Coding switch

Memory map

1

{
Errata sheet for the IMS B002

There is an error on page 14 of the User manual; the board
boots from link when switch 6 of the coding switch near to the
edge connector is set to OFF. Full details of the coding switch
settings are as follows:

Switch Signal OFF ON Standard
1 LinkOSpecial , Standard ON

2 Link123Special Standard ON

3 DisablePLL OFF

4 LiNkSpES AL ON

5 Enad U T EST e ON

6 Boot source Link ROM ON

7 DISARLE INT RAM ON

8 Parity See below ON

Switch 3 must be OFF and switches 5 and 7 must be ON.

When the Parity switch is ON, a parity error is reported on the
LEDs, but does not generate an error on UpError; when the
switch is OFF a parity error is propagated to UpError.

The following memory map may be useful:

TFFF
7FFE

8038
8028
8020

801F
800F
8000

8000
8000

FFFF
0000

0000
0000
0000

FFFF
FFFF
0800

07FF
0000

EPROM
EPROM

Parity error read

PIO

DUART registers base —» 2,4.8,C,10,1419,1¢
>

>
N \
Top of 2 Mbytes 1oy N)z&jzc »50“339) }’8, B

Top of 1 Mbyte
Bottom of external RAM

Top of on-chip RAM for T414
Bottom of on-chip RAM

For details of the DUART registers, see the 2681 data sheet.



“ Errata sheet for the IMS B002

.

Transputer The IMS T414A used on these boards has two bugs in byte input
and output, a bug in the timer and a bug in the delayed timer
input.

Byte input/output The first problem may be observed if an attempt is made to

input a single byte from a link. The second problem may be
observed if the byte position within the word for byte slice
input is different from that for the corresponding byte slice
output. The problem is avoided if all byte slice communications
commence on word boundaries. The following two procedures
should be used in preference to the predefined procedures
BYTE.SLICE.INPUT and BYTE.SLICE.OUTPUT:

PROC bugfix.byte.slice.input (CHAN c,
VAR vec[], VALUE start.w, bytes) =
IF -- start.w is a word offset

bytes = 1
VAR temp[BYTE 2] :
SEQ

BYTE.SLICE.INPUT (c, temp, 0, 2)
Vec[BYTE start.w*4] := temp[BYTE 0]
TRUE
BYTE.SLICE.INPUT (c, vec,
start.w*4, bytes):

PROC bugfix.byte.slice.output (CHAN c,
VALUE vec[], VALUE start.w, bytes) =

IF -- start.w is a word offset
bytes = 1
VAR temp(BYTE 2] :
SEQ

temp(BYTE 0] := vec[BYTE start.w*4)
BYTE.SLICE.QUTPUT (c, temp, 0, 2)
TRUE
BYTE.SLICE.OUTPUT (¢, vec,
start.w*4, bytes):



Timer ticks and timeslice
period

Delayed timer input

A

Errata sheet for the IMS B002

Both the low priority timer and the high priority timer of
the transputer on this board tick every 1.6 microseconds. The
timeslice period is 1024x1.6 microseconds.

The transputer will be corrected as follows:

the high priority timer will tick every 1.0 microseconds;

the low priority timer will tick every 64 microseconds;

the timeslice period will be 5x1024 cycles (not 4096 cycles as
stated in the transputer reference manual) of ClockIn (about |
millisecond).

Note that 15 625x64 = 1 000 000, so that the low priority timer
will be able to time seconds exactly.

Note also that a process may run for between one and two
timeslice periods.

To ensure correct operation of delayed timer input the
following occam process:

TIME ? AFTER absolute.time
should be replaced by a call to the following procedure:

PROC time.after (VALUE abs.time) =
VAR delta.time, wait.time :
VAR now, dummy :
SEQ :
TIME ? now
LONGDIFF (dummy, delta.time,
abs.time, now, 0)
IF
(delta.time <= 0) OR (delta.time > 5)
wait.time := abs.time
TRUE
LONGSUM (dummy,wait.time,now,5,0)
TIME ? AFTER wait.time :



Errata sheet for the IMS B002

Timeout with channel An alternative process with a channel input and a time out
input option, as in the following example,
ALT

¢ ? datum

... DProcess input
TIME ? AFTER absolute.time

.+. process time out

can be replaced by the following procedure and its instance:

PROC chan.time.out (CHAN

c,
VALUE abs.time,
VAR time.out, datum) =
VAR delta.time, wait.time :
VAR now, dummy :

SEQ
TIME ? now
LONGDIFF (dummy, delta.time,
abs.time, now, 0)
IF
(delta.time <= 0) OR (delta.time > 5)
wait.time := abs.time
TRUE
LONGSUM (dummy,wait.time,now,5,0)
ALT

c ? datum
time.out := FALSE
TIME ? AFTER wait.time

time.out := TRUE :
VAR time.out : '
SEQ
chan.time.out (¢, absolute.time,
time.out, datum)
IF )

time.out

... process time out
TRUE

..+ DProcess input



Restriction on delayed
timer input

Y
Errata sheet for the IMS B002

There is a further delayed timer input restriction in that only
one delayed timer input may be in operation at any one time,
and this input must be made by a high priority process.

It is strongly recommended that the above timing procedures
are used in only one process, at high priority, in a program,



