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Preface

This book is the guide to the instruction set of the transputer family. A transputer is a single VLSI device
with processor, memory and communication links for direct connection to other transputers. Transputers
are designed to allow parallel systems to be built from collections of processors operating concurrently and
communicating through links.

Although this book is the transputer instruction set definition and is intended to be a reference manual for
programmers it is not set out in the ‘traditional’ form. This has been done quite deliberately. A traditional
instruction set document contains brief descriptions of the individual instructions one by one — probably in
alphabetic order of mnemonics — along with tables detailing the addressing modes available and the effects
of the instruction on various flags, memory, registers etc. The more traditional form of document provides
all the information about the instruction set — but leaves the reader to find out how best to use it. This was
(perhaps) appropriate when the bulk of programming was being performed in assembly language. However
when writing this book the following assumptions have been made

1. Assembly language programming lacks security.

2. Concurrent assembly language programming is even harder than traditional as-
sembly language programming.

3. A language like occam provides a means for writing efficient concurrent programs
for transputers as well as permitting formal verification through proof techniques.

4. Current compiler techniques, along with a well designed language and instruction
set can provide high level language performance comparable to assembly lan-
guage. In fact compiled code can often have higher performance as a compiler
can automatically perform optimisations such as the use of constant tables, case
selection jump tables and re-ordering of expression evaluation — techniques for
all of these are included.

For these reasons this book introduces the transputer instruction set in terms of compiler writing. The intention
is that programs for transputers are compiled from high level languages — such as occam, C, Fortran,
Modula-2 etc. — into transputer code rather than being written at the assembly language level. Instructions
are introduced to explain the compilation of various aspects of a high level language. The compilation
of constructs of a high level language is given in terms of translations from occam code to sequences of
transputer instructions. Algorithms suitable for implementation in a compiler are given for various constructs
where careful choice of the compiled code can increase performance.

The high level programming language examples used in this book are in occam 2. Further details of this
language can be found in the occam 2 Reference Manual. Compilation strategies for other languages can
be developed by looking at the compilation of similar constructs in occam.
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This guide explains how high level programming language constructs can be translated into sequences of
transputer instructions. It is assumed that a compiler for a language other than occam will translate a program
into an occam like process, communicating with other processes only via occam channels. In this way, it is
possible to freely mix languages in a system. In particular, occam can be used as a system description and
configuration language, with other languages being used to write individual processes within the system.

The guide deals with various high level language constructs individually. Transputer instructions are intro-
duced as they are needed in the implementation of these constructs. The instructions are normally explained
when they are first introduced but in some cases this is delayed until a later section which is more appropriate.

Undefined values
In the definition of many instructions the values left in certain registers are said to be undefined. This should
be taken as meaning that those values are not defined by INMOS and that INMOS does not claim that future

transputers will behave in the same way as current transputers. No application should ever attempt to make
use of the value that the current transputer implementations happen to provide in such cases.

Program notation
The language occam is used in this book both as a ‘source language’ to represent program constructs and
program fragments to be compiled, and as a ‘meta-language’ to represent algorithms to produce compiled
code and other examples. These two uses of occam will be distinguished by the use of an italic font for
meta-language occam as in
x=a+b
and a teletype font for source language occam as in
x :=a+b
Inside source language occam an italic font is used for ‘meta-variables’. For example
PAR
P
Q

represents any two processes P and Q in a parallel construct.

The source language occam is the occam 2 language as defined in the occam 2 Reference Manual. The
meta-language occam is based on occam 2 with some restrictions removed and extensions added to enable
certain algorithms to be expressed more simply.
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2 Basic concepts

2.1 The transputer instruction set

The instruction set is designed for simple and efficient compilation. All instructions have the same format,
which is chosen to give a compact representation of the operations most frequently occurring in programs.
Instructions are independent of the processor word-length, which may be any number of bytes. (The same
instruction set could be used for a 16, 24 or 32 bit processor) .

Enhanced versions of transputers provide added features — such as full hardware support of floating point
arithmetic — so certain sections of this guide will be specific to transputers with those enhancements. This
will be noted where appropriate.

2.2 Occam processes

A process starts, performs a number of actions, and then either stops or terminates successfully. Each action
is either an assignment, an input or an output. An assignment sets the value of a variable, an input receives
a value from a channel, and an output sends a value to a channel. The variable set by an assignment should
not be accessible to any other process — the only method of transferring information from one process to
another should be by using a channel.

At any time between it starting and terminating successfully a process may be ready to communicate on one
or more of its channels. Each channel provides one way communication between two processes.

Communication is synchronised. If a channel is used for input in one process and output in another then
communication takes place when both processes are ready. The inputting and outputting processes then
proceed with the value output being copied from the outputting process to the inputting process.

Externally a process may be seen as being a ‘black box’ that, after starting, may or may not wish to commu-
nicate along one or more of its channels until it terminates successfully. A correctly functioning process will
normally communicate data with the processes connected to it to perform the task it is designed to achieve,
and then terminate successfully. However, a process can fail to communicate indefinitely. This failure of
communication can be due to internal deadlock (where all internal processes are waiting to communicate
with each other), internal livelock (where internal processes are only communicating with themselves and
will never communicate with the outside world) or due to the process ceasing to execute without terminating
successfully (in occam this is the STOP process) .

The internal state of a process is not visible to the outside world and all interactions with the process occur
via channel communication. This process model removes the problems associated with variable sharing.
Also if a process is re-implemented to have the same behaviour and channel interface it can be immediately
substituted in a system allowing for prototypes to be refined in stages into more efficient implementations.

23 Process scheduling

Each transputer executes an occam process. This process may itself consist of a number of concurrent
processes. Concurrent processing within a transputer is implemented by sharing the processor time between
the concurrent processes.

The processor executes one process at a time. The process being executed is called the current process,
and the set of processes which are ready for execution is called the active set.

The processor can execute a process at one of two priority levels — level 0 for urgent processes and level
1 for less urgent processes. The processor will execute a level 0 process in preference to a level 1 process
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if both are active, so that the level 1 process will be interrupted.

The current process is executed until it is unable to proceed because it is waiting to input or output, waiting
for the timer or it has been interrupted by a higher priority process. In addition time is shared between level
1 processes by timeslicing so that a level 1 process will suspend its execution after certain instructions if it
has been scheduled for more than a timeslice period. When the current process is unable to proceed, a new
current process is taken from the active set. An interrupted process is resumed as soon as all higher priority
processes become unable to proceed.

24 Inter-process communication

Communication between processes is achieved by the use of channels. Channels between processes in
the same transputer are implemented using memory locations, and channels between processes in different
transputers are implemented by point-to-point links. Each link between two transputers is used solely for
communication between those two transputers, and provides one occam channel in each direction.

A process can be written and compiled without knowledge of whether its channels are connected to other
processes on the same transputer, or on another transputer. The same instruction sequence is used in both
cases.

As in the occam model, communication takes place when both the inputting and outputting processes are
ready. Consequently, the process which first becomes ready must wait until the second one is also ready.
The first process is removed from the active set and its identity is stored in the channel. The processor starts
to execute the next process from the active set. When the second process becomes ready, the message is
transferred, and the waiting process is returned to the active set.
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The instruction set is independent of the processor wordlength. Programs which manipulate bytes, words and
truth values can be translated into an instruction sequence which behaves identically whatever the wordlength
of the processor executing it. This results from the design of the memory addressing instructions, the use of
single byte instructions, and the method of representing long operands as a sequence of prefix instructions.
Differences in behaviour will come from the different word size used for arithmetic, which may result in differing
overflow behaviour, and also from byte access to word arrays.

If compilers are written to produce code that does not explicitly use information about the wordlength, number
of bytes per word etc., then retargetting to a transputer of a different wordlength will be much simpler. It is
possible to generate code that will run on any current transputer, enabling networks of various transputers to
be used without prior knowledge of their wordlengths.

3.1 Addressing

A pointer is a single word of data which identifies a byte in memory.

3.1.1 Word address and byte selector

A pointer is divided into two parts, a word address and a byte selector. The byte selector occupies the least
significant bits of the word; the word address the most significant bits. The number of bits needed to represent
the byte selector depends on the wordlength. (For example, 1 bit for a 16 bit machine, 2 bits for 24 or 32 bit
machines, 4 bits for an 80 bit machine) . The pointer is treated as a signed value with pointer values starting
from the most negative integer and continuing, through zero, to the most positive integer. This enables the
standard comparison functions to be used on pointer values in the same way that they are used on numerical
values. Of course, if the number of bytes in a word is a power of two, the addresses are consecutive and
normal arithmetic can also be used on pointers.

memory words (wordlength is 32 bits)
(bytes)

X+7
X+6 —  bit |31 X+724|23 X+6 16]15 X+53I7 X+4 ol
X+5
X+4
X+3
X+2 — bit|31 X+324|23 X+2 16]15 X+13I7 X+00|
X+1
X+0

X is a word address
X+n is the byte n bytes past X

Figure 3.1 Bytes in memory and words
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Certain values are never used as pointers, and are used in the implementation of communication and schedul-
ing. These values correspond to the most negative pointer values.

In the following description, names are used to represent these and other values as follows

MostNeg the most negative value (the most significant bit is one, and all other bits
are zero)

MostPos the most positive value (the most significant bit is zero, and all other bits
are one)

NotProcess.p (= MostNeg) — used for communication and scheduling

3.2 Byte addressing

The transputer is totally ‘little-endian’ — i.e. less significant data is always held in lower addresses. This
applies to bits in bytes, bytes in words and words in memory. Hence, in a word of data, one byte is more
significant than another if its byte selector is the larger of the two. Figure 3.1 shows the ordering of bytes in
words and memory for a 32 bit transputer.
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Each instruction is one byte long, and is divided into two 4 bit parts. The four most significant bits of the byte
are a function code, and the four least significant bits are a data value.

The representation provides for sixteen functions, each with a data value ranging from 0 to 15.

4.1 Direct functions

Research has shown that computers spend most of the time executing instructions to load and store from a
small number of ‘local’ variables, add and compare with small constants, and jump to or call other parts of

the program.

Thirteen of the functions are used to encode the most important operations performed by any computer
executing a high level language. They include jumps, calls and the instructions used to access variables.

4.2 Prefix functions

Two more functions are used to allow the operand of any instruction to be extended in length.

pfix  prefix
nfix negative prefix

All instructions begin by loading the four data bits of the instruction into the least significant four bits of
the operand register which is then used as the operand of the instruction. All instructions except the prefix
instructions end by clearing the operand register, ready for the next instruction.

The pfix instruction loads its four data bits into the operand register, and then shifts the operand register up
four places. The nfix instruction is similar, except that it compliments the operand register before shifting
it up. Consequently, a sequence of one or more prefix instructions can be placed before any instruction to
extend its operand. Operands in the range —256 to 255 can be represented using one prefix instruction.

The prefix instructions have important consequences.

e Firstly, they simplify language compilation, by providing a completely uniform way
of allowing any instruction to take an operand of any size up to the processor
word-length.

e Secondly, they allow operands to be represented in a form independent of the
word-length of the processor.

4.3 Indirect function
opr operate

One function (opr) causes its operand to be interpreted as the operation code of the instruction to be executed.
This selects an operation to be performed on the values held in the evaluation stack. This allows up to 16
operations to be encoded in a single byte instruction. However, the prefix instructions can be used to extend
the operand of opr, just like any other instruction.
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To ensure that programs are represented as compactly as possible, the operations are encoded in such a
way that the most frequent instructions are represented without using a prefix instruction.

4.3.1 Notation

To aid clarity and brevity prefix sequences and the use of opr are not used in this guide. Each instruction is
represented by a mnemonic, and for direct functions an item of data, which stands for the appropriate prefix
sequence and function code. Also, where appropriate, an expression may be placed in a code sequence to
represent the code needed to evaluate that expression.

4.4 Generating prefix sequences

Generating a prefix sequence for an operand is extremely tedious — especially when the operand is negative.
Prefixing is intended to be performed by a compiler (or assembler) . Prefixing by hand is not advised!

Normally a value can be loaded into the operand register by a variety of different prefix sequences. Itis clearly
important to use the shortest possible sequence as this enhances both code compaction and execution speed
— each prefix takes a cycle to execute. The best method of optimising object code so as to minimise the
number of prefix instructions needed is shown below.

4.4.1 Prefixing a constant

The algorithm to generate a constant operand e for a function op can be quite simply described by the
following recursive function.

prefix (op, e) = IF
e< 16 ANDe > 0
op (e)
e> 16
prefix (pfix, e > 4); op (e A # F)
e<0
prefix (nfix, (BITNOT e) > 4); op (e A # F)

where op (e) is the byte with function code op and data value e and >> is a shift right.

4.4.2 Evaluating minimal symbol offsets

Several instructions have an operand which is the offset between the current value of Iptr and some other
part of the code. Generating the optimal prefix sequence for the operand to one of these instructions is more
complicated. This is because two, or more, instructions with offset operands can interlock so that the minimal
prefix sequences for each instruction is dependent on the prefixing sequences used for the others.
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For example consider the interlocking jumps below which can be prefixed in two distinct ways. The instructions
cj +16; j —257

can be coded as
pfix 1; ¢j 0; pfix 1, nfix 0; j 15

but this can be optimised to be
¢j 15; nfix 15;j 0

This is because when the two offsets are decreased by 1 their prefixing sequences take 1 byte less so that
the two interlocking jumps will still transfer control to the same instructions as before. This compaction of non-
optimal prefix sequences is difficult to perform and a better method is to slowly build up the prefix sequences
so that the optimal solution is achieved. The following algorithm will perform this.

1. Associate with each jump instruction or offset load an ‘estimate’ of the number of
bytes required to code it and initially set them all to 0.

2. Evaluate all jump and load offsets under the current assumptions of the size of
prefix sequences to the jumps and offset loads

3. For each jump or load offset set the number of bytes needed to the number in the
shortest sequence that will build up the current offset.

4. If any change was made to the number of bytes required then go back to 2 other-
wise the code has reached a stable state.

The stable state that is achieved will be the optimal state.

Steps 2 and 3 can be amalgamated so that the number of bytes required by each jump is updated as the
offset is calculated. This does mean that if an estimate is increased then some previously calculated offsets
may have been invalidated, but step 4 will force another loop to be performed when those offsets can be
corrected.

By initially setting the estimated size of offsets to zero all jumps whose destination is the next instruction are
optimised out.

Knowledge of the structure of code generated by the compiler will allow this process to be performed on
individual blocks of code rather than on the whole program. For example it will often be possible to optimise
the prefixing in the code for the sub-components of a programming language construct before the code for the
construct is optimised. When optimising the construct it will be known that the sub-components are already
optimal so they can be considered as an unshrinkable block of code.

This algorithm may not be efficient for long sections of code whose underlying structure is not known. If no
knowledge of the structure is available (e.g. in an assembler), all the code must be processed at once. In this
case a code shrinking algorithm where in step one the initial number of bytes is set to twice the number of
bytes per word is used. The prefix sequences will then shrink on each iteration of the loop. 1 or 2 iterations
will produce fairly good code although this method will never produce optimal code as it will not correctly
prefix the pathological example given above.
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Instruction representation




5 Sequential processes

A sequential process is executed using six registers, each one word long. The word length may be any
number of bytes.

5.1 Registers
The registers are

Iptr pointer to next instruction to be executed
Wptr contains pointer to current process workspace
Areg evaluation stack

Breg evaluation stack

Creg evaluation stack

Oreg operand register

The Wptr register is used as a base from which the local variables and channels of a process can be
addressed. The byte selector of the Wptr should always be 0.

5.1.1 Evaluation stack

Areg, Breg and Creg are organised as a three word stack. Instructions which load Areg first push Breg into
Creg and Areg into Breg. Instructions which store Areg pop Breg into Areg and Creg into Breg, leaving
Creg undefined. The effects of this are shown in figures 5.1 and 5.2.

Before After

push x onto stack
Areg = a Areg = x
Breg = b Breg = a
Creg = C Creg = b

Figure 5.1 Effect of pushing value onto register stack

Before After
a popped off stack
Areg = a Areg = b
Breg = b Breg = ¢
Creg = C Creg = undefined

Figure 5.2 Effect of popping value from register stack
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5.2 Local variables and constants
Idc load constant
Idl  load local variable
st store local variable
Idlp load pointer to local variable
rev reverse

The most common operations performed by a program are loading and storing one of a small number of
variables, and loading small literal values. The /dc instruction enables values between 0 and 15 to be loaded
into the stack using a single byte instruction.
The Idl, st/ and Idip instruction all access locations in word addressed memory relative to the workspace
pointer Wptr. The first 16 locations can be identified using a single byte instruction. A local variable held in
workspace location n can be pushed onto the stack by

Idl n
and its address can be pushed by

ldip n
The value of the variable can be set to a value popped from the stack by

stln

rev swaps the contents of Areg and Breg.

5.3 Expression evaluation

Expression evaluation is performed using the evaluation stack. The evaluation of operators with two operands
is performed by instructions which combine the values of Areg and Breg. The result is left in Areg, and Creg
is popped into Breg leaving Creg undefined.

Evaluation of expressions sometimes requires the use of temporary variables in the process workspace, but
the number of these can be minimised by careful choice of the evaluation order.

Let depth(e) be the number of stack locations needed for the evaluation of expression e, defined by

depth(constant) = 1
depth(variable) = 1
depth(function call) = ‘infinite’
depth(el ope2) = |IF
depth(e1) > depth(e2)
depth(e1)
depth(e1) < depth(e2)
depth(e2)
TRUE

depth(el) + 1

‘infinite’ should be taken as meaning greater than any finite depth. The code generation for a function call is
described in a following section.
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A constant expression C is compiled by
lde C

or by loading from a constant table as just described. A local simple variable expression x is compiled by
Idl x

Compilation methods for non-local variables, array elements and function calls are given in later sections.

Let commutes(op) be true if op commutes and false otherwise. Let e1 and e2 be expressions. The evaluation
of e1 op e2 is performed by

IF
depth(e2) > depth(el)
IF

depth(el) > 2
(e2; stl temp; e1, Idl temp; op)
commutes(op)
(e2; e1; op)
TRUE
(e2; el; rev; op)
depth(e2) < 3
(el; e2; op)
TRUE
(e2; stl temp; e1; Idl temp; op)

where (I1; 12; ... ; In) represents a sequence of instructions.

In the cases where a temporary variable temp is required in the evaluation of e7 op e2 to hold the value of
e2 then that variable can be used as a temporary variable in the evaluation of e2. Also a temporary variable
used in the evaluation of e2 and not used to hold the result of e2 during the evaluation of e1 op e2 can be
used in the evaluation of e7.

If it is known that all 3 registers on the register stack are available — i.e. there is not another evaluated
expression already there — and depth(e2) is 2 then the branch

e2; el; rev; op
can be optimised by using the code
el; e2;, op

removing the execution of the rev instruction.

5.3.1 Loading operands

All three registers of the evaluation stack are used to hold the operands of certain instructions, and the first
three parameters of procedure calls. Evaluation of an operand or parameter may involve the use of more
than one register. Care is needed when evaluating such operands to ensure that the first operand to be
loaded is not pushed off the bottom of the register stack by the evaluation of later operands.

Three registers are available for loading the first operand, two registers for the second and one for the third.
Consequently, the instructions are designed so that Creg holds the operand which — on average — is the
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Registers Temp
required
C B A b a
<2 1 1
1 2
1 >2
2 1
2 2 *
2 >2 *
>2 1
>2 2 *
>2 >2 *
>2 1 1
1 2
17 >2 *
2 1
2 2
2 >2
>2 1 x
>2 2 o«
>2 >2 x %

Load
seq

NSNS NN A NN WWWW=_ AN

Instructions

ua0>m

@ >

; rev
,rev B; rev

C;
C;
C;

> >

y

A;

A;stla; C; B; ldla
A;stla; C; B; Idl a
B; C;rev, A

A; stla; B; C; rev; ldl a
A;stla; B; C; rev; Ildl a
C,; B;
C; A;
A; stl
C,; B;
A;stla; C; B; Idl a

A; stla; C; B; Idl a

B; stl b; C; Idl b; A

B; stl b; C; A; Idl b; rev

A

B; rev
a; C;B;ldl a
A

A; stl a; B; stl b; C;Idl b; Idl a

Table 5.1 Register loading sequences

most complex, and Areg the operand which is the least complex.

In some cases, it is necessary to evaluate the Areg and Breg operands in advance, and to store the results in
temporary variables. This can sometimes be avoided using the reverse instruction. The following sequences
may be used to load the operands A, B and C into Areg, Breg and Creg.

1. C;B;A

2. C;A; B rev

3. B;C;rev; A

4. A; C; rev; B; rev

The choice of loading sequence, and of which operands should be evaluated in advance is determined by
the number of registers required to evaluate each of the operands. In particular, if C requires more than two
registers it must be loaded before A and B. If A or B requires more than two registers it must be evaluated
before C and may need to be stored in a temporary variable if C requires more than two registers.

Table 5.1 gives the instruction sequences needed for loading three operands into the operand stack.



5 Sequential processes 15

5.3.2 Single length signed arithmetic
Single length arithmetic with error (overflow) checking is provided by the operations
add addition
sub subtraction
mul  multiplication
div  division
rem remainder
Of these, add and mul are commutative.
The instruction sequence
Idl X; Idl Y; op
where op is one of the arithmetic operations, evaluates the expression
XopY

i.e. it takes the value in Breg as the lefthand operand and the value in Areg as the righthand operand.

5.3.3 Adding a constant
The instruction
adc add constant

allows a constant value c to be added to Areg by adc c. Overflow is checked.

53.4 Single length modulo arithmetic

Single length arithmetic (with carry and overflow ignored) is provided by
sum  addition
diff  subtraction
prod multiplication

Of these, sum and prod are commutative. However, the time taken for prod is proportional to the logarithm of
its second (Areg) operand, so if cis a small positive constant, performance can be improved by implementing
both (c x e) and (e x c¢) as

e; ¢; prod
This is particularly important when multiplication forms part of a subscript expression, as described below.

prod has been modified on the IMS T800 to give a similar fast multiplication if Areg is a small negative value.
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5.3.5 Unary minus
The expression (—e) can be evaluated with overflow checked by
e; not; adc 1
or
Idc 0; e; sub
The first, using not, has the advantage of not needing an extra register.
The expression can be evaluated without overflow checking by

Idc 0; e; diff

5.3.6 Fractional arithmetic

Many applications, such as scientific function evaluation, currently use fixed point arithmetic. To enable this to
be performed efficiently on transputers the fractional multiply instruction has been added to 32 bit transputers
—i.e. the IMS T414, IMS T800 and their derivatives.

fmul  fractional multiply

fmul is a commutative arithmetic operator that interprets Areg and Breg as fixed point numbers lying in
the range —1 < x < 1. The value associated with the register is 2-3' times its signed integer value. fmul
returns the rounded fixed point product of these values in Areg and pops Creg up into Breg. The rounding
is performed in Round-to-Nearest mode as in ANSI/IEEE 754-1985 arithmetic.

Attempting (—1) x¢ac (—1) sets the error flag as +1 cannot be represented in this format — this is the only
case in which fmul can overflow.

5.3.7 Logic and shifts
Bitwise operations and shifts are provided by

and Dbitwise and

or bitwise or

xor  bitwise exclusive or
not  bitwise not

shl  shift left

shr  shift right

Of these, and, or and xor are commutative. The not operation has only one operand.

The shift operations shift the operand in Breg by the number of bits specified in Areg. Vacated bit positions
are filled with zero bits. The result is the initial value of Breg if Areg is zero. The instruction takes time
proportional to the value of Areg to execute taking one cycle for every bit shifted plus a small initial overhead.
The worst case can cause a transputer to ‘lock’ for 3 to 4 minutes. Areg can be checked to signal an error on
out of range shifts using the csub0 operation which is described later. The comparison instructions described
later can also be used to ‘short circuit’ these out of range shifts so that a 0 is returned when the shift length
is greater than the number of bits in a word without the actual shift instruction being executed.



5 Sequential processes 17

5.4 Arrays and subscripts

The addressing instructions provide access to items in data structures using short sequences of single byte
instructions. They also allow the representation of data structure access to be independent of the wordlength
of the processor.

bent  byte count
went - word count

The bent instruction multiplies Areg by the number of bytes in a word. It is particularly used for producing
the length in bytes of a multiword data item. The went instruction enables an address to be decomposed into
its component word part and byte selector. went takes an address in Areg and returns the word offset from
0 in Areg and the byte selector in Breg.

5.4.1 Forming addresses

ldpi  load pointer to instruction
mint  load most negative integer
bsub  byte subscript

wsub word subscript

The address of a data structure held in the local workspace is loaded using the Idip instruction that has
already been introduced.

The address of a location in the program can be obtained by the /dpi operation so that relocatable code can
be generated. A location which is x bytes from the byte location of the next instruction can be pushed onto
the stack by

Idc x; Idpi

The address of a label L: can be loaded by

Idc (L—M); Idpi
M:

The most negative address can be pushed onto the stack by mint. This is particularly useful for forming the
address of a communication link.

Both the bsub and wsub instructions interpret Areg as the address of the beginning of a data structure. The
result of bsub is the address of the byte which is Breg bytes from the beginning of the structure. Similarly,
the result of wsub is the address of the byte which is Breg words from the beginning of the structure.

5.4.2 Structures

The ‘local’ operations /dl, st/ and Idlp access word addresses relative to Wptr. This is useful for accessing
local scalar variables. For accessing elements of structures a level of indirection is required.
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Non local variable access

An element in a structure is accessed by calculating the offset of the element from the base address of that
structure.

Idnl  load non local variable

stnl  store non local variable

Idnip load pointer to non local variable
These ‘non local’ operations operate in a similar way to their ‘local’ counterparts except that they access a
word address relative to Areg rather than Wptr. Areg must contain a valid word address, so its byte selector
must be 0 for the instruction to be defined.

The base address in Areg is popped off the stack. In the case of /dn/ and /dnip the result is pushed into
Areg replacing the original base address, while for stn/ Breg is also popped out of the stack and is stored.

Access to a component of a structure can be split into two sections. Firstly the address of the component
must be constructed, and then the transfer of data to or from that component must be performed.

Evaluating a subscript
Array subscripts can be evaluated efficiently using the prod instruction. If array A has been declared by
[S1]1 ... [Shn]INT A:
and an access is required to
Alei] ... [en]
then the code to evaluate the subscript is
Idc Sz, ey, prod; ez, add; Idc Ss3; prod; ... ; e,; add
As prod takes time proportional to the logarithm of the value in Areg the code is arranged so that the smaller
operand to the prod is in Areg. This will be the actual subscript for the first prod but will be the subscript range
for all the other times. All the array multiplications will be done in time proportional to the logarithm of the
subscript size — which usually will be fairly small. There is no need for the multiplication to check for overflow

as this should be checkable during compilation. Mechanisms for range checking the actual subscripts are
given later.

Accessing a word addressed structure

Let Wa be a structure which starts at a word address and in which all component types are measured in
words. Let e be a subscript expression. The address of component e of Wa is

e; Wa; wsub
or
Wa; ldnip e

if e is a constant expression.
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Accessing a byte addressed structure

Similarly, let Ba be a structure in which each component type is measured in bytes, and e a subscript
expression. Then the address of component e of Ba is

e; Ba; bsub

5.4.3 Transferring structure elements

Once the address of the structure element has been evaluated its length in bytes is required to enable it to
be transferred using one of the transfer instructions.

move move block
in input block
out output block
Let Xb be a variable or expression with length in bytes given by the value of the expression b. Then
length(Xb) = b
Let Xw be a variable or expression of length in words given by the value of the expression w. Then
length(Xw) = w; bent
If the value of w, and the target wordlength are both known to the compiler, then
length(Xw) = Idc (w x Bytesinword)

Assignment of structures is achieved with the block move instruction move. It moves Areg bytes of data
starting at address Creg to address Breg.

vi :=v2 = address(v2); address(v1), length(v1);, move
where address(v) is translated as described above. The two structures must not overlap — if they do, the
effect of the move instruction is not defined. In particular the move instruction can not be used to initialise

a region of memory by moving from one location to an adjacent location. move is undefined if the value in
Areg is negative.

Input is achieved by means of the input message instruction in. This transfers a communication of Areg
bytes from channel Breg to address Creg. For example

c?v = address(v); address(c); length(v); in

Output of a variable is performed by means of the output message instruction out. This transfers a commu-
nication of Areg bytes from address Creg to channel Breg. For example

¢! v = address(v);, address(c); length(v); out

Both the input and output ends of a communication should have the same value in Areg when executing the
in and out otherwise the effect of the communication is undefined.

On current transputers if different lengths are used then on an internal communication the amount of data
transferred will be determined by the second process to be ready — so that if this is out with the longer
length the message can corrupt the other process’ data by overwriting. If different lengths are used on an
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external communication then the process with the shorter message length will behave as if it has commu-
nicated successfully while the other process will still be waiting to finish its communication. If the length
of a communication is variable then some protocol by which the length is communicated before the actual
message is needed.

The effects of the communication instructions are undefined if the message length is negative or 0. Methods
for range and sign checking are given later.

Single word and byte transfer
The common cases of single word and byte transfer can be optimised.
Byte transfer

b load byte
sb store byte
outbyte output a single byte

Ib and sb load and store to the byte at the address in Areg. /b replaces the address in Areg with the byte
value stored at that address. sb stores the byte value in Breg at the address in Areg and pops Creg up into
Areg. outbyte communicates the single byte in Areg down channel Breg. outbyte uses location (Wptr+0)
as a temporary variable.

So if a and b are both single byte elements and e is a byte valued expression then compiled code for the
transfers are

b:=a = address(a); Ib; address(b); sb

b:=e = e address(b); sb
c?b = address(b); address(c); Idc 1, in
c'le = address(c); e; outbyte

Word transfer
outword output a single word

outword communicates the single word in Areg down channel Breg. outword uses location (Wptr+0) as a
temporary variable.

So if x and y are both single word elements and e is a word valued expression then compiled code for the
transfers are

x:=y = Idy;stlx

x:=e = e stlx

c?x = address(x); address(c); Idc 1; bent; in
cl!' e = address(c); e; outword

When the target wordlength is known, channel input can be optimised as

address(x); address(c); Idc bytesperword; in
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5.5 Assignment
Previous sections have detailed how single assignments to variables, array elements and arrays can be
compiled. The compilation of multiple assignments is more complex.
5.5.1 Multiple assignment
In occam the multiple assignment
Vi,..., Vo 1= Eq, ..., E,

is defined as being equivalent to

Ty temp, :
T, tempy,:
SEQ
PAR
tempy := E;
temp, := E,
PAR
Vi &= temp
V. = temp,

where the parallel separation rules of occam apply so that multiple assignments are restricted to those whose
‘expanded’ version is a valid occam program. Ty ... T, are type definitions of the appropriate types.

Because the final assignments are performed as if in a PAR construct they are guaranteed not to interfere —
i.e. one assignment cannot affect the destination of another — so that they can be compiled as a sequence
of assignments. Hence the multiple assignment can be compiled as

assign(tempy, E1); ... ; assign(temp,, E,);
assign(Vy, tempy); ... ; assign(V,, temp,)

where
assign(V, E)

represents the compiled code for
V := E

This can be optimised by re-ordering the two assignment sequences to enable registers to be used instead
of some of the temporary variables.
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5.6 Comparisons and conditional behaviour
Comparisons and conditional behaviour are provided by

eqc equal to constant

gt  greater
together with
J  jump

¢j conditional jump

5.6.1 Comparison
The eqc instruction loads Areg with a truth value — true if Areg is initially equal to the instruction operand,
false otherwise. Similarly, the gt instruction loads the A register with true if Breg > Areg, false otherwise.

true and false are represented by 1 and 0 respectively, and therefore can be loaded with single byte load
constant instructions.

It is also possible to represent true by a value other than 1. In particular, using
eqc X; not; adc 1

and
gt; not; adc 1

in place of eqc X and gt will permit —1 to be used to represent true.

5.6.2 Jump and conditional jump

The jump instruction, j, adds its operand to the address of the instruction immediately after it and puts the
result into Iptr, thus transferring execution to another part of the program. The conditional jump instruction,
¢j, performs a jump if the value in Areg is 0 but otherwise pops the value in Areg off the register stack and
continues with the next instruction. Consequently the ¢j instruction serves as ‘jump if false’.

The j instruction will deschedule the process if the current timeslice has been exceeded, ensuring that there
is an opportunity to deschedule once each time round a loop. Since a process can be descheduled by
timeslicing on an unconditional jump, j, it is important that no information is held in the register stack at
this point since if the process is descheduled the information will be corrupted by the next process that is
scheduled.

The ¢j instruction never deschedules the process. The sequence
Idc 0; ¢j L
can be used in place of
jL
if it is important that descheduling does not occur. This will cause the value 0 to have been pushed onto
the register stack when execution reaches L. This 0 value can be removed, if necessary, by making the first

instruction after L a diff which will restore Areg and Breg to the values they held before the jump — however
any value in Creg will have been lost.
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5.6.3 Fast evaluation of boolean expressions

The ¢j instruction can be used to provide ‘short circuit’ evaluation of boolean expressions. The following table
shows the correspondence between occam expressions and instructions. X and Y are expressions, and K
a constant expression.

TRUE = lIdc1
FALSE = IdcO
NOT X = (X
XORY = -(~(X);¢L ~(Y)L)
XANDY = XL Y L:
X=Y = X;Y; diff, eqc 0
X<>Y = =(X;Y; diff, eqc 0)
X=K = X;eqc K
X<>K = =(X; eqcK)
X>Y = X Y gt
X<Y = Y; X gt
X>=Y = =YX gt)
X<=Y = (XY gt

where
X)) = X
~(X) = (X eqc0)

5.6.4 Conditional transfer of control

The conditional expressions used in each conditional branch of an IF construct are translated as follows

E = EglL;
P P; j END;

where the label END: is at the end of the code for the IF construct.
The compilation of a WHILE loop is
WHILE E = L: E; ¢j END;
P P;jL
END:

Note that this loop includes an unconditional jump. The presence of this ensures that rescheduling can take
place should the loop continue for longer than a single time-slice.
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5.6.5 Optimisation of conditional transfer

The following laws should be applied to the compilation of conditional expressions before code is generated
to ensure that the jump is taken as early as possible.

-(XAND Y) = =(X) OR —(Y)
-(XORY) = —(X) AND —(Y)
(XORY),; gL = =(X);,cM;Y;¢L; M:
(XAND Y);cjL = X c¢L; Y, ¢L
X=Y; gL = X Y, diff;¢cj L
X=0,¢L = X cL

5.6.6 Compiling CASE statements

The CASE statement is a special form of conditional transfer where the transfer is determined by comparing
an expression to a number of constants.

When compiling the process

CASE x

the expression x is evaluated and stored in a local variable by
x; stl selector
Then each branch of the CASE statement

Ciy; ... s Cn
P

can be compiled by

Idl selector; Idc ¢y, diff; ¢j L;
Idl selector; Idc ¢y, diff; ¢j L;

Idl selector; eqc cn; ¢j M;
L: P;jEND;
M:

where the label END: is placed at the end of the CASE statement.

Optimised compilation of CASE

The compilation method given above will produce inefficient code for large CASE statements. To produce
more efficient code the following rules can be used.

First build up a set of pairs of selector values and processes, consisting of every selector value in the CASE
statement along with its associated process — the process part of each pair can be represented by the offset
to the start of the compiled code for that process. Then the following rules can be used.
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1. If there are 3 entries or less then use the same method as described above.

2. If there are 12 entries or less then use a binary search to limit the number of
comparisons required.

3. For more than 12 entries attempt to use a jump table. The offset of the start of
each selected process is placed in the table against each selector value. Entries
that do not match a selector in the CASE statement must contain the offset of an
error handler process. This jump table should be the largest table such that about
% of the entries are filled. This compilation strategy is then recursively called to
handle the two ends. The gcall and /dpi instructions, described later, can be used
to jump to the selected piece of code.

The choice of 3 or less processes, 12 or less processes and 3 filled table are the values used in current
INMOS occam compilers.

Consider compiling the CASE expression

CASE X
C1
P4

Cn
Pn

where, for brevity, it is assumed that all the case selectors are already in increasing order.

Three entries or less
This case is compiled as

IF
X=c4
P4

X= Cn
Pn

Four to twelve entries
This case is compiled as

IF
X<= Cy
IF
X<= Cg
. efc.
X> C%
... efc.
X> C3
... ete.
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Using a jump table
Assume that ¢, ... cn form a % filled jump table. Then the case is compiled as

IF
X< ¢
CASE X
Cq
P4

Ci—1
Pi_4
X>cm
. similar
TRUE
... jump table code

where jump table code is

X; Idc c;; diff; Idc jump_size; prod; Idc (jump_table—M); Idpi

M: bsub; gcall;
jump_table:
jcase. 0; jcase_1; ... ;jcase-k
ERROR: ... error code
Li: ... code for P;
Lm: ... code for Pn

The code at ERROR should be the same code as used at the end of a IF statement where all the conditionals
have been false. The wsub, Ildpi and gcall instructions are explained in later sections.

The code at jump_table consists of a sequence of jump instructions which transfer control to the relevant
branch Li ... Lm or to ERROR. The destination, case_x, of each of these jumps is Lj if ¢ is equal to (¢; +
x) and is ERROR otherwise.

All the jumps in the jump_table code are prefixed to be the same length (jump_size bytes) to enable them to
be accessed as a byte array.

5.7 Long arithmetic and shifts
5.7.1 Mulitiple length addition and subtraction
Signed addition and subtraction can be performed on values longer than a word using the instructions

ladd long add

Isub long subtract
Isum long sum

Idiff  long difference

The ladd and Isub instructions are used for the final step of a signed multiple length addition or subtraction.
The other steps can be performed using /sum and /diff. For all four instructions, there are two unsigned
single word operands held in Areg and Breg, and a carry (or borrow) operand held in the least significant bit
of Creg (Cregsp) -
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The /add instruction sets Areg to (Breg + Areg) + Cregs,. Arithmetic overflow is checked.
The Isub instruction sets Areg to (Breg — Areg) — Cregis,. Arithmetic overflow is checked.

The Isum instruction forms (Breg + Areg) + Creg, leaving the least significant word of the result in Areg
and the most significant (carry) bit in Breg.

Similarly, the /diff instruction forms (Breg — Areg) — Cregis, leaving the least significant word of the result
in Areg and the borrow bit in Breg.

Addition of two double length signed values with overflow checking can therefore be translated as follows

Idc 0;
Idl Xyo, Idl Yo, Isum; stl Z,o;
Idl Xyi; Idl Yi; ladd; stl Zy;

Subtraction of two double length values without overflow checking is translated as

ldc 0;
Idl Xy, Idl'Y o Idiff; stl Zi,;
Idl Xhi N Idl Yhi , /dlff, stl Zhi

with the final borrow left in Areg.

5.7.2 Muitiple length multiplication and division
The long multiplication and division instructions are

Imul  long multiply
Idiv  long divide

The Imul instruction multiplies two single word unsigned operands in Areg and Breg, and adds the single
word ‘carry’ operand in Creg to form a double length unsigned result. The most significant (carry) word of
the result is left in Breg, the least significant in Areg. No overflow is possible so the error flag is not affected
by this instruction. Multiplication of a single length unsigned value X by a double length unsigned value Y
can be performed by

Idc 0;
Idl X; 1dl Yo, Imul; stl Zyo;
Idl X; 1dl Y v;; Imul; st Zy;

which leaves the ‘carry’ in Areg.
Double length unsigned multiplication can be performed by

Ide 0;

Idl X0, Idl Yo, Imul; stl Zy

Idl Xio,; Idl 'Y i; Imul; rev; stl Z»
Idl Xpi; 1dl 'Y \o; Imul; stl Z4;

Idl X, 1dl Y, Imul; rev; stl Z3;
Idc 0; rev; Idl Z5; Isum; stl Z5;
Idl Z3; sum; stl Z3

This multiplies the two double length values X and Y to produce the quadruple length result Z. Signed
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multiplication can be derived from this by performing the relevant overflow checking tests on this quadruple
length result before storing the bottom two words.

The Idiv instruction divides the double length unsigned value held in Breg and Creg (most significant word
in Creg) by the single length unsigned value in Areg. The result is left in Areg with the remainder in Breg.
Overflow occurs if the result cannot be represented as an unsigned single word value and causes the error

flag to be set. Division of a double length value X by a single length value Y to produce a double length
result Z can be performed by

Ide 0;
Idl Xyi; Idl Y; Idiv; st Zyi;
ldl X0, Idl Y; Idiv; stl Z\,

which leaves the remainder in Areg.

5.7.3 Multiple length shifts
The long shift instructions are

Ishl  long shift left
Ishr long shift right

The Ishl and Ishr instructions both shift the double length value held in Breg and Creg (most significant word
in Creg) . Vacated bit positions are filled with zero bits. The number of bit positions shifted is the value of
Areg, the result is the unshifted value if Areg is zero, and is undefined if Areg is less than zero or greater
than the number of bits in a double length value. The value of Areg can be checked in advance by using the
csub0 instruction. The result is left in Areg and Breg (most significant word in Breg) .
A double length value X can be shifted Y places left by

Idl Xni; Idl X, Idl Y; Ishl; stl X, st X

Like the single length shifts, the shift length should be checked if there is a possibility that it is greater than
twice the wordlength, to prevent a transputer being ‘locked’ for a significant time by an ‘out of range’ shift.

A double length value X can be shifted Y places right with the shift length checked by the following code.
This will set the error flag if the shift length is not in the range 0 .. 2 x wordlength.

Idl Y; Idc (2 x wordlength + 1); csubO;

Idl Xyi; 1dl X\o; Idl Y; Ishl;
st/ Xlo; stl Xpi

Single length arithmetic shifts

A single length value X can be arithmetically shifted Y places right by
Idl X; xdble; Idl Y; Ishr; stl X

and by Y places left by
ldl X; xdble; Idl Y; Ishl; csngl; stl X

where xdble and csgnl are explained in a later section.
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Single length rotation
A single length value X can be rotated Y places right by

Idl X; Idc 0; Idl Y; Ishr; or; st| X
and by Y places left by

Idc 0; Idl X; Idl Y; Ishl; or; st X
If the rotate length is not guaranteed to lie in the range 0 < Y < wordlength then the length should be
masked with (wordlength — 1). This is because the Ishl or Ishr will lose the bits in the word being rotated.
wordlength can be evaluated by

Idc 8; bent

bent multiplies the value in Areg by the number of bytes per word.

The long shifts can also be used to perform extraction and insertion of bit fields, even where these cross
word boundaries in memory.

5.7.4 Normalising
norm normalise

The norm instruction normalises the unsigned double length value in Areg and Breg (most significant word
in Breg) . The double length value held in Areg and Breg is shifted left until the most significant bit of the
value is one. The shifted double length value remains in Areg and Breg. The number of bits shifted is left
in Creg. If the double length value is initially zero, Creg is set to twice the number of bits in a word.

5.8 Integer length conversion
Conversion between signed values of different lengths can be performed using

xword extend to word
cword check word
xdble extend to double
csngl  check single

5.8.1 Conversion between partword values and word values

The xword instruction sign extends a partword value to a single word value. The cword instruction checks
that a single word value can be represented by a partword value. A partword value is assumed to be of
any length between one bit and the number of bits in a word. It occupies the least significant bits in a word.
For both instructions, the length of the partword is specified by the bit pattern of the most negative integer
representable in the partword.

The two operands of the xword instruction are a partword in Breg and a length specified by Areg. A signed
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byte value can therefore be extended to a word value by
Idc #80; xword

Similarly, the two operands of the cword instruction are a single word value in Breg and a length specified in
Areg. The result, left in Areg, is the (unchanged) value of Breg and the error flag is set if the value cannot
be represented in the partword. A signed byte value can be checked by

Idc #80; cword
Two signed three bit values X and Y can be added and checked for overflow by

X; Idc #4; xword;
Y; Idc #4,; xword;
add; Idc #4; cword

5.8.2 Conversion between single word values and multiple word values

The xdble instruction sign extends the single length signed value in Areg into a double length signed value in
Areg and Breg (most significant word in Breg) . Conversely, csngl reduces the double length signed value
in Areg and Breg into a single length signed value in Areg. The error flag is set if the double length value
falls outside the range of values representable in a single word.

5.9 Replication
Replicators are implemented by using the loop end instruction.
lend loop end

A loop is controlled by two contiguous words in memory. The first contains the value of the control variable
and the second contains the unsigned number of iterations left to perform. The lend instruction interprets
Breg as a pointer to such a control block and Areg as the number of bytes from the start of the next instruction
to the start of the loop. The start of the loop normally will be before the /end instruction in memory so, to
avoid the need for an nfix instruction, this offset is measured in the opposite direction from other offsets.

lend will decrement the iteration count and, if the number of iterations remaining is greater than zero, increment
the control variable and subtract Areg from Iptr. If the number of iterations left after the decrement is less
than or equal to zero then execution passes to the next instruction. Note that, like the jump instruction, the
loop end instruction will cause rescheduling if the looping process has exceeded its timeslice , again ensuring
that there is an opportunity to timeslice each time round a loop. Because of this Creg should not be used to
hold information when /end is executed as, if the process is descheduled, the information will be lost.

As an example take the replicated SEQ construct. The compilation of the occam replicated SEQ is

SEQ / = start FOR count start; stl i; count; stl i+1;
P Idl i+1; ¢j END;
L: P; Idlp i; Idc (END-L); lend;
END:
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Where it is clear that count is not zero the following may be used

SEQ i/ = start FOR count start; stl i; count; stl i+1;
P L: P; Idip i; Idc (END-L); lend;
END:

The same basic instruction sequence is used to construct the loop in an occam replicated IF, ALT or PAR,
and to initialise arrays of channels.

The count of iterations to perform should be positive. When the number of iterations is the result of an
expression then it may be necessary to add some range checking to cause an error or ignore the loop if this
evaluates to a negative value. If the count is negative then the loop would execute once before the lend
instruction caused the loop to end. A negative count value should probably be treated as an error, though
this depends on the definition of loops in the language being compiled.

5.10 Procedures

The instructions

call call

gcall general call

aw  adjust workspace

gajw general adjust workspace
ret return

are used to implement procedures.

The ajw adjusts the value of the workspace pointer by the number of words in its operand value. Workspace
is claimed by using a negative value and released by using a positive value.

The call instruction adjusts the workspace pointer, allocating four new locations into which it stores the three
evaluation stack registers and the instruction pointer — this return address is left in Areg by the instruction.
The operand to the call is added to Iptr to produce the address of the procedure being called.

The ret instruction restores the Iptr and adjusts the workspace pointer to deallocate the four locations. A
procedure which requires more space will normally include adjust instructions to allocate and deallocate
space. When the ret instruction is executed any workspace claimed by the procedure should have been
released so that the Wptr has returned to the value it held at the start of the procedure. The ret instruction
does not affect the evaluation stack, and it is therefore possible to return up to three values to the calling
procedure.

The state of the workspace after the call instruction is as shown below

Saved values
Wptr+4 (= old Wptr)

Wptr+3 Creg
Wptr+2 Breg
Wptr+1 Areg

Wptr+0 Iptr
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5.10.1 Use of (Wptr+0)
The location (Wptr+0) is used as an extra ‘register’ by certain instructions. These are
outword, outbyte, postnormsn, and the instructions to implement ALT

Any procedure that uses one of these instructions must allocate an extra workspace slot for this use of Wptr+0
so that the return address is not overwritten. Workspace allocation is achieved by the ajw instruction.

5.10.2 Loading parameters

It is convenient to load the first three parameters of the procedure into the evaluation stack registers, and to
arrange the workspace of the calling procedure so that the additional parameters can be stored in locations
0, 1, ... of the workspace before the procedure is called. In this way, the called procedure will be entered
with its parameters stored in consecutive locations starting at workspace location 1. To enable the procedure
to access non local variables the parameters of a procedure should include a link to the environment in which
the procedure was declared.

5.10.3 The static chain
The scope rules of block structured languages can be implemented using a static chain. This involves
passing a single pointer as a parameter whenever a procedure is called. The ‘non local’ load, store and

pointer operations described in a previous section can then be used to access variables declared in an
enclosing block.

Variable access via the static chain

Access via the static chain is provided by the /dnl, stnl and Idnlp instructions. Let n be the lexical level of
the current procedure, and S; the offset of the lexical link at level i. Then access to a location x at level n—1
is provided by

Idl Sn; Idnl x  to load a variable
Idl Sy, Idnip x  to load a pointer to a variable
Idl Sn; stnl x  to store a variable

Similarly, access to a location y at level n—-2 is

ldl Sy, Idnl S,_4; Idnl y

etc.

Forming a static link

When a procedure P is called, the static link for the call of P must be computed. Let n be the lexical level
of the current procedure, and m the lexical level of P. If m = n+1 the new link is computed by (/dlp x) with x
chosen so that P can access all of its global variables, channels etc. Otherwise the new link is computed as
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the value of the link location at level m. With S; as above, this can be obtained by

IF
m = n+1
Idip x
m=n
Idl Sn
m=n-1
Idl Sy, Idnl S, _4
m=n-2
Idl Sy, ldnl Sy_+; Idnl S, _»

etc.
Passing the static link as a parameter

The static link for the called procedure, and the first two parameters are loaded into the evaluation stack,
using a loading sequence as described above. The remaining parameters are each evaluated and stored
in workspace locations starting from 0 before calling the procedure with a call instruction. In this way the
procedure will see the return address at workspace 0, the static link at workspace 1 and the parameters at
workspace 2 and onwards.

5.10.4 Other calling techniques

The gcall instruction enables any type of procedure call to be constructed as a sequence of instructions. Its
only effect is to exchange the Iptr and Areg registers. The entry point of the procedure to be called can
therefore be computed in the same way as an expression. If necessary, another gcall instruction can be used
later to return to the calling procedure if the return address, held in Areg, is saved on entry to the procedure.

It is possible to compile a procedure so that it can be called using either a call or a gcall instruction. Both the
call and gcall instructions leave the return instruction pointer in Areg. Consequently, if the first instruction
in the called procedure is (st/ 0), the return instruction pointer will be saved in the appropriate location in
the calling workspace. Of course, when using gcall in this way, it is necessary for the calling procedure to
first adjust its workspace pointer using (ajw —4), and then explicitly store the first three actual parameters in
workspace locations 1, 2 and 3, as this is not be done by gcall. The ret instruction can then be used in the
normal way. However, better ways of dealing with gcall are described below.

Efficiency will be improved if all procedures can assume they have been call-ed and methods similar to the
ones described below are used in cases where a gcall is necessary. Combinations of the call and gcall
instructions can be used to provide efficient implementation of procedure parameters, or for runtime linking
of separately compiled procedures.

Library linkage

Most high level languages have a library system associated with them. Programs are able to make use of
procedures from a library of standard procedures. To prevent the code size becoming too large the library
procedures are not put into the compiled code until it is linked. This involves extracting the relevant library
procedures from the libraries and ‘linking’ all the calls to those procedures in the compiled code to the correct
address. Initially it might seem that all the code needs to be scanned for these library calls so that the link
address can be instantiated but there is a simple mechanism making use of call and gcall to handle this.

Consider the compilation of a program which somewhere includes a call to the library procedure lib_proc_1.
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Each library call is compiled into a call to a ‘stub’ at the end of the program associated with that library call.
The first call to any library procedure will cause the compiler to create a stub for that procedure. A stub is
a sequence of bytes into which a short piece of code will be placed by the linker so sufficiently many bytes
need to be reserved for this. So between compilation and linkage the code might look like

call lib_proc_1_stub;

lib_proc_1_stub: — n bytes reserved,

When the program is linked the linker inserts the code
J offset_to_library_procedure_code

into the stub. Now the calls inside the program will transfer to this stub and then into the library procedure.
The j instruction makes the code relocatable. The process might be timesliced on the j instruction but, since
the call has already stored the register stack into workspace, this is not important. The parameter passing
of the original call has been undisturbed so that the return address still points back into the program (and
not to the stub) . However since the j instruction may be timesliced the value of Areg on entry to the library
procedure cannot be guaranteed to be the return address. This means that library routines called by this
mechanism cannot be written to be gcall-able. If this is required then a larger stub which explicitly adjusts
the workspace, gcalls the library routine and then returns to its call could be used.

In scheme described above 8 bytes should be reserved for each stub on a 32 bit transputer as the offset

could possibly have 32 significant bits needing 7 prefixes before the j. 4 bytes would be required on a 16 bit
transputer. The final linked code of the example above is

call lib_proc_1_stub;

lib_proc_1_stub: j offset_to_lib_proc_1;

Procedure parameters

If a procedure is passed as a parameter to another procedure then calling the procedure passed as a
parameter from inside the other procedure clearly needs a gcall instruction as the address cannot be compile
time evaluated. Although this gcall can be made to look like a call by the methods above there is a more
efficient way that uses a call to set up the parameters. Again this uses a call to a program stub. If the
procedure parameter has n parameters then call the stub as if the procedure had n+1 parameters where the
last parameter is the address of the procedure to be called. The stub then loads this n+1" parameter into
Areg and performs a gcall. This has the same effect as a normal call to the procedure.

5.10.5 Other workspace allocation techniques

The gajw instruction exchanges the Wptr and Areg registers, allowing workspaces to be allocated dynami-
cally, and allowing dynamic switching between existing workspaces.

If a process workspace holds a pointer to a new workspace, then
1dl Wnew; gajw; stl Wog

changes to the new workspace and stores a pointer to the old workspace. The old workspace can be restored
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by
ldl Woq, gajw

In addition, the old workspace can be accessed using
Idl W, ldnl x

Idl W°|d,' stnl x
Idl W°|d ; /dnlp X

5.1 Functions

An occam function is a process which does not communicate, assign to any free variables — i.e. variables
declared outside the process — and which returns a number of results on termination. The restriction against
communication and assignment to free variables is included to ensure that functions are side effect free.

Up to 3 results whose size is less than the word length of the transputer can be returned from a function in
the register stack — the ret instruction does not affect the registers. Further results, or results whose size

is larger than the wordlength, can be returned by passing into the function the addresses of places to store
these results as extra parameters.

The function
Ty, ... , Tm FUNCTION F (V4, ..., V)
local variable declarations
VALOF
P
RESULT Eq, ... , En

where, for simplicity, it is assumed that the first 3 results can be returned in registers, can be translated as

ajw —local_variables; P; assign(results,Es); ... ; assign(resultyn,Em)
Ej; E»; Eq; ajw local_variables; ret

where

assign(V,E)
is the code for the assignment

V := E
and resulty, ... , result, are the addresses of the result stores passed as extra parameters to the function.
One of the loading sequences described earlier may be required if the expressions returned in the registers
contain evaluations. Since the values returned by a multiple result function will be assigned to variables in

a multiple assignment which assigns in parallel it is always possible to evaluate the results in any order. In
this way cases where the results returned in the registers are not the first 3 results can be handled.
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5.11.1  Calling a function

A function call must first put the addresses of the result variables in the workspace, other than the first 3
returnable in registers, followed by the parameters and the static link before calling the function. As with
procedures the last three ‘parameters’ are placed in the register stack before the call instruction which
automatically stores them in the workspace. When the function returns, the results whose addresses were
passed will already have been stored so all that remains is to store the (up to) 3 results in the registers.

For example the function call
Vi, ..., Vm:=F(Ey, ... , Ep)
could be compiled by

E;;stlO; ... ; Ep, stl (n—3);

genaddr(V,); stl (n-2); ... ; genaddr(Vm); stl ((m+n)—6);
E»; E+; static_link; call F;

stl V4, stl Vo, stl V3

where genaddr(X) is the code needed to form the address of X. The compiler must have already allocated
sufficient workspace for the parameters that are stacked explicitly. For simplicity it has been assumed that
V4 ... V3 are all local variables whose value can be return in a register.

5.11.2 Single result functions
A function that returns a single result can be used in an expression as well as in an assignment.

A common form of function returns a single value contained in a word — the mechanism described above
will return this in Areg. When compiling expressions the depth of such a function call should be taken as
being infinite — i.e. deeper than any other form of expression. This is because the function call will always
lose any other information in the registers. By giving it infinite depth the expression compilation algorithm will
never call a function while another expression result is being held in a register.

5.12  Error handling

The transputer has an error flag that can be used to indicate the occurrence of an error in the execution of a
process.

The instructions used for error checking are

csub0  check subscript from 0

centt check count from 1

testerr  test error flag false and clear
stoperr stop on error

seterr  set error

5.12.1  Subscript checking

The csub0 instruction sets error if the unsigned value of Breg is greater than or equal to the unsigned value
of Areg. It can be used to check subscript operations. An expression E can be checked to set error if it is
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greater than or equal to S by
E; S; csub0
Also
E; mint; csub0
sets error if E is negative, and
E; Idc 1; csub0
sets the error flag if the boolean valued expression E is true.
If Ais an array of S words, and E an expression, then A[ E] can be translated into the range checked access
E; S; csub0; A; wsub
Note that the csub0 instruction traps both an overlarge subscript and a negative subscript, as when considered
as unsigned values all negative values are greater than any positive value.
5.12.2 Checking message lengths
The ccnt1 instruction is similar to csub0, but checks that the value in Breg is greater than 0, and less than or
equal to the value in Areg. It can be used to check that the count of an output or input instruction is greater
than zero, and less than the number of bytes in the message buffer. Also
E; Idc 1; cent1

sets the error flag if the boolean valued expression E is false.

5.12.3  Error checking sequential processes

The testerr instruction loads false into the evaluation stack if error is set, true otherwise. It also clears the
error flag. A sequence of instructions, S, can be checked by

testerr; S; testerr
A form of trap handling can then be implemented by

testerr; S; testerr; ¢j trap_handler

Preservation of error flag

The error flag is preserved when a priority 1 process is interrupted to enable a priority 0 process to proceed.
However, the error flag is not preserved when a process is descheduled in the normal way. Consequently
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the sequence S above should not contain any of the following instructions

J jump
lend loop end
in input message
out output message
outword output word
outbyte output byte
tin  timer input
altwt  alt wait
taltwt timer alt wait

STOP on error

The stoperr instruction deschedules the current process if error is set, providing graceful system degradation
when execution of a process gives rise to an error. In this way parts of a system will only come to a halt
when they become dependent on results from the process in which the error has occurred. A sequence of
instructions, S, can be checked in this way by

testerr; S, stoperr
stoperr does not affect the status of the error flag. Hence if the error flag is set then the process is descheduled
and the next process in the process queue will be started with the error flag set. Because of this the error

flag needs to be cleared before any error checked code to ensure that any detected error comes from that
code and not a previous process.

Causing an error condition

The seterr instruction sets the error flag unconditionally.

5.13 Additional instructions
Two new instructions have been added on the IMS T800 to manipulate data on the main integer stack

wsubdb form double word subscript
dup duplicate top of stack

To enhance access to double word quantities (REAL64s and INT64s) a double word subscript instruction
wsubdb has been added acting like wsub except that it indexes quantities 2 words long. Because when
dealing with a double word value both words need to be accessed individually, a dup instruction that duplicates
Areg in Breg has also been added. This can be used to duplicate an address.

In addition the prod instruction has been improved so that multiplying by a negative number in Areg takes
time proportional to the most significant bit set in the absolute value of Areg.
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All processes must have an area of memory reserved as their workspace — this holds the process’ local vari-
ables etc. The allocation of space to concurrent processes can often be performed by a compiler, eliminating
the overheads of dynamic storage allocation. However, the transputer instructions also allow fully dynamic
process initiation and termination.

6.1 Workspace

A process workspace consists of a vector of words in memory. It is used to hold the local variables and
temporary values manipulated by the process. The workspace is organised as a falling stack, with ‘end of
stack’ addressing; that is the local variables of a process are addressed as positive offsets from the workspace
pointer. Space is allocated and deallocated explicitly using the adjust instructions, and also by the procedure
call and return instructions.

6.1.1 Special workspace locations

Some of the locations with small negative offsets from Wptr are used for scheduling, communication and
timer input purposes. The only location which is ever likely to need to be explicitly set is location (Wptr—1),
which is used to hold the instruction pointer of the process while it is not being executed. The other locations
need to be explicitly read when analysing the state of a stopped program.

A small number of instructions — outword, outbyte, postnormsn and the instructions to implement ALT
constructs — make use of (Wptr+0) as an extra ‘register’. Processes which use these instructions must not
use (Wptr+0) as a local variable when executing these instructions. In particular care is needed to ensure
that the return address of a procedure call, which is stored at (Wptr+0) on entry to the procedure, is not lost.

Size of workspace

The amount of space that must be allocated in a workspace in addition to the space for the local variables
is as follows. The extra locations are immediately below the address held in the workspace pointer Wptr.
These locations are used by the scheduling mechanism to hold information about processes that are waiting
or descheduled.

process with no i/o 2 words
process with only unconditional i/o using in and out 3 words
process with only unconditional i/o using outbyte or outword 3 words + (Wptr+0)
process with alternative input 3 words + (Wptr+0)
process with timer input 5 words
process with alternative timer input 5 words + (Wptr+0)

A process cannot use the location (Wptr+0) as a local variable while performing an alternative input.

6.2 Process descriptors

In order to identify a process completely it is necessary to know both its workspace address (in which the
byte selector is always 0), and its priority (which is 0 or 1) . A process descriptor is the sum of the process
workspace address and the process priority. The process descriptor of the current process in a transputer is
held in the Wdesc register — Wptr is in fact Wdesc with the bottom (priority) bit masked out.

The process workspace address can be obtained from a process descriptor by forming the ‘bitwise and’ of
the process descriptor and —2, similarly, the priority of a process is obtained by forming the ‘bitwise and’ of
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the process descriptor and 1.

6.3 Scheduling and priority

The processor can execute processes at one of two priority levels, one level for urgent (priority 0) processes,
one for less urgent (priority 1) processes. A priority 0 process will always execute in preference to a priority
1 process if both are able to do so. If a priority O process becomes able to run whilst a priority 1 process
is executing the priority 1 process is temporarily stopped — ‘interrupted’ — and the priority 0 process is
executed. When there are no priority 0 processes able to run the interrupted process continues executing.

To minimise the time taken for an interrupting priority O process to start executing the following instructions
are interruptable.

move move message
input  input message
output output message
dist disable timer
taltwt  timer alt wait

tin timer input

The last three of these instructions are described in the sections on alternation and timer input.

When a low priority process is interrupted by a high priority process, certain of the processor registers are
written to the transputer's memory, freeing those registers for use by the high priority process. When there
are no more high priority processes to be executed these registers are restored and execution of the low
priority process recommences.

6.3.1 Clocks and timeslicing

The processor contains two clock registers, one for each priority. These registers start incrementing after the
processor has been reset or analysed only after a store timer — sttimer — instruction has been executed.

The high priority clock register increments every 1us and the low priority clock increments every 64us.

After every 1024 ticks of the high priority clock a timeslice period is said to have ended. When two timeslice
period ends have occurred while the same low priority process has been continuously executing, the processor
will attempt to deschedule the process. This will occur after the next j or lend instruction executed. When
this happens the process is descheduled and the next waiting process is scheduled.

High priority processes are never timesliced and will run until completion, or until they have to wait for a
communication.

6.3.2 Scheduling lists

The processor maintains two lists of processes which are ready to run, one for each priority level. Each ready
list contains the workspaces of processes which are ready to be executed, but are not the current process —
the active set. A process is started by adding it to the end of the appropriate list. When the current process
is descheduled it is placed at the end of the appropriate scheduling list and the new current process is taken
from the front of the list.
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6.3.3 Descheduling

When a process is descheduled its Iptr is stored in its workspace at location (Wptr—1) and the process is
added to the relevant scheduling list. Areg, Breg and Creg are not saved when a process is descheduled
because of timeslicing or waiting for a communication. This means that a process must not attempt to transfer
any information in the evaluation stack across instructions that can be timesliced or across any communication
instruction. If the process is descheduled other processes will corrupt the stack before it is rescheduled.

6.3.4 Interruption

When a high priority process becomes ready while a low priority process is executing the low priority process
is interrupted. The Iptr, Wptr, Areg, Breg and Creg are all stored in special locations at the bottom of the
memory map and the high priority process starts to execute. At the next point where there are no high priority
processes able to execute the saved values of the registers are reloaded and execution of the low priority
process continues. There can only ever be at most one interrupted process. Note that an interrupted process
is not placed onto the scheduling lists.

6.4 Initiation and termination
Initiation and termination of concurrent process can be performed by

startp  start process
endp end process

6.4.1  Starting a concurrent process

The startp instruction initiates a new concurrent process at the same priority as the current process. Breg
should contain the offset from the end of the current instruction to the first instruction of the new process.
Areg should be the address of a workspace for the new process — this must be a word address.

6.4.2 Terminating a concurrent process

The endp instruction terminates the current process. Areg should contain the workspace address of a specific
successor process which continues only after a number of concurrent processes have all terminated. Usually,
the workspace of the successor process is the same as the workspace of the process which started the other
concurrent processes.

The first word in the workspace of the successor process (Wptrs,.c+1) is used to hold a count of the number
of concurrent processes which have still to terminate before the successor process continues. The zeroeth
(Wptrsucc+0) word contains the Iptr at which the successor process will start to execute. This count word
must be initialised prior to initiation of the concurrent processes as should the word containing the successor
process Iptr.
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6.5 Compiling PAR

The occam process

PAR
P
Q
R

can therefore be translated as follows

L6:

Ide 3; stl 1;

Idc (L5—-L6); Idpi;

stl 0;

Idc (L1-L2); Idlp WP;
startp;

Idc (L3—L4); ldip WQ;

startp;

R; Idip 0; endp;

P; Idlp —WP; endp;
Q; Ildip —WQ); endp;

where WP is the offset from the workspace of R to that of P, and WQ is the offset from the workspace of R to
that of Q. There are only two startp instructions as the process that executes the PAR continues as process
R. In this way the PAR construct is treated as a process that spawns one, or more, concurrent ‘subprocesses’
and synchronises on termination.

6.6 Other scheduling instructions

runp

run process

stopp stop process

Idpri

load priority

The runp instruction starts a process. Areg should contain the process descriptor of an existing process —
i.e. should point to a workspace in which location —1 contains the value to be loaded into Iptr when the
process is scheduled. runp can be used to start a process at either priority level by setting or clearing the

bottom bit in the process descriptor in Areg.

The stopp instruction simply stops the current process saving the value of Iptr in the workspace. The process

is not put onto the scheduling lists so to restart it a runp instruction is needed.

The Idpri instruction loads the priority of the current process into the evaluation stack.

If | is a variable holding the address of the first instruction of a new process, and W holds the address of a
workspace for the process, then

Idl I; Idl W; stnl —1; Idl W; Idpri; or; runp

will start the process at the current priority.
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Similarily
Idl I; Idl W; stnl —1; Idl W; runp

will start the process at high priority.

6.7 PRI PAR

The PRI PAR construct allows two processes to be run concurrently with the first having priority 0 and the
second priority 1. This should only be used from low priority processes to prioritise certain subprocesses, as
otherwise a high priority process will split into two process with one being run at low priority. Compile time
checking should be used to ensure that any use of prioritisation is valid. In particular checking should be
performed to prevent PRI PARs being nested. It is often possible to ensure that prioritisation is used validly
by restricting the use of PRI PAR to the outermost level of a program.

The construct

PRI PAR
P
Q

runs processes P and Q concurrently with P at priority 0 and Q at priority 1. It should only be executed from
a priority 1 process. The following code will implement this

Idc 2; stl 1;
Idc (L3—L4); Idpi;
L4: stl0;
Ide (L1-L2); Idpi;
L2: Idip (WP—-1); stnl O;
ldlp WP; runp;
Q; Idip 0; endp;
L1:  P; ldip —WP; endp;
L3: Idlp 0; Idc 1; or; runp; stopp

The differences between this and the unprioritised PAR are that process P is started at high priority by
explicitly storing its instruction pointer in the workspace and then running it using a runp. In addition some
extra code appears at the end. This is because the priority of the process restarting at L3: is determined by
the process of the PRI PAR that terminated last. The code at L3: explicitly sets itself to low priority. The
runp instruction in effect starts a second version of the process at low priority and then the stopp removes
the first version which has unknown priority. When the runp is executed there is no instruction pointer in the
workspace but this is placed there by the stopp.

6.8 Channels and communication

A channel is used to allow two processes to synchronise and communicate. Channel synchronisation may
be implemented either by a word in memory (for communication within a transputer) or by a serial link (for
communication between transputers) .

All channels have an address associated with them. For link channels these are defined to be certain
reserved addresses. For channels handling communication between processes on the same transputer a
memory location must be allocated by the compiler.

The instructions used for communication are the same, regardless of whether the channel is implemented
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using a memory location or using a serial link; the channel address being used by the processor to determine
what action is performed. This allows a procedure to be compiled without knowledge of whether its parameter
channels are implemented by memory locations or by serial links.

6.8.1 Initialising channels
Before a memory location can be used as a channel, it must be initialised to the special value NotProcess.p.

This value can be obtained by the mint instruction. It is convenient to do this when a channel declaration is
executed. For example

CHAN OF PROTOCOL c : mint; stl ¢
[n]CHAN OF PROTOCOL c : Idc 0; stl i; Idc n; stl i+1;
L:  mint; Idl c; Idl i;
wsub; stnl 0;

Idlp i; Idc (END-L); lend;
END:

The input and output instructions use the memory location to provide synchronised communication between

two concurrent processes, as defined by occam. After each communication, the store location returns to its
initial value, NotProcess.p.

6.9 Time

Time is cyclic. There are two clock registers, one for each priority level, ClockReg, and ClockReg:. The
high priority clock ClockReg, increments every 1us. The low priority clock ClockReg; increments every
64us. Whenever ClockReg = MostPos, it is ‘incremented’ to MostNeg.

6.9.1 Past and future

For each priority level all times which are between (ClockReg PLUS 1) and (ClockReg PLUS MostPos) are

considered to be in the future and those which are between (ClockReg PLUS MostNeg) and ClockReg are
considered to be in the past.

The AFTER relation

Care is needed when operating on cyclic quantities such as time. The usual ‘greater than’ relation is replaced
by the relation AFTER which is defined by

(XAFTER y)= ((x — y) > 0)

and can be translated into
x; y, diff; Idc 0; gt

The usual transitive property does not hold for the after relation, that is:
(x AFTER y) A (y AFTER z) does not imply (x AFTER 2)

A consequence of this property of cyclic time is that a group of times are only unambiguous if they are all
contained within a half cycle.
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6.9.2 Reading the clock
Idtimer load timer

The current value of the processor clock can be read by executing a ‘load timer’ instruction /dtimer. This
reads the value of the high priority clock when executed in a high priority process and the low priority clock
when executed in a low priority process.

6.9.3 Timer input

A process can arrange to perform a ‘timer input’, in which case it will become ready to execute after a specified
time has been reached.

tin  timer input

The timer input instruction, tin, requires a time to be supplied in Areg. If this time is in the ‘past —
i.e. ClockReg AFTER Areg — then the instruction has no effect. If the time is in the ‘future’ — i.e.
Areg AFTER Clockreg or Areg = ClockReg — then the process is descheduled. When the specified time
is reached the process is scheduled again. The process may not start to execute immediately, as other
processes may already be waiting on the scheduling list. Consequently when the process starts to execute,
the value in the clock may be some time after the time specified in the timer input.

For example the following code sequence executed in a low priority process would cause the process to be
descheduled for (at least) one second by waiting for 1000000 + 64 (= 15625) ticks of the clock.

Idtimer; Idc 15625, sum; tin
Note that when dealing with time the unsigned modulo arithmetic operations sum, diff, must be used rather

than add and sub which would cause an arithmetic overflow when the value representing the time wrapped
round from MostPos to MostNeg.

6.10  Alternative input
The ALT construct in occam allows a process to make a choice over its future behaviour dependent on the

readiness of other concurrent processes to communicate with it. Several instructions are used to implement
this construct.

6.10.1 Components of an alternation

An alternation selects one of its component alternatives. Each component may have one of the following
forms where e is a boolean expression

skip guard e & SKIP
P
channel guard c? v e&c?v
P P

timer guard timer ? AFTER! e & timer ? AFTER t
P P
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An alternation is translated by translating each component alternative into a sequence of instructions to be
performed when one of its component alternatives is selected, and a sequence of instructions to select one
of the component alternatives.

6.10.2 Selection of alternatives

The selection of the alternative is performed by an alt start instruction, a sequence of enable instructions (one
for each alternative), an alt wait instruction, a sequence of disable instructions (one for each alternative) and
an alt end instruction. The sequence in which the alternatives are enabled is unimportant, but the sequence
in which they are disabled determines the priority of the alternatives. The first ready alternative to be disabled
is selected.

The instructions used to implement the alternative are

alt alt start
altwt  alt wait
altend alt end
talt timer alt start
taltwt  timer alt wait

Workspace pointer during selection

The workspace pointer of the process must not change between the execution of the alt start instruction and
the corresponding alt end instruction. The location (Wptr+0) has a special use, and is not preserved over
the disabling sequence (from the alt wait instruction to the alt end instruction) . In addition various locations
at small negative offsets from Wptr are used during the execution of an alternative.

Timer alternatives

An alternation which does not contain a timer alternative can be implemented using the alt and altwt instruc-
tions; one which contains timer alternatives must use the talt and taltwt instructions.

Each alternative guard is translated into an enable instruction and a corresponding disable instruction. The
enable and disable instructions are

enbs enable skip
diss disable skip
enbc enable channel
disc disable channel
enbt enable timer
dist  disable timer

An enable instruction expects the boolean component of the guard to be passed in Areg. The channel or
time component of the guard for an enable channel or enable timer instruction is passed in Breg. If the
boolean in Areg is true then that guard is ‘enabled’. The value of the boolean remains in Areg at the end of
the instruction.

For disable instructions Areg should contain an offset from the start of the instruction following the altend
to the start of the code for that branch of the alternative. The boolean component of the guard is passed
in Breg. The channel or time component of the guard for a disable channel or disable timer instruction is
passed in Creg. The instruction returns a boolean in Areg which is true only if that branch of the alternative
is the one to have been selected.
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6.10.3 Translation of alternatives

The translation of alternatives is as follows. Guards which do not have a boolean conjunct to them have
TRUE & added.

c?v TRUE & c? vV
P P

timer ? AFTER t TRUE & timer ? AFTER t
P P

Guards are enabled and disabled by the following sequences of instructions

enable disable
e & SKIP e; enbs e; L; diss
P
e&c?v ¢, e, enbc ¢, e; L; disc
P
e & timer ? AFTER t t e, enbt t; e; L; dist
P

where L is the offset between the alt end instruction and the start of the instruction sequence corresponding
to process P. The process P is translated as

e & SKIP = P;jEND
P

e&c?v = ¢?Vv,P,jEND
P

e & timer? AFTERt = P;jEND

P

where END labels the instruction following the alternative process.

6.10.4 Compiling an ALT statement
Using the enabling and disabling sequences given above, an ALT statement of the form
ALT

Go
Po

Gn
Pn

translates into
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alt;
enable(Gy); ... ; enable(Gn);
altwt;
disable(Gy); ... ; disable(Gn);
altend

END:

where talt and taltwt would need to be used if any of the guards G; was a timer guard.

6.10.5 Trapping degenerate alternatives

It is possible for all the guards of an alternative to fail due to all the boolean components being false. In
some circumstances this might need to be reported as an error. Each enable instruction terminates with the
value of its boolean expression in Areg. This can be used during the enabling sequence to detect whether
the boolean expressions in all the alternatives are false. For example

alt;
enable(Gy); stl F;
enable(G+); Idl F; or; stl F;

enable(G,); Idl F; or; Idc 1; ccntl;
altwt

Where the ccnt1 instruction will set the error flag if the disjunct of all the boolean components is false. This
uses the temporary local variable F to evaluate the disjunct. If it is known that none of the enabling sequences
can cause the process to be descheduled, and the evaluation of the two operands to the enable requires no
more than two registers, then the following sequence could be used

alt;
enable(Gy);
enable(G,); or;

enable(G,); or; Idc 1, ccntl;
altwt

6.10.6  Replicated ALT
ALT /=bFOR ¢
G
P

The enabling sequence for a replicated ALT involves using a loop round the enable guard instructions as
described earlier.

The disabling sequence for a replicated ALT is more complex as the value of the control variable i for the
branch selected must be passed into the execution of P. Each disable instruction terminates with Areg holding
true if the alternative was selected and false otherwise. This allows the disabling sequence for a replicated
alternative to record the selected value of the control variable. The disabling sequence for G is

disable(G); ¢j M; Idl i; stl selected_i; M:

where the process P will use selected.i as the constant /.
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This chapter explains how floating point arithmetic can be implemented efficiently on a transputer. Most of
the contents deal with the instruction set of the floating point unit on the IMS T800 floating point transputer.
Floating point arithmetic can be implemented efficiently in software on the IMS T414 and IMS T212. The last
section details some instructions on the IMS T414 designed to enhance floating point performance.

The ANSI/IEEE 754 floating point arithmetic standard

INMOS implementations of floating point arithmetic are designed to conform to the requirements of the
ANSV/IEEE 754-1985 floating point arithmetic standard. Familiarity with the general concepts of the IEEE
754 standard is helpful to understand some of the more detailed areas of the floating point unit — but it is by
no means essential. Copies of the IEEE 754 standard can be obtained from,

The Secretary,

IEEE Standards Board,
345 East 47th Street,
New York, NY 10017,
U.S.A.

7.1 Overview of the IMS T800

To enhance the performance of transputers on applications using floating point arithmetic, a floating point
transputer, the IMS T800, has been developed. This has an on chip floating point unit to handle the floating
point arithmetic. The floating point unit only affects compilation of floating point code. All the information
about programming high level language constructs given in earlier sections is still valid and explains how the
control and data structures can be programmed.

The transputer instruction set has been extended by adding secondary operations to perform the floating point
instructions. These instructions can be viewed as being executed by the main processor on the transputer.
In reality they are executed in the floating point unit which runs concurrently with the main processor. The
floating point unit adds a three deep floating point stack to complement the three deep integer stack of the
main processor. These floating point registers can contain either REAL32 or REAL64 values.

The addresses of floating point values are formed on the main processor stack, and values are transferred
between the addressed memory locations and the floating point unit stack under the control of the main
processor. As the main processor stack is only used to hold addresses of floating point values, the word
length of the main processor is independent of that of the floating point unit — consequently, it would be
possible to use the same floating point unit together with, for example, a 16 bit processor such as the IMS
T212 transputer.

711 Concurrent operation of the floating point unit

Although a floating point transputer can be treated as a single processor that performs both integer and
floating point arithmetic, some knowledge of the concurrency between these two processors is needed to
obtain the highest performance from the transputer.

A floating point transputer consists of two processors running concurrently. One is a standard processor
almost identical to a non floating point transputer such as the IMS T414. The other is a high performance
floating point processor. Points in an instruction stream where data needs to be transferred to or from the
floating point unit are called synchronisations. At synchronisations the first processor ready will wait until the
second is ready at which point the data transfer will take place and both will be able to proceed concurrently
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again. This can be modelled in occam as two parallel processes communicating via channels.

CHAN OF ANY to.fou, from.fou :
PAR
[memsize]INT memory :
INT Areg, Breg, Creg :
. ‘code’ for integer cpu

REAL FAreg, FBreg, FCreg :
. ‘code’ for floating point unit

To obtain the maximum performance from a floating point processor it is important to minimise the number
of times where the main cpu is waiting for the floating point unit to synchronise and vice versa. If possible
this time should be used for some useful purpose such as computing the address of the next variable to
be accessed. If code is generated carefully it is often possible to totally overlap the address generation of
variables - even in 2 or 3 dimensional arrays - with the previous calculation so that the speed of execution
is not hampered by the data structure access. Simple compile time mechanisms to aid this overlapping are
described later.

7.1.2 Floating point unit instructions

Instructions are provided to perform floating point arithmetic on the floating point unit. All these instructions
have names beginning with fo. These instructions allow floating point values to be transferred from memory
to the floating point unit and vice versa, and to manipulate values on the floating point unit evaluation stack.

Floating point unit microcode indirection
To economise on the microcode, certain floating point instructions are selected by a value held in Areg
foentry  floating point unit entry

foentry uses the value held in Areg as an entry point into the microcode ROM on the floating point unit. The
instructions that are listed in the floating point instruction list that follows as having length ‘seq’ are executed
by loading their instruction code into Areg then performing a fpentry. However, as this only really affects the
code generator in a compiler, in the next sections the use of foentry is omitted and those instructions will be
represented by their entry point mnemonic only. When allocating registers the need to use Areg to execute
certain instructions has to be taken into account. The names of the operations that use foentry start with fou
so the code represented by

founame

Idc fpuname; fpentry

7.2 Registers

In addition to the three deep stack of integer registers in the standard transputer — Areg, Breg and Creg
— the floating point unit contains another three deep stack — FAreg, FBreg and FCreg. Each floating point
register can hold either a REAL32 or a REAL64 and has an internal flag associated with it to signify the
length of the data it contains. The floating point stack behaves in a similar manner to the integer stack.
When a value is loaded in FAreg the values in FAreg and FBreg are pushed down into FBreg and FCreg
respectively. When a value is stored from FAreg FBreg is popped up into FAreg and FCreg into FBreg.
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Areg = a FAreg = fa (Wptr+5) : X
Breg = b FBreg = fb
Creg= ¢ FCreg = fc
ldip 5
Areg = Wptr+5 FAreg = fa
Breg = a FBreg = fb
Creg= b FCreg = fc
foldnisn
Areg = a FAreg = X
Breg = b FBreg = fa
Creg = undefined FCreg = fb

Figure 7.1 Stack use in floating point load
The REAL32 and REAL64 formats supported are the single and double precision formats as specified in the
IEEE 754 standard.
Two instructions are provided to directly manipulate the floating point stack.

fodup  duplicate top of floating point stack
forev  reverse top of floating point stack

fodup copies FAreg into FBreg and pushes the old value of FBreg into FCreg. fprev swaps FAreg and
FBreg.

7.3 Loading floating point values

foldnisn  load non local single length floating point number
foldnidb  load non local double length floating point number
foldnisni  load indexed single length floating point number
foldnldbi  load indexed double length floating point number

Floating point values are loaded from memory into the floating point stack by loading a pointer to the REAL32
or REAL64 into Areg then executing the foldnisn or fpoldnldb instruction respectively. The floating point
registers push down when a new value is loaded in the same way as on the main register stack. The main
stack is popped to remove the pointer Areg.

REALG64s are stored in memory in two words with the least significant word at the lower address. When
loading (or storing) a REAL64 the pointer placed in Areg points to the lower word of the two.

For example to load the contents of (Wptr+5) as a REAL32 value onto the floating point stack the code
sequence below is used.

Idip 5; foldnisn
The state of the two stacks during this sequence is shown in figure 7.1.

Accessing floating point vectors is done in a similar way to that used for integer vectors. To load the REAL64
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Areg = a FAreg = fa (Wptr+7) : x
Breg= b FBreg = fb (Wptr+8) : y
Creg= ¢ FCreg = fc
Idip 7
Areg = Wptr+7 FAreg = fa
Breg = a FBreg = fb
Creg= b FCreg = fc
fostnldb
Areg = a FAreg = fb (Wptr+7) : lower 32 bits of fa
Breg= b FBreg = fc (Wptr+8) : top 32 bits of fa
Creg = undefined FCreg = undefined

Figure 7.2 State of stacks in floating point store

Xle] the following sequence can be used
e; Idip X; wsubdb; fpldnldb

This example uses the wsubdb instruction that has been added to ease access to arrays of the double word
values — REAL64 and INT64.

To aid code compactness in array access, two indexed floating point loads are provided.

wsub; fpldnisn
wsubdb; fpldnldb

foldnisni
foldnldbi

7.4 Storing values

fostnisn  store single length floating point number non local
fostnldb  store double length floating point number non local

The address for storing values is created in the same way as for loading. The floating point store instructions
take the contents of FAreg and store it at the location pointed to by Areg. Both stacks are popped up to
remove the data that has just been used. The compiler is expected to ensure that single length data is stored
with a fostnisn and double length with a fpstnidb. The floating point unit makes no check on the correctness
of the length and the behaviour of mismatched stores is undefined — the compiler should prevent this from
happening.

The following code fragment stores the REAL64 value in FAreg to the word address (Wptr+7) — n.b. the
double word value will be stored in (Wptr+7) and (Wptr+8) .

Idip 7; fpstnidb
The state of the two stacks during this sequence is shown in figure 7.2.

Storing to arrays is the same as for loading except that there are no store indexed instructions. To store into
arrays the following code sequences are used.

e, Idlp X; wsub, fostnisn
e; ldip X; wsubdb; fpstnidb
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75 Expressions
7.5.1 Arithmetic operations

foadd floating point addition
fosub  floating point subtraction
fomul  floating point multiplication
fodiv  floating point division

Each of these operations evaluates FBreg op FAreg leaving the result in FAreg and popping FCreg up into
FBreg like the integer arithmetic operations.

Since the length of values is stored with the registers on the floating point stack there is no need for separate
single and double length arithmetic instructions. The arithmetic instructions all return the correct result as
defined by the IEEE 754 standard. The arithmetic instructions assume both operands are of the same format
— if not the result is undefined — and this should be taken care of by the type checking in a high level
language. By default all rounding carried out on the floating point unit is Round-to-Nearest.

The remainder and square root operations required by the IEEE standard are provided by code sequences
detailed later.

7.5.2 Floating point rounding mode

fourn  set round mode to Round-to-Nearest
fourz  set round mode to Round-to-Zero

fourp  set round mode to Round-to-Plus-Infinity
fourm  set round mode to Round-to-Minus-Infinity

In addition to the default Round-to-Nearest, the other three rounding modes in the IEEE standard are provided.

The floating point rounding mode is reset at the end of all other floating point instructions to Round-to-Nearest.
In this way other rounding modes must be explicitly set before each operation when required. If there is no
explicit selection of a rounding mode then the mode will be Round-to-Nearest. This mechanism avoids the
need to store the rounding mode of a process on timeslicing so that the process switching time is not affected.

To use any other rounding mode the rounding instruction should be immediately preceded by a set rounding
instruction. Round-to-Zero mode provides truncation rounding, while the Round-to-Plus-Infinity and Round-
to-Minus-Infinity modes have their use in interval arithmetic.

7.5.3 Compiling floating point expressions

Compilation of expressions to be evaluated on the floating point stack can be done in much the same way
as for integer expressions. The depth of stack needed to evaluate an expression is given by

depth(constant) = 1
depth(variable) = 1
depth(function call) = ‘infinite’
depth(el ope2) = |IF

depth(el) > depth(e2)
depth(e1)

depth(e1) < depth(e2)
depth(e2)

TRUE
depth(el) + 1
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An expression that is a variable X is evaluated by

X; foldnisn — for single length X
X; foldnldb — for double length X

An expression that is a constant C is best evaluated by the compiler storing the value of C in a constant
table Constants at position Constant then using the following code

ldip Constants; ldnip Constantc; foldnisn — for single length
Idip Constants; Idnip Constantc; foldnidb — for double length

An expression e1 op e2 is evaluated by

IF
depth(e2) > depth(et)
IF

depth(el) > 2
(e2; Idip temp; fostnl; e1; Idip temp; fpldnl; op)
commutes(op)
(e2; el; op)
TRUE
(e2; el, forev; op)
depth(e2) < 3
(et1; e2; op)
TRUE
(e2; Idlp temp; fpstnl; e1; Idip temp; fpldnl; op)

Where fpstnl and foldnl here stand for either the single or double length load or store instruction depending
on the type of the value being placed in a temporary variable.

When all three registers are known to be available and depth(e2) is 2 then the code
e2; el, fprev; op

can be optimised to
el; e2; op

When FAreg and FBreg need to be loaded with specific values — e.g. for a comparison — then code
sequences similar to those given in the section on loading integer operands can be used. The loads, stores
and reverses will need to be modified in a similar way to the modifications made to the expression compiler
above.

754 Remainder and square root

Remainder and square root are provided as code sequences. Both these operations take much longer than
other instructions to complete. In particular they take longer than the interrupt latency period of the IMS T414.
The mechanism of making certain instructions — e.g block move — on the transputer interruptable could not
easily be extended to these cases. Instead the solution has been to break the instruction up into a sequence
of component instructions each of which completes within the desired interrupt latency period.

These instructions are designed solely for the purposes of building the remainder and square root operations.
They have no other intended use and should not be used outside the following code sequences. The effect
of any other use is undefined and in the case of foremstep may fail to terminate. In particular they cannot
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be used to generate fast but less accurate results.

Square root

fousqrtfirst  first step of square root
fousqrtstep  intermediate step of square root
fousgrtlast  last step of square root

Unlike the other arithmetic operations there are different versions of square root for single and for double
length. If rounding other than Round-to-Nearest is required the rounding mode should be set immediately
before the fosqrtlast instruction. Each instruction sequence evaluates the square root of FAreg and leaves
the result in FAreg. FBreg and FCreg are used during the evaluation so their initial values are destroyed.
2 square root steps — fpusqrtstep — are need in a single length square root evaluation and 5 for double
length.

The code sequence for a single length square root in Round-to-Nearest mode is
fousqrtfirst; fousqrtstep, fousqrtstep, fousqrtiast
and for double length in Round-to-Zero mode

fousqrtfirst; fousqrtstep; fousqrtstep;, fousqristep; fousqrtstep; fousqrtstep; fourz; fousqrtiast

Remainder

foremfirst  first step of remainder
foremstep  loop step of remainder

The code to implement remainder is

foremfirst;

eqc 0;

¢j next;
loop: fpremstep;

¢j loop;
next:

This evaluates FBreg REM FAreg and leaves the result in FAreg. Remainder produces an exact result so
needs no rounding mode. It also makes use of all registers so that any value initially in FCreg will be lost.
As each remainder instruction pushes a boolean into Areg to control the looping with the ¢j, any values in
the integer stack must be assumed to be destroyed by the remainder sequence.

7.5.5 Floating point argument reduction

Most algorithms used to calculate standard functions — such as the trigonometric functions — are imple-
mented by range reducing the argument into a primary range in which there is a well behaved polynomial
approximation. The range reduction usually takes the form of taking the remainder of the argument by the
periodicity of the function. For example if the approximation for sine were defined over [—. 7] then the
following reasoning would allow sin x to be evaluated.

vn:Z.y:[-n.7].siny =sin(2n7 + y)
A3m:Z.r:[-m.7]l(x=m x 27)+rA(r=x REM 27)
= sinx = sin(x REM 2r)
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So an occam implementation of sine where SINEPRIM was a function that evaluated sines over [, 7] could
be

REAL32 FUNCTION SINE (VAL REAL32 X)
VAL REAL32 Two.Pi IS 6.283185307 (REAL32) :
REAL32 Reduced.X :
VALOF
Reduced.X := X REM Two.Pi
RESULT SINEPRIM (Reduced.X)

However in practice the value of 2 that would be used would not be exact. As m increased this error in 27
would be reflected in an increasingly large error in Reduced.X — i.e. the value used in the primary range
calculation would become inaccurate. Suppose in this example that the value mgeavs2 is used to derive Two.Pi
where

TREAL32 = T + ¢

Then when reducing the range of X obtain the value Reduced.X with

Reduced. X = X — m x Two.Pi
=X —m x 2 x TReAL32
=X-=-2m x (7 +¢)
=(X-2mx7m)—2m x ¢

So the Reduced.X calculated consists of the true reduced argument plus the error term — 2m x ¢. As m is
INT (5= X “) this error grows unacceptably large as X grows — for example at X = 100« the error will be 6 bits.
To get "around this problem an approxnmatlon to this error can be added back to the remainder by multiplying
an approximation of ¢ by INT( 2W) In effect this is using a value of = with twice as many significant bits as
the format provides.

This error correction is needed in all the standard functions so support for it is useful. When calculating a
remainder the quotient is also being developed so the remainder mstructnon returns the quotient in FBreg
under certain conditions. If X is very much larger than Y then INT( ) cannot be exactly represented in
the floating point format. Sufficient conditions for FBreg to contain the quo'uent after the remainder are that
(X.exp — Y.exp) is less than 20 for single length and 30 for double length values. If this is the case then a
fast and accurate range reduction of X into [-1Y. Y] can be implemented by

(load X); (load Y); (remainder instruction sequence); forev;
(load Y.error); fomul; foadd; (load Y); foremfirst

The fpremfirst at the end is required because after adding the error term the result may possibly lie just
outside the range [—— y.i $Y]. If Y has last bit accuracy then this can be corrected by taking the remainder
of this corrected remamder by Y. Since the erroneous result will be only just outside the required range then
the remainder will only execute the foremfirst instruction before jumping out of the sequence, hence only that
instruction is required. "
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7.5.6 Loading and multiplying by special values

foldzerosn load single length 0.0
foldzerodb load double length 0.0
foumulby2 multiply by 2.0
foudivby2 divide by 2.0
fouexpinc32  multiply by 232
fouexpdec32 divide by 2%

Loading constants into the floating point unit involves forming a pointer into a table of constants and transferring
the data from memory into the floating point register. Since 0.0 is a fairly common constant, two instructions
foldzerosn and foldzerodb are provided to load 0.0 immediately.

Also multiplication and division by 2.0 is fairly common. Two instructions foumulby2 and foudivby2 perform
this with correct handling of overflows and underflows according to the IEEE standard. These are considerably
faster than loading 2.0 and doing an fomul or fodiv as they operate directly on the exponent of the value in
FAreg.

Similarily multiplication and division by 232 are provided by fouexpinc32 and fouexpdec32 mainly for use in
the conversion routines. These also handle overflows and underflows according to the IEEE standard.

7.5.7 Sign bit manipulation
fouabs floating point absolute value

fouabs replaces FAreg with its absolute value. i.e. it makes the sign bit positive — n.b. the sign bit of
Not-a-Numbers may be changed even though they do not have a ‘numeric’ value and the |IEEE standard
does not define what the sign bit of a Not-a-Numbers signifies. fouabs will set the floating point error flag if
the value in FAreg is an infinity or a Not-a-Number.

7.5.8 Load and operate instructions

foldnladdsn load and add single length floating point number
foldnladddb load and add double length floating point number
foldnimulsn  load and multiply single length floating point number
foldnimuldb  load and multiply double length floating point number

To make the floating point code more compact some common pairs of instructions can be replaced with a
single instruction. These are the four instructions with the greatest effect on the size of code.

foldnladdsn = fpldnisn; foadd
foldnladddb =  fpldnidb, foadd
foldnimulsn = fpldnisn; fomul
foldnimuldb = fpldnidb; fomul

7.6 Comparisons
fogt floating point greater than
foeq floating point equality
foordered floating point orderability

Three instructions are provided as primitives for building comparison operations. All the multitude of compar-
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isions given in the IEEE standard can be constructed from these instructions. fpgt and foeq both perform
(FBreg comp FAreg). fpordered tests if FAreg and FBreg can be ordered in the IEEE sense where Not-a-
Numbers are considered to be noncomparable with any floating point number — including themselves.
fogt and foeq pop FAreg and FBreg off the floating point stack and set the floating point error flag if either
is a Not-a-Number or an infinity. foordered does not alter the floating point registers. All three operations
return their result as a boolean value in Areg.
7.6.1 Ordinary magnitude comparison
These are provided by using fogt and fpeq to generate the required comparisons. In this case Not-a-Numbers
and Infs are considered as normal floating point numbers with a maximum exponent. Comparison of finite
numbers with Not-a-Numbers here can cause unexpected results as in arithmetic the sign of Not-a-Numbers
has no meaning while here the sign is important.
7.6.2 IEEE magnitude comparison
The IEEE standard lays down that — in general — Not-a-Numbers are not comparable with anything. i.e. X
comp Y is always false if either X or Y is a Not-a-Number. These comparisons are somewhat safer than
magnitude comparison if there is the possibility of Not-a-Numbers being created in a program but has the
disadvantage that implications such as

-X<Y)=>X>Y

no longer hold.

The IEEE comparisons can be implemented using the following three primitives

Unordered

foordered; eqc 0

IEEE greater than

foordered; fpgt; and

IEEE equality

foordered; foeq; and

7.7 Class analysis

fonan test for Not-a-Number
fonotfinite  test for Not-a-Number or infinity

These two instructions are provided to allow a rudimentary check to be made on the class of the value held
in FAreg. Both return a boolean value in Areg and do not affect the floating point stack.

fonan tests to see if FAreg is a Not-a-Number and fpnotfinite tests to see if FAreg is not finite —i.e. is a
Not-a-Number or an infinity.
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7.8 Floating point error handling

The errors that can occur can be first split into two broad categories — floating point errors and non floating
point errors. Non floating point errors are the same types of error that occur on the IMS T414 — range
violation on array access, failure of all conditionals on an IF statement, checked integer arithmetic overflow,
etc. Floating point errors are due to a bad evaluation being performed in the floating point unit. Examples of
this are evaluations that overflow the real range, evaluations that have no meaning (e.g. 0/0) and division by
zero. The IEEE 754 standard is designed to be as robust as possible in that it will give as good a result as
possible in these cases by possibly using an ‘infinity’ or a ‘Not-a-Number’ as an error flag. With these methods
evaluation of an expression can continue with the effects of the bad sub-evaluation slowly spreading through
the terms. This way the IEEE standard enables a result to be returned in all cases. Evaluations in which
one of the errors has been ‘corrected’ must be signalled as the result will not be the infinitely precise resuit
correctly rounded. For example if X and Y are both finite and positive and X + Y overflows then (X + Y) — Y
will be an infinity rather than X as might be expected.

Non floating point errors are considered to be of a much greater severity than floating point errors. Floating
point errors are often due to ‘bad’ data being used in an evaluation. The non floating point errors are, in
general, caused by more than just bad data — an array index may be being incorrectly formed, all the
conditionals of an IF statement have failed or an incorrect assumption on the range of a variable has caused
an overflow. In addition, unlike the floating point standard, there is no provision for returning the ‘best’ result
possible under these circumstances. The cause of a floating point error is often only ‘bad’ input values to an
algorithm whereas a non floating point error is probably caused by a bug in the algorithm itself.

To cope with these two varieties of error there are two error flags on the IMS T800. There is the error flag
as on the IMS T414. This is set by all non floating point errors and the processor can be made to halt if it
becomes set. In addition there is an error flag on the floating point unit to show whether a floating point error
has occurred. This flag can be OR-ed into the main error flag if the user wants to treat floating point errors
at the same level as other errors — for instance in a safety critical control module.

7.8.1 Non floating point error handling

This is the same as on the IMS T414. All the errors that are flagged on the IMS T414 are also flagged on
the IMS T800.

7.8.2 Floating point error handling

The floating point error flag of IMS T800 can be used to partially implement the IEEE 754 exceptions. The
IEEE standard is not fully implemented for two main reasons. Firstly the amount of extra complexity needed
to implement exceptions fully — needing to have access to 5 additional flags etc — did not appear justified by
their usefulness. Secondly it is extremely difficult to embed the ideas of exceptions in a language. This applies
especially to a language like occam which benefits from precise algebraic semantics. Because of this it has
been decided to not implement IEEE exceptions in hardware. Instead the standard occam mechanism of
causing erroneous procedures to STOP are used. Software can be written to provide the full IEEE exception
flags although performance will be decreased.

The various floating point errors will now be dealt with individually.

Invalid operation

The IEEE standard defines arithmetic in terms of rounding infinitely precise results. Infinite arguments are
handled by taking the limit of the operation when the infinity is replaced by arbitrarily large values of the
correct sign. However under this scheme there are some operations that have no meaning. These are
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Not-a-Number Arithmetic Not-a-Numbers have no value — so arithmetic cannot be per-
formed on them

Infinity addition (+infinity) + (—infinity) has no meaning using limits
0 x infinity

bad division 0/0 and infinity/infinity have no meaning

bad remainder x REM y has no meaning if y is 0 or x is infinite

negative square root square root of a negative number has no meaning

The case of 0 x infinity is slightly different from the others as, using limits, the result 0 can be obtained.
However, since the 0 could be due to an underflow and the infinity due to an overflow, giving any ‘numeric’
result could be misleading so a ‘Not-a-Number’ is returned.

Not-a-Number Arithmetic

If only one argument is a Not-a-Number then it is returned as the result so that error messages are propagated
through expressions. If both arguments are Not-a-Numbers then to meet the IEEE standard one must be
returned — in the IMS T800 the choice has been made to return the Not-a-Number with the larger fractional
part.

All the other cases return a (different) Not-a-Number. In this way if the result of an operation is a Not-a-Number
it is possible to detect what type of error has occurred. This is more than is required by IEEE 754.

Division by zero

If a finite non-zero number is divided by zero then the error flag is set and a correctly signed infinity is
returned. The error flag is set even though infinity is the ‘correct’ answer due to the over-loading of infinity
that is described later. In many cases this error probably signifies some earlier underflow error.

Overflow

If, when the infinitely precise result is rounded keeping the exponent range unbounded, the value lies outside
the bounds of the floating point format then an overflow error has occurred. The IEEE 754 standard lays
down what result to return in these cases, either infinity or the largest finite number in the standard depending
on rounding mode, and the IMS T800 conforms to this. The error flag is set to signify that the result is not
the correctly rounded result but the best result available in the format.

Infinity

The previous two sections have described how infinities can be produced — either through division by zero
or by overflows. These two methods, however, do not produce the same actual result — in the case of
division by zero the answer is a true infinity while with overflow the infinity result is only signifying that the
true answer is finite but outside the range of the format. If arithmetic is done to infinite precision then these
two quantities behave in radically different ways. For this reason on the IMS T800 all arithmetic involving
an infinite argument will set the error flag. If a true infinity is being used as an argument then the error flag
probably ought to signal the presence of infinity. If an overflow infinity is being used then the error flag is set
to warn that the evaluation may differ substantially from that obtained from using infinitely precise arithmetic
throughout.
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Underflow and inexact

These are exceptions in the IEEE 754 standard but are not implemented in the IMS T800.

7.8.3 Error handling instructions

fochkerr  check floating point error
fotesterr  test and clear floating point error
fouseterr  set floating point error

fouclrerr  clear floating point error

The floating point error flag is the means by which the IMS T800 implements an error detection scheme
similar to the exceptions of the IEEE 754 standard. There are four operations that allow the floating point
error flag to be manipulated directly. fouseterr and fouclrerr directly set and clear the flag. fotesterr sets
Areg to true if the floating point error flag was clear and to false otherwise. fptesterr also clears the floating
point error flag. The final instruction, fochkerr, is intended to support checked arithmetic as it ORs the floating
point error flag into the main error flag. Using fochkerr, the presence of errors in floating point arithmetic can
be given equal importance to errors on the main processor caused by integer overflows or program faults
such as range violation.

In arithmetic the floating point error flag is set in circumstances in which the invalid operation, division by zero
or overflow exceptions would be flagged. In addition the flag is set if an input to a floating point operation is
infinite — this is due to the fact that since infinities are either true infinities or merely overflows a warning that
an infinity is being used seems helpful.

The earlier section on expressions described how the code to evaluate floating point expressions could be
constructed in almost the same way as for integer expressions. This made no reference to error checking.
If the language supports only totally unchecked or totally checked floating point arithmetic then this method
will still work and the next two paragraphs explain how to achieve this. If expressions are allowed to contain
both checked and unchecked arithmetic then a more complex mechanism is required which is detailed in a
later section.

7.8.4 Unchecked arithmetic

In the simplest scheme in which all floating point arithmetic is done without error checking — i.e. relying on
the IEEE representation to cope with ‘errors’ — the code to evaluate expressions will make no reference to
the floating point error flag. This way any errors that occur are only flagged in the floating point error flag
which has no effect on the execution of the program.

7.8.5 Checked arithmetic

The next scheme is fully checked with error checking performed for each assignment. In this scheme an
entire expression is evaluated before checking to see if an error has occurred in the evaluation. The code to
evaluate the expression exp in this way is

fouclrerr; exp, fochkerr

This clears the floating point error flag, evaluates the expression and then ORs the floating point error flag
into the main error flag. So, if there is a floating point error in the expression, the error flag is set afterwards.

Itis important that there is no possibility of the process being timesliced or descheduled during the evaluation
of exp as the value of the floating point error flag is not preserved over descheduling.
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It is not sufficient for error checking to check the result of an expression to see if it is an infinity or a Not-a-
Number to decide if an error has occurred. This is because it is possible to cause an overflow error producing
an infinity and then divide some finite number by that infinity which will produce a zero result. Instead the
floating point error flag must be used.

7.9 Type conversion

The floating point unit has facilities to enable conversions between the integer types and the floating point
types REAL32 and REAL64. Several instructions are provided to perform the component parts of the various
conversions. Each conversion can be constructed by using a suitable sequence of these components.

7.9.1 REAL to REAL conversions

four32tor64 convert from single length to double length
four64tor32 convert from double length to single length

The two instructions four32tor64 and four64tor32 convert the floating point value in FAreg from one floating
point format to the other. four32tor64 is an exact conversion involving no rounding. fpur64tor32 rounds
during the conversion so a set rounding mode operation must precede it if a rounding mode other than
Round-to-Nearest is required.

An infinity is represented in the IEEE standard by a floating point number with maximum exponent but zero
fraction. A Not-a-Number has a maximum exponent but a non-zero fraction. When converting from one format
to the other infinities are preserved. When a Not-a-Number is converted from REAL32 to REAL64 the old
fractional part is padded with zeros to the right. If a Not-a-Number is converted from REAL64 to REAL32
by truncating the fractional part could leave the fraction as zero — i.e. causing it to be infinity. So instead all
REALG64 Not-a-Numbers are converted into a special Not-a-Number — the Real64toReal32conversionNaN .
In this way a REAL64 Not-a-Number cannot become a REAL32 infinity by truncating its fraction.

7.9.2 REAL to INT conversions

foint round to ‘floating integer’
fostnli32  store ‘floating integer’ as integer
fouchki32 check in INT32 range

fouchki64 check in INT64 range

fortoi32 round and check to INT32 range

foint converts a floating point number to an integer value in the floating point format. This is the ‘Round
Floating-Point Number to Integer Value’ function specified by the IEEE standard. It takes the value in FAreg
and rounds it, according to the rounding mode, to an integer value. If a rounding mode other than Round-
to-Nearest is required for the conversion then this instruction should be preceded immediately by the mode
selection instruction. For example if FAreg contained 345.2317 then after

fourp; fpint
FAreg would contain 346.0.
fostnli32 truncates the value in FAreg to an integer value and stores the bottom 32 bits of that integer
representation into the address pointed to by Areg. The truncation is performed to allow the same instruction

to be used to store the two 32 bit halves of an INT64. Rounding to an integer must first be performed by
foint.
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fouchki32 and fpuchki64 check that the contents of FAreg (regardless of type) lie in the range of the relevant
integer type. This assumes that FAreg has already been rounded to an integer value by a preceding fpint
instruction. If the value lies outside the range then the floating point error flag is set. If a conversion is to be
error checked then this instruction should be followed by an fochkerr instruction — and possibly preceded by
fouclrerr to isolate any error to this instruction.

Code sequences for the conversions to integer from real are

REAL to INT32 Round-to-Nearest mode, error checked, storing the result in X
foint, fouclrerr; fouchki32; fochkerr; X; fostnli32

REAL to INT64 truncated (Round-to-Zero mode), unchecked, storing the result in Y
fourz; fpint; Y; fodup; dup; fostnli32; Idnip 1; fouexpdec32; fostnli32

To aid code compactness the most common REAL to INT32 case
foint; fouchki32

can be replaced with the single instruction

fortoi32

7.9.3 INT to REAL conversions

foi32tor32  load INT32 as single length floating point number

foi32tor64  load INT32 as double length floating point number

fob32tor64  load unsigned 32 bit integer as double length floating point number
founoround  convert from double length to single length without rounding

fpi32tor32 takes the INT32 value from the address contained in Areg and rounds this to a single length
floating point number of the same value in FAreg. This should be preceded by a round mode selection
instruction if a rounding mode other than Round-to-Nearest is required.

foi32tor64 takes the INT32 value from the address contained in Areg and converts this to a double length
floating point number of the same value in FAreg. This is an exact conversion.

fob32tor64 takes the unsigned 32 bit value from the address contained in Areg and converts this to a double
length floating point number of the same value in FAreg. This is an exact conversion. It is used to load the
bottom word of an INT64 during its conversion to a floating point representation.

founoround does a REAL64 to REAL32 conversion which does not round the mantissa. This instruction only
works for normal numbers and zeros. It is used to remove the introduction of double rounding errors when
INT64s are converted into REAL32s. This instruction is not intended for use outside these code sequences.

The various conversions can be provided by the following code sequences. Each sequence should be
preceded by code to load the address of the value to be converted into Areg and followed by code to store
the converted value into its destination if necessary. Where necessary the rounding mode for the conversion
can be set.

INT32 to REAL32 in Round-to-Zero mode

fourz; fpi32tor32
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INT32 to REAL64 in Round-to-Nearest mode
fpi32tor64
INT64 to REAL64 in Round-to-Nearest mode
dup; fob32tor64, Idnlp 1, fpi32tor64, fouexpinc32; foadd
INT64 to REAL32 in Round-to-Minus-Infinity mode
dup; fob32tor64, founoround; Idnip 1, fpi32tor64, fpuexpinc32; founoround; fourm; fpadd

In the conversions from INT64 the round mode selection takes place immediately before the results from
converting the two halves of the INT64 are added together as the sub-conversions from integer to REAL
are exact.

7.10  Saving the floating point unit state

In the same manner that information must not be left on the main processor stack when a process may be
descheduled care must be taken with the floating point stack.

7.10.1 Timeslicing and descheduling

The floating point registers are not saved when a process is descheduled. This is the same as for the integer
registers. To take account of this a compiler must ensure that at points where descheduling may occur — j,
lend, channel communication, timer input or alternative wait — there is no information being stored on the
floating point stack. Any data that is needed later must be stored in temporary variables.

When a process is scheduled it can make no assumptions about the contents of the floating point registers. If
the floating point unit is to be used then data will need to be loaded into the floating point registers thus setting
the round mode to Round-to-Nearest. Hence the value of the rounding mode when a process is scheduled,
and by implication when a process is descheduled, is irrelevant.

The value held in the floating point error flag when one process is descheduled can, though, affect the next
process. For this reason all floating point error checking should be limited to portions of code that cannot
be descheduled. As floating point error checking can usually be performed over the evaluation of individual
expressions this should cause no limitations.

7.10.2 Interrupts

When a high priority process interrupts a low priority process the floating point unit state is copied into save
registers and retrieved when control is returned to the low priority process. These save registers are in the
floating point unit and the entire state can be pushed into them at the same time. Because of this the need to
save the floating point state increases the maximum interrupt latency only by a small amount. A high priority
process will only relinquish control when it terminates or needs to wait for a communication. The conditions
required to ensure correct behaviour of low priority processes are sufficient to ensure correct behaviour of
high priority processes.

Because of the concurrent operation of two processing units in the IMS T800 the exact description of what
happens on an interrupt is slightly more complex than for a non floating point transputer. When a high
priority process interrupts a low priority process each processing unit will be interrupted as soon as it ends
the instruction it was executing, or in the case of an interruptable instruction such as move it reaches the
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integer unit floating point unit time
o .. 0
fodiv — start division 2
fodiv fou busy calculating 4 INTERRUPT
fou busy finished 34
interrupted — start division 35
saving registers  fou busy calculating
fou busy finished 67
interrupted 68
push fpu state — push fpu state 69

Figure 7.3 Interrupting the floating point unit

next interrupt point. Then the integer processor can start to handle the interrupt even if the floating point unit
is still executing a floating point operation. The integer processor will save various registers into the register
save area and then synchronize with the floating point unit to copy its registers into the saved set. If the
low priority process was not using floating point arithmetic then the maximum interrupt latency will be almost
the same as for the IMS T414. If the low priority process was making use of the floating point unit then the
maximum interrupt latency will be slightly longer.

To demonstrate how interrupts are handled consider the program shown in figure 7.3. This is an example in
which the interrupt takes an unusually long time to be handled.

In this example the high priority process will not execute until around 70 cycles after the interrupt occurred
as two floating point divisions had to be completed on the fpu. In general interrupt response will be markedly
better than this.

The worst case interrupt latency for the IMS T800-20 is around 75 cycles (3.5us) when the floating point unit
is being used. In applications where the floating point unit is unused it remains at around 50 cycles (2.5us)
as for the IMS T414-20.

More information on the synchronisation between the main processor and the floating point unit is given in a
later chapter.

7.11  Floating point support for IMS T414

The following instructions are included to support single length (32 bit) IEEE 754 real arithmetic on 32 bit
transputers without a floating point unit. By moving some of the work that is performed in all floating point
operations into micro-code the performance of floating point arithmetic is almost doubled.

unpacksn unpack single length fp number

roundsn round single length fp number

postnormsn  post-normalise single length fp number
Idinf load single length infinity

cflerr check single length infinity or Not-a-Number

7.11.1  Unpacking a floating point number

unpacksn takes a packed |IEEE single length floating point number in Areg. It then returns the exponent in
Breg and the fractional field in Areg — this will not include the implied most significant bit for normalised
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numbers. In addition a value indicating the type of number is added to 4 times the initial value of Breg and
left in Creg. The values added are

0 if Areg is zero

1 if Areg is a denormalised or normalised number

2 if Areg is an infinity

3 if Areg is a Not-a-Number
The following sequence can be used to unpack the operands to X op Y

Idl op; Idl X; unpacksn; stl Xfrac; stl Xexp; Idl Y; unpacksn; stl Yfrac; stl Yexp

where the value left in Areg codes the operation and the types of the operands. This value can then be used
to access a table of addresses of the code sequences to evaluate each operation/operand type combination.
7.11.2  Packing a floating point number
roundsn and postnormsn along with norm can be used to normalise, round and pack the result of a floating
point operation. If an operation has been performed resulting in a sign bit in sign, an exponent in exp and an
unnormalised fraction in frac and guard then the following instruction sequence will pack the result into Areg.
Overflowing and denormalised results are handled correctly and rounding is performed in Round-to-Nearest
mode as defined in IEEE 754.

Idl exp; stl 0; Idl frac; Idl guard; norm; postnormsn, roundsn; Idl sign; or

Note that this makes use of (Wptr+0) .

7.11.3 Infinity and Not-a-Numbers
Idinf loads the single length floating point number +infinity onto the register stack.

cflerr sets the error flag if the value in Areg is an infinity or a Not-a-Number.

7.12 Implementing floating point arithmetic

INMOS has an implementation of real arithmetic that evaluates arithmetic results in compliance to the IEEE
754 floating point arithmetic standard. This compliance has been verified by formal proof techniques. Library
procedures to evaluate standard functions have also been implemented. These will be made available and
INMOS strongly recommends that implementors use these rather than writing their own versions as the effort
required to correctly implement such procedures is quite large.
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8.1 Two dimensional block move

Graphical applications often require the movement of 2 dimensional blocks of data to perform windowing,
overlaying etc. The IMS T800 contains instructions to perform efficient copying, overlaying and clipping of
graphics pictures based on byte sized pixels.

move2dinit initialise 2 dimensional block move
move2dall 2 dimensional block copy
move2dnonzero 2 dimensional block copy non zero bytes
move2dzero 2 dimensional block copy zero bytes

To perform a 2 dimensional move 6 parameters are required. These are

¢ The address of first element of the source of the copy.

o The address of first element of the destination of the copy.
e The width in bytes of each row to be copied.

¢ The length or number of rows to be copied.

¢ The stride of the source array.

e The stride of the destination array.

The stride of an array is the number of bytes in a row. The two stride values are needed to allow a block to
be copied from part of one array to another array where the arrays can be of differing size.

The move2dinit instruction sets up 3 of these parameters. It takes the source stride in Creg, the destination
stride in Breg and the /ength in Areg. This must be performed before every 2 dimensional block move.

Each of the 3 move instructions has the source address in Creg, the destination address in Breg and the
width in Areg.

moveZ2dall copies the whole of the block of length rows each of width bytes from the source to the destination.

move2dnonzero copies the non zero bytes in the block leaving the bytes in the destination corresponding to
the zero bytes in the source unchanged. This can be used to overlay a non rectangular picture onto another
picture.

move2adzero copies the zero bytes in the block leaving the bytes in the destination corresponding to the non
zero bytes in the source unchanged. This can be used to mask out a non rectangular shape from a picture.

None of the 2 dimensional moves has any affect if either the width or length of the block to copy is equal
to zero. They are all undefined if either the width or length is negative. Also a 2 dimensional block move
only makes sense if the source stride and destination stride are both greater or equal to the width of the
block being moved. The effect of the 2 dimensional moves is undefined if the source and destination blocks
overlap.
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8.1.1 Two dimensional block move on other transputers

The original move instruction can be used in a loop to perform 2 dimensional block moves on transputers
without these additional instructions. The following code sequence performs the move2dall function.

Idc 0; stl x; length; stl x+1;
Idl x+1,; ¢j end;
source; stl x+2; source.stride; stl x+3;
dest; stl x+4,; dest.stride; stl x+5;
width; st x+6;
L: Idl x+2; Idl x+4; Idl x+6; move;
Idl x+2; Idl x+3; sum; stl x+2;
Idl x+4; Idl x+5; sum; st x+4;
Idip x; Idc (END-L); lend;
END:

8.2 Bit manipulation and CRC evaluation

Instructions have been added to the IMS T800 to allow some of the low level bit manipulation required in
implementing communication protocols etc. to be performed efficiently.

bitcnt  count number of bits set in word

bitcnt counts the number of bits that are set in Areg and adds this onto an accumulating total held in Breg
returning the result in Areg. Creg is popped up into Breg. The use of a register to accumulate the total
number of bits set means that this instruction can be used in an inline sequence or a loop controlled by a
conditional jump to count bits set in an array of words efficiently. Note that a loop using /end cannot be used
as this has the potential of timeslicing. The instruction takes time proportional to the position of the most
significant bit set in the word. This instruction has applications in pattern matching and image recognition.

bitrevword  reverse bits in a word
bitrevnbits  reverse bottom n bits
creword perform cyclic redundancy check on a word
crcbyte perform cyclic redundancy check on a byte

bitrevword reverses the bit pattern of the word held in Areg. Breg and Creg are left unchanged. biirevnbits
reverses the bottom Areg bits in Breg, zeroing all more significant bits, leaving the result in Areg and popping
Creg up into Breg. Like the shift instructions this result is undefined if Areg is greater than the wordiength
and the instruction will take time proportional to Areg to execute.

These instructions are useful when interfacing the ‘little-endian’ transputer with other systems that are ‘big-
endian’.

creword and crcbyte are component instructions in the calculation of the cyclic redundancy check word for
a message. This method for checking the correctness of data that has been communicated is based on
polynomial division. Both instructions take the data to be processed in Areg — though for crcbyte it must be
in the most significant byte of the word. Breg contains the CRC that has already been generated and Creg
contains the generator. The CRC is calculated by iterating a loop for bitsperword or bitsperbyte iterations.
The CRC for one bit is performed by shifting Breg and Areg left one place as a double word quantity (most
significant word in Breg) then xor-ing Creg into the resulting Breg if the bit shifted out of Breg was set to 1.
At the end the new CRC word generated in Breg is left in Areg and the generator is left in Breg.
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8.2.1 Calculating the CRC of a message

The creword and crcbyte instructions are designed to be used sequentially in in-line code to enable efficient
generation of the CRC of a message.

If a message is word aligned then the CRC can be calculated by loading the generator and the first word of
the message onto the stack. Then each remaining word in turn is loaded and crcword applied to it.

The CRC generation can be coded into a loop using /end. Areg and Breg must be preserved over the lend
instruction in two locals as the process could be timesliced. The following code would evaluate the CRC of
a word aligned message mess of /len words.

Idc 0; stl i; Idl len; st i+1;
Idc generator; Idc 0; stl temp1; stl temp2;
L: IdI temp2; Idl i; Idl message; wsub; Idnl 0; Idl temp1; rev;
creword; stl temp1; stl temp2; Idip i; Idc (END-L); lend;
END:

If the message is not word aligned then more care is needed. crcbyte is used to handle any nonword aligned
bytes at either end of the message.

The overhead involved in handling the loop can be reduced by putting more than one creword in-line inside
the loop body.

Remember that the transputer is totally ‘little-endian’ in that more significant data is always to the left of less
significant data or at a more positive address. This applies to bits in bytes, bytes in words and words in
arrays.

Communications protocols and standard CRCs differ widely in the way they order data so that to calculate
the CRC of a message it will often be necessary to use the bitrevword and bitrevnbits instructions to handle
this. Care is needed to ensure that the CRC being calculated is the same as that required and that data is
communicated in the correct order. Many protocols make claims of being ‘little-endian’ or ‘big-endian’ but this
is not always totally correct — for example the CRC is sometimes in the opposite orientation to the data.

8.3 Resetting a channel

In the occam model of processes a channel is the means by which two processes synchronise and commu-
nicate. Once a process attempts to communicate on a channel it must wait until the process at the other
end is ready to participate in the communication. All channels are assumed to be totally reliable with no
possibility of data loss or corruption. This definition allows communication to be easily included inside a
programming language — there is no need to have buffering as all communication is synchronised and all
the low level message passing protocols are handled by the transputer hardware. More detailed information
on the implementation of channel communication in transputers is given later.

However, there may be situations where a less strict definition of communication is needed. A system with
several semi-autonomous units can be designed to tolerate the failure of one component. In the strict occam
definition, as soon as any unit needs to communicate with the failed unit it will also fail as its communication
will never take place and complete. Also, it may be useful to be able to cope with a temporary break in their
connection — for example when someone pulls out the wrong cable. In the strict occam model if a break
in communication occurred then at least one of the two processes at the ends of the channel would be left
waiting to finish the communication. This would probably cause the whole system to deadlock as more and
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more processes became dependent on the failed communication.
resetch reset channel

The resetch instruction allows a channel to be reset into its quiescent (non-communicating) state. Areg initially
contains the address of the channel to be reset. If the channel is a link channel then that link hardware is
reset. The channel process word is reset to NotProcess.p and its previous value is returned in Areg. From
the value returned in Areg the state of the channel when it was reset can be deduced — if it is NotProcess.p
then any communication on the channel had finished correctly, while if it is not then Areg contains the process
descriptor of the channel waiting to communicate. This process id can be used by a run instruction to restart
the process that is waiting on the reset channel.

WARNING:

resetch is a very low level instruction and must be used with great care. Whenever resetch is used the
processes that communicate along the channel that is reset must be designed in a way that copes with the
channel being reset. resetch should never be used as an ‘independent’ instruction but only as a component
of a higher level communication scheme. It should only be used where all other mechanisms — such as
timer ALTs, sacrificial buffer processes etc. — are insufficient.

INMOS technical note 1 — Extraordinary use of transputer links — gives details on mechanisms using resetch
that provide ‘communicate or fail' processes inside occam.

8.3.1 Differences in resetting soft channels and link channels

In the occam model soft and link channels are indistinguishable. This even holds at the transputer instruction
set level where the same instructions are used for communication on either type of channel. However, in the
unlikely event of a channel error there is a slight difference. Once both ends of a soft channel are ready to
communicate then that communication will occur and must complete as it is performed by copying a block
of memory. If both ends of a link channel are ready to communicate then the communication will commence
but if the link fails during the communication then at least one end of the communication will fail to complete.

Input with timeout

Suppose a process P acts as a data store for various other processes Q. |If there is a failure in the
communication between P and Q, then it would be unfortunate if this caused the whole system to stop.
For instance an operating system ought not to stop if one of the jobs it is running unexpectedly crashes
or if someone disconnects a terminal line. One solution to this is to provide a means for abandoning a
communication after a certain period of time has elapsed.

An ALT construct can be used to detect a communication that does not start in a certain time interval —
but, once a communication has been initiated, then the ALT would be committed to that communication and
this does not handle the situation where the break occurs during the transfer of the message. This problem
will not occur with an internal channel as once a communication has started it is guaranteed to finish. For
external link channels a failure in communication can occur during the transfer causing an ‘unclean’ failure
where at least one of the processes will not complete its communication.

If it is only necessary to insulate a process from the failure of another process then the use of a buffer process
is often sufficient as the communication between the process and buffer process will always fail ‘cleanly’.

If, however, it is also necessary to restart the communication — perhaps when the link connection has been
mended — then the ability to reset the channel is required. This can be performed by using resetch.
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SEQ
dubious.channel ? message
completed ! 0

Process 2

INT ANY :
ALT
TIME ? AFTER timeout
INT pid :
SEQ

IF
pid = NotProcess.p
SKIP
TRUE
run (pid)
completed ? ANY
ok := FALSE
completed ? ANY
ok := TRUE

Process 1 — this must start to execute first

resetch (dubious.channel, pid)

Figure 8.1 Code to timeout an input

Timing out an external channel

An input along a channel that will time out after a specific time can be implemented by running the two
processes shown in figure 8.1 in parallel to completion. The first process must be scheduled in front of the
second — i.e. it must start to execute first. The locally declared channel completed is used to synchronise

their completion

The two processes together attempt to communicate message along dubious.channel with the provision that
the communication is deemed to have failed if it has not completed before time timeout. ok returns a flag

stating whether or not the timeout occurred.

The sequence of events that happen when this is executed are

1. The first process of the PAR initiates the communication along dubious.channel.

2. The second process waits on the ALT until either the communication on dubi-
ous.channel has finished and the signal along completed is received or the timeout

occurs.

3. If the completed signal is received then the communication along dubious.channel

succeeded so ok is set to TRUE.

If the timeout occurs then the channel is reset.

consider.

(a) Between the timeout being selected and the channel being reset the com-
munication on dubious.channel has completed — here the resetch has
had no effect and the signal on completed needs to be received.

There are now two cases to
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(b) The communication on dubious.channel has still not finished. The pro-
cess id returned from resetch must be the id of the first process in the
PAR so by using the run instruction the input can be aborted and the
process restarted at completed ! 0.

Both these options need the signal along completed to be received and ok to be
set to FALSE to show that the timeout was taken.

The important points in this method are

e The process id returned by resetch must be checked in case the communication
finished between the timeout being selected and the channel being reset.

¢ Both alternatives must receive the message on completed.

e The communication must be initiated along dubious.channel before a timeout can
be taken as the channel must only be reset after this communication has started.

o The processes must be coded to prevent them from being timesliced — in particular
this means they must not use unconditional jumps — j.

e Compiling as an occam PAR will not guarantee the last two conditions as occam
makes no statements about the order of execution of parallel processes or of
timeslice behaviour.

If communication is to be reattempted along dubious.channel then the process at the other end of the channel
needs to have some similar method to detect when its output has failed. The INMOS technical note 1 gives
an example of how to implement communicating processes that will tolerate a disconnection and will restart
communication when reconnected.

Similar mechanisms

The same method can be used to provide a timed out output, and a simple modification can provide a
communication that can be ‘killed’ by a signal down a control channel. These should only be used in situations
were reconnection of a failed channel is required. If insulation from ‘unclean’ failure only is needed then a
buffer process should be used.
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The information in this chapter is not needed where system configuration is performed using the transputer
development system. It describes how a transputer system is initialised and ways in which it can be debugged.
This is not intended as a detailed description of booting and analysing transputers.

9.1 Resetting and analysing

A transputer is reset in order to initialise its internal state and external memory interface, and then to boot.
If a transputer is active when it is reset it stops operation immediately. A transputer is reset by pulsing the
Reset pin whilst holding the Analyse pin low.

A transputer is analysed in order to investigate its internal state. It stops operation in a way that preserves
much of its state and then starts to boot; it does not initialise its external memory interface. A transputer is
analysed by taking and holding the Analyse pin high, then pulsing the Reset pin and then taking the Analyse
pin low.

After a transputer has booted it is possible to tell whether the transputer was reset or analysed by executing
the following instruction.

testpranal test processor analysing

This will push true onto the stack if the processor was analysed or false if the processor was reset. This is
needed for the process that is executed when the transputer is booting from ROM to determine whether it
has just been reset or analysed.

9.2 Reset and power up

The following registers and special memory locations are not initialised when the machine powers on or is
reset.

ClockRego high priority clock register
ClockReg: low priority clock register
TPtrLoc, high priority timer list pointer
TPtrLoc: low priority timer list pointer
TNextReg, high priority timeout register
TNextReg: low priority timeout register
FPtrRego high priority scheduling list
BPtrReg,
FPtrReg; low priority scheduling list
BPtrReg
ErrorFlag
HaltOnErrorFlag

The floating point unit, if present, is not initialised in any way. In particular this means that the following
registers are not initialised.

FloatingPointErrorFlag, FAreg, FBreg and FCreg
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9.2.1 Booting

The way in which a transputer boots is controlled by the BootFromRom pin. If this pin is held high then the
transputer will boot from ROM, if it is held low the transputer will boot from a link.

Booting from ROM

The transputer starts executing in the following state:

Registers Iptr = ResetCode two bytes below the top of memory
Wdesc = MemStart BITOR 1 low priority, first free word of memory
Areg = previous value of Iptr
Breg = previous value of Wdesc
Creg is undefined

Flags The ErrorFlag and HaltOnErrorFlag are preserved.

Clocks The clocks are stopped.

Booting, peeking and poking down links

The transputer waits until it receives a communication along any one of its links. It then interprets the following
data on that link according to the value of the first byte.

If the value of the first byte received is 0 then a word of address is input, followed by a word of data which is
written to that address. The transputer then returns to its previous state waiting for a communication on any
one of its links.

If the value of the first byte received is 1 then a word of address is input, a word of data is read from that
address and then output down the corresponding output link. The transputer then returns to its previous state
waiting for a communication on any one of its links.

N.B. In both these cases the address received does not need to be a word aligned address, and the peek or
poke affects the bytesperword bytes from that byte address.

If the value of the first byte received is 2 or greater then the transputer inputs that number of bytes (Codelength)
into its memory, starting at MemStart, and then starts executing in the following state

Registers Iptr = MemStart
Wdesc = ffw BITOR 1
where ffw is the smallest word address > Memstart + Codelength
— i.e. low priority, with workspace pointer at first free word of
memory

Areg = previous value of Iptr
Breg = previous value of Wdesc
Creg = pointer to the link from which transputer booted

Flags The ErrorFlag and HaltOnErrorFlag are preserved.
Clocks The clocks are stopped.

Queues The values in the process queue pointer registers and timer queue locations are
preserved.
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Actions to be performed by the booting program
sthf store high priority front pointer
stif store low priority front pointer
sttimer  store and start timer

The high and low priority front of queue registers must be initialised to NotProcess.p. This can be done by
the following sequence of transputer instructions

mint; sthf; mint; stif
This must occur before the booting program attempts to pass any messages or run any processes. Because
of the way in which the process queues are implemented on the transputer there is no need to initialise the
back pointers.
The timer queue words must be initialised to NotProcess.p and the clocks must be started by executing
store timer instructions. The timer queue words TPtrLoc, and TPtrLoc, are locations below MemStart at
the bottom of memory. The following instructions do this

mint; mint; stnl TPtrOffsety, mint; mint,; stnl TPtrOffset,
Where TPtrOffset, and TPtrOffset; are 9 and 10 respectively.

This must be done before any attempt is made to wait on the timer. In addition before attempting to use the
timer at either priority level the timer must be started by executing

Idc start_time; sttimer

The ErrorFlag and HaltOnErrorFlag must be initialised by executing
testerr; clrhalterr

or
testerr; sethalterr

clrhalterr and sethalterr affect the halt on error flag and are described later.

If the transputer has a floating point unit then fptesterr also must be executed to reset the floating point error
flag and to ensure that the rounding mode is set to Round-to-Nearest.

If the transputer is being reset, rather than being analysed, the bottom 9 words of memory should also be set
to NotProcess.p. These words correspond to the 8 channels provided by the 4 links and the event channel.
If the transputer is being analysed then these words should not be altered as their values may be needed
during the analysis.

As the time queue words are immediately above the link channel words they may be initialised at the same
time by setting the bottom 11 words to NotProcess.p.

sthb  store high priority back pointer
stlb  store low priority back pointer

sthb and stlb allow the back pointers of the two priority level process queues to be explicitly set.

Explicit manipulation of the scheduling queues is dangerous. The queues are manipulated both by scheduling
instructions and external events such as the completion of a link transfer. If the transputer scheduler needs
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to access the process queues while they are being manipulated by a process then the behaviour can be
unexpected.

9.3 Analyse

The Analyse pin exists in order that the state of a transputer system can be investigated. This is achieved
by bringing the system to a halt in such a way that the state of the individual transputers in that system can
be examined.

The state of the processes executing on an analysed transputer can be examined. The processes in the
active set will be found in the linked lists holding the process queues. The processes waiting on the timers,
along with the time they are waiting for, will be found in the linked stack holding the timer queues. Processes
waiting for communication can be found by examining the channel control words.

A system is analysed by analysing all the transputers in the system in the following manner.

The Analyse pin is asserted which causes the system to come to a halt after a specifiable time. The Reset
pin is then asserted while continuing to assert the Analyse pin, for at least the specified Reset hold time and
is then taken low, while still asserting the Analyse pin. The Analyse pin is then de-asserted and the transputer
will boot. Note that the earliest time at which the transputer is guaranteed to be able to receive a message
remains specified relative to the fall of Reset rather than the fall of Analyse.

Analysing a system brings it to a halt as a result of each transputer in the system coming to a halt. The
components of the transputer respond to the assertion of Analyse in the following manner

Processor The processor only responds to Analyse at certain points during its operation.
When one of these points is reached the processor halts any process which is
executing and then ignores any scheduling requests made by the links or the
timer.

If the processor is not executing a process when analyse is asserted the processor
responds at once and halts immediately.

If the processor is executing a process when analyse is asserted the processor
responds by halting at either the next descheduling point or the next point at which
a low priority process could potentially be timesliced (this will be an unconditional
‘jump’ or a ‘loop end’ instruction) . Note that it is possible for a high priority process
to pre-empt a low priority process after analyse has been asserted, in which case
the processor will halt during the execution of the high priority process. The Iptr of
a processor which has been halted in this manner will point to the byte of memory
following the final byte of the instruction which caused the process to be halted.
A list of instructions during which a process can halt is included at the end of this
section.

Clocks The clock stops when analyse is asserted. Any processes waiting for the timer will
either be scheduled or will remain on the queue.

Links The assertion of Analyse has no effect on input links; they continue to operate
normally, sending acknowledges and making scheduling requests as appropriate.
(Any scheduling requests made after the processor has halted will not succeed) .

The assertion of Analyse causes output links to output at most a few more data
packets. They respond correctly to acknowledge packets and will make scheduling
requests as appropriate. (Any scheduling requests made after the processor has
halted will not succeed) . The number of data packets which a link will output after



9 Bootstrapping and analysing

77

Analyse is asserted is no more than the number of bytes in a processor word.

9.3.1 Information available after booting an analysed transputer

saveh
savel

save high priority queue registers
save low priority queue registers

saveh stores the contents of the front and back pointers of the high priority scheduling list in locations (Areg+0)

and (Areg+1) respectively. savel similarily stores the equivalent low priority scheduling list pointers.

The information that is available for analysing can be found in the following places.

The value that Wdesc had when the processor halted is available in Breg. This
will be (NotProcess.p BITOR 1) if the processor was not active.

The value that was in Iptr when the processor halted is available in Areg.

The ErrorFlag and HaltOnErrorFlag are in the same state as when the processor
halted.

Provided that the process word associated with a link channel was initialised to
NotProcess.p then if that process word contains a process descriptor then the
channel was being used for output, (unconditional) input or alternative input when
the processor halted.

If two processes are communicating and waiting on either end of a link then the
message being transferred is held in the outputting transputer. If a process has
input a message but has not yet resumed execution then the message is held
correctly in the inputting transputer.

The timer list pointer words may be read so the contents of the timer queues may
be determined.

The front and back pointers of the process queues may be read using the saveh
and savel instructions. Thus the contents of the process queues may be deter-
mined.

The register save area may contain information about an interrupted low priority
process.

9.3.2 Instructions where the processor will halt for analysis

A process will only halt for analysis when it reaches a point where the current process could be descheduled
by timeslicing or communication. Table 9.1 details the instructions after which the processor may halt for
analysis and the state in which the processor halts. In none of the cases will the current process have been
descheduled — i.e. it will still be the current process when the transputer is analysed.

9.4 Error detection by hardware

Certain run time errors such as arithmetic overflow and subscript errors are checked by transputer instructions.
These all signal the presence of an error by setting the sticky ErrorFlag. This may be explicitly set, cleared
and tested by instructions.

The ErrorFlag is sticky only within a priority level.
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Ji the jump has been taken
lend the instruction has updated the count locations and the consequential jump has
occurred

endp the process count has been updated but the process has not been descheduled
stopp the process has not been descheduled
stoperr  the process has not been descheduled

in the process descriptor has been left in the channel but the process has not
been descheduled
out the process descriptor has been left in the channel and, if the process has

output to a channel from which another process was performing alternative
input, then that other process has been scheduled. The current process has
not been descheduled

outword as for out

outbyte  as for out

tin the process has been inserted into the timer queue but has not been desched-
uled

altwt the value Waiting.p has been written into the State location but the process has
not been descheduled

talwt the value Waiting.p has been written into the State location, the process has
been inserted into the timer queue, if appropriate. The process has not been
descheduled

Table 9.1 Instructions at which process may halt for analysis

The state of the ErrorFlag is brought out of the transputer via the Error pin.

There is a mode of operation where whenever the ErrorFlag changes from a 0 (unset) to a 1 (set) the
processor is brought to an immediate halt. This mode is selected via the HaltOnErrorFlag which may be
explicitly set, cleared and tested by instructions.

clrhalterr  clear the HaltOnErrorFlag
sethalterr  set the HaltOnErrorFlag
testhalterr test the HaltOnErrorFlag

clrhalterr and sethalterr clear and set the HaltOnErrorFlag while the testhalterr pushes its value into Areg.

The definition of halt on error is that the processor will halt on a 0 to 1 transition of the ErrorFlag. This
ensures that a transputer which has been halted as the result of the ErrorFlag being set can be booted and
analysed whilst preserving both the ErrorFlag and HaltOnErrorFlag. If the ErrorFlag is cleared with the
HaltOnErrorFlag remaining set, the transputer will halt when the ErrorFlag becomes set.

When the processor halts as a result of the ErrorFlag becoming set — i.e. with the HaltOnErrorFlag set
— the Iptr will point to the byte of memory which is two bytes beyond the last byte of the instruction which
generated the error. (Note that this is not the same as the state of the Iptr of a processor which has been
analysed) . The processor does not execute any further instructions, does not respond to any Run or Ready
requests from the links nor respond to any Timer requests. The timer continues to tick and the links continue
to transfer data.

9.4.1 Instructions which may cause the Error flag to be set

Table 9.2 details the instructions which can cause the ErrorFlag to be set.
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adc add constant

csub0 check subscript from 0
cent1 check count from 1
seterr set error

add add

sub subtract

mul multiply

div divide

rem remainder

cword check word
csngl check single

ladd long add

Isub long subtract

Idiv long divide

fmul fractional multiply

cflerr check floating point error — if present

fochkerr floating point check error — if present

Table 9.2 Instructions that can cause an error

9.4.2 Differences between halt-on-error and analyse

The state of the Iptr of a process which has ‘halted on error’ or has been analysed can be determined by
examining the Areg of the processor when it is booted. However, the relationship between the value of the
Iptr and the instruction which was being executed when the processor halted is different in these two cases.

Where a processor has been analysed the Iptr will point to the byte of memory following the final byte of the
instruction which caused the process to be halted.

Where a processor has halted as a result of the ErrorFlag becoming set (i.e. with the HaltOnErrorFlag
set), the Iptr will point to the byte of memory which is two bytes beyond the last byte of the instruction which
generated the error.

9.5 The register save area

Seven locations near the bottom of the transputer's memory map are used to save the processor registers
when a high priority process interrupts a low priority process. The design of the process scheduling and
priority system means that at most one process is ever interrupted so only one set of registers ever needs to
be stored. The memory locations of this register save area are

WdescIntSaveloc
IptrintSavelLoc
AregintSaveloc
BregintSaveloc
CregintSavelLoc
STATUSIntSavelLoc
EregintSavelLoc

The first five of these store the registers containing the processor state — the workspace descriptor of the
interrupted process, the pointer to the next instruction to execute, and the contents of the evaluation stack.
The status register is saved to maintain the value of the error flag of the interrupted process. Ereg is an
internal register that is used in block move and needs to be saved as block move is interruptable. The value
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of Ereg saved here should be of no interest to users.

The information stored in these locations can be used to provide a form of processor analysis where a
high priority process can be used to examine the state of the low priority processes that are executing.
However care must be taken to check the validity of the data in the save area. If no low priority process was
executing when the high priority process started then WdesclIntSaveLoc will contain NotProcess.p and the
other locations will contain undefined data. If a low priority process was executing then all the locations will
contain valid data except EregintSaveLoc which is only valid if a block move was interrupted.

The values in these locations should not be changed. In particular the IptrintSaveLoc and WdescIntSaveLoc
must not be used as a mechanism for replacing the interrupted process with another process.

9.5.1 Two dimensional block move workspace area

On the IMS T800 a further 10 locations above the register save area are used to contain the workspace needed
for the 2 dimensional block move instructions. This consists of 2 sets of 5 locations providing workspace for
a block move at each priority level. The values held in these registers at any time should be of no interest to
users and must not be altered.

9.5.2 Analysing floating point registers
It is not possible to examine the low priority floating point register set from a high priority process. This is

because, for efficiency, the registers are stored in the floating point unit in an auxiliary set of registers rather
than being stored in the save area.
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10.1  Process scheduling queues and timer lists

Previous sections have described how the transputer instruction set supports concurrent processes through
the use of process and timer queues. However no information about how these queues were organised was
given. This is because for almost all purposes programs should not make any attempt to manipulate these
queues. The transputer hardware can at any time start to manipulate the queues without reference to the
process being executed. If the queues are being altered, there is the danger that the hardware will find them
in an ‘invalid’ state and hence cause unpredictable behaviour.

Programs should not attempt to alter the process or timer queues explicitly — they should always use the
instructions provided.

Information on the representation of these queues is given here to enable programs to analyse the state of
the transputer.

10.1.1  Process queues

There are two process queues on the transputer — one for each priority level. Each of these queues is
represented as a linked list in the transputer with the workspace address of the processes at the front and
back held in the front and back pointers. These pointers are held in registers in the transputer. The values
in these registers can be obtained by using the saveh and savel instructions.

Each process in the queue — apart from the last — contains a pointer to the workspace of the next process
in the queue. This pointer is the workspace pointer of the following process and is stored in (Wptr—2) . The
Iptr of the process is held in (Wptr—1) . An empty queue is signified by the front pointer having the value
NotProcess.p. The currently executing process does not appear in the queue.

So to extract the workspace pointer of the n'" process in the process queue the following pseudo-occam
could be used

INT wptr:
SEQ
wptr := front.pointer
IF
wptr = NotProcess.p
. empty queue

TRUE
SEQi=0FORnN
SEQ
wptr := wptr[-2]
IF

wptr = back_pointer
. not enough entries
TRUE
SKIP
result := wptr

Error handling code will need to be added to cope with the cases where the queue is either empty or contains
less than n items.

Similarily, information about each process in a process queue could be printed by
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INT wptr:
SEQ
wptr := front.pointer
IF
wptr = NotProcess.p
print.string(‘empty queue’)
TRUE
SEQ
WHILE wptr <> back_pointer
SEQ
print.info(wptr)
wptr := wptr[-2]
print.info(wptr)

Scheduling and the process queues

When a process is scheduled — by execution of runp or startp, or by a communication completing — the
process is added to the back of the relevant priority process queue.

When a low priority process is descheduled due to timeslicing then the process is added to the back of the
low priority process queue.

When the transputer requires a new process to run — because the previous process has either stopped
(terminated unsuccessfully), ended (terminated successfully) or is waiting for communication — then the
process at the front of the relevant priority process queue is restarted.

Manipulation of the process queues

As has been mentioned earlier the explicit manipulation of the process queues is not advised. This is because
the transputer hardware may at any time wish to make use of these queues and if the queue is in an invalid
state then the transputer’s behaviour is unpredicatable.

The process that initiates a transputer after booting must initialise the values of the queue registers. After this
the transputer instructions provided to implement scheduling should be used to run concurrent processes.

Explicit queue manipulation should only be done when the instruction set support for scheduling is insufficient.
If it is absolutely necessary to manipulate the process queues explicitly then the following points must be noted.

o The transputer may wish to make use of the process queues at any point

¢ A process manipulating the queues should not allow another process of the priority
of the queue it is manipulating to execute while the queue is being manipulated.
This means that a low priority process must not manipulate the high priority queue.
A low priority process manipulating the low priority queue must not have the po-
tential to timeslice.

¢ A process cannot be safely appended to the end of a queue as between reading the
queue back pointer and updating it the transputer hardware may have rescheduled
a process waiting for communication from an external link channel.

¢ At all points the process queues must contain valid data — i.e. it must be possible
to trace a path through the linked list from the front pointer to the back pointer after
every instruction.
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10.1.2 Timer lists

Each priority level has a timer list. The timer lists contain information about processes that are waiting until
a specific time before being restarted. The timer lists are represented as a linked list of workspaces. The
address of the workspace of the head of the timer queue is stored in the timer list pointer location. The
linked list is implemented by storing the address of the next workspace in (Wptr—4) of a process workspace,
with the time associated with that workspace stored in (Wptr—5) . This is the time at which the process will
become ready — so if a process executes

tin X

the time (X+1) will be entered into (Wptr—5) . The end of a timer list is signified by a link address of
NotProcess.p.

Each list is ordered so that each process in the list is waiting for a time no earlier than that of the process
before it and no later than that of the process after it. The time of the first process — the next time that is
required — is stored in the relevant timeout register.

The information about the contents of the high priority timer list could be printed by

INT wptr:
SEQ
wpltr := timer_list.pointery
WHILE wptr <> NotProcess.p
SEQ
print.info(wptr)
wptr := wptr[-4]

Timer input

When a timer input is performed — either because of a tin instruction or by a timer guard in an ALT statement
— then the process is inserted into the relevant timer list. This involves searching down the list until the time
requested lies between the times of two adjacent entries so that when the process is inserted there the
ordering of the list is maintained. This means that instructions that manipulate the timer lists take time
proportional to the length of the timer lists. Because of this, these instructions are interruptable.

Manipulating the timer lists

Similar considerations to those concerned with the manipulation of process queues apply here. In general
once the initialising process has initialised the process lists, they should not be modified explicitly. Timer
list manipulation is, in fact, more difficult as the validity of the timeout register must be maintained and this
register is not accessable.

10.2  Special RAM locations

Mention has been made in various sections of special RAM locations near the bottom of memory. These are
reserved RAM locations used as if they were additional registers. Because the transputer has on chip RAM
the memory for these registers is guaranteed to be present. In normal use programs will not need to look at
the values in these locations but, for instance, when debugging or analysing a transputer their contents are
useful.

The special RAM locations, and their uses are shown in table 10.1. The STATUS word contains various
flags, including the error flag, associated with the process executing. The Ereg is an extra register used in
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Minint

Minint+1
Minint+2
Minint+3
Minint+4
Minint+5
MinInt+6
MinInt+7

Minint+8
Minint+9

Minint+10
Minint+11
Minint+12
Minint+13
Minint+14
Minint+15
Minint+16
Minint+17
Minint+18

Link 0 Output
Link 1 Output
Link 2 Output
Link 3 Output
Link O Input
Link 1 Input
Link 2 Input
Link 3 Input

Event
TPtrLocy

TPtrLoc
Wdesc save
Iptr save
Areg save
Breg save
Creg save
STATUS save
Ereg save
... Minint+27

N.b. Minint+x is a word address — i.e. x words above Minint

The channel control word for the output channel on link 0
The channel control word for the output channel on link 1
The channel control word for the output channel on link 2
The channel control word for the output channel on link 3
The channel control word for the input channel on link 0
The channel control word for the input channel on link 1
The channel control word for the input channel on link 2
The channel control word for the input channel on link 3
The channel control word for the event channel

The high priority timer list pointer

The low priority timer list pointer

Saved value of low priority Wdesc on interrupt

Saved value of low priority Iptr on interrupt

Saved value of low priority Areg on interrupt

Saved value of low priority Breg on interrupt

Saved value of low priority Creg on interrupt

Saved value of low priority STATUS word on interrupt
Saved value of low priority Ereg on interrupt

Workspace for 2d block move — IMS T800 only

the block move operations.

Table 10.1 Special RAM locations

These locations should never be written to explicitly, except when booting.

10.3  Special workspace locations

Various earlier sections have mentioned the fact that processes make use of certain locations below Wptr for
special purposes. Also certain instructions use (Wptr+0) as an extra temporary ‘register’ to hold information
while they execute. The use of these locations is described in table 10.2.

The contents of these locations only contain valid information under certain conditions. These are

(Wptr—1) The process has been descheduled

(Wptr—2) The process is on a scheduling list
— i.e. has been descheduled and then rescheduled

(Wptr—3) The process is waiting for communication or is executing an ALT construct

(Wptr—4) The process is on a timer list

(Wptr—5) The process is on a timer list
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(Wptr+0)  This is used as a temporary ‘register’ by outbyte, outword, postnormsn. It is
also used in the implementation of an ALT construct to hold the address of
the selected process in the execution of the ALT

(Wptr—1) The Iptr of a descheduled process is stored in this location

(Wptr—2) This contains the address of the workspace of the next process in a schedul-
ing list

(Wptr—3) When a process is descheduled because it is waiting for a communication
this address contains the address of the channel being used. During the
execution of an ALT construct this contains the ALT state

(Wptr—4) This contains the address of the workspace of the next process in a timer list
or the state of time selection during an ALT involving timer guards

(Wptr—5) This contains the time that a process on a timer list is waiting for

Table 10.2 Special locations below Wptr

10.4 Channel communication

This section describes the mechanism used to implement channel communication. The cases where the
communication is on an internal channel and on an external channel will be considered separately. These
two cases can be distinguished by looking at the channels address.

As has been described earlier, each channel has a control word in memory. This should be initialised to
NotProcess.p when the channel is declared. The address of the channel control word is passed to the
communication instruction in a register.

10.4.1 Internal communication

This occurs when two processes on the same processor wish to communicate. Because a transputer is only
executing one process at any time one of these two processes will become ready to communicate first.

When the first process to become ready to communicate executes its communication instruction the transputer
will find the value NotProcess.p in the channel control word — this signifies that the other process is not ready
to communicate.

The process then
e Copies its process id (Wdesc) into the channel word.
¢ Copies the source or destination address of the communication into (Wptr—3) .
¢ Deschedules itself.

The second process to become ready to communicate executes its communication instruction. The transputer
reads the value in the channel control word and finds the value is not NotProcess.p — and it interprets the
value as the workspace address of the process that is waiting to communicate with it.
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The second process then

« Performs a block move using its source or destination address, its length, and the
destination or source address in the workspace pointed to by the channel control
word.

« Resets the value of the channel control word to NotProcess.p.

e Reschedules the first process.

Note that no checking is made that the lengths of the two communications are equal — or even that they are
in opposite directions. A compiler must, and can, perform this checking.

10.4.2 External communication

This occurs when processes on two different transputers wish to communicate along a link channel. The
transputer can detect that communication is to take place along a link channel by examining the address of
the channel control word.

Output to an external channel

When an output communication instruction is executed the value of Wdesc, the pointer to the message source
and the message length are copied into registers in the link hardware, and the process is descheduled. The
value of Wdesc is also copied into the relevant link channel control word — but this is to aid analysing only.

The link then extracts the message, a word at a time, from memory and transmits it byte by byte along the
link. After each byte has been sent the link hardware waits for it to be acknowledged.

When all the message has been output and the final acknowledge received, the process is rescheduled and
the link channel control word reset to NotProcess.p.

Input from an external channel

When the input communication instruction is executed the value of Wdesc, the pointer to the message desti-
nation and the message length are copied into registers in the link hardware, and the process is descheduled.
The value of Wdesc is also copied into the relevant link channel control word — but this is to aid analysing
only.

The link hardware then inputs bytes from the link, acknowledging each individually. These bytes are buffered
up into words before being written to memory.

When all the message has been input and the final acknowledge received the process is rescheduled and
the link channel control word reset to NotProcess.p.

As with internal communication, compilers should check that communications along external channels are of
the same length.

10.4.3 Rescheduling after communication

When a communication completes — either from an internal channel or external channel — the waiting
process is placed on the end of the relevant scheduling list. The priority of this process can be determined by
looking at the bottom bit of its Wdesc. If the waiting process was a high priority process and the transputer
is currently running a low priority process then the waiting process will interrupt the low priority process.
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10.5 Execution of an ALT construct

Earlier, the code necessary to implement an ALT construct was described. This section describes what
changes are made to the locations below Wptr and to the channel words during the execution of this construct.

The three phases of enabling, waiting and disabling are considered separately.
The ALT state of the alternative, held in (Wptr—3), has one of the following values
Enablingp = MostNeg+1

Waiting.p MostNeg+2
Ready.p MostNeg+3

These values are not valid addresses of input channels. Hence an outputting process is able to distinguish
between an unconditional input and an alternative input on the channel.

In addition the timer list link, held in (Wptr—4), has one of the following values

TimeSetp = MostNeg+1
TimeNotSetp = MostNeg+2
Also the value
NoneSelectedo = -1

is used during the disabling sequence to indicate no branch has been selected.

10.5.1 Enabling

An alternative is enabling between the execution of the alt or talt instruction and the start of the execution of
the altwt or taltwt instruction.

The ALT state, (Wptr—3), is set to Enabling.p to indicate that the guards of an alternative construct are being
enabled. If any guard is immediately ready — i.e. is a SKIP guard or a channel guard on a ready channel
— then this location is set to Ready.p to indicate that a guard is ready.

Timer alternatives

A record of the earliest timer guard time yet encountered is kept during the enabling sequence of a timer
alternative. Location (Wptr—4) contains TimeNotSet.p until the first timer guard is enabled and then it contains
TimeSet.p with (Wptr—5) containing the earliest time encountered.

10.5.2  Waiting

An alternative is waiting between the start of execution of the altwt or taltwt instruction and the start of the
next instruction. When one of the alternative guards becomes ready the process executing the alternative is
rescheduled. The waiting period ends when this process comes to the front of its scheduling list and starts
to execute.

The alternative selection location, (Wptr+0), is set to NoneSelected.o to indicate that no branch has yet
been selected. If the ALT state, (Wptr—3), is not Ready.p then it is set to Waiting.p and the process is
descheduled. Any communication to a waiting alternative causes the ALT state to be set to Ready.p
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Timer alternatives

An additional check is made to see if the earliest enabled time is earlier than the current time. If so the
process is not descheduled and the ALT state is set to Ready.p as a timer guard is ready. If a guard is ready
then the current time is recorded in (Wptr—5) to indicate when the timer wait finished waiting. If no guard is
ready then the process is descheduled and inserted into the appropriate timer queue.

10.5.3 Disabling

An alternative is disabling between the execution of the instruction after the altwt or taltwt instruction and the
execution of the altend instruction.

When a guard becomes ready the disabling sequence is executed. When the first ready guard is disabled
its process descriptor is stored in (Wptr+0) to indicate that it has been selected.

Timer alternatives

If necessary, the current process is removed from the appropriate timer queue.

10.5.4 Communication to an enabled alternative input

Outputting to an enabled alternative input is slightly different to the unconditional case. Here, although there
is a valid process descriptor in the channel word, the communication does not occur as the guard has not
been selected yet. Instead the outputting process puts its own process descriptor in the channel word to
indicate it is ready for communication, and then deschedules itself as if the input was not ready.

10.6 CPU/FPU interface

A basic description of how the floating point unit and the main processors run concurrently has already been
given. For simplicity it is always possible to consider the instruction stream being executed sequentially on
one processor that performs both the integer and floating point arithmetic but to obtain even higher floating
point performance it is necessary to understand the concurrency that is possible.

The two processors can be considered as occam processes communicating over channels as has already
been described. To maximise the amount of overlapping between the integer and floating point processors
more details of how these communications take place are needed.

The floating point instructions fall into two distinct classes. The first class operate purely on the floating point
unit — such as fpadd — and make no change to the main processor state. The second are the instructions
that can transfer data from the floating point unit to the integer processor. This second class mainly return
boolean values into Areg — although it also includes fochkerr and fpstnisn and other instructions that interact
with the error flag or memory.

Al floating point instructions are decoded on the main processor which then waits until the floating point unit
is not busy. The main processor will then send the instruction across to the floating point unit to start that
operation. If the instruction is one of the first class of instructions then the main processor is free to continue
to work. If it is one of the second class the main processor waits until it receives a value back from the
floating point unit. In these cases there is no possibility of making use of the time while the floating point unit
is operating. The occam program shown in figure 10.1 more closely models what is happening. For simplicity
only single length real numbers are considered and the prefixing sequences to generate operation codes are
ignored.
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CHAN OF REAL32 databus.to.fpu, databus.from.fpu :
CHAN OF fpu.commands instruction.to.fpu :
CHAN OF BOOL result.from.fpu :

PAR
REAL32 FAreg, FBreg, FCreg :
WHILE TRUE
INT inst :
SEQ
instruction.to.fou ? inst
CASE inst
fload
SEQ
FCreg := FBreg
FBreg := FAreg
databus.to.fpou ? FAreg
fstore
SEQ
databus.from.fpu ! FAreg
FAreg := FBreg
FBreg := FCreg
fadd
SEQ
FAreg := FAreg + FBreg
FBreg := FCreg
feq
SEQ
result.from.fou ! (FAreg = FBreg)
FAreg := FCreg
. remainder of floating point unit operations
[memsize]INT memory :
INT Areg, Breg, Creg, Iptr :
WHILE TRUE
CASE memory[iptr]
foldnisn
SEQ

instruction.to.fpu ! fload
databus.to.fou | memory[Areg]

Areg := Breg

Breg := Creg

Iptr := Iptr + 1
fostnisn
SEQ

instruction.to.fpu ! fstore
databus.from.fou ? memory[Areg]

Areg = Breg
Breg := Creg
Iptr := Iptr + 1
fpadd
SEQ

instruction.to.fou ! fadd
Iptr := Iptr + 1
foeq
SEQ

instruction.to.fpu ! feq

Creg := Breg

Breg := Areg

result.from.fou ? Areg

Iptr := Iptr + 1

. remainder of main processor instructions

Figure 10.1 Occam model of CPU/FPU interface
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11 Hints and tricks

This chapter details some mechanisms for optimising the performance of compiled code.

11.1  Optimising use of on-chip RAM

The on-chip RAM on a transputer provides 1 cycle memory — this is significantly faster than external memory.
To get the best possible performance out of a transputer it is necessary to use this fast memory efficiently.

It is most important that on-chip RAM is used for workspace, where possible. This will reduce the access
time to local variables by a factor of about 3 — depending on the speed of the external memory system.
Workspace should be put in on-chip RAM in preference to code as the transputer's prefetch mechanism
reduces the delay in ‘visible’ memory access for code fetching.

If the placing of workspace in on-chip RAM is not feasible then the most commonly used procedures etc
should be placed in on-chip RAM.

11.1.1  Use of a second stack

All code described so far has used the process workspace to hold all the local variables. Initially this may
seem sensible — variables are accessed quickly through local loads and stores — but problems arise when
arrays are considered. A single array may take up a large number of workspace slots. This has several
implications. Firstly, access to variables stored above the array may be slowed down by the need for an
extra prefixing instruction to form the offset. Secondly, and more importantly, the workspace will be much
larger — in particular this may mean that it cannot be placed on on-chip RAM.

This problem can be overcome by maintaining a second stack — in external memory — containing the
arrays. This can be implemented as a rising stack with the address of the top of this stack being passed as
an additional parameter to all procedures.
A vector declaration

[S]INT x:
is compiled by

Idl vector_stack; Idip x_offset; stl x

Where x_offset is the offset from the current processes vector stack base to where x will be stored — i.e. the
size of all vectors already declared by the process.

The compiler will need to statically allocate areas of the vector stack for each process in a PAR construct in
a similar manner to the static allocation of workspaces.

Passing the vector stack pointer

When a procedure is called the address of the next free location on the vector stack is passed as the vector
stack pointer. This should be passed as the second parameter to the procedure. In general it will be easier to
evaluate the vector stack pointer than an ‘actual’ parameter. Passing it as a parameter to the call instruction
enables the ‘actual’ parameters to be evaluated when more registers are available.
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Array access, such as
x[E]
is now compiled to

Idl x; E; wsub

11.2 Tables of constants

The transputer instruction set has been optimised to execute the loading of small constants efficiently — for
example it allows constants between 0 and 15 to be loaded in a single cycle. Analysis of programs shows that
such small constants occur markedly more frequently than large constants. However when a large constant
does need to be loaded the necessary prefix sequence may be long — needing 8 bytes, and hence 8 cycles,
for a 32 bit constant. Other techniques may be more efficient in these cases.

A simple mechanism to increase the efficiency and code compactness is to use a table of constants. This is
implemented by storing all the long constants into a lookup table. The address of this table is held in a local
variable which is used to index the array — this table must be aligned on a word boundary. Then to load
the constant from the n'" entry in the constant table stored at address constants the following code would be
used

Idl constants; Idnl n

Idnl is the load non-local instruction which loads from a word address offset from Areg and is explained more
fully in a later section. This code sequence could only take 2 bytes, and even in the presence of more than
16 local variables and 16 long constants it is unlikely to take more than 4 bytes.

If a constant would take 4 or more bytes to load with a /dc then this mechanism often improves code
compactness — especially if the constant is used more than once.

If the constant table address is stored in on-chip RAM this technique can also improve performance as less
code needs to be executed. If it is not stored in on-chip RAM then the extra memory cycles may cause the
performance to decrease.

11.3  Implementing the occam error modes
occam supports 3 levels of error handling. These are

Halt In this mode any error causes the transputer to halt. This is useful when debugging
programs so that the state that caused the error can be examined.

Stop In this mode any error in a process causes the process to be stopped. This
provides for ‘graceful degradation’ of the system where processes continue until
they become dependant on already stopped processes.

Reduced In this mode nothing can be assumed about the behaviour when errors occur.
In general this mode is implemented for maximum efficiency and errors may, or
may not, be detected or handled. Programs run in this mode should already have
been shown to be error free.

Previous sections have described how to error check expressions, array accesses etc. These cause the error
flag to be set when an error occurs. Mechanisms for implementing the 3 modes above are now given. It is
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assumed that when error checking is performed the error flag is cleared before the expression/array access
is evaluated, and that no time slicing can occur during that evaluation. This is because the error flag is not
saved when a process is descheduled.

11.3.1  Halt on error
This is achieved by setting the transputer’s halt on error flag by
sethalterr

This will cause the transputer to halt whenever the error flag moves from an unset to a set state.

11.3.2 Stop on error
The instruction
stoperr

is placed at the end of each error checked evaluation. This causes the process to be stopped — descheduled
and not placed on the scheduling lists — if the error flag is set. This does not clear the error flag.

11.3.3 Reduced mode

In this mode all error checking instructions may be removed. In particular all mu/ instructions can be replaced
by prod instructions to take advantage of the early termination of prod.

11.3.4  Error checking floating point expressions

Error checking floating point expressions is slightly more complex as floating point unit instructions affect the
floating point error flag which can then be OR-ed into the main error flag to achieve error checking. The two
simplest schemes in which floating point arithmetic is either all done without error checking — i.e. relying on
the IEEE standard to cope with ‘errors’ — or all done with error checking were described in the section on
floating point arithmetic.

The full implementation in which checked and unchecked arithmetic can be mixed within an expression is
more complex. Code to evaluate the expression is generated by the method described earlier. The code
for each op now consists of an optional round mode selection, the operation instruction(s) and finally either
a fpuclrerr for an unchecked operation or a fochkerr for a checked operation. This way any error in an
unchecked operation is suppressed while errors in checked operations are immediately flagged. To establish
the starting state of having no error the code is preceded by a fouclrerr. The instructions to store the result
are added after this code is compacted.

This code is not optimal as it allows no overlap between the floating point unit and the main processor since
the fouclrerr or fpchkerr instructions cause the main processor to idle while the floating point unit performs
each floating point operation. This code is optimised by the following algorithm. This treats the code for the
expression as a list of code elements that are either register movement operations (reverse, loads or stores)
or flag operations (fochkerr or fouclrerr) . The error flag operations are pushed through this list as far as
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SEQ
holding := code [0] -- fouclrerr is the first element in the list
i := 1 -- pointer into code
j = 0 -- pointer into compacted.code
WHILE i < len

IF
code [i] € register-movement
SEQ
compacted.code [j] := code [i]
j=j+1
i=i+1
code [i] = holding
i=i+1
(holding = fouclrerr) AND (code [i] = fochkerr)
=i+ 1
(holding = fochkerr) AND (code [i] = fouclrerr)
SEQ
i=i+1
compacted.code [j] := fochkerr
jr=j+1

holding := fouclrerr

IF

TRUE

SEQ
compacted.code [j] := holding
compacted.code [j+1] := code [i]
holding := code [i+1]
i=i+2
j=j+2

code [i] € operation

code [i+1] = holding
SEQ
compacted.code [j] := code [i]
j =i+ 1
j=j+1

Figure 11.1 Algorithm to compact floating point error checking instructions

possible maintaining the same results. The following rules are used.

flag-operation; register-movement
fpuclrerr; fpchkerr

fpuclrerr; fpuclrerr

fpchkerr; fpchkerr

fpchkerr; operation; fpchkerr
fpuclrerr; operation; fpuclrerr

register-movement; flag-operation
fpuclrerr

fpuclrerr

fpchkerr

operation; fpchkerr

operation; fpuclrerr

An algorithm to compact the use of floating point error checking instructions is shown in figure 11.1. The
algorithm uses set membership € in its /F conditionals to aid clarity. In an implementation these would be
replaced by the relevant equality conditionals. The algorithm assumes that the expression has been compiled
into the area code and has length /en. The algorithm generates the result in the array compacted.code. The
last error flag operation is left in holding and should be held over until after the address of the destination
of the evaluated expression has been calculated. This will maximise the overlap of the last operation. The
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error flag operation should be inserted before the store instruction. This gives the processor a chance to halt
on error before possibly overwriting data. If the processor is halted then the values of all data used in the
expression can be analysed as none will have been over-written.

Using this algorithm all the error flag operations are pushed through the code as far as they will go. The
variable holding is used to hold the most recent flag operation whose execution is being deferred. In most
cases this will delay the synchronisation needed to check the error flag until just before synchronisation is
required for an operation — so there will be no time lost due to ‘redundant’ synchronisations.

To show how this works consider the code to evaluate the expression
X := (A + B) TIMES (C + D)

where the + operations are to be error checked but the TIMES is unchecked multiplication. All the variables
are assumed to be REAL32s. The naive code for this is

fouclrerr; Idip A; foldnisn; Idlp B; foldnisn; fpadd; fochkerr;
Idip C; fpldnisn; Idip D; foldnisn; foadd; fochkerr; fomul; fouclrerr

When compacted the initial fpuclrerr is moved over the first two register movements to just before the foadd.
The fochkerr is moved up to the next fpadd where — because the foadd is followed by another fochkerr —
it is dropped. The second fpchkerr is not moved over the fomul so that it will catch any errors caused by the
two foadds. The second fouclrerr can be dropped as the value left in the error flag by this evaluation should
not be being used outside of the actual evaluation.

The resulting code therefore is

Idip A; foldnisn; Idip B; foldnisn; fouclrerr; foadd;
Idip C; fpldnisn; Idlp D; foldnisn; foadd; fochkerr; fomul

which can be further compacted by using foldnladdsn instead of foldnisn; foadd.

11.4  Optimising floating point performance

Since the IMS T800 consists of two concurrently operating processor units which only synchronise on data
transfer between them there is much scope to optimise performance by balancing the amount of work per-
formed on these two units.

For a floating point intensive application the work consists of both the actual floating point calculations and
the loading and storing of data for these calculations. On an IMS T800 the floating point unit performs all
the floating point calculations while the integer processor calculates the address of the data to be loaded into
and stored from the floating point unit. To optimise performance the code needs to ensure that the integer
processor is not sitting idle waiting for the floating point unit to synchronise when there is enough spare time
to do some useful work. For example the following program fragment

[20] [20] REAL64 A, B
REAL64 C,D
SEQ

A [I][J] := (B [I][J] * C) + D
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integer unit cycles floating point unit cycles
genaddr(B [l][J]) 18 (idle) 18
foldnldb 5 —synchronisation— fpldnldb 5
genaddr(C) 1 idle 1
foldnidb 5 —synchronisation— fpldnldb 5
fomul 2 —synchronisation— fomul 20
genaddr(D) 1

idle 17

foldnldb 5 —synchronisation— fpldnldb 5
foadd 2 —synchronisation— fpadd 7
genaddr(A [l][J]) 18 idle 13
fostnldb 5 —synchronisation—  fpstnldb 5
Total time 79

Idle time 17 14

Figure 11.2 Execution profile of unoptimised code

could be naively coded as

genadadr(B [l][J]); foldnldb; genaddr(C); foldnidb; fomul;
genaddr(D); foldnldb; foadd; genaddr(A [l][J]); fostnldb

where genaddr(X) is the code required to generate the address of the variable X.

The effect of this is is shown in figure 11.2.

Unless otherwise stated all examples in this section assume that all data is stored in internal RAM and that
all simple variables are locally declared while arrays are accessed through one level of static linkage. The
overlap assumed here has been simplified slightly to aid understanding of the example. In reality the first two
cycles of a synchronising instruction on the integer processor overlap as well.

The initial 18 cycles while the first two addresses are being calculated are not included in the total of the
floating point unit’s idle time as in theory these could be overlapped with the last operation of the previous
assignment.

A more intelligent approach to code generation for this process would notice the length of time ‘free’ while
the floating point unit did the fomul and use it to precompute another address. This could cause the following
code to be generated.

genaddr(C); genaddr(B [l][J]); foldnldb; foldnidb; fomul;
genaddr(A [l][J]); genaddr(D); foldnidb, fpadd; fpstnidb

The profile of this code sequence is shown in figure 11.3.

Now the floating point unit has been almost saturated — once the initial pair of values have been loaded
into the floating point unit it is only idle for 1 cycle — so for the available hardware the evaluation is well
optimised. This has made a 23% improvement in the performance.

For larger expressions and sequences of expressions some of the remaining idle time could be used. The
initial 19 cycles idle time on the floating point unit can be decreased by overlapping the initial address
calculation with the last operation of an immediately previous assignment if the compiler allows code to be
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integer unit cycles floating point unit cycles
genadadr(C) 1 (idle) 1
genaddr(B [l][J]) 18 (idle) 18
foldnldb 5 —synchronisation—  foldnldb 5
foldnidb 5 —synchronisation— foldnidb 5
fomul 2 —synchronisation— fomul 20
genaddr(A [l][J]) 18

genaddr(D) 1 idle 1
foldnldb 5 —synchronisation—  foldnldb 5
foadd 2 —synchronisation— foadd 7
idle 5

fostnidb 5 —synchronisation—  fpstnldb 5
Total time 64

Idle time 5 1

Figure 11.3 Execution profile of optimised code

moved over statement boundaries.

11.4.1  Optimising code

The main factor that introduces unnecessary delays into floating point code is unoverlapped address evalu-
ation. Code to evaluate an expression can be generated using the standard depth-first methods described
earlier. There are then a few very simple ‘transformations’ that can be made on the code to maximise the
overlap. In the following definitions genaddr will be a section of code to generate an address on the integer
processor, trans will be an instruction to transfer data to or from the floating point unit and op will be a
floating point operation. Error flag and rounding mode operations are treated as part of the instruction that
they immediately precede.

The first optimisation is to delay the synchronisation in sequences of transfer operations. In a sequence such
as

genadary; trans1, genaddr,, trans,

genaddr, may be overlapped with a prior floating point operation, but trans; causes synchronisation so that
genaddr; is not overlapped — i.e. the floating point unit will be idle here. The following two transformations
maximise the overlap of address generation in all such cases. These transformations enable the overhead
of storing subresults to temporaries during complicated expression evaluations to be minimised.

1. genaddry, trans, genaddr,; trans,,; genaddrs
= genaddrs; genaddr,,; genaddr, ; transy; trans;

2. genaddry; trans1,; genaddr, = genaddr,; genadar; trans

When the compiler generates the code for genaddr, sequences it must take account of the depth of stack
needed to compile each expression. Previous sections show how to compile optimal code for any combination
of the depths of the evaluations. However in the case of address generation here it may be simpler to associate
with each generation the number of elements on the stack it needs to preserve. This is needed to make
the next transformation easier to implement. A later stage of the compiler can then use temporary storage
if necessary to avoid stack overflow — in the case where the genaddr,s are contiguous the scheme to load
registers with integer operands given in the section on sequential processes can be used. The first of the two
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1. opy; Op2; genaddry; genaddr, =
IF
opy = fpadd/fosub
IF
quick(genaddr)
op1; genaddr; op»; genadadr,
quick(genaddrz)
op1, genaddr,; opz; genaddry; rev
TRUE
op1, genaddry; op,, genaddr,
op, = fpadd/fosub
IF
quick(genaddrz)
op1; genaddry; opz; genadadr,
quick(genaddry)
op1, genaddr,; op»; genaddry; rev
TRUE
op1, genaddry; op2; genaddrs
TRUE
op1, genaddry; op», genaddr,

2. 0py; Op2; genaddr, trans =
IF
op1 = fomul/fodiv
op1,; genaddr; op»; trans
TRUE
op1,; Op2; genaddr; trans

3. opy, genaddry; trans; op,; genaddry =
IF
op1 = fomul/fodiv A op2 = foadd/fosub A
quick(genaddry) A —~quick(genaddrs)
op1; genaddr,; genaddry; trans; op»
TRUE
op1; genaddr,; trans; op»; genaddr,

Figure 11.4 Optmising address generation

transformations above can be obtained by two applications of the second but probably should be implemented
separately so that the details of how many addresses are being held on the integer stack can be dealt with
more simply.

The second optimisation is to reorder address generations so that ‘quick’ evaluations overlap floating point
additions or subtractions. Generating the address of a simple variable or of an element of a 1 dimensional
array are both considered to be ‘quick’ as each will (usually) overlap totally with a floating point addition or
subtraction. Accesses to 2 or higher dimensional arrays usually take at least as long as a floating point
multiplication or division. To maximise the overlap of address generations the transformations in figure 11.4
should be used.

The first of these three transformations will move a ‘quick’ address evaluation — where possible — so that it
overlaps a floating point addition or subtraction rather than a multiplication or division. The second ensures
that if only one address is to be generated then it overlaps a multiplication or division where possible. The
third enables a ‘long’ address calculations to be overlapped with multiplications or divisions.
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If genaddry and genaddr, are swapped by the first or third transformations then the number of elements on
the stack that need to be preserved by each must be swapped — i.e. the number of elements to be preserved
is associated with the position of the address generation rather than with the actual address generation.

11.4.2 Efficiency of optimisations

The optimisations detailed above should be fairly easy to incorporate in a compiler. Other optimisations
involving reordering the actual compiled code are probably not worth the cost in compiler complexity.

The optimisations above have been attempted on some ‘typical’ scientific program fragments written in occam.
The results showed about a 5% increase in performance for programs using scalar variables or 1-dimensional
arrays, while when 2-dimensional arrays were used the performance increase was between 20% and 30%
due to the presence of more work in array element access that could be overlapped.
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A IEEE floating point format

Values in the REAL32 and REAL64 formats are stored in the following formats

| s l exp | frac ]

where s is the sign bit, exp is the exponent and frac is the fraction. For the REAL32 type s is 1 bit wide, exp
is 8 bits wide and frac is 23 bits wide. For the REAL64 type s is 1 bit wide, exp is 11 bits wide and frac is
52 bits wide. Whenever the exp field is not 0 the actual fraction of the number represented has an ‘implied’
1 placed on the left of the frac value.

The value of finite REALS is given by

_ [ (—=1)° x 1.frac x 2°%P-bias_ if exp #0;

va/[s' exp I frac ]_ {(—1)s x O.frac x 2'-Pas_ jf exp = 0;

where bias is 127 for REAL32 and 1023 for REAL64
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B Compliance with the IEEE 754 standard

INMOS has produced various implementations of the IEEE 754 floating point arithmetic standard. These
range from the hardware implementation of the IMS T800 to various software implementations for the IMS
T414 and IMS T212. Allimplementations have been designed to produce the same results so that applications
can be run on different transputers yet produce the same results.

B.1 The IEEE standard and INMOS implementations

The INMOS implementations are intended to provide IEEE 754 floating point arithmetic inside occam pro-
cesses. The implementations have been designed to comply with the IEEE 754 standard as closely as
possible and to perform correctly all the arithmetic and conversion operations with a full implementation of
Not-a-Numbers and denormalised numbers. Since transputers are optimised for running high level languages,
such as occam, it is important that the design reflects the requirements of these languages. This has meant
that certain parts of the IEEE standard are not supported in hardware. Principally these are the concepts
of exceptions and traps. The IEEE 754 standard is basically a hardware standard and incorporating the full
standard into a rigorous software environment, such as occam, is difficult.

The INMOS floating point implementations perform all arithmetic operations, conversions and comparisons
correctly according to the standard in both single and double length formats. Invalid operation, division by
zero and overflow exceptions can be made to cause a process to halt. In this way they implement all of the
IEEE 754 standard apart from exceptions and traps which are handled in a different way.

The full IEEE 754 standard can be implemented using software support. This fully meets the requirements
of the standard but it is not expected that anyone would ever use it as the INMOS implementation provides
all that ‘normal’ users require.

The compliance or otherwise of each of the INMOS implementations with the IEEE 754 standard is now
detailed dealing with topics in the same order as the standard.

B.2 IMS T800

The IMS T800 has IEEE 754 floating point arithmetic implemented in hardware in the floating point unit. Most
of the operations of the standard are implemented as instructions although a few are provided as short code
sequences suitable for use as in-line code inserts.

B.2.1 Real formats

The single and double length formats of the IEEE standard are fully supported. The extended formats are
not supported.

B.2.2 Rounding

On the IMS T800 Round-to-Nearest mode is the default rounding mode. Unless an instruction is explicitly
preceded by a set rounding mode instruction then the instruction will use Round-to-Nearest mode. There is
no rounding precision option as instructions either round to a definite format (e.g. round from REAL64 to
REALG64) or round to the format of the operands of the instruction. The infinitely precise result needed for
correct rounding is provided through having a round bit below the least significant bit of the fraction and a
sticky bit which contains all lower bits OR-ed together.
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B.2.3  Arithmetic

Addition, subtraction, multiplication, division are implemented as instructions that act on two operands held in
the FAreg and FBreg floating point registers. These operands should be of the same format — a compiler
must check this as the floating point unit makes no check that the types are the same. The correctly rounded
result in the same format as the operands is returned in FAreg. Operations on operands of different formats
are not supported as this would contravene the type checking rules of occam. If single op double is required
then a simple type conversion is needed — (DOUBLE single) op double.

B.2.4  Square root

Square root is implemented by a short code sequence which returns a result in the same format as the
argument.

B.2.5 Conversions

Conversions between two of the integer types supported in occam (INT32 and INT64) and the two real
formats are provided along with the ‘round floating point number to integer value’ required by the IEEE
standard. These are implemented by various code sequences and instructions. In conversions to integer, an
integer overflow caused the floating point error to be set.

B.2.6  Binary/decimal conversions

These are provided by occam procedures in which a decimal value in a BYTE array can be converted into
the REALxx that it represents and vice versa.

B.2.7  Comparisons

Two instructions implement > and = in a form that does not distinguish between finite numbers, infinities and
Not-a-Numbers. They treat infiniies and Not-a-Numbers as being normalised numbers with an exponent of
MaxExp. In this way the IEEE floating point numbers are ordered

Not-a-Numbers with sign bit set < — infinity < finite numbers
< + infinity < Not-a-Numbers with sign bit clear

Unorderedness can also be obtained through another instruction, so from these 3 primitives all of the com-
parisons in the IEEE standard can be constructed. In particular IEEE greater than and equal to are available
as short code sequences.

B.2.8 Not-a-Numbers

Several Not-a-Numbers are produced by the floating point unit to signify the various invalid operations that are
possible. These Not-a-Numbers all propagate through arithmetic in the ways specified in the IEEE standard.
If an operation has two Not-a-Numbers as operands then the ‘larger’ Not-a-Number is returned. The presence
of a Not-a-Number as an input or output to an operation causes an error to be returned which enables the
signalling of Not- a-Numbers to be implemented. Such an error causes the floating point error flag on the
IMS T800 to be set

The Not-a-Numbers can be made to be quiet (propagating through expressions) or signalling (setting the
main error flag, halting the processor) dependent on whether the floating error flag is OR-ed into the main



B Compliance with the IEEE 754 standard 107

error flag — i.e. depending on whether the floating point mode is check or unchecked.

B.29  Exceptions

Exception handling is provided through the error returned from operations. On the IMS T800 an error causes
the floating point error flag to be set. This error can be copied into the transputer error flag so that exceptions
can be signalled. In this area the IMS T800 implementation diverges from the full IEEE standard.

IEEE 754 stipulates that 5 types of exception shall be signalled — invalid operation, division by zero, overflow,
underflow and inexact. These are signified by bits being set or unset in a status word. This could have been
implemented but there were reasons against doing so when the IMS T800 was designed. It would have
introduced more state into the floating point unit. To examine the contents of this register it would probably
have been necessary to copy it across into the integer Areg and then perform masking operations on it. This
would have had an impact on performance as well as losing the simplicity that had been gained on the IMS
T414 of having only one error flag.

On the IMS T800 an invalid operation results in the floating point error flag being set along with the corre-
sponding Not-a-Number being returned. Division by zero sets the floating point error flag and the correct
infinity. Overflow rounds to the result as specified and sets the floating point error flag.

Underflow and inexact are not supported in any way.

In addition any operation having a Not-a-Number or an infinity as an input returns an error. The Not-a-Number
case is the way in which Not-a-Numbers can be treated as signalling. The infinity case is not specified in
the IEEE standard but the signalling of ‘infinite’ arguments seems useful. This is because a value that is an
infinity is either a true infinity or just an overflow. The IEEE standard treats an overflow as if it were true
infinity and hence having the same exact arithmetic properties as true infinity. This could be dangerous and
it seems helpful to flag operations where an overflowed value may be being used.

If the floating point error flag is cleared at the start of each expression evaluation and is examined before the
result is stored then the presence of an invalid operation, division by zero or overflow in its calculation can be

detected. Also if the result is a Not-a-Number then its ‘value’ shows which error caused that Not-a-Number
to be returned.

B.2.10 Traps

Traps are not provided.

B.3 Software implementations

occam functions and procedures to support IEEE 754 arithmetic are included in the standard compiler libraries.
REALxxOP, REALxxREM, REALxxGT, REALxxEQ, SQRT, DSQRT etc are a collection of occam functions
which implement the main areas of the IEEE 754 floating point arithmetic standard. They are designed for
efficient execution — other functions detailed in the next section give a fuller implementation of the standard.

REAL320P has been optimised for the IMS T414 by making use of the microcode floating point support
instructions.
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B.3.1 Real formats

The single and double length formats of the IEEE standard are fully supported. The extended formats are
not supported.

B.3.2 Rounding

Rounding is performed in Round-to-Nearest mode for the arithmetic operations. With the type conversions
there is a choice between Round-to-Nearest mode and Round-to-Zero (truncation) mode. There is no round-
ing precision option as instructions either round to a definite format (e.g. round from REAL64 to REAL32) or
round to the format of the operands of the instruction. The infinitely precise result needed for correct rounding
is provided through having a round bit below the least significant bit of the fraction and a sticky bit which
contains all lower bits OR-ed together.

B.3.3 Arithmetic

Addition, subtraction, multiplication, division are provided by REALxxOP. This takes as its parameters two
operands, of the same format, and a value indicating which operation is to be performed. The correctly
rounded result is returned.

Similarily REALxxREM returns the remainder of the operands passed as parameters.

Operations on operands of different formats are performed using a type conversion in the same way as on
the IMS T800.

B.3.4 Square root

Square root is provided by the SQRT and DSQRT functions in the occam standard function library.

B.3.5 Conversions
Conversions between two of the integer types supported in occam (INT32 and INT64) and the two real

formats are provided along with the round floating point number to integer value required by the IEEE standard
through various occam functions. Integer overflow causes the transputer error flag to be set.

B.3.6 Binary/decimal conversions

These are provided by occam procedures in which a decimal value in a BYTE array can be converted in to
the REALxx that it represents and vice versa.

B.3.7 Comparisons

REALxxGT and REALxxEQ implement > and = in a similar way to that on the IMS T800 in which finite
numbers, infinities and Not-a-Numbers are not distinguised. These implement IEEE comparison correctly
when both arguments are not Not-a-Numbers.
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B.3.8 Not-a-Numbers

The generation and propagation of Not-a-Numbers is the same as on the IMS T800. All Not-a-Numbers
are signalling in these implementations as the main transputer error flag will be set when a Not-a-Number is
created.

B.3.9  Exceptions

Exception handling is as on the IMS T800 except that the main transputer error flag will be set where the
IMS T800 would set the floating point error flag.

B.3.10 Traps

Traps are not provided.

B.4 Error flagging software implementations

IEEExxOP, IEEExxREM and IEEExxCOMPARE are occam functions that provide for a fuller implementa-
tion of the IEEE 754 floating point arithmetic standard.

B.4.1 Real formats

The single and double length formats of the IEEE standard are fully supported. The extended formats are
not supported.

B.4.2 Rounding

All 4 rounding modes in the |IEEE 754 standard are supported.

B.4.3 Arithmetic

Addition, subtractions, multiplication and division are provided by IEEExxOP. IEEExxOP takes as its pa-
rameters two operands, of the same type, a value representing the rounding mode to be used and a value
indicating the operation to be used. It returns the correctly rounded result along with a BOOL flag. This flag
is TRUE when the operation raised an exception.

Similarily IEEExxREM implements remainder and returns the correct result along with a BOOL flag indicating
whether the remainder caused an exception to be raised.

B.44  Comparisons

IEEExxCOMPARE takes as its parameters two arguments of the same type and returns a value indicating
whether the first argument is greater than, equal to or less than the second argument or whether the two
arguments were unordered in the sense of the IEEE 754 standard. This enables all the comparisons described
in the IEEE 754 standard to be implemented.
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Error Single length value Double length value

Divide zero by zero #7FC00000 #7FF80000 00000000
Divide infinity by infinity #7FA00000 #7FF40000 00000000
Multiply zero by infinity #7F900000 #7FF20000 00000000
Addition of opposite signed infinities ~ #7F880000 #7FF10000 00000000
Subtraction of same signed infinities ~ #7F880000 #7FF10000 00000000
Negative square root #7F840000 #7FF08000 00000000
REAL64 to REAL32 NaN conversion  #7F820000 #7FF04000 00000000
Remainder from infinity #7F804000 #7FF00800 00000000
Remainder by zero #7F802000 #7FF00400 00000000

Figure B.1 Arithmetic Not-a-Number values

B.4.5 Not-a-Numbers
The generation and propagation of Not-a-Numbers is the same as on the IMS T800. Not-a-Numbers are

quiet in these implementations as the main transputer error flag is not affected. However, the result can
be examined and tested, and the error flag explicitly set, so that certain Not-a-Numbers can be made to be

signalling.
B.4.6 Exceptions

Exception handling is as on the IMS T800 except that the BOOL result will be TRUE where the IMS T800
would set the floating point error flag.

B.4.7 Traps

Traps are not provided.

B.5 Full IEEE arithmetic
A full implementation of IEEE arithmetic including status registers, rounding mode registers etc. can be

implemented in a mixture of software and the floating point unit hardware to give full compliance with IEEE
754.

B.6 Not-a-Number values

The INMOS floating point arithmetic software implementations and the IMS T800 return the various ‘values’
of Not-a-Numbers to signify the various errors that can occur in evaluations. These are shown in figure B.1.

In addition the INMOS standard function libraries return the Not-a-Number ‘values’ in figure B.2.

Result not defined mathematically means that the function is undefined for the argument — e.g. a logarithm
of a negative number.

Result unstable and inaccurate are both caused by the inability of the algorithm to return an accurate result
given the presumed inaccuracy of the argument. An unstable result is caused by the function being mathe-
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Result not defined mathematically #7F800010 #7FF00002 00000000
Result unstable #7F800008 #7FF00001 00000000
Result inaccurate #7F800004 #7FF00000 80000000

Figure B.2 Standard function Not-a-Number values

matically unstable. An inaccurate result is caused by the the algorithm being unable to evaluate accurately
the result even though the function is well behaved. Taking the tangent of 7 would result in an unstable Not-
a-Number as a small error in the argument could alter the result from a very large positive number to a very
large negative number. Taking the sine of a very large argument can result in an inaccurate Not-a-Number
as the reduction to primary range cannot be performed accurately due to the approximation to = used in the
algorithm.
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C Special values

The transputer uses certain special values to store information about the sate of channel communication,

alternative execution etc. Th

Name

MostNeg
MostPos
NotProcess.p

Enabling.p
Waiting.p
Disabling.p

TimeSet.p

TimeNotSet.p

NoneSelected.o

ese are listed in the table below.
Use

The most negative value

The most positive value

Used, where a process descriptor is
expected, to indicate that there is no
process. In channel word shows no
communication waiting, in timer queue
shows end of queue

Stored in (Wptr—3) while alternative is
being enabled.

Stored in (Wptr—3) while alternative is
waiting.

Stored in (Wptr—3) while alternative is
being disabled.

Stored in (Wptr—4) during enabling of
timer alternative after a time to wait for
has been encountered.

Stored in (Wptr—4) during enabling of
timer alternative when no time to wait
for has been encountered.

Stored in (Wptr+0) while no branch of
an alternative has been selected dur-
ing the waiting and disabling phases

32 bit value

#80000000
#7FFFFFFF
#80000000

#80000001

#80000002

#80000003

#80000001

#80000002

16 bit value

#8000
H#TFFF
#8000

#8001

#8002

#8003

#8001

#8002
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D Instructions set summary

The instructions executed by the processor include direct functions, the prefixing functions pfix and nfix, and
an indirect function opr which uses the operand register Oreg to select one of a set of operations.

The set of functions and operations is given below. These are listed in a similar order to the order in which
they were introduced earlier. A list ordered by op-codes follows as an aid to debugging transputer code.

Also included is the number of processor cycles that each instruction takes to execute. This number does
not include the time for any preceding prefix instructions. The following symbols are used in the timings

the bit number of the highest bit set in Areg

the number of bits of a shift

the number of words, plus non word aligned part words, in a message
bpw the number of bits per word

S sSoT

The timings assume all memory access is to on chip RAM. Timings marked with a **’ indicate a worst case
time. The time taken for certain instructions — especially those dealing with timer queues etc — is totally
dependent on the machine state when executed so no time is given and a ‘' symbol appears in the table.
Note that timings for instructions that can cause descheduling, such as communication, assume that that
communication proceeds immediately without the process being descheduled.

The column D/E contains a ‘D’ if the instruction can cause the current process to be descheduled and an ‘E’
if it can cause the error flag to be set.
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D.1 Direct, prefixing and indirect functions

The Code given below is the contents of the code field of the instruction that occupies the most significant
4 bits of the byte. The data to the operation is placed in the least significant 4 bits of the byte with prefixing
instructions being used to build data values of greater than 4 bits.

Code Abbreviation Cycles D/E

#2 pfix 1 prefix
#6 nfix 1 negative prefix
#F opr - operate — for timing see operation list
#4 ldc 1 load constant
#7 Idl 2 load local
#D stl 1 store local
#1 Idip 1 load local pointer
#8 adc 1 E  add constant
#C eqc 2 equals constant
#0 Ji 3 D jump
#A ¢ 4 conditional jump — jump taken
2 conditional jump — jump not taken
#3 Idnl 2 load non local
#E stnl 2 store non local
#5 ldnip 1 load non local pointer
#9 call 7 call

#B aw 1 adjust workspace
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D.2

Operations

The Code given below is the value that needs to be placed in the operand register for the opr function that
performs the operation. For example a ret, whose code is #20, is executed by the code

which is in hexadecimal notation

pfix 2; opr 0

#22; #F0

A short operation can be expressed as a single byte as no prefixing is required to the opr instruction. A long
operation requires two bytes as a prefix instruction is required.

Code

#00

#05
#0C
#53
#2C
#1F

#52
#04
#08

#46
#4B
#33
#32
#41
#40

#09
#21
#34
#3F
#1B
#42
#02
#0A

#4A

Size
short

short
short
long
long
long

long
short
short

long
long
long
long
long
long

short
long
long
long
long
long
short
short

long
short

short

Abbreviation
rev

add
sub
mul
div

rem

sum
diff
prod

and
or
xor
not
shl
shr

gt

lend

bent
went

Idpi
mint
bsub
wsub

move
in

out

Cycles D/E

1

1
1
bpw+6
bpw+10*
bpw+5

mmmmm

b+4

n+2
n+2

10 D

[S,1)\V)

N = =N

2w+8
2w+18

2w+20
20 D

reverse

add
subtract
multiply
divide
remainder

sum
difference
product

and

or
exclusive or
bitwise not
shift left
shift right

greater than

loop end — loop back
loop end — exit loop

byte count
word count

load pointer to instruction
mimimum integer

byte subscript

word subscript

move message
input message — communication procedes
input message — communication waits
output message — communication procedes
output message — communication waits



118

D

Instructions set summary

Code

#01
#3B
#OE
#OF

#06
#3C
#20

#0D
#03

#39
#15
#1E

#22
#2B

#43
#44
#45
#4E
#51

#49
#30
#48
#2F
#47
#2E

#13
#4D
#29
#55
#10

#3A
#56
#1D
#4C

#16
#38
#37
#4F
#31
#1A

#36
#35
#19

Size

short
long

short
short

short
long
long

short
short

long
long
long

long
long

long
long
long
long
long

long
long
long
long
long
long

long
long
long
long
long

long
long
long
long

long
long
long
long
long
long

long
long
long

Abbreviation

b

sb
outbyte
outword

gcall
gajw
ret

startp
endp

runp

stopp
Idpri

Idtimer
tin

alt
altwt
altend
talt
taltwt

enbs
diss
enbc
disc
enbt
dist

csub0
centt
testerr
stoperr
seterr

xword
cword
xdble
csngl

ladd
Isub
Isum
[diff
Imul
Idiv

Ishl
Ishr
norm

Cycles

an s

12
13

10

—+ N

AR oo JHArW AR+

wnhohs

NN

bpw+1
bpw+3

n+3
n+3
bpw+5*

load byte
store byte
output byte
output word

general call
general adjust workspace
return

start process
end process

run process
stop process
load current priority

load timer
timer input

alt start
alt wait
alt end
timer alt start
timer alt wait

enable skip
disable skip
enable channel
disable channel
enable timer
disable timer

check subscript from 0
check count from 1

test error false and clear
stop on error

set error

extend to word
check word
extend to double
check single

long add
long subtract
long sum
long diff
long multiply
long divide

long shift left
long shift right
normalise
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Code
#12
#2A

#18
#1C
#54
#50
#17

#3E
#3D

#57

#58
#59

D.3
Code

#72

D.4
Code

#63
#6D
#6C
#71
#73

Size Abbreviation Cycles D/E

long resetch 3 reset channel

long testpranal 2 test processor analysing

long sthf 1 store high priority front pointer
long stif 1 store low priority front pointer
long sttimer 1 store timer

long sthb 1 store high priority back pointer
long stib 1 store low priority back pointer
long saveh 4 save high priority queue registers
long savel 4 save low priority queue registers
long clrhalterr 1 clear halt-on-error

long sethalterr 1 set halt-on-error

long testhalterr 2 test halt-on-error

Extra instructions on 32 bit transputers
Size Abbreviation Cycles D/E

long  fmul 40 E fractional multiply

Extra instructions on IMS T414
Size Abbreviation Cycles D/E

long unpacksn 16 unpack single length fp number

long  roundsn 15 round single length fp number

long postnormsn 30* post-normalise correction of single length fp number
long /dinf 1 load single length infinity

long cflerr 3 E  check single length fp infinity or NaN
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D.5 Additional instructions on IMS T800
D.5.1 Main processor instructions
Code Size Abbreviation Cycles D/E
#5A long dup 1 duplicate top of stack
#5B long move2dinit i initialise data for 2 dimensional block move
#5C long move2dall 1 2 dimensional block copy
#5D long move2dnonzero t 2 dimensional block copy non zero bytes
#5E long move2dzero t 2 dimensional block copy zero bytes
#74 long creword bpw+3 calculate CRC on word
#75 long crcbyte 11 calculate CRC on byte
#76 long bitent b+2 count bits set in word
#77 long bitrevword bpw+4 reverse bits in word
#78 long bitrevnbits n+4 reverse bottom n bits in word
#81 long wsubdb 3 form double word subscript
D.5.2 Floating point unit instructions

The time taken to execute many floating point instructions is extremely data dependent. The timings given
here are typical times for such instructions, such as arithmetic on normalised data. Certain values in the
registers may cause execution to take more or less time. For the multiply and divide instructions two values
are given, first for single length data and then for double length. The number of cycles quoted does not take
account of any prefixing sequences or the loading of an op code into Areg for an foentry instruction. The
column F contains an entry ‘F’ if the instruction can cause the floating point error flag to be set.

A floating point instruction whose Size is described as being ‘seq’ is executed by loading its Code into Areg
then executing an fpentry instruction.

Code

#AB

#A3
#A4

#8E
#8A
#86
#82

#88
#84

#22
#06
#04
#05

Size
long

long
long

long
long
long
long

long
long

seq
seq
seq
seq

Abbreviation Cycles F

foentry

fodup
forev

foldnisn
foldnldb
foldnisni
fpldnidbi

fostnisn
fostnldb

fourn
fourz
fourp
fourm

o w NOOow

—_

F

floating point unit entry

floating point duplicate
floating point reverse

floating point load non local single
floating point load non local double
floating point load non local indexed single
floating point load non local indexed double

floating point store non local single
floating point store non local double

set rounding mode to round nearest
set rounding mode to round zero
set rounding mode to round positive
set rounding mode to round minus
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Code Size
#87 long
#89  long
#8B long
#8C long
#01  seq
#02  seq
#03  seq
#8F long
#90 long
#9F  long
#A0 long
#12  seq
#11  seq
#0A  seq
#09  seq
#0B  seq
#AA  long
#A6 long
#AC  long
#A8 long
#83 long
#9C  long
#23  seq
#9C  seq
#94 long
#95 long
#92 long
#91 long
#93  long
#07  seq
#08  seq
#A1 long
#9E  long
#O0E  seq
#OF  seq
#9D  long
#96 long
#98 long
#9A  long
#0D  seq

Abbreviation Cycles

fpadd
fosub
fomul
fodiv

fousqrtfirst
fousqrtstep
fousqrtlast

foremfirst
foremstep

foldzerosn
foldzerodb
foumulby2
foudivby2
fouexpinc32
fouexpdec32

fouabs

foldnladdsn
foldnladddb
foldnimulsn
foldnimuldb

fochkerr
fotesterr
fouseterr
fouclrerr

fogt
foeq
foordered

fonan
fonotfinite

four32tor64
four64tor32

fpint
fostnli32
fouchki32
fouchki6é4
fortoi32

fpi32tor32
fpi32tor64
fob32tor64
founoround

7
7
11]20
17/32

25
42
10

48*
40*

@ 0 @ = =

mMm T m

n

m MMM

mMm T

M|

floating point add
floating point subtract
floating point multiply
floating point divide

floating point square root first step
floating point square root step
floating point square root end

floating point remainder first step
floating point remainder iteration step

load zero single
load zero double
multiply by 2.0
divide by 2.0
multiply by 232
divide by 232

floating point absolute

floating point load non local and add single
floating point load non local and add double
floating point load non local and multiply single
floating point load non local and multiply double

check floating point error

test floating point error false and clear
set floating point error

clear floating point error

floating point greater than
floating point equality
floating point orderability

floating point nan
floating point finite

real32 to real64
real64 to real32

round to floating integer
store non local int32

check in range of type int32
check in range of type int64
real to int32

int32 to real32
int32 to real64
bit32 to real64
real64 to real32 w/o rounding
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E Instructions set reference

All transputer instructions are listed below ordered by their op-codes. The direct functions are listed first. The
bottom 4 bits of any use of a direct function will be determined by the operand value of that function.

The operations are then listed giving the full sequence of bytes required to execute that operation.

E.1 Direct functions

Byte Abbreviation

#0x j jump

#1x  ldlp load local pointer
#2x  pfix prefix

#3x  ldnl load non local
#4x  Ildc load constant
#5x  ldnip load non local pointer
#6x  nfix negative prefix
#7x  Idl load local

#8x adc add constant
#9x  call call

#Ax ¢ conditional jump
#Bx  ajw adjust workspace
#Cx eqgc equals constant
#Dx st store local

#Ex  stnl store non local

#Fx  opr operate
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E.2 Operations

N.b. This is a list of all transputer operations.

variants.
Bytes

#FO
#F1
#F2
#F3
#F4
#F5
#F6
#F7
#F8
#F9
#FA
#FB
#FC
#FD
#FE
#FF
#21; #F0
#21,; #F2
#21; #F3
#21; #F5
#21; #F6
#21; #F7
#21; #F8
#21; #F9
#21; #FA
#21; #FB
#21; #FC
#21; #FD
#21,; #FE
#21,; #FF
#22; #F0
#22; #F1
#22; #F2
#22; #F9
#22; #FA
#22; #FB
#22; #FC
#22; #FE
#22; #FF
#23; #FO
#23; #F1
#23; #F2
#23; #F3
#23; #F4
#23; #F5
#23; #F6
#23; #F7

Abbreviation

rev
b
bsub
endp
diff
add
gcall

in

prod
gt
wsub
out
sub
startp
outbyte
outword
seterr
resetch
csub0
stopp
ladd
stlb
sthf
norm
Idiv
ldpi

stif
xdble
Idpri
rem

ret
lend
Idtimer
testerr
testpranal
tin

div

dist
disc
diss
Imul
not

xor
bent
Ishr
Ishi
Isum

reverse
load byte

byte subscript
end process
difference

add

general call
input message
product

greater than
word subscript
output message
subtract

start process
output byte
output word

set error

reset channel

Some operations are only available on certain transputer

check subscript from 0

stop process
long add

store low priority back pointer
store high priority front pointer

normalise
long divide

load pointer to instruction
store low priority front pointer

extend to double
load current priority
remainder

return

loop end

load timer

test error false and

clear

test processor analysing

timer input
divide

disable timer
disable channel
disable skip
long multiply
bitwise not
exclusive or
byte count
long shift right
long shift left
long sum
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Bytes

#23; #F8
#23; #F9
#23; #FA
#23; #FB
#23; #FC
#23; #FD
#23; #FE
#23; #FF
#24; #F0
#24; #F1
#24; #F2
#24; #F3
#24; #F4
#24; #F5
#24; #F6
#24; #F7
#24; #F8
#24; #F9
#24; #FA
#24; #FB
#24; #FC
#24; #FD
#24; #FE
#24; #FF
#25; #F0
#25; #F1
#25; #F2
#25; #F3
#25; #F4
#25; #F5
#25; #F6
#25; #F7
#25; #F8
#25; #F9
#25; #FA
#25; #FB
#25; #FC
#25; #FD
#25; #FE
#26; #F3
#26; #FC
#26; #FD
#27; #F1
#27; #F2
#27; #F3
#27; #F4
#27, #F5
#27; #F6
#27; #F7
#27; #F8
#28; #F1
#28; #F2

Abbreviation

Isub

runp
xword

sb

gajw
savel
saveh
went

shr

shi

mint

alt

altwt
altend
and

enbt

enbc

enbs
move

or

csngl
centt

talt

[diff

sthb

taltwt

sum

mul
sttimer
stoperr
cword
clrhalterr
sethalterr
testhalterr
dup
move2dinit
moveZ2dall
move2dnonzero
move2dzero
unpacksn
postnormsn
roundsn
Idinf

fmul

cflerr
creword
crcbyte
bitent
bitrevword
bitrevnbits
wsubdb
foldnldbi

long subtract

run process

extend to word

store byte

general adjust workspace

save low priority queue registers
save high priority queue registers
word count

shift right

shift left

mimimum integer

alt start

alt wait

alt end

and

enable timer

enable channel

enable skip

move message

or

check single

check count from 1

timer alt start

long diff

store high priority back pointer
timer alt wait

sum

multiply

store timer

stop on error

check word

clear halt-on-error

set halt-on-error

test halt-on-error

duplicate top of stack

initialise data for 2 dimensional block move
2 dimensional block copy

2 dimensional block copy non zero bytes
2 dimensional block copy zero bytes
unpack single length fp number

post-normalise correction of single length fp number

round single length fp number

load single length infinity

fractional multiply

check single length fp infinity or NaN
calculate CRC on word

calculate CRC on byte

count bits set in word

reverse bits in word

reverse bottom n bits in word

form double word subscript

floating point load non local indexed double
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Bytes Abbreviation
#28; #F3  fpchkerr check floating point error
#28; #F4  fpstnidb floating point store non local double
#28; #F6  fpldnisni floating point load non local indexed single
#28; #F7 fpadd floating point add
#28; #F8  fpstnisn floating point store non local single
#28; #F9  fosub floating point subtract
#28; #FA  fpldnidb floating point load non local double
#28; #FB  fpmul floating point multiply
#28; #FC  fpdiv floating point divide
#28; #FE  fpldnisn floating point load non local single
#28; #FF  fpremfirst floating point remainder first step
#29; #F0 foremstep floating point remainder iteration step
#29; #F1  fpnan floating point nan
#29; #F2 fpordered floating point orderability
#29; #F3  fpnoffinite floating point finite
#29; #F4 fpgt floating point greater than
#29; #F5 fpeq floating point equality
#29; #F6  fpi32tor32 int32 to real32
#29; #F8  fpi32tor64 int32 to real64
#29; #FA  fpb32tor64 bit32 to real64
#29; #FC  fptesterr . test floating point error false and clear
#29; #FD  fprtoi32 real to int32
#29; #FE  fpstnli32 store non local int32
#29; #FF  fpldzerosn load zero single
#2A; #F0  fpldzerodb load zero double
#2A; #F1  fpint round to floating integer
#2A; #F3  fpdup floating point duplicate
#2A; #F4  fprev floating point reverse
#2A; #F6  fpldnladddb floating point load non local and add double
#2A; #F8  fpldnimuldb floating point load non local and multiply double
#2A; #FA  fpldnladdsn floating point load non local and add single
#2A; #FB  fpentry floating point unit entry
#2A; #FC  fpldnimulsn floating point load non local and multiply single
#41; #2A; #FB  fpusqrtfirst floating point square root first step
#42; #2A; #FB  fpusqristep floating point square root step
#43; #2A; #FB  fpusqrtiast floating point square root end
#44; #2A; #FB  fpurp set rounding mode to round positive
#45; #2A; #FB  fourm set rounding mode to round minus
#46; #2A; #FB  fpurz set rounding mode to round zero
#47; #2A; #FB  fpur32tor64 real32 to real64
#48; #2A; #FB  fpur64tor32 real64 to real32
#49; #2A; #FB  fouexpdec32  divide by 2%
#4A; #2A; #FB  fouexpinc32  multiply by 2%2
#4B; #2A,; #FB  fpuabs floating point absolute
#4D; #2A; #FB  fpunoround real64 to real32 w/o rounding
#4E; #2A,; #FB  fpuchki32 check in range of type int 32
#4F; #2A,; #FB  fpuchki64 check in range of type int 64
#21; #41; #2A; #FB  fpudivby2 divide by 2.0
#21; #42; #2A; #FB  foumulby2 multiply by 2.0
#22; #42; #2A; #FB  fourn set rounding mode to round nearest
#22; #43; #2A; #FB  fpuseterr set floating point error

#29; #4C; #2A; #FB

fouclrerr

clear floating point error
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It is important when using transputer instructions to know the effect of those instructions on the state of the
transputer. In particular it is important to know what happens to the information on the register stack. In
the earlier sections of this guide an attempt has been made to explain what happens to these registers in
cases where it is important — e.g. in some of the instructions used in the evaluation of expressions — but in
other places these details have been omitted. The instruction descriptions that follow provide a more formal
definition of them. The descriptions are intended to capture precisely what the effect of each instruction is.
This is usually achieved by using mathematical relations that hold between the state of the transputer before
and after the instruction has been executed. In some cases, to aid clarity and brevity, parts of the state
changes are described textually.

The sections explaining how transputer instructions are used to implement high level language constructs
should be sufficient to explain how each instruction is used. This section has been added to give a more
precise definition of the effect of each instruction on the transputer state. It is realised that many readers will
not be familiar with this style of specification. A brief explanation of some of the notation used is given so
that it should be possible to understand most of the specification. The intention is that this section is only
consulted to check if, for example, an instruction is defined to preserve the value in Creg rather than to find
out what an instruction does.

F.1 Definitions

A few informal definitions are required to identify the wordlength of the transputer being specified. Note that
the specifications of the instructions are the same for transputers of different wordlength apart from the values
given to these constants.

wordlength and bytesperword are constants of the particular transputer being specified. byteselectmask and
byteselectlength are derived from wordlength to enable the byte selector bits to be extracted from a pointer.
wordlength and bytesperword are clearly linked by

wordlength = bytesperword x 8

As was described earlier, byteselectlength is the smallest number of bits needed to distinguish the bytes in a
word. byteselectmask is the mask used to extract these bits from a pointer. These can be deduced for any
wordlength by solving the inequalities

2byreselec!/eng!h—1 < bytespem/ord < 2byreselec!length
byteselectmask = 2byteselectlength _ 4

F.1.1 Data types

The basic data quantities are the Word and the Byte. A Byte is an unsigned integer b in the range
0 <b< 256. A Word can be interpreted as an unsigned integer w in the range 0 < w < 2%ordength o
as a signed integer or as a bit pattern. As this is only an informal specification no further details on their
definition will be given and the relevant interpretation of a Word at any point should be clear from its context.
Where necessary operations are annotated with suffices to indicate whether the operation is being performed
on the signed or unsigned interpretations.
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F.1.2 The transputer state
The transputer state consists of the registers
Areg, Breg, Creg, Oreg, Iptr, Wptr

the memory, which will be described later, and various flags and special registers such as the ErrorFlag,
process queue pointers, clock registers, current priority level etc.

F.2 Reading a specification

The specification of each instruction is presented as a ‘schema’ of the following form.

abbreviation code name
predicates defining effect of the instruction

The value of registers etc. after the instruction will be specified in terms of their values before the instruction.
The definitions will give a precise definition of the ‘values’ left in each register so that register allocation can
be identified. Most of the predicates are of the form

register’ = expression involving registers
Primed names represent values after the instruction while unprimed names represent values before the
instruction. For example, Areg represents the value of Areg before the execution of the instruction while
Areg’ represents the value of Areg afterwards. So the predicate above states that the register on the left
hand side of the equality becomes equal to the value of the expression on the right hand side after the
instruction has been executed. For example

Areg’= Breg + Areg

states that after the instruction Areg will contain the sum of the values that were in Breg and Areg before
the instruction. In addition

Oreg®
is used to hold the value of the operand register used in an instruction.
All of these predicates can be read together as a multiple assignment statement if necessary.

Quantities whose value after the instruction do not appear in the predicate part are unchanged by the
instruction. An undefined value is represented by the symbol undefined.

The symbols true and false represent the machine representations of the booleans TRUE and FALSE. These
are 1 and 0 respectively.

The symbol Nextinst represents the address of the start of the next instruction in the code.

To simplify the definition of checked arithmetic the operators +checked> —checked @Nd X checked Will be used to
denote the signed arithmetic operators that will side effect by setting the error flag in case of overflow.

In some places text is used to describe effects that cannot be described easily in the simplified specification
language used here. As this is only an informal specification this is acceptable.
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F.2.1 Timeslicing

If an instruction can cause timeslicing to occur then it must be assumed that all registers may be undefined
after execution.

F.2.2 An example instruction specification — add

As an example take the add instruction. This is specified by

add #05 add
Areg’ = Breg +checked Areg
Breg’ = Creg

Creg’ = undefined
Iptr’ = Nextinst
ErrorFlag’ = can be set by +checked

This states that

e Add has abbreviation add and operation code #05.

e The value of Areg after the operation is the sum of the values that were in Areg
and Breg before the operation.

o The value that was in Creg has been popped into Breg.

o The value in Creg afterwards is not specified.

o Iptr is set to the start of the next instruction.

e The error flag will be set by an overflow in the sum of Breg and Areg

e The memory and the other flags are not affected by this operation as they are not
mentioned in this specification.

F.2.3 Representing memory

The transputer's memory is used in three ways in the instruction set

¢ As Byte values stored at byte addresses — as in Ib, sb, etc.
¢ As Word values stored at word addresses — as in Idnl, stnl, etc.

¢ As Word values stored at word offsets from Wptr — as in IdI, stl, etc.
These three representations will be called

ByteMem
Mem
Workspace

respectively and always be assumed to be consistent with each other — i.e. changing an entry in Workspace
will have the equivalent effect in ByteMem and Mem. The three representations should be seen as three
methods of interpreting the same data.
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As Mem is used to represent the Word values at word address, it is not appropriate to consider its value at
addresses which are not word addresses. Therefore

Mem addr
will be considered to be undefined if the byte selector of addr is not 0.

A transputer’s memory consists of Byte values at Word addresses. However most accesses to memory deal
in Word sized quantities. Also many instructions use Word offsets in addressing.

Index and Bytelndex will be used to form the address which is a given number of words or bytes past a base
address respectively. They are defined to wrap the address space around when an overflow occurs. For
example in the specification of ldnl the statement

Areg’ = Mem (Index Areg Oreg®)

is used. In this (Index Areg Oreg®) is used to form the address that is Oreg® words from the address pointed
to by Areg. These can be considered to be defined by

Index x y = x + bytesperword x y
Bytelndex xy = X +y

where the arithmetic ‘wraps round’ the address space — i.e. adding one to the address at the top of the
address map produces the address of the bottom of the address map.

‘Accessing’ memory

The value of the word at address addr is simply
Mem adar

Writing a word value v to memory at address addr is represented by
Mem ¢ { addr — v}

This is because, in this style of specification, it is convenient to consider memory to be a function that when
given an address evaluates to the contents of that address.

Reading a memory address is achieved by applying the memory function to that address.

Writing a value to memory is achieved by overwriting the memory function with a second function that contains
the modified data. In the example above the memory Mem is overwritten (the & operator) by a function that
maps (—) addr to v. This gives a function that is identical to Mem for all arguments apart from addr where
it now evaluates to v. This represents a memory that used to be Mem but has now had v stored at location
addr.

To demonstrate this modelling of memory consider the specification of store local

stl #D_ store local
Areg’ = Breg
Breg’ = Creg
Creg’ = undefined
Oreg’ =0
Iptr’ = Nextinst
Workspace’ = Workspace ¢ { Oreg® — Areg}
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This specifies that

¢ Store local has abbreviation stl and operation code #D_ — i.e. it is direct function
#D.

¢ The evaluation stack has been popped up one place.
e Oreg is set to zero.
e Iptr is set to the start of the next instruction.

¢ The value that was in Areg has been stored into Workspace at the offset that was
held in Oreg. This is equivalent to the address in Mem which is Oreg® words from
Wptr — i.e. at address Index Wptr Oreg°®.

e Mem’ and ByteMem’ will now differ from Mem and ByteMem as to take account
of the modification made to Workspace.

F.24 Preconditions to instructions

Some instructions are only well defined under certain circumstances. These are specified by including extra
predicates that define their preconditions. For example block move is only well defined when the two blocks
do not overlap. The specification of block move is

move #4A move message

- (Creg < Breg < (Creg + Areg))

- (Breg < Creg < (Breg + Areg))

i.e. the two blocks do not overlap

Areg’ = undefined

Breg’ = undefined

Creg’ = undefined

Iptr’ = Nextinst

This copies Areg bytes starting at address Creg to the block starting at address Breg.

The first two predicates are true only when the two blocks do not overlap. The specification is only well
defined when all the predicates can be satisfied so this implies the the fact that the effect of a block move is
undefined when the two blocks overlap.
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F.3 Instruction specifications
F.3.1 Decoding an instruction

The lower four bits of the instruction are placed in the bottom of the operand register and the top four bits
are interpreted as the function code.

OregP represents the value of the operand register after the decoding has taken place but before the selected
instruction is executed.

Instruction_Decode
Oreg® = Oreg V ((Mem Iptr) A #F)
((Mem Iptr) A #F0) = pfix.code = pfix
((Mem Iptr) A #F0) = nfix.code = nfix
((Mem Iptr) A #F0) = opr.code = opr
( )

(Mem Iptr) A #F0) = Idl.code = IdI

efc.

F.3.2 Prefixing and operate

pfix #2_ prefix
Oreg’ = Oreg® < 4
Iptr’ = Iptr + 1

nfix #6_ negative prefix
Oreg’ = (BITNOT Oreg®) < 4
Iptr’ = Iptr + 1

As these are not ‘full’ instructions in themselves but are used to build up an operand for a function the Iptr is
explicitly incremented by 1 here.

opr #F_ operate
Oreg’ =0
Oreg® = rev.code = rev
Oreg® = ret.code = ret

elc.

F.3.3 Direct Functions

Ide #4_ load constant
Areg’ = Oreg°
Breg’ = Areg
Creg’ = Breg
Oreg’ =0
Iptr’ = Nextinst
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Idl #7_ load local
Areg’ = Workspace Oreg®
Breg’ = Areg
Creg’ = Breg
Oreg’' =0
Iptr’ = Nextinst
stl #D_ store local
Areg’ = Breg
Breg’ = Creg
Creg’ = undefined
Oreg’ =0

Iptr’ = Nextinst
Workspace' = Workspace & { Oreg® — Areg}

load local pointer

Idip #1_
Areg’ = Index Wptr Oreg®
Breg’ = Areg
Creg’ = Breg
Oreg’ =0

Iptr’ = Nextinst

adc #8_

add constant

Areg’ = Areg +checked Oreg®

Oreg’ =0

Iptr’ = Nextinst

ErrorFlag’ can be set by overflow from +checked

eqgc #C_

equals constant

(Areg = Oreg®) = Areg’ = true
(Areg # Oreg®) = Areg’ = false
Oreg’ =0

Iptr’ = Nextinst

J #0_ jump
Oreg’ =0
Iptr’ = ByteIndex Nextinst Oreg®
This instruction has the potential to cause a process to be timesliced
¢ #A_ conditional jump
Areg = 0 = Areg’ = Areg
Breg’ = Breg
Creg’ = Creg

Iptr’ = Bytelndex Nextinst Oreg®
Areg # 0 = Areg’ = Breg

Breg’ = Creg

Creg’ = undefined

Iptr’ = Nextinst
Oreg’' =0
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Idn/ #3_ load non-local
Areg A byteselectmask = 0
Areg’ = Mem (Index Areg Oreg®)
Oreg’' =0
Iptr’ = Nextinst
stnl #E_ store non-local
Areg A byteselectmask = 0
Areg’ = Creg
Breg’ = undefined
Creg’ = undefined
Oreg’ =0
Iptr’ = Nextinst
Mem’ = Mem & { (Index Areg Oreg®) — Breg}
Idnip #5_ load non-local pointer
Areg A byteselectmask = 0
Areg’ = Index Areg Oreg®
Oreg’ =0
Iptr’ = Nextinst
call #9_ call
Areg’ = Nextlnst
Oreg’ =0
Wptr' = Index Wptr (—4)
Iptr' = Bytelndex Nextinst Oreg°®
Workspace’ = Shifted_Workspace ¢ { 0 — Iptr,
1 — Areg,
2 — Breg,
3 — Creg}
where Shifted_Workspace is Workspace shifted up 4 words
i.e. Workspace addr = Shifted_Workspace addr+4
ajw #B_ adjust workspace
Oreg’ =0
Wptr’ = Index Wptr Oreg®
Iptr’ = Nextinst

F.3.4 Operations

The opr instruction selects the operation whose code is in Oreg. Each of these operations now needs to
be specified. N.B. Oreg’ is set to 0 in the opr specification of which each of the following specifications is a
component.

rev #00 reverse
Areg’ = Breg
Breg’ = Areg
Iptr’ = Nextinst
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add #05 add
Areg’ = Breg +checkea Areg
Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextinst
ErrorFlag’ = can be set by +checked

sub #0C subtract
Areg’ = Breg —checkead Areg
Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextinst
ErrorFlag’ = can be set by —checked

mul #53 multiply

Areg’ = Breg Xcheckes Areg

Breg’ = Creg

Creg’ = undefined

Iptr’ = Nextinst

ErrorFlag’ = can be set by x checked

div #2C divide

(Areg = 0) V (Areg = —1 A Breg = —2%ordengh—Ty"="Areq” = undefined
ErrorFlag’ = set

(Areg #0) A (Areg # —1 v Breg # — 2wordengih—1) — Areg’ = Breg < Areg
ErrorFlag’ = ErrorFlag

Breg’ = Creg

Creg’ = undefined

Iptr’ = Nextinst

rem #1F remainder

(Areg = 0) Vv (Areg = —1 A Breg = —2%ordenath—T) "= "Areg’ = undefined
ErrorFlag’ = set

(Areg #0) A (Areg # —1 Vv Breg 5 —2wordlength—1) — Areq’ = Breg REM Areg
ErrorFlag’ = ErrorFlag

Breg’ = Creg

Creg’ = undefined

Iptr’ = Nextinst

sum #52 sum
Areg’ = Breg +unchecked Areg
Breg’ = Creg

Creg’ = undefined
Iptr’ = Nextinst

diff #04 difference
Areg’ = Breg —uncheckea Areg
Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextinst
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prod #08 product
Areg’ = Breg xynchecked Areg
Breg’ = Creg

Creg’ = undefined
Iptr’ = Nextlnst

and #46 and
Areg’ = Breg A Areg
Breg’ = Creg

Creg’ = undefined
Iptr’ = Nextinst

or #4B or
Areg’ = Breg v Areg
Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextinst

xor #33 exclusive or
Areg’ = Breg >< Areg
Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextinst

not #32 bitwise not
Areg’ = BITNOT Areg
Iptr’ = Nextinst

Shl #a1 shift left
Areg < unsigned Wordlength
Areg’ = Breg < Areg
Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextnst

shr #40 shift right

Areg < unsigned Wordlength
Areg’ = Breg >> Areg
Breg’ = Creg

Creg’ = undefined

Iptr’ = Nextinst

gt #09 greater than
Breg > signes Areg = Areg’ = true
Breg < signes Areg = Areg’ = false
Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextinst
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lend #21 loop end
Creg’ = undefined
count > 1 = Mem’ = Mem ¢ { (Index Breg 1) — count — 1,
Breg — (Mem Breg) + 1}

Iptr’ = Bytelndex Nextinst (—Areg)
count < 1 = Mem’ = Mem ¢ { (Index Breg 1) ~— count — 1}

Iptr’ = Nextinst
where count = Mem (Index Breg 1)
This instruction has the potential to cause a process to be timesliced

bent #34 byte count

Areg’ = Areg x bytesperword
Iptr’ = Nextinst

went #3F word count
Areg’ = Areg >> arimmetic byteselectlength
Breg’ = Areg A byteselectmask
Creg’ = Breg
Iptr’ = Nextinst

Idpi #1B load pointer to instruction

Areg’ = Bytelndex Nextinst Areg
Iptr’ = Nextinst

mint #42 minimum integer
Areg’ ~ _pwordlength—T
Breg’ = Areg
Creg’ = Breg
Iptr’ = Nextinst

bsub #02 byte subscript
Areg’ = Bytelndex Areg Breg
Breg’ = Creg

Creg’ = undefined
Iptr’ = Nextinst

wsub #0A word subscript
Areg’ = Index Areg Breg
Breg’ = Creg

Creg’ = undefined
Iptr’ = Nextinst
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move #4A move message

- (Creg < Breg < (Creg + Areg))

- (Breg < Creg < (Breg + Areg))

i.e. the two blocks do not overlap

Areg’ = undefined

Breg’ = undefined

Creg’ = undefined

Iptr’ = Nextinst

This copies Areg bytes starting at address Creg to the block starting at address Breg. This can be
formally defined by the following predicate

ByteMem’ = ByteMem & (((Bytelndex Breg)~'/{ 0 .. Areg—1});(Byteindex Creg);ByteMem)

in #07 input message

Areg’ = undefined

Breg' = undefined

Creg’ = undefined

Iptr’ = Nextinst

‘input message of length Areg bytes from channel pointed to by Breg to memory at Creg’
This can cause the process to be descheduled

out #0B output message

Areg’ = undefined

Breg’ = undefined

Creg’ = undefined

Iptr’ = Nextinst

‘output message of length Areg bytes to channel pointed to by Breg from memory at Creg’
This can cause the process to be descheduled

Ib #01 load byte

Areg’ = ByteMem Areg
Iptr’ = Nextinst

sb #3B store byte
Areg’ = Creg
Breg' = undefined
Creg’ = undefined
Iptr’ = Nextinst
ByteMem’ = ByteMem & { Areg — (Breg A 255)}

outbyte #OE output byte

Areg’ = undefined

Breg’ = undefined

Creg’ = undefined

Iptr’ = Nextinst

Workspace’ = Workspace ¢ { 0 — undefined'}
‘output byte in Areg down channel pointed to by Breg’
This can cause the process to be descheduled
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outword #OF output word
Areg’ = undefined
Breg’ = undefined
Creg’ = undefined
Iptr’ = Nextinst
Workspace’ = Workspace & { 0 — undefined}
‘output word in Areg down channel pointed to by Breg’
This can cause the process to be descheduled

gcall #06 general call
Areg’ = Nextinst
Iptr’ = Areg

gajw #3C general adjust workspace
Areg A byteselectmask = 0
Areg’ = Wptr
Wptr’ = Areg
Iptr’ = Nextinst

ret #20 return
Wptr’ = Index Wptr 4
Iptr’ = Workspace 0 n.b. Workspace is wrt to Wptr and not Wptr’
Mem’ = Mem

startp #0D start process

‘add process with workspace Areg and instruction pointer at offset of Breg bytes from Iptr’ to current
priority process queue’
Iptr’ = Nextinst

endp #03 end process

Mem (Index Areg 1) = 1 = ‘continue as process with waiting workspace Areg’
Mem (Index Areg 1) # 1 = ‘start next waiting process’
Mem’ = Mem & { (Index Areg 1) — (Mem (Index Areg 1)) — 1)}

runp #39 run process

‘Add process with descriptor Areg to appropriate process queue’

stopp #15 stop process

‘stop current process leaving Iptr in workspace so it can be restarted and start next waiting process’

Idpri #1E load priority
Areg’ = current priority level
Breg’ = Areg
Creg’ = Breg
Iptr’ = Nextinst
ldtimer #22 load timer
Areg’ = value of current priority level clock
Breg’ = Areg
Creg’ = Breg

Iptr’ = Nextinst
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tin #2B timer input
Areg’ = undefined
Breg’ = undefined
Creg’ = undefined
Iptr’ = Nextinst
‘wait until time is AFTER Areg’
This can cause the process to be descheduled

The ALT instructions will be dealt with very informally. They have only limited meaning individually as they
are specifically designed to be used in one way. All the alt, enb and dis instructions can affect locations
Workspace 0 to Workspace —5 and these effects will not be described fully.

alt #43 alt start
Iptr’ = Nextinst
‘store flag to show enabling is occuring’

altwt #44 alt wait
Areg’ = undefined
Breg’ = undefined
Creg’ = undefined
Iptr’ = Nextinst
‘set flag to show no branch has been selected yet and wait until one of the guards is ready’
This can cause the process to be descheduled

altend #45 alt end

Iptr’ = ByteIndex Nextinst (Workspace 0)
‘Set Iptr to first instruction of branch selected’

talt #4E timer alt start
Iptr’ = Nextinst
‘store flag to show enabling is occuring and alt time not yet set’

taltwt #51 timer alt wait
Areg’ = undefined
Breg' = undefined
Creg’ = undefined
Iptr’ = Nextinst
‘set flag to show no branch has been selected yet, put alt time into the timer queue and wait until one
of the guards is ready’
This can cause the process to be descheduled

enbs #49 enable skip
Areg = true = ‘set flag to show a guard is ready’
Areg’ = Areg

Iptr’ = Nextinst
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diss #30

disable skip

Breg = true A ‘no branch selected’
= ‘select this branch’
Areg’ = true
Workspace’ = Workspace ¢ { 0 — Areg}
Breg # true v ‘branch already selected’
= Areg’ = false
Workspace’ = Workspace
Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextinst

enbc #48

enable channel

Areg = true A ‘no process waiting on channel Breg’
= ‘initiate communication on channel Breg’

Areg = true A ‘current process waiting on channel Breg’
= ‘already waiting on this channel so ignore’

Areg = true A ‘another process waiting on channel Breg’
= ‘set flag to show a guard is ready’

Areg’ = Areg

Breg’ = Creg

Creg’ = undefined

Iptr’ = Nextinst

disc #2F

disable channel

Breg = true A ‘channel Creg ready and no branch selected’
= ‘select this branch’
Areg’ = true
Workspace’ = Workspace ¢ { 0 — Areg}
Breg # true v ‘channel Creg not ready or a branch already selected’
= Areg’ = false
Workspace’ = Workspace
Breg’ = undefined
Creg’ = undefined
Iptr’ = Nextlnst

enbt #47

enable timer

Areg = true A ‘alt time not yet set’
= ‘Set time set flag and set alt time to time of guard’
Areg = true A ‘alt time set and earlier than this guard’
= ‘ignore this guard’
Areg = true A ‘alt time set and later than this guard’
= ‘set alt time to time of this guard’
Areg’ = Areg
Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextinst
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dist #2E

disable timer

Breg = true A ‘time later than guard’s time and no branch selected’

= ‘select this branch’
Areg’ = true
Workspace’ = Workspace ¢ { 0 — Areg}

Breg # true Vv ‘time earlier than guards time or branch already selected’

= Areg’ = false
Workspace’ = Workspace
Breg’ = undefined
Creg’ = undefined
Iptr’ = Nextinst

csub0 #13 check subscript from 0
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined

Breg > unsigned Areg = ErrorFlag’ = set

Breg < unsigned Areg = ErrorFlag’ = ErrorFlag
Iptr' = Nextinst

cent1 #4D check count from 1
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined

Breg = 0 = ErrorFlag’ = set

Breg > unsigned Areg = ErrorFlag’ = set

0 < unsigned Breg < unsigned Areg = ErrorFlag’ = ErrorFlag
Iptr’ = Nextinst

testerr #29

test error false and clear

ErrorFlag = set = Areg’ = false
ErrorFlag = clear = Areg’ = true
Breg’ = Areg

Creg’ = Breg

ErrorFlag’ = clear

Iptr’ = Nextinst

stoperr #55

stop on error

ErrorFlag = set = ‘schedule next waiting process’
ErrorFlag = clear = Iptr’ = Nextinst

seterr #10

set error

ErrorFlag’ = set
Iptr’ = Nextinst

xword #3A

extend to word

0 < Breg < Areg = Areg’ = Breg

—Areg < Breg < 0 = Areg’ = Breg — (2 x Areg)
Breg’ = Creg

Creg’' = undefined

Iptr’ = Nextinst
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cword #56

check word

(Breg > Areg) Vv (Breg < —Areg) = ErrorFlag’ = set
(Breg < Areg) Vv (Breg > —Areg) => ErrorFlag’ = ErrorFlag
Areg’ = Breg

Breg’ = Creg

Creg’ = undefined

Iptr’ = Nextinst

xdble #1D

extend to double

Areg < 0 = Breg’ = —1
Areg > 0 = Breg’ = 0
Creg’ = Breg

Iptr’ = Nextinst

csngl #4C

check single

(Areg < 0 A Breg # —1) v (Areg > 0 A Breg # 0) = ErrorFlag’ = set

—((Areg < 0 A Breg # —1) v (Areg > 0 A Breg # 0)) = ErrorFlag’ = ErrorFlag
Breg’ = Creg

Creg’ = undefined

Iptr’ = Nextlnst

ladd #16

long add

Areg’ = (Breg +checked Areg) +cnecked (Creg A 1)

Breg’' = undefined

Creg’ = undefined

Iptr’ = Nextinst

ErrorFlag’ set if (Breg + Areg) + (Creg A 1) overflows

Isub #38

long subtract

Areg’ = (Breg —checked Ar€g) —checked (Creg A 1)
Breg’ = undefined

Creg’ = undefined

Iptr’ = Nextinst

ErrorFlag’ set if (Breg — Areg) — (Creg A 1) overflows

Isum #37

long sum

Areg’ = (Breg + Areg) + (Creg A 1)

Breg’ = carry from (Breg + Areg) + (Creg A 1)
Creg’ = undefined

Iptr’ = Nextinst

Idiff #4F

long difference

Areg’ = (Breg — Areg) — (Creg A 1)

Breg’ = borrow from (Breg — Areg) — (Creg A 1)
Creg’ = undefined

Iptr’ = Nextinst

Imul #31

long multiply

Areg’ = low word of (Breg x Areg) + Creg
Breg' = high word of (Breg x Areg) + Creg
Creg’ = undefined

Iptr’ = Nextinst
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Idiv #1A long divide

Creg > Areg = ErrorFlag’ = set

Creg < Areg = ErrorFlag’ = ErrorFlag
Areg’ = (Creg x 2wordlength . Breg) + Areg
Breg’ = (Creg x 2+ordlength . Breg) REM Areg
Creg’ = undefined

Iptr’ = Nextinst

Ishl #36 long shift left
0 < Areg < 2 x wordlength
(Breg’ x 2wordlength + Areg’) - ((Creg x 2wordlength + Breg) x 2Areg) REM 22xwordlength
Creg’ = undefined
Iptr’ = Nextinst

Ishr #35 long shift right
0 < Areg < 2 x wordlength
(Breg' x 2wordength | Areg’) = (Creg x 2werdendth 4 Breg) DIV 2A9
Creg’ = undefined
Iptr’ = Nextinst

norm #19 normalise
(Breg’ X 2wordlength + Areg’) - (Breg X 2wordlength + Areg) X 20reg’
((Breg = 0 A Areg = 0 A Creg’ = 2 x wordlength)

\Y
(Breg’ > unsignea 29" 1))
Iptr’ = Nextinst

resetch #12 reset channel
Areg’ = Mem Areg
Iptr’ = Nextinst
Mem’ = Mem & { Areg — NotProcess.p}
if Areg pointed to link channel then the link hardware is reset

testpranal #2A test processor analysing
Areg’ = true if processor analysed rather than reset last, false otherwise
Breg’ = Areg
Creg’ = Breg
Iptr’ = Nextinst

sthf #18 store high priority front pointer
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined
Iptr’ = Nextinst
FPtrRego = Areg

stif #1C store low priority front pointer
Areg’ = Breg
Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextinst
FPtrRegy = Areg
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sttimer #54 store timer
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined
Iptr’ = Nextinst
ClockRegp = Areg
ClockReg; = Areg
‘and start the clocks’

sthb #50 store high priority back pointer
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined
Iptr’ = Nextinst
BPtrRego = Areg

stlb #17

store low priority back pointer

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextinst
BPtrRegs = Areg

saveh #3E save high priority queue registers
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined

Iptr’ = Nextinst

Mem’ = Mem ¢ { (Index Areg 0) — FPtrRego,
(Index Areg 1) — BPtrRego}

savel #3D save low priority queue registers
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined

Iptr’ = Nextinst

Mem’ = Mem & { (Index Areg 0) — FPtrReg;,
(Index Areg 1) — BPtrReg; }

clrhalterr #57

clear halt-on-error

HaltOnErrorFlag’ = clear
Iptr’ = Nextinst

sethalterr #58

set halt-on-error

HaltOnErrorFlag’ = set
Iptr’ = Nextinst
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testhalterr #59 test halt-on-error
HaltOnErrorFlag = set = Areg’ = true
HaltOnErrorFlag = clear = Areg’ = false
Breg’ = Areg
Creg’ = Breg
Iptr’ = Nextinst

F.3.5 Fractional multiply — IMS T414 and IMS T800 only

fmul #72 fractional multiply
Areg’ = 2-Wordengh—T] " (Breg x Areg)
Breg’ = Creg

Creg’ = undefined
ErrorFlag’ is set by (—1) Xtractional (— 1)
Iptr’ = Nextinst

F.3.6 Floating point handling — IMS T414 only

unpacksn #63 unpack single length fp number
Areg’ = fraction field contents of Areg
Breg' = exponent field contents of Areg
Creg’ = 4 x Breg + type of Areg
where the type is 0 for Areg zero, 1 for Areg denormalised or normalised, 2 for Areg an infinity and
3 for Areg a Not-a-Number
Iptr’ = Nextinst

roundsn #6D round single length fp number
Areg’ = rounded and packed floating point number where initially
Creg was exponent
Breg was fraction
Areg was guard word
Breg’ = undefined
Creg’ = undefined
Iptr’ = Nextinst

postnormsn #6C post-normalise correction of single length fp number
perform postnormalise correction on floating point number where
normalised fraction is in Breg (high word) and Areg (guard word)
normalising shift length is in Creg
and exponent is in Workspace 0
Areg’ = postnormalised guard word
Breg’ = postnormalised fraction word
Creg’ = postnormalised exponent
Iptr’ = Nextinst

Idinf #71 load single length fp infinity
Areg’ = single length floating point +infinity
Breg’ = Areg
Creg’ = Breg

Iptr’ = Nextinst
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cflerr #73 check single length fp infinity or NaN
Areg € Inf U NaN = ErrorFlag’ = set
Areg ¢ Inf U NaN = ErrorFlag’ = ErrorFlag
Iptr’ = Nextinst

F.4 Additional non floating point instructions on IMS T800

dup #5A duplicate top of stack
Areg’ = Areg
Breg’ = Areg
Creg’ = Breg

Iptr’ = Nextinst

moveZ2dinit #5B initialise data for 2 dimensional block move

Areg’ = undefined

Breg’ = undefined

Creg’ = undefined

Iptr’ = Nextinst

set up first 3 parameters for 2d block move

Areg contains the length of block, Breg the destination stride and Creg the source stride

moveZ2dall #5C 2 dimensional block copy

precondition: the two blocks do not overlap

Areg contains the width of block, Breg the destination address and Creg the source address
Areg’ = undefined

Breg’ = undefined

Creg’ = undefined

Iptr’ = Nextinst

Mem’ = Mem & source block translated to destination

move2dnonzero #5D 2 dimensional block copy non zero bytes

precondition: the two blocks do not overlap

Areg contains the width of block, Breg the destination address and Creg the source address
Areg’ = undefined

Breg’ = undefined

Creg’ = undefined

Iptr’ = Nextinst

Mem’ = Mem & non zero bytes of source block translated to destination

move2dzero #5E 2 dimensional block copy zero bytes

precondition: the two blocks do not overlap

Areg contains the width of block, Breg the destination address and Creg the source address
Areg’ = undefined

Breg’ = undefined

Creg’ = undefined

Iptr’ = Nextinst

Mem’ = Mem & zero bytes of source block translated to destination




148

F Specification of instruction set

creword #74 calculate CRC on word
Areg’ = CRC of Areg with generator Creg and accumulated CRC Breg
Breg’ = Creg

Creg’ = undefined
Iptr’ = Nextinst

crcbyte #75

Breg’ = Creg
Creg’ = undefined
Iptr’ = Nextinst

Areg’ = CRC of top byte of Areg with generator Creg and accumulated CRC Breg

calculate CRC on byte

Creg’ = undefined
Iptr’ = Nextinst

bitent #76 count bits set in word
Areg’ = Breg + number of bits set in Areg
Breg’ = Creg

bitrevword #77

Areg’ = reversed bit pattern of Areg
Iptr’ = Nextinst

reverse bits in word

bitrevnbits #78

reverse bottom n bits of word

Areg’ = bottom Areg bits of Breg reversed
Breg’ = Creg

Creg’ = undefined

Iptr’ = Nextinst

Creg’ = undefined
Iptr’ = Nextinst

wsubdb #81 form double word subscript
Areg’ = Index Areg (Breg x 2)
Breg’ = Creg
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G Specification of floating point unit instructions

The operations that make use of the floating point unit on the IMS T800 will be specified in a similar manner
to the rest of the instruction set. Again this is done fairly informally although as in the specification of the
main transputer instructions some initial definitions are treated more rigorously.

G.1 Datatypes

The basic datatypes used are the occam types INT32, INT64, REAL32, REAL64 and BOOL. The internal
representation in the floating point unit of real numbers, the floating_point_register, stores both the value of
the number it contains as well as the length of the format of that number.

Type conversions between the basic types is performed in the specifications in the occam style — i.e. if X is
2.3 (REAL32) then (INT32 TRUNC X) will be 2 (INT32). If a rounding mode such as TRUNC is not given
then the mode in Round_Mode will be used. Use of INToc for type conversion converts to a member of Z
— the set of all integers. When retyping is needed — interpreting the same bit pattern as a different type —
the the keyword RETYPE will be used. For example the following predicate holds

1.0 (REAL64) = (RETYPE REALG64 [#00000000, #3FF00000])

since the representation of 1.0 (REAL64) is #3FF0000000000000. The explicit retyping is sometimes omitted
if it can be easily deduced from the types required in the context.

Conversions between REALs and internal representations in floating_point_registers are performed by the
following functions

unpack.sn : REAL32 — floating_point_register
unpack.db : REAL64 — floating_point_register

pack.sn : floating_point_register — REAL32

pack.db : floating_point_register — REAL64

V rrREAL32 . (unpack.snr).length = SN

V rrREAL64 . (unpack.dbr).length = DB

dom pack.sn = { f.floating_point_register | f.length = SN}
dom pack.db = { f:floating_point_register | f.length = DB}

The function fv maps a floating_point_register into the real number that it represents — it is undefined on
Not-a-Numbers and infinities.

Lfv . floating_point_register — R |

In some cases the value of a register may be well specified but difficult to express clearly at the informal
level of this document. Often this value will be a partially computed result from a component of an instruction
sequence performing a larger operation — such as remainder. ‘><' is used in these cases. If appropriate a
description of what that register contains will be added in text at the bottom of the specification.

Inf and NaN are the sets of all floating_point_registers that represent infinities or Not-a-Numbers respectively.

The specification of each floating point unit operation is done in a similar style to that for the basic transputer
instruction set. Because of the concurrent nature of the floating point unit the results may not have been
calculated when the main processor finishes executing the instruction but the synchronisation between the
two units ensures that the results will be established before they can be observed.
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Al floating point unit instructions set Iptr’ to Nextinst so this is ommitted for brevity.

G.2 Floating point unit state
The state of the floating point unit consists of the registers
FAreg, FBreg, FCreg
the floating point error flag and rounding mode
FP_ErrorFlag, Round_Mode
This state is added to the main transputer state.
Almost all the specifications of the main transputer instructions still hold as the floating point unit and the main
processor are totally independent when not executing floating point unit instructions. The only exceptions

are those instructions which can cause descheduling. In these cases the floating point registers must be
assumed to be undefined after the instruction as the process may have been descheduled.

G.3 Floating point unit entry

The special foentry instruction is used to access certain of the operations. Its specification is

foentry #AB floating point unit entry
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined

‘execute operation Areg on floating point unit

Instructions that are accessed via an fpentry will have
value

as their code value in the following specifications where value is the value to be loaded into Areg prior to
executing fpentry.

G.4 Floating point unit operations

fodup #A3 floating duplicate

FAreg' = FAreg
FBreg’ = FAreg
FCreg’' = FBreg

Round_Mode’ = ToNearest
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forev #A4 floating reverse
FAreg’ = FBreg
FBreg’ = FAreg
FCreg’ = FCreg

Round_Mode’ = ToNearest

foldnisn #8E floating load non local single
Areg A byteselectmask = 0

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined

FAreg’ = unpack.sn (RETYPE REAL32 Mem Areg)
FBreg' = FAreg
FCreg’ = FBreg

Round_Mode’ = ToNearest

foldnldb #8A floating load non local double
Areg A byteselectmask = 0
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined

FAreg’ = unpack.db (RETYPE REAL64 [Mem Areg, Mem (Index Areg 1)])
FBreg’ = FAreg

FCreg’' = FBreg

Round_Mode’ = ToNearest

foldnisni #86 floating load non local indexed single

Areg A byteselectmask = 0

Areg’ = Creg
Breg’ = undefined
Creg’ = undefined

FAreg’ = unpack.sn (RETYPE REAL32 Mem (Index Areg Breg))
FBreg’ = FAreg
FCreg’ = FBreg

Round_Mode’ = ToNearest
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foldnldbi #82 floating load non local indexed double
Areg A byteselectmask = 0
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined

FAreg’ = unpack.db (RETYPE REAL64 [Mem (Index Areg Breg),

Mem (Index (Index Areg Breg) 1)])
FBreg’ = FAreg
FCreg’ = FBreg

Round_Mode’ = ToNearest

fostnisn #88 floating store non local single

Areg A byteselectmask = 0
FAreg.length = SN

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined

FAreg' = FBreg
FBreg’ = FCreg
FCreg’' = undefined

Mem’ = Mem ¢ { Areg — RETYPE INT32 pack.sn (FAreg)}
Round_Mode’ = ToNearest

fostnidb #84 floating store non local double

Areg A byteselectmask = 0
FAreg.length = DB

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined

FAreg’ = FBreg
FBreg’ = FCreg
FCreg’' = undefined

Mem’ = Mem & { Areg — lo, (Index Areg 1) — hi}
where [lo, hi] = RETYPE []INT32 pack.db (FAreg)
Round_Mode’ = ToNearest

fourn @#22 set rounding mode to round to nearest

Round_Mode’ = ToNearest

fourz @#06 set rounding mode to round to zero

Round_Mode’ = ToZero

fourp @#04 set rounding mode to round to plus infinity

Round_Mode’ = ToPluslnfinity
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fourm @#05 set rounding mode to round to minus infinity
Round_Mode’ = ToMinusiInfinity

foadd #87 floating point add
FAreg.length = FBreg.length

FAreg’ = FBreg +igee FAreg
FBreg’ = FCreg
FCreg’ = undefined

FP_Error_Flag’ = can be set by error from (FBreg +gee FAreg)
Round_Mode’ = ToNearest

fosub #89 floating point subtract
FAreg.length = FBreg.length

FAreg’ = FBreg —gee FAreg
FBreg’ = FCreg
FCreg’' = undefined

FP_Error_Flag’ = can be set by error from (FBreg —igee FAreg)
Round_Mode’ = ToNearest

fomul #8B floating point multiply
FAreg.length = FBreg.length

FAreg’ = FBreg xeee FAreg
FBreg’ = FCreg
FCreg’ = undefined

FP_Error_Flag’ = can be set by error from (FBreg xgee FAreg)
Round_Mode’ = ToNearest

fodiv #8C floating point divide
FAreg.length = FBreg.length

FAreg’ = FBreg +gee FAreg
FBreg’ = FCreg
FCreg’' = undefined

FP_Error_Flag’ = can be set by error from (FBreg +gee FAreg)
Round_Mode’ = ToNearest

fousgrtfirst @#01 floating point square root first step
FAreg’ = <
FBreg’ = <
FCreg’ =«

FP_Error_Flag’ = <
Round_Mode’ = ToNearest

The values in the registers are well defined but, as they contain a partial result, no attempt to describe
their contents will be made here
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fousgrtstep @#02 floating point square root step
FAreg’ = <
FBreg’ = <
FCreg’ = <

Round_Mode’ = ToNearest

fousqrtiast @#03 floating point square root last step
FAreg' = <
FBreg’ = undefined
FCreg’' = undefined

Round_Mode’ = ToNearest

square root instruction sequence

FAreg’ = SQRT gee (FAreg)
FBreg’ = undefined
FCreg’' = undefined

FP_Error_Flag’ = can be set by error from SQRTgee FAreg
Round_Mode’ = ToNearest

foremfirst #8F floating point remainder first step
FAreg.length = FBreg.length

Areg’ =<
Breg’ = Areg
Creg’' = Breg

FAreg' = <
FBreg’ = <
FCreg' =<

FP_Error_Flag’ = <
Round_Mode’ = ToNearest

foremstep #90 floating point remainder iteration step
FAreg.length = FBreg.length

Areg’ = <
Breg' = Areg
Creg’ = Breg

FAreg’ = <
FBreg' = <
FCreg' =<

Round_Mode’ = ToNearest
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remainder instruction sequence

FAreg.length = FBreg.length

Areg’ = undefined
Breg’ = undefined
Creg’ = undefined

FAreg’ = FBreg REMege FAreg
FBreg' =<
FCreg’ = undefined

Round_Mode’ = ToNearest

earlier.

FP_Error_Flag’ = can be set by error from (FBreg REMgee FAreg)

The value of FBreg’ will be the quotient used to produce the remainder when (FBreg.exp - FAreg.exp)
is < 20 for single length and < 30 for double length operands. This is intended to correct the round-
ing error in argument reduction and is explained in greater detail in the arithmetic operations section

foldzerosn #9F

floating load zero single

FAreg’ = unpack.sn (0.0 REAL32)
FBreg’ = FAreg
FCreg’ = FBreg

Round_Mode’ = ToNearest

foldzerodb #A0

floating load zero double

FAreg’ = unpack.db (0.0 REAL64)
FBreg’ = FAreg
FCreg’ = FBreg

Round_Mode’ = ToNearest

foumulby2 @#12

floating multiply by 2

FAreg’ = FAreg X |EEE 2

Round_Mode’ = ToNearest

FP_Error_Flag’ can be set by error from FAreg xgge 2

foudivby2 @#11

floating divide by 2

FAreg’ = FAreg < gee 2

Round_Mode’ = ToNearest

FP_Error_Flag’ can be set by error from FAreg +gee 2

fouexpinc32 @#0A

floating multiply by 232

FAreg’ = FAreg X |EEE 2%

Round_Mode’ = ToNearest

FP_Error_Flag’ can be set by error from FAreg xgee 2%?
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fouexpdec32 @#09 floating divide by 2% |
FAreg’ = FAreg +gee 2%2

FP_Error_Flag' can be set by error from FAreg +gge 2%
Round_Mode’ = ToNearest

fouabs @#0B floating point absolute value
FAreg’ = |FAreg|

FP_Error_Flag’ = FP_Error_Flag v (FAreg € NaN U Inf)
Round_Mode’ = ToNearest

Ir foldnladdsn #AA floating load non local and add single
f

Areg A byteselectmask = 0
FAreg.len = SN

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined

FAreg’ = FAreg +gge unpack.sn (RETYPE REAL32 Mem Areg)
FBreg’ = FBreg
FCreg’ = undefined

FP_Error_Flag = can be set by error from +gee
Round_Mode’ = ToNearest

foldnladddb #A6 floating load non local and add double

Areg A byteselectmask = 0
FAreg.len = DB

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined

FAreg’ = FAreg +gee unpack.db (RETYPE REAL64 [Mem Areg, Mem (Index Areg 1)])
FBreg’ = FBreg
FCreg’ = undefined

FP_Error_Flag = can be set by error from +gee
Round_Mode’ = ToNearest
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foldnimulsn #AC floating load non local and multiply single

Areg A byteselectmask = 0
FAreg.len = SN

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined

FAreg’ = FAreg xgge unpack.sn (RETYPE REAL32 Mem Areg)
FBreg’ = FBreg
FCreg' = undefined

FP_Error_Flag = can be set by error from xggg
Round_Mode’ = ToNearest

foldnimuldb #A8 floating load non local and multiply double

Areg A byteselectmask = 0
FAreg.len = DB

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined

FAreg' = FAreg xeee unpack.db (RETYPE REAL64 [Mem Areg, Mem (Index Areg 1))
FBreg’ = FBreg
FCreg’ = undefined

FP_Error_Flag = can be set by error from x ggg
Round_Mode’ = ToNearest

fochkerr #83 check floating error

Error_Flag’ = Error_Flag v FP_Error_Flag
Round_Mode’ = ToNearest

fotesterr #9C test floating error false and clear

FP_Error_Flag = clear = Areg’ = true
FP_Error_Flag # clear = Areg’ = false
Breg’ = Areg
Creg’ = Breg

Round_Mode’ = ToNearest
FP_Error_Flag’ = clear

fouseterr @#23 set floating error

FP_Error_Flag’ = set
Round_Mode’ = ToNearest

fouclrerr @#9C clear floating error

FP_Error_Flag’ = clear
Round_Mode’ = ToNearest
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fogt #94 floating point greater than
FAreg.length = FBreg.length

Areg’ = FBreg > FAreg
Breg' = Areg
Creg’ = Breg

FAreg’ = FCreg
FBreg’ = undefined
FCreg’ = undefined

FP_Error_Flag’ = FP_Error_Flag v (FAreg € Inf U NaN) v (FBreg € Inf U NaN)
Round_Mode’ = ToNearest

foeq #95 floating point equals
FAreg.length = FBreg.length

Areg’ = FBreg = FAreg
Breg’ = Areg
Creg’ = Breg

FAreg’ = FCreg
FBreg’ = undefined
FCreg’ = undefined

FP_Error_Flag’ = FP_Error_Flag v (FAreg € Inf U NaN) v (FBreg € Inf U NaN)
Round_Mode’ = ToNearest

foordered #92 floating point orderability
Areg’ = (FAreg ¢ NaN) A (FBreg ¢ NaN)
Breg’ = Areg
Creg’ = Breg

Round_Mode’ = ToNearest

fonan #91 floating point test for NaN
Areg’ = FAreg € NaN
Breg’ = Areg
Creg’ = Breg

Round_Mode’ = ToNearest

fonotfinite #93 floating point test for not finite
Areg’ = FAreg € (Inf U NaN)
Breg’ = Areg
Creg’ = Breg

Round_Mode’ = ToNearest
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four32tor64 @#07 real32 to real64
FAreg.length = SN

FAreg’ = unpack.db (REAL64 pack.sn (FAreg))

FP_Error_Flag’ = FP_Error_Flag v (FAreg € Inf U NaN)
Round_Mode’ = ToNearest

four64tor32 @#08 real64 to real32
FAreg.length = DB

FAreg’ = unpack.sn (REAL32 pack.db (FAreg))
with behaviour on NaNs as described earlier

FP_Error_Flag’ = FP_Error_Flag v overflow v (FAreg € Inf U NaN)
Round_Mode’ = ToNearest

foint #A1 round to floating integer
FAreg’ = REAL (INTcc pack FAreg)

Round_Mode’ = ToNearest

This rounds FAreg, wrt Round_Mode, to a floating point number of the same format with an inte-

ger value.
fostnli32 #9E store non local int32
fv FAreg € [MinINT32,MaxINT32]
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined
FAreg’ = FBreg
FBreg’ = FCreg
FCreg’ = undefined

Mem’ = Mem & { Areg — INT32 TRUNC pack (FAreg)}
Round_-Mode’ = ToNearest

where pack is either pack.sn or pack.db depending on FAreg.len.

fouchki32 @#0E check in int32 range
FAreg ‘has an integer value’

FP_Error_Flag’ = FP_Error_Flag v (fv FAreg ¢ [MinINT32,MaxINT32])
Round_Mode’ = ToNearest

fouchki64 @#0F check in int64 range
FAreg ‘has an integer value’

FP_Error_Flag’ = FP_Error_Flag Vv (fv FAreg ¢ [MinINT64,MaxINT64])
Round_Mode’ = ToNearest




160

G Specification of floating point unit instructions

fortoid2 #3D

real to int32

FAreg.len = SN

FAreg’ = REAL (INToc pack FAreg)

FP_Error_Flag’ = FP_Error_Flag v (INT32 pack.sn (FAreg) ¢ [MinINT32,MaxINT32])

Round_Mode’ = ToNearest

This rounds FAreg, wrt Round_Mode, to a floating point number of the same format with an integer
value and sets error if this lies outside the INT32 range

fpi32tor32 #96 load int32 as real32
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined

FAreg’ = unpack.sn (REAL32 Mem Areg)
FBreg’ = FAreg

FCreg’ = FBreg

Round_Mode’ = ToNearest

fpi32tor64 #98 load int32 as real64
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined

FAreg' = unpack.db (REAL64 Mem Areg)
FBreg’ = FAreg

FCreg’' = FBreg

Round_Mode’ = ToNearest

fob32tor64 #9A load unsigned word as real64
Areg’ = Breg
Breg’ = Creg

Creg’ = undefined
FAreg’ =<
FBreg' = FAreg
FCreg’' = FBreg

Round_Mode’ = ToNearest

founoround @#0D

real64 to real32 without rounding

FAreg.length = DB
FAreg’ =<

Round_Mode’ = ToNearest

changes exponent bias and length of FAreg to DB
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real to INT32 code sequence

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined

FAreg’ = FBreg
FBreg’ = FCreg
FCreg’ = undefined

FP_Error_Flag’ = FP_Error_Flag v (INToc pack (FAreg) ¢ [MinINT32,MaxINT32])
Mem’ = Mem ¢ { Areg — RETYPE INT32 pack (FAreg)}
Round_Mode’ = ToNearest

real to INT64 code sequence

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined

FAreg’ = FBreg
FBreg’ = FCreg
FCreg’ = undefined

FP_Error_Flag’ = FP_Error_Flag v (INToc pack (FAreg) ¢ [MinINT64,MaxINT64])
Mem’ = Mem & { Areg — lo, (Index Areg 1) — hi}

where [lo, hi] = RETYPE []INT32 (INT64 pack FAreg)
Round_Mode’ = ToNearest

INT64 to REAL32 code sequence

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined

FAreg’ = unpack.db (REAL32 value)

where value = RETYPE INT64 [Mem Areg, Mem (Index Areg 1)]
FBreg’ = FAreg
FCreg’ = FBreg

Round_Mode’ = ToNearest

INT64 to REAL64 code sequence

Areg’ = Breg
Breg’ = Creg
Creg’ = undefined

FAreg’ = unpack.db (REAL64 value)

where value = RETYPE INT64 [Mem Areg, Mem (Index Areg 1)])
FBreg’ = FAreg
FCreg’ = FBreg

Round_Mode’ = ToNearest
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adc 15,133
add 15,129, 135
aw 31,134

alt 46, 140
altend 46, 140
altwt 46, 140
and 16, 136

bent 17,137
bitcnt 68, 148
bitrevnbits 68, 148
bitrevword 68, 148
bsub 17,137

call 31,134
cent! 36, 142
cflerr 65, 147

¢ 22,133
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crcbyte 68, 148
crcword 68, 148
csngl 29, 143
csub0 36, 142
cword 29, 143

diff 15, 135
disc 46, 141
diss 46, 141
dist 46, 142
div 15,135
dup 38, 147

enbc 46, 141
enbs 46, 140
enbt 46, 141
endp 41,139
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fmul 16, 146
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foi32tor32 63, 160
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foldnldbi 51, 152
foldnimuldb 57, 157
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premstep 55, 154
prev 51, 151
prtoi32 62, 160
fostnidb 52, 152
fostnli32 62, 159
fostnisn 52, 152
fosub 53, 153
fotesterr 61, 157
fouabs 57, 156
fouchki32 62, 159
fouchkié4 62, 159
fouclrerr 61, 157
foudivby2 57, 155
fouexpdec32 57, 156
fouexpinc32 57, 155
foumulby2 57, 155
founoround 63, 160
four32tor64 62, 159
four64tor32 62, 159
fourm 53, 153
fourn 53, 152
fourp 53, 152
fourz 53, 152
f
f
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puseterr 61, 157

pusgqrtfirst 55, 1563
pusqrtiast 55, 154
pusqrtstep 55, 154

gajw 31, 139
geall 31, 139
gt 22,136

in 19, 138
j 22,133

ladd 26, 143
b 20, 138
ldc 12,132
Idiff 26, 143
Idinf 65, 146
Idiv 27, 144
Idl 12,133
ldip 12, 133
Idnl 18, 134
Idnlp 18, 134
Idpi 17,137
Idpri 42, 139
Idtimer 45, 139
lend 30, 137
Imul 27, 143
Ishl 28, 144
Ishr 28, 144
Isub 26, 143
Isum 26, 143

mint 17,137
move 19, 131, 138
move2dall 67, 147
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move2dinit 67, 147
move2dnonzero 67, 147
move2dzero 67, 147
mul 15, 135

nfix 7,132
norm 29, 144
not 16, 136

opr 7,132
or 16, 136
out 19, 138
outbyte 20, 138
outword 20, 139

pfix 7,132
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prod 15, 136

rem 15, 135
resetch 70, 144
ret 31,139
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roundsn 65, 146
runp 42, 139

saveh 77,145
savel 77,145

sb 20, 138
seterr 36, 142
sethalterr 78, 145

shl 16, 136
shr 16, 136
startp 41, 139
sthb 75, 145
sthf 75, 144
stl 12, 130, 133
stib 75, 145
stif 75, 144
stnl 18, 134
stoperr 36, 142
stopp 42, 139
sttimer 75, 145
sub 15, 135
sum 15,135

talt 46, 140
taltwt 46, 140
testerr 36, 142

testhalterr 78, 146
testpranal 73, 144

tin 45, 140

unpacksn 65, 146

went 17,137
wsub 17,137
wsubdb 38, 148

xdble 29, 143
xor 16, 136
xword 29, 142
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analysing 73, 76 cword 29, 143
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Areg 11 data structures 17
argument reduction 55 data transfer 19
arithmetic 15, 16, 26, 49 data value 7
arithmetic shifts 28 deadlock 3
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arrays 17 diff 15, 135
assignment 19, 21 direct functions 7
disabling a guard 47

bent 17,137 disc 46, 141
bit counting 68 diss 46, 141
bit operations 16 dist 46, 142
bit reversal 68 div 15, 135
bitent 68, 148 double word arrays 38
bitrevnbits 68, 148 dup 38, 147
bitrevword 68, 148 dynamic allocation 34
block move 19, 67
block structure 32 enabling a guard 47
boolean arithmetic 16, 23 enbc 46, 141
booting 74, 75 enbs 46, 140
booting, enbt 46, 141

from link 74 endp 41,139

from ROM 74 eqc 22,133
bootstrapping 73 equality 22
Breg 11 error checking 37
bsub 17,137 error flag 37, 59, 77
byte addressing 6 errors 36, 48, 77, 92
byte arrays 19 evaluation 12,18
byte selector 5, 11 evaluation stack 11, 12
byte transfer 20 expression depth 12

expression evaluation 13, 36

call 31,134 expressions 12
calling a function 36 external channel 86
calling techniques 33 external channels 70, 71
CASE 24 external links 83
cent1 36, 142
cflerr 65, 147 false 22
channel 4, 43, 85 FAreg 50
channel reset 69 fault handling on external channels 69
channels 70 FBreg 50
checked arithemtic 15 FCreg 50

checking message lengths 37 fixed point arithmetic 16
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floating point arithmetic 49
floating point implementations 105
floating point support for IMS T414 65
floating point unit 3, 49
floating point unit state 64
floating point,
argument reduction 55
arithmetic 53
arrays 51, 52
class analysis 58
comparisions 57
error checking 93
error flag 59
error modes 61
errors 59
evaluation stack 51
expression optimisation 95
expressions 53
IEEE comparison 58
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instructions 50
integer to real conversion 63
load and operate 57
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magnitude comparision 58
microcode entry points 50
real to integer conversion 62
real to real conversion 62
registers 50
remainder 54, 55
rounding mode 53
square root 54
store register 52
type conversion 62
types 50
fmul 16, 146
forming address 17
forming static link 32
foadd 53, 153
fob32tor64 63, 160
fochkerr 61, 157
fodiv 53, 153
fodup 51, 150
foentry 50, 150
foeq 57, 158
fogt 57, 158
foi32tor32 63, 160
fpi32tor64 63, 160
foint 62, 159
foldnladddb 57, 156
foldnladdsn 57, 156
foldnidb 51, 151
foldnldbi 51, 152
foldnimuldb 57, 157
foldnimulsn 57, 157
foldnisn 51, 151
foldnisni 51, 151
foldzerodb 57, 155
foldzerosn 57, 155
fomul 53, 153
fonan 58, 158
fonotfinite 58, 158
foordered 57, 158
foremfirst 55, 154
foremstep 55, 154
forev 51, 151

fortoi32 62, 160
fostnldb 52, 152
fostnli32 62, 159
fostnlsn 52, 152
fosub 53, 153
fotesterr 61, 157
fpu/cpu interface 50
fouabs 57, 156
fouchki32 62, 159
fouchki64 62, 159
fouclrerr 61, 157
foudivby2 57, 155
fouexpdec32 57, 156
fouexpinc32 57, 155
foumulby2 57, 155
founoround 63, 160
four32tor64 62, 159
four64tor32 62, 159
fourm 53, 153
fourn 53, 152

fourp 53, 152

fourz 53, 152
fouseterr 61, 157
fousgrtfirst 55, 153
fousgrtlast 55, 154
fousqrtstep 55, 154
fractional arithmetic 16
function call 36
function code 7
function evaluation 36
functions 35

future 44

gajw 31,139

geall 31, 139
graphics support 67
gt 22,136

halt on error 77, 79
halt on error mode 93

IEEE 754 103, 105

IEEE 754 implementation 66
IEEE 754 standard 49

IF 23

implementation of IEEE 754 66
IMS T800 49, 105

in 19, 138

initialisation 73, 75

input 19

input with timeout 70
instruction representation 7
instruction set 3

integer length conversion 29
internal channel 85

internal channels 70
interruption 4, 40, 41, 64
intialising a channel 44

Iptr 11

j 22,133
jump table 26
jumps 22

ladd 26, 143
b 20,138
lde 12, 132



166 Index
Idiff 26, 143 opr 7,132

Idinf 65, 146 or 16, 136

Idiv 27, 144 Oreg 11

Idl 12, 133 out 19, 138

Idip 12, 133 outbyte 20, 138

Idnl 18, 134 output 19

Idnlp 18, 134 outword 20, 139

ldpi 17, 137 overflow checking 15

Idpri 42, 139

Idtimer 45, 139

lend 30, 137

length of array 19
library linkage 33
link channel 4
little-endian 6
livelock 3

Imul 27,143

loading operands 13
loading parameters 32
loading sequences 13
local variables 11, 12, 39
local workspace 12
logic 16

long arithmetic 26
long shifts 28

loop control block 30
loops 30

Ishl 28, 144

Ishr 28, 144

Isub 26, 143

Isum 26, 143

message lengths 37
mint 17, 137

minus 16

modulo arithmetic 15
modulo comparison 44
MostNeg 6

MostPos 6

move 19, 131, 138
move2dall 67, 147
move2dinit 67, 147
move2dnonzero 67, 147
move2dzero 67, 147
mul 15,135

multiple assignment 21
multiple length arithmetic 26
multiple length shifts 28

negation 16
nfix 7,132
norm 29, 144
normalising 29
not 16, 136
notation 1,8
NotProcess.p 6

observing analyse state 77
occam

as meta language 1

as source language 1
occam error modes 92
occam process 3
on-chip RAM 91
op code 7
operands 13
operate instruction 7

PAR 42

parallel assignment 21
parameters to procedure 32
partword 29

partword arithmetic 30
past 44

peeking down link 74
pfix 7,132

pointer 5

poking down link 74
pop 11,50

postnormsn 65, 146
power up state 73
prefixing 7,8

PRI PAR 43

priority 3, 40, 42, 43
procedure call 31
procedure parameters 34
procedures 31

process 3, 11, 39, 81
process descriptor 39
process initiation 41, 42
process state 3
process termination 41, 42
prod 15, 136

program notation 1
push 11, 50

range reduction 55
reading the time 45
real arrays 51, 52
REAL32 50

REAL64 50

reduced error mode 93
register loading sequences 13
register save area 79
register stack 11
registers 11

rem 15,135

replicated alternative 48
replicators 30, 48
rescheduling 4, 81
reset state 73

resetch 70, 144
resetting a channel 69
ret 31,139

return from procedure 31
rev 12,134

rotation 29

roundsn 65, 146

runp 42, 139

saveh 77,145

savel 77,145

sb 20, 138

scheduling 3, 40, 81
scheduling lists 40, 81, 84
sequential process 11
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seterr 36, 142 timeslicing 4, 22, 23, 30, 40, 64
sethalterr 78, 145 timing out an input 70
shifts 16, 28 tin 45, 140
shl 16, 136 transferring data 19
shr 16, 136 true 22
sign extension 29, 30 two dimensional block move 67
signed arithmetic 15 two dimensional block move workspace 80
single to multiple length conversion 30
size of workspace 39 unary minus 16
special pointer values 5 unchecked arithmetic 15
special RAM locations 83 undefined values 1
special workspace locations 39, 84 unpacksn 65, 146
standard functions 55 unsigned arithmetic 15
startp 41, 139
static chain 32 variables,
sthb 75, 145 local 11,12, 17, 39
sthf 75, 144 non local 18
st/ 12, 130, 133 vector stack 91
stlb 75, 145
stlif 75, 144 wait 45
stnl 18, 134 went 17, 137
stop on error mode 93 Wdesc 39
stoperr 36, 142 WHILE 23
stopp 42, 139 word address 5
structures 17 word arrays 18
sttimer 75, 145 word normalisation 29
stub process 33 word rotation 29
sub 15, 135 word transfer 20
subscript evaluation 18 wordlength 3, 5
subscripts 15, 17, 18, 36 workspace 11, 12, 31, 34, 39, 46, 84
sum 15,135 workspace 0 32, 39, 84
suspension 4 workspace size 39
synchronisation 3, 4 Wptr 11
wsub 17,137
table of constants 92 wsubdb 38, 148
talt 46, 140
taltwt 46, 140 xdble 29, 143
termination 3, 41, 42 xor 16, 136
testerr 36, 142 xword 29, 142
testhalterr 78, 146
testpranal 73, 144 2 dimensional block move 67
time 44, 45 2 dimensional block move workspace 80

timer alternatives 46
timer input 45, 83
timer lists 81, 83, 84
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