspace cache.

15.2 Main Cache

The programmable memory interface (PMI) specifies which parts of memory can be cached by the main
cache.

The main cache comprises a collection of cache ‘lines’, where each line holds data for 4 contiguous word
locations. A cache line comprises (i) a 4-word aligned physical address specifying the 4-word block repre-
sented by the line and (ii) data for those 4 words.

When a location is accessed (for either reading or writing), the processor searches the main cache. If it
finds a line specifying the location’s address, then the access is made to the cache rather than main
memory. If it does not find a valid cache line for that iocation — i.e. the processor performs a cache ‘miss’
—then provided that location is cacheable, it copies the contents of the 4-word aligned block that contains
the accessed location from main memory into an invalid cache line, which is then marked as valid. This
and subsequent memory accesses to locations with addresses within this 4-word block are then per-
formed to/from the cache rather than the main memory, as long as the line remains valid. After marking
anew line as valid, the processor invalidates one line of the cache (chosen at random), ensuring that there
is always at least one empty cache line for the next cache miss. When the cache has just been set up,
there is guaranteed to be one cache line, chosen at random, marked as invalid.

When the processor writes to a cached location, it writes the new data to the appropriate cache line, but
does not immediately record the change in main memory. Therefore unlike the workspace cache, the
cache data can be inconsistent with main memory. A cache line with such data is known as ‘dirty’. If a
cache is dirty when it is being invalidated, then the processor writes its data back to main memory (al-
though explicit invalidation using ica or icl — see later — does not cause write-back). This type of cache
is known as a ‘write-back’ cache. Note that provided the host processor is the only machine accessing

15 Cache instructions 213

memory, it will never access incorrect data. If the memory is already cached then it will read from the
cache, which is guaranteed to hold the most recent data. If the memory is not cached, then it either will
have never been cached, or will have been written back with the most recent data at the last invalidation.

15.3 Instructions

Where main memory is read by an external device (e.g. a DMA controller or another processor), the pro-
grammer must ensure that the main memory data is consistent with the cache data. Since the main cache
is write-back rather than write-through, this cannot automatically be guaranteed. The IMS T9000 provides
cache flushing instructions for this purpose.

Similarly, if an external device changes main memory, this is not automatically reflected in the workspace
or main cache. The programmer must therefore be aware that any such external memory change may
cause the information in the caches to be out-of-date. The IMS T9000 provides cache invalidation instruc-
tions, which can be used to ensure that the next read from specified locations is not taken from the main
cache but is read from external memory. However there are no such instructions for the workspace cache.
Hence to ensure that this never causes a problem, the local workspace should never be placed in an area
of memory that is likely to be modified by an external device — irrespective of whether this memory is
cacheable.

The instructions listed in table 15.1 operate on the main cache rather than the workspace cache. They
are provided to support the use of shared external memory.

mnemonic name

ica invalidate cache address
icl invalidate cache line
fdca flush dirty cache address
fdcl flush dirty cache line

Table 15.1 Cache instructions

The only times that a cache line gets written back to main memory, are either when a line is replaced follow-
ing a cache miss, or by explicit execution of fdca or fdci. These instructions do not invalidate cache lines.

If there is a valid cache line in the main cache that holds data for the address specified in Areg and this
line is dirty, then fdca writes this cache line back to main memory and marks it as not dirty. Areg is increm-
ented by BytesPerLine making this instruction convenient for sequential use where a contiguous block
of memory needs to be flushed. Breg and Creg are unaffected. Note that when a P-process executes
fdca, it interprets the content of Areg as a logical address.

If the cache line specified in Areg is valid and dirty and the address associated with that line is in the range
of addresses specified by Breg to Creg, then fdc/ writes it back to main memory and marks it as not dirty.
Aregis incremented by one, making this instruction convenient for sequential use where a number of lines
need to be flushed. This is a privileged instruction. Breg and Creg are unaffected. The cache line specified
should be in the range 0..1023, unless half of the cache is configured as internal RAM in which case the
line should be in the range 512..1023.

When only a small area of memoryT needs to be flushed, this can be achieved by applying a short se-
quence of fdca instructions — one application for each block of four words. Conversely when a large area
of memory needs to be flushed, it is more efficient to apply a sequence of fdcl instructions. This instruction
would normally be used in a loop incrementing the line in Areg from 0 through to 1023, thus ensuring that
all memory addresses in the specified range are consistent with the data in the cache. In some circum-
stances it may be desirable to flush just part of the cache. For example if half of the cache lines are config-
ured as internal memory, only those relating to external memory should be flushed. Also for flushing a very
large range of memory, it may be better to flush this by parts to avoid consuming a large amount of time
doing the flush in one go.

T As arule of thumb, if a contiguous block of data that is less than 4000 words is to be flushed, then a sequence of fdca instructions
should be used in preference to a sequence of fdc/ instructions.

214 T9000 transputer instruction set manual

Under ongoing operating conditions, there will normally be one and only one invalid line in the main cache.
However a program can explicitly invalidate cache lines using one of the instructions ica or icl. Be aware
that these instructions do not write dirty lines back to main memory before invalidating. It is therefore im-
portant that if variables are shared between processes, these should be expilicitly flushed (using fdcf or
fdca) prior to being explicitly invalidated. This is because when one process invalidates a cache line, it
cannot be certain that another process has not made a write prior to the invalidation.

If there is a cache line in the main cache that holds data for the address specified in Areg, then ica invali-
dates this cache line. Areg is incremented by BytesPerlLine, making this instruction convenient for re-
peated use where a contiguous block a memory needs to be invalidated. Breg and Creg are unaffected.

icl invalidates the cache line specified in Areg, if the address associated with that line is in the range of
addresses specified by Breg to Creg. Areg is incremented by one making this instruction convenient for
repeated use where a number of lines need to be invalidated. Breg and Creg are unaffected. The cache
line specified should be in the range 0..1023, unless half of the cache is configured as internal RAM in
which case the line should be the range 512..1023.

When only a small area* of memory needs to be invalidated, this can be achieved by applying a short
sequence of ica instructions — one application for each block of four words. Conversely when a large area
of memory needs to be invalidated, it is more efficient to apply a sequence icl instructions. These instruc-
tions would normally be used in a loop incrementing the line in Areg from 0 through to 1023, thus ensuring
that all memory addresses in the specified range are uncached. In some circumstances it may be desir-
able to invalidate just part of the cache. For example if half of the cache lines are configured as internal
memory, only those relating to external memory should be invalidated. Aiso for invalidating a very large
range of memory, it may be better to invalidate this by parts to avoid consuming a large amount of time
doing the invalidate in one go.

1 As arule ofthumb, if a contiguous block of data that is less than 4000 words is to be invalidated, then a sequence of ica instructions
should be used in preference to a sequence of ic/ instructions.

A T9000 instruction set reference guide 215

A T9000 instruction set reference guide

A1 Introduction

This reference section provides a summary of the T9000 instruction set. The instructions are listed in al-
phabetical order, one to a page. Each page has the instruction mnemonic and full name at the top and then
the following categories of information:

¢ Code: the instruction code;
* Description: a brief summary of the purpose and behavior of the instruction;

« Definition: a more complete description of the instruction, using the notation described below
in section A.2;

« Error signals: a list of errors and other signals which can occur;
« Comments: a list of other important features of the instruction;

* See chapter: areference to the chapter in the main body of this book where the use of the instruc-
tion is described;

» See also: for some instructions, a cross reference is provided to other instructions with a related
function.

These categories are explained in more detail below, using the add instruction as an example.

A1 Instruction name

The header at the top of each page shows the instruction mnemonic and, on the right, the full name of the
instruction. For primary instructions the mnemonic is followed by ‘n’ to indicate the operand to the instruc-
tion — this is used in the description to show how the operand is used.

A.1.2 Code

For secondary instructions the instruction op-code is shown as the ‘memory code’ — the actual bytes, in-
cluding any prefixes etc., which are stored in memory. The value is given as a sequence of bytes in hexade-
cimal, most significant byte first. The codes are stored in memory in ‘little-endian’ format — with the least
significant byte at the lowest address.

For primary instructions the code stored in memory is determined partly by the value of the operand to the
instruction. In this case the op-code is shown as ‘Function x’ where x is the function code in the last byte
of the instruction. For example, adc (add constant) is shown as ‘Function 8'. See Chapter 6 for more details
of instruction and operand encoding.

Example
The entry for the add instruction is:

Code: F5

A.1.3 Description

The description section provides an indication of the purpose of the instruction as well as a summary of
the behavior. This includes the meaning of the values in the registers which are used as parameters and
results of the instruction.

Example
The add instruction contains the following description:

Description: Add Areg and Breg.

216 T9000 transputer instruction set manual

A.1.4 Definition

The ‘definition’ section is intended to provide a more complete description of the behavior of the instruction.
The behavior is defined in terms of its effect on the state of the processor (i.e. the values in registers and
memory before and after the instruction has executed).

The effects of the instruction on registers, etc. are given as relationships of the following form:
register’ < expression involving registers, etc.

Where primed names (e.g. Areg ') represent values after instruction execution, while unprimed names
represent values when instruction execution starts. For example, Areg represents the value in Areg be-
fore the execution of the instruction while Areg * represents the value in Areg afterwards. So, the example
above states that the register on the left hand side becomes equal to the value of the expression on the
right hand side after the instruction has been executed.

The description is written with the main function of the instruction stated first (e.g. the main function of the
add instruction is to put the sum of Areg and Breg into Areg). This is followed by the other effects of the
instruction (e.g. popping the stack). There is no temporal ordering implied by the order in which the state-
ments are written.

The notation is described more fully below, in section A.2.
Example
The add instruction contains the following description:

Definition:
Areg’ < Breg +tcheckeda Areg

Breg’ < Creg
Creg’ < undefined

This says that the integer stack is popped and Areg assigned the sum of the values that were initially in
Breg and Areg. After the instruction has executed Breg contains the value that was originally in Creg,
and Creg is undefined.

A.1.5 Error signals

This section lists the errors and other exceptional conditions that can be signalled by the instruction. This
only indicates the error signal, not the action that will be taken by the processor — this will depend on the
the trap enable bits which are set, the value in the trap handler register, etc. The effects of these signals
are fully explained in chapter 10. The order of the error signals listed is significant in that if a particular error
is signalled then errors later in the list may not be signalled. The errors that may be signalled are as follows:

AccessViolation indicates that an attempt was made to access a non-existent or protected
memory or device address. Can only occur in P-processes.

IntegerError indicates a variety of general errors such as a value out of range and misuse of chan-
nels.

IntegerOverflow indicates that an overflow occurred during an integer arithmetic operation.

Privinstruction indicates that an attempt was made to execute a privileged instruction. Can only
occur in P-processes.

Unalign indicates that an access to an incorrectly aligned data object was attempted.

FPDivideByZero, FPInexact, FPInvalidOp, FPOverflow, and FPUnderflow —these floating point
errors correspond directly to the exceptional events specified in IEEE standard 754-1985: “divide

e n n o«

by zero”, “inexact result”, “invalid operation”, “overflow”, and “underflow” respectively.

FPError indicates a general floating point error — it is signalled by a not-a-number (NaN) or an
infinity as an operand to the instruction or whenever FPDivideByZero, FPInvalidOp or FPOver-
flow are signalled. This provides a simpler error handling mechanism and compatibility with the
T800 series of transputers.

A T9000 instruction set reference guide 217

Example
As an example, the error signals listed for the add instruction are:

Error signals:
IntegerOverflow can be caused by + necked

So, the only error that can be caused by add is an integer overflow during the addition of Areg and Breg.

A.16 Comments

This section is used for listing other information about the instructions that may be of interest. Firstly, there
is an indication of the type of the instruction. These are:

“Primary instruction” — indicates one of the 13 functions which are directly encoded in a single
byte instruction.

“Secondary instruction” — indicates an instruction which is encoded using opr.
Then there is information concerning the scheduling of the process:

“Instruction is a descheduling point” — an L-process may be descheduled after executing this
instruction. ‘

“Instruction is a timeslicing point” — an L-process may be timesliced after executing this instruc-
tion.

“Instruction is interruptible” — the execution of this instruction may be interrupted by a high prior-
ity process.

“Instruction is privileged” — the instruction cannot be executed when running under protection.
This section also describes any situations where the operation of the instruction is undefined or invalid.
Example
Using the add instruction as an example again, the comments listed are:

Comments:
Secondary instruction

This says that add is a secondary instruction (it is encoded as operate 5).

A.2 Notation

The following sections gives a full description of the notation used in the ‘definition’ section of the instruc-
tion descriptions.

A.2.1 The transputer state

The transputer state consists of the registers (mainly Areg, Breg, Creg, IptrReg, WdescReg, FPAreg,
FPBreg, and FPCreg), the contents of memory, and various flags and special registers (such as the error
flags, process queue pointers, clock registers, etc.). See chapter 5 for more information about process
state.

The two names Wptr and WdescReg, in the description, represent different values from the same T9000
register, WdescReg. Wptr is used for the address of the process workspace — this address is word
aligned and therefore has the two least significant bits set to zero. WdescReg is used for the ‘process des-
criptor’ — the value that is actually held in the workspace descriptor register. This value is composed of

218 T9000 transputer instruction set manual

the workspace address and the process priority, stored in bit 0 of the word. Bit 0 is set to 0 for high priority
processes and is set to 1 for low priority processes. Bit 1 of the process descriptor is always 0.

The floating point rounding mode is represented by a variable called RoundMode.

A.2.2 General

The instruction descriptions are not intended to describe the way the instructions are implemented, but
only their effect on the state of the processor. So, for example, the block move instructions are described
in terms of a sequence of byte reads and writes even though the instructions are implemented to perform
the minimum number of word reads and writes.

Comments (in /talics) are used to both clarify the description and to describe things that cannot easily be
represented by the notation used here; e.g. start next process. These actions may be performed in another
subsystem in the device such as the VCP or the scheduler and so any changes to machine state are not
necessarily completely synchronized with the execution of the instruction (as the different subsystems
work independently and in parallel).

Ellipses are used to show a range of values; e.g. ‘i = 0..31’ means that i has values from 0 to 31,
inclusive.

Subscripts are used to indicate particular bits in a word; e.g. Areg; for bit i of Areg; and Aregy ., .7 for
the least significant byte of Areg. Note that bit 0 is the least significant bit in a word, and bit 31 is the most
significant bit.

Instruction pointer

Generally, if the description does not mention the state of a register or memory location after the instruc-
tion, then the value will not be changed by the instruction.

One exception to this general rule is IptrReg, which is assigned the address of the next instruction in the
code before every instruction execution starts. The IptrReg is included in the description only when it is
directly affected by the instruction (e.g. in the jump instruction). In these cases the address of the next
instruction is indicated by the comment “next instruction”.

Scheduling operations

Some registers, such as the timer and scheduling list pointers, and some special workspace locations can
be changed at any time by scheduling operations. Changes to these are included in the description only
when they are directly caused by the instruction, and not just as an effect of any scheduling operation which
might take place.

A.2.3 Undefined values

Many instructions leave the contents of a register or memory location in an undefined state. This means
that the value of the location may be changed by the instruction, but the new value cannot be easily de-
fined, or is not a meaningful result of the instruction. For example, when the integer stack is popped, Creg
becomes undefined, i.e. it does not contain any meaningful data. An undefined value is represented by
the name undefined. The values of registers which become undefined by an instruction are implementa-
tion dependent and are not guaranteed to be the same on different transputer versions, or on future imple-
mentations of the T9000.

A.2.4 Datatypes

The transputer instruction set includes operations on four sizes of data: 8, 16, 32 and 64-bit objects. 8-bit
and 16-bit data can represent signed or unsigned integers; 32-bit data can represent addresses, signed
or unsigned integers, or single length floating point numbers; and 64-bit data can represent signed or un-
signed integers, or double length floating point values. Normally it is clear from the context (e.g. from the

A T9000 instruction set reference guide 219

operators used) whether a particular object represents a signed, unsigned or floating point number. A sub-
scripted label is added (e.g. Aregypsigned) 1o clarify where necessary.

A.2.5 Representing memory

The transputer memory is represented by arrays of each data type. These are indexed by a value repre-
senting a byte address. Access to the four data types is represented in the instruction descriptions in the
following way:

* byte[address] references a byte in memory at the given address
* sixteen[address] references a 16-bit object in memory

e word[address] references a 32-bit word in memory

e double[address] references a 64-bit object in memory

For all of these ,the state of the machine referenced is that before the instruction if the function is used
without a prime (e.g. word[]), and that after the instruction if the function is used with a prime (e.g.
word’[1]).

For example, writing a value given by an expression, expr, to the word in memory at address addr is repre-
sented by:

word’ [addr] < expr
and reading a word from a memory location is achieved by:
Areg’ < word[addr]

Writing to memory in any of these ways will update the contents of memory, and these updates will be con-
sistently visible to the other representations of the memory — i.e. writing a byte at address 0 will modify
the least significant byte of the word at address 0.

Data alignment

Each of these data items have restrictions on their alignment in memory. Byte values can be accessed
atany byte address, i.e. they are byte aligned. 16-bit objects can only be accessed at even byte addresses,
i.e. the least significant bit of the address must be 0. 32-bit and 64-bit objects must be word aligned, i.e.
the 2 least significant bits of the address must be zero.

Unalign may be signalled by an instruction accessing an object with the wrong alignment.
Address calculation

An address identifies a particular byte in memory. Addresses are frequently calculated from a base ad-
dress and an offset. For different instructions the offset may be given in units of bytes, words or double
words depending on the data type being accessed. In order to calculate the address of the data, the offset
must be converted to a byte offset before being added to the base address. This is done by multiplying
the offset by the number of bytes in the particular units being used. So, for example, a word offset is con-
verted to a byte offset by multiplying it by the number of bytes in a word (4 in the case of the T9000).

As there are many accesses to memory at word offsets, a shorthand notation is used to represent the cal-
culation of a word address. The notation register @ x is used to represent an address which is offset by
x words (4 x x bytes) from register. For example, in the specification of load non-local there is:

Areg’ < word[Areg @ n]

Here, Areg is loaded with the contents of the word that is n words from the address pointed to by Areg
(i.e. Areg + 4 x n), where nis the operand to the instruction —e.g. /dn/ n. As another example, the speci-
fication of fpldnldbi (floating point load non-local double indexed) instruction includes the line:

FPAreg’ < double[Areg € (2 X Bregq)]

220 T9000 transputer instruction set manual

Inthis case, FPAreq is loaded with the 64-bit value that is offset from Areg by the number of double words
in Breg — i.e. at address Areg + (8 x Breg).

In all cases, if the given base address has the correct alignment then any offset used will also give a cor-
rectly aligned address.

A.2.6 The configuration subsystem

The configuration registers are also represented as an array called ConfigReg. An error is caused if an
access is made to an illegal configuration register address. An error is also signalled if the CPU attempts
to write (using stconf) to a register which has been locked.

In addition, some of the commonly used configuration registers are referenced directly. These are:
ExternalRCBase
HdrAreaBase

MemStart

A.2.7 Constants

A number of data structures have been defined in this book. Each comprises a number of data slots that
are referenced by name in the text and the following instructions descriptions. The complete set of these

data structures is repeated below for convenience.

word offset | slot name purpose
0 le.Index contains the loop control variable
1 le.Count contains number of iterations left to perform
Table A.1 Loop end data structure
word offset | slot name purpose
0 pw.Temp slot used by some instructions for storing temporary values
—1 pw.Iptr the instruction pointer of a descheduled process
—2 pw.Link the address of the workspace of the next process in schedul-
ing list
pw.Count message length in variable length communication
-3 pw.TrapHandler pointer to trap-handler data structure (THDS)
—4 pw.Pointer saved pointer to communication data area
pw.State saved alternative state
pw.Length length of message received in variable length communication
-5 pw.TLink address of the workspace of the next process on the timer list
-6 pw.Time time that a process on a timer list is waiting for
Table A.2 Word offsets and names for data siots in a L-process workspace
word offset | slot name purpose
1 pp-Count contains unsigned count of parallel processes
0 pp-IptrSucc | contains pointer to first instruction of successor process

Table A.3 Parallel process data structure

A T9000 instruction set reference guide 221

word offset | slot name purpose
2 s.Back back of waiting queue
1 s.Front front of waiting queue
0 s.Count number_of extra processes that the semaphore will allow to contin-
ue running on a wait request

Table A.4 Word offsets and names for data slots in a semaphore data structure

word offset | slot name purpose initial value
2 rds.Back pointer to back of resource channel queue any ‘
1 rds.Front pointer to front of resource channel queue NotProcess.p
0 rds.Proc process descriptor of server NotProcess.p

Table A.5 Resource data structure (RDS)

word offset | slot name purpose initial value
1 rc.ld resource channel identifier / mode indicator NotProcess.p
0 rc.Ptr pointer to RDS or next resource channel any

Table A.6 Resource channel data structure

word offset | slot name purpose

10 ps.sXreg internal state — loaded into / stored from Xreg when protected mode
entered/exited in the middle of executing an interruptible instruction

9 ps.sEreg internal state — loaded into / stored from Ereg when protected mode
entered/exited in the middle of executing an interruptible instruction

8 ps.sCreg P-process C register — loaded into / stored from integer stack C reg-
ister when protected mode entered/exited

7 ps.sBreg P-process B register — loaded into / stored from integer stack B reg-
ister when protected mode entered/exited

6 ps.sAreg P-process A register — loaded into / stored from integer stack A reg-
ister when protected mode entered/exited

5 ps.siptr P-process instruction pointer — loaded into / stored from instruction
pointer register when protected mode entered/exited

4 ps.sWptr P-process workspace pointer — loaded into / stored from Wptr when
protected mode entered/exited

3 ps.eWu upper bound of P-process watchpoint region — may be loaded into
upper watchpoint register when protected mode entered

2 ps.eWl lower bound of P-process watchpoint region — may be loaded into
lower watchpoint register when protected mode entered

1 ps.Eptr pointer to instruction causing trap — loaded into / stored from error
pointer register when protected mode entered/exited

0 ps.Cntl control word

Table A.7 P-state data structure (or PDS)

222 T9000 transputer instruction set manual
word offset |slot name purpose
3 pc.RegionReg3 | loaded into region descriptor register 3 when protected mode en-
tered
2 pc.RegionReg2 |loaded into region descriptor register 2 when protected mode en-
tered
1 pc.RegionReg1 |loaded into region descriptor register 1 when protected mode en-
tered
0 pc.RegionReg0 |loaded into region descriptor register 0 when protected mode en-
tered
Table A.8 Region descriptor data structure
word offset | slot name purpose
11 th.sCreg L-process C register — stored from / loaded into integer stack C reg-
ister when trap-handler entered/exited
10 th.sBreg L-process B register — stored from / loaded into integer stack B reg-
ister when trap-handler entered/exited
9 th.sAreg L-process A register — stored from / loaded into integer stack A reg-
ister when trap-handler entered/exited
8 th.slptr L-process instruction pointer — stored from / loaded into instruction
pointer register when trap-handler entered/exited
7 th.sWptr L-process workspace pointer — stored from / loaded into Wptr when
trap-handler entered/exited
6 th.eWu upper bound of L-process watchpoint region — may be loaded into
upper watchpoint register when an L-process is executed?
5 th.eWl lower bound of L-process watchpoint region — may be loaded into
lower watchpoint register when an L-process is executed?
4 th.Eptr pointer to instruction causing trap — stored from error pointer register
when trap-handler entered
3 th.Bptr back of trap sharing process queue
2 th.Fptr front of trap sharing process queue
th.Iptr trap-handler instruction pointer — loaded into instruction pointer reg-
ister when trap-handler entered
0 th.Cnti control word
Table A.9 Trap-handler data structure (or THDS)
word offset | slot name purpose
5 fp.FPCreg loaded into / stored from floating-point stack register C by
fpldall | fostall
3 fp.FPBreg loaded into / stored from floating-point stack register B by
foldall [fostall
1 fp.FPAreg loaded into / stored from floating-point stack register A by
foldall | fostall
0 fp.FPstatusReg | loaded into / stored from floating-point status register by

foldall | fpstall

Table A.10 Floating-point state data structure

A T9000 instruction set reference guide

223

word offset | slot name purpose

2 bmr.DeltaS | stmove2dinit copies the content of 2D block move control register 2
into this slot

1 bmr.DeltaD | stmove2dinit copies the content of 2D block move control register 1
into this slot

0 bmr.Count stmoveZ2dinit copies the content of 2D block move control register 0
into this slot

Table A.11 Block move data structure

In addition, a number of constants are used to identify word length related values, etc. Note that, although
the T9000 is a 32-bit processor, these names are used for clarity and for consistency with the descriptions
of other transputers. These constants are listed in table A.12.

There are a number of values that are used by the transputer to indicate the state of a process and other
conditions. These are shown in table A.13.

Name Value Meaning
BitsPerByte 8 | The number of bits in a byte.
BitsPerWord 32 | The number of bits in a word.
ByteSelectMask #00000003 | Used to select the byte select bits of an address.
WordSelectMask #FFFFFFFC | Used to select the byte select bits of an address.
BytesPerWord 4 | The number of bytes in a word.
BytesPerLine 16 { The number of bytes in each cache line.
BytesPerVLCB 32 | The number of bytes that are allocated for each VLCB
MaxHeaderOffset #FFFE | The maximum offset allowed into the VLCB header
area.
MaxLink 3'| The maximum link number.
MaxPacketLength 32 | The maximum length of a virtual channel packet.
MinLink 0 | The minimum link number.
MinVirtualChannel MostNeg + #40 | The lowest virtual channel address.
#80000040
MinEventChannel MostNeg + #20 | The lowest event channel address.
#80000020
MostNeg #80000000 | The most negative integer value.
MostPos #7FFFFFFF | The most positive signed integer value.
MostPosUnsigned #FFFFFFFF | The most positive unsigned integer value.

Table A.12 Constants used in the instruction descriptions

224 T9000 transputer instruction set manual
Name Value Meaning
Deactivated.p MostNeg + #01 | Stored in reverse channel word of a deactivated event chan-
#80000001 | nel.
Deviceld Depends on trans- | A value used to identify the type and revision of transputer.
puter type. See Returned by the ldprodid and Ilddevid instructions.
table A.14.
Disabling.p MostNeg + #03 | Stored in the pw.State location while an alternative is being
#80000003 | disabled.
Enabling.p MostNeg + #01 | Stored in the pw.State location while an alternative is being
#80000001 (enabled.
false 0 | The boolean value false’.
LengthError.p MostPosUnsigned | Stored in the pw.Length slot of a process’ workspace to indi-
#FFFFFFFF [cate that the number of bytes received by a vin was more
—1 [than the maximum specified.
NoneSelected.o —1 | Stored in the pw.Temp slot of a process’ workspace while no
#FFFFFFFF | branch of an alternative has yet been selected during the
waiting and disabling phases.
NotProcess.p MostNeg | Used, wherever a process descriptor is expected, to indicate
#80000000 | that there is no process.
NullHeader —1 [Used where a null virtual channel header is needed.
#FFFFFFFF
NullOffset —1 | Used where a null virtual channel header offset is needed.
#FFFFFFFF
Ready.p MostNeg + #03 | Stored in the pw.State location during the enabling phase of
#80000003 | an alternative, to indicate that a guard is ready.
ResChan.p MostNeg + #02 | Stored in a channel word to indicate that it is in resource
#80000002 | channel mode.
Stopping.p MostNeg + #03 | Stored in a channel word to indicate that the channel is stop-
#80000003 | ping.
TimeNotSet.p MostNeg + #02 | Stored in pw.TLink location during enabling of a timer alter-
#80000002 | native after a time to wait for has been encountered.
TimeSet.p MostNeg + #01 | Stored in pw.TLink location during enabling of a timer alter-
#80000001 | native after a time to wait for has been encountered.
true 1 | The boolean value ‘true’.
Waiting.p MostNeg + #02 | Stored in the pw.State location by altwt and taltwt to indicate
#80000002 | that the alternative is waiting.

Table A.13 Constants used within the T9000

Device identity values

The following table lists the values returned by the /ddevid and Idprodid instructions.

Device

Revision Value

T9000

300..319

A28

Table A.14 Device identity values

Operators

Modulo operators

Arithmetic on addresses is done using modulo arithmetic — i.e. there is no checking for errors and, if the
calculation overflows, the result ‘wraps around’ the range of values representable in the word length of

A T9000 instruction set reference guide 225

the processor — e.g. adding 1 to the address at the top of the address map produces the address of the
byte at the bottom of the address map. There are also a number of instructions for performing modulo arith-
metic, such as sum, prod, etc. These operators are represented by the symbols ‘4, ‘-’ etc.

Error conditions

Any errors that can occur in instructions which are defined in terms of the modulo operators are indicated
explicitly in the instruction description. For example the div (divide) instruction indicates the cases that can
cause overflow, independently of the actual division:

if (Areg = 0) or ((Breg = MostNeg) and (Areg = -1))
{
Areg < undefined
IntegerOverflow
}
else

Areg’ < Breg / Areg

Breg’ < Creg
Creg’ < undefined

Checked operators

To simplify the description of checked arithmetic, the operators ‘ +checked’s —checked > €tC. are used to indi-
cate operations that perform checked arithmetic on signed integers. These operators signal an IntegerOv-
erflow if an overflow, divide by zero, or other arithmetic error occurs. If no trap is taken, the operators also
deliver the modulo resuilt.

To indicate floating point arithmetic performed to the IEEE standard, the operators ‘+zg¢’, *~eeg’, etc.
are used.

A number of comparison operators are also used and there are versions of some of these that treat the
operands as unsigned integers.

A full list of the operators used is given in table A.15.

226

T9000 transputer instruction set manual

Symbol

Meaning

Integer arithmetic with overflow checking

+checked Add, subtract, and multiply of signed integers. If the computation overflows an
—checked IntegerOverflow is signalled and the result of the operation is truncated to the
X checked word length.
Unchecked (modulo) integer arithmetic
+ Integer add, subtract, multiply, divide and remainder. If the computation over-
- flows the result of the operation is truncated to the word length. If a divide or
X remainder by zero occurs the result of the operation is undefined. No errors
/ are signalled. The operator ‘—’ is also used as a monadic operator.
rem

Floating point arithmetic to IEEE standard 754-1988

+iEeE
~IEEE
XIEEE
/ieee
remcee

These perform IEEE floating point arithmetic, using the current rounding
mode, on the operands. Both operands must be of the same precision. If an
error occurs, the appropriate exception is signalled and the result depends on
the particular instruction and the type of the error (see chapter 11 for more
details).

Signed comparison operators

A

I IviIiAv

LN

Comparisons of signed integer and floating point values: ‘less than’, ‘greater
than’, ‘less than or equal’, ‘greater than or equal’, ‘equal’ and ‘not equal’.

Unsigned comparison operators

<unsigned
> unsigned

Zunsigned
after

Comparisons of unsigned integer values: ‘less than’, ‘greater than’, ‘greater
than or equal’, and ‘after’ (for comparison of times — defined in chapter 8).

Logical bitwise operations

~ (or BITNOT)
A (or BITAND)
v (or BITOR)
® (or BITXOR)
<
>

‘Not’ (1’s complement), ‘and’, ‘or’, ‘exclusive or’, and logical left and right shift
operations on bits in words.

Boolean operators

not
and
or

Boolean combination in conditionals.

Table A.15 Operators used in the instruction descriptions

A T9000 instruction set reference guide 227

A.2.9 Functions
Type conversions
A number of functions are used to indicate type conversions. These are:

fpint(x) converts x (a floating point number) to an integral value, in the same floating point
format, using the current rounding mode.

int64(x) converts the floating point value, x, to a 64-bit signed integer, rounding towards —«
(note that this operation ignores the current rounding mode).

real32(x) converts x (which can be either an integer or a double precision floating point val-
ue) to a single precision (32-bit) floating point number, using the current rounding mode. If x is
a NaN then the result is R64ToR32NaN.

realé64 (x) converts x (which can be either an integer or a single precision floating point value)
to a double precision (64-bit) floating point number, using the current rounding mode. See chap-
ter 11 for details of the conversion of NaNs.

unsign(x) causes the bit-pattern in x to be interpreted as an unsigned integer.
In addition the following functions are used to simplify the descriptions:

sqroot (x) returns the square root of x using the current rounding mode.

0(x) converts a signalling NaN, x, into the equivalent quiet NaN.

See chapter 11 for more details of the floating point operations.

A.2.10 Conditions to instructions

In many cases, the action of an instruction depends on the current state of the processor. In these cases
the conditions are shown by an if clause; this can take one of the following forms:

if (condition) if (condition)
statement statement
else
statement

These conditions can be nested. Braces, {}, are used to group statements which are dependent on a condi-
tion. For example, the ¢j (conditional jump) instruction contains the following lines:

if (Areg = 0)
IptrReg’ < nextinstruction + n

else
{
IptrReg’ < nextinstruction
Areg’ < Breg
Breg’ < Creg
Creg’ < undefined
}

This says that if the value in Areg is zero, then the jump is taken (the instruction operand, n, is added to
the instruction pointer), otherwise the stack is popped and execution continues with the next instruction.

228 T9000 transputer instruction set manual

A T9000 instruction set reference guide

229

adcn

add constant

Code: Function 8

Description: Add a constant to Areg, with checking for overflow.

Definition:
Areg’ <= Areg +cpecked I

Error signals:
IntegerOverflow can be signalled by + cpeckeq

Comments:
Primary instruction

See chapter: 7

See also: /dnip

230 T9000 transputer instruction set manual

add add

Code: F5
Description: Add Areg and Breg, with checking for overflow.

Definition:
Areg’ < Breqg +gpecked Areg

Breg’ < Creg
Creg’ < undefined

Error signals:
IntegerOverflow can be signalled by + cpecked

Comments:
Secondary instruction

See chapter: 7

See also: adc sum

A T9000 instruction set reference guide 231
ajwn , adjust workspace

Code: Function B

Description: Move the workspace pointer by the number of words spécified in the operand, in order to
allocate/deallocate workspace stack. In protected mode a (recoverable) error occurs if the new workspace
address is not writable. The state delivered to the trap-handler in this case is the state before the instruction

started.

Definition:
Wptr’ < Wptr € n

Error signals:
AccessViolation signalled in a P-process if new workspace address is not writable

Comments:
Primary instruction

See chapter: 7

See also: call gajw

232 T9000 transputer instruction set manual

alt alt start

Code: 24 F3

Description: Start of a non-timer alternative sequence. The pw.State location of the workspace is set
to Enabling.p.

Definition:
word’ [Wptr @ pw.State] < Enabling.p
enter alternative sequence

Error signals:
Privinstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
See chapter: 8

See also: altend altwt disc disg diss dist enbc enbg enbs enbt talt taltwt

A T9000 instruction set reference guide 233
alt end

altend

Code: 24 F5

Description: End of alternative sequence. Jump to start of selected process.

Definition:
terminate alternative sequence
IptrReg’ < nextinstruction + word[Wptr @ pw.Temp]

Error signals:
Privinstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Uses the pw.Temp slot in the process workspace

See chapter: 8
See also: alf altwt disc disg diss dist enbc enbg enbs enbt talt taltwt

234 T9000 transputer instruction set manual

altwt alt wait

Code: 24 F4

Description: Wait until one of the enabled guards of an alternative has become ready, and initialize work-
space for use during the disabling sequence.

Definition:
if (word[Wptr @ pw.State] # Ready.p)
{
word’ [Wptr €@ pw.State] <« Waiting.p
deschedule process and wait for one of the guards to become ready

}

word’ [Wptr € pw.Temp] < NoneSelected.o

FPAreg’ < undefined
FPBreg’ < undefined
FPCreg’ < undefined
Areg’ < undefined
Breg’ < undefined
Creg’ < undefined

Error signals:
Privinstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: alt altend disc disg diss dist enbc enbg enbs enbt talt taltwt

A T9000 instruction set reference guide

235

and

and

Code: 24 F6

Description: Bitwise and of Areg and Breg.

Definition:
Areg’ < Breg A Areg

Breg’ < Creg
Creg’ < undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

236 T9000 transputer instruction set manual

bent byte count

Code: 23 F4

Description: Produces the length, in bytes, of a multiword data object. Converts the value in Areg, repre-
senting a number of words, to the equivalent number of bytes.

Definition:
Areg'’ < Areg X BytesPerWord

Error signals: none

Comments:
Secondary instruction

See chapter: 7

A T9000 instruction set reference guide 237

bitent count bits set in word

Code: 27 F6

Description: Count the number of bits set in Areg and add this to the value in Breg.

Definition:
Areg’ < Breg + numberofbitssetto 1 in Areg

Breg' < Creg
Creg’ < undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

238 T9000 transputer instruction set manual

bitrevnbits reverse bottom n bits in word

Code: 27 F8
Description: Reverse the order of the bottom Areg bits of Breg.

Definition:
if (0 =< Areg) and (Areg < BitsPerWord)
{

Areg’y..areg-1 <= reversed Bredy, .areg-1
Areg’areq..BitsPerWord-1 < 0

}

else
undefined effect

Breg’ < Creg
Creg’ < undefined

Error signals: none
Comments:

Secondary instruction

The effect of the instruction is undefined if the number of bits specified is more than the word length
See chapter: 7

See also: bitrevword

A T9000 instruction set reference guide

239

bitrevword

reverse bits in word

Code: 27 F7

Description: Reverse the order of all the bits in Areg.

Definition:
Areg’ < reversed Areg

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: bitcnt bitrevnbits

240 T9000 transputer instruction set manuai

bsub byte subscript

Code: F2

Description: Generate the address of the element which is indexed by Breg, in the byte array pointed
to by Areg.

Definition:
Areg’ < Areg + Breg

Breg' < Creg
Creg’ < undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: ssub sum wsub wsubdb

A T9000 instruction set reference guide 241

calln call

Code: Function 9

Description: Adjustworkspace pointer, save evaluation stack, and call subroutine at specified byte offset.
In protected mode a (recoverable) error occurs if the new workspace address is not writable. The state
delivered to the trap-handler in this case is the state before the instruction started.

Definition:
Wptr’' < Wptr @ —4

word’ [Wptr’ @ 0] < IptrReg
word' [Wptr’ @ 1] < Areg
word’ [Wptr’ @ 2] < Breg
word’ [Wptr’ @ 3] < Creg

IptrReg’ < nextinstruction + n

Areg’ < IptrReg
Breg’ < undefined
Creg’ < undefined

Error signals:
AccessViolation signalled in a P-process if new workspace address is not writable

Comments:
Primary instruction

See chapter: 7

See also: ajw gcall ret

242 T9000 transputer instruction set manual

causeerror cause error

Code: 62 FF

Description: Take a trap with a reason of causeerror and with the error type set to the value in Areg. If
the error code is notin the range 0 through 13, an integer error is signalled. Note that this instruction forces
a trap even when the corresponding trap enable flags are not set.

Definition:
if (0 < Areg) and (Areg = 13)
take a ‘causeerror’ trap with error value given in Areg
else
IntegerError

Error signals:
IntegerError signalled if Areg is not in range

Comments:
CauseError trap taken if Areg is in range

See chapter: 10

A T9000 instruction set reference guide 243

ch check byte

Code: 2B FA
Description: Check that the value in Areg can be represented as an 8 bit signed integer.
Definition:

if (Areg < =27) or (Areg = 27)

IntegerError

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cbu cir ciru cs csu

244 T9000 transputer instruction set manual

cbu check byte unsigned

Code: 2B FB
Description: Check that the value in Areg can be represented as an 8 bit unsigned integer.
Definition:

if (Areg < 0) or (Areg = 28)

IntegerError

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cb cir ciru cs csu

A T9000 instruction set reference guide 245

centl check count from 1

Code: 24 FD
Description: Check that Breg is the range 1..Areg, interpreting Areg and Breg as unsigned numbers.
Definition:

if (Breg = 0) or (Bredumsignes > ATredupsigned)
IntegerError

Areg’ < Breg
Breg’' < Creg
Creg’ < undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: csub0

246 T9000 transputer instruction set manual

chantype channel type

Code: 2CF9
Description: Test if channel pointed to by Areg is an internal channel.

Definition:
if (Areg does not cause Unalign frap)
{
if (internal channel)
Areg’ < true

else if (external channel)
Areg’ < false

else
IntegerError

}

Error signals:
Privinstruction signalled if executed by a P-process
Unalign signalled if Areg is not word aligned
IntegerError signalled if Areg is not a legal channel address

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12

A T9000 instruction set reference guide

247

cir

check in range

Code: 2C F7

Description: Check that Creg is in the range Areg..Breg.

Definition:
if (Creg < Areg) or (Creg > Breg)
IntegerError

Areg’ < Creg
Breg'’ < undefined
Creg’ < undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7
N

See also: ciru

248 ‘ T9000 transputer instruction set manual

ciru check in range unsigned

Code: 2C FC
Description: Check that Creg is the range Areg..Breg, treating all as unsigned values.
Definition:

if (Cr ©Gunsigned < AreJypsigned) OY (CreQunsigned > BreJupsigned)
IntegerError

Areg’ < Creg
Breg' < undefined
Creg’ < undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cir

A T9000 instruction set reference guide 249

cn conditional jump

Code: Function A

Description: Jump if Aregis O (i.e. jump if false). The destination of the jump is expressed as a byte offset
from the instruction following.

Definition:
if (Areg = 0)
IptrReg’ < nextinstruction + n

else
{
IptrReg’ < nextinstruction
Areg’ < Breg
Breg’ <« Creg
Creg’ < undefined
}

Error signals: none

Comments:
Primary instruction

See chapter: 7

See also: jlend

250 T9000 transputer instruction set manual

crcbyte calculate CRC on byte

Code: 27 F5

Description: Generate a CRC (cyclic redundancy check) checksum from the most significant byte of
Areg. Breg contains the previously accumulated checksum and Creg the polynomial divisor (or ‘genera-
tor’). The new CRC checksum, the polynomial remainder, is calculated by repeatedly (8 times) shifting the
accumulated checksum left, shifting in successive bits from the Areg and if the bit shifted out of the check-
sum was a 1, then the generator is exclusive-ored into the checksum.

Definition:
Areg’ < temp(8)
Breg’ < Creg
Creg’ < undefined

where
temp(0) = Breg
for i = 1 .. 8
temp(i) = (temp(i-1l) << 1) + AreggjtsperWord—i)

® (Creg * temp(i—1)pitsperWord—1)

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: creword

A T9000 instruction set reference guide

251

creword calculate CRC on word

Code: 27 F4

Description: Generate a CRC (cyclic redundancy check) checksum from Areg. Breg contains the pre-
viously accumulated checksum and Creg the polynomial divisor (or ‘generator’). The new CRC checksum,
the polynomial remainder, is calculated by repeatedly (BitsPerWord times) shifting the accumulated
checksum left, shifting in successive bits from the Areg and if the bit shifted out of the checksum was a

1, then the generator is exclusive-ored into the checksum.

Definition:
Areg’ < temp(BitsPerWord)
Breg’ < Creg
Creg’ < undefined

where
temp(0) = Breg
for i = 1 .. BitsPerWord
temp(i) = (temp(i-1l) << 1) + AregaitsperWord—i)

® (Creg * temp(i—1)pitsperWord—1)
Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: crcbyte

252 T9000 transputer instruction set manual

cs check sixteen

Code: 2F FA
Description: Check that the value in Areg can be represented as a 16 bit signed integer.
Definition:

if (Areg < —215) or (Areg = 215)

IntegerError

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cb cbu cir ciru csngl csu cword

A T9000 instruction set reference guide 253

csngl check single

Code: 24 FC

Description: Check that the two word signed value in Areg and Breg (most significant word in Breg) can
be represented as a single length signed integer.

Definition:

if ((Areg = 0) and (Breg # 0)) or ((Areg < 0) and (Breg # —1))
IntegerError

Breg’ < Creg
Creg’ < undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cb cbu cir ciru cs csu cword

254 T9000 transputer instruction set manual

csu check sixteen unsigned

Code: 2F FB
Description: Check that the value in Areg can be represented as a 16 bit unsigned integer.
Definition:

if (Areg < 0) or (Areg = 216)

IntegerError

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: cb cbu cir ciru ¢s csngl cword

A T9000 instruction set reference guide 255

csub0 check subscript from 0

Code: 21 F3

Description: Check that Breg is in the range 0..(Areg-1), interpreting Areg and Breg as unsigned num-
bers.

Definition:

if (Bre Yunsigned = ATredunsigned)
IntegerError

Areg’ < Breg
Breg’' < Creg
Creg’ < undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
Secondary instruction

See chapter: 7

See also: ccnti

256 T9000 transputer instruction set manual

cword check word

Code: 25F6

Description: Check that the value in Breg can be represented as an N bit signed integer. Areg contains
2¢-1 to indicate the value of N (i.e. bit N—1 of Areg is set to 1 and all other bits are set to zero).

Definition:
if (Breg < —Areg) or (Breg = Aregq)
IntegerError

Areg’ < Breg
Breg’ < Creg
Creg’ < undefined

Error signals:
IntegerError signalled if Areg is not in range

Comments:
The result of the instruction is undefined if Areg is not a power of 2
Secondary instruction

See chapter: 7

See also: cb cs csngl xword

A T9000 instruction set reference guide 257

devib device load byte

Code: 2F FO

Description: Perform a device read from memory or a memory-mapped device. The byte addressed by
Areg is read into Areg as an unsigned value. The memory access performed by this instruction is guaran-
teed to be correctly sequenced with respect to other device-access instructions. Also the instruction is
guaranteed to be executed after all normal memory load instructions that appear before it in the code se-
quence, and before all normal memory loads that appear later.

Definition:
Areg’yg,.7 < byte[Areg]
Areg'g..BitsPerword—1 < 0

Error signals:
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 7

See also: devis deviw devsb Ib

258 T9000 transputer instruction set manual

devls device load sixteen

Code: 2F F2

Description: Perform a device read from memory or a memory-mapped device. The 16 bit object ad-
dressed by Areg is read into Areg as an unsigned value. The memory access performed by this instruction
is guaranteed to be correctly sequenced with respect to other device-access instructions. Also the instruc-
tion is guaranteed to be executed after all normal memory load instructions that appear before itin the code
sequence, and before all normal memory loads that appear after it.

Definition:
Areg’o..15 < sixteen[Areg]
Areg’is..Bitsperword—1 < 0

Error signals:
Unalign signalled if Areg is not 16 bit aligned
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 7

See also: devib deviw devsb Is

A T9000 instruction set reference guide 259

deviw device load word

Code: 2F F4

Description: Perform a device read from memory or a memory-mapped device. The word addressed by
Areg is read into Areg. The memory access performed by this instruction is guaranteed to be correctly
sequenced with respect to other device-access instructions. Also the instruction is guaranteed to be
executed after all normal memory load instructions that appear before it in the code sequence, and before
all normal memory loads that appear after it.

Definition:
Areg’ < word[Areg]
Error signals:
Unalign signalled if Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is protected

Comments:
Secondary instruction

See chapter: 7

See also: devib devis devsw ldnl

260 T9000 transputer instruction set manual

devmove device move

Code: 62 F4

Description: Perform a device copy between memory or memory-mapped devices. Copies Areg bytes
to address Breg from address Creg. Only the minimum number of reads and writes required to copy the
data will be performed. Each read will be to a strictly higher (more positive) address than the one before
and each write will be to a strictly higher address than the one before. There is no guarantee of the relative
ordering of read and write cycles, except that a write cannot occur until the corresponding read has been
performed. The memory accesses performed by this instruction are guaranteed to be correctly sequenced
with respect to other device-access instructions. Also the instruction is guaranteed to be executed after
all normal memory access instructions that appear before it in the code sequence, and before all normal
memory accesses that appear after it.

Definition:
if (source and destination overlap)
undefined effect
else for i = 0..(unsign(Areg) — 1)

byte’[Breg + 1i] < byte[Creg + 1i]

Areg’ < undefined
Breg’ < undefined
Creg’ < undefined

Error signals:
AccessViolation signalled in a P-process if any address accessed is protected

Comments:
Secondary instruction
The effect of the instruction is undefined if the source and destination overlap
Instruction is interruptible

See chapter: 7

See also: move

A T9000 instruction set reference guide 261

devsb device store byte

Code: 2F F1

Description: Perform a device write from memory or @ memory-mapped device. Store least significant
byte of Breg into the byte addressed by Areg. The memory access performed by this instruction is guaran-
teed to be correctly sequenced with respect to other device-access instructions. Also the instruction is
guaranteed to be executed after all normal memory store instructions that appear before it in the code se-
guence, and before all normal memory stores that appear after it.

Definition:
byte’[Areg] < Bredqy..7

Areg’ < Creg
Breg’' < undefined

Creg’ < undefined

Error signals:
AccessViolation signalled in a P-process if the address in Areg is not writable

Comments:
Secondary instruction

See chapter: 7

See also: devlb devss devsw sb

262 T9000 transputer instruction set manual

devss device store sixteen

Code: 2F F3

Description: Perform a device write from memory or a memory-mapped device. Store bits 0..15 of Breg
into the sixteen bits addressed by Areg. The memory access performed by this instruction is guaranteed
to be correctly sequenced with respect to other device-access instructions. Also the instruction is guaran-
teed to be executed after all normal memory store instructions that appear before it in the code sequence,
and before all normal memory stores that appear after it.

Definition:
sixteen’[Areg] < Bregp..1s
Areg’ < Creg

Breg’' < undefined
Creg’ < undefined

Error signals:
Unalign signalied if Areg is not 16 bit aligned
AccessViolation signalled in a P-process if the address in Areg is not writable

Comments:
Secondary instruction

See chapter: 7

See also: devis devsb devsw ss

A T9000 instruction set reference guide 263

devsw device store word

Code: 2F F5

Description: Perform a device write from memory or a memory-mapped device. Store Breg into the word
of memory addressed by Areg. The memory access performed by this instruction is guaranteed to be cor-
rectly sequenced with respect to other device-access instructions. Also the instruction is guaranteed to
be executed after all normal memory store instructions that appear before it in the code sequence, and
before all normal memory stores that appear after it.

Definition:
word’ [Areg] < Breg

Areg’ < Creg
Breg’ < undefined
Creg’ < undefined

Error signals:
Unalign signalled if Areg is not word aligned
AccessViolation signalled in a P-process if the address in Areg is not writable

Comments:
Secondary instruction

See chapter: 7

See also: deviw devsb devss stnl

264 T9000 transputer instruction set manual

diff difference

Code: F4
Description: Subtract Areg from Breg, with checking for overflow.

Definition:
Areg’ < Breg — Areg

Breg’ < Creg
Creg’ < undefined

Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: sub

A T9000 instruction set reference guide 265

disc disable channel

Code: 22 FF

Description: Disable a channel guard in an alternative sequence. Areg is the offset from the byte follow-
ing the altend to the start of the guarded process, Breg is the boolean guard and Creg is a pointer to the
channel. If this is the first ready guard then the value in Areg is stored in workspace and Areg is set to
true, otherwise Areg is set to false. Note that this instruction should be used as part of an alternative se-
quence following an aftwt or taltwt instruction.
Definition:

if (Breg = false) — boolean guard is false

Areg’ < false
else if (Creg does not cause Unalign trap)

{
if (Cregq isinternal channel)
{
if (word[Creg] = NotProcess.p) — guard already disabled
Areg’ < false
else if (word[Creg] = WdescReg) — this guard is not ready
{
word’ [Creg] < NotProcess.p
Areg’ «— false
}
else if (word[Wptr @ pw.Temp] = NoneSelected.o)— thisis the first ready guard
{
word’ [Wptr @ pw.Temp] < Areg
Areg’ < true
}
else — a previous guard was selected
Areg’ < false
}
else if (Creg is external channel)
{
request VCP to disable external channel
if (channel not ready) — determined by VCP
Areg’ < false
else if (word[Wptr @ pw.Temp] = NoneSelected.o)— thisis the first ready guard
{
word’ [Wptr @ pw.Temp] < Areg
Areg’ < true
}
else — a previous guard was selected
Areg’ <« false
}
else
IntegerError
}

Breg’ < undefined
Creg’ < undefined

(continued)

266 T9000 transputer instruction set manual

Error signals:
Privinstruction signalled if executed by a P-process
Unalign signalled if Creg is not word aligned and Breg is not false
IntegerError signalled if Creg is not a legal channel address and Breg is not false

Comments:
Instruction is privileged
Secondary instruction
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: alt altend aliwt enbc talt taltwt

A T9000 instruction set reference guide 267

disg disable grant

Code: 61F3

Description: Disable aresource channel guard in an alternative sequence. Initially Areg is the offset from
the byte following the altend to the start of the guarded process, Breg is the boolean guard and Creg is
a pointer to the resource data structure. If this is the first ready guard then the value in Areg is stored in
pw.Temp, and Areg is set to true. Note that this instruction should be used as part of an alternative se-
quence following an altwt or faltwt instruction.

Definition:
if (Breg = false) — boolean guard is false
Areg’ < false
else if (Creg does not cause Unalign trap)

{
if (word[Creg @ rds.Proc] = NotProcess.p) — guard already disabled
Areg’ < false
else
{
word’ [Creg @ rds.Proc] <« NotProcess.p
if (word[Creg @ rds.Front] = NotProcess.p) — this guard is not ready
Areg’ <« false .
else if (word[Wptr @ pw.Temp] = NoneSelected.o)-— thisis the first ready guard
{
Areg’ < true
word’ [Wptr @ pw.Temp] < Areg
}
else — a previous guard was selected
Areg’ <« false
}
}

Breg’ < undefined
Creg’ < undefined

Error signals:
Privinstruction signalled if executed by a P-process
Unalign signalled if Creg is not word aligned and Breg is not false

Comments:
Instruction is privileged
Secondary instruction
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: alt altend altwt enbg talt taltwt

268 T9000 transputer instruction set manual

diss disable skip

Code: 23 FO

Description: Disable a ‘skip’ guard in an alternative sequence. Areg is the offset from the byte following
the altend to the start of the guarded process and Breg is the boolean guard. If this is the first ready guard
then the value in Areg is stored in workspace and Areg is set to frue, otherwise Areg is set to false. Note
that this instruction should be used as part of an alternative sequence following an aftwt or taltwt instruc-
tion.

Definition:

if (Breg = false) — boolean guard is false
Areg’' < false

else if (word[Wptr @ pw.Temp] # NoneSelected.o) — this is the first ready guard
Areg’ < false

else — another guard was selected

{
word’ {Wptr @ pw.Temp] < Areg
Areg’ < true

}

Breg’ < Creg
Creg’ < undefined

Error signals:
Privinstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: alt altend altwt enbs talt taltwt

A T9000 instruction set reference guide 269

dist disable timer

Code: 22 FE

Description: Disable a timer guard in an alternative sequence. Areg is the offset from the byte following
the altend to the start of the guarded process, Breg is the boolean guard and Creg is the time after which
this guard will be ready. If this is the first ready guard then the value in Areg is stored in pw.Temp, and
Areg is set to frue. Note that this instruction should be used as part of an alternative sequence following
a taltwt instruction.

Definition:

if (Breg = false) — boolean guard is false
Areg’ < false

else if (word[Wptr @ pw.TLink] = TimeNotSet.p) — no timer is ready
Areg’ < false

else if (word[Wptr @ pw.TLink] = TimeSet.p) — a timer is ready

{
if not (word[Wptr @ pw.Time] after Cregq) — but not this one

Areg’ < false

else if (word{Wptr @ pw.Temp] = NoneSelected.o) — thisis the first ready guard
{
word’ [Wptr @ pw.Temp] < Areg
Areg’ < true
}
else — a previous guard was selected
Areg’ < false
}
else
Areg’ < false

remove this process from timer list
Breg’ < undefined
Creg’ < undefined

Error signals:
Privinstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction
Instruction is interruptible
Uses the pw.Temp slot in the process workspace

See chapter: 8

See also: altend enbt talt taltwt

270 T9000 transputer instruction set manual

div divide

Code: 22 FC

Description: Divide Breg by Areg, with checking for overflow. The result when not exact is rounded to-
wards zero.

Definition:
if (Areg = 0) or ((Breg = MostNeg) and (Areg = -1))
{
Areg < undefined
IntegerOverflow

}

else
Areg’ < Breg / Areg

Breg’ < Creg
Creg’ < undefined

Error signals:
IntegerOverflow can be signalied

Comments:
Secondary instruction

See chapter: 7

See also: rem

A T9000 instruction set reference guide 271

dup duplicate top of stack

Code: 25 FA
Description: Duplicate the top of the integer stack.
Definition:
Areg’ < Areg
Breg’ < Areg
Creg’ < Breg
Error signals: none

Comments:
Secondary instruction

See chapter: 7

See also: fpdup pop rev

272 T9000 transputer instruction set manual

enbc enable channel

Code: 24 F8

Description: Enable a channel guard in an alternative sequence. Areg is the boolean guard and Breg
is a pointer to the channel. Note that this instruction should only be used as part of an alternative sequence
following an alt or talt instruction.

Definition:
if (Areg # false)
{
if (Breg does not cause Unalign trap)
{
if (Breg isinternal channel)
{
if (word[Breg] = NotProcess.p) — not ready
word’ [Breg] < WdescReg

else if (word[Creg] # WdescReg) — not previously enabled
word’ [Wptr @ pw.State] < Ready.p
}

else if (Breg is external channel)

{

request VCP to enable external channel

if (channel ready) — determined by VCP
word' [Wptr @ pw.State] < Ready.p

}

else
IntegerError

Breg’ < Creg
Creg’ < undefined

Error signals:
Privinstruction signalled if executed by a P-process
Unalign signalled if Breg is not word aligned and Areg is not false
IntegerError signalled if Breg is not a legal channel address and Areg is not false

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: alt altend altwt disc talt taltwt

A T9000 instruction set reference guide 273
enbg ' enable grant

Code: 61 F2

Description: Enable a resource channel guard in an alternative sequence. Areg is the boolean guard
and Breg is a pointer to the resource data structure. Note that this instruction should only be used as part
of an alternative sequence following an alt or talt instruction.

Definition:
if (Areg = false)
{

word’ [Breg @ rds.Proc] < WdescReg

if (word[Breg @ rds.Front] # NotProcess.p)
word' [Wptr @ pw.State] < Ready.p
})

Breg’ < Creg
Creg’ < undefined

Error signals:

Privinstruction signalled if executed by a P-process
Unalign signalled if the address in Breg is not word aligned and Areg is not false

Comments:
Instruction is privileged
Secondary instruction
See chapter: 8 and 12

See also: alt altend altwt disg talt taltwt

274 T9000 transputer instruction set manual

enbs enable skip

Code: 24 F9

Description: Enable a ‘skip’ guard in an alternative sequence. Areg is the boolean guard. Note that this
instruction should only be used as part of an alternative sequence following an ait or falt instruction.

Definition:
if (Areg # false)
word’ [Wptr @ pw.State] < Ready.p

Error signals:
Privinstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: alt altend altwt diss talt taltwt

A T9000 instruction set reference guide 275

enbt enable timer

Code: 24 F7

Description: Enable a timer guard in an alternative sequence. Areg is the boolean guard and Breg is
the time after which the guard may be selected. Note that this instruction should only be used as part of
an alternative sequence following a talt instruction; in this case the location pw.State will have been initial-
ized to Enabling.p and the pw.Tlink slot initialized to TimeNotSet.p.

Definition:
if (Areg = false)
{
if (word[Wptr @ pw.TLink] = TimeNotSet.p) — this is the first enbt
{
word’ [Wptr @ pw.TLink] < TimeSet.p
word’ [Wptr @ pw.Time] < Breg

}
else if (word[Wptr €@ pw.TLink] = TimeSet.p) — this is not the first enbt
{
if (word[Wptr @ pw.Time] after Bregq) — this enbt has an earlier time
word’ [Wptr @ pw.Time] < Breg
}

}

Breg’ < Creg
Creg’ < undefined

Error signals: ,
Privinstruction signalled if executed by a P-process

Comments:
Instruction is privileged
Secondary instruction

See chapter: 8

See also: altend dist talt taltwt

276 T9000 transputer instruction set manual

endp end process

Code: F3

Description: Synchronize the termination of a parallel construct. When all branches have executed an
endp instruction a ‘successor’ process then executes. Areg points to the workspace of this successor pro-
cess. This workspace contains a data structure which holds the instruction pointer of the successor pro-
cess and the number of processes still active.

Definition:
if (Areg does not cause Unalign trap)

{
word’ [Areg @ pp.Count] < word[Areg @ pp.Count] — 1

if (word’[Areg @ pp.Count] = 0)

{
IptrReg’ < word[Areg @ pp.IptrSucc]
Wptr”’ < Areg
}
else
start next process
}
FPAreg’ < undefined
FPBreg’' < undefined
FPCreg’ < undefined
Areg’ < undefined
Breg’ < undefined
Creg’ < undefined

Error signals:
Privinstruction signalled if executed by a P-process
Unalign signalled if Areg is not word aligned

Comments:
Instruction is privileged
Secondary instruction
Instruction is a descheduling point

See chapter: 8

See also: starip stopp

A T9000 instruction set reference guide

277

eqcn

equals constant

Code: Function C

Description: Compare Areg to a constant.

Definition:
if (Areg = n)
Areg’ < true
else

Areg’ < false
Error signals: none

Comments:
Primary instruction

See chapter: 7

278 T9000 transputer instruction set manual

erdsq empty resource data structure queue

Code: 62 FA

Description: Load the list pointers from the resource data structure (RDS) into Areg and Breg, and set ’
the RDS list to empty. Areg is a pointer to the RDS.

Definition:

Areg’ < word[Areg @ rds.Front]
Breg’ < word[Areg @ rds.Back]

word’ [Areg @ rds.Front] < NotProcess.p
Creg’ < Breg

Error signais:
Privinstruction signalled if executed by a P-process
Unalign signalled if Areg is not word aligned

Comments:
Instruction is privileged
Secondary instruction

See chapter: 12

See also: grant irdsq Idresptr mkrc stresptr unmkrc

A T9000 instruction set reference guide 279

fdca flush dirty cache address

Code: 62 FO

Description: If the cache line which contains the logical address s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>