
COMPUTER SCIENCE TEXTS

Inside the Transputer

DAVID A. P. MITCHELL
BSc

Researcher, Department of Computer Science
Sheffield University

JONATHAN A. THOMPSON
BSc, MPhil

Senior Experimental Officer, Department of Computer Science
Sheffield University

GORDON A. MANSON
BSc, PhD, MSc

Lecturer, Department of Computer Science
Sheffield University

GRAHAM R. BROOKES
MA, PhD, MSc

Professor of Computer Science, Department of Computer Science
Hull University

BLACKWELL SCIENTIFIC PUBLICATIONS

OXFORD LONDON EDINBURGH
BOSTON MELBOURNE

•

© D. A. Mitchell, J. A. Thompson,
G. A. Manson, G. R. Brookes, 1990

Blackwell Scientific Publications
Editorial offices:
Osney Mead, Oxford OX2 OEL
25 John Street, London WC1N 2EU
23 Ainslie Place, Edinburgh EH3 6AJ
3 Cambridge Center, Suite 208

Cambridge, Massachusetts 02142, USA
107 Barry Street, Carlton

Victoria 3053, Australia

All rights reserved. No part of this
publication may be reproduced, stored in a
retrieval system, or transmitted, in any form
or by any means, electronic, mechanical,
photocopying, recording or otherwise
without the prior permission of the
copyright owner.

First published 1990

Printed and bound in Great Britain by
Mackays of Chatham PLC, Chatham, Kent

DISTRIBUTORS

Marston Book Services Ltd
PO Box 87
Oxford OX2 ODT
(Orders: Tel: 0865 791155

Fax: 0865 791927
Telex: 837515

USA
Publishers' Business Services
PO Box 447
Brookline Village
Massachusetts 02147
(Orders: Tel (617) 524-7678)

Canada
Oxford University Press
70 Wynford Drive
Don Mills
Ontario M3C 1J9
(Orders: Tel (416) 441-2941)

Australia
Blackwell Scientific Publications
(Australia) Pty Ltd
107 Barry Street
Carlton, Victoria 3053
(Orders: Tel: (03) 347-0300)

British Library
Cataloguing in Publication Data
Inside the transputer. - (Computer
science texts).

1. Multiprogramming microprocessor
systems
I. Mitchell, David A. P. II. Series
004'.32

ISBN 0-632-01689-2

Library of Congress
Cataloging in Publication Data
Inside the transputer/David A. P. Mitchell ...

[et al.]. p. cm.-(Computer science texts)
Includes bibliographical references.
ISBN 0-632-01689-2
1. Transputers. I. Mitchell, David A. P.
II. Series.

TK7895.T731551990
621.39'16---dc20

Contents

Preface, vii

1 The Transputer, 1
1.1 Background, 1
1.2 The occam Language, 2
1.3 Processes and Concurrency, 3
1.4 occam Instructions, 4

2 Transputer Hardware Description, 12
2.1 Introduction, 12
2.2 Registers, 14
2.3 The Workspace Pointer, 15
2.4 The Instruction Pointer, 16
2.5 The Operand Register, 17
2.6 Communications Links, 18
2.7 Communication Protocol, 20
2.8 Errors, 21
2.9 Time, 22
2.10 Reset, Analyse and Booting, 23

3 Instruction Set Overview, 26
3.1 Addressing and Memory Access, 26
3.2 Arithmetic and Logical, 29
3.3 Branching and Program Control, 33
3.4 Process Scheduling and Control, 35
3.5 Inter-process Communication, 41
3.6 Miscellaneous, 48

v

vi Contents

4 Example Programs, 51
4.1 Introduction, 51
4.2 Introductory Examples, 52
4.3 Communication Examples, 58
4.4 Description and Examples Using the ALT Instructions, 67
4.5 An Example of Recursion Within a GUY Construct, 75
4.6 Idle Time Example, 76
4.7 Simple Loader, 80
4.8 Conclusions, 85

5 Reference Section, 87

Appendices
A Transputer Opcodes, 224
B Symbols, 225
C Workspace Usage, 226
D Instruction Cross-references, 227

Bibliography, 229

Index, 230

Preface

The transputer is a family of high performance microprocessors pro­
duced by INMOS Limited. One of its most significant features is the
ability to perform multi-tasking in hardware, with sub-microsecond con­
text switching. Communication between processes is also provided by
hardware, both for internal data transfers, and transfers between differ­
ent processors.

Unfortunately, there is a dearth of information regarding low-level
aspects of the transputer. For a long time, INMOS claimed that since the
transputer was specifically designed to efficiently execute the high-level
language occam, it was not necessary for programmers to be aware of
the machine-code instruction set. They have since had a change of heart,
and have released The Compiler Writer's Guide [4], which describes the
instruction set from the point of view of someone wishing to produce a
compiler, as well as giving a brief formal definition of each instruction.

While The Compiler Writer's Guide is very good in what it sets out
to achieve, it fails to show how the transputer works. For example, it
is possible, using a short sequence of instructions, to make a process
runnillg on a transputer sleep while waiting for one of several events,
such as input from a channel, or a particular time to come to pass.
The Compiler Writer's Guide explains how to code such an instruction
sequence; what it does not tell you is how this particular instruction
sequence actually works. In this book, we have set out to fill this gap.

Chapter 1 gives an introduction to the transputer and occam, while
chapter 2 describes the transputer's architecture.

Chapter 3 gives an overview of the instruction set. We have ar­
ranged this chapter from the point of view of a machine-code program­
mer, rather than a compiler writer. For example, all instructions that
cause a branch or change in execution address are dealt with together,
whereas in The Compiler Writer's Guide they would be dealt with under
different categories, such as loops and procedure calls.

vii

viii Prefa.ce

Chapter 4 contains many examples of programs written in machine­
code, both to give a feel for assembly language programming, and to
show some of the things that are impossible to do from occam.

Chapter 5 forms a reference section. Here, each transputer instruc­
tion is defined, one per page. We have included a formal definition
for each instruction, which we have tried to make as readable as pos­
sible, whilst maintaining preciseness. There then follows an informal
description of each instruction and finally, in most cases, a short exam­
ple showing a typical use for that instruction.

Overall, we see this book as being complementary to, rather than in
competition with, The Compiler Writer's Guide, and would recommend
that the reader obtains a copy of that document too. _

We have only'ncluded the 'core' transputer instructions in this book,
that is to say, ones that are implemented on the T414. This has been
done chiefly due to time and space considerations. Nevertheless, these
instructions include amongst other things, all the process scheduling
and communication instructions, which are the ones most in need of a
detailed description.

The authors wish to acknowledge the assistance and encouragement
of colleagues at both the Universities of Sheffield and Hull during the
preparation of this book.

Finally, please note that INMOS and occam are trademarks of the
INMOS group of companies.

Chapter 1

The Transputer

1.1 Background

In 1985 the transputer was first revealed to the world. At that time
it was heralded as a revolution in computing. The first processor in
the transputer series, the T414, boasted an unprecedented speed of 10
MIPS (millions of instructions per second), together with the ability to
perform multitasking in hardware. Dedicated on-chip link controllers al­
lowed for communications between processes running on different trans­
puters, with minimal processor overhead. The T414 is a 32-bit processor
with 2K of on-chip RAM and four interprocessor links, addressing up to
4Gbyte of external memory using multiplexed address and data lines.

Since then, various other members of the transputer family have been
announced or released.

• The T212, a 16-bit version with 2I(of onboard RAM and a 64K
address range, using separate address and data buses.

• The M212, a T212 with two of the four links replaced by built-in
disc controller circuitry.

• The T800, essentially a revamped T414 with a floating-point co­
processor integrated onto the chip, extra instructions, improved
links and the onboard RAM doubled to 4I{. This chip to a large
extent has established the transputer's reputation, since it com­
bines high performance floating-point processing (1.5 MFLOPs
sustained) with the possibilities of parallel processing.

• The T222, a revamped T212 \vith 4I{ of onboard RAM.

• The T801, a T800 with separate address and data buses for faster
memory accesses.

1

2 Chapter 1

• The T425 and T805, upgraded versions of the T414 and T800 with
extra instructions added to facilitate single-stepping, and other
such debugging aids.

When the T414 was first released, INMOS decided to match the id­
iosyncratic nature of their new baby by their approach to marketing. For
example, while trying to emphasise the novel and revolutionary aspects
of their new processor, they more or less forgot to tell the general public
that the T414 was in fact actually a microprocessor. An unusual and
iconoclastic microprocessor perhaps, but a microprocessor nevertheless.
Part of the problem was INMOS's insistence that the programming lan­
guage, occam, was the "assembly language for the transputer" , and that
the transputer should always be progralnmed in occam.

occam is a high level langua.ge with strong support for parallel pro­
cessing, and the transputer and occam were jointly developed with each
other in mind. Consequently, occam programs compile to very compact,
very efficient object code when the target processor is a transputer. This
is quite a bit different from saying that occam is an "assembly language" .
Also, since the transputer is designed to execute compiled occam effi­
ciently, it follows that it should work reasonably well with other high
level languages, since occam has the same sorts of features such as loops,
procedure calls and the like.

The consequences of INMOS's early approach meant that engineers
were unable to run their beloved FORTRAN programs, and people wish­
ing to use the transputer at a low level were denied use of assembly lan­
guage. This last point is significant, since there are some things which
simply cannot be done from occam-such as an idle time counter. This
led to various groups of people (the authors included), poking around in
the innards of the transputer, trying to a.scertain what the various trans­
puter instructions were, and what opcodes were associated with them.
This soon led to a state of potential anarchy, with people making up their
own mnemonics for each instruction, and often confusing instructions for
similar-appearing ones (such as addition and indexing). Finally,INMOS
relented, resulting in the release of The Compiler Writer's Guide, as well
as FORTRAN, Pascal and C compilers.

1.2 The occarn Language

Since the occam programming language is closely related to the trans­
puter, and since some transputer instructions exist specifically to imple-

The Transputer 3

ment certain occam constructs, it is necessary to have at least a basic
knowledge of occam to get the most out of this book. The rest of this
chapter introduces the main features of occam; for more detailed cover­
age, the reader is referred to other books on the subject [1,2].

1.3 Processes and Concurrency

The transputer architecture uses processes as the fundamental standard
software building block, and it provides the direct implementation of a
process in hardware. A process is an independent computation which
is able to communicate with other processes which are being executed
at the same time. The communication between processes running on
transputers is achieved by explicitly defined channels. A process itself
can consist of subprocesses by tinle-sharil1g.

The transputer provides a number of links which support point-to­
point communications between transputers, thereby enabling processes
to be distributed over a network of transputers. Hence it is possible
to program systems containing multiple interconnected transputers in
which each transputer implements a set of processes. However it needs
to be noted that the transputer can only communicate directly with
another one to which it is physically wired. It is the ability to specify a
hardwired function as an occam process which provides the architectural
framework for transputers with specialised functions such as graphics.

When a pair of processes communicate with each other, one of the
processes outputs a message to the channel and the other inputs the
message from the same channel. The important point is that with these
channels the communications are synchronised and unbuffered. When a
channel is used to connect two processes, then the communication can
only take place when both the input and output processes are ready.
Whichever process reaches its input or output statement first, must wait
until the other process is ready. Once both processes are ready then the
inputting and outputting can proceed. This form of communication is
equivalent to handshakil1g in other hardware systems. It provides the
necessary level of process synchronisation.

A process may be ready to communicate on any number of channels.
Communication takes place when another process is ready to communi­
cate on one of the channels. Since the process itself may have internal
concurrency, it may have many input channels and output channels per­
forming communications at the salne time.

4 Cllapter 1

1.4 occarn Instructions

In occam, programs are built up from processes. Each process may
be regarded as a 'black box' with some particular internal state. The
processes are finite, such that each process starts, performs a number of
actions and then terminates. The simplest process is an action, and an
action consists of an assignment, an input or an output. Processes may
be combined together to form programs by way of process constructors.
Since each process may itself consist of other processes, some of which
may execute in parallel, the concept of processes as used in occam means
that there is a large amount of internal concurrency in the language. The
degree of concurrency that can actually be achieved at any given time
will alter as processes start and terminate.

Ultimately all processes are constructed from five primitive pro­
cesses, namely:

(1) assignment,
(2) input,
(3) output,
(4) SKIP,

(5) STOP.

An assignment computes the value of an expression and sets a vari­
able to this value. An assignlnent is indicated by the symbol : =. The
example

b := e

sets the value of the variable b to the value of the expression e and then
terminates. Thus,

y := 0

sets the value of y to zero.
Input is used for communicating between processes. Input is indi­

cated by the symbol? In the example,

d ? Y

a value from the channel d is input and assigned to the variable y and
then the process terminates.

Like input, output is used for communicating between processes.
Output is indicated by the symbol !. In the example,

d ! e

The Tra,nsputer 5

the value of the expression e is output to the channel d and then the
process terminates.

The SKIP process is a null process, that is, it simply terminates
immediately without any further processing. On the other hand, the
STOP process begins executing but never terminates.

A number of processes may be combined to form a construct. A
construct is itself a process and so can be used to form part of a further
construct. Each component process of a construct is written two spaces
further from the left hand margin so as to indicate that it is part of the
construct, and acts as a 'guard' for that particular construct. There are
four main classes of construct:

(1) SEQ sequential
(2) PAR parallel
(3) IF conditional

WHILE conditional
(4) AL! alternative

The SEQ constructor specifies that the processes which follow are to
be performed in a sequentiallnanner, so that for example,

SEQ
process1
process2

means that processl is executed first, followed on its completion by pro­
cess2. The whole sequence terminates when the last process, in this case
process2, has itself terminated. It is again emphasised that in occam the
level of indentation following a given constructor is important, and con­
sists of two spaces. This specifies the range of that constructor and acts
as a guard for those processes.

In the example,

SEQ
e1 ? x
x := x + 1
c2 ! x

a value is input on channel cl and assigned to the variable x. Then x is
incremented by 1, and finally the result is output on channel c2.

To provide concurrency, the constructor PAR means that processes
are executed in parallel. For example,

6

PAR
process1
process2

Chapter 1

means that processl and process2 execute in parallel with each other.
The processes must be independent of each other, and the construct
terminates only after all the component processes have terminated; but
there is no fixed order in which the individual processes will terminate.
For example,

PAR
c1 ? x
c2 y

allows the communication of input on channel cl of the variable x, and
output on the channel c2 of the variable y to take place together, i.e.
concurrently. This parallelism is highly optimised so as to incur minimal
process scheduling.

There also exists a conditional construct:

IF
condition1

process1
condition2

process2

where conditionl and condition2 represent conditions whose values may
be either true or false. This construct is such that processl will be
executed if conditionl is true, otherwise process2 is executed if condition2
is true, and so on. Only one of the processes is executed, and then the
construct terminates. For example,

IF
x = 0

y := y + 1
TRUE

SKIP

increments the value of the variable y only if x is zero. It is important in
this construct that at least one of the conditions is true, or the construct
will behave as a STOP and the process will halt. In the above example
this criteria is provided by the use of the SKIP.

Tile Transputer 7

Another form of conditional construct is that of the WHILE construct.
In this construct,

WHILE condition
process

the process is continuously executed until the value of the condition is
false. For example,

WHILE x > 5
x := x - 5

leaves x with the value of (x remainder 5) if x is positive.
A further construct is the ALT, or alternative, which provides a se­

lection between processes. The ALT construct takes the list of processes
within its guard and performs the first process that it finds which satis­
fies its appropriate guard condition. For example,

ALT
guard1

process1
guard2

process2
guard3

process3

waits until one of the guard conditions guardl, guard2 or guard3 is ready.
A guard condition consists of an event to wait for, such as channel input,
plus an optional boolean value. (If this value is false, then the guard
is ignored.) If guard1 is ready first then process1 proceeds, similarly if
guard2 becomes ready first then process2 will be executed, and so on.
Only one process will be executed, and then the ALT process terminates
when the process which has been chosen itself terminates. Note that if
all the guards have their optional boolean value set to false, then the
ALT construct behaves as a STOP. An example ALT construct is,

ALT
(counter < max) & chan ? data

SEQ
sum:= sum + data
counter := counter + 1

total ? signal

8 Cl1apter 1

SEQ
out ! sum/counter
counter := 0
sum := 0

TRUE " SKIP
SKIP

which undertakes one of the following:

(1) when there is data on channel chan and the counter is less
than some limit max, inputs data, adds it to sum and incre­
ments a count, counter, or

(2) when there is a signal on the channel total, outputs on the
channel out the average of the data read in, and resets the
variables counter and sum, or

(3) does nothing

In addition to the constructs which have been discussed so far, a
replicator may be used with a constructor in order to repeat a process
a number of times. For example,

SEQ i = 0 FOR n
process1

causes processl to be repeated n times. Or, for a parallel construct,

PAR i = 0 FOR n

process(i)

constructs an array of n similar processes, process(0), process(1), ... ,
process(1~ - 1).

A replicated ALT construct also exists \vhich consists of a number of
identically structured alternatives, each of which is triggered by input
from a channel. For example, a Inultiplexer might be provided by,

[20J CHAN OF INT In:
CHAN OF INT Out:
PAR

. .. processes providing data on In channels
WHILE TRUE

INT y:
ALT i = 0 FOR 20

In[iJ ? y
Out ! y

processes taking data from out channel

The Transputer 9

This example monitors 20 input channels In, and when anyone has any
data, then the data from the appropriate In channel, is passed to the
Out channel. Hence communication from the 20 In channels is merged
into the Out channel.

In occam, every variable, expression and value has a type, which
may be a primitive or an array type. The type defines the length and
interpretations of the type. The following are the types which are present
in all implementations of occam:

CHAN Each communication channel provides one way
communication between two concurrent processes

TIMER Each timer provides a clock which can be used by
any number of concurrent processes

INT INT is a signed integer whose range is chosen by
the compiler to be easily implementable on the
target machine.

In addition, it is possible to specify explicit in-
teger ranges:

INT16 -32768 ... 32767
INT32 -2147483648 ... 2147483647
INT64 - 263 ••• 263 - 1

REAL32 Floating point numbers using a sign bit, 8 bit ex­
ponent and 23 bit mantissa

REAL64 Floating point numbers using a sign bit, 11 bit
exponent and 52 bit mantissa.

A variable, expression or value may be declared to be one of the
above types by use of a declaration of the form

T x :

meaning that x has been declared to be of type T, where T may be a
new channel, variable or timer. The declaration is terminated by the
use of a colon. For example,

INT x :
process1

declares x as an integer to be used in]Jrocessl.

Array types are constructed from components. For example,

En] T

10 Cllapter 1

is an array constructed from n components of type T. A component of
an array may be selected by subscription, so that,

v[e]

selects the component e of array v. A set of components of an array
may also be selected by subscription. For example,

[v FROM e FOR c]

selects the components v[e], v[e + 1],... ,v[e +c - 1].
It is often useful to be able to refer to a process by name. This may

be done using the definition PROC. For example,

PROC square (VAL INT n, INT sqr)
sqr := n * n

defines the name of the process square. This may be referred to elsewhere
in the program. For example,

square (x,sqrx)

means

sqrx := x * x

In the discussion so far, several operators have been assumed to exist,
such as +, -, and *. The operators which are available in occam are
given below.

Operator
+,-,*,/
PLUS,MINUS,TIMES,AFTER
=,<>
>,<,>=,<=
AND, OR, NOT
BITAND,BITOR,><,BITNOT
«,»

Operand type
integer, real
integer
any primitive
integer, real
boolean
integer
integer

Description
arithmetic operators
modulo arithmetic
relational operators
relational operators
boolean operators
bit operators
shift operators

In the previous section, the provision of interprocess-communication
through occam channels was discussed. These channels provide point­
to-point communications which ensure that messages are both synchro­
nised and unbuffered. By this means the requirement of process syn­
chronisation is ensured within the language itself. We can illustrate

Tlle Transputer 11

such synchronisation in the consideration of a simple queue. The pro­
gram considers data as flowing down a pipeline represented as a series
of slots, where the slots form an array of parallel processors which pass
data between adjacent slots. A simple approach to this might be:

[20] CHAN OF INT slot:
PAR i := 0 FOR 19

WHILE TRUE
INT y:
SEQ

slot [i] ? Y
slot [i+1] ! Y

Here we define an array slot of 20 channels, and use a replicated PAR con­
struct so that 19 parallel processes are set up which continually transfer
data between adjacent slots in the queue. The synchronisation between
successive slots is achieved by the SEQ construct. However it should be
noted that this represents only a fragment of a program, and in par­
ticular it does not provide a nlechanism for input into slot [0] , or any
effective output for data from slot[19].

Chapter 2

Transputer Hardware
Description

2.1 Introduction

The transputer is a high perforluance microprocessor which has been de­
signed to facilitate interprocess and interprocessor communication. The
transputer architecture defines a fa.mily of progralnmable VLSI compo­
nents which include the T212, T414 and a floating-point processor, the
T800. In this text we shall only be considering the T414, but the general
features of the transputer architecture are given in figure 2.1, and apply
to the other members of the faluily. The principal features include:

• Processor

• On-chip static Random Access Memory (RAM)

• External memory controller

• Hardware time-slicing

• High-speed serial links (INM0 SLinks)

The T414 transputer is basically a 32-bit processor which has 2
Kbytes of static RAM and four communication links integrated onto
a single chip in a CMOS process. Memory is extensible off chip with
the total addressing range being 4 gigabytes (232). The data path to
the memory is a full 32 bits wide, and configurable strobes are supplied
that allow direct interfacing to dynaluic RAM.

The processor itself is rated, for the standard 20 MHz part, at ltl
MIPs (million instructions per second). The processor provides di-

12

Transputer Ha.rdwa.re Description 13

Reset
Analyse
Error
BootFromROM
Clockln
Vcc
GND

System_
Services

On-chip
RAM

Processor

Link
Interface

Linkln
linkOut

Application Specific Interfaces

Figure 2.1. Transputer architecture.

rect hardware support for the occam Inodel of concurrency, with sub­
microsecond context switching, and two levels of process priority.

Communication with other processors or through link adaptor chips,
to the outside world is provided by four independent, bi-directional IN­
MOS serial links. These links run at bit rates of 5, 10 or 20 Mbps
(million bits per second) and have DMA (Direct Memory Access) inter­
faces into memory to allow the transfer of messages to take place with
the minimum of processor intervention. In addition, a single interrupt
input, which is called the event, allows external circuitry to control a
process.

14

registers local
variables

Chapter 2

program
space

A

IB
C process

workspace

I 0

~I w
nextI I I instruction

Figure 2.2. Transputer registers.

2.2 Registers

I
increasing
memory
address

The transputer has a small register set as shown in figure 2.2, which
consists of a workspace pointer W, an instruction pointer I, an operand
register 0, and three registers forming an evaluation stack: A, Band C.
The workspace pointer points to an area of memory where local variables
are held. The instruction pointer points to the next instruction to be
executed. The operand register is used in the formation of instruction
operands.

Registers A, Band C are sources and destinations for most arithmetic
and logical operations. Loading a value onto the evaluation stack pushes
B into C, and A into B, before loading A. Storing a value from A pops B
into A and C into B. Expressions are evaluated on the evaluation stack,
and instructions refer to the stack implicitly.

In addition to these six registers, there are four registers which handle
the two active process queues, namely FptrO, Fptr1, BptrO andBptr1, and
two timer registers TimeO and Timel. There are two single-bit flags for
dealing with errors, Error and HaltOnError. In addition, the first few
locations in internal memory are used for specific purposes.

The two timer registers TimeD and Timel consist of a low priority
timer which increments every 64 microseconds, and a high priority timer
which increments every 1 microsecond. A single time slice lasts for 1024
high priority time periods, and low priority processes are descheduled at

Transputer Hardware Description 15

7 4 3 0

IFunction ~Data
31 4 3 0,------------------~-

Opcode

Operand Register

Figure 2.3. Instruction format.

the first opportunity after two time slice periods have been completed.
High priority processes are never pre-empted.

When a process is timesliced out, the value of its instruction pointer
I, is stored just below the current local workspace, i.e. one word below
the address pointed to by the workspace pointer W. In addition, the
process is linked to the back of the high or low priority active process
queue. On the other hand, if a process becomes halted as a result
of channel communication, then its instruction pointer is still stored,
but in addition, its workspace pointer is placed in the word of memory
allocated to the channel. When another process tries to communicate on
the channel, i.e. attempts to access the channel word, the halted process
is relinked to the back of the relevant active queue.

The instruction format of the transputer has been optimised for min­
imum code space requirements. Each instruction consists of a single 8­
bit byte which is split into two 4-bit values, making up a function and
operand. This is shown in figure 2.3.

2.3 The Workspace Pointer

The workspace pointer holds an address. An address in general consists
of two parts, a word selector and a byte offset within that word. The
bottom few bits of the address form the byte offset, and the rest form
the word selector. In the case of a 32-bit transputer such as a T414 or
T800, two byte offset bits are used, allowing byte offsets 0,1,2 and 3.

The workspace pointer W is a one word wide register whose byte
offset bits are set to zero, so that it always points to a word boundary
in memory. The least significant bit is used instead to store the process
priority, which is zero for a high priority process, and one for low priority.
The combination of workspace address and priority bit is referred to as
a process descriptor.

16 Cha.pter 2

The workspace pointer points to the bottom of the workspace. It is
used like a stack on a conventional processor to store return addresses
and local variables during procedure calls. (Using conventional compiler
terminology, we would say that the workspace pointer points to the
base of the current stack frame.) This stack grows downwards towards
more negative addresses, with local variables being accessed by positive
offsets from W. As will be explained shortly, the way that transputer
instructions are coded means that variables which are stored at small
positive offsets from the workspace pointer can be accessed using very
short instruction sequences.

In addition, few words of memory just below the workspace pointer
are used by the various parts of the scheduling hardware. In general,
these are only used when the process is descheduled, so the value of
the workspace pointer may be altered at any time by the programmer
without harm being caused. The only exception to this is during the
sequence of instructions that implements the selection part of an ALT
construct, where W should be left undisturbed. The locations used are
as follows, specified relative to W:

-1 holds the instruction pointer of a descheduled process
-2 used to maintain a list of active, but descheduled pro-

cesses
-3 used during channel communication to hold the address

of data to be transferred
-4 flag used during timer ALTs to indicate a valid time to

wait for
-5 used during timer ALTs to hold the time to wait for

Appendix C gives a more detailed description of the use of these lo­
cations, and shows what values each location may hold under various
conditions.

2.4 The Instruction Pointer

The instruction pointer I, is the transputer's program counter. It points
to the byte in memory that contains the next instruction to be executed.
Instructions are actually read from memory a word at a time into an
instruction pipeline buffer from where the processor takes them as re­
quired. rhis means that for a 32-bit processor, four instructions are
read in a single cycle.

Transputer Hardwa.re Description 17

On the T414, the pipeline can hold 8 instructions, that is two 32­
bit words. Since it takes no more than two memory cycles to fill, the
number of memory cycles wasted by fetching unnecessary instructions
when a branch is taken is only one, since one cycle is needed to fetch
the branch instruction itself.

Unlike a conventional processor, the transputer has an instruction
pointer value associated with each process. When a process is desched­
uled, this value is stored just below the current workspace, and when
the process becomes the running process it is transferred back to the
instruction pointer. As only one process can run at a time there needs
to be only one instruction pointer register. The mechanism described
enables the transputer to appear to run several processes simultaneously.

2.5 The Operand Register

The operand register 0, is a one word wide register which is used for
assembling the operand of an instruction froIn the 4-bit data fragments
supplied. All instructions place the contents of their 4-bit operand field
into the least significant four bits of the operand register, moving the
existing contents 4 bits to the left. The register is then used as the
operand for the function which is specified by the other 4-bit field of the
instruction.

Instructions normally clear the operand register after they have exe­
cuted. However, a Prefix instruction exists which does nothing, except
shift its four bits of operand left into the operand register, leaving this
register uncleared after execution. Thus by using a series of Prefix in­
structions before a proper instruction, the range of that instruction's
operand may be extended to as many bits as required. There is also
a Negative Prefix instruction which cOlnpleUlents the contents of the
operand register after shifting.

Finally, there is an Operate instruction, which uses its operand as an
opcode number, giving the transputer access to a further set of instruc­
tions above the basic 16 which are allowed for by the instruction format.
Since the operand of the operate instruction may itself be extended by
prefixing, the transputer can have an arbitrary number of instructions.
The only proviso is that only 16 of them may actually have immediate
operands (or 13, once Prefix, Negative Prefix and Operate are accounted
for); the rest must have implicit operands. As an example, the ADD
instruction adds the top two elements of the evaluation stack together,

18 Cllapter 2

Data

Acknowledge [!]!]

Figure 2.4. Link protocol.

leaving the result on the stack.

2.6 Communications Links

One of the aims of the transputer architecture is to provide a family
of compatible con1ponents that can COlTIlTIUnicate with each other us­
ing the minimal amount of external logic, irrespective of the individual
internal clock rates. To achieve this each transputer can communicate
via point-to-point links called INMOS links, using an asynchronous bit­
serial protocol. Each transputer has a fixed number of such links, typi­
cally four; each of the links is bi-directional, and a variety of topologies
can be configured using these links. For example, pairs of transputers
may be connected together as a doublet, and then this doublet with its
associated six links can be placed at each vertex of a cubic lattice.

The messages themselves are transmitted as a sequence of data pack­
ets, each of which must be acknowledged by an acknowledge packet.
Each link consists of a pair of channels, one in each direction. Data
packets for one direction are multiplexed on the same wire with acknowl­
edge packets that are associated with messages for the other direction.
The acknowledge packets are used both to signal reception of the data
packets and to maintain flow control. The link protocol for the INMOS
links is shown in figure 2.4. Transputer links themselves are formed by
the interconnection of the Linkln and LinkO'l.lt signals on the relevant
transputers. Since the link protocol is asynchronous, the relative skew,
which is typically caused by the different rising and falling edge times
of the link signals, must be kept within tolerance. This needs careful
consideration in its. implication for certain interconnection topologies.

From the programmer's point of vie\v there is no difference between
sending a message between two processes running on separate trans­
puters over a hardware link, and t\VQ processes running on the same
transputer. In all cases, the programmer specifies an address in mem­
ory, called the channel word. Hardware determines whether the com-

Transputer Hardware Description 19

munication is internal or external, based on the address of the word.
The conventional names and addresses for the channels associated with
hardware links in the T414 are:

PLACE LinkOOutput
PLACE Link10utput
PLACE Link20utput
PLACE Link30utput
PLACE LinkOlnput
PLACE Link1Input
PLACE Link2Input
PLACE Link3Input

AT #80000000:
AT #80000004:
AT #80000008:
AT #8000000C:
AT #80000010:
AT #80000014:
AT #80000018:
AT #8000001C:

Each data packet as shown in figure 2.4 consists of a 'one' bit followed
by another 'one' bit, followed by eight data bits followed by a zero bit.
After transmitting a data packet, the sender transputer waits until an
acknowledge is received, which signifies that the receiving transputer is
ready to receive another packet. The acknowledge consists of two data
bits, the first being a one and the second being a zero.

The receiving transputer can send an acknowledge as soon as the data
packet has been identified, so that comnlunications can be continuous,
provided that there is sufficient buffer space for another data packet,
and the inputting process is ready to receive the previous data packet.
This protocol synchronises the communications of each byte of data.
The communication is independent of word length, so that transputers
using different word lengths can communicate directly.

Link selection pins on the transputer allow some selection of link
speeds. Link speeds can be set by LinkSpecial, LinkOSpecial and Link­
123Special. Link 0 can be set independently. In the table below, the val­
ues for the unidirectional and bidirectional data rates are given. Linkn­
Special is to be taken as LinkOSpecial when selecting link 0 speed and
as Link123Special for the others. All these rates are assuming that the
transputer is using internal memory.

Link- Linkn- Mbits/sec I(bytes/sec (T414)
Special Special unidirectional bidirectional

0 0 10 400 800
0 1 5 200 400
1 0 10 400 800
1 1 20 800 1600

20 Chapter 2

The INMOS links may be interfaced to peripherals via an INMOS
link adapter, which converts a serial link into an 8-bit parallel port.
Additionally, the transputer provides an input pin, EventReq and an
output pin, EventAck which provide interrupt facilities. A peripheral
may signal an interrupt to the transputer via the EventReq pin, which
the transputer acknowledges using EventAck. Internally, the transputer
makes available a special hardware channel which behaves as if a syn­
chronising message has been received on each low to high transition of
the EventReq pin. A process may wait on this 'channel', in which case
it serves as an interrupt handler. An occam channel may be associated
with the EventReq pin by a channel association. The conventional name
and the address used for this channel are:

PLACE Event AT #80000020:

Event then behaves like an ordinary channel, and an occam process may
synchronise with a low to high transition on the EventReq pin by using
the occam construct

Event ? signal

The process then waits until the channel Event is ready. If the process
waiting on the channel is high priority, then it will interrupt any low
priority process running when EventReq goes from low to high.

2.7 Communication Protocol

Communication over both internal and external channels is essentially
byte orientated. The instructions concerned are IN, 0tJT, 0 UTWO RD
and OUTBYTE.

Communication over internal channels observes the following proto­
col. Before any communication is attempted, the channel word must be
initialised to contain Minlnt. This operation is done when the channel
is declared and space is reserved for the channel word. When an input
or output is subsequently attempted, the channel word is inspected: if
it contains Minlnt, then the process descriptor of the current process is
placed in the channel word and the process is descheduled. In this case
the instruction pointer and the address of the message to be transferred
are stored at locations which have offsets of -1 and -3 relative to the
workspace pointer, respectively. If however, the content of the channel
word is not Minlnt, thereby indicating that the other process involved

Transputer Hardware Description 21

is already waiting to communicate, then the communication may be
performed.

The communication itself is achieved by copying the required block
of data from the source to the destination. This is possible since the
data address is available through the process descriptor stored in the
channel word. Once the transfer is completed, the process that arrived
first and was descheduled, is rescheduled and the channel word is reset
to contain Minlnt.

External links behave in a similar manner. The only difference as far
as software is concerned is that the control word of an external link is at
one of the addresses #80000000 to #8000001C rather than an arbitrary
address in memory. The same instructions are used for input and output
on both external links and internal channels.

2.8 Errors

High-level language execution is luade secure with, for example, array
bound checking and arithmetic overflow detection. If the compiler is
unable to check that a given construct contains only valid expressions
and processes, then extra instructions are compiled in order to perform
the necessary check at runtime. If the result of this check indicates that
an error has occurred then the processor's Error flag is set. This error
can be handled either internally by software, or externally by using the
Error pin. It is also possible, by setting the HaltOnError flag, to make
the processor halt if the Error flag ever gets set. If the processor halts
as a result of an error, then the links will continue with any outstand­
ing transfers, the memory continues to provide refresh cycles and the
transputer may be analysed.

When a high priority process pre-empts a low priority process then
the status of the Error and HaltOnError Flags, and all the registers are
saved in internal RAM in the area below AlemStart for the duration
of the high priority process, and restored at the conclusion of it. The
status of the Error flag is transmitted to the high priority process, but
the HaltOnError flag is cleared before the process starts. Either flag can
be altered in the process without upsetting the error status of the pre~

empted low priority process. When tllere are no high priority processes
to run, then the current state of the Error flag is lost and the preserved
state is restored, as part of cOlunlencing to execute the pre-empted low
priority process.

22 Chapter 2

In the event of the transputer halting because of the HaltOnError
flag, the links will finish outstanding transfers before shutting down. If
the Analyse pin is asserted, then all inputs continue, but outputs will
not make another access to memory for data.

After halting due to the Error flag becoming set whilst HaltOnError
is set, the instruction pointer points to two bytes past the instruction
which set the Error flag. After halting due to Analyse being taken high,
the instruction pointer points one byte past the instruction which is
being executed. In both of these cases the instruction pointer will be
copied into the A register.

2.9 Time

Timing in occam is provided by use of a timer channel which can only
provide input. The value which is input is the current time, which is
represented as an integer value. The cycle of the clock depends on the
wordsize, on the amount by which the reading is incremented at each
clock tick and on the frequency of the clock ticks. Each of these param­
eters will depend on the particular irnplenlentation of the hardware on
which the occam program is running. In the transputer, the clock ticks
for low priority processes are in units of (input clockrate)/(5*64), which
normally works out at 64 microseconds per tick. With a 64 microsecond
tick and a 16-bit integer, then the cycle time would be approximately
4.2 seconds; with a 32-bit integer the corresponding cycle time would be
approximately 76 hours.

The processor has timers to support two levels of priority. The prior­
ity 1 (low priority) processes are executed whenever there are no active
priority 0 (high priority) processes. High priori ty processes are expected
to execute for short time intervals. If one or more such processes can
proceed, then one is selected and allowed to execute until it has to wait
for a communication, a timer input, or until the process is completed.
However, if no high priority process is able to proceed and one or more
low priority processes are able to proceed, then one of the low priority
processes is selected. Low priority processes are time-sliced to provide
an even distribution of the processor time between computationally in­
tensive tasks. If there are n low priority processes, then the maximum
latency, expressed as the time from when a lov{ priority process becomes
active to the time at which it starts processing is (2n - 2) time-slice peri­
ods. The low priority timer increlnents every 64 nlicroseconds, whereas

Transputer Hardware Description 23

the high priority timer increments every 1 microsecond. A single time­
slice period lasts for 1024 high priority time periods. In order to ensure
that low priority processes do proceed, high priority processes must not
continuously occupy the processor for a period equal to that of a time
slice. If a low priority process is waiting for an external channel to be­
come ready, and there are no active high priority processes, then the
interrupt latency, which is the time interval from when the channel be­
comes ready until the process starts executing, is typically 19 processor
cycles, though it may extend to a maximum of 58 cycles, all assuming
the use of on-cllip RAM.

2.10 Reset, Analyse and Booting

The system services comprise the clocks, power and initialisation used
by the whole of the transputer. The Reset and Analyse input pins en­
able the transputer to be initialised or halted in a way which preserves
its state for subsequent analysis. While the transputer is running, both
Reset and Analyse are held low. The transputer is initialised by pulsing
Reset high whilst holding Analyse low. Operation ceases immediately
and all current state information is lost. When Reset goes low the trans­
puter sets up the memory interface configuration as appropriate. The
processor and links start operating after the memory interface configu­
ration cycle is complete and sufficient refresh cycles have been executed
to initialise any dynamic RAM. The processor then bootstraps.

The transputer can be bootstrapped either from a link or from ex­
ternal ROM. If BootFromRom is connected high, then the transputer
starts to execute code from the top two bytes in external memory, at
address #7FFFFFFE. This location should contain a backward jump
to a program in ROM. The processor is in a low priority state. The
workspace register points to MemStart, which is \vhere the user memory
begins and is at address location #80000048 for the T414.

If BootFromRom is connected low, the transputer will wait for the
first ~ootstrap message to arrive on anyone of its serial links. The
transputer itself is ready to receive the first, or control byte, on the link
within two processor cycles after Reset goes low. If the control byte
received is greater than 1, then it is taken as the number of bytes to be
input. The following bytes, up to this specified number, are then placed
in internal memory starting at location AlernStart. Following the receipt
of the last byte, the transputer will start executing code atMemStart as

24 Chapter 2

a low priority process. The memory space immediately above the loaded
code is used as workspace. Messages arriving on other links after the
control byte has been received, or on the bootstrapping link after the
last bootstrap byte, will be retained until a process inputs. from the
appropriate link.

The other options for the value of the control byte are 0 and 1, and
use of these values allow the facility to 'peek' and 'poke'. Any location
in either internal or external memory can be interrogated and altered
when the transputer is waiting to boot from a link. If the control byte
is 0 then eight more bytes are expected on the same link. The first 4
byte word is taken as an internal or external memory address at which
to poke, i.e. write, the second 4 byte word. If the control byte is 1 the
next four bytes are used as the address from which to peek, Le. read,
a word of data-this data word is sent down the output channel of the
same link. After a peek or poke operation, the transputer returns to
its previously held state. There is no limit to the number of peek and
poke operations that may take place before the control byte has a value
greater than 1, when the transputer will then begin to read its bootstrap
code. When performing the peek and poke operations, any of the links
may be used except that the addresses and data must be transmitted
via the same link as that of the control byte.

When initialising after power-on, a time is specified during which the
5V supply, Vcc, must be within specification, Reset must be high, and
the input on Clockln must be oscillating. Reset is taken low after this
specified time has elapsed.

In order to analyse a system following a reset, the first step is for
the Analyse pin to be taken high. This causes the transputer to halt
within three time-slice periods, approximately 3 milliseconds, plus the
time taken for any high priority process to stop processing. Any out­
putting links continue to operate until they complete the remainder of
the current word. Input links continue to receive data. Provided that
there are no delays in sending acknowledgements, the links in the system
will therefore cease activity within a few microseconds. Sufficient time
must be allowed both for the processor to halt and for all the link traffic
to be completed before Reset is asserted. The memory interface is not
affected by Analyse, or Reset while Analyse is held high. If refresh cycles
are enabled, then it continues to refresh external dynamic RAM.

After the end of a valid reset or analyse sequence, the processor's
registers are initialised to specific values, depending on how the processor
was started up. These values are as follows:

Transputer Ha.rdwa.re Description

W MemStart if bootstrapping from ROM, or the address
of the first free word after a bootstrap program if boot­
strapping from link.

I MemStart if bootstrapping from a link, or the external
memory bootstrap address (#7FFFFFFE) if bootstrap­
ping from ROM.

A The value of I when the processor halted.
B The value of W when the processor halted, together with

the priority of the process when the transputer halted.
C The identity of the bootstrapping link if bootstrapping

from a link.

25

Chapter 3

Instruction Set Overview

The T414 has exactly one hundred instructions. These can be broken
down as follows:

• 16 addressing and memory access,

• 41 arithmetic and logical,

• 6 branching and program control,

• 12 process scheduling and control,

• 16 inter-process communication,

• 9 miscellaneous.

It is interesting to note that instructions for dealing with concurrency
amount to over a quarter of the total, or nearly five times the number
of branching and program control instructions!

This chapter is designed to give an overview of the instruction set,
with each instruction discussed within one of the groupings mentioned
above. A more detailed explanation of each instruction will be found in
the reference section of this book (Chapter 5).

3.1 Addressing and MeInory Access

The transputer provides two main ways of addressing memory: addresses
may be specified as a fixed offset froIn an address held in either the
workspace pointer, or in the A register. The former is referred to as
local access, since the workspace pointer conventionally points to an
area of memory used to hold the local variables for a procedure. In
fact, the first few words in memory offset from the workspace pointer

26

Instruction Set Overview 27

are often referred to as 'local 0', 'local l' etc. Conversely, access via the
A register is called non-local.

Instructions are provided to read and write words from memory us­
ing the above addressing scheme; also provided are instructions to read
and write bytes, to move a block of bytes, to perform word-length inde­
pendent addressing calculations, to modify the value of the workspace
pointer, and finally to specify an address relative to the instruction
pointer.

3.1.1 Loading and Storing

The transputer provides the following general-purpose instructions for
loading and storing words in memory:

LDL n
STL n
LDNL n
STNL n

Load Local
Store Local
Load Non-Local
Store Non-Local

LDL n loads a word onto the evaluation stack (Le. into the A register)
which lies offset n words from the address pointed to by the workspace
pointer, where n is the instruction's opera.nd. The original value in A is
pushed into B, and B into C. STL n performs the reverse, storing the
value of the A register at the specified address. LDNL nand STNL n
are similar, except that that they use the A register as the base address,
rather than the workspace pointer. LDN L n loads the word into the
A register, overwriting the address already stored there, while STN L n
stores the value contained in the B register, afterwards popping both A
and B.

LDLP n
LDNLP n

Load Local Pointer
Load Non- Local Pointer

are similar to the previous instructions, except that they store in A the
effective address that is calculated, rather than the value of the word
stored at that address. This is useful for subsequent instructions which
require an address on the stack as one of their operands.

3.1.2 Byte Accesses

The transputer normally accesses ll1emory a \vord at a time; however, it
can be persuaded to access individual bytes with the next three instruc­
tions:

28

L8
S8
MOVE

Cllapter 3

Load Byte
Store Byte
Move Message

LB loads the byte at the address contained in the A register into the
A register, overwriting its previous contents. Unlike word addressing,
the bottom couple of bits of the address, which form the byte offset, are
used to select a particular byte from within the word. SB stores a byte
contained in the bottom eight bits of B at the address pointed to by
A. Finally, MOVE copies a block of bytes from the address in C to the
address in B, the number of bytes to move specified in A. The MOVE
instruction is intelligent enough to read or write a word's worth of bytes
in a single cycle wherever possible.

3.1.3 Addressing Arithmetic

The two instructions

WSUB
BSUB

Word Subscript
Byte Subscript

allow indexing of arrays, or their equivalents. WS UB increments the
address in the A register by the number of words specified in the B
register, whereas BSUB increments it by the number of bytes. The
existence of these instructions allows address arithmetic to be word­
length independent; for example on the T414, the returned value of
WSU B is equivalent to a +4b, while the T212 would return a +2b.

Two further instructions,

WCNT
BCNT

Word Count
Byte Count

are provided for word-length independent addressing. WCNT bre~ks the
address in the A register into its word address and byte offset compo­
nents, storing the two values in A and B, while BCNT multiplies the
value in A by the number of bytes in a word. This would be useful in
calculating the number of bytes in an array of words for a (byte oriented)
MOVE command, for example.

3.1.4 Other Addressing Instructions

There are two instructions that Inodify the value of the workspace point­
er:

AJW n

GAJW

Instruction Set Overview

Adjust Workspace
General Adjust Workspace

29

AJW n increments the workspace pointer by the number of words spec­
ified by its operand n (or decrements if n is negative). This instruction
is most commonly used at the beginning and end of a procedure call,
to allocate some more stack space and then relinquish it. Since the
stack normally grows down in memory, the usual sequence of instruc­
tions would be AJW -k; ... ; AJW +k, where k is the number of extra
words to allocate.

GAJW is a more general instruction, which simply exchanges the
contents of the workspace pointer and the A register.

Finally, the instruction

LDPI Load Pointer To Instruction

calculates an address, which consists of the current value of the instruc­
tion pointer (which always points to the next instruction), incremented
by the number of bytes specified by the value in the A register. This
address then replaces the value in A. So, LOC 2; LOPI would leave an
address in A which points two bytes on from the instruction following
the LDPI. This is very useful for producing relocatable code, since a
program's data can be specified relative to its code.

3.2 ArithIlletic and Logical

The three simplest instructions are

REV
LDC n
MINT

Reverse
Load Constant
Minimum Integer

It could be argued that these are not really arithmetic instructions;
however, this is the most convenient place to discuss them. REV sim­
ply swaps the contents of the top two elements of the evaluation stack,
i.e. the A and B registers. LDC pushes the constant specified by its
operand onto the evaluation stack, that is to say, storing it in the A
register, pushing A onto B, B onto C, and losing the value in C. Finally,
MINT pushes the constant Minlnt onto the evaluation stack; this is a
single-word value with the top bit set to 1 and all other bits to O. This
instruction is word-length independent. It is very useful, especially for
channel communication (see later).

30 Cllapter 3

3.2.1 Single Length Aritllmetic

Next there is the

ADC n Add Constant

instruction, which adds its operand to the value in the A register, rather
than just pushing it.

Then there are a group of eight arithmetic operators which take their
operands from the A and B registers, leaving the result in the A register.

ADD Signed Addition
5 UB Signed Subtraction
MU l Multiply
DIV Divide
REM Remainder

all perform signed single-length arithmetic, with the error flag being set
on overflow, whereas

SUM Unsigned Addition
DIFF Unsigned Subtraction
PROD Unsigned Multiplication

are similar, except that carry and overflow are ignored. Finally,

FM Ul Fractional Multiply

multiplies two single-word values together, but gives as its answer the
high word of the result (more or less), rather than the low, as in MUl.

3.2.2 Comparing

There are two main comparison instructions.

EQC n Equals Constant

compares the value of the A register with the operand. If they are equal,
true (1) is stored in A, else false (0) is stored.

GT Greater Than

compares the values in the A and B registers; if B is greater than A,
then it returns true in the A register. Together with the logical/bitwise
instructions discussed next, these two instructions can evaluate all the
various types of arithmetic comparison. This is an example of where the
transputer has the flavour of a RISe processor.

There are a further two comparison instructions which are designed
mainly to check the range of array subscripts:

CSUBO
CCNTl

Instruction Set Overview

Check Subscript From Zero
Check Count From One

31

Both these instructions check the range of the value in the B register,
and if it is outside, set the error flag. The range is specified by the value
of the A register; for CS UBO, the valid range is O... a; for CCNTl, the
valid range is 1... a.

3.2.3 Bit Operators

There are six bitwise operators.

AN D Bitwise AN D
OR Bitwise OR
XOR Bitwise Exclusive-OR

perform boolean operations between corresponding bits in the A and B
registers.

NOT Complement

complements every bit in the A register, while

SHL Shift Left
SHR Shift Right

both shift the value in the B register left or right by the number of places
specified by the A register, filling the extra bits with zeros.

3.2.4 Multiple Word Aritlllnetic

There are versions of most of the above arithmetic instructions designed
to deal with multiple word-length data.

LADD
LSUM
LSUB
LDIFF

Long Add
Long Sum
Long Subtract
Long Difference

have the same effect as their single-word counterparts, except that a sin­
gle bit carry or borrow is contained in the C register. LSUM and LDIFF
are used for the low order words of the calculation, while LADD and
LS UB are used for the top word, since they perform overflow checking.

LMUL Long Multiply

32 Cllapter 3

multiplies the values in the A and B registers together and adds in the
'carry' in the C register. The double word result is stored in the A and B
registers, the high word in B. The value in B thus becomes the carry-in
for higher order words.

lDIV long Divide

divides the double-length word in register pair BA by the value in C,
storing the integer result in A and the remainder in B. Note that to
avoid overflow, B must be less than C.

The two instructions

lSHl
lSHR

long Shift left
long Shift Right

shift the double word value contained in register pair BA a number of
places specified by the C register, filling the extra bits with zeros.

Finally,

XDBLE
CSNGL

Extend To Double
Check Single

convert a single word value into a double word value and vice versa.
CSNGL sets the error flag if the value cannot be squeezed into a single
word.

3.2.5 Partword Arithmetic

Partword arithmetic (that is to say, using signed numbers represented by
less bits than there are in a word) is supported by the two instructions

XWORD
CWORD

Extend To Word
Check Word.

The idea is that partword values are first sign-extended to full words
using XWORD; normal arithlnetic operations are then carried out, and
the result is checked with (WORD, which sets the error flag if the value
is out of the partword range.

3.2.6 Floating-Point Support

The instruction

NORM Normalise

Instruction Set Overview 33

normalises the double word value in BA by shifting it left until the top
bit is set. The number of places shifted left is stored in C.

There are a further set of instructions

CFLERR
LDINF
POSTNORMSN
ROUNDSN
UNPACKSN

Check Floating Point Infinity or Not-a-Number
Load Single Length Infinity
Post-Normalise Correction
Round Single Length Floating Point Number
Unpack Single Length Floating Point Number

which are specific to the T414, and are designed to provide hardware
support for (software) floating-point packages. For obvious reasons they
have not been included in the floating-point T800 transputer. Inci­
dentally, it is the existence of these instructions that gives the T414
a floating-point performance which is comparable to processors with
dedicated floating-point co-processors (such as the 68020/68881 combi­
nation).

3.3 Branching and Program Control

The transputer provides only six instructions for altering the flow of
control of the program. In this respect, it again comes close to being a
RISC processor.

3.3.1 Branching

The three instructions

CJ n
J n
LEND

Conditional Jump
Jump
Loop End

provide branching. CJ n examines the value in the A register. If it is
false (0), then the instruction pointer is incremented by the-number of
bytes specified by n, causing a branch. If A is non-zero, tllen no branch
is taken, but the value in A is popped. J n is similar, except that it is
unconditional.

LE ND is designed to implement deterministic loops. It takes two
parameters: in A there is a displacement which is to be subtracted from
the instruction pointer should the instruction succeed; in the B register,
there is a pointer to a two-word control block. Each time the instruction
is executed, the value of the first word is incremented, and the second

34 Cllapter 3

decremented. If the value remaining in the second word is greater than
zero, the branch is taken, using the offset specified in the A register.
Note that the value in A specifies how many bytes to go back by.

As an example, the Pascal code

FOR i := 3 Ta 8 DO
j := j + i;

would be implemented as

LDC 3; STL block;
LDC 8-3+1; STL block+1;

L1: LDL j; LDL block; ADD; STL j;
LDLP block;
LDC L2-L1;
LEND;

L2:

The two instructions J and LEN D provide the points where the trans­
puter may time-slice between low priority processes. Consequently, if a
section of code does not make use of these two (for example, it uses CJ in­
stead), then the process will never be time-sliced out, unless pre-empted
by a high priority process.

3.3.2 Subroutine Callillg

The remaining three instructions are designed to implement procedure
calls.

CALL n

RET
GCALL

Call
Return
General Call

CALL n decrements the workspace pointer by four bytes, stores at
the four words thus allocated (in descending order) the current contents
of the C, B, A and instruction pointer registers and then increments the
instruction pointer by the number of bytes specified by the operand n.
It thus implements a relative call instruction. RET loads the instruc­
tion pointer with the value pointed to by the workspace pointer, and
increments the workspace pointer by four words. Thus RET will always
return from a CALL as long as the workspace pointer remains unchanged.

If this procedure call mechanism is found to be too restricting, a more
general one may be implemented using GCALL, which just exchanges the
contents of the A register and the instruction pointer. It is then up to
the programmer to sort out such things as storing the return address
and so on.

Instruction Set Overview

3.4 Process Scheduling and Control

3.4.1 Background

35

The transputer has built-in mechanisms to support the concurrent exe­
cution of processes. Processes may be operated at two levels of priority.
Two queues of active processes are maintained, one for high, and one for
low priority processes. A process can be in one of four states: executing;
waiting to execute, which implies that it is in one of the active process
queues; waiting for a timer event, which implies that it is in a timer
queue, or waiting for a communication event, in which case it is in no
queue.

A high priority process will execute without interruption until it ter­
minates, or waits for a timer or communication event to take place. In
this case, if there are any further high priority processes waiting to pro­
ceed then the process at the head of the high priority active process
queue will be scheduled. If there are no high priority processes waiting
to execute, then the next waiting low priority process will be scheduled.
Low priority processes may be pre-empted at any time by a high prior­
ity process that becomes ready to execute. Low priority processes are
time-sliced; if a low priority process executes a Jump or loop End in­
struction, and has been executing for more than its time-slice period, it
is descheduled and placed at the back of the low priority active queue,
with the process at the head of the queue commencing execution.

3.4.2 Start Process and End Process

The transputer provides five instructions to allow the setting up of new
processes, and the killing off of others. Two of the instructions are
designed to directly support the occam view of concurrency, or more
specifically, the occam PAR construct. In the occam program shown in
figure 3.1, section P is executed first, and then (conceptually, at least),
the current process is suspended, and three new processes are started
which execute sections Q, Rand S in parallel. Only when all three of
these child processes have successfully terminated, is the parent process
rescheduled, w"hich then executes section T. If any of the children fail to
terminate successfully, then the parent process will never be rescheduled.

The way that an occam compiler would treat the above code is in
fact slightly different from that just described. Only two child processes
would be set up, with the parent process taking over the execution of
section S. The first two of the three processes to finisll their section of

36 Cllapter 3

SEQ
section P
PAR

section Q
section R
section S

section T

Figure 3.1. An occam PAR construct.

code just terminate, while the last one to terminate resumes execution
of section T.

The two instructions

STARTP
ENDP

Start Process
End Process

are designed specifically to implement this scheme. STARTP adds a new
process to the back of the active process queue. It takes two parameters:
the A register holds the address of the \vorkspace that the new process
will use, and B ~olds an offset in bytes from the current instruction (or
more accurately, the next instruction) to the section of code that the
new process is to execute. The new process is set at the same priority
as the current process, and the current process continues execution with
the next instruction. Note that the new execution address is specified
relative to the old, following the usual transputer philosophy that code
produced should be relocatable, unless the programmer tries very hard
to do otherwise!

EN DP is designed to conditionally terminate a process. What it does
is to decrement a count somewhere in memory. If this count is non-zero
then it just terminates, that is to say, the next active process is taken
from the queue and executed, and the current process is not added to
the back of the queue. If on the other hand the count has reached zero,
then the process continues, but at a different execution address, and
with a different workspace pointer. More precisely, the instruction takes
one parameter, an address in the A register. This address points to
the workspace of the parent process. At location 0 in this workspace
is the restart address of the parent process (in the example above this
is the address of code section T). Location 1 holds the count of child
processes. If the instruction decrements this value to zero, it sets its
workspace pointer to the value in the A register, and its instruction

Instruction Set Overview

workspace
for sections

W ~ P and T
(swap)

workspace
for section

S
(swap)

workspace
for section

Q
(swap)

workspace
for section

R
(swap)

37

Figure 3.2. Workspaces for the PAR processes.

pointer to the value pointed to by A.
The PAR construct above would thus be executed as follows: the

parent process, after having executed section P, stores the count three
"at local 1, and the address of the code for section T at local o. It then
executes two STARTP instructions, which set up processes to execute
sections Q and R. It then performs a jump to section S.

At this point, there are three concurrent processes, executing sections
Q, Rand S. The first two of these processes to finish will terminate after
decrementing the count. The last to terminate will then 'assume the role'
of the parent process, executing section T.

Note that in occam, the compiler can determine at compile time
the workspace requirements for each process. Thus it can allocate work­
spaces for Q and R at fixed positions below the workspace for the parent
process. This is shown in figure 3.2. The figure on the left indicates the
state of the workspace when there is only the single process running. The
workspace pointer W points to the base of the workspace (Le. location
0) of the process that executes section P and T.

A couple of words below the workspace are reserved for use by the
scheduling hardware should the process be descheduled. (Note that this
would be more, up to five words, if channel communication or timer
ALTs are used by the process-see the next section for details.) The

38 Chapter 3

P: {section P}
LDC 3; STL 1;
LDC (T-LO); LDPI

LO: STL 0;
LDC (R-L1); LDLP -(q+2)-(r+2); STARTP;

L1: LDC (Q-L2); LDLP -(q+2); STARTP;
L2: J (S-Q)

Q: {section Q}
LDLP (q+2); ENDP;

R: {section R}
LDLP (q+2)+(r+2); ENDP;

S: {section S}
LDLP 0; ENDP;

T: {section T}

Figure 3.3. Code for a PAR construct.

second diagram shows the situation after the PAR section has been
entered. The original process carrys on using the same workspace (which
is assumed to be large enough to hold the local variables for P, T and
S, while the two new processes are allocated new workspaces below the
original.

Thus the code for the example above may be coded as in figure 3.3.
Here, q and r are the sizes of workspace required for Q and R.

If it is not possible to determine at compile time the address of the
original workspace rela~ive to ea.ch of the children, then one possibility is
that the address of the parent workspace be stored at the first location
(say) of each of the child processes when they are being set up. Then
the above code would be changed to look like that in figure 3.4.

Note that if any of the processes executing sections Q, Rand S hang
(for example if they execute Stop On Error after an error-see below),
then no process will ever proceed to execute section T. Thus, if the
section of occam program given above is itself part of a family of PAR
processes, then that family's parent will eventually hang, and so on.

3.4.3 Other Process IllstructiollS

There are three other instructions which initiate and terminate pro­
cesses:

Instruction Set Overview 39

P: {section P}
LDC 3; STL 1;
LDC (T-LO); LDPI

LO: STL 0;
LDLP 0; STL -(q+2)-(r+2);
LDC (R-L1); LDLP -(q+2)-(r+2); STARTP;
LDLP 0; STL -(q+2);

L1: LDC (Q-L2); LDLP -(q+2); STARTP;
L2: J (S-Q)

Q: {section Q}
LDL 0; ENDP;

R: {section R}
LDL 0; ENDP;

S: {section S}
LDLP 0; ENDP;

T: {section T}

Figure 3.4. Modified code for a PAR construct.

STOPP
STOPERR
RUNP

Stop Process
Stop On Error
Run Process

STOPP stops the current process. This means that the process's
instruction pointer is stored at the first word below its workspace, and
the next active waiting process is scheduled. Note that the current
process is not added to the back of the active queue, so unless there
is manual intervention by another process to reactivate it, the process
is effectively dead. STOPERR does the same, but only if the error flag
is set. Note the difference between these two instructions and EN DP,
which terminates only if it is not the last of a family of processes, and
assumes the role of the parent otherwise.

RU NP is the most general \vay of starting a new process. It takes one
parameter, a process descriptor in the A register. A process descriptor
is the address of the workspace for that process with the bottom bit set
to the priority of that process (remelnber that since a workspace lies on
a word boundary, the bottom few bits are not used). RU NP adds a new
process to the back of the active queue specified by the priority bit. The
new process will have the workspace as determined by the descriptor,
and will begin execution at the address stored one word below that

40 Cllapter 3

workspace.
So to start a new process with workspace W, entry point E and

priority P,

LDC E; LDC W; STNL -1;
LDC W; LDC P; OR; RUNP;

would suffice. Note the contrast with STARTP, which starts a new
process at the same priority as the current one, and whose execution
address is specified relative to the current process.

RU NP is also ideally suited for restarting hung processes. A process
that is waiting for a channel or timer event, or that has been stopped
using STOPP or STOPERR always has its execution address stored at
location -1 in its workspace. Thus, it can be restarted, as long as its
workspace address and priority are known. In the case of channel com­
munication (see next section), the process descriptor of the waiting pro­
cess is stored in the channel word.

3.4.4 Process Register Mallipulatioll

There are four registers associated with the active process queues that
may be directly accessed by the programlner (with caution). These are
the front and back, high and low priority active queue registers. The
instructions

STHF
STHB
STLF
STLB

Store High Priority Front Pointer
Store High Priority Back Pointer
Store Low Priority Front Pointer
Store Low Priority Back Pointer

store the value in the A register in the relevant register. On booting, it
is necessary to store Minlnt in the high and low priority front registers
before any process scheduling takes place; the back pointers do not need
to be initialised. It hardly needs to be stated that these instructions
are highly dangerous, especially as link hard\vare may modify the active
queues even while a high priority process is running.

The instructions

SAVEH
SAVEL

Save High Priority Queue Registers
Save Low Priority Queue Registers

store the contents of the front and back pointers in two successive words
pointed to by the A register (the front one first). Finally,

LDPRI Load Priority

Instruction Set Overview 41

loads a value (0 or 1) into A representing the priority of the current
process.

3.5 Inter-process COllllllunication

3.5.1 Channels

Inter-process communication and synchronisation are carried out using
channels. A channel is an abstract connection between exactly two pro­
cesses. One process sends a stream of bytes down the channel to another
process, which reads them in and stores them. If a process tries to send
or receive data through a channel when the other process is not ready,
then it will be descheduled until that other process becomes ready, thus
achieving synchronisation.

For two processes running on the same transputer, a channel is im­
plemented by using a word somewhere in memory that is shared between
the two processes. This word is referred to as the channel word. Be­
fore any communication can take place, this word must be initialised
to the value Minlnt (minimum integer), which with the transputer's
signed address space, is interpreted as the lowest address in memory.
This is significant, because this value can never be the address of a
valid workspace. The channel word would normally be initialised by
the parent process of the two communicating children, to ensure that
it is initialised before either of theln attempt to communicate. When a
process attempts to communicate, it examines the contents of the chan­
nel word; if the value is Minlnt, then the other process is not ready,
so it stores its process descriptor in the channel word, and deschedules.
When the other process is ready, it exalnines the channel word and finds
a valid process descriptor. It thus knows that the other process is ready,
and so transfers the block of bytes, and restarts the otller process.

If a process deschedules while waiting for channel input or output, it
stores its instruction pointer at location -1 in its local workspace, and
the address of the data to be transferred from or to at location -3. This
last item of data is required in order for the second process to be able
to implement the data transfer.

The important thing to realise is that all this is implemented within
the microcode of the transputer; at the machine code level, a process
just executes an instruction requesting that data be read from or written
to a channel.

For two processes running on separ~te transputers, the two machines

42 Cha.pter 3

must be connected by a hardware INMOS link in order for them to di­
rectly communicate. In this case, communication via a channel is taken
care of by hardware within the transputer. When a process makes a
request to send data out through a channel to another transputer, that
process is descheduled. Hardware determines when the other trans­
puter is ready, and then transfers the data using direct memory access
(DMA). When all the data has been transferred, the process is resched­
uled. While all this is happening, other processes may be executed.

At the machine code level, hardware links appear identical to internal
channels, and the same instructions are used for both. The only thing
that distinguishes between them, is that for external communication, the
address of the channel word passed as a parameter to an input or output
instruction is specified as one of the first few locations in memory. The
microcode of the instructions detect that the address is one of the special
reserved locations and pass their paranleters on to the link hardware for
the link associated with that address.

3.5.2 Input and Output

. The instructions

OUT Output Message
OUTWaRD Output Word
OUTBYTE Output Byte
IN Input Message

deal with channel input and output. The OUT instruction takes three
parameters: A holds the number of bytes to transfer, B points to the
channel word to be used for the communication, and C points to the
start of the data to be sent out through the channel. OUTWaRD and
OUTBYTE are similar, except that they transfer a single word or byte
contained in the A register. They also have the side effect of overwriting
location 0 in the local workspace. IN performs the opposite of OUT by
reading in a sequence of bytes. All these instructions reset the channel
word to Minlnt after a successful transfer, ready for the next communi­
cation.

A quirk of the transputer is that although both the inputting and
outputting processes specify the length of the message being sent, the
quantity of data actually transferred is determined by the length spec­
ified by the second of the two processes to become ready. No check is
performed to see that the two lengths have the same value. For commu­
nication over external links, the quantity of data sent out and received

Instruction Set Overview

PRI ALT
chan ? data

process (data)
flag t timer ? AFTER n

timeout := TRUE
NOT flag t SKIP

nodata := TRUE

Figure 3.5. ALT example.

43

is determined respectively by the output and input processes on the two
transputers. It is up to the programmer to ensure that the lengths are
specified the same on both processors. If the receiving process requests
more data than is sent, then it will hang, pending further data being
sent, and vice versa.

Strangely enough, there are no corresponding INWORD and INBYTE
instructions, although there does not a.ppear to be any reason for exclud­
ing them.

There is one further instruction of direct relevance to channels, and
this is

RESETCH Reset Channel

which sets an internal channel word to Minlnt, or resets the link hard­
ware for an external channel. This instruction should not need to be
used during normal programming, since channels are automatically reini­
tialised after communication. It is designed for use in fault-tolerant
situations where communications may break down halfway through a
transfer.

3.5.3 Alternatives

The problem with the above instructions is that they commit a process
to a particular communication, and will cause it to hang indefinitely if
the other process never becomes ready to communicate. The transputer
has a suite of instructions, collectively referred to as ALT instructions,
which allow one of a series of events to be chosen. The chosen event is
the one that occurs first. These instructions are optimised to support
the occam ALT construct, of \vhich a brief resume will now be given.

A typical example of an ALT construct is shown in figure 3.5. In
fact, this example uses a 'priority ALT', which simply guarantees that if

44 Cha.pter 3

two events occur simultaneously, the one listed earlier in the construct
is chosen.

This ALT consists of three 'guards', together with the code that
they are guarding. The first guard, chan ? data, says that if the first
event to occur is data appearing on channel chan, then read it into
the variable data, and process it. The second guard demonstrates an
optional boolean flag that can be associated with a guard, separated
from it by an ampersand (&). In this case, the guard is processed only
if the flag is true. This second guard demonstrates a timer input, which
is basically an event that occurs when the current time is after the time
specified by the value n. (Confusingly, the occam syntax for timers is
the same as that for channels.) The final guard, a SKIP, is one that
always succeeds.

If the event takes place for a particular guard, that guard is said to
have fired. A guard may have already fired when the ALT construct
is entered (for example, a ready channel, a time in the past, or a SKIP
guard), or it may fire at some point in the future, (for example, a channel
that becomes ready to communicate, or a time that is reached), or it
may never fire (boolean part of guard evaluates to false). If more than
one guard has fired, or fires, simultaneously, then the one first in the
PRI ALT construct is chosen (for an ordinary ALT it is random; it
simply depends upon the order in which the compiler plants the Disable
instructions-see page 47).

The overall effect of the example can be described as follows. The
construct can be entered with flag set to either true or false. If the
construct is entered with flag set to true, then an attempt is made to
input some data from the channel chan. If however, this does not occur
within a specified time interval, then the variable timeout is set instead.

On the other hand, if flag is set to false, then the channel chan is
checked to see if it has data already. If so, it is read in and processed,
otherwise the flag nodata is set.

It is important to realise that the ALT provides a passive wait; that
is to say, if no guards have fired, the process is descheduled, and other
processing may continue until a guard fires. Note also that an ALT may
have an arbitrary number of channel, timer and skip guards.

3.5.4 ALT Structure

The way ALTs are implemented can be described as follows. The first
thing that is done is to start the ALT by setting some flags to indicate

Instruction Set Overview 45

that an ALT sequence is taking place. Then the various guards must
be enabled; this is the process of checking channel words used by the
guards to see if there are any processes ready to communicate, finding
the earliest time that a timer guard is waiting for, seeing if a guard has
already fired, and so on. Following this is the wait, which is where the
process goes to sleep until such time as a guard fires. Next, each guard is
disabled: this is the process of determining which of the guards has fired.
Finally, the ALT is ended by jumping to the section of code associated
with the guard that fired.

The words within italics are the names that INMOS have given to
the various parts of an ALT sequence of instructions, and the name of
each individual instruction is closely related to this.

3.5.5 ALT IllstructiollS

The two instructions for starting an ALT sequence are

ALT
TALT

Alt Start
Timer Alt Start

Both these instructions set the word at location -3 in the workspace
to the value Minlnt+l. This value is used to indicate 'no guards have
fired yet'. The choice of this location and value is important, because it
corresponds to the data address stored by an IN or OUT instruction when
it deschedules. This means that a process executing an OUT instruction
on a channel shared with the ALT process will be able to tell that the
process it is communicating with is an ALT process, rather than just an
IN. This is because Minlnt+ 1 can never be a valid data address.

In addition, TALT sets location -4 to lvlinlnt+2, an arbitrary-valued
flag indicating that 'no valid time has yet been stored'. TALT should
only be used for ALT constructs which have at least one timer guard,
since it uses a further two locations below the workspace, compared with
ALT.

ENBC
ENBS
ENBT

Enable Channel
Enable Skip
Enable Timer

These three instructions perform the enabling discussed above. One of
these instructions is executed for each guard in the ALT construct. Their
parameters consist of a boolean value, which corresponds to the boolean
part of the guard, discussed above. In addition, ENBC and ENBT have

46 Cllapter 3

an extra parameter, respectively an address of a channel word, and a
value indicating a time. The effect of these instructions is to do nothing
if the boolean has the value false. If on the other hand it is true, then
the effects are as follows.

EN SS sets the flag at location -3 to Minlnt+3, indicating that a
guard has fired. ENBT stores the time value at location -5 if it is an
earlier time than any previously recorded. In doing this, it makes use
of the flag at location -4, which indicates whether a time has yet been
recorded. Finally, EN BC examines the channel word. If the channel
word contains the value Minlnt, indicating that the other process is not
waiting on the channel, then it stores its process descriptor in the channel
word, in the same way that a normal communicating process would. If,
on the other hand, the channel word does not contain the value Minlnt,
then there are two possibilities. Either there is a process waiting at the
other end of the channel, or a previous guard of the ALT process is
waiting on the same channel. Note that it is legal, although unusual,
for two guards to wait on the same channel. The way of telling these
two cases apart is that if the process descriptor stored in the channel
word differs from that of the ALT process, then there is another process
waiting on the channel. If this is the case, then location -3 is set to
Minlnt+3, indicating that a guard has fired.

One important difference between an ALT channel input, and nor­
mal channel input must be mentioned here. The code that implements
the ALT never actually transfers data across a channel. All it does is
detect whether a channel has become ready, and passes control on to the
section of code that deals with that channel. Thus the first instruction
in a section of code following a channel guard would normally be an IN
instruction. This has important implications on the design of the OUT
instruction. Normally, if an OUT instruction is executed and its channel
word does not contain Minlnt, it assumes that the other process is ready,
copies the block of data, and reschedules the other process. If however,
that other process is an ALT process, it must refrain from doing this.
Instead, it must pretend to be the first of the two processes to become
ready by storing its process descriptor in the channel word; it must then
reschedule the ALT if appropriate. It can base all its decisions on the
contents of location -3 in the ALTs workspace.

The next two instructions perform the actual wait during an ALT:

ALTWT
TALTWT

Alt Wait
Timer Alt Wait.

Instruction Set Overview 47

One of these two instructions should be executed after all the enable
instructions. Their effect is to deschedule the ALT process if location
-3 contains Minlnt+l, i.e. if no guards have fired. If the ALT is de­
scheduled, it will be reawakened when a communicating process becomes
ready or, in the case of TALTWT, it may also reawaken if the time to
wait until, comes to pass. TALTWT must be used instead of ALTWT if
any of the guards wait on a time. As well as examining location -3, it
checks to see if locations -4 and -5 indicate a valid time; if this time is in
the future, then the ALT is added to the timer queue and descheduled.
If an ALT process is descheduled, ALTWT and TALTWT set location
-3 to the value Minlnt+2, to indicate this fact to the process at the
other end of any of the channels. If an ALT process is subsequently
reactivated, then this location will be set to Minlnt+3, indicating that
a guard has finally fired.

One final action of these two instructions is to set a flag at location
o in the workspace to the value -1.

Next come the disable instructions.

DISC Disable Channel
DISS Disable Skip
DIST Disable Timer

One of these instructions must be executed for each guard in the ALT
construct. Each instruction has a parameter specifying the value of the
boolean flag in the guard. If this flag is false, the instruction is ignored.
These boolean values must have the same values as in their correspond­
ing Enable instructions. The occam compiler simply calculates the set
of boolean expressions in the guards twice. Since occam does not allow
shared variables, the results will always have the same value. An alter­
native ~pproach (and one that seems a lot more efficient), is to evaluate
the booleans once, storing the results in an array somewhere for use by
the Disable instructions.

The second parameter common to all three Disable instructions is
an offset, which gives the location of the code to be executed for that
particular guard, relative to the Alt End instruction (see page 48). DISC
and DIST each have one further parameter; a pointer to the channel
word, or the time that was to be waited until. The comments above
regarding evaluation of the boolean flags apply equally to the timer
values.

The effect of these instructions is to determine whether that partic­
ular guard has fired, and if so to store the offset at location o. This

48 Chapter 3

location is initialised to -1 by ALTWT; a Disable instruction will only
store its offset there if the value is still -1. This establishes the order
of priority if multiple guards have fired. Thus in an occam PRI ALT,
the Disable instructions are planted in the same order that the guards
appear in the construct, whereas the compiler is free to reorder the dis­
abling for an ordinary ALT. A channel guard is deemed to have fired if
its channel word holds a valid process descriptor and that descriptor is
different from the ALT's descriptor; a timer guard has fired if its time
value is before the current time; and a skip guard is always deemed to
have fired. DISC and DIST also 'disable' a channel or timer if the ALT
has not fired on that particular channel or timer. For a channel, if the
channel word contains the process descriptor of the ALT process, then
this value is reset to Minlnt; for the timer, it removes the ALT process
from the current priority timer queue if its time has still to come to pass.
It is important that they are 'disabled'; after the ALTWT or TALTWT
instruction has been executed, location -3 will contain Minlnt+3. This
value is used by the OUT instruction and the timer hardware to recog­
nise an ALT that has already fired on another guard, and thus to not
take the normal action. However, once the ALTEND instruction has
been reached, location -3 can no longer be guaranteed to hold a valid
value, so any remaining channels or timers must be made inactive.

The last remaining instruction is

ALTEND Alt End

which performs a relative jump based on the contents of location o.
Finally, the code shown in figure 3.6 implements the ALT construct

which was described at the beginning of the section in figure 3.5 (page
43).

3.6 Miscellaneous

There are a few remaining transputer instructions which perform mis­
cellaneous tasks.

3.6.1 Timers

The transputer provides three instructions for dealing with the hardware
timers.

Instruction Set Overview 49

TALT;
LDLP chan; LDC true; ERBC;
LDC n; LDL flag; ERBT;
LDL flag; EQC 0; ERBS;
TALTWT;
LDLP chan; LDC true; LDC (A-A); DISC;
LDC n; LDL flag; LDC (B-A); DI5T;
LDL flag; EQC 0; LDC (C-A); DISS;
ALTEND;

A: LDLP data; LDLP chan; LDC 1; BCNT; IN;
--call process(data)
J (Z-B);

B: LDC true;
STL timeout;
J (Z-C);

C: LDC true;
STL nodata;

Z: --etc

Figure 3.6. Code to ilnplement a timer ALT.

STTIMER
LDTIMER
TIN

Store Timer
Load Timer
Timer Input

STTI MER sets the values of the low and high priority timer registers to
the value in the A register. LDTIMER pushes the value of the current
priority timer register into the A register. Finally, TIN suspends the
current process until the time in the current priority timer register is
after the value specified in the A register; note that this is a passive
wait, and other processes may execute in the meantime. This instruc­
tion works by inserting the current process into a sorted linked list of
processes waiting for a time. Each tilne the timer is incremented, it is
checked against the process at the head of the queue, and if necessary,
that process is reactivated.

3.6.2 Flags

Finally, there are a set of instructions for manipulating various trans­
puter flags.

SETERR
TESTERR

Set Error
Test Error False and Clear

50 Cha.pter 3

The transputer's error flag is normally set when an arithmetic or check­
ing instruction finds something at fault. SETERR is a way of deliberately
setting this flag. TESTERR on the other hand, sets the A register to false
if the error flag is set. It also clears the flag for further use. Note that
the error flag is 'sticky', that is to say, it will not be cleared by a sub­
sequent arithmetic operation that does not overflow. This instruction is
usually followed by a Conditional Jump, which jumps if A is false. The
status of the error flag is preserved when a low priority process is in­
terrupted by a high priority one, but not when a process is descheduled
normally (e.g. during channel communication, or timeslicing following a
J or LEND instruction).

The transputer has a halt-on-error flag which, if set, causes the trans­
puter to halt the next time the error flag gets set. Note that it is the
whole transputer, not just the process that gets halted! The following
instructions

CLRHALTERR
SETHALTERR
TESTHALTERR

Clear Halt-On-Error Flag
Set Halt-On-Error Flag
Test Halt-On-Error Flag

allow the flag to be cleared, set, and its current value to be read (by
putting it in the A register). Finally,

TESTPRANAL Test Processor Analysing

loads true or false into the A register depending on whether the analyse
pin was set on the transputer the last time it received a hardware reset.
This instruction is commonly used to allow bootstrap code to determine
whether to run ordinary or diagnostic code.

Chapter 4

Example Programs

4.1 Introduction

The purpose of this chapter is to illustrate with examples some of the
instructions and ideas which you have met in the previous chapters.
Most of the examples require a basic knowledge of occam, and so will
be of most benefit to those readers familiar with this language.

Why should we use assembly language? Occam is one of the lan­
guages used to program transputers and INMOS quite rightly maintains
that compiled occam can only be marginally improved on by the very
best assembly language writer. The usual reasons given for the use of
assembly language is to manage memory efficiently and to communicate
with peripherals but occam has features already built-in to ~nable the
user to do this. What the designers of occam and the transputer have
not done is to allow the user to manipulate the in-built scheduling and
communication mechanisms of the transputer in occam. Thus most of
the examples in this chapter are concerned with these features. The
exceptions to this are the first few examples which have been included
to introduce some of the terminology.

There are a number of transputer assemblers available commercially
or in the public domain. All of the exalnples in this chapter were origi­
nally assembled using an assembler developed in the Computer Science
department at the University of Sheffield. The difficulty is that each
assembler has different pseudo opcodes and facilities. To appeal to as
large an audience as possible, the exalnples have been recoded using the
occam 'GUY' construct, \vhich enables in-line asselnbly language to be
used within occam. All of the examples have been developed on a T800

51

-- #8000012A Idc 8000
-- #8000012E stl 2
-- #8000012F Idc 1

#80000130 stl 3
VO, 0)

52 Clla.pter 4

#USE userio
BOOL BO:
INT vc, Any:
SEQ

GUY
LDC 8000
STL VO
LDC TRUE
STL BO

write.int(screen,
IF

BO = TRUE
write.full.string(screen, ..

BO = FALSE
write.full.string(screen, "

keyboard ? Any

TRUE")

FALSE")

Figure 4.1. Constant/Boolean example.

using occam and the debugger a.vailable in the INMOS Transputer De­
velopment System (TDS). They could just as easily have been produced
using the INMOS standalone toolset. Even if you do not use occam, or
if you have your own assembler, you should' find these examples infor­
mative and easy to understand.

In each of the occam programs the input/output library userio has
been used. This library is supplied with the TDS system, and as it
should be obvious from the process names and parameters what these
processes do, their details are omitted for compactness.

4.2 Introductory Exalllples

The GUY construct within occam is very useful and it has a number of
attractive features; but it has some limitations and also some peculiar
effects. Thus a number of trivial exalnples are included in this section
to familiarise the reader with the notation and to point out some of the
peculiarities of GUY.

One method of debugging programs is to put a SETERR instruction
at an appropriate point in a program. The program is then compiled,
linked and run. When the SETERR instruction is executed, this sets
the error pin on the transputer and the INMOS debugger [3] can then

#80000104 Idl 1
#80000105 ldl 2
#80000106 add
#80000108 ldl 3
#80000109 stnl 0
#8000010A ret

Example Progranls

PRCC Add(VAL INT Num1, Num2, INT Result)
GUY

LDL Num1
LDL Num2
ADD
STL Result

#USE userio
INT Num1, Num2, Result, Ch, Any:
SEQ

Ch := 0
vrite.full.string(screen, tlInput first number tI)
read.echo.int(keyboard. screen, Num1 , Ch)
write.full.string(screen,tI*c*nInput second number tI)
read.echo.int(keyboard, screen, Num2, Ch)
Add (Num1. Num2, Result)
write.full.string(screen,"*c*nThe sum of these is It)
write.int(screen, Result,O)
keyboard ? Any

Figure 4.2. ADD example.

53

be used to inspect the code. Using this procedure on a simple program
brings to light the first inconsistency in the system. Inside the GUY
construct the transputer instructions must be in capital letters, but the
disassembler displays them in lower case letters. This is a trivial differ­
ence, but it is indicative that others may follow.

The example in figure 4.1 shows SOIne of the nice features of GUY.
Constants (e.g. 8000 and TRUE) can be input in a user friendly way,
and the disassembled code produced by the debugger matches the orig­
inal GUY code. It should be noted however, that the instruction LDC
8000 does in fact consist of five instructions, four Prefix instructions and
one Load Constant instruction. GUY handles all positive and negative
prefixing automatically; this includes the addressing of data within the
workspace, as well as constants. TRUE and FALSE are automatically re­
placed by 1 and 0 respectively. Another nice feature of GUY is that
occam variables which are in scope can be referred to by name within
the G"UY construct. Unfortunately the disassembler does not reproduce
the symbolic names used in the original GUY.

The disassembled code obtained froIn the debugger has been included

54 Cllapter 4

PRoe ArrayTest (BYTE a. INT b. []BYTE NonLocalArray1.
[5]INT NonLocalArray2. INT c)

[512]IIT Array:
SEQ

Array [511] := INT('3')
SEQ

a:= NonLocalArray1[(SIZE NonLocalArray1)-1]
b:= NonLocalArray2[(SIZE NonLocalArray2)-1]
c:= Array[(SIZE Array)-1]

#USE userio
[510]BYTE Array1:
[5] lIT Array2:
BYTE a:
INT b. c. Any:
SEQ

Array1[509] := '1'
Array2[4] := INT('2')
ArrayTest (a. b. Array1. Array2. c)
write.int(screen. INT a. 10)
write.int(screen. b. 10)
write.int(screen. c. 10)
keyboard ? Any

Figure 4.3. occam version of array example.

in the occam program as comments. A comment in occam starts with
'--'. This is done where appropriate to emphasise the differences be­
tween the GUY input and the disassembled output or to show more
clearly the code which has been created by the compiler. It is possi­
ble that your system may give different addresses, but they should only
be displaced by a constant from those shown. The disassembled code
shows that the variables in the local workspace are placed in reverse
order, hence Any is at location 1, VO at location 2 and BO at location
3. Note also that BOOLs and BYTEs occupy one word in the workspace,
that is 32 bits for T4s and T8s.

The second example, given in figure 4.2, illustrates that in some cases
the disassembled code produced by the debugger differs from the original
GUY code. The reasons for this will becolne clear as we examine the
code. Two of the parameters to the procedure Add are value parameters,
namely Numl and Num2. The values of these parameters are placed
at locations 1 and 2 of the workspace. However, the third parameter,

EXalTIple ProgTanls 55

518
517
516
515
514
513
512

o

c
Address of NonLocalArray2
Size of NonLocalArrayl
Address of NonLocalArrayl
b
a

Return Address

Array

Figure 4.4. Diagram of the workspace for TestArray.

namely Result is a call by reference parameter, and a pointer to the
actual location of Result is placed at location 3 of the workspace. Note
that the parameters of the procedure appear in the workspace in the
same order as they do in the specification of the procedure, whereas the
local variables, if there are any, appear in reverse order.

Accessing parameters or variables using GUY is done by LDL or STL
irrespective of the fact that the pa.rameter or variable may be local or
non-local, or called by reference or value. The cOlupiler has enough infor­
mation from the surrounding occam to produce the required transputer
instructiollS. The disassembled code produced by the debugger is the
exact code required by the transputer apart fronl negative and positive
prefixes. If you are using your own assembler you may have to translate
some of the GUY instructions to luore literal equivalents. For instance,
the STL Result may have to be replaced by LDL Result; STNL O. Note
also that the compiler plants the RET, whereas most assemblers would
expect you to type it in.

The last example in this section is contained in figures 4.3, 4.4 and
4.5, and it demonstrates some nlore of the features of GUY. Figure
4.3 is a purely occam program and figure 4.5 shows how the proce­
dure Array Test in figure 4.3 could be coded using GUY. The procedure
ArrayTest returns in a, band c the last values of the arrays Array, Non­
LocalArrayl and NonLocalArray2 respectively. The main purpose of this
example is to show how arrays are accessed and passed as parameters.
In addition, the example shows how to use the SIZE operator within
GUY.

The workspace for ArrayTest is shown in figure 4.4. Variable sized
arrays such as NonLocalArrayl have a pointer to the start of the array,

56 Cllapter 4

PROC ArrayTest (BYTE a, INT b, []BYTE NonLocalArray1,
[5]INT NonLocaIArray2, INT c)

[512]INT Array: #80000AF8 ajv -512
SEQ

Array[511] .- INT{13 ') #80000AFB Idc 51
#80000AFD stl 511

GUY
a:= NonLocaIArray1[(SIZE NonLocaIArray1)-1]

LDL SIZE (NonLocalArray1) #80000BOO Idl 516
ADC -1 #80000B03 adc -1
LDL SIZE (NonLocaIArray1) #80000B05 Idl 516
CSUBO #80000B08 csubO
LDLP NonLocalArray1 #80000BOA Idl 515
BSUB #80000BOD bsub
LB #80000BOE Ib
STL a #80000BOF Idl 513

#80000B12 stnl 0
-- b:= NonLocaIArray2[{SIZE NonLocaIArray2)-1]
LDLP NonLocaIArray2 -- #80000B13 Idl 517
LDNL ({SIZE NonLocalArray2) -1)

#80000B16 Idnl 4
STL b #80000B17 Idl 514

#80000B1A stnl 0
-- c:= Array[{SIZE Array)-1]
LDLP Array
LDNL ({SIZE Array) -1)
STL c

#80000B1B IdIp 0
#80000B1C Idnl 511
#80000B1F Idl 518
#80000B22 stnl 0
#80000B23 ajw 512
#80000B26 ret

Figure 4.5. GUY code to replace the ArrayTest procedure.

and a constant indicating the size of the array placed at the appropriate
places in the workspace. This is necessary, as it is only at run time
that both of these pieces of information will be known. Conversely only
a pointer to the fixed sized array IVonLocalArmy2 is required, as the
compiler knows the exact size of the array at compile time. Arrays
in occam are indexed from 0, with the zero element occupying a lower
location in the workspace than the last element.

If local variables are declared within a procedure, then they can
be accessed from within the GUY construct. The appropriate AJW
instructions are planted by the compiler at the start of the procedure,

Example Programs 57

and also at the end of the procedure, prior to the RET instruction.
The local variables and parameters are then all positive offsets from the
workspace pointer. The local variables appear first in the workspace (in
the reverse order to their declaration), followed by the address of the next
instruction of the calling procedure, followed lastly by the parameters
in the order they are declared (see figure 4.4).

The SIZE operator is treated in two different ways in GUY. If it is
used to size a local array, such as Array, or a fixed sized array passed as
a parameter, such as NonLocalArray2, it returns the size of the array.
However, if it is used to size a variable sized array passed as a parameter,
such as NonLocalArrayl, it returns the location in the workspace which
will contain the size of the array when the procedure is called.

In GUY, if the instruction LDLP is used in conjunction with a local
variable, such as Array, a pointer to the appropriate workspace element
is loaded. However, if LDLP is used in conjunction with a parameter
which has been passed as a pointer, such as NonLocalArrayl, then GUY
converts this to a LDL instruction for the appropriate workspace loca­
tion. Suppose LDL NonLocalArray1 had been used instead of LDLP,
then GUY would have converted this to LDL 515, LDNL 0, which is
completely wrong in this context.

The GUY instructions prior to and including the CS U80 instruction
illustrate how the compiler range-checks array accesses prior to loading.
The GUY code for range-checking is not strictly necessary, as the pro­
grammer knows in advance that he is accessing a valid array element (i.e.
the last element), but it shows the general approach, and would be nec­
essary if it were the fifth from last element being accessed, for example.
If the first element of the array had been required, the range-checking
code would have been replaced by LDL 0, LDL SIZE NonLocalArray1,

CSUBO. Accesses to fixed-sized arrays by constant indices can be per­
formed without range-checking code; this is because the compiler can
perform the range-checking at compile time, or the GUY programmer
can manually check his or her own code. However, range-checking must
be carried out at run time for variable-sized arrays, or fixed-sized arrays
with variable indices.

To use GUY within occam procedures, the programmer must know
how parameters are passed by the compiler. In the product version of
the'occam compiler, the values of all value parameters which are 32 bits
or less are placed in the appropriate places in the workspace, and all
other value parameters are passed as pointers. Thus VAL INT64 and
VAL REAL64 are passed as pointers; it is then up to the compiler or the

58 Clla.pter 4

GUY writer to make sure that these parameters are only accessed by
value. All other parameters are passed by reference. That is, a pointer
to the parameter is placed in the workspace at the appropriate point.
The length of a variable sized array parameter is placed in the workspace
in the location immediately above the pointer to the array.

4.3 COInIIlunication Examples

This section contains a number of examples concerned with input and
output. The first two examples illustrate how we investigated the op­
eration of some of the transputer instructions. The Compiler Writer's
Guide [4] produced by INMOS, although useful, assumes that the exact
operation of some instructions, such as ALTWT and 0 UT, are irrelevant.
We feel that a fuller description is both educational and may be of use
if someone has an unusual use of the instruction.

The third example combines the use of the input and output in­
structions in a single buffer procedure, showing that GUY procedures
can still use protocols for channel communication. In addition, this ex­
ample demonstrates a bug in the product release of the occam/GUY
compiler.

Finally, the last example in this section shows how several processes
can share the same channel, breaking the normal occam rules which
state that only two processes nlay share a particular channel. This
demonstrates that GUY procedures can be used to violate the normal
occam conventions if this is required.

4.3.1 Programs to Inspect Workspace Usage

During the writing of this book, it was useful to take snapshots of the
current workspace usage after the execution of particular instructions.
The examples given in figures 4.6 and 4.7 show how this was done. In
figure 4.6 we are checking the operation of the IN instruction, but we
could have easily replaced the instructions between the two dashed lines
with other experimental code, as we have done in figure 4.7.

The operation of these programs will now be described. In both
examples, the program works by executing some code with its workspace
pointer set to point to a locally declared array Wspace. In this way it
is possible to examine the contents of the workspace after a particular
instruction, or sequence of instructions has been executed. In fact, we

Exa.mple Programs 59

#USE userio

OF ANY In. [JINT wspace)

load pointer to channel word
load offset into array
load pointer to start of array
calculate new workspace pointer
transfer to new workspace
save old workspace pointer
save pointer to channel word

1
5
2

1
2

PRoe TestInst(CHAN
GUY

LDL
LDC
LDL
WSUB
GAJW
STL
STL

LDLP 3
LDL 2
LDC 4
IN

get pointer to buffer location
load pointer to channel word
transfer 4 bytes

LDL 1 load old workspace pointer
GAJW -- return to old workspace

VAL MaxSize IS 10:
[MaxSize]INT Wspace:
CHAN OF ANY ToTestlnst:
INT Any:
SEQ

SEQ i=O FOR MaxSize -- initialize wspace
Wspace[i]:=O

PAR
**** ToTestInst! 8
**** Testlnst (ToTestlnst. Wspace)

SEQ
SEQ i=O FOR MaxSize print out Wspace

SEQ
write.full.string (screen. "*c*nLoc ")
write.int (screen. i-S, 0)
write. full. string (screen. ": ")
write.hex.int(screen. Wspace[i]. 8)

keyboard ! Any

Figure 4.6. Program to inspect workspace after IN instruction.

60 Clla.pter 4

OF ANY In, []INT wspace)

load pointer to channel word
load offset into array
load pointer to start of array
calculate new workspace pointer
transfer to new workspace
save old workspace pointer
save pointer to channel word

1
5
2

1
2

#USE userio
PROC TestInst(CHAN

GUY
LDL
LDC
LDL
WSUB
GAJW
STL
STL

ALT
ALTWT

-- test workspace usage of ALT
-- followed by ALTWT

LDL 1
GAJW

load old workspace pointer
-- return to old workspace

-- initialize Wspace

Wspace)
make sure other
process has descheduled
print Wspace

restart descheduled Testlnst
get pointer to start of
workspace for TestInst
make this a low priority
descriptor

VAL MaxSize IS 10:
CHAN OF ANY ToTestInst:
[MaxSize]INT Wspace:
INT Any:
SEQ

SEQ i=O FOR MaxSize
Wspace[i]:=O

PAR
Testlnst (ToTestInst,
SEQ

keyboard ! Any
SEQ i=O FOR MaxSize

SEQ
write.full.string (screen, tI*c*nLoc tI)
write.int (screen, i-5, 0)
write.full.string (screen, tI: tI)
write.hex.int(screen, Wspace[i], 8)

keyboard ! Any
GUY

LDLP Wspace
LDNLP 5
LDC 1
OR
RUNP

Figure 4.7. Program to inspect workspace after an ALTWT instruction.

Example Progra.ms

offset from W 1st run 2nd run
4 #00000000 #00000000
3 #00000008 #00000008
2 #800000FO #800000FO
1 #800000C4 #800000D4
0 #00000000 #00000000

-1 #00000000 #80000168
-2 #00000000 #00000000
-3 #00000000 #80000114
-4 #00000000 #00000000
-5 #00000000 #00000000

61

Figure 4.8. Example output from two runs of the program shown in
figure 4.6

set the workspace pointer to point to Wspace[5] , so that the five locations
below the workspace pointer can be examined.

The first action of the program is to initialise the workspace Ws­
pace to known values, usually zero. Then the procedure Testlnst, which
includes the instructions under investigation, is called. The GAJW in­
struction exchanges the contents of the A register, which should contain
the new workspace pointer, with the current contents of the workspace
pointer. Any extra information required can be stored in the workspace
for use either in the procedure and/or to be displayed later.

In this example the address of the cha.nnel word In is required after
the workspace has been changed. Thus it is passed on the evaluation
stack and stored in a convenient place in the new workspace, as is the
value of the old workspace pointer. Having done a GAJW, the variables
in the old workspace could have been accessed by LDL 1 J LDNL x, where
x is the required offset.

In the previous GUY examples, variables and parameters in the
workspace can be accessed by name, but GUY can also access vari­
ables by their position. In this mode it is up to the programmer to keep
track of the workspace usage. Note also that in this direct mode, the
programmer must remember if a location conta.ins a pointer or data, and
these must be dealt with appropriately.

When run, the Testlnst procedure either terminates naturally, as in
figure 4.6, or it is descheduled waiting for input/output, as in figure
4.7. In the second case, extra GUY instructions have to be added into
another process to restart the Testlnst process. Finally, the TestInst

62 Chapter 4

procedure uses the previously stored old workspace pointer and another
GAJW to restore the old workspace.

In figure 4.7, the Testlnst process will be descheduled by the ALTWT
instruction. When a process is descheduled, it saves a pointer to the next
instruction at the location immediately below the workspace pointer.
In this particular case, a pointer to the instruction LDL 1 is stored at
Wspace[4]. The only other process which can proceed is the second
process within the PAR. This second process waits for a keypress: this
ensures that the other process has actually descheduled, no matter the
order of the processes; then it writes out the contents of the workspace.
Finally, an external GUY construct is used to restart the descheduled
process. If this is not done, the system will deadlock as one of the
processes within the PAR has not terminated.

This example shows how to use the RUN P instruction, which expects
the process descriptor of the new process to be in the A register when
it is called, and the address of where it has to start execution to have
been stored at the location below the workspace. Remember that the
instruction pointer was stored at the desired location when the Testlnst
process was descheduled while executing the ALTWT.

The findings of the investigation of the IN instructions will be given
now, but the findings of the ALT instructions will be dealt with in
section 4.4, where a complete example is given of the use of the ALT
instructions.

Note that use of the workspace above location 0 is made by the
assembly language process, whereas use of the space below location 0
is made by the microcode of the IN instruction. The left column of
figure 4.8 shows the contents of the workspace for the program in fig­
ure 4.6 with the instructions inside the PAR in the order given. The
right-hand column in figure 4.8 shows the workspace usage with the
two starred instructions reversed. The left-hand column shows that the
process ToTestChan ! 8 was executed first, transferring control to the
Testlnst process, which does not deschedule on reaching the IN instruc­
tion, as it is the second process. It then transfers the four bytes and
reschedules the other process. In this case, the Testlnst process makes
no use of the locations below the workspace. In the second run with the
starred instructions reversed, the Testlnst process is executed first. In
this case, when the IN instruction is executed, it stores the instruction
pointer at location -1 and it stores a pointer to the message at location
-3 of the workspace. In both cases, after the execution of Testlnst, the
workspace contains the old workspace pointer, a pointer to the channel

Example Programs 63

word and the data transferred at locations 1, 2, and 3 respectively. The
workspace pointers are different because the order of the compilation
has been reversed.

In general, when inputting or outputting, the first process to start
the communication is descheduled, the instruction pointer is stored at
location -1 and a pointer to the message to be transferred is stored at
location -3 of the workspace. Note that the number of bytes to be trans­
ferred is not stored. In an occam program this is not necessary as the
compiler will have checked that the inputting and outputting processes
wish to transfer the same number of bytes. Thus when the second pro­
cess is scheduled it will transfer the correct number of bytes. If however,
the occam harness is being used to control a number of processes which
have been written in alien languages, then tllere is no way to check that
the transfer is consistent. We believe that the microcode of the trans­
puter for the IN and OUT instructions could be improved. It is almost
as if the microcode was different at some stage and that location -2
had been used to store something. We suggest that this location could
be used to store the count when a process is descheduled and that the
microcode of the second process checks that the counts are consistent:
if they are not it should set the error flag.

4.3.2 Pipeline Example

This example shows how GUY can be used to input and output from
channels which have a protocol attached to them. It also illustrates a
reported bug in the product release of the GUY/occam compiler.

The compiler should leave three free locations below each process
which uses input or output, for use if the process is descheduled. How­
ever, the compiler only leaves two free locations if a GUY procedure
is followed by an occam procedure. In all other cases it creates the
workspaces correctly. Thus, an extra unused variable Dummy is re­
quired in the pipeline example or the system will crash. This extra
unused variable should be placed between the call to the GUY and the
occam processes.

Within a PAR construct the procedures can appear in any order,
and it would have been possible to place them in such an order that
the extra unused variable is not required; but equally there are many
combinations where extra variables are required and this example has
been constructed to bring the bug to your attention and to save you
many hours of exasperation.

64 Clla.pter 4

#USE userio
VAL MaxBufferSize IS 512:
PROC Buffer(CHAN OF INT::[]BYTE In, Out)

INT Size:
[MaxBufferSize] BYTE Message:
GUY

LDLP Size load pointer to Size
LDLP In load pointer to In
LDC 4 input Size
IN
LDLP Message load pointer to Message
LDLP In load pointer to In
LDL Size input message
IN
LDLP Size load pointer to Size
LDLP Out load pointer to Out
LDC 4 output Size
OUT
LDLP Message load pointer to Message
LDLP Out load pointer to Out
LDL Size output message
OUT

[5]CHAN OF INT::[]BYTE Pipe:
VAL OutputString IS "Well done":
[MaxBufferSize]BYTE Message:
INT Size, Any:
SEQ

PAR
Pipe [0] ! (SIZE OutputString):: OutputString
Buffer(Pipe[O],Pipe[1])
Buffer(Pipe[1],Pipe[2])
INT Dummy:
Pipe[4] ? Size::Message
Buffer(Pipe[2],Pipe[3])
Buffer(Pipe[3],Pipe[4])

write.full.string (screen, "*c*nMessage received :")
write.len.string(screen, Size, Message)
keyboard ! Any

Figure 4.9. Pipeline exalnple.

Exan]ple ProgTams 65

In the example shown in figure 4.9, input and output have been com­
bined into one process, but it would be trivial to produce two processes,
one to input a message and one to output a message.

Procedures like this are used in parallel C, Pascal and FORTRAN
to enable these sequential languages to use channels as in occam. In
these systems, the communication procedures are contained in linkable
libraries which are called from within tasks (mini programs) and a run­
time support system is provided to set up and load the communicating
tasks. In the Buffer procedure the protocol INT: : [] BYTE is executed
explicitly. That is, an integer is read in indicating the number of bytes
to follow, then that number of bytes is transferred.

Note that pointers to the channel words In and Out are placed in
the workspace when the process Buffer is instantiated. However, GUY
insists that LDLP In is used, but converts this to LDL In.

4.3.3 Channel Switchillg

This example is designed to show you how to s\vitch channels from one
process to another. Although this is against the principles of occam
it is sometimes quite a useful thing to do. This approach could be
used in the TDS filer. Initially \vhen files are opened or created this
is done by a single process which ALTs on the filer channels. If the
opening operations are successful then these channels are passed over to
another process which runs in parallel with the original. When the I/O
is complete, control is passed back to the original ALT process. This
enables the filer to handle a number of files simultaneously. To get a
flavour for how this may be done consider figure 4.10.

This prograln sets up three processes: Source, Pl and P2. Source
sends a string out on the channel FromSource. Officially, this data can
only be read in by Pl. Ho\vever, in this program, the address of the
channel word for FromSource is passed froll1 P1 to P2, enabling both
processes to access the channel. This situation is shown in figure 4.11.

Occam does not enable the user to find out the exact location of the
channel word used in communication. This has to be done in assem­
bly language by the procedure ChannelToChannelId. Once a pointer
to the channel word has been obtained using ChannelToChannelId in
the P1 process, it can be sent to process P2 over the channel Pl ToP2,
enabling it to use the channel FromSource. Although this breaks the
occam principle that no more than t,vo processes should share a single
channel, the synchronisation of the channel is maintained in this exam-

66 Clla.pter 4

PROC Source(CHAN OF BYTE Out)
VAL str IS "first?second?":
SEQ i = 0 FOR SIZE str

Out ! str[i]

PROC P1(CHAN OF BYTE FromSource, CHAN OF INT ToP2,FromP2)
PROC ChannelToChannelld(CHAN OF BYTE Comms,

INT ChannelId)
GUY

LDLP Comms
STL Channelld

get pointer to channel
return pointer in ChannelId

INT Channelld, Any:
BYTE Char:
SEQ

ChannelToChannelld(FromSource, Channelld)
FromSource ? Char
WHILE Char <> '?'

SEQ
... do something with inputted chars
FromSource ? Char

ToP2 ! ChannelId
FromP2 ? Any

load pointer to location to
store byte
load pointer to shared channel
transfer one byte

LDL ChanId
LDC 1
IN

PROC P2(CHAN OF INT FromP1, CHAN OF INT ToP1)
#USE userio
INT Channelld, Any:
BYTE Char:
PROC RxByte(VAL INT ChanId, BYTE Ptr)

GUY
LDLP Ptr

Figure 4.10. An example of how to swap channels between processes.

Example Programs

SEQ
FromP1 1 ChannelId
Char := 0
WHILE Char <> '1'

SEQ
RxByte(ChannelId, Char)
write.char(screen,, ,)
vrite.char(screen, Char)

keyboard ! Any
ToP1 ! Any

CHAR OF BYTE FromSource:
CHAR OF INT P1ToP2, P2ToP1:
PAR

Source (FromSource)
Pi (FromSource, P1ToP2, P2ToP1)
P2(P1ToP2, P2ToP1)

Figure 4.10. (cont).

67

pIe by the use of channels P1ToP2 and P2ToP1. The difference is that
the synchronisation must be done by 'the programmer and not by the
system.

When the P2 process receives the pointer to the channel word, it
cannot use it in occam to access the channel; this has to be done in
assembly language using the procedure RxByte.

When the program is run, the string "first" is sent to the process
P1 and the string "second" is sent to process P2. The "?" is used to
synchronise the use of the channel. This example shows how two very
simple assembly language programs can be used to accomplish things
that cannot be done in occam, but which may be useful in writing an
operating system-even one as simple as TDS.

4.4 Description and Examples Using the ALT
Instructions

The first part of this section will show how the ALT instructions work.
These instructions were investigated using a program similar to that
discussed in section 4.3.1. The results of the investigation are given in
the next section, and an example of how to encode a simple replicated

68 Cllapter 4

Figure 4.11. The FromSource channel is shared between processes Pl
and P2.

ALT is given in section 4.4.2. To make this example a little different, we
have chosen not to irnpleIJlent the replicated ALT exactly, but to devise
a procedure which just returns to the caller which channel is ready for
input. Procedures similar to this are used in parallel C, Pascal and
FORTRAN.

4.4.1 ImpIementatioll of tIle ALT Instructions

The code used to implement an occam ALT always takes the same for­
mat; the ALT is initialised by an ALT or TALT instruction, each guard
is then enabled by one of the enable instructions ENBC, ENBS, ENBT.
Then the ALTWT or TALTWT instruction is called, which deschedules
the current process if none of the guards has fired. A guard is said to
have fired when all the conditions are satisfied: either channel input
has been available, or a specified time has been reached. The process
is rescheduled when one of the channels is ready or a time has been
reached, then one of the disable instructions DISC,DISS or DIST is used
to disable each guard. Finally, the ALTEN D instruction is used to trans­
fer control to the process whose guard has fired. To keep it simple, the
sequence of events using ALT, ENBC, ALTWT, DISC and ALTEND is
discussed below.

The only action of the ALT instruction is to initialise location -3 of
the workspace to Minlnt+1.

The EN BC instruction looks at the contents of register A, which
should contain the boolean part of the guard. If this is false, then
control passes to the next instruction. If however, register A contains
true, EN BC then checks if there is any input ready on the channel pointed
to by the contents of register B. If the channel is ready to input, then
location -3 of the workspace is set to Jvlinlnt+3 and control passes onto

Example Progranls 69

the next instruction. If the channel is not ready to input, then the
channel word will be in one of two states: it will either contain Minlnt or
it will point to the current process. If it contains Minlnt then its contents
are altered so that it now points to the workspace of the current ALT
process. However, if the channel word already points to the workspace
of the current process then no action is required. This last situation will
only occur if the same channel occurs in a number of guards.

It may be clearer to reconsider these actions in another way. The
EN BC instruction may alter the contents of location -3 of its own work­
space and/or it may change the contents of the channel word pointed
to by the B register. Each of these changes can only take place if the
A register contains true, that is if the boolean part of the guard is true.
Location -3 is changed from Afinlnt+1 to A1inlnt+3, if the channel word
indicates that another process is rea.dy to output on that channel. In
this case the channel word is left unchanged, whereas the channel word
is changed from Minlnt to point to the ALT process if the other process
is not ready to communicate.

The ALTWT instruction sets location 0 of the workspace to -1. The
process is descheduled if location -3 of the \vorkspace contains Minlnt+ 1,
otherwise it continues on to the next instruction. If the process is de­
scheduled then location -3 is changed to A1inlnt+2 and it will only
be rescheduled when another proce~s is ready to output on an enabled
channel.

If another process tries to output to the ALT on a channel which has
not been enabled, it will find the channel word set to Minlnt and it will
thus deschedule itself after storing its process descriptor in the channel
word. If the outputting process finds that the channel word contains a
workspace pointer, then the situation is much more complex. When the
OUT instruction is executed it must look at location -3 of the workspace
of the other process to see whether it is dealing with an ALT process or
a straightforward inputting process. If the OUT is communicating with
an ALT then location -3 of the ALTs workspace will contain Minlnt+l,
Minlnt+2 or Minlnt+3.

If location -3 of the workspace of the ALT process contains Minlnt+l
then this indicates that the ALT process has not yet reaclled the ALTWT
instruction. In this case location -3 is changed to Minlnt+3. This
can happen if the ALT process ha.s been interrupted by a high priority
process and the 0 UT is either part the interrupting process or it is part
of another high priority process which can now run. It can also happen if
the ALT process was descheduled by a LEND instruction in a replicated

70 CllajJter 4

ALT. If the OUT process was called froIn a high priority process, the the
ALT process will be returned to when no other high priority processes
can run. If however, the ALT process was descheduled by a LEND
instruction it will be on the active queue and it will be rescheduled
when its turn comes.

If location -3 of the workspace of the ALT process contains Minlnt+2
then the ALT process has executed an ALTWT and the ALT process
must be rescheduled by the OUT process, and again location -3 of the
ALT workspace must be changed to AlinInt+3. If however, location -3
of the workspace of the ALT process already contains MinInt+3 then
the 0 UT process stores its process descriptor in the channel word. In all
cases the OUT process deschedules itself, placing its instruction pointer
at location -1, a pointer to the nlessage buffer at location -3 of its own
workspace, and a pointer to its \vorkspace is placed in the channel word.

The DISC instruction looks at the contents of the B register which
should indicate the state of the boolean part of the guard. If the B
register contains false, control passes onto the next instruction.

Otherwise it looks at the channel word pointed to by the C register.
If the channel word contains A/inInt, then control passes onto the next
instruction, else if it contains the process descriptor of the current pro­
cess, it stores MinInt in the channel \vord; otherwise the channel word
must contain a process descriptor for another process. In this case, if
location 0 of the local workspace contains the value -1, then the con­
tents of the A register are placed into location 0 of the workspace. The
A register contains the offset to the code of the guarded process from
the first instruction past the ALTEND instruction. If control has reached
past the ALTWT tllen one of the DIS Cs nlust fire unless another process
has illegally altered one of the boolean guards. This is impossible in
occam but it could be done in assembly langua.ge.

The ALTEND instruction should only be reached if one of the DISCs
has fired. In any case it adds the contents of location 0 of the workspace
to the program counter and passes control to that point.

4.4.2 Example of all ALT-like Procedure

The example in figure 4.12 shovvs ho\v a GUY procedure can be written
to implement an ALT-like procedure. An array of channels is passed to
this procedure and it returns the identity of the input channel that is
ready, but no input is performed. Any input is done after the procedure
call. 3L use this approach in their inlplementations of parallel C, FOR-

Example Programs 71

initialize ALT
initialize Test

if zero jump to L2

check array indexing

initialize replication
variable to 0
set number of times to replicate
to actual size of Input array
check for zero sized array

boolean guard always TRUE
leaves FALSE in A reg if guard
does not fire. TRUE otherwise
OR with current value of Test

if out of range set error flag
load channel word from Input array

point to loop index
number of bytes between L2 and L1
loop if index below top

if Test contains 0 error in ALT
no guards have fired
if so set error flag

re-initialize loop variable to 0

o
Test
o
Looplndex
(SIZE Input)-­
LoopTop
LoopTop

#USE userio
[10]CHAN OF INT Comms:
PROC Alt([]CHAN OF INT Input. INT Channelld)

INT Test. LoopTop. Looplndex. Temp:
GUY

ALT
LDC
STL
LDC
STL
LDL
STL
LDL
MINT
CSUBO
CJ .L2
:L1
LDL Looplndex
LDL (SIZE Input)
CSUBO
LDLP Input
WSUB
LDC 1
ENBC
LDL Test
OR
STL Test
LDLP Looplndex
LDC 18
LEND
:L2
LDL Test
LDC 1
CCNT1
ALTWT
LDC 0
STL LoopIndex
LDL (SIZE Input)-- initialize LoopTop
STL LoopTop to actual size of Input array
LDL LoopTop check if zero sized array

Figure 4.12. Example implementation of ALT-like procedure.

72

MINT
CSUBO
Cl .L5
:L3
LDL Looplndex
LDL (SIZE Input)
CSUBO
LDLP Input
WSUB
LDC 1
LDC 0
DISC
Cl .L4
LDL Looplndex
STL Channelld
:L4
LDLP Looplndex
LDC 19
LEND
:L5
ALTEND

Clla.pter 4

if so skip

check array indexing

if out of range set error flag
load channel word from Input array

boolean guard always TRUE
offset from ALTEND
disable channel

return current loop index
in Channelld

point to loop index
number of bytes between L5-L3
loop if index below top

INT Channelld. Any:
SEQ

PAR
INT Num:
SEQ

Alt (Comms. Channelld)
Comms[Channelld] ? Num

INT Dwmny:
INT Id. Ch:
SEQ

keyboard ? Ch
Id := (INT Ch) - (INT '0 ')
IF

(Id >= 0) AND (Id <= 9)
Comms[Id] ! Id

write. full. string (screen. "Channel used was ")
vrite.int (screen. Channelld. 0)
keyboard ? Any

Figure 4.12. (cont).

Exa.mple Progranls 73

TRAN and Pascal. This enables their languages to communicate with
other processes which wish to output bytes, words or messages. The
programmer is expected to input the correct structure.

Using the explanations of the ALT instructions given in the last sec­
tion it should be possible to follow the given example without much
further discussion. The given code was created by first writing the fol­
lowing piece of occam code

ALT i = 0 FOR Size (Input)
Input[i] ? Num

ChannelId := i

and then inspecting the code produced by the disassembler in the de­
bugger. The code given here is similar to that obtained from the dis­
assembler. It shows the extra cllecks planted by the compiler. Some
of these checks could be removed for efficiency by an experienced GUY
writer.

The variable Temp in the Alt procedure is necessary, as the DISC
instruction uses location 0 of the workspace to store the offset from the
ALTEN D of a fired guarded process. In this case the offset is always zero
as inputting takes place later. The identity of the ready channel can be
returned immediately in Channelld if the guard has fired.

This example also shows how to set up a replicated process. This
requires the use of two variables in the workspace, and the LEN D in­
struction. One variable is used to store the current iteration count and
the other stores the number of iterations left. LEN D expects the offset to
the start of the loop to be loaded into the A register, but GUY offers no
simple means of loading this value; the programmer has to count back
the number of bytes required, taking into account any necessary posi­
tive or negative prefix instructions. This is tedious and it is very easy to
make mistakes. GUY should be enhanced to perform those arithmetic
functions which could be done at compile time.

Note the addition of the unused variable Dummy to get over the bug
discussed in section 4.3.2. If the order of the procedures in the PAR
construct are reversed then the use of the Dummy variable would not
be necessary. It has been added to remind you that a bug exists in the
product release of the compiler if a GUY process which performs input
or output is followed by an occaln process.

As an exercise you may like to code up an Alt_no_wait procedure
which returns -1 if no guards have fired otherwise it returns the array
identifier of the channel which has fired.

return from this recursive call

multiply them together
place this in Result

error flag set if no stack space left
no more recursion required
push 1
push pointer to Result
return 1 in Result

74 Chapter 4

#USE userio
VAL INT MaxStackSize IS 2000:
VAL INT StackFrameSize IS 4:
INT Input, Result, StackSpaceLeft, Ch, Any:
PROC Fact(VAL INT Input, INT Result,

VAL INT StackSpaceLeft)
[MaxStackSize]INT Stack:

GUY
set up initial stack frame using passed variables

AJW MaxStackSize
:START start of recursive call
AJW -1 -- make space for temporary variable
LDL 4 -- load StackSpaceLeft
LDC (StackFrameSize+1) -- load size of stack space
SUB get current space left
STL 0 save new stack space left in Temp
LDL 0 push StackSpaceLeft onto register stack
CJ . ERROR if zero no stack space left
LDL 2 push value of Input onto stack
CJ . LAST if zero no more recursion required
-- set up new stack frame
LDL 0 push StackSpaceLeft
LDL 3 push Result
LDL 2 push Input
ADC -1 Input := Input - 1
CALL .START perform recursive call
-- returns to this point on return from recursive call
LDL 2 push Input
LDL 3 push current value of Result
LDNL 0
MUL

** LDL 3
** STRL 0

J .PASS
:ERROR
SETERR
:LAST
LDC 1

** LDL 3
** STNL 0

:PASS

Figure 4.13. Recursive factorial example.

AJW 1
RET

Example ProgralTIS

-- recover space used by Temp

75

SEQ
Ch := 0
StackSpaceLeft := MaxStackSize
write.full.string (screen. "Factorial ")
read.echo.int (keyboard. screen. Input. Ch)
Fact (Input, Result, StackSpaceLeft)
write.full.string(screen. 11 is ")
write.int (screen, Result, 0)
keyboard ? Any

Figure 4.13. (cont).

4.5 An Exalllple of Recursion Within a GUY
Construct

The example in figure 4.13 shows that with the use of GUY, recursive
procedures can be performed within OCCalTI. The declaration of the
local array Stack provides stack space for the recursive procedure. The
amount of stack space left is checked on each iteration and the error flag
is set if a stack space overflow is about to occur. This program must be
compiled with the sepamte.vector.space option within the compiler set to
false, as the program assumes that the space reserved by the declaration
of Stack is part of the workspace and not contained in a separate vector
space.

In this case the declaration of the array Stack causes the compiler
to adjust the workspace by the size of the array, thus a positive adjust
workspace has to be used to set up the initial stack frame for the recur­
sive procedure. Unfortunately the variables are no longer in the positions
expected by GUY, but it is fairly easy for the programmer to map out
the workspace. An example of the workspace after the first recursive
call of fact(3,Result), is shown in figure 4.14. When GUY is being used
with numbers to identify the workspace locations rather than variable
names, the programmer has to specify the exact transputer code. For
example, instead of using STL Result, the instructions LDL 3 J STNL 0
have to be used. The creation of code in this mode is closer to the
real instruction set. However, the compiler will still plant any required
positive or negative prefixes.

76 Cllaptel' 4

offset value description
4 2000 StackSpaceLeft
3 - Pointer to Result
2 3 Input
1 - Return Address
0 1995 Temp
4 1995 StackSpaceLeft
3 - Pointer to Result
2 2 Input
1 - Return Address
0 1990 Temp

Figure 4.14. The stack after the first internal call of Fact.

Most of the code is fairly self explanatory and can easily be under­
stood by checking in the reference section of this book. In particular, it
is worthwhile re-reading the information written on CALL. Note that the
Result parameter is a pointer and that this is copied in each recursive
call, thus the value in the location Result is altered after each recursive
call.

In this example we have repeated the two starred instructions LDL

3 and STNL o. These instructions have not been placed just once after
the PASS label, because the process may be time-sliced out during a J
or LEND instruction, causing the values of the A, Band C registers to
be undefined.

4.6 Idle Time Example

The example shown in figure 4.15 is possibly the most useful one given
in this chapter, in that it enables you to estimate the idle time for a
particular transputer; that is, the tilue spent by the processor waiting
for something to do. This is extremely useful if you are trying to utilise
the processors to their maximum potential. Again this has to be done in
assembly language as occam does not allo\v you to access the scheduling
registers. The view taken in occanl is that it is the responsibility of the
system to control the scheduling of the processes and not the program­
mer, and for efficiency this has to be done in hardware rather than in
software. Once scheduling is done in hard\vare, all processes have to be
scheduled, including system processes, by the hardware scheduler.

Example Programs

#USE userio
PROC ldleTime(INT IdleCount, ExtraCount, Semaphore)

lIT L.ldleCount, L.ExtraCount:
lNT BackLowPtr, FrontLowPtr:
GUY

LDC 0 -- initialize counters
STL L.ldleCount
LDC 0
STL L.ExtraCount

77

: REPEAT
LDL Semaphore
CJ .END
LDLP FrontLowPtr
SAVEL
LDL FrontLowPtr
MINT
DIFF
CJ .INCIC
LDL L.ExtraCount
ADC 1
STL L.ExtraCount
J .PASS

:INCIC
LDL L.ldleCount
ADC 1
STL L.ldleCount

:PASS
LDC 2
LDLP 0
STARTP
STOPP
J . REPEAT

: END
LOL L.ldleCount
STL IdleCount
LOL L.ExtraCount
STL ExtraCount

read semaphore
if zero terminate
read low priority queue registers

and compare front one with Minlnt

if queue empty inc idle count
otherwise inc extra count

inc idle count

add to end of low priority
active queue

-- deschedule this process

-- return counts and finish

Figure 4.15. Recursive factorial example.

78 Cllapter 4

--*** processor/memory speed dependent
VAL IdleTimeConstant IS 36326:
VAL ExtraTimeConstant IS 418:
--***

INT IdleCount. ExtraCount. Semaphore:
INT TotalTime. IdleTime, ExtraTime:
TIMER Clock:
INT Timelow. TimeBefore, Time, Any, Size:

SEQ
Semaphore := 1
IdleCount := 0
ExtraCount := 0
keyboard ? Size
Size := Size - (INT '0')
Clock ? TimeBefore
PAR

SEQ
Clock ? AFTER TimeBefore PLUS (Size * 15625)
SEQ i = 0 FOR (Size * 1000000)

SKIP
Semaphore := 0

IdleTime(IdleCount. ExtraCount, Semaphore)
Clock ? TimeNow
write.full.string (screen,UTotal run time (ms):")
TotalTime := (TimeNow - TimeBefore)*64)/1000
write.int(screen.TotalTime,O)
write. full. string (screen, U*c*nldle count: U)
write.int(screen.ldleCount.O)
write.full.string (screen.u*c*nldle time:")
IdleTime := (IdleCount * 1000) / IdleTimeConstant
write.int(screen, IdleTime, 0)
write.full.string (screen,"*c*nExtra processing count:")
write. int(screen.ExtraCount ,0)
write.full.string (screen.tI*c*nExtra processing time:")
ExtraTime := ExtraCount/ExtraTimeConstant
write.int(screen,ExtraTime.O)
write.full.string (screen,u*c*nReal processing time: U)
write.int(screen.TotalTime-ExtraTime,O)

Figure 4.15. (cont).

Example Programs 79

In this example program, an extra process is introduced which can
examine the process queue. The main objective of this process is to see
why it is being run. There are two possibilities, firstly the process may
be running because there are no other processes which are active. This
is indicated by the process queue being empty. The other possibility is
that this process is running when other processes could have been run.
This is indicated by the active process queue being non-empty. In this
case, another real process could be running and time is being wasted by
running this process. Thus the process has to record two counts, one
indicating the number of times it has been run when the process queue
was empty and another indicating the number of times it has been run
when the process queue was non-empty.

It is possible with a bit of experimentation to turn these counts into
times. The exact translation will depend upon things such as processor
speed, memory speed, and whether internal or external memory is being
used.

The sample user process contains two parts: a timer wait simulating
dead time and a SKIP loop simulating active processing. Each part
can be timed without the IdleTime process running; then the IdleTime
process can be introduced and the program retimed. The extra time is
the time wasted by running the Idle Time process when the active SKIP
process could have been running. This tilne can be associated with
ExtraCount. IdleCount is equivalent to the time taken by the timer wait
process. These counts can now be used in the timing section and the
user process replaced by a more realistic process.

This program breaks the normal occam rules in that it shares the
variable Semaphore and it accesses the process queues. This is possible
even with the occam checker turned on as the checker ignores any GUY
code. This enables the GUY programmer to write code which does not
adhere to the normal rules. The use of the shared variable is necessary
to make the execution of the Idle Time process as simple and transparent
as possible. Semaphore is set to the value one at the start of the program
and it is set to zero when all the user's processes have terminated. The
IdleTime process checks the value of Semaphore every time it is run;
if it has been changed to zero it terminates, returning the two counts
IdleCount and ExtraCount.

If the value of Semaphore is still one, it checks the low priority pro­
cess queue to see if it is empty. If so it increments IdleCount, otherwise
it increments Extra Count. It then adds itself to the end of the process
queue and deschedules itself. If another process has become ready it

80 Clla.pter 4

will beCOlne the running process, otherwise the Idle Time process will be
rescheduled. To add itself to the rear of the active process queue, the
STARTP instruction is used. This expects the workspace pointer to be
in the A register and an offset to the process execution address in the B
register. In this case the offset is to the instruction after the STOPP in­
struction. The STARTP instruction is normally used to transfer control
to one of a number of parallel processes, but in this case it is used to
restart itself when it becomes the running process. The STOPP process
terminates the current process. This is normally used when an error
or exception condition is reached, but it is used in this case to force a
process change.

In this example, it assumes that all the processes are low priority.
If there were also high priority processes it would make no difference.
The high priority processes would be real processes and if they pre­
empted this process it would be because they have real work to do, but
if they were waiting, for example, for a channel communication then
the Idle Time process could be run, indicating that no other high or low
priority processes were active.

The current program uses integers to hold the counts; however, the
Idle Time process can be called a large number of times and it is possible
for these counts to overflow. The program could be rewritten with the
counts held in INT64s. This would make it more useful, but it also makes
the program longer and adds complications which mask the original
concepts; nevertheless it is fairly easy to implement. Remember that
INT64s are passed to procedures by reference and that they are stored
in memory with the least significant 32 bits lower in memory than the
most significant 32 bits.

4.7 Simple Loader

The loader program given in figure 4.16 shows how a transputer may
initialise a second transputer over an external link, transfer a separately
compiled (SC) process to it, and pass control to that SC process. One
possible use for this program is to load the kernel of an operating system
which wi~ then control the use of the local transputer and pass messages
or programs through it to other transputers.

To simplify the discussion we use the loa.der to load the code of a very
simple se program onto the second transputer. This just echoes charac­
ters back to the.program running on the first transputer. The program

Example Progranls 81

#USE userio
CHAN OF ANY Out. In:
PLACE Out AT 2:
PLACE In AT 6:
VAL BootStrap IS
-- lIT Index, Count. BootChan, EntryPt, LoadPt, PktSize
[#D2 (BYTE), -- STL BootChan --save
#D2 (BYTE), -- STL BootChan --replace
#D2 (BYTE), -- STL BootChan --replace by

--pointer to
--boot channel

#24 (BYTE),#F2 (BYTE) • -- MINT --initialize
--low priority

#21 (BYTE).#FC (BYTE) • -- STLF --queue
#24 (BYTE).#F2 (BYTE). -- MINT
#21 (BYTE).#F7 (BYTE) • -- STLB
#24 (BYTE).#F2 (BYTE) • -- MINT --initialize high
#21 (BYTE).#F8 (BYTE). -- STHF --priority queue
#24 (BYTE).#F2 (BYTE). -- MINT
#25 (BYTE),#FO (BYTE). STHB
#25 (BYTE).#F8 (BYTE). -- SETHALTERR --set halt on

--error flag
#22 (BYTE).#F9 (BYTE) • -- TESTERR --clear error flag
#40 (BYTE), -- LDC 0 --SEQ i = 0 FOR 11
#00 (BYTE). -- STL Index
#4B (BYTE). -- LDC 11
#D1 (BYTE). -- STL Count --initialize 11

--locations
#24 (BYTE).#F2 (BYTE) • -- MINT --to MinInt
#70 (BYTE). -- LDL Index --starting at

--MinInt;
#24 (BYTE).#F2 (BYTE) • -- MINT --these include
#FA (BYTE), -- WSUB --link. event and
#EO (BYTE). -- STNL 0 --timer registers
#10 (BYTE), -- LDLP Index
#4B (BYTE). -- LDC 11
#22 (BYTE).#F1 (BYTE). -- LEND
#24 (BYTE).#F2 (BYTE). -- MINT --calculate
#22 (BYTE).#20 (BYTE). --location to start
#80 (BYTE). -- ADC 512 --loading code
#D4 (BYTE). -- STL LoadPt --entry point
#74 (BYTE). -- LDL LoadPt --is same as
#D3 (BYTE). -- STL EntryPt --start of code

Figure 4.16. Sinlple loa.der exa.mple.

82 Cllapter 4

-- :LOAD
#15 (BYTE). -- LDLP PktSize --read in size of
#72 (BYTE). -- LDL BootChan --next packet
#44 (BYTE). -- LDC 4
#F7 (BYTE). -- IN
#75 (BYTE). -- LDL PktSize --reload packet
#AA (BYTE). -- CJ .Transfer --size; if zero

--transfer control
#74 (BYTE). -- LDL LoadPt --at current

--load point
#72 (BYTE), -- LDL BootChan --load packet
#75 (BYTE), -- LDL PktSize
#F7 (BYTE). -- IN
#75 (BYTE). -- LDL PktSize --increment load
#74 (BYTE), -- LDL LoadPt --pointer by

--packet size
#F2 (BYTE). BSUB
#D4 (BYTE). STL LoadPt
#60 (BYTE).#OO (BYTE) • J . LOAD --get size of

--next packet
:TRANSFER

#40 (BYTE). -- LDC 0 --initialize
#25 (BYTE).#F4 (BYTE). -- STTIMER --timer;
#73 (BYTE). -- LDL EntryPt --load workspace
#23 (BYTE).#FC (BYTE) • -- GAJW --pointer for SC
#33 (BYTE). -- LDNL EntryPt --load Entry

--pointer for se
#F6 (BYTE)]: -- GCALL --transfer to SC

VAL TestProgram IS
[#60 (BYTE).#BD (BYTE).-- AJW -3
#11 (BYTE). -- LDLP 1
#24 (BYTE).#F2 (BYTE). -- MINT
#54 (BYTE), -- LDNLP 4
#44 (BYTE). -- LDC 4
#F7 (BYTE). -- IN
#24 (BYTE).#F2 (BYTE). -- MINT
#71 (BYTE). -- LDL 1
#FF (BYTE). OUTWORD

#60 (BYTE).#04 (BYTE), J -12
#B3 (BYTE). AJW 3
#22 (BYTE),#FO (BYTE)]:-- RET

Figure 4.16. (cant).

--load pointer to Ch
--construct pointer to
--Minlnt + 4
--i.e. input on LinkO

--output ch
--on linkO
--this uses location
--0 of WS
--WHILE TRUE

Example ProgTams

BYTE BootStrapSize:
INT TestProgramSize:
SEQ

-- reset second transputer
BootStrapSize := BYTE(SIZE BootStrap)
TestProgramSize := (SIZE TestProgram)
Out! BootStrapSize :: BootStrap
Out TestProgramSize:: TestProgram
Out 0
PAR

INT Ch:
SEQ

Ch := 0
WHILE Ch <> (INT '.')

SEQ
keyboard ? Ch
Out ! Ch

INT Ch:
SEQ

Ch := 0
WHILE Ch <> (INT '.')

SEQ
In ? Ch
write.char(screen, BYTE Ch)

Figure 4.16. (cont).

83

running on the first transputer reads a character from the keyboard,
sends it to the second transputer, waits for it to be echoed and then
prints the returned character on the screen. The program terminates
when a '.' character is input.

When a transputer receives a hardware reset, (and if its BootFrom­
ROM pin is set low), it expects to receive a byte from a link. If this byte
has a value greater than 1 it assumes that this number is the size of the
bootstrap code. It then loads that nUlnber of bytes into memory starting
at MemStart (#80000048 for T414 and #80000070 for the T800), sets
the workspace pointer to point to the first word boundary past the end
of the bootstrap code and then runs the bootstrap code.

In this program the bootstrap code is included as a BYTE array which
is transferred out of link 2 after the second transputer has been reset.
The reset code has not been given as it may vary from system to system.
In some cases it is possible to manually reset the second transputer. Both

84 Cllapter 4

the Bootstrap code and the se code, TestProgram, were developed using
GUY and manually copied into this program. It would be possible to
make the program extract the code from any se and download this to
the second transputer but this would require the use of many of the
features of the TDS which are beyond the scope of this book.

It is assumed that the workspace for this se will reside in memory
below its program code area. Since control cannot be switched to the
loaded se until the bootstrap code has finished, the se must be loaded
above the bootstrap's code and workspace. If the workspace for the se
is less than the space occupied by the bootstrap then a small amount
of memory will not be used. However, it is usually the case that the
workspace of the se is larger than the bootstrap's code and workspace,
and will thus reuse all of the space required by the bootstrap. In the
example, the workspace size has been set arbitrarily at 512 for simplicity.
This is larger than required for the se, and is also larger than the size
of the bootstrap code plus its workspace.

Let us now look at the code in more detail. After the transputer
has been reset and it has downloaded the boot code, the identity of the
channel from which it booted is held in the e register. Thus the three
STLs are required to retrieve its value. The old values of the A and
B registers are required for analysis purposes and not by the bootstrap
code, thus their values are discarded by the first two STLs. The next
requirement is to initialise the front low and high priority queues by
setting their front and back registers to AfinInt. This indicates that the
queues are empty. Next the error flag is initialised and the transputer
is set to halt if an error occurs. Since the four output link registers, the
four input link registers, the event register, and the low and high priority
timer queue registers are memory mapped into the first 11 locations of
memory, the next action is to set the first eleven locations from MinInt to
MinInt+10 to the value MinInt, indicating that none of these resources
are in use.

This program contains another example of how to implement a FOR
loop. Two adjacent locations are required in memory, in this case these
are Index and Count. The Index location is used to store the increasing
index number and count the decreasing count identity. When the LEN D
instruction is executed, the A register should contain an offset in bytes
to the start of the loop and the B register should point to the first of the
two loop variables. If Count contains a 1 when the LEND instruction
is executed, the next instruction to be executed is the one following
the LE ND, otherwise the next instruction is found by decrementing the

Example ProgTanls 85

instruction pointer by the contents of the A register.
Now that most of the registers have been initialised, the next action

is to establish the entry point of the SC. It is assumed that this is known
beforehand, as it would be if we \vere loading the kernel of an operating
system. In this case it is assumed that the initial load point of the SC
is also the entry point, and it is also assumed to be the initial value of
the workspace pointer. This will be adjusted negatively by the SC as it
is in all occam processes. The code is now read in from the boot link as
a series of packet sizes followed by packets. This process is terminated
by a zero packet size.

The final action of the bootstrap is to transfer control to the SC.
Before transferring control, the timer is initialised by using the STTI MER
instruction with zero in the A register. Control is transferred to the SC
using the GAJW and GCALL instructions. Norlnally, an SC would finish
with a RET which would attempt to transfer control back to the calling
process. However, it is assumed in this case that the SC never finishes,
as would be tIle case with the kernel of an operating system. This is
just as well, as the original bootstrap code has probably been destroyed
by running the SC and no return address was set up. Note the use of
the LDL EntryPt before the GAJW and the LDNL EntryPt after it; this is
because the GAJW loads the value in EntryPt in the original workspace
into the new workspace pointer and saves the old workspace pointer in
the A register. This is then used by the LDNL EntryPt to refetch into
the A register, the value in EntryPt in the old workspace. This in turn is
used in the GCALL instruction to set up the new instruction pointer. The
priority of the SC is the sanle as the priority of the bootstrap, which is
low priority.

We have described a fairly simple bootstrap which is normally used
to load a more complicated bootstrap or part of a distributed operating
system which hopefully is written in occam.

4.8 Conclusions

This chapter has shown some of the things it is possible to do in ma­
chine code, rather than occam. Clearly, most programming should be
carried out using occam or another high-level language, but there are
some things, especially system-oriented tasks, \vhich just cannot be done
without resorting to machine code.

This chapter has also shown that GUY has a number of nice features

86 C]lapter 4

but it also has a number of lilnitations a.nd some peculiarities. Having
said this, it was possible with a bit of practice to code all of the above
examples. The combination of GUY and occam seems to be a good com­
promise. We feel that the amount of assembly language written should
be kept to a minimum and the limitations of GUY should encourage
this.

Chapter 5

Reference Section

This chapter provides a detailed functional description of each T414
transputer instruction. At the top of each page there is the instruction's
mnemonic, opcode (in hexadecimal), and full name. This is followed by
a precise definition of the instruction, using a symbolic representation of
what the instruction does. Then comes a description of each instruction,
with finally, an example of its use.

The instructions are arranged in alphabetical order for easy access,
but a table of instructions sorted by opcode is provided in appendix A,
and a list of instructions sorted into groups of similar function is given
in appendix D.

The opcode for eacll instruction is shown in hexadecimal, and rep­
resents the byte or bytes required to actually execute that instruction.
For the sixteen single-byte instructions with operands (first column in
appendix A), the low nibble of the opcode is represented by the letter
'n', so for the instruction 'Load Constant', the mnemonic is 'LDC n',
witll opcode '4n'. The operand for these instructions can be extended
outside the range 0-15 by using the positive and negative prefix instruc­
tions, PFIX nand NFIX n.

The set of instructions which do not have operands are formed using
the Operate instruction, which interprets its operand as the opcode of
a further set of instructions. In this case, the opcode of the instruction
as listed in this reference section is that of the Operate instruction, plus
possibly a prefix. So, the opcode for the ADD instruction is listed as
'F5', which is equivalent to OPR 5, and the OR instruction is listed as
'24 FB', which is equivalent to PFIX 4; OPR #B.

The definitions of the instructions have been attempted with a min­
imum of special notation. A full list of sylnbols used in the formal

87

88

symbol
A
B
C

W
I

a, b, c, w, i
n
&

&byte

[]
[]byte

A
V

EB
<
~

Minlnt

Cllapter 5

meaning
top element of evaluation stack
middle element of evaluation stack
bottom element of evaluation stack
workspace pointer
instruction pointer
initial contents the above registers
the operand of the instruction
word indexing (a&i = a +2k i for some k)
byte indexing (a&bytei ~ a + i)
word contents of
byte contents of
bitwise AND
bitwise OR
bitwise exclusive- 0 R
shift left x places
shift right x places
minimum integer = 2wordlength-l

a value that is undefined or unimportant

Table 5.1. Symbols used in the formal definitions.

definitions is given in Table 5.1. (This table is duplicated in appendix
B for easy access.) Most of these symbols are self explanatory; the ones
that require special mention are concerned with addressing.

A transputer address is considered to consist of two components:
a word selector, and a byte offset within that word. The byte offset
occupies the bottom few bits of the address; all other bits form the
word selector. The number of bits used for the byte offset depends on
the number of bytes per word. For the T414 and T800 (both 32-bit
machines), two bits are used, representing byte offsets 0-3, whereas the
T212 (a 16-bit machine) has a I-bit byte offset, representing offsets in
the range 0-1. Normally, memory is accessed in terms of words: for
example, consider the ith word in an array of integers. To calculate
the address of this word, it is necessary to add i to the_ word selector
component of the address of the array. Let the address of the array be a.
Then for tile T414, the word address would evaluate as a + 4i, whereas
for the T212, it would be a + 2i. To represent these word indexing
operations in a generic manner, we define the operator & , and would

Reference Section 89

then

A~B b
C c

[w&-l]
[w&-2]
[w&-3]
[w&-4]

c
b
a

z

::::::} Iw&-4 I
::::::} I i &byte n I

Figure 5.1. A typical formal definition.

thus write the array address as a&i. Think of the & as standing for
'offset by'.

To access the location pointed to by this address, we use square
brackets [] to mean 'contents of'. For example, [a&i] represents the
value of the word within the array. The address used by the [] operator
must have its byte offset bits set to zero, otherwise the effect of the
operator is undefined. These two operators together provide for nearly
all addressing performed by the transputer.

Sometimes however, the transputer treats memory as a sequence
of bytes, for example the sequence of bytes forming the transputer's
program. We thus define two further operators: &byte and []byte. The
expression a&bytei is loosely equivalent to a + i. Formally, what it does
is add i to the byte offset component of a; any overflow is added to the
word selector. For a transputer with a number of bytes-per-word that is
a power of two (this includes all INMOS products to date), this process
is equivalent to straight addition. However, for a hypothetical 24-bit
transputer (3 bytes per word), 1&byte2 evaluates to 4. The expression
[a]byte refers to the byte selected by the byte offset component of a within
the word addressed by the word select component of a.

A typical definition of an instruction is shown in figure 5.1; this is in
fact the definition of the Call instruction. The first box (always present)
shows what happens to the evaluation stack (A,B and C registers). In
this particular case, the initial values of the registers are a, b, c. After

90 Clla.pter 5

opcode mnemonic C B A W
c b a FOO

60 BF AJW -1 c b a EFC
24 F2 MINT b a 80000000 EFC
DO STL 0 b a EFC 80000000

Figure 5.2. The body of an example.

execution, they change to i, b, c. As listed in Table 5.1 earlier, i is the
initial value of the instruction pointer. This particular instruction also
modifies the four word locations just below where the workspace pointer
points to. This is shown in the second block. Finally, the instruction
decrements the workspace pointer by four words, and increments the
instruction pointer by a number of bytes specified by the instruction's
operand n. This is shown in the third and fourth boxes.

The final part of each instruction page contains an example of the use
of the instruction. A typical example is shown in figure 5.2. Numbers
within the example are always in hexadecimal, except for the mnemonics,
where they are explicitly preceeded by a hash (eg #FOO).

These examples try to show what happens to the A,B and C registers
and any other pertinent registers or memory locations as each instruction
is executed. In the example above, the first line indicates that the initial
contents of the A,B and C registers are a, band c, the initial value of
the workspace pointer is the address #FOO, and the value of the word
pointed to by the workspace pointer is unknown or unimportant. After
the first instruction AJW -1 has been executed, the workspace pointer
has been moved down one word, so it now has the value #EFC. The
value at this address is also unimportant. The next instruction, MINT

loads the value #80000000 into the A register, displacing its original
contents into B, and B into C. Finally, STL 0 stores the value in the A
register at the location pointed to by the workspace pointer, popping B
into A and C into B, leaving an undefined value in the C register.

Note the difference between Wand [w] on the first line. W is the
name of a register-the workspace pointer, w represents the current
value of this register, and [w] is the value of the word pointed to by this
register.

Note finally that although the formal definitions of the instructions
are processor word length independent, the examples are based around
a T414, so in the example above, MINT was shown loading the 32-bit
value #80000000.

Reference Section

ADC n

Add Constant

91

8n

A~B b
C c

Error flag set on arithmetic overflow

Adds a constant to the value contained in the A register. Arithmetic
overflow is checked for and the error flag is set if it occurs. The range
of the constant may be extended with the negative and positive prefix
instructions.

Example

Add #42 to the value at the top of the evaluation stack (which is as­
sumed to contain #FC3).

opcode

24 82

mnemonic C B A
c b FC3

ADC #42 c b 1005

92

ADD

Signed Addition

AffiB b
C c

Chapter 5

F5

Error flag set on arithmetic overflow

Returns the result of the signed addition of the two signed values in
registers A and B in the A register. Arithmetic overflow is checked for
and the error flag is set if it occurs.

Example

Add #32 to #AB

opcode mneUIOllic C B A
c b a

23 42 LDC #32 b a 32
2A 4B LDC #AB a 32 AB
F5 ADD a DD

Reference Section

AJWn

Adjust Workspace

93

Bn

A~B b
C c

w0 ==> Iw&nl

Reserves or releases space in the workspace by adding a constant
to the workspace pointer. The constant specifies the number of words
to reserve or release. The range of the offset may be extended with
the positive and negative prefix operations. Arithmetic overflow is not
checked for.

Example

Within the body of a procedure call it is necessary to allocate space
for local variables, releasing that space at the end of the call. Suppose
we have a routine that requires three words of local storage. The code
for this would be as follows. We aSSUlne that the local workspace is at
location #FOO.

opcode

60 BD

B3
22 FO

mnemonic C B A W
c b a FOO

AJW -3 c b a EF4

; body oJ procedure here

AJW 3 FOO
RET

94

ALT

Alt Start

~ I~ I
[w&-3] G

Chapter 5

==} I Minlnt+l I

24 F3

This instruction is designed for use in the implementation of the
OCCaIn ALT construct. It starts an ALT sequence of instructions by
initialising the third word below the workspace pointer to Minlnt+l.
This location is used by the various Alt Enable instructions for signalling
to the Alt Wait instruction that a guard is ready ('fired') and that there
is thus no need to deschedule.

Note: if any of the guards wait on a time, then Timer Alt Start should
be used instead.

See also instructions ALTWT, ALTEND, TALT, TALTWT, ENBS,
DISS, ENBC, DISC, ENBT and DIST.

Example

Since this instruction is really only meaningful when used along with
other ALT instructions, a full example is not given; instead, we will
show its effect in isolation. For a discussion of how the various ALT
instructions interact, see page 43.

opcode

24 F3

mnemonic C B A [w&-3]
c b a

ALT c b a 80000001

Reference Section

ALTEND

Alt End

95

24 F5

A~B b
C c

IQ] ==> I i &byte [w] I
(Note: i is the address of the following instruction.)

This instruction is designed for use in the implementation of the oc­
cam ALT construct. It is used for transferring control to the selected
process at the end of an ALT instruction sequence. Its action is to add
the contents of the memory word at offset 0 in the local workspace to the
instruction pointer, that is to say, perform a relative jump. In an ALT
instruction sequence, location 0 is used by the Alt Disable instructions
to specify the offset to the selected process relative to the Alt End in­
struction. This instruction may also be useful for implementing a jump
with a computed offset.

Example

Since this instruction is really only meaningful when used along with
other ALT instructions, a full example is not given; instead, we will
show its effect in isolation. For a discussion of how the various ALT
instructions interact, see page 43. Suppose the code for this example
starts at location #1000, and that location 0 in the local workspace
contains the value 3.

opcode mnemOl1ic C B A [w] I
c b a 3 1000

24 FS ALTEND c b a 3 1005
81 ADC 1 not executed

82 ADC 2 not executed

83 ADC 3 not executed

84 ADC 4 c b a+4 3 1006

96

ALTWT

Alt Wait

[w] c:J

Cllapter 5

24 F4

IF [w&-3] = Minlnt+3
THEN the next instruction is executed
ELSE

[w&-3] I Minlnt+ 1 I ==} I Minlnt+2 I
and the process is descheduled.

Note: this instruction may cause the process to be descheduled.

This instruction is designed for use in the implementation of the
occam ALT construct. It initialises the word at offset 0 in the local
workspace to -1. This location is subsequently used by the Alt Disable
instructions (see DISC, DISS and DIST). It then deschedules the process
if the contents of the third word below the workspace [w&-3] are set to
Minlnt+1 (indicating that no guards have already fired). If however,
this word has the value Minlnt+3 (indicating that a guard is ready),
execution is continued with the next instruction.

Note: if any of the guards wait on a time, then Timer Alt Wait should
be used instead.

Example

Since this instruction is really only meaningful when used along with
other ALT instructions, a full example is not given; instead, we will

Reference Section 97

show its effect in isolation. For a discussion of how the various ALT
instructions interact, see page 43.

opcode

24 F4

mnemonic C B
c b

ALTWT

A [w&-3] [w]
a 80000001

80000002 -1
process has been deschedu/ed

98

AND

bitwise AND

Cha,pter 5

24 F6

This instruction performs a bitwise AND between the top two oper­
ands on the evaluation stack.

Example

Perform an AND between #C2 and #AB

opcode lunenl0nic C B A
c b a

2C 42 LDC #C2 b a C2
2A 4B LDC #AB a C2 AB
24 F6 AND a 82

BeNT

Byte Count

Reference Section 99

23 F4

A~B b
C c

==>
ax bytes-per-word

b
c

BeNT multiplies the contents of A by the number of bytes in a word
(4 for the T414), returning the result in the A register. This instruction
may be used for calculating the number of bytes in a given number of
words in a manner independent of processor word length.

Example

Calculate the number of bytes in 3 words.

opcode

43
23 F4

mnemollic C B A
c b a

LDC 3 b a 3
BCNT b a C

100

BSUB

Byte Subscript

Cl1apter 5

a &byte b
C

F2

TIlis instruction evaluates the address of a byte in a byte array.
The base address is in the A register and the byte offset is in the B
register. Note that although for the T414 this instruction is merely
equivalent to an add instruction, for a transputer with a non-power­
of-two number of bytes in a word it would not be (see the section on
addressing conventions), so tIle use of this instruction ensures processor
word length independent code (see also WSUB and BeNT).

Example

Find the address of the fifth byte in the byte array starting at address
#F02.

opcode mne1110nic C B A
c b a

44 LDC 4 b a 4
2F 20 42 LDC #F02 a 4 F02
F2 BSUB a F06

Reference Section

CALLn

Call Subroutine

101

9n

~ I: I
[w&-I]
[w&-2]
[w&-3]
[w&-4]

then

c

b
a

==> 1 10&-4 I
==> I i &byte n

(Note: i is the address of the following instruction.)

This instruction is used to provide a relative procedure call facil­
ity. The workspace pointer is decrelnented to reserve four words of
workspace. The contents of the A, Band C registers are then saved
in this area along with the return address. The offset n is then added
to the instruction pointer to call the subroutine. (The range of this
offset may be extended through the use of positive and negative prefix
instructions.)

This instruction is often used \vhen calling a procedure, the last
three words of the stack frame required by the procedure being put
into the A, Band C registers. Typically in occam, these last three
words are the last two parameters to be passed to the procedure (in C
and B) and the static link to the lexically enclosing procedure (in A).
Further parameters, if required, are placed in the workspace before the
Call instruction is executed.

102 Cllapter 5

Example

Assume that the workspace pointer contains #BO, that the code starts
at location #200, and that a call to a subroutine #14 bytes away is to
be performed.

opcode mnemonic C B
c b

21 94 CALL #14 c b

A I W
a 200 BD

202 216 AD

[AD]

202

[A4]

a

[AS]

b

[AC]

c

Reference Section

CCNTl

Check Count. From One

103

24 FD

A~B b
C c

Error Flag set if b = 0 or b > a.

Compares the unsigned values in the registers Band A. The error
flag is set unless 0 < b <= a. This instruction is useful for checking
array bounds in languages where array indices start from 1.

Example

It is desired to find the address of a \vord in an array of #20 words
stored starting at location 5 in the local workspace. The index is to be
found at location 4 in the local workspace. The array starts at index 1
(index 0 being a wasted location) and array bounds are to be checked.
We shall assume that the index stored at word location 4 has the value
7, and that the local workspace is at location #FOO.

opcode mnemonic C B A Error Flag
c b a

; clear error [tag

22 F9 TESTERR b a false
; get index

74 LOL 4 a 7 false
; get upper bound oJ array

22 40 LOC #20 7 20 false
; check that index is in range

24 FO ceNT1 7 false (still!)
; get array base address

15 LOLP 5 7 F14 false
; subscript by word

FA WSUB F30 false

104

CFLERR
Cllapter 5

27 F3

Check Floating Point
Infinity or Not-a-Nu:mber

A~B b
C c

Error Flag set if A contains floating point infinity or not-a­
number.

Note: this instruction is specific to the T414.

This instruction sets the error flag if the A register contains one of
the bit patterns defined as Infinity or Not-a-Number by the IEEE 754
floating point standard. It is intended for use in implementing floating
point software packages for the T414.

CJ n

Conditional Jump

Reference Section 105

An

IF a = 0 THEN

A~ rnB b ===}

C c

I[TI ===} I i &byte n I
ELSE

A~ ffiB b ===}

C c

(Nate: i is the address of the following instruction.)

If the content of A is false, Le. zero, this instruction performs a jump
to a new location by adding the offset n to the instruction pointer. If
the jump is taken, the evaluation stack is left unchanged, otherwise the
condition on the top of the stack is popped. This asymmetry is useful
in calculating boolean expressions. The range of the displacement n
may be extended through the use of the positive and negative prefix
instructions.

Example

Find whether locations 2 and 3 in the local workspace both contain the
value 7. We shall suppose that the content of location 2 is in fact #FF,
and that the code fragment starts at location #2000. The first section
of the code tests to see if location 2 contains the value 7. (Since it in
fact does not, the program skips over the second section of code.) This
second section tests location 3 for equality with seven, and if this is the
case, performs a relative jump to SOllle other part of the program (CJ n).

106 Clla.pter 5

opcode Innemonic C B A I
c b a 2000

72 LDL 2 b a FF 2001
C7 EQC 7 b a 0 2002
A5 CJ 5 b a 0 2008
73 LDL 3 ,. thi, instruction ,kipped

C7 EQC 7 ,. this instruction skipped
23 F2 NOT ,. this instruction skipped

An CJ n ,. this instruction skipped

" execution continues from this point

Reference Section

CLRHALTERR

Clear Halt-Dn-Error Flag

107

25 F7

A~B b
C c

Halt-On-Error Flag G ~ I false I

The halt-on-error flag is cleared. This has the effect of putting the
transputer into the mode that allows execution to continue if the error
flag becomes set.

108

CSNGL

Check Single

Clla.pter 5

24 FC

~~ =* ffi
IF (a ~ 0 and b ;j; 0) or (a < 0 and b ;j; -1)
THEN Error Flag is set

The double word-length signed value in register pair BA (B contains
the high order word) is reduced to a single length value in A. If the
double length value is not representable in a single word, i.e. if the top
(sign) bit of A is not the same as ALL the bits of B, then the error flag
is set. The C register is then popped into the B register.

Example

This instruction may be used to convert any ll1ultiple word length signed
integer to any other smaller lnultiple. We shall convert a triple length
integer stored at offsets 0, 1 and 2 (10'\1 to high) in the local workspace
into a single length value to be returned at offset 3. The error flag will be
set if the triple length value is too large to be represented in one word.
We shall suppose that the value of the integer is #00000000,00005743,
749EFA43.

Reference Section 109

opcode mnemonic C B A Error Flag
; clear error flag C b a

22 F9 TESTERR b a false
; convert highest two words
to single word

72 LDL 2 a 0 false

71 LDL 1 0 5743 false

24 Fe CSNGL 5743 false (still)
; now reduce remaining
double length value

70 LDL 0 5743 749EFA43 false

24 FC CSNGL 749EFA43 true
; finally store result

D3 STL 3 true

110

CSUBO

Check Subscript FroIll
Zero

A~B b
C c

Cllapter 5

21 F3

IF (b ~unsigned a) THEN Error Flag is set

Sets the error flag to the result of the unsigned comparison (b ~ a).
The unsigned comparison used has the same effect as the signed compar­
ison (b ~ a or b < 0). The main use for this instruction is in the checking
of array bounds. Note that the stack is only popped once-eliminating
the bound and leaving the index-to facilitate this.

E,xample

It is desired to generate the address of a word in an array of #20 words
starting at word offset 5 in the local workspace. The index is to be found
at word offset 4 in the local workspace. Array bounds are to be checked.
The workspace pointer is assumed to contain #FOO, and the index is
assumed to have the value 7.

opcode mnemonic C B A Error Flag
c b a

; clear error flag

22 F9 TESTERR b a false
; get index

74 LDL 4 a 7 false
; get upper bound 0/ array

22 40 LDC #20 7 20 false
; check index is in range

21 F3 CSUBO 7 false (still)
; get array base address

15 LDLP 5 7 F14 false
; subscript by word

FA WSUB F30 true

Reference Section

CWORD

Check Word

111

25 F6

A~aB b
C c

IF (b ~ a) or (b < -a) THEN Error Flag is set

This instruction checks that a single length signed integer in B, will
compress to a specified partword. The length of the partword is specified
by passing the most negative integer representable by the partword in
A (i.e. for an-bit partword, bit n-l only should be set). If the integer
will not fit into the part word, the error flag is set. The partword length
specifier is popped after use.

Example

Add the two signed five-bit values that are stored at offsets 0 and 1 in
the local workspace and return the result at offset 2. The result is to be
checked for overflow beyond the five-bit boundary. It is assumed that
the values of the numbers are 8 and -15

112 Cllapter 5

opcode mnemonic C B A Error Flag
; clear error flag c b a

22 F9 TESTERR b a false
j load first integer

70 LDL 0 a 8 false
j extend to word

21 40~ LDC #10 8 10 false
23 FA XWORD 8 false

; same for second
integer

71 LDL 1 8 11 false
21 40 LDC #10 8 11 10 false
23 FA XWORD 8 FFFFFFFl false

; add them

F5 ADD FFFFFFF9 false
; check for overflow

21 40 LDC #10 FFFFFFF9 10 false
25 F6 CWORD FFFFFFF9 false (still)
D2 STL 2 false

Reference Section

DIFF

Unsigned Subtraction
(Difference)

113

F4

A~B b
C c

(Error Flag is unaffected).

==>
b -unsigned a

c

Performs the subtraction b - a. Underflow is allowed and the error
flag is not affected.

Example

If the value #80000001 is in register B a.nd the value #2 is in register A
then the difference will be #7FFFFFFF.

opcode mnemonic C B A
c b a

28 20 20
20 20 20
20 41 LDC #800000001 b a 800000001
42 LDC 2 a 800000001 2
F4 DIFF a 7FFFFFFF

114

DISC

Disable Channel

Let

Cllapter 5

22 FF

a =the offset to the guarded process from the Alt End
instruction,

b = the result of the boolean part of the guard,
c = the address of the channel word.

priority = the I-bit value indicating the priority of the cur­
rent process.

fired = ((b -:J 0) AND ([w] = -1) AND ([c] -:J Minlnt)
AND ([c] -:J (wV priority))).

Then the action of the instruction is as follows:

A a (process offset) BB b (boolean) ==>
C c (channel)

IF fired= true THEN

[w] [3] ==> 0
Additionally,

IF ((b -:J 0) AND ([c] = w V priority)) THEN
disable channel:

[cl I w V priority I ==> I Afinlnt I

This instruction is designed for use in the implementation of the oc­
cam ALT construct. The instruction takes three parameters: the result
of the boolean part of the guard in the B register, the address of the
control word of tIle channel that is to fire the guard in the C register
and an offset to the guarded process in the A register. The instruction
determines whether or not the guard has fired by inspecting the boolean,

Reference Section 115

the contents of the channel word and the contents of the flag at offset 0
in the local workspace. The guard is deemed to have fired if all of the
following conditions are met: the boolean must be true (non-zero), the
channel control word must indicate a process waiting on that channel
(control word not equal to Minlnt) and the flag in local 0 must indicate
that no other guards have already fired (flag = -1). If the guard has
fired, true is returned in A and the offset is stored at local 0, other­
wise false is returned. It should be noted that no input operation is
performed; this must be done by the guarded process.

Example

Since this instruction is really only meaningful when used along with
other ALT instructions, a full example is not given; instead, we will
show its effect in isolation. For a discussion of how the various ALT
instructions interact, see page 43. The following code represents what is
required to disable a particular ALT guard. We assume that the channel
word lies at location 0 in the local \vorkspace, that the channel is ready
to communicate, that no other Disable instruction has yet succeeded
([w] = -1), that the guard evaluates to true, Le. 1, and that the offset
from where the Alt End lies to where the code for dealing with this guard
lies, is 8 bytes. We assume that the local \vorkspace is at location #FOO.

opcode mnelnonic C B A [w]
,. load pointer to channel c b a -1

10 LDLP 0 b a FOO -1

,. evaluate boolean

a FOO 1 -1
48 LDC 8 FOO 1 8 -1
22 FF DISC 1 8

116

DISS

Disable Skip

Let

Cha.pter 5

23 FO

a = the offset to the guarded process from the Alt End
instruction,

b =the result of the boolean part of guard,
fired = ((b ~ 0) AND ([w] = -1)).

Then the action of the instruction is as follows:

A a (process offset)
B b (boolean)
C c

IF fired= true THEN

[w] GJ

This instruction is designed for use in the implementation of the
occam ALT construct. The instruction takes two parameters: the result
of the boolean l?art of the guard in the B register and an offset to the
guarded process in the A register. The instruction determines whether or
not the guard has fired by inspecting the boolean value and the contents
of the flag at offset 0 in the local workspace. The guard is deemed to
have fired if the boolean is true (non zero) and if the flag in local 0
indicates that no other guards have already fired (flag = -1). If these
conditions are met then true is returned in A and the offset is stored at
local 0, otherwise false is returned.

Example

Since this instruction is really only meaningful when used along with
other ALT instructions, a full example is not given; instead, we will
show its effect in isolation. For a discussion of how the various ALT
instructions interact, see page 43. The following code represents what

Reference Section 117

is required to disable a particular ALl guard. We assume that no other
Disable instruction has yet succeeded ([w] = -1), that the guard eval­
uates to true, i.e. 1, and that the offset from where the Alt End lies to
where the code for dealing with this guard is, is 8 bytes.

opcode mnemonic C B A [w]

c b a -1
; evaluate boolean

b a 1 -1
48 LDe 8 a 1 8 -1
22 FF DISS a 1 8

118

DIST

Disable Tilller

Let

Cllapter 5

22 FE

a = the offset to the guarded process from the Alt End
instruction,

b =the result of the boolean part of the guard,
c = the guard's time.

fired = ((b f; 0) AND ([w] = -1) AND
(current tiTTte after c)).

Then the action of the instruction is as follows:

A a (process offset)
Ifi~ed IB b (boolean) ==>

C c (time)

IF fired=true THEN

[w&-l] [3] ==> 0
Additionally,

IF ((b f; 0) AND ("current time" before c)) THEN
disable timer: remove ALT process from timer queue.

This instruction is designed for use in the implementation of the
occam ALT construct. The instruction takes three parameters; the result
of the boolean part of the guard in the B register, the time at which the
guard is to fire in the C register and an offset to the guarded process in
the A register. The instruction deternlines whether or not the guard has
fired by inspecting the boolean, the tilne value and the contents of offset
o in the local workspace. The guard is deemed to have fired if all of the
following conditions are met: the boolean lnust be true (non-zero), the
time value must be before the current tinle, and the flag at location 0
must indicate that no other guards have already fired (flag = -1). If

Reference Section 119

the guard has fired, true is returned in A, otherwise false is returned.
The possibility exists that a timer ALT which is waiting on both a

channel and a time might be rescheduled due to input becoming available
on the channel. This would mean that a 'phantom' ALT process would
still be sitting in the timer queue, ready to be rescheduled when its time
comes to pass. To avoid this, the hardware responsible for reactivating
processes in the timer queue checks location -3 in their workspace first. If
this has the value Minlnt+3, it ilnplies that the process is an ALT which
has already fired on some other event, and so the process is discarded.
However, location -3 only holds a valid value up until the end of the
ALT construct, so a side-effect of the DIST is that it parses through the
timer queue and removes the ALT process from the queue if it can find
it.

This illstruction may take an arbitrary length of time to execute,
since the timer queue may be of arbitrary length. Thus, it has been
made interruptable in order to improve interrupt latency for high priority
processes.

Example

Since this instruction is really only ll1eaningful when used along with
other ALT instructions, a full example is not given; instead, we will
show its effect in isolation. For a discussion of how the various ALT
instructions interact, see page 43. The following code represents what is
required to disable a particular ALl guard. We assume that the current
time is past the guard's time, that no other Disable instruction has yet
succeeded ([w] = -1), that the gua.rd evaluates to true, i.e. 1, and that
the offset from where the Alt End lies to \vhere the code for dealing with
this guard is, is 8 bytes.

opcode

4x

48
22 FE

mnemonic C B A [w]
; load guard's time C b a -1
LDC time b a time -1

; evaluate boolean

a time 1 -1
LDC 8 time 1 8 -1
DrST 1 8

120

DIV

Divide

A~aB b
C c

Cllapter 5

22 Fe

unless (a = 0) or (a = -1 and b = Afinlnt), in which case

A~B b
C c

Error Flag [J

undefined

==> c

Returns the result of an integer divide of the top two values on the
evaluation stack. The error flag is set and an undefined result is returned
if division by zero is attenlpted, or if the result would overflow.

Example

Divide #20 by 4.

opcode ll111elnOllic C B A
c b a

22 40 LOe #20 b a 20
44 LOC 4 a 20 4
22 FC OIV a 8

ENBC

Enable Channel

Let

Referen ce Section 121

24 F8

a = the boolean part of the guard,
b =the address of the channel word,

priority = the I-bit value indicating the priority of the cur­
rent process.

A a (boolean)
B b (channel)
C c

IF a = false THEN guard not enabled; do nothing;
ELSE

IF [b] = Minlnt THEN no process is waiting on the channel,
so initiate communication:

[b] I Minlnt I ==> Iw V priority I
ELSE IF [b] = w V priority TI-IEN another guard of the
current process is waiting on the channel; do nothing;

ELSE another process is waiting on the channel, so set a
flag to show that the guard is ready:

[w&-3] G ==> I Alinlnt+3 I

This instruction is designed for use in the implementation of the
occam ALT construct. The instruction takes two parameters: the result
of the boolean part of the guard in the A register and the address of the
control word of the channel that is to fire the guard in the B register. The
instruction ·determines wllether or not the guard has fired by inspecting
the boolean and the contents of the channel word. The guard is deemed
to have fired if the following conditions are met: the boolean must be

122 Cllapter 5

true (non zero) and the channel control word must indicate a process
(other than another guard of the same ALT) waiting on that channel
(control word not equal to Minlnt). If the guard has fired, the flag at
location [w&-3] is set to Minlnt+3 to signal to the following Alt Wait
instruction that a guard has already fired. If no process is waiting on
the channel (control word equal to Minlnt) and the boolean is true, the
current process descriptor is written into the channel control word. The
instruction leaves the result of the boolean part of the guard in the A
register to allow the inclusion of code to check that at least one ALT
guard has a true boolean part.

Example

Since this instruction is really only meaningful when used along with
other ALT instructions, a full example is not given; instead, we will
show its effect in isolation. For a discussion of how the various ALT
instructions interact, see page 43. The following is just a simple example
showing typical code produced to enable a channel whose word is at
location 2 in the local workspace, and whose boolean part of the guard
is true. We assume that the local workspace is at location #FOO.

opcode mnemonic C B A
c b a

12 LDLP 2 b a FOB
41 LDC true a FOB 1
24 Fa ENBC a 1

Reference Section

ENBS

Enable Skip

Let

a = the boolean part of the guard.

Then

123

24 F9

A a (boolean)
B b

.--------4
C C

IF a true THEN set a fla.g to sho\v that the guard is
ready:

[w&-3] G ==> I Afinlnt+3 I

This instruction is designed for use in the implementation of the
occam ALT construct. The instruction takes one parameter: the result
of the boolean part of the guard in the A register. The boolean is left
in the A register at the completion of the instruction. If the boolean is
true, the flag word at offset -3 in the local \vorkspace is set to Minlnt+3,
otherwise this location is left unaffected.

Example

Since this instruction is really only Ineaningful wllen used along with
other ALT instructions, a full example is not given; instead, we will
show its effect in isolation. For a discussion of how the various ALT
instructions interact, see pa.ge 43.

opcode

41
24 F9

mnelnonic C B A [w&-3]
c b a

LDe true b a 1
ENBS b a 1 80000003

124

ENBT

Enable TiIller

Let

Cllapter 5

24 F7

a = the boolean part of the guard,
b = the time to wait until for this guard.

A a (boolean)
B b (time)
C c

IF a = false THEN guard not enabled; do notlling;
ELSE

IF [w&-4] = Minlnt+2 THEN no previous time has been
stored, so store the time value and set the flag:

[w&-4] I Minlnt+21 Minlnt+l
[w&-S] . - . ==> b

ELSE IF ([w&-5] AFTER b) THEN store new time:

[w&-5] I old ti1ne I ==> IT]

The purpose of this instruction is to find the earliest time that is to
be waited for within a Timer ALT sequence. Location [w&-5] is used
to record this time, and contains a fla.g indicating whether the time is
valid (i.e. whether at least one time value has been stored there). One
of the effects of the Timer Alt Wait instruction is to initialise [w&-4]
to Minlnt+2, which indicates an invalid tilne. Then, for each timer
guard in the ALT construct, the Enable Timer instruction is executed.
This has the effect of storing the tilne to be waited until for this guard
at location [w&-5], but only if the boolean expression that forms part
of the guard has evaluated to true, and the time is earlier than any
previously recorded. If no previous tinle has been recorded, then the
time is stored, and location [w&-4] is set to Minlnt+l to indicate a

valid time.

Reference Section 125

Example

Since this instruction is really only meaningful when used along with
other ALT instructions, a full example is not given; instead, we will
show its effect in isolation. For a discussion of how the various ALT
instructions interact, see page 43. Consider the following occam Timer
ALT sequence:

ALT
FALSE t timer AFTER #100

proc1
TRUE i timer AFTER #123

proc2
TRUE i timer AFTER #122

proc3
TRUE i timer AFTER #124

proc4

The values true and false would norll1ally be the results of a boolean
expression, rather than just being constant as in this example. After
executing Enable Timer for each guard, the earliest time recorded should
be #122, which will be the tinle to wait until. The initial code generated
for this sequence would be as follows:

opcode mnemonic C B
c b

A [w&-5]
a

[w&-4]

80000001
80000001
80000001

set flag showing no time set

24 FE TALT c b a 80000002
first guard: this has no effect .since the boolean is false

21 20 40 LDC #100 b a 100 80000002
40 LDC false a 100 0 80000002
24 F7 ENBT a 0 80000002
second guard: this stores its time because it is the only one so far

21 22 43 LDC #123 a 0 123 80000002
41 LDC true 0 123 1 80000002
24 F7 ENBT 0 1 123 80000001
third guard: this stores its time because it is earlier than the last

21 22 42 LDC #122 0 1 122 123 80000001
41 LDC true 1 122 1 123 80000001
24 F7 ENBT 1 1 122 80000001
last guard: this doesn't store its time because it's later

21 22 44 LDC #124 1 1 124 122
41 LDC true 1 124 1 122
24 F7 ENBT 1 1 122

126

ENDP

End Process

Let

Cha.pter 5

F3

a = the address of the workspace of the parent process,
[a&1] = number of child processes still active,

[a] =execution address of parent process upon restart.

A a (workspace)
B b

1---------1

C C

IF [a&1] = 1 THEN there are no luore child processes; con­
tinue as parent process:

[a&l] DJ ==> [I]

IQ] ==> []ill

W0 ==> 0
ELSE

[a&1] [!] ==> Ik-11
The current process is terminated, and another process is
scheduled from the active queue.

(Note: i is the address of the follo\ving instruction.)

The current process is terminated and control is returned to the
parent process if all the child processes have terminated. A pointer
to the workspace of the successor process is passed in register A. This
pointer should point to two words: at [a] is stored the address at which
execution is to continue and at [a&l] is the count of remaining child
processes. These two locations should be initialised by the parent process

Reference Section 127

before the children are started. See also Start Process. If the count is
not 1, it is decremented and another process is selected from the active
queues. If however the count is 1, control is transferred to the location
specified and the contents of A are transferred to the workspace pointer
register.

Example

The current process is to be terminated and control returned to the
parent if all children have terminated. Assume the parent's workspace
starts at #FOO and that the current number of children is 3.

opcode

2F 20 40
F3

mnemonic C B A
c b a

LDC #FOO b a FOO
ENDP

[FOO]
3
3
2

This process is then terminated, and another waiting process is resched­
uled.

128

EQC n

Equals Constant

Clla,pter 5

en

Returns the boolean result of a test for equality between the value
in A and the constant n. If a is the same as the value n then true, i.e.
1 is stored in A, else false, Le. 0 is stored. This instruction may also be
used to perform the NOT operation. An EQC 0 instruction performed
when A contains a boolean will return the logical NOT of A. The range
of the constant n may be extended with the positive and negative prefix
instructions.

Example

Test the second word on the workspace for equality with 7. The location
is assumed to contain #7FO.

opcode

72
C7

mnen"lonic C B A
c b a

LDL 2 b a 7FO
EQC 7 b a 0

Reference Section

FMUL

Fractional Multiply

129

27 F2

A~B b
C c

==>

21-wordlength X a X b

c

Error Flag set if a = b = Minlnt.

Discussion: It is possible to have a for111 of integer aritllmetic where
each integer represents a number bet\veen -1 and 1. This is effectively
the same as having the 'decilnal' (actually binary) point to the right of
the leftmost bit. As an example, the follo\ving table shows how various
values would be represented in this fornlat as 3-bit signed integers.

value base 2 3-bit integer
(base 10) equivalent representation

-1.00 -1.00 100
-0.75 -0.11 101
-0.50 -0.10 110
-0.25 -0.01 111
0.00 0.00 000
0.25 0.01 001
0.50 0.10 010
0.75 0.11 011

Note the relationship i = 2n
- 1!, \vhere i is the integer representation,

f is the fractional number to be represented, and n is the number of bits
in the word. Note also that in general, -1 ~ ! < 1, the asymmetry in
the range of f being caused by the usual problelll with twos complement
representation.

Problems arise when it is required to multiply two numbers of this
form together. In general, nlultiplying t\VO 32-bit numbers together pro­
duces a 64-bit result. HovJever, we are usually only interested in the
bottom 32 bits of the result, and would regard any excursion into the

130 Cllapter 5

higher word as an overflo\v. This is the way the normal Multiply in­
struction works. However, for fractional nUlnbers this is not the case.
Consider 0.5 X 0.5 = 0.25. This would be evaluated as #40000000 X

#40000000 which would clearly cause an overflow. Thus, the instruction
Fractional Multiply is provided. This evaluates 21-wordlength X a X b, which
provides a suitably scaled result. There is, in general, no overflow since
products of fractions are still fractional. There is only one exception:
the special case of -1 X -1 = 1, since 1 is not representable. Thus the
error flag will be set only if both operands are equal to Minlnt, Le. the
value which represents -1.

Reference Section

GAJW

General Adjust Worl<:space

131

23 Fe

w0

A~B b
C c

==>0

This instruction exchanges the contents of the A register with the
contents of the workspace pointer. It ca.n be used to implement work­
space allocation schemes that do not fit into the normal static allocation
allowed by the Adjust Workspace instruction and in particular, enables
the pointer to be set to a specified absolute location in memory.

The address in the A register should have its byte select bits (i.e the
bottom two bits in the case of the T414) set to zero. This will normally
already be the case if the address has been obtained by using address­
manipulation instructions such as Load Local Pointer and Word Subscript.
The effect of executing GAJW witllout these bits set to zero is undefined.

Example

On boot-up, it is usual to have the ,vorkspa.ce pointer pointing to the
top end of memory, to enable the 'sta.ck' to work downwards. Suppose
that the top of memory is at #800FFFFF.

opcode mnemonic C B A W
c b a w

28 20 20
2F 2F 2F
2F 4C LDC #800FFFFC b a 800FFFFC w

23 FC GAJW b a w 800FFFFC

132

GCALL

General Call

IQ]

A~B b
C c

Cllapter 5

F6

(Note: i is the address of the following instruction.)

This instruction exchanges the value in the instruction pointer I, with
that in register A. This instruction can be used to transfer control to any
address, allowing the user complete freedom for addressing calculations
etc. The GCALL instruction can also be used to return from a piece
of code. When procedure calls are implemented using this instruction
rather than with CALL, it is up to the programmer to construct stack
frames, save the return address a.nd so all.

Note that it is the address of the instruction following the GCALL
that is placed in the A register.

Example

It is desired to call a routine at address #C2. The code fragment is
assumed to start at address #A7.

opcode

2C 42
F6

mne111011ic C B A I
c b a A7

LDC #C2 b a C2 A9
GCALL b a AA C2

GT

Greater Than

Reference Section 133

F9

If b > a then true (1) is returned on the stack, otherwise false (0) is
returned.

Example

It is to be determined whether the second word in tIle workspace is
greater than -1. We shall assunle tha.t the said location contains the
value 6.

opcode nlnelnOllic C B A
c b a

71 LDL 1 b a 6
60 4F LDe -1 a 6 FFFFFFFF
F9 GT a 1

134

IN

Input Message

Let

Clla.pter 5

F7

a == the number of bytes to transfer,
b == a pointer to the channel word,
c == a pointer to an area of memory where the data is

to be transferred.

A a(count)
B b(channel)
C c(buffer)

[b] G ==:} ,lvfinlnt I

data

da.ta

Note: this instruction lTIay cause the process to be descheduled.

This instruction inputs the nUlnber of bytes specified by the value
in the A register from a channel ,vhose control \vord is pointed to by
the B register, and stores these bytes starting a.t the address pointed to
by the value in register C. All three registers become undefined. This
instruction is used for both internal channel and external link communi­
cation, the transputer hardware uses the address of the channel's control
word to distinguish between the t\vo. Note that before a location can
be used as a channel word for the first time, it must be initialised to
Minlnt. After the IN instruction has been executed, the channel word
is automatically reset ready for further COlTIlTIUnication.

The length specified for the Input Message instruction should be the
same as for the output process. For internal C01111nUnications, the pro­
cess which comes ready last, specifies the length of message actually

Reference Section 135

transferred and so if the length output is longer, there is a possibil­
ity that the input process will be corrupted by being overwritten. For
external channels, the process with the shorter message length will suc­
cessfully transfer data, while the other process will hang, waiting to send
or receive more data.

This instruction may take an arbitrary length of time to execute,
since an arbitrarily long message may be input. Thus, it has been made
interruptable in order to improve interrupt latency for high priority pro­
cesses.

Example

It is desired to input a 6-byte nlessage froIn the channel whose control
word is located in the first word of the local workspace, and store it in
a buffer which starts at the second word.

The code is split into two fragInents, the first performs the initialisa­
tion of the channel word, the second the actual message input operation.
We shall suppose that the local workspace starts at #FOO.

opcode mnemOllic C B A [FOO]
c b a

; initialise channel word

24 F2 MINT b a 80000000
DO STL 0 b a 80000000

c b a x
; perform input from channel

11 LDLP 1 b a F04 x

10 LDLP 0 a F04 FOO x

46 LDC 6 F04 FOO 6 x

F7 IN 80000000

At this point, there should no\v be six bytes stored in locations #F04
to #F09.

Note that at the start of the second code fragment, the contents of
the channel word are listed as x. This is because it may either contain
Minlnt (#80000000) or a process descriptor, depending on whether the
other process is ready or not.

136

In

Jump

A~B b
C c

Cllapter 5

On

(Note: i is the address of the following instruction.)

Note: this instruction may cause the process to be descheduled.

This instruction performs an unconditional jump to a new location
specified by an offset n, to the current value of the instruction pointer,
I. If the process is executing at lo\v priority and has exceeded its time­
slice, a process switch will occur after the execution of this instruction.
It is for this reason that the contents of the stack have to be regarded as
invalid after execution of this instruction. If it is vital that the process
is not descheduled, a LDC 0 follo\ved by a CJ should be used instead.
The range of the displacement n may be extended with tIle positive and
negative prefix instructions.

Example

Consider the high-level language instruction

IF WO THEN W1 := 15 ELSE W1 := -15;

where wo and W1 refer to the first two \vords in the local workspace,
and where wo holds a boolean value. This instruction could be imple­
mented using the following code, which is assumed to start at location
#2000. Also, WO is assumed to hold the value true.

Reference Section 137

opcode mnemonic C B A [w&l] I
c b a 2000

70 LDL 0 b a 1 2001
A3 CJ 3 b a 2002
4F LDC 15 b a F 2003
D1 STL 1 b a F 2004
03 J 3 2008
60 41 LDC -15 not executed

D1 STL 1 not executed

,. execution continues from this point

138

LADD

Long Add

Clla.pter 5

21 F6

A~B b
C c

==>
a+b+(cAl)

Error Flag set if an overflow occurs.

Performs the signed addition of the values in registers A and B, plus
a carry in C, and places the result in register A. Overflow is checked for
and sets the error flag if it occurs. This instruction implements the last
stage of a multiple length addition (the first stages being implemented by
the LS UM instruction), the C register containing the carry from previous
stages.

Example

See LSUM for an example of long addition.

LB

Load Byte

Reference Section 139

Fl

==>
[a]byte

b
c

This instruction reads in the byte pointed to by a. Because it is
a byte that is being accessed, both the word address and byte offset
bits within the pointer are used (see the section on addressing for more
details). The byte is loaded into the lo\ver eight bits of A, the rest being
set to zero.

Example

Suppose we wished to extract the second-frolll-bottom byte of the con­
tents of A. One way of doing this \vould be to store this value at location
o in the local workspace, then rea.d back the selected byte. We shall
assume that the local workspace starts at #FOO, and that A initially
contains #DDCCBBAA.

opcode mnelnonic C n A [w]
c b DDCCBBAA

DO STL 0 b a DDCCBBAA
,. load byte offset

41 LDe 1 b a } DDCCBBAA
; load base pointer

10 LDLP 0 a } FOO DDCCBBAA
,. perform indexing

F2 BSUB a FO} DDCCBBAA
; finally, load in the byte

Fl LB a BB DDCCBBAA

140

LDC n

Load Constant

Cllapter 5

4n

Loads a constant onto the sta.ck. The ra.nge of the constant n may
be extended with the negative and positive prefix instructions.

Example

Load the values 5, 254 and -30 onto the stack.

opcode nlnelllonic C B A
c b a

45 LDC 5 b II 5
2F 4E LDC 254 (l, 5 FE
61 42 LDC -30 5 FE FFFFFFE2

LDIFF

Long Difference

Referen ce Section 141

24 FF

b-a-(cI\1)
borrow out (0 or 1)

The unsigned subtraction b - a is performed, with a borrow-in con­
tained in Co The result is returned in the A register. If an overflow
occurs, the borrow out returned in the B register is 1, otherwise it is o.
This instruction is designed for implementing multiple length subtrac­
tion in conjunction with the LS UB instruction.

Example

See LSUB for an example of long subtraction.

142

LDINF

Load Single Length
Infinity

A~B b
C c

Cllapter 5

27 Fl

Note: this instruction is specific to the T414.

This instruction loads tIle A register with the bit pattern defined as
positive infinity in the IEEE 754 floating point standard. It is intended
for use in implementing floating point software packages for the T414.

Reference Section

LDIV

Long Divide

143

21 FA

A~B b
C c

Error Flag set if c 2:: a

==>
cb/a

cb mod a

Divides the double length value in the register pair CB (C containing
the high word), by the single length value in register A. The unsigned
dividend is returned in the A register and the remainder in the B register.
Overflow (in the dividend) can occur and is checked for, the error flag
being set if this occurs.

Example

Divide a double length value stored at offsets 0 (low) and 1 (high), by a
single length value stored at offset 2, to produce a double length result
to be stored at offsets 3 (low) and 4 (high), the single length remainder
to be stored at offset 5. We shall assume that the first integer has the
value #24,8300A042, the second the value 5.

144 ClIapter 5

opcode mnemonic C B A
; initialise remainder c b a

40 LDC 0 b a 0
; divide high word by divisor word

71 LDL 1 a 0 24
72 LOL 2 0 24 5
21 FA LOIV 1 7

; store high word of result

04 STL 4 1
; remainder becomes high order word
Jor next stage

70 LOL 0 1 8300A042
72 LDL 2 1 8300A042 5
21 FA LOIV 3 4D668673

; store low order word of result

03 STL 3 3
; store remainder

D5 STL 5

LDL n

Load Local

Referen ce Section 145

7n

Loads a word in the local workspace onto the stack. The instruction's
operand specifies the offset within the local \vorkspace (i.e. relative to
the workspace pointer). The range of the offset n may be extended with
the negative and positive prefix instructions.

Example

Load the second word of local workspace onto the stack. We assume
that the local workspace starts at #FOO.

opcode

71

mnelll011ic C B A [F04]
c b a x

LDL 1 b a x x

146

LDLP n

Load Local Pointer

Clla.pter 5

In

Loads a pointer to a word in the local workspace onto the stack. The
instruction's operand specifies the offset within the local workspace (Le.
relative to the workspace pointer). The range of the offset n may be
extended witll the negative and positive prefix instructions.

Note the similarity to the Load Local instruction: the only difference
between the two is that Load Local Pointer just calculates the address
of the specified word; Load Local also actually loads the word. Load
Local Pointer is often used to obtain a pointer to a word for use with
subsequent instructions.

Example

Load a pointer to the second word of local workspace onto the stack.
We assume that the local workspace starts at #FOO.

opcode

11

nlnenlonic C B A
c b a

LDLP 1 b a F04

LDNLn

Load Non-Local

Referen ce Section 147

3n

Loads the A register with a word from Inemory, the address of which
is specified by a pointer contained in A, indexed by the operand of the
instruction. The range of the offset n, may be extended by the positive
and negative prefix instructions. Note that the byte select bits of a must
be zero for the instruction to be properly defined.

This instruction is usually used to load a word onto the stack from a
location not contained within the local \vorkspace. It is comparable to
LDL, except that the offset is relative to A rather than to the workspace
pointer. Thus it is possible for exalnple, to evaluate an address, the
result being left on the stack, then load a word relative to this address.

Example

This instruction is often used to follo\v static links back up a chain of
workspaces in a block structured language. Conventionally, an occam
process has in its local workspace, a pointer to the workspace of the
lexically-enclosing process. The access of non-local variables is therefore
merely a matter of following the correct number of pointers up to the
lexical level of the desired variable.

We wish to access a variable (ma.rked *) two lexical levels above the
current process. We shall assume that the content of the workspaces is
as shown in th.e figure below:

148 Clla.jJter 5

process 0 process 1 process 2
param 0
static link 2~

param 2 return address
param 1 local var 0
param 0 local var 1 *

param 1 static link 1~ local var 2
param 0 return address
static link 0 ---+ local var 0
return address
local var 0
local var 1

The code to achieve this is as follows:

opcode mnelnonic C B A
c b a

73 LDL 3 b a static link 0
32 LDNL 2 b a static link 1
31 LDNL 1 b a local var 1 *

Reference Section

LDNLP n

Load Non-Local Pointer

149

5n

Loads a pointer to a word in lnenlory. The address is specified by
a pointer contained in A, indexed by the instruction's operand. The
range of the offset n may be extended by the positive and negative
prefix instructions. Note that the byte select bits of a must be zero for
the instruction to be properly defined.

In the same way that Load Local Pointer is similar to Load Local, so
Load- Non-Local Pointer is similar to Load Non-Local. The only differ­
ence between the two is that Load Non- Local Pointer just calculates the
address of the specified word; Load Non-Local then actually loads the
word. Load Non-Local Pointer is often used to obtain a pointer to a word
for use with subsequent instructions.

Example

We shall reconsider the example given for Load Non-Local. In this, we
wished to obtain the value of a local variable in the workspace of a
lexically-enclosing process. It is quite possible that rather than requiring
the actual value of this variable, we lllight \vish instead just to find its
address. For example, if the local variable was a channel word, then
we would wish to pass a pointer to it as one of the parameters of an
Input Message instruction. We shall aSSUllle that the local workspace of
process 2 starts at #F30.

opcode IDllelDOllic C B A
c b a

73 LDL 3 b a static link 0
32 LDNL 2 b a F30
51 LDNLP 1 b a F34

150

LDPI

Load Pointer to
Instruction

Clla.pter 5

21 FB

A~B b
C c

==>
c

(Nate: i is the address of the following instruction.)

Returns a value in A which is the current value of the instruction
pointer, indexed by a. This instruction allo\vs the loading of the address
of a location that is offset froIn the next instruction by the value in the
A register. It llas important uses in generating relocatable code.

Note that the instruction pointer points to the next instruction while
the current instruction is being executed, so that (LOC 0; LOPI) would
load a pointer to the instruction follo\ving the LOPI.

Example

The implementation of a jump table in a position independent manner
requires the ability to access nlemory relative to the instruction pointer.
We shall assume that an integer is passed in the A register indicating
which routine in the jump table is required. The table contains offsets
from the beginning of the table to the desired routine. We will suppose
that the code starts at location #100, and that the integer in question
has the value 3.

Reference Section 151

opcode mnemonic C B A I
c b 3 100

; load table base address

49 LOC 9 b 3 9 101
21 FB LOPI b 3 10C 103

; word offset into table

FA WSUB b 118 104
; get offset word

30 LONL 0 b BO 105
; load addre&s of start of table

44 LOC 4 b BO 4 106
21 FB LOPI b BO 10C 108

; add offset to table start address

F2 BSUB b lBC 109
; transfer control

F6 GCALL b lOA lBC
the table starts here at address 1OC (the next word boundary after lOA).
00000080
00000090
OOOOOOAO
OOOOOOBO

152

LDPRI

Load Priority

ClIapter 5

21 FE

==>
current priority

a
b

Pushes the priority of the current process onto the stack. For the
T414, the values returned are 0 for a high priority process and 1 for a
low priority process.

Example

A process desires to construct its process descriptor. A process de­
scriptor for the T414 consists of the workspace address with the process
priority in the least significant bit. (Relnember that since the workspace
lies on a word boundary, the bottonl t\VO bits of the workspace pointer
are usually zero.) We assume that the local workspace is at location
#FOO.

opcode mnemonic C B A
c b a

; get contents of workspace register

10 LDLP 0 b a FOO
; load current priority

21 FE LDPRI a FOO 1
; form process descriptor

24 FB OR a FOI

LDTIMER

Load Timer

Reference Section 153

22 F2

==>
current time

a
b

Loads the evaluation stack with the value in the current priority
timer register. The timer register is incremented at regular intervals
(the interval depends upon the process priority and processor speed),
the value wrapping round from the most positive integer to the most
negative.

Example

Suspend the current process until #2000 time units after the current
time.

opcode mnemonic C B A
c b a

22 20 20
40 LDC #2000 b a 2000
22 F2 LDTlMER a 2000 06FDE380
25 F2 SUM a 06FE0380
22 FB TIN

154

LEND

Loop End

Let

Clla,pter 5

22 Fl

a = the offset to the start of the loop,
b = a pointer to the loop control block, where

[b] = current loop index value,
[b&l] = current loop count.

A a (loop offset)
B b (control block adr)
C c

IF [b&l] > 1 THEN

[b&l]
[b]

ELSE

[b&l] I count]

count - 1
index + 1

==> I count - 1

Note: this instruction may cause the process to be descheduled.

This instruction is designed to allow easy implementation of the oc­
cam replicated constructs and the FOR loops of other languages. The
B register contains the address of a pair of words. The word at offset 0
from B is the iteration variable and is increlnented each time the instruc­
tion is executed. The next word up (offset 1 from B) contains a count
of how many more iterations there are to go; this value is decremented
each time the LEND instruction is executed. The content of the A reg­
ister is subtracted from the instruction pointer if the iteration count is
not zero after it is decremented. The offset is subtracted (rather than
added) to facilitate the backward jumps that are normally used with

Reference Section 155

this instruction, the negative prefix operation that would otherwise be
necessary is eliminated.

Example

It is desired to calculate the factorial of an integer, N, initially held in the
A register. The result is also to be returned in the A register. We shall
solve this problem by setting up a loop that is executed N times. Each
time round the loop we shall multiply a running result by the iteration
variable. The iteration variable will be at offset 0 in the local workspace,
the iteration count will be at offset 1, and the running result at offset 2.
The local workspace starts at #FOO. Since the loop is executed N times,
registers and locations which cha.nge ea.ch time round the loop use we
will use the variable k to represent a value from o... k - 1.

opcode mnemonic C B A [FOO] [F04] [F08]
c b N

; set up iteration count

D1 STL 1 c b N
; set up loop variable to 1

41 LDG 1 c b 1 N
DO STL 0 c b 1 N
; initialise running result

41 LOG 1 c b 1 N
02 STL 2 c b 1 N 1

THIS IS THE START OF TIlE LOOP

; Perform the multiply

70 LOL 0 k+l k+l N-k k!
72 LOL 2 k+l k! k+l N-k k!
25 F3 MOL (k + I)! k+l N -k k!
02 STL 2 k+l N-k (k + I)!
; do the looping bit

10 LOLP 0 FOO k+l N-k (k + I)!
49 LOG 9 FOO 9 k+l N-k (k + I)!
22 F1 LENO k+2 N-k-l (k + I)!
72 LOL 2 N! N + 1 N+l N!

156

LMUL

Long Multiply

Cllapter 5

23 Fl

==>
lo(a x b + c)
hi(a x b+c)

The LM UL instruction multiplies the two unsigned single length
words contained in registers A and B and then adds the single length
'carry' contained in the C register. The result is returned in the register
pair BA (high order word in B). This instruction is designed for use in
implementing a multiple length multiply operation. Note that it is not
possible for this instruction to cause an overflow, so the error flag is
never set.

Example

Multiply the double length value #1234,.5678,9ABC,DEFO, stored at
offsets 1 (low) and 2 (high), by the single length value #10 stored at
offset 0; storing the result at offsets 3 to 5 (low to high).

opcode InllelnOllic C B A
c b a

; initialise carry

40 LDC 0 b a 0
" form low word of result

70 LDL 0 a 0 10
71 LDL 1 0 10 9ABCDEFO
23 F1 LMUL 9 ABCDEFOO
D3 STL 3 9
; form high words of result

70 LDL 0 9 10
72 LDL 2 9 10 12345678
23 F1 LMUL 1 23456789
D4 STL 4 1
D5 STL 5

LSHL

Long Shift Left

Reference Section 157

23 F6

A~B b
C c

lo(cb ~ a)
hi(cb ~ a)

The double length value contained in the register pair CB (low word
in B) is shifted left by the number of bits specified by the A register.
The result is returned in the register pair BA (low word in A). If the
number of places to shift is less than zero or greater than the number of
bits in a double length word, the result is undefined.

Example

Single length rotation can be implemented by using the double length
shift instructions. We shall rotate the contents of the A register left four
bits and return the result in A.

opcode

40
FO

44
23 F6

24 FB

mnemonic C B A
c b 12345678

; extend to double length by clearing
the upper word

LDCO b 12345678 0
REV b 0 12345678
,. shift left by Jour places

LDC 4 0 12345678 4
LSHL 1 234567890
,. combine the two words to complete
the rotation

OR 234567891

158

LSHR

Long Shift Right

Clla,pter 5

23 F5

A~B b
C c

==>
lo(cb ~ a)
hi(cb ~ a)

The double length value contained in the register pair CB (low word
in B) is shifted right by the number of bits specified by the A register.
The result is returned in the register pair BA (low word in A). If the
number of places to shift is less than zero or greater than the number of
bits in a double length word, the result is undefined.

Example

The long shift right instruction can be used to implement a single length
arithmetic shift (Le. one where the sign of the number being shifted is
preserved). We shall arithlnetically shift the contents of the A register
right by 4 bits and return the result in the A register.

opcode

21 FD

44
23 F5

mnemonic C B A
c b FFF1234

; first extend to douhle
length

XDBLE b FFFFFFFF FFFF1234
; and then shift JOUT

places right

LDC 4 FFFFFFFF FFFF1234 4
LSHR OFFFFFFF FFFFF123

Reference Section

LSUB

Long Subtract

159

23 F8

AffiB b
C c

b-a-(cA1)

Error flag set if arithmetic overflow occurs

Returns the result of the signed subtraction b - a, with a borrow­
in from c. The instruction is designed to allow the implementation of
multiple length subtraction in conjunction with the LDIFF instruction:
LDIFF is used to subtract the (unsigned) low-order words, with LSUB
used for the most significant word.

Example

It is desired to subtract the double-length signed integer stored at offsets
o (low word) and 1 (high word) from the double-length signed integer
stored at offsets 2 (low word) and 3 (high word) in the local workspace.
We shall assume the first integer ha.s the value #481234000 and the
second has the value #2180021004. The result is to be placed at offsets
4 and 5.

160 Clla.pter 5

opcode mnemonic C B A
c b a

,. clear borrow

40 LDC 0 b a 0
; subtract the low order words

72 LDL 2 a 0 81234000
70 LDL 0 0 80021004 81234000
24 FF LDIFF 1 FEDED004

; store low order result

D4 STL 4 1
subtract the high order w07·ds

73 LDL 3 1 21
71 LDL 1 1 21 4
23 FS LSUB le

; store high order result

D5 STL 5

LSUM

Long Sum

Reference Section 161

23 F7

==>
a+b+(cAl)

carry out

Performs the unsigned addition of the values in the registers A and B
plus a carry-in in C and places the result in register A with a carry-out
in B (0 or 1). The instruction is designed to allow tIle implementation
of multiple length addition in conjunction with the LADD instruction:
LS UM is used to add the (unsigned) lo,v-order words, with LAD D used
for the most significant word.

Example

It is desired to add together two double length signed integers contained
in the local workspace. The first integer is stored at offsets 0 (low word)
and 1 (high word) and has the value #481234000, the second at offsets
2 (low word) and 3 (high word) and has the value #2180021004. The
result is to be placed at offsets 4 and 5.

opcode mnemonic C B A
c b a

; clear carry

40 LOe 0 b a 0
; add the low order words

70 LOL 0 a 0 81234000
72 LOL 2 0 81234000 80021004
23 F7 LSUM 1 01255004

,. store low order result

04 STL 4 1
; add the high order w07·ds

71 LOL 1 1 4
73 LOL 3 1 4 21
21 F6 LAOO 26

; store high order result

05 STL 5

162

MINT

MiniIllurn Integer

Cllapter 5

Afinlnt
a

b

24 F2

Pushes the most negative representable integer onto the stack. For
the T414 this has the value of #80000000. This instruction avoids the
use of a load constant instruction that \vould otherwise need seven prefix
instructions. It also loads the minilllU111 integer in a manner indepen­
dent of processor word length, which is useful for the special flag uses
indicated in the next paragraph.

The minimum integer is used by various transputer instructions. A
channel control word is set to Afinlnt to indicate that no process is ready
to communicate on that channel. The process queue registers contain
Minlnt when there is no process on the queue. Similarly, Minlnt is used
to indicate the end of a timer queue, either in a timer queue register if
the queue is empty, or in the tilller chain pointer of a queued workspace.
These and other uses are described in detail else\vhere in this book.

Example

Reserve space for, and initialise, a channel control word. We assume
that the local workspace is at location #FOO.

opcode mnemonic C B A W [w]
c b a FOO

60 BF AJW -1 c b a EFC
24 F2 MINT b a 80000000 EFC
DO STL 0 b a EFC 80000000

Reference Section

MOVE

Move Message

Let

a =number of bytes to transfer,
b = destination start address,
C =source start address.

A a (count)

~B b (destination) ==>
C c (source)

[b&bytea]byte

~
[C&byte a]byte

==>
[b]byte [C]byte

163

24 FA

The block of memory starting from the address in the C register,
of length specified by the A register, is copied to the block of memory
starting from the address in the B register. The two blocks of memory
must not overlap.

This instruction may take an arbitrary length of time to execute,
since an arbitrarily long block of data may be moved. Thus, it has
been made interruptable in order to improve interrupt latency for high
priority processes.

Example

This instruction may obviously be used to implement vector (or equiva­
lent) assignments, but a less obvious use is in extracting 16-bit (or any
integral byte length) fields froIn memory. For instance, consider the
problem of adding a constant (5 say) to the fourth element in an INT16
array starting at word offset 7 in the local workspace. We shall use off­
set 0 as a scratch location. We assuIne that the local workspace is at
location #FOO.

164 Cllapter 5

opcode mnemonic C B A
c b a

" initiali,e scratch location

40 LDCO b a 0
00 STL 0 b a

; load 2x array index

46 LOC 6 b a 6
; load array base address

17 LOLP 7 a 6 FIC
; index into INT16 array

F2 BSUB a F22
" move desired INT16 to
,cratc'" location

10 LDLP 0 a F22 FOO
42 LOC 2 F22 FOO 2
24 FA MOVE

; load desired INT16 and
extend to word

70 LOL 0 0000FF36
28 20 20
40 LOe #8000 0000FF36 00008000
23 FA XWORO FFFFFF36

; add the constant

85 AOC 5 FFFFFF3I
; check still in INT16 range

28 20 20
40 LOC #8000 FFFFFF31 00008000
25 F6 CWORO FFFFFF3I

; store back in scratch location

00 STL 0
; get source address for move

10 LOLP 0 FOO
; calculate array.address again

46 LOC 6 FOO 6
17 LOLP 7 FOO 6 FIC
F2 BSUB FOO F22

; move INT16 back into array

42 LDC 2 FOO F22 2
24 FA MOVE

Reference Section

MUL

Multiply

165

25 F3

A~B b
C c

Error flag set on arithmetic overflow.

Multiplies the signed integers contained in A and B and returns the
signed result in A. The error flag is set if an arithmetic overflow occurs.

Example

If the values in the registers A and Bare #32 and #5 respectively then
the value in the A register will be #FA after the multiply operation.

opcode mnemonic C B A
c b a

23 42 LDC #32 b a 32
45 LDC 5 a 32 5
25 F3 MOL a FA

166

NFIX n

Negative Prefix

Cllapter 5

6n

Not strictly speaking an instruction; this operator is used in con­
junction with PFIX (Prefix) to extend the range of the operands of those
thirteen instructions which use operands.

Each transputer instruction byte ha.s a four-bit operator field and a
four-bit operand field. When each byte is executed, the four operand
bits are shifted left into a special operand register. The contents of the
operand register are then used as the operand for the instruction. Nor­
mally, the operand register is cleared after each instruction has been ex­
ecuted; PFIX and NFIX are special in that they do not clear this register
after execution, allowing operands larger than four bits to be built up.
For example, to load the constant #123, the sequence PFIX 1; PFIX 2;
LOe 3 would be used. Normally ho,vever, ,ye \vould not consider PFIX
as an instruction in its own right, and ,vould refer directly to LOC #123,
leaving the assembler to insert prefix instructions as necessary.

NFIX works in exactly the sanle ,vay as PFIX, except that it comple­
ments the operand register after shifting; this allows negative op,erands
to be built up quickly. For example, LDC -2 is equivalent to NFIX 0;
LOC #E. The NFIX 0 loads zero into the operand register; this is then
complemented, leaving #FFFFFFFF or -1. The value #E is then
shifted left into the register, leaving a final value of #FFFFFFFE or
-2.

NORM

Norlllalise

Let

Reference Section 167

21 F9

k = number of leading zeroes in the double-length
word ba.

A~B b
C c

==>
lo(ba ~ k)
hi(ba ~ k)

k

The normalise instruction shifts the double length value in the reg­
ister pair BA (low order word in A) until the most significant bit is a
one. The number of places shifted is returned in the C register and the
shifted value is left in the BA register pa.ir. If the initial value is zero, a
value equal to twice the word length is returned in C, (64 in the case of
the T414).

This instruction only provides a norlnalise operation for positive val­
ues. To implement a normalise for a negative value, it is necessary to
complement the value before and after the normalise instruction.

Example

Normalise the double length value contained at offsets 0 (low order word)
and 1 in the local workspace. This code fraglnent assumes the double
length value is positive.

opcode IDnenl0nic C B A
c b a

71 LDL 1 b a 00000024
70 LDL 0 a 00000024 3100042F
21 F9 NORM lA 90C400l0 BCOOOOOO

168

NOT

Bitwise Complement

A~B b
C c

Cllapter 5

23 F2

Returns the (one's) complement of the value at the top of the stack;
that is to say, it inverts every bit in the A register.

Example

Find the complement of #C2

opcode

2C 42

23 F2

mnemonic C B A
c b a

LDC #C2 b a C2
NOT b a FFFFFF3D

OPRn

Operate

Reference Section 169

Fn

Not strictly speaking an instruction; this operator is used to ex­
tend the number of instructions available to the transputer. Since each
transputer instruction byte is divided into a four-bit operator field and
a four-bit operand field, this allows for a maximum of sixteen instruc­
tions, (or fourteen once the Prefix and Negative Prefix instructions are
taken into consideration). Operate provides a way out: it interprets its
operand as an opcode, allowing access to a further sixteen instructions,
or in conjunction with Prefix, a potentially unlilnited number. The only
drawback with this method is tllat the extra instructions do not have
operands; in general however, they get round this by using implicitly
defined operands; for example the 0 R instruction uses the values in the
A and B registers as its operands.

Normally we would not consider OPR as an instruction in its own
right. For example, OR has the instruction nunlber #4B, so the sequence
PFIX 4; OPR #B would execute the 0 R instruction. However, we would
normally just tell the assembler 'OR' and expect it to produce the two
opcodes 24 and FB directly.

Note that throughout this book, we give the opcodes required to ex­
ecute an instruction, ratller than the instruction number. For example,
on the next page OR is referred to as having opcode '24 FB', rather than
instruction number 4B.

170

OR

Bitwise OR

A~B b
C c

Clla.pter 5

24 FB

Performs a bitwise OR between the top two operands on the stack.

Example

Perform an bitwise OR between #C2 and #AB.

opcode mnelnOllic C B A
c b a

2C 42 LDC #C2 b a C2
2A 4B LDC #AB a C2 AB
24 FB OR a EB

Reference Section

OUT

Output Message

Let

a = the number of bytes to transfer,
b = the channel address,
c = the source start address.

171

FB

A a (count)
B b (channel)
C c (source)

Note: this instruction may cause the process to be descheduled.

Outputs the number of words specified by the value in the A register
to a channel which is pointed to by the B register, starting from the
memory location pointed to by the C register. (See also IN.) All three
registers are left undefined. This instruction is used for both internal
channel and external link comnlunication, the transputer hardware uses
the address of the cllannel's control word to distinguish the two.

The microcode for this instruction is in fact rather complex, based
on the fact that the process waiting on the other end of the channel may
either be doing an Input Message, or an ALT. A full description of what
this instruction does is as follo\vs:

Let chan = [b]

IF chan = Minlnt
THEN other process has not begun communicating:

chan I Minlnt I
[w&-l] G

172

[w&-3] c:J
Chapter 5

==>0
and the process is descheduled.

IF chan # Minlnt AND [chan& - 3] = lvlinlnt + 1
THEN other process is an ALT which has not yet reached
the ALTWT:

[chan& - 3] I Minlnt+l I
chan c:J

[w&-l] c:J
[w&-3] c:J

==> [Afinlnt+3 I
==>0
==> IT]

==>0
and the process is descheduled.

IF chan # Minlnt AND [chan& - 3] = A1inlnt +2
THEN other process is an ALT which has descheduled after
reaching the ALTWT:

[chan& - 3] I Minlnt+2 I ==> I Minlnt+3 I
chan c:J ==> 0

[w&-l] c:J ==> IT]

[w&-3] c:J ==> 0
ALT process is rescheduled, and this process is descheduled.

IF chan # Minlnt AND [chan& - 3] = Minlnt + 3
THEN other process is an ALT \vhich has already fired on
another channel (or time), so behave like the first-arriving
process in a normal communication:

chan c:J
[w&-l] c:J
[w&-3] c:J

==>0
==> IT]

==>0
and the process is descheduled.

Reference Section

ELSE other process is an ordinary Input Message waiting to
communicate:
transfer a bytes from [cl onwards to [chan& - 3] onwards;
and reschedule the other process.

173

This instruction may take an arbitrary length of time to execute,
since an arbitrarily long message may be output. Thus, it has been
made interruptable in order to improve interrupt latency for high priority
processes.

Example

It is desired to output a 20-byte message from the channel whose con­
trol word is located in the local workspace. The code is split into two
fragments: the first represents the declaration of the channel in the lo­
cal workspace, the second the actual message output operation. It is
assumed that there are no further local declarations after the channel
declaration so that in the second fragnlent, the channel's control word
is at offset 0 in the local workspace. The messa.ge to be output starts at
offset 1 in the local workspace. We assume that the local workspace is
at location #FOO.

opcode mnemonic C B A W [w]
c b a FOO

; reserve space Jor channel and initialise

60 BF AN -1 c b a EFC
24 F2 MINT b a 80000000 EFC
DO STL 0 b a EFC 80000000
; output a message on the channel

c b a EFC x
21 44 LDC 20 b a 14 EFC x
10 LDLP 0 a 14 EFC EFC x
11 LDLP 1 14 EFC FaO EFC x
FB OUT EFC 80000000

Note that in the second half of this example, we have used x to represent
the contents of the channel word, since this Inay hold either Minlnt or
a process descriptor, depending upon whether the other communicat­
ing process is ready. Note also that the channel word is automatically
reinitialised ready for further communication.

174

OUTBYTE

Output Byte

Let

Chapter 5

FE

a = the value of the byte to transfer,
b =the channel address.

A a (byte)
B b (channel)
C c

[w] 0

Note: this instruction may cause the process to be descheduled.

Outputs the byte contained in the register A to the channel whose
control word is pointed to by the B register. No input byte instruction is
provided, so the corresponding input has to be implemented by an Input
Message instruction with a length of one. Offset 0 in the local workspace
is used and corrupted by this instruction. All three r.egisters are also
left undefined. This instruction is used for both internal channel and
external link communication; the transputer hardware uses the address
of the channel's control word to distinguish between the two.

Note that this instruction works by storing the data value at local
0, and then performing the equivalent of an Output Message, with a
pointer to local o. See OUT for a lnore detailed explanation of how
message outputting works.

Example

It is desired to output the byte constant #20 on the channel whose
control word is located in the local workspace. The code is split into two
fragments, the first represents the declaration of the channel in the local
workspace, the second the actual byte output operation. It is assumed
that there are no further local declarations after the channel declaration

Reference Section 175

so that in the second fragment the channel's control word is initially at
offset 0 in the local workspace. Note that when actually outputting from
the channel, we reserve an extra location in the workspace since offset 0
becomes corrupted. We assume that the local workspace is at location
#FOO.

opcode mnemonic C B A W [EFC]
c b a FoO

; reserve space Jor channel and initialise

60 BF AN -1 c b a EFC
24 F2 MINT b a 80000000 EFC
DO STL 0 b a EFC 80000000
; output a message on the channel

c b a EFC x
; reserve extra location

60 BF AJV -1 c b a EF8 x
10 LDLP 1 b a EFC EF8 x
21 44 LDC #20 a EFC 20 EF8 x
FE OUTBYTE EF8 80000000
B1 AJV 1 EFC 80000000

Note that in the second half of this exalnple, we have used x to repre­
sent the contents of the channel word, since this may hold either Minlnt
or a process descriptor, depending upon whether tIle other communicat­
ing process is ready. Note also that the channel word is automatically
reinitialised ready for further communication.

176

OUTWaRD

Output Word

Let

Cllapter 5

FF

a =the value of the word to transfer,
b =the channel address.

A a (word)
B b (channel)
C c

[w] 0

Note: this instruction may cause the process to be descheduled.

Outputs the word contained in the A register to the channel whose
control word is pointed to by the B register. No input word instruction is
provided, so the corresponding input has to be implemented by an Input
Message instruction with a length of four. Offset 0 in the local workspace
is used and corrupted by this instruction. All three registers are also
left undefined. This instruction is used for both internal channel and
external link communication; the transputer hardware uses the address
of the channel's control word to distinguish between the two.

Note that this instruction works by storing the data value at local
0, and then performing the equivalent of an Output Message, with a
pointer to local o. See OUT for a lnore detailed explanation of how
message outputting works.

Example

It is desired to output the word constant #F20 on the channel whose
control word is located in the local workspace. The code is split into two
fragments: the first represents the declaration of the channel in the local
workspace, the second the actual word output operation. It is assumed
that there are no further local declarations after the channel declaration

Reference Section 177

so that in the second fragment the channel's control word is at offset 0
in the local workspace. Note tllat when actually outputting from the
channel, we reserve an extra location in the workspace since offset 0
becomes corrupted. We assume that the local workspace is at location
#FOO.

opcode mnemonic C B A W [EFC]
c b a FaO

; reserve space for channel and initialise

60 BF AJW -1 c b a EFC
24 F2 MINT b a 80000000 EFC
DO STL 0 b a EFC 80000000
; output a me6sage on the channel

c b a EFC x
; reserve extra location

60 BF AJW -1 c b a EF8 x
10 LDLP 1 b a EFC EF8 x
2F 21 44 LDe #F20 a EFC F20 EF8 x
FF OUTWORD EF8 80000000
B1 AJ\l 1 EFC 80000000

Note that in the second half of this example, we have used x to repre­
sent the contents of the channel \vord, since this may hold either Minlnt
or a process descriptor, depending upon \vhether the other communicat­
ing process is ready. Note also that the channel word is automatically
reinitialised ready for further conl1nunication.

178

PFIX n

Prefix

Cllapter 5

2n

Not strictly speaking an instruction; this operator is used in conjunc­
tion with NFIX (Negative Prefix) to extend the range of the operands of
those thirteen instructions which use operands.

Each transputer instruction byte has a four-bit operator field and a
four-bit operand field. When each byte is executed, the four operand
bits are shifted left into a special operand register. The contents of the
operand register are then used as the operand for the instruction. Nor­
mally, the operand register is cleared after each instruction has been ex­
ecuted; PFIX and NFIX are special in that they do not clear this register
after execution, allowing operands larger than four bits to be built up.
For example, to load the constant #123, the sequence PFIX 1; PFIX 2;
LDC 3 would be used. Normally ho,vever, ,ve ,vould not consider PFIX
as an instruction in its own right, and ,vould refer directly to LDC #123,
leaving the assembler to insert prefix instructions as necessary.

NFIX works in exactly the sanle way as PFIX, except that it comple­
ments the operand register after shifting; this allows negative operands
to be built up quickly. For exalnple, LDC -2 is equivalent to NFIX 0;

LDC #E.

Reference Section

POSTNORMSN

Post-Norrnalise Correction

Let

a = the guard word,
b =the normalised fraction,
c = the normalising shift length,
e =the exponent.

179

26 Fe

A a (guard)
B b (fraction)
C c (shift)

[w] [e (exponent)]

postnormalised guard
postnormalised fraction

postnormalised exponent

Note: this instruction is specific to the T414.

This instruction performs a postnorlnalise correction on a single
length floating point number. It is intended for use in implementing
floating point software packages for the T414.

180

PROD

Unsigned Multiplication
(Product)

Cllapter 5

F8

=>
a X unsigned b

C

Calculates the unsigned integer multiplication of the top two values
on the stack. Carry and overflow are ignored. The time taken to execute
this instruction is proportional to the logarithm of the unsigned contents
of A, i.e. it is fastest if A contains a sInal1 positive integer.

Example

This instruction is useful for evaluating multidimensional array sub­
scripts. Consider the array defined in occam as:

[9] [4] [7] lIT Fred:

To generate the address of array element Fred [p] [q] Er] requires
the following code, ignoring array bound checking and assuming that
the variables p,q and r are at offsets 0, 1 and 2 respectively in the local
workspace, and that the array Fred starts at offset 3. Note that the
code is arranged so that the smallest number is always loaded as the
second operand to the PROD. We assume that the local workspace is at
location #FOO, and that the variables p,q and r have the values 3,2 and
6 respectively.

Reference Section 181

opcode mllelll011ic C B A
c b a

44 LDC 4 b a 4
70 LDL 0 a 4 3
F8 PROD a e
71 LDL 1 a e 2
F5 ADD a E
47 LDe 7 a E 7
F8 PROD a 62
72 LDL 2 a 62 6
F5 ADD a 68
13 LDLP 3 a 68 FOe
FA WSUB a lOAe

182

REM

Relllainder

A~B b
C c

Cllapter 5

21 FF

unless (a = 0) or (a = -1 and b = Alinlnt), in which case

A~B b
C c

Error Flag G

undefined

~ C

Returns the remainder of the division of the top two values on the
stack. This function is also known by the nalne 'modulus'. The sign of
the remainder is the same as the sign of the quotient. See also DIV.

Example

Find the remainder of the division of 42 by 11.

opcode Innenlonic C n A
c b a

22 4A LOC 42 b a 2A
4B LOC 11 a 2A B
21 FF REM a 9

Reference Section

RESETCH

Reset Channel

183

21 F2

A~B b
C c

[a] c:J

~ffi
~ I Minlnt I

The contents of the channel control word pointed to by the A register
is returned on the stack. The control word is set to Minlnt. If the control
word pointed to is that of a hardware link, the link hardware is also reset.
If the returned contents of the control word are not Minlnt, indicating
that a process was waiting on the channel, then that process may be
rescheduled with a RUNP instruction, since the value in A will be a
process descriptor.

This instruction is intimately involved with the transputer hardware
and should only be used in situations where a communications failure
cannot be tolerated. For further information see the INMOS technical
note 'Extraordinary use of Transputer Links' [5].

184

RET

Return

A~B b
C c

I[TI
w0

Chapter 5

=>00
=> IW&41

22 FO

(Note: i is the address of the following instruction.)

The Return instruction loads the instruction pointer with the return
address and releases the~four workspace locations that were reserved by
the Call instruction. The three evaluation stack registers are not affected,
so up to three values may be returned through them.

Example

Return from a subroutine called from location #AO, so the return ad­
dress is #Al. We assume that the local workspace is at location #FOO.

opcode

22 FO

. mnemonic C B
c b

RET c b

A W
a FOO
a FIO

[w] I
Al

Al

REV

Reverse

Reference Section 185

FO

A~B b
C c

Exchanges the values in the registers A and B. All other registers
are unaffected. This instruction is very useful for relaxing the order in
which expressions, array subscripts and the like may be evaluated.

Example

If A contains the value #C2 and B contains the value #AB, then after
this instruction the value in A will become #AB and the value in B will
become #C2.

opcode mnemonic C B A
c b a

2C 42 LDC IC2 b a C2
2A 4B LDC lAB a C2 AB
FO REV a AB C2

186

ROUNDSN

Round Single Length
Floating Point Number

Let

Chapter 5

26 FD

a = the guard word,
b = the fractional part,
c =the exponent.

A a (guard)
B b (fraction)
C c (exponent)

Note: this instruction is specific to the T414.

Rounds a floating point number and packs its exponent and man­
tissa into a single word. Rounding is performed in 'Round to Nearest'
mode as defined in IEEE 754. This instruction is intended for use in
implementing floating point software packages for the T414.

RUNP

Run Process

Let

Reference Section 187

23 F9

a = the descriptor of the process to be scheduled.

A a(descriptor)
B bt-------..C C

Adds the process whose descriptor is passed in the A register to the
appropriate process queue. A process descriptor consists of a pointer
to the workspace of the process OR'ed with the priority of the process.
For the T414, the priority of the process (0 or 1) is therefore contained
in the bottom bit and the workspace pointer in the top 30 bits. The
address to begin execution at is assumed to have been already stored at
the location immediately below the workspace (i.e. [w&-l]) of the new
process. This instruction allows the scheduling of processes at any level
of priority, unlike the STARTP instruction that schedules a process at
the current priority.

Example

Schedule a process whose workspace is located at address #1000 on
the low priority (priority bit =1) queue. Execution is to begin at offset
#40 from the RUNP instruction. We will assume that the code fragment
starts at address #200.

188 Chapter 5

opcode mnemonic C B A I
c b a 200

; ,et up ,t4rt 4dtlre" 4t location -1

24 4A LOO 140+10 b a 4A 202
21 FB LDPI b a 24E 204
21 20 20
40 LDC 11000 a 24E 1000 208
60 EF STIlL -1 a 20A

; I04d de,criptor
21 20 20
40 LDC 11000 a 1001 20E

; run proce"
23 F9 RUNP 210

; thi, proce" continue, execution here

Reference Section

SAVEH

Save High Priority Queue
Registers

189

23 FE

A

~ rnB ==>
C

[a&l]

~ ==>
High Priority Back Pointer

[a] High Priority Front Pointer

The contents of the high priority queue registers are copied to mem­
ory, the front pointer at the location pointed to by the A register and
the back pointer at the next word up. If there are no entries in the queue
both these registers will contain Minlnt. The main purpose of this in­
struction (and its sister instruction SAVEL) is for debugging, allowing
the contents of the high priority queue to be inspected.

Example

The contents of the high priority queue registers are to be stored at off­
sets 5 and 6 in the local workspace. We assume that the local workspace
is at location #FOO.

opcode

15
23 FE

mnemonic C B A [w&5] [w&6]
c b a

LDLP 5 b a F14
SAVEH b a FrontP BackP

190

SAVEL

Chapter 5

23 FD

Save Low Priority Queue
Registers

A~B b
C c

[a&l] u_­
[a] G ::::}

Low Priority Back Pointer
Low Priority Front Pointer

The contents of the low priority queue registers are copied to memory,
the front pointer at the location pointed to by the A register and the back
pointer at the ~ext word up. If there are no entries in the queue both
these registers will contain Minlnt. The main purpose of this instruction
(and its sister instruction SAVEH) is for debugging, allowing the contents
of the low priority queue to be inspected.

Example

The contents of the low priority queue registers are to be stored at offsets
5 and 6 in the local workspace. We aSSUlne that the local workspace is
at location #FOO.

opcode

15
23 FD

mnemonic C
c

LDLP 5 b
SAVEL

B
b
a
b

A
a

F14

[w&s]

FrontP

[w&6]

BackP

SB

Store Byte

Referen ce Section 191

23 FB

~I~I
[a]byte G ==} I b /\ 255 I

Stores a byte in memory. The address is specified in A, and the
value to be stored is in the lo,ver 8 bits of B. This is one of the few
instructions where the byte select bits of the address are used. Note
that this instruction executes using a single ,vrite cycle; this is because
the transputer has external circuitry ,vhich allo,vs it to write to a selected
byte within a word of memory, avoiding a read-modify-write sequence.

Example

Store #FF at location #3FI-Le. the second byte of the word at location
#3FO.

opcode mnelllOllic C B A [#3FO]
c b a . xxxxxxxx

2F 4F Loe #FF b a FF xxxxxxxx
23 2F 41 LOe #3F1 a FF 3Fl xxxxxxxx
23 FB SB a xxxxFFxx

192

SETERR

Set Error

A~B b
C c

Error Flag G

C]la.pter 5

21 FO

Sets the error flag. Subsequent operation of the transputer then
depends on the state of the Halt-On-Error flag (see Set Halt-an-Error
Flag).

Referen ce Section

SETHALTERR

Set Halt-an-Error Flag

193

25 F8

A~B b
C c

Halt-on-Error Flag G

The halt-on-error flag is set. This puts the transputer into the mode
in which the processor stops if the error flag becomes set.

194

SHL

Shift Left

A~B b
C c

CllaptCl' 5

24 Fl

Shifts the value in B left a places, filling the bits created with zeroes,
and returns the result in A. The effect is undefined if A contains a value
larger than the number of bits in a word. The time taken to execute this
instruction is proportional to the unsigned contents of A, so attempts to
shift by large values (or small nega.tive values) may lock the processor
up for considerable periods of time.

Example

Shift left the value #AB by two pla.ces.

opcode mnenlonic C B A
c b a

2A 4B LDC #AB b a AB
42 LDC 2 a AB 2
24 F1 SHL a 2AC

SHR

Shift I\ight

Reference Section 195

24 FO

Shifts the value in B right a places, filling the bits created with zeros,
and returns the result in A. The effect is undefined if A contains a value
larger than the number of bits in a \vord. The time taken to execute this
instruction is proportional to the unsigned contents of A, so attempts to
shift by large values (or small negative values) may lock the processor
up for considerable periods of time.

Example

Shift right the value #AB by t\VO places.

opcode Innenlonic C B A
c b a

2A 4B LDC #AB b a AB
42 LDC 2 a. AB 2
24 FO SHR a 2A

196

STARTP

Start Process

Let

FD

a =the address of the lle\V \vorkspace,
b = the offset from I to the start of the process.

A a (workspace)
B b (process adr)
C c

This instruction schedules a ne\v process, that is to say, it adds a
process to the rear of the appropriate active process queue. The current
process continues unaffected. The initial execution address for the new
process is given by the value in B as a.n offset from the instruction
pointer I. The value of I used is tha.t after the instruction has executed,
i.e. the offset is relative to the instruction follo\ving the STARTP. The
A register specifies the address of the \vorkspace. See EN DP for details
of stopping child processes and keeping track of the number of children
left executing. The process is scheduled at the salne priority level as the
creating process

Example

Apiece of code executing at #AO desires to start t\VO daughter processes,
one at #BO and one at #CO, giving the first a \vorkspace at #FIO, the
second at #F20. The current \vorkspace is at #FOO. We assume that
space for the child process count has alrea.dy been reserved.

Referen ce Section 197

opcode mnemonic C B A I [FOO]
c b a AO

; first set up child process count

42 LDC 2 b a Al
DO STL 0 b a A2 2

; next start first child

4A LDC #A b a A A3 2
21 10 LDLP #10 a A FI0 AS 2
FD STARTP a A6 2

; ,tart the second child

21 45 LDC #15 a 15 AB 2
21 20 LDLP #20 a 15 F20 AA 2
FD STARTP a AB 2

198

STHB
Cllapter 5

25 FO

Store High Priority Bacl\:
Pointer

A~B b
C c

High Priority Back Ptr G

Puts the contents of the A register into the high priority back pointer
register. This instruction should not be used for manipulating the con­
tents of the process queue because no interlock mechanism is provided
to prevent the processor accessing the queue ,vhile a user program is in
the middle of modifying them. During booting, it is not, in fact, neces­
sary to initialise tIle ba.ck pointers since the transputer can detect the
special case of no active processes (front pointer = Minlnt) and take
appropriate action.

Note: this instruction is different frolll Save High Priority Queue Reg­
isters, which writes the current values of those registers to memory.

Reference Section

STHF

Store High Priority Front
Pointer

199

21 F8

A~B b
C c

High Priority Front Ptr G

Puts the contents of the A register into the high priority front pointer
register. This instruction should only be used for initialising the high
priority process queue. It should not be used for Inanipulating the con­
tents of the process queue, because no interlock mechanism is provided
to prevent the processor accessing the queue ,vhile a user program is in
the middle of modifying them.

Note: this instruction is different fr0111 Save High Priority Queue Reg­
isters, which writes the current values of those registers to memory.

Example

Initialise the high priority process queue. This must be done after a
reset and before any scheduling operations can be done.

opcode_ mnemonic C B A
c b a

; initialise front pointer

24 F2 MINT b a 80000000
21 Fa STHF b a

200

STL n

Store Local

A~B b
C c

[w&n] G

Cha.pter 5

Dn

Stores the word at the top of the evaluation stack in the local work­
space (c.f. lDL). The instruction's operand specifies the offset within the
local workspace (i.e. relative to the \vorkspace pointer) where the word
is to be stored. The range of the offset n may be extended with the
negative and positive prefix instructions.

Example

Store #8E7 in the second word of local \vorkspace. We assume that the
local workspace is at location #FOO.

opcode

28 2E 47
Dl

mnelnOllic C B A [#F04]
c b a

LDe #8E7 b a 8E7
STL 1 b a 8E7

Reference Section

STLB

Store Low Priority Bacl<:
Pointer

201

21 F7

A~B b
C c

Low Priority Back Ptr G

Puts the contents of the A register into the low priority back pointer
register. This instruction should not be used for manipulating the con­
tents of the process queue, because no interlock mechanism is provided
to prevent the processor accessing the queue while a user program is in
the middle of modifying them. During booting, it is not in fact neces­
sary to initialise the back pointers since the transputer can detect the
special case of no active processes (front pointer = Minlnt) and take
appropriate action.

202

STLF
Cllapter 5

21 Fe

Store Low Priority Front
Pointer

AmB b
C c

Low Priority Front Ptr G

Puts the contents of the A register into the lo\v priority front pointer
register. This instruction should only be used for iIlitialising the low
priority process queue. It should not be used for manipulating the con­
tents of the process queue, because no interlock mechanism is provided
to prevent the processor accessing the queue \vhile a user program is in
the middle of modifying theIne

Example

Initialise the low priority process queue. This must be done after a reset
before any scheduling operations can be perforn1ed.

opcode mneulonic C B A
c b a

,. initialise front poin ter

24 F2 MINT b a 80000000
21 Fe STLF b a

Reference Section

STNL n

Store Non-Local

203

En

A~B b
C c

[a&n] c:J

Stores a value at an address not in the local workspace (c.f. LDN L).
The value in B is stored at an offset n from the address specified in the
A register. The range of the offset may be extended through the use of
the positive and negative prefix instructions.

Example

Store #8E7 in the third word of a table starting at location #3FO (see
also LDNL for an example of non-local variable access)

opcode mnemonic C B A [#3F8]
c b a

28 2E 47 LDG #8E7 b a 8E7
23 2F 40 LDG #3FO a 8E7 3FO
E2 STNL 2 a 8E7

204

STOPERR

Stop On Error

IF Error Flag set THEN

~ I~ I
[w&-l] G

Cllapter 5

25 F5

Another active process is selected
ELSE

A~B b
C c

(Note: i is the address of the following instruction.)

If the error flag is set, the instruction pointer is stored at offset -1
in the local workspace and another process is selected from one of the
queues. Otherwise execution continues normally. This instruction is
equivalent to executing Stop Process if the error flag is set. Note that
once the process is suspended, it will never be reactivated unless another
process explicitly executes a Run Process instruction.

Reference Section

STOPP

Stop Process

205

21 F5

~ I~ I
[w&-l] G

Another active process is selected

(Note: i is the address of the follo,ving instruction.)

The instruction pointer I is stored at offset -1 from the workspace
pointer and the process is descheduled. Execution continues with an­
other process selected from one of the queues. The instruction pointer is
saved in the workspace to allow the process to be subsequently restarted
by a RU NP instruction if required. Note that once the process is sus­
pended, it will never be rea.ctivated unless a.nother process explicitly
executes the Run Process instruction.

Example

A process executing at location #lAO is stopped.

mnemonic C B A [w&-l]opcode

21 F5 STOPP
c b a

lA2
lAD

next process

206

STTIMER

Store Timer

Clla,pter 5

25 F4

A~ ~B b ==>
C c

Low priority Timer ffi
==> rnHigh priority Timer -

The contents of the A register is stored in both the low and high
priority timer registers and the timers are started. This instruction is
used for initialising the tilners after a. reset or analyse.

Referen ce Section

SUB

Signed Subtraction

207

Fe

AmB b
C c

Error Flag set if arithmetic overflow occurs

Returns the result of the signed integer subtraction of the top two
values on the stack. Overflow is checked for and the error flag is set if
it occurs.

Example

Subtract #C02 from #ABO and leave the result on the stack.

opcode mnenlOllic C D A
c b a

2A 2B 40 LDC #ABO b a ABO
2C 20 42 LDC #C02 a ABO CO2
FC SUB a FFFFFEAE

208

SUM

Unsigned Addition

A~B b
C c

Clla.pter 5

a +unsigned b
c

25 F2

Returns the result of the unsigned addition of the top two values on
the stack. Overflow is not checked for and the error flag is not modified.

Example

Add #C02 and #ABO together.

opcode lllnelllOllic C B A
c b a

2A 2B 40 LDC #ABO b a ABO
2C 20 42 LDC #C02 a ABO CO2
25 F2 SUM a 16B2

TALT

Timer Alt Start

Reference Section 209

24 FE

A

~ ~B ~

C

[w&-3]

~ ~
Alin/nt + 1

[w&-4] A1in/nt + 2

This instruction is designed for use in the implementation of the
occam ALT construct. It should be used instead of Alt Start in situations
where at least one of the ALT guards is \va.iting on a time. It performs
the same function as Alt Start, but in a.ddition, initialises location -4 to
Minlnt + 2 to indicate that no valid time has yet been stored. See Alt
Start for more information.

Example

Since this instruction is really only 111ea.ningful when used along with
other ALT instructions, a full exanlple is not given; instead, we will
show its effect in isolation. For a discussion of how the various ALT
instructions interact, see page 43.

opcode

24 FE

mnemonic C B A [w&-3] [w&-4]
c b CL

TALT c b Cl 80000001 80000002

210

TALTWT

Timer Alt Wait

A~B b
C c

C}la.pter 5

25 Fl

IF ([w&-3] = Minlnt+1)
OR (([w&-4] = Minlnt+l) AND

([w&-5] BEFORE current ti711e))
THEN the next instruction is executed
ELSE The time to wait until, ie [w&-5], is put

into timer queue, the process is descheduled and
[w&-3] I Minlnt+l I => I Alinlnt+2 I

This instruction is designed for use in the implementation of the
occam ALT construct. It should be used instead of Alt Wait in situations
where at least one of t~e ALT guards is \vaiting on a time. It performs
the same function as Alt Wait, but in addition, checks to see if a timer
guard has fired, i.e. there exists a valid tilne ([w&-4] = Minlnt+1) and
that time is earlier than the current time. If no guards have fired the
process is added to the timer queue. See Alt Wait for more information.

This instruction may ta.ke an arbitrary length of time to execute,
since it may have to insert the ALT process at an arbitrary point in the
timer queue. Thus, it has been made interruptable in order to improve
interrupt latency for high priority processes.

Example

Since this instruction is really only Ineaningful when used along with
other ALT instructions, a full example is not given; instead, we will

Reference Section 211

show its effect in isolation. For a discussion of how the various ALT
instructions interact, see page 43.

opcode

25 F1

mnemonic C n
c b

TALTWT

A [w&-3]
a 80000001

80000001

[w]

-1
process has been descheduled

212

TESTERR
Cllapter 5

22 F9

Test Error False and Clear

A~B b
C c

Error Flag c:J

rv Error Flag

==> a

b

==> I false I

The TESTERR instruction loads false onto the stack if the error flag is
set and true otherwise. The error flag is then cleared. This instruction's
main use is during initialisation after a reset or analyse. It can also
be used for implementing error recovery schenles that do not use the
transputer's halt-on-error mode. The error flag is then left in the clear
state to facilitate the checking of errors over the next piece of code.

Example

Perform a signed subtraction and tllen test for overflow.

opcode mnemonic C B A Error Flag
c b a false

24 F2 MINT b (l, 80000000 false

41 LDC 1 a 80000000 1 false

FC SUB a 7FFFFFFF true
22 F9 TESTERR a 7FFFFFFF 0 false

Ax CJ error jump executed

Reference Section

TESTHALTERR

Test Halt-On-Error Flag

213

25 F9

Halt-On-Error Flag

a

b

This instruction tests the state of the halt-on-error flag, and puts
true (1) on the stack if set, false (0) other\vise.

The halt-on-error flag goverllS the a.ction of the processor when the
error flag becomes set. If the halt-on-error fla.g is set, the processor will
halt when the error flag becomes set. If the halt-on-error flag is clear,
the processor will continue with the next instruction when the error flag
becomes set.

Example

If the halt-on-error flag is set then:

opcode

25 F9

luneluonic C B A
c b a

TESTHALTERR b a 1

TESTPRANAL
214 Clla.pter 5

22 FA

Test Processor Analysing

A~B b
C c

==>
A nalyse Flag

a
b

The TESTPRANAl instruction allo\vs the executing process to deter­
mine whether or not the processor \vas la.st reset with the analyse signal
asserted. If this is the case, then true (1) is pushed onto the evalua­
tion stack, otherwise false (0) is stored. This instruction is intended for
use in the bootstrap routine to allow the selection of either the regular
bootstrap process or special diagnostic process.

TIN

Timer Input

Let

Reference Section 215

22 FB

a =the time at which the process is to be rescheduled.

A a (time)
B b...------4C C

Note: this instruction may cause the process to be descheduled.

Wait until a specified time. If the specified time is in the past,
the instruction has no effect. If the specified time is in the future, the
process is suspended until that time. The transputer represents time
by a single word whose value is incremented at regular intervals (the
interval depends on the process priority and the processor speed). When
the time value reaches the most positive integer its value wraps round
to the most negative integer. When comparing a specified time with
the current time, current times between a and a +unsigned Minlnt are
considered to be in the future and all the other values of the specified
time are considered to be in the past.

This instruction may take an arbitrary length of time to execute,
since it may have to insert the process at an arbitrary point in the
timer queue. Thus, it has been made interruptable in order to improve
interrupt latency for high priority processes.

Example

Suspend the current process until #1000 time units after the current
time.

216 CllCl,pter 5

opcode Innenl011ic C n A
c b a

21 20 20
40 LDC #1000 b a 1000
22 F2 LDTIMER a 1000 73F87ACl
25 F2 SUM a 73F88ACl
22 FB TIN

Reference Section

UNPACKSN

Unpack Single Length
Floating Point Number

Let

a = a single-length floating-point number;
o if a is zero
1 if a is normalised

type =
2 if a is infinity
3 if a is Not-A-Nu111ber

THEN

217

26 F3

A~B b
C c

==>
fraction field of a

exponent field of a

4b + type

Note: this instruction is specific to the T414.

This instruction unpacks the va.rious fields of a floating-point num­
ber. It is intended for use in implementing floa.ting point software pack­
ages for the T414.

218

weNT

Word Count

Let

Cllapter 5

23 FF

k = number of byte select bits in a word (2 for the
T414).

THEN

a'2>k
a A (2k - 1)

b

This instruction converts a menlory pointer (contained in A) into a
word address (returned in A) and a byte index into the word (returned
in B).

Example

Find the word address and byte offset of the word at offset 3 in the local
workspace. We assume that the local \vorkspace is at location #FOO.

opcode

13
23 FF

11111elll011ic C n A
c b a

LDLP 3 b CL FOC
WeNT a 0 3C3

WSUB

Word Subscript

Reference Section 219

FA

Evaluates the address of a word in a vvord array. The base address
of the array is in the A register and the ,vord offset from this base is
in the B register. Its use for accessing word arrays (instead of using
SU M) ensures the word length independence of the code. Note that this
instruction is undefined if the byte selector bits of A are non-zero.

Example

Find the address of the 2nd word in an array starting at offset 3 in
the local workspace. We assunle that the local workspace is at location
#FOO.

opcode Innelll011ic C B A
c b a

41 LDe 1 b a 1
13 LDLP 3 a 1 FOe
F2 WSUB a FIO

220

XDBLE

Extend to Double

Cl1a.pter 5

21 FD

IF a < 0 THEN

A~ ~B b ==>
C c

ELSE

A~ rnB b ==>
C c

Sign extends the single length value in A into a double length value
in the register pair BA (low order ,vord in A). The value that B takes
depends on the state of the top bit of the A register. If this bit is set, B
takes the value -1, if clear, B takes the value o.

Example

Convert Minlnt into a 64-bit value.

opcode

24 F2
F2

mnemonic C B A
c b a

MINT b a 80000000
WSUB a FFFFFFFF 80000000

Reference Section

XOR

Bitwise Exclusive-OR

221

23 F3

Performs a bitwise exclusive-OR between the top two operands on
the stack.

Example

Perform an exclusive-OR between #C2 and #AB.

opcode ll111ell1011ic C B A
c b a

2C 42 LDC #C2 b a C2
2A 4B LDC #AB a C2 AB
23 F3 XOR a 69

222

XWORD

Extend to Word

Let

Clla.pter 5

23 FA

a = subrange mask, = 2k - 1 where k is the number of
bits in the subrange,

b = value to be extended to word length.

IF b ~unsigned a THEN

Affi Ib -~2a IB b ==>
C c

ELSE

A

ffi ~B ==>
C

Sign extends a subword length integer to word length. Register B
contains the subrange value to be extended and A contains a value that
defines the bit length of the subrange. This value should have the sign bit
of the subrange set and all the other bits reset; that is, the most negative
representable number of tIle subrange. The effect of the instruction (if
the input value is within the specified subrange) is to copy the subrange
sign bit into all the bits above it in the \vord. The instruction definition
b ~unsigned a may seem a bit strange a.t first, but all it is really saying, is
that if the value b, treated as a 32-bit unsigned integer, is greater than or
equal to a, then the partword value represented by b must be negative.
Subtracting 2a from b just has the effect of changing the top bits in the
word from zeros to ones.

Reference Section 223

Example

Load the 3rd entry of a packed array of 4-bit subrange values and convert
it to word length. The array starts at offset 0 in the local workspace.

opcode

70

2F 20 40
24 F6

48

24 FO

48
23 FA

mnemonic C B A
c b a

; load the word that contains
the third entry

LDL 0 b a EF3DB92C
; isolate the required four bit field

LDC #FOO a EF3DB92C OOOOOFOO
AND a 00000900
; shift down to bottom four bits

LDC 8 a 00000900 8
SHR a 00000009
,. extend to word length

LDC 8 et 00000009 8·
XWORD a FFFFFFF9

Appendix A

Transputer Opcodes

xn Fx 21 Fx 22 Fx 23 Fx
0 In REV SETERR RET DISS
1 LDLPn LB LEND LMUL
2 PFIX n BSUB RESETCH LDTIMER NOT
3 LDNLn ENDP CSUBO XOR
4 LDCn DIFF BCNT
5 LDNLP n ADD STOPP LSHR
6 NFIX n GCALL LADD LSHL
7 LDLn IN STLB LSUM
8 ADCn PROD STHF LSUB
9 CALLn GT NORI\1 TESTERR RUNP
A CJ n WSUB LDIV TESTPRANAL XWORD
B AJWn OUT LDPI TIN SB
C EQCn SUB STLF DIV GAJW
D STLn STARTP XDBLE SAVEL
E STNLn OUTBYTE LDPRI DIST SAVEH
F OPRn OUTWORD REl\1 DISC WCNT

24 Fx 25 Fx 26 Fx 27 Fx
0 SHR STHB
1 SHL TALTWT LDINF
2 MINT SUM FMUL
3 ALT MUL UNPACI(SN CFLERR
4 ALTWT STTIMER
5 ALTEND STOPERR
6 AND CWORD
7 ENBT CLRHALTERR
8 ENBC SETHALTERR
9 ENBS TESTHALTERR
A MOVE
B OR
C CSNGL POSTNORIVISN
D CCNTl ROUNDSN
E TALT
F LDIFF

224

Appendix B

Symbols

These are the symbols used for the forInal definitions of the instruction
set in the reference section.

symbol
A
B
C

W
I

a, b, C, w, i
n
&

&byte

[]
[]byte

1\

V

EB
~

>
Minlnt

meaning
top element of evaluation stack
middle element of evaluation stack
bottom elelnent of evaluation stack
workspace pointer
instruction pointer
initial contents the above registers
the operand of the instruction
word indexing (a&i = a +2k i for some k)
byte indexing (a&byte i ~ a + i)
word contents of
byte contents of
bitwise AND
bitwise OR
bitwise exclusive-OR
shift left x places
shift right x pla.ces
minimum integer = 2wordlength-l

a value that is undefined or unimportant

225

Appendix C

VVorkspace Usage

Tllis table shows what use the scheduling hardware makes of various
words below the workspace of a process.

Offset Value held Under what conditions
0 data to transfer during OUTBYTE or OUTWaRD exe-

cution
jump offset during ALT disabling

-1 instruction pointer whenever a process is descheduled

-2 ptr to next process the process is descheduled but ready

in active queue to proceed

-3 Minlnt+1 process is an ALT, no guards fired yet

Minlnt+2 process descheduled after ALTWT

Minlnt+3 process is an ALT, and a guard has
fired

valid address process is descheduled, awaiting chan-
nel comnlunication

-4 Minlnt+l indicates a valid time at offset -5 dur-
ing a tinler ALT

Minlnt+2 indicates no valid time at offset -5
-5 a time the time to wait until during a timer

ALT

226

Appendix D

Instruction
Cross-references

Loading and Storing
Load Local, 145

Store Local, 200

Load Non-Local, 147

Store Non-Local, 203

Load Local Pointer, 146

Load Non-Local Pointer, 149

Byte Accesses
Load Byte, 139

Store Byte, 191

Move Message, 163

Addressing Arithmetic
Word Subscript, 219

Byte Subscripf, 100

Word Count, 218

Byte Count, 99

Other Addressing Instructions
Adjust Workspace, 93

General Adjust Workspace, 131

Load Pointer To Instruction, 150

Single Length Arithmetic
Reverse, 185

Load Constant, 140

Single Length Arithmetic (cant)
Minimum Integer, 162

Add Constant, 91

Signed Addition, 92

Signed Subtraction, 207

Mult.iply, 165

Divide, 120

Remainder, 182

Unsigned Addition, 208

Unsigned Subtraction, 113

Unsigned Multiplication, 180

Fractional Multiply, 129

Comparing
Equals Constant, 128

Greater Than, 133

Check Subscript From Zero, 110

Check Count From One, 103

Bit Operators
Bitwise AND, 98

Bitwise OR, 170

Bit\vise Exclusive-OR, 221

Complement, 168

Shift Left, 194

Shift Right, 195

227

228

Multiple Word Arithmetic
Long Add, 138

Long Sum, 161

Long Subtract, 159

Long Difference, 141

Long Multiply, 156

Long Divide, 143

Long Shift Left, 157

Long Shift Right, 158

Extend To Double, 220

Check Single, 108

Partword Arithmetic
Extend To Word, 222

Check Word, 111

Appelldix D

Process Registers
Store High Priority Front Ptr, 199

Store High Priority Back Ptr, 198

Store Low Priority Front Ptr, 202

Store Low Priority Back Ptr, 201

Save High Priority Registers, 189

Save Low Priority Registers, 190

Load Priority, 152

Input and Output
Output Message, 171

Output Word, 176

Output Byte, 174

Input Message, 134

Reset Channel, 183

Floating-Point Support
Normalise, 167

Check flp Infinity or NaN, 104

Load Single Length Infinity, 142

Post-Normalise Correction, 179

Round flp Number, 186

Unpack flp Number, 217

Branching
Conditional Jump, 105

Jump, 136

Loop End, 154

Subroutine Calling
Call, 101

Return, 184

General Call, 132

Processes
Start Process, 196

End Process, 126

Stop Process, 205

Stop On Error, 204

Run Process, 187

ALT Instructions
Alt Start, 94

Timer Alt Start, 209

Enable Channel, 121

Enable Skip, 123

Enable Timer, 124

Alt Wait, 96

Timer Alt Wait, 210

Disable Channel, 114

Disable Skip, 116

Disable Timer, 118

i\lt End, 95

Tilners
Store Timer, 206

Load Timer, 153

TiJner Input, 215

Flags
Set Error, 192

Test Error False and Clear, 212

Clear Halt-On-Error Flag, 107

Set Halt-On-Error Flag, 193

Test Halt-On-Error Flag, 213

Test Processor Analysing, 214

Bibliography

[1] occam 2 Reference Manual, (1988) Prentice Hall International, UK.

[2] Brookes G. R. and Stewa.rt A. J. (1989) Introduction to occam 2 on
the Transputer, Macmillan, London.

[3] Transputer Development Systerr~, (1988) Prentice Hall International,
UK.

[4] Transputer Instruction Set: A Con~piler lVriter's Guide, (1988)
Prentice Hall International, UI(.

[5] Shephard R. (1987) Extraordinary Use of Transputer Links. INMOS
Technical Note 1.

229

Index

ADC 30, 91
ADD 30,92
Add Constant 30, 91
addition

constant 30, 91
long 31, 138
signed 30, 92
unsigned 30, 208

addressing 26, 88
byte 89

Adjust Workspace 29, 93
AJW 29,93
ALT 45,94

construct 44
ending 48, 95
examples 67
starting 45, 94

timer 45, 209
structure 68
waiting 46, 96

timer 46, 210
Alt End 48, 95
Alt Start 45, 94
Alt Wait 46, 96
ALTEND 48, 95
alternatives 43
ALTWT 46,96
analyse flag, testing 50, 214
analysing 23
AND 31,98
arithmetic 29

multiple word 31
partword 32

arrays, subscript checking 103

BCNT 28,99
boolean operators

AND 31, 98
NOT 31,168

230

OR31,170
XOR 31,221

booting 23
example 80

branch
conditional 33, 105
loop 33, 154
unconditional 33, 136

BSUB 28, 100
byte

loading 28, 139
lTIoving 28, 163
storing 28, 191

Byte Count 28, 99
byte offset 88
Byte Subscript 28, 100

CALL 34, 101
CCNT1 103
CFLERR 33, 104
channel 20, 41

disabling 47, 114
enabling 45, 121
input 42, 134
output 42, 171, 174, 176
reset ting 43, 183
switching 65

Check Count From One 103
Check Floating Point Infinity or Not-

a-Number 33, 104
Check Single 32, 108
Check Subscript From Zero 110
Check Word 32, 111
Cl 33, 105
Clear I-Ialt-On-Error Flag 50, 107
CLRHALTERR 50, 107
communication 18

exalnples 58
inter-process 41

comparing 30, 128, 133
complement 31, 168
Conditional Jump 33, 105
constant

adding 30, 91
loading 29, 140

CSNGL 32, 108
CSUBO 110
CWORD 32, 111

descriptor, process 39
DIFF 30, 113
Difference 30, 113

long 31, 141
Disable Channel 47, 114
Disable Skip 47, 116
Disable Timer 47, 118
DISC 47,114
DISS 47, 116
DIST 47,118
DIV 30, 120
Divide 30, 120

long 32, 143
remainder 30, 182

Enable Channel 45, 121
Enable Skip 45, 123
Enable Timer 45, 124
ENBC 45, 121
ENBS 45,123
ENBT 45,124
End Process 36, 126
ENDP 36,126
EQC 30,128
Equals Constant 30, 128
error, handling 21
error flag

for debugging 52
setting 49, 192
testing 49, 212

Event pin 20
Exclusive-OR 31, 221
Extend to Double 32, 220
Extend to Word 32, 222

flags
analyse 49
error 49
halt 49

floating point support 32

Index 231

F~1UL 30, 129
Fractional 11 ultiply 30, 129

GAJW 29,131
GCALL 34, 132
General Adjust Workspace 29, 131
General Call 34, 132
Greater Than 30, 133
GT 30,133
GUY

bug in 63
construct 51

halt flag
clearing 50, 107
setting 50, 193
testing 50, 213

idle time, calculation 76
IN 42, 134
indexing

bytes 28, 99, 100
\vords 28, 218, 219

infinity, loading 33, 142
input and output 42
Input 11essage 42, 134
instruction pointer 16

loading relative to 29, 150
modifying 34, 132

J 33, 136
jump 33, 136

conditional 33, 105
unconditional 33, 136

LADD 31, 138
LB 28, 139
LDC 29,140
LDIFF 31, 141
LDINF 33, 142
LDIV 32, 143
LDL 27, 145
LDLP 27, 146
LDNL 27,147
LDNLP 27, 149
LDPI 29, 150
LDPRI 40, 152
LDTIMER 49, 153
LEND 33, 154
link adapter 20

232

links 18
channel addresses 19
speed 19

LMUL 31,156
Load Byte 28, 139
Load Constant 29, 140
Load Local 27, 145
Load Local Pointer 27, 146
Load Non Local 27, 147
Load Non Local Pointer 27, 149
Load Pointer to Instruction 29, 150
Load Priority 40, 152
Load Single Length Infinity 33, 142
Load Timer 49, 153
loader, example 80
logical operators 29
Long Add 31, 138
Long Difference 31, 141
Long Divide 32, 143
Long Multiply 31, 156
Long Shift Left 32, 157
Long Shift Right 32, 158
Long Subtract 31, 159
Long Sum 31,161
Loop End 33, 154
LSHL 32, 157
LSHR 32, 158
LSUB 31,159
LSUM 31,161

memory access 26
MemStart 23
message

input 42, 134
moving 28, 163
output 42, 171

Minimum Integer 29, 162
MinInt 29
MINT 29, 162
MOVE 28,163
Move Message 28, 163
MUL 30, 165
multiple word arithmetic 31
Multiply 30, 165

long 31, 156
unsigned 30, 180

Negative Prefix 17, 166
NFIX 166

Index

NORM 32,167
Nonnalise 32, 167
NOT 31,168

operand register 17
Operate 169
OPR 169
OR 31,170
OUT 42,171
OUTBYTE 42, 174
Output Byte 42, 174
Output Message 42, 171
Output Word 42, 176
OUTWORD 42, 176

partword arithmetic 32
PFIX 178
Post- Normalise Correction 33, 179
POSTNORMSN 33, 179
Prefix 17, 178
prefixing 17
priority, loading 40, 152
procedure calling 34, 101, 132

returning 34, 184
process descriptor 15, 39
processes 35

ending 36, 39, 126, 204, 205
registers 40
starting 36, 39, 187, 196

PROD 30, 180
Product 30, 180
progranl control 33

recursion, example 75
registers

instruction pointer 16
operand register 17
workspace pointer 15

REM 30,182
Remainder 30, 182
Reset Channel 43, 183
RESETCH 43, 183
resett.ing 23
RET 34,184
Return 34, 184
REV 29,185
H,everse 29, 185
Round Single Length Floating Point

Number 33, 186
ROUNDSN 33,186

Index

Run Process 39, 187
RUNP 39,187

Save High Priority Queue Registers 40,
189

Save Low Priority Queue Registers 40,
190

SAVEH 40, 189
SAVEL 40, 190
SB 28, 191
Set Error 49, 192
Set Halt-on-Error Flag 50, 193
SETERR 49, 192
SETHALTERR 50, 193
shift

left 31, 194
long 32, 157

right 31, 195
long 32, 158

Shift Left 31, 194
Shift Right 31, 195
SHL 31,194
SHR 31,195
Signed Subtraction 30, 207
skip

disabling 47, 116
enabling 45, 123

Start Process 36, 196
STARTP 36,196
STHB 40,198
STHF 40,199
STL 27, 200
STLB 40, 201
STLF 40,202
STNL 27,203
Stop On Error 39, 204
Stop Process 39, 205
STOPERR 39, 204
STOPP 39, 205
Store Byte 28, 191
Store High Priority Back Pointer 40,

198
Store High Priority Front Pointer 40,

199
Store Local 27, 200
Store Low Priority Back Pointer 40,

201
Store Low Priority Front Pointer 40,

202

233

Store Non Local 27, 203
Store Timer 49, 206
STTIMER 49, 206
SUB 30,207
subroutine calling 34, 101, 132

returning 34, 184
subscripts, checking 110
subtract

long 31, 159
signed 30, 207
unsigned 30, 113

SUM 30,208
long 31, 161

swapping, registers 29, 185
sylnbols, table of 88, 225

TALT 45,209
TALTWT 46, 210
TDS 52 .
Test Error False and Clear 49, 212
Test Halt-On-Error Flag 50, 213
Test Processor Analysing 50, 214
TESTERR 49, 212
TESTHALTERR 50, 213
TESTPRANAL 50, 214
time 22
timer 48

disabling 47, If8
enabling 45, 124
input 49, 215
loading 49, 153
registers 49
storing 49, 206

Timer Alt Start 45, 209
Timer Alt Wait 46, 210
Timer Input 49, 215
TIN 49, 215

Unpack Single Length Floating Point
Number 33, 217

UNPACI(SN 33,217
Unsigned Addition 30, 208
userio 52

WCNT 28,218
Word Count 28, 218
word selector 88
Word Subscript 28, 219
,vorkspace

. adjusting 29, 93, 131

234

inspecting 58
workspace pointer 15

negative offsets from 16
WSUB 28, 219

Index

XDBLE 32, 220
XOR 31, 221
XWORD 32, 222

	Contents
	Preface
	1 The Transputer
	1.1 Background
	1.2 The occam Language
	1.3 Processes and Concurrency
	1.4 occam Instructions

	2 Transputer Hardware Description
	2.1 Introduction
	2.2 Registers
	2.3 The Workspace Pointer
	2.4 The Instruction Pointer
	2.5 The Operand Register
	2.6 Communications Links
	2.7 Communication Protocol
	2.8 Errors
	2.9 Time
	2.10 Reset, Analyse and Booting

	3 Instruction Set Overview
	3.1 Addressing and Memory Access
	3.1.1 Loading and Storing
	3.1.2 Byte Accesses
	3.1.3 Addressing Arithmetic

	3.2 Arithmetic and Logical
	3.2.1 Single Length Arithmetic
	3.2.2 Comparing
	3.2.3 Bit Operators
	3.2.4 Multiple Word Arithmetic
	3.2.5 Partword Arithmetic
	3.2.6 Floating-Point Support

	3.3 Branching and Program Control
	3.3.1 Branching
	3.3.2 Subroutine Calling

	3.4 Process Scheduling and Control
	3.4.1 Background
	3.4.2 Start Process and End Process
	3.4.3 Other Process Instructions
	3.4.4 Process Register Manipulation

	3.5 Inter-process Communication
	3.5.1 Channels
	3.5.2 Input and Output
	3.5.3 Alternatives
	3.5.4 ALT Structure
	3.5.5 ALT Instructions

	3.6 Miscellaneous
	3.6.1 Timers
	3.6.2 Flags

	4 Example Programs
	4.1 Introduction
	4.2 Introductory Examples
	4.3 Communication Examples
	4.3.1 Programs to Inspect Workspace Usage
	4.3.2 Pipeline Example
	4.3.3 Channel Switching

	4.4 Description and Examples Using the ALT Instructions
	4.4.1 Implementation of the ALT Instructions
	4.4.2 Example of an ALT-like Procedure

	4.5 An Example of Recursion Within a GUY Construct
	4.6 Idle Time Example
	4.7 Simple Loader
	4.8 Conclusions

	5 Reference Section
	ADC n
	ADD
	AJW n
	ALT
	ALTEND
	ALTWT
	AND
	BCNT
	BSUB
	CALL n
	CCNT1
	CFLERR
	CJ n
	CLRHALTERR
	CSNGL
	CSUB0
	CWORD
	DIFF
	DISC
	DISS
	DIST
	DIV
	ENBC
	ENBS
	ENBT
	ENDP
	EQC n
	FMUL
	GAJW
	GCALL
	GT
	IN
	J n
	LADD
	LB
	LDC n
	LDIFF
	LDINF
	LDIV
	LDL n
	LDLP n
	LDNL n
	LDNLP n
	LDPI
	LDPRI
	LDTIMER
	LEND
	LMUL
	LSHL
	LSHR
	LSUB
	LSUM
	MINT
	MOVE
	MUL
	NFIX n
	NORM
	NOT
	OPR n
	OR
	OUT
	OUTBYTE
	OUTWORD
	PFIX n
	POSTNORMSN
	PROD
	REM
	RESETCH
	RET
	REV
	ROUNDSN
	RUNP
	SAVEH
	SAVEL
	SB
	SETERR
	SETHALTERR
	SHL
	SHR
	STARTP
	STHB
	STHF
	STL n
	STLB
	STLF
	STNL n
	STOPERR
	STOPP
	STTIMER
	SUB
	SUM
	TALT
	TALTWT
	TESTERR
	TESTHALTERR
	TESTPRANAL
	TIN
	UNPACKSN
	WCNT
	WSUB
	XDBLE
	XOR
	XWORD

	Appendices
	A Transputer Opcodes
	B Symbols
	C Workspace Usage
	D Instruction Cross-references

	Bibliography
	Index

