

WARNING: This equipment generates, uses and can radiate radio frequency energy, and if
not installed and used in accordance with the instruction manual, may cause interference to
radio communications. Operation of this equipment in a residential area is likely to cause
interference. If the user desires to correct this interference, he must do so at his own
expense. Modification of this product wili require compliance with FCC Part 15 rules.

Computer System Architects reserves the right to make changes in specifications at any time
and without notice. Information contained in this manual is derived with permission from
published Inmos documents and CSA engineering. The information furnished by Computer
System Architects is believed to be accurate; however, no responsibility is assumed for its
use, nor for any infringements of patents or other rights of third parties resulting from its use.
No license is granted under any patents, trademarks, or other rights of Computer System
Architects or of the Inmos group of companies.

Computer System Architects and the CSA logo are trademarks of Computer System
Architects, Inc. inmos and IMS are trademarks of the Inmos Group of Companies. 1BM is a
registered trademark of International Business Machines Corporation. Apple Il is a registered
trademark of Apple Computer, Inc. Macintosh is a trademark licensed to Apple Computer, inc.

Software written by CSA and included with this package is provided for assurance testing and
function demonstration. This software is provided by CSA under license. Use of this software
on non-CSA products will not be supported. This software is © Copyright 1988, 1989, 1990
Computer System Architects, and is marked as such.

Other software contained in the demonstration programs supplied with this package is
provided by Inmos Limited free of charge and without any support. This software is marked as
such, and is Copyright Inmos Limited. Except for the liability arising from the due course of
law, Inmos accepts no liability whatsoever with respect to these programs.

Logical Systems C — Notice of License: A paid single machine software license is included

for the C software provided in this package by Logical Systems, Corvaliis, Oregon, USA. This
license is printed on the software package.

Occam Toolset — Notice of License: A paid single machine software license is included for
the Occam software provided in this package by the Inmos division of SGS-Thomson. This
license is printed on the software package.

Inmos is a member of the SGS-Thomson Microelectronics group.

© Copyright 1990 Computer System Architects

NN
oW

wWw
o Wwn

Contents

1 184 o To LF T2 4 o T 4 1
FOrWard........ccciiiiriiiiioiiissnenncesennennneersceerstsssmsssssssscnsnsnns 1
Brief Theory of Operation..............ooovviiiieniiiriii i, 5

InStallation GUILE..........c.ceiviirere e e 7
Getting Started...........cocoiiiicer e 7
Hardware Installation...........ccccooooiviimiiiiiiiiiiinin e, 7
221 Anti-static Precautionscccccccmviieviiiniiininnennn 7
2.2.2 Board Installationccccoveiiiiiiiminiiiini e, 8
223 Running Hardware ChecksS.........ooveeieericiineeirene e 8
22.4 Mandelbrot Demonstration...........cccccoev it 9
2.2.5 Additional MemOry....c.cocerriiiimeciiiiici e e e 10
Software Options and Memory..........cocoiiiiiiiiiiiiiiiirrreee e 10
Software Installation...........c.ccccccmiiiiiii 11
241 Installing the C Toolset.......ooeeiriiieiie e 11
242 Installing the Occam Toolset..........ooceiiiiiiciireecce e, 12
Your First Transputer Program...........cccoeoivimiiiiiiinivininniiimnnnnenen, 13
2.5.1 A C Program in On-Chip MemoOry........ccceverimerveeesnsrceesrnennns 13
25.2 A C Program.......ccoiieierinn ittt ses s ssaeaass s aenes 14
25.3 An Assembly Program........c.ccevvmimiiiiiinininniinnncnnenninneenn, 15
254 AN OCCaAM Program..........coovviiivirimmmmmrerneniissininensss s 18
The NeXt SteP.. .o e e 19
ON OPIONS. ..ottt ee e e tr e s s e s ee e e am e s eeeeecanans 21
BOAard LaYOUR...........cooiiiiiiiiiriiieeie ettt sr e e es e eerr e r s s ae s e e 21
3.1.1 List of COmMPOoNentScooeeeiiiiiiiiieei e e 21
3.1.2 Optional COMPONENtS........cceviiieeieeiiiee e eeeeeae e es s e 22
3.1.3 Jumper Locations.......ocoveereieimieiecccr e, 22
Adding MeMOTIY... ..ottt et s aet e s e tr s s rrnes 23
3.2.1 MemOory SPeed........cooviiiiiiiieiiii e rveeernnemee e enenrannae 23
3.2.2 MEMOIY SIZE....ccivenreiiiirirncecirie it rrccrsesss e rrnene s s e reersnaes 24
3.2.3 MeEMOTY TeStS. ..ot s 24
PC/LInk Interface Settings.......cccccciniiiiiinrin e eceereenennens 26
3.3.1 PC/LINK INterface......c.eeiiiviimiie e ccne e e e e 26
3.3.2 PC/LINK SPEd.ot et e meeee e 27
Transputer Settings.. ...t 28
3.4.1 Transputer Speed......coov e 28
3.4.2 LinK SPEEAS.....cuuieieiiirnreeteitiemiiiriieieieteeetteeeeertrreeaeeseseeennaesas 28
PC-XPIr JUMPEIS ..ot ettt se e s e e eeenee e ee s 29
Setting Up Multi-Transputer Networks..............ccccceeiiiiiiciiicnnnnn. 30
3.6.1 Chain Jumper Settings.....c.ccoovveciceeririeeerrree e 34
3.6.2 Tree Jumper SetiNgs ...cccvvvrmimiiccccc e reeer e 35
3.6.3 Mesh Jumper SettingsS.......ccooveveiiieircerrercecrere e 37

ke 46?%21?3?{5&:‘5:;;&::::::::::::::::::::::::::::: e 1 l nt o d Uu Ct i (9 N

.. 39
4.1.2 Programmed VO POIt ... cerecrrccceereenaeesnannnannes 40
4.1.3 Power Transistors..........coccoenrininenininnnnisesia e 43)
4.2 23161111 «] [T 3OO SOOI OUPOPPRR 44 ’
4.2.1 Printer Interface.......ccccvurimiiiiiireeccrn e e sereaan e 44 . , : . o
4.2.2 Eight-Channel A to D Conventer...........ccccecvrereccveecraenncsnnens 46 "What we are witnessing today is the last hurrah of serial p r9cessmg.
423 Two-Channel D 10 A CONVERETcceuenveeereereesesrerseersenns 48 —Joel Birnbaum
4.2.4 TWO-GiGit LED DISPIAY «..cvvcvvvverereeeersesvensenssessenesessessessenssnens 50 Hewlett-Packard
TroubIeSNOOING......c.ceiiiierecceeee e rerae s sertr e e e ste e e s sraae s s s see s srnnessennes 53
5.1 Simple SOIUIONS. ..ottt cnrae s secsensnnes 53
5.1.1 INSEAUING the BORI -...vv.veevneeomreeoon oo eeeeeseesseesessemseeeessenseeenn 53 ,. 1.1 Forward
5.1.2 Installing the MemoOryc..coo v erseeeeneeane e aee 54
g.: .3 a(_)ﬂW?lre .. g: congratulatlons W-th your purchase Of a Tfansputer Educaﬂonal Klt from Computer system
5 2 s.t . b stelsceolaaner?g:t.l-.c..s. .. 55 Archllects. you have 'nvested 'n the most promlslng computef technology avallable Thls
. 5 29p1 y PCp/Link I%terface .. 55 exc'tlng teChnOIOQY IS mUltlproceSSlng. Traﬂsputers are feVOIU(IOHary para"e'
5.2.2 LLE: 11T o1V (1 SRR 56 , microprocessors that make multiprocessing viable and affordable today.
523 lé/leﬂn\;l\:)ry .. gg ‘ | frequenﬂy interface with scientists and engineers throughom North America as a marketing
5.2. Agd oal'ep. B.rd .. 7 ’ manager for SGS-Thompson-lnmos, the company that manufactures the transputer and
g.g.s At Bo ?ﬁe‘;ﬁ?'m 0TS .-.o-cerememcesmsssmnsnssn st 57 teamed with CSA to build your kit. Many of these technical people are achieving scientific
6 UII-BOAFG INEIWOMKS . ovoevooesvee ettt breakthroughs and are building futuristic applications using the same development tools you
C In ON-ChIP MEMOTY.......cooiiiriieiiii ittt s e e s r s e eas 59 now own.
6.1 TRE BASICS..... e aee 59 v
6.2 THhEe Lt HO LIDarY oot erccrevevesicreiss e se s e e e s tere e nn e s seans 61 The importance of what this kit will teach you cannot be overstated. The powerful concepts
6.2.1 Output Using the Lt /O Library......c..ccceevivveeveeenrernnrrerenssneens 61 and tools are unique, oftentimes contrary to mainstream methodologies promoted by the
6.2.2 Input Using the Lt /O Library..........cccimeeeeeerrrreeeecccnnneens 61 technical and academic communities.
6.2.3 ko Heap Management............coecnicnimnincercscninnens 62 '))))
6.2.4 Lt /O Library Referencecccceveeeivveveieeirieresesncresrsrernnnnens 63 i When transputer technology was being born in the early 1980s, it was championed by
6.3 Optimizing Memory USe..........cccoireeeiierreer e vesieesiennesssrnnssenerenrennes 66 visionary thinkers and imaginative programmers looking to extend the boundaries of
6.4 Multi-processing In On-Chip Memory......cccenviiiiiicniinnecievennnn. 67 computer science. But conventionalists regarded the transputer as a whimsical idea that
LT T 1T 1 S 71 would amount to nothing more than an interesting toy. One eminent scientist even
ATE T OMOIOTY BB e postulated a law of diminishing performance to disprove benchmarks obtained by large
A.2 Memory Mapped I/O Interface Addresses................c.coccenee. 73 transputer systems.
22 ; gg IL.:'r]lll((SS(SubSystem)SystemServnces """"""""""""""" ;3 ' Today the transputer is broadly regarded as an innovative machine at the forefront of
A.23 Transputer SS (SubSystem) System Services...................... 75 -' computer technology. It delivers unmatched performance for many applications and ranked
A2.4 External Interface LED Port and Power Transistors. 76 fourth in world sales of 32-bit microprocessors last year. Major Fortune 500 companies and
A25 External Interface Programmed /O POM.....................oo.o...o. 77 large military contractors are using transputers to build next generation systems, and
.3 BOBIA SCHEMAUCS coorooooossrossissseomos e 78 transputer appiications are playing a role in America's space program. Let me briefly examine
A.4 External Cable Schematics....................... evenneesnenennsese e 82 this dramatic tum-around and relate it to what you will be leaming.
ﬁ: ; ggg::?ﬁgﬁtr('ﬁetg érsaxsgxts_:_lss%un%astlmg:t‘:o A v gg : We live in an age of tremendous discovery. If you are in your forties, half of the world's
A4.3 Education Kit to CSA PART Series External 84 knowledge has been produced since you left school. This explosive growth of science is
A4d.4 Education Kit t0 INMOS BOAIGS.....................cemsrssorrrrrrr.85 j being made possible by computers that extend our ability to manage information and solve

problems which stagger the human mind.

2 1-Introduction

1-Introduction 3

Applications for computers have increased far beyond the basic "number crunching" they
were invented for. Besides calculating mathematical expressions, computers also process,
analyze, control, synchronize, and even characterize data.

Some computer systems convert signal and image information into speech and vision.
Graphics computers transform mass numbers, humanly indigestible in their raw form, into
three-dimensional maps of the human body, subsurface geological features, protein
molecules, and objects in outer space.

Other computers are used as smart, responsive, "real-time controllers” for focusing cameras,
robot motion, anti-lock breaking, nuclear reactors, and weapon guidance. Perhaps most
amazing are neurocomputers which implement neural network paradigms to produce machine
learning or "artificial intelligence.”

Scientific investigation and computer technology have become almost inseparable. Even
though the performance of today's computers is impressive, the quest for knowledge
continues to demand more computational power. Major problems on all frontiers of science
are so complex they overwhelm even the most powerful supercomputers, capable of
executing 1.5 billion calculations per second.

Such computers achieve their speed with advanced process technologies that reduce the
size of chip components and enhance their conductive properties. Semiconductor devices
holding two million components are now in production, but designers are running into
limitations imposed by the laws of physics. These limitations are dictated by the wavelength of
light used to etch circuit patterns on wafers, heat dissipated from current resistance in
conductors, and leakage of electrons as insulation layers become increasingly thin.

Some exotic solutions are being explored to overcome these speed barriers. One is the
creation of photonic circuits that use flashes of light, instead of electric current, to transmit
digital information through strands of glass called optical fibers. These fibers dissipate no heat
and require no electrical insulation. The most radical concept for a photonic circuit is the
“biochip," a three-dimensional device made of organic (carbon based) molecules. These tiny

molecular switches could be packed together in far greater densities than semiconductor
components.

These prospects are exciting but they will not become commercial realities for some time, and
the price of process technology in terms of unit and system costs is already soaring.

Supercomputers utilizing Gallium Arsenide or supercooled CMOS circuits require very fast
memories and cost millions of dollars to own and operate.

Increasingly, multiprocessing is being adopted around the world as the sensible alternative.
Instead of using process technology to achieve raw speed, problems are solved more quickly
by using dozens or even thousands of parallel computers networked together. This strategy
is not unlike brain cells, called neurons, which are tied together in massive networks that allow

them to quickly recognize patterns like smells or process information for split second
reasoning.

Nature has elected to process information concurrently because the universe is enormously
parallel. Any system that can be viewed as a collection of simultaneous (parallel) parts or
events is said to possess concurrency. Virtually all systems in astronomy, genetics, physics,

geology, biology, and chemistry exhibit concurrency because natural phenomena rarely
occur in a nice serial fashion - the way most programmers develop their code.

Computers used for speech regulation, neural networking, jet engine control, medical
diagnosis, and airport scheduling all describe pieces of the real world. To accurately model
nuclear reactions, global weather, biosystems, experimental drugs, formation of new stars,
and air bag expansion in a car crash, scientists and engineers visually simulate the net effect
of many simuitaneous forces, events, and physical laws. Although some computers may be
faster at performing rote calculations, the transputer is specifically designed to handle this
complexity.

Conventional computers and programs are "sequential,” meaning one instruction or task must
be completed before the next can begin. Parts of a problem are always executed in serial
order, even if they actually take place at the same time. When sequential programs are used
to describe real phenomena, the impact of real-time interactions is lost and only simplistic
models are possible.

Conversely, transputers are "parallel” machines. They achieve their speed by executing the
composite parts of a problem together as they occur. A single transputer handles different
pants by "juggling” rapidly between them, or a group of transputers simuitaneously on parts
distributed among them.

The method of programming is essentially the same for either approach. In the second case,
transputers are combined as building blocks in multiprocessor networks to obtain nearly linear
performance enhancement. In other words, a network of N transputers will typically execute
code N times faster than a single transputer.

Multiprocessing is as much a conceptual advancement as it is a technological advancement.
Although the transputer's architecture is being studied by computer manufacturers
everywhere, the real trick to multiprocessing is learning how to write code that exploits the
paralielism of problems.

The most far-reaching breakthrough in this area is the Occam programming language. Paraliel
programming is not trivial to master, but Occam provides a framework for developing programs
which express parallelism explicitly, in an understandable way. Occam can also be proven
mathematically, making it attractive for theoretical research and secure applications.

Because its architecture is designed to execute the Occam model of concurrency, the
transputer is sometimes regarded as a hardware implementation of the language. This
unprecedented level of integration between software and hardware is part of the reason
behind the transputer's impressive performance. Other parallel programming languages
exist, but most are written and supported only by PhDs and none have been transformed into
an innovative computer architecture.

Occam is being successfully taught to undergraduate students around the world, and some
universities have made it part of their required curriculum. National user groups have formed a
worldwide community of students, faculty, and industry professionals who use Occam
because it makes the description of concurrent systems straightforward and comprehensible.

Transputers, like ordinary microprocessors, can also be programmed in standard high-level
languages. Your kit includes comprehensive tools and documentation for both Occam and C.

4 1-Introduction

A company called Logical Systems has built a special "Parallel C" compiler that embeds
Occam's powerful constructs within C code to ease the transition from serial to parallel
programming. This useful compiler also makes the porting of existing C applications onto
transputer systems possible. An increasing number of industry applications are combining
Occam with more familiar languages like C in pragmatic ways.

CSA recommends using your single transputer board to become familiar with this kit's
extensive software development tools. Look at the exercises in your workbook and try to start
writing and debugging code. It is important to approach Occam with an open mind until its use
feels natural. First time programmers will sometimes learn quicker than experienced
programmers who have an ingrained sequential approach to writing code.

Additional PC add-in boards can be purchased from CSA to construct inexpensive
multiprocessor systems for accelerating your code. These boards are easy to interconnect in
arbitrary network configurations with plug-in link cables. These networks may be located
inside one PC chassis or distributed among separate PCs in a parallel processing laboratory.

With four additional 1 Mbyte boards, you can build a formidable PC multiprocessor for under
$1,500 which delivers 50 MILLION INSTRUCTIONS PER SECOND (MIPS). No other
technology in the world places this kind of performance within reach of typical consumers.
Most 25 MIPS workstations sell for $30,000 and up. A Hypercube machine is several orders
of magnitude more expensive than a comparable transputer network, and is an engineering
nightmare by comparison. Sizable transputer systems can be created in classrooms or
teaching labs if each student purchases their own kit for the course. Some commercial
systems in use today have several thousand transputers.

It is our hope that your state-of-the-art transputer kit becomes a source of valuable training and
fun. You are now one of many pioneers exploring today's newest, most powerful, and fastest
growing computer technology.

Mark Hopkins
Strategic Projects Manager
SGS-Thomson Microelectronics

1-Introduction 5
1.2 Brief Theory of Operation
To Oplional Extemal Circuitry

. |
w_‘ ['e‘x"'"wﬁ'-f-mg ke
[2s6kx 4 oram z f : _
[8 §
L 4
£ !
I 256K x 4 DRAM i— g m 5

256K x 4 DRAM l— é Subsystem

256K x 4 DRAM l— §
I w Link-Adaptor

interface to PC Bus ool

.

PC/XT/AT-Bus

The Transputer Education Kit board consists of three sections: the transputer with its local
memory, the PC/Link Interface and the External Interface. The transputer is a RISC-like
microprocessor which was designed with multiprocessing in mind. The PC/Link Interface
provides data and control communication between the transputer and the PC. The External
Interface allows the transputer to control external hardware.

One of the biggest challenges in multiprocessing is communicating data between
processors. The designers of the transputer addressed this challenge with what is called a
transputer link. A transputer link is a high-speed bidirectional serial communication path for
interconnecting transputers and connecting transputers to peripherals or other computers.
Link communications are controlled by simple but fast co-processors residing on the same
chip as the transputer. These co-processors allow the transputer to overlap computation and
link communication, letting the transputer compute while data is sent and received. This
results in much higher rates for interprocessor data transfers without stopping computation.
Each transputer link can transfer data at over 1 Mbyte of data per second in each direction
giving a total data transfer rate of 2.3 Mbytes of data per second. A transputer with two links is
capable of transferring 4.7 Mbytes of data per second. With four links this increases to 9.4
Mbytes of data per second.

Another challenge of multiprocessing is in software development. To ease system develop-
ment, the processor design should aliow one program to run on various numbers of
processors with little or no software modification. The transputer's hardware was designed to
efficiently handle multiple processes running on a single processor. It uses the same
communication model (even the same instructions) when multiple processes are running on
one processor as when the multiple processes are distributed over multiple physical
processors. This means that a parallel program intended to run on many transputers can be
developed and debugged on one transputer and then run on single or multiple transputers.
Many programs can be designed to use all processors that are available at run-time; from just
one to 100 or more, often yielding an almost linear increase in performance.

6 1-Introduction

The transputer also implements a process scheduler directly in the hardware. The low-
overhead of this scheduler allows the programmer to subdivide his task into multiple
concurrent processes and run one or more of these processes on the same processor
without using significant processor power for process switching. In fact, multiple concurrent
processes must be running on each transputer in order to take advantage of their ability to
overlap communication with computation. Buffer processes are created for each link that
either receive internal data from the compute processes and send it out a link, or receive
external data from a link and send it to the compute processes. The buffer processes send
and receive data while the compute processes compute. The transputer's process scheduler
supports processes at two priority levels and time-slices processes operating at low priority.it
also manages processes waiting on interrupts from external events or one of the two on-chip
timers.

Another added feature of the transputer is that, depending on the model, either 2K or 4K of
fast memory is included on the same chip with the processor and link circuitry. Using this
memory, programs can be run on the transputer without any off-chip memory. The C Toolset
included with the Transputer Education Kit allows you to write and execute parallel C
programs using only this on-chip memory. When off-chip memory is provided, this on-chip
memory can be used to hold code and variables that are used frequently. Because this on-
chip memory is at least three times as fast as off-chip memory, placing often-used code and
variables in on-chip memory can significantly increase performance.

Also included on the Transputer Education Kit circuit board is ciruitry that provides a byte-wide
interface to external hardware and program control of eight LED’s (light emitting diodes).
LED’s can be installed on the board and then turned on or off under program control as a
debugging aid. The byte-wide I/O port gives the ability to control external hardware projects
and, when used in conjunction with the signals that control the LED’s, this I/O port can control
virtually any eight bit microprocessor bus peripheral chip.

The PC/Link Interface portion of the circuit board is used to communicate between the
transputer and the host PC. The interface essentially adds a link to the PC so that it can fit into
the transputer's scheme of communication. The PC/Link Interface section of the board is
completely independent of the transputer and its local memory. The two are connected only
when the PC Link is connected to the transputer by external cables or on-board jumpers. The
PC Link could even be connected to a transputer on a different board or ignored if desired.

The combination of a transputer processor, PC/Link Inteface and the External Interface
makes the circuit board provided with your Transputer Education Kit a powerful co-processor
that can be used to explore the concepts of parallel processing and real-time control. With
additional Kit boards or Kit Add-On-Processor boards (available from CSA) you can explore
and take advantage of true parallel processing.

2 Installation Guide

2.1 Getting Started

The first step in installing your Transputer Education Kit is filling out your warranty registration
card. During the hardware installation you will be given a number that validates your warranty.
Write this number on the warranty registration card and return it to CSA. At this time also
check your packing slip with the contents of the box. If you find any discrepancies, please call
CSA at 1-800-753-4CSA or (801) 374-2300.

The CSA Transputer Education Kit circuit board will work in any IBM PC compatible system.
The software requires at least 512K of memory and a hard drive with at least three megabytes
of free disk space. Six megabytes of free disk space are required if you plan on using both C
and Occam.

2.2 Hardware Installation

IMPORTANT: Install the circuit board and run all installation tests before changing factory
jumper settings or adding external memory.

2.2.1 Anti-static Precautions

Several components on the Transputer Education Kit board are static-sensitive and can be
damaged through improper handling.

CSA recommends that you not

remove the Transputer Education

Kit board from its anti-static

envelope during pre-instaliation

handling and inspection. Whenever

you are handling the board you S

should use a grounded wrist strap

and conductive pad to ensure a Example of a Grounding
static-free environment. Wrist Strap

If proper static-protective equipment is not available, you can reduce the risk of damage to
static-sensitive devices by following certain precautions: Before removing the Transputer
Education Kit board from its anti-static envelope, touch a grounded surface such as an
exposed screw on the back of your computer's chassis (not the monitor) with one hand and
the anti-static envelope with your other. Wait at least twenty seconds, then still touching
ground, reach inside the envelope and remove the board. Handle the board by its edges and
avoid touching the board's components as much as possible.

8 2-Installation Guide

To Reduce Static Risk

Keep one hand on the chassis to provide ground while inspecting the board or adjusting
jumper settings. You can place the board on the envelope, using it as a work surface
provided you dissipate the static charge from the bag as described above. If you remove your
hand from the board or the bag, touch the chassis to discharge any built-up static electricity
before touching them again.

2.2.2 Board Installation

Your Transputer Education Kit circuit board may be instalied in either an eight-bit or a sixteen-
bit PC bus slot. To install the board, turn off all power to the computer and remove the chassis
cover. Select the slot you wish to use. Remove the blank I/O bracket on the back of the PC
chassis and save the screw. Insert the board into the slot and make sure that it is seated
properly. Fasten the board's edge connector bracket to the PC chassis with the screw from
the original bracket. Replace the chassis cover.

2.2.3 Running Hardware Checks

Once your board is installed, turn the power on and check that the board is installed and
running correctly. To do this, insert the Test and Demo disk supplied with your kit into the
floppy drive and type the following at the command line (if you are not using floppy drive a,
replace a with the appropriate drive letter):

a:kit_test
You should see the following display on your screen:

CSA KitTest Version 1.00
Installation and Diagnostic tests for the
Transputer Education Kit.

PC/Link found at 150 (hex) SS found at 160 (hex)

1) Get warranty number

2) Show/Select PC/Link Interface address{(es)
3) PC/Link loopback test

4) Channel I/0 test

5) On-chip memory test

6) External memory test

7) Show/Set/Clear error flag

0) Quit

2-Installation Guide 9

If the fourth line is not as shown above (i.e. PC/Link found at...),the PC/Link Interface
is not jumpered correctly. Refer to section 3.3 PC/Link Interface Settings for the
correct default settings. If you still have problems, consuit chapter 5 Troubleshooting.

When you have the screen as shown above, select Channel /O test, by typing a 1 at the
prompt. The following should appear on the screen (dots should continue to be printed until
you press a key):

2 kbytes/dot
Press a key to stop

It you do not get this response, refer to section 3.5 System Services Jumpers for the
correct default settings. If you still have problems, consult chapter 5 Troubleshooting.
Type any key to end this portion of the test. The two lines below will be displayed, followed by
the original menu:

Channel I/0 between PC and transputer (kbytes/sec):
111.009 - channel I/0

Get your warranty validation number by typing 2 at the prompt. Write this number in the
appropriate blank in the warranty registration card and return the card to CSA.

2.2.4 Mandelbrot Demonstration

There is a simple demonstration program included on the Test and Demo disk that graphically
displays the well-known Mandelbrot fractal image. It requires no external memory, so if your
board passed kit _test in the last section, you can run this demonstration.

To run the program, insert the Test and Demo disk in the floppy drive and type the following at
the command line (if you are not using floppy drive a, replace a with the appropriate drive
letter):

a:man

The program will then prompt you as follows for the type of graphics card you have in your PC:
CSA Mandelzoom Version 2.01 for PC
h)ercules c)ga e)ga v)ga:

Enter the card type at the prompt by typing an h, ¢, e or v, and the following will be displayed:

Nodes found: 1
using fixed-point arith.

After frame is displayed:
Home - Displays the zoom box. Use the arrow keys to

move and size the zoom box. Pressing Home a
second time expands the contents of the zoom

10 2-Installation Guide

box to a full-screen image.

Ins - Alternates the function of the arrow keys between
moving and sizing the zoom box.

PgUp -~ Resets the display to the first image.

End - Quit

-- Press a key to continue --

Press any key and the program will draw the Mandelbrot set on the screen. The commands
above allow you to select and enlarge any portion of the screen.

2.2.5 Additional Memory

The transputer chip itself incorporates either 2K or 4K of on-chip memory depending on the
processor model. This is sufficient to allow you to learn a great deal about the transputer and
paraliel processing, although the size of the program and data will be somewhat limited. if your
board was ordered with no additional memory and you would like to add some, you can do so
now (see section 3.2 Adding Memory).

2.3 Software Options and Memory

The entry-level Transputer Education Kit comes with a T400 processor which incorporates 2K
of on-chip memory. Even without any additional memory it is an incredibly powerful computer
which can be used effectively to learn about parallel processing and explore the transputer
architecture. However, having only 2K of memory does impose some limitations.

The C compiler delivered with the kit produces executable programs for the transputer but
actually runs on the PC (i.e. it is a cross-compiler) so the compiler itself is not affected by the
lack of additional memory on the transputer. C programs require a minimum of 4-8K of
memory when using the standard C I/O libraries. Because of this requirement, C programs
which use standard C I/0 cannot be run using only the transputer's on-chip memory. There is,
however, an aletrnative 1/0O interface provided with this kit that requires no additional memory.
it provides for keyboard input and screen display but no file access. if you have an entry-level
Transputer Education Kit with no additional memory, section 2.5.1 A C Program in On-
Chip Memory contains an example program using this I/O interface. For more information
on running programs using only the on-chip memory of the transputer, see section 6 C In
On-Chip Memory of this manual and the C Toolset User's Manual.

Included with the C compiler is a transputer assembler. Like the C compiler, the assembler
runs on the PC (i.e. it is a cross-assembler) and is not affected by any lack of additional
transputer memory. When writing in assembly language, the transputer's 2K of on-chip
memory suffices to learn all the features of the transputer instruction set.

As contrasted with the C compiler, the Occam compiler runs on the transputer with the PC
acting only as a host server, and requires at least 1 Mbyte of memory. Therefore, Occam
programs cannot be compiled on the entry-level Transputer Education Kit unless additional
memory is added. Occam programs compiled on another computer can be loaded and run on
the Transputer Education Kit as long as memory requirements are small (less than 2K for a
T400 and less than 4K for a T425/800/805).

With 1 Megabyte of memory in addition to the on-chip memory, the Transputer Education Kit
can run both the Logical Systems C and Occam Toolsets with no limitations.

2-Installation Guide 11

2.4 Software Installation

Before installing the software, you should have successfully completed the hardware
installation procedures outlined above.

The following section describes the standard installation procedure for the Occam and C
Toolsets. For possible installation options, please see the file install.doc on Disk 1 of
the disks of the software being installed.

IMPORTANT: If you are already using other versions of the Occam or C Toolsets, installing
this software will overwrite your previously installed version.

2.4.1 Installing the C Toolset

The T400 Kit C Toolset comes on two 360 Kbyte floppy disks and requires 2 Mbytes of free
space on your hard disk. The professional-level C Toolset (optional) comes on three 360
Kbyte floppy disks and requires 3 Mbytes of free space. If you are installing the professional-
level C Toolset and are short on hard disk space see the installation option instructions in the
install.doc file on Disk 1.

To install this toolset, insert Disk 1 into your floppy disk drive. Run the batch file
install.bat on Disk 1, giving as parameters the drive letter of the tloppy disk drive and the
drive letter of the hard drive on which the Toolset will be installed.

For example, if your floppy disk drive is a, and the drive on which you want the Toolset
installed is c, type:

asinstall a ¢

You will be instructed to insert the other disks as the installation proceeds. The installation
takes 10-15 minutes on an IBM PC/AT.

The installation procedure creates a directory called \1sc. All the programs necessary to
install the Toolset are copied to this directory and all components of the Toolset itself are
copied into sub-directories of \ 1sc.

Once the software is installed, there are a few additions and changes you need to make to the
DOS environment variables before running the compiler. First, add the directory \1sc\bin
to the DOS path variables. For example, if the software is installed on drive ¢, and your
present path variable is ¢ : \ system, the command to add \ 1sc\bin to your path variable is:

path=c:\system;c:\1lsc\bin

Next, add the three environment variables ppinc, t1ib, and linkname with the following
commands:

set ppinc=c:\lsc\include
set tlib=c:\1sc\lib
set linkname=0

12 2-Installation Guide

2-Installation Guide 13

To avoid changing the path and setting the three environment variables every time you use
the C Toolset, add the four commands above to your autcexec .bat file or place themin a
separate batch file which you run before using the C Toolset.

2.4.2 Installing the Occam Toolset

The T400 Kit Occam Toolset comes on six 360 Kbyte floppy disks and requires 2.5 Mbytes of
free space on your hard disk. The professional-level Occam 2 Toolset (optional) comes on
twelve 360 Kbyte floppy disks and requires 5.6 Mbytes of free space. If you are installing the
professional Occam Toolset and are short on hard disk space, see the instructions in the
install.doc file on Disk 1 for information on installing only the parts you will use.

To install this toolset, insert Disk 1 into your floppy disk drive. Run the batch file
install.bat on Disk 1, giving as parameters the drive letter of the floppy disk drive and the
drive letter of the drive on which the Toolset will be installed.

For example, if your floppy disk drive is a, and the drive on which you want the Toolset
installed is ¢, type:

a:install a ¢

You will then be given information on how to proceed with the installation. You will be asked
yes or no questions during the process. For the standard installation answer yes to all the
questions by typing y each time you are prompted. No carriage return is necessary.

When all the disks have been read, which takes 5-10 minutes, the installation can be allowed
to proceed unattended. A full installation takes 20-50 minutes on IBM PC/AT.

The installation procedure creates a directory called \itools. Allthe programs necessary to
install the Toolset are copied to this directory and all components of the Toolset itself are
copied into sub-directories of \itools.

Once the software is installed, there are a few additions and changes you need to make to the
DOS environment variables before running the compiler. First, add the directory
\itools\tools to the DOS path variables. For example, if the software is installed on drive
¢, and your present path variable is ¢ : \ system, the command to add \itools\toolsto
your path variable is:

path=c:\system;c:\itools\tools

Next, add the four environment variables IBOARDSIZE, ISEARCH, ITERM and
TRANSPUTER with the following commands:

set IBOARDSIZE=#100000

set ISEARCH=c:\itools\libs\

set ITERM=c:\itools\iterms\ibmpc.itm
set TRANSPUTER=#150

If your board has more than 1 Mbyte of memory, line one must be modified. Replace
#100000 with #200000 if your board has 2 Mbytes and with #400000 if it has 4 Mbytes.

To avoid changing the path and setting the four environment variables every time you use the
Occam Toolset, add the four commands above to your autoexec .bat file or place themin a
separate batch file which you run with one command before using the Occam Toolset.

2.5 Your First Transputer Program

The following section contains examples of how to compile four different versions of a simple
program: one in C, one in C using only on-chip memory, one in transputer assembly
language, and one in Occam. The program prints "Hello, World" to the screen then echoes
characters typed at the keyboard to the screen.

2.5.1 A C Program in On-Chip Memory

If you have installed the C Toolset on your computer as instructed in section 2.4.1
Installing the C Toolset, you are ready to compile and run a simple C program that uses
only on-chip memory and can be run on any Transputer Education Kit.

Type the following commands to make a directory named \ 1t xample on your hard drive and
change to that directory:

mkdir \ltxample
cd \ltxample

Copy the file Lt xample. c to this directory from the directory \1sc\example with the
following command:

copy \lsc\example\ltxample.c

The file Lt xample . c contains the following C program which displays Hello, World on
the screen, and then echoes all characters typed at the keyboard to the screen. It uses the Lt
1/0 library as described in section 6 C In On-Chip Memory.

#include <stdio.h>
#include <conc.h>
$#include <1ltio.h>
#define TRUE 1

main{()
{ int ch;
1t_printf("Hello, World\n"):
while (TRUE)
{
ch = 1lt_getch{();
1t _printf("%c”, ch);
}
}

Type the following command line to compile the program (substitute 1sc8 for 1sc4 if your
board contains a T800/805 transputer):

ltlsc4 ltxample

14 2-Installation Guide

The batch file 1t1sc4 runs the C preprocessor, the C compiler, the C Toolset assembler and
linker. Approximately two pages of status messages are displayed during the compilation. If
these status messages are not displayed or if errors are reported during the compilation, go
back to section 2.4.1 Installing the C Toolset and make sure the environment variables
are set correctly and that installation was complete.

After the program is successfully compiled, type the following line to load and run the program
on the transputer:

ld-one ltxample ltio
You should see the following line displayed on the screen:
Hello, World

After this line is displayed, the program will echo any characters typed on the keyboard to the
screen. Program operation is terminated by typing a Control-C or Control-Break.

The procedure used to compile and run this program will work for any C program that runs in
on-chip memory, uses the Lt I/O library and is contained in one source file (include files do not
count as separate files). Just replace 1t xample in the commands above with the name of
the file you are using. If you are compiling several different files and then linking them
together, or writing programs to run on more than one transputer, refer to the C Toolset
Users Manual. For more information on the C tools refer to the C Toolset Users
Manual. For more information on writing programs using the Lt I/O library refer to chapter 6
C in On-Chip Memory.

2.5.2 A C Program

If you have installed the C Toolset on your computer as instructed in section 2.4.1
Installing the C Toolset and have 1 Mbyte or more of memory, you are ready to compile
and run a simple C program.

Type the following commands to make a directory named \ cexample on your hard drive and
change to that directory:

mkdir \cexample
cd \cexample

Copy the file examp . c to this directory from the directory \1sc\example with the
following command:

copy \lsc\example\example.c

The file example . c contains the following C program which displays Hello, World on the
screen, and then echoes all characters typed at the keyboard to the screen:

#include <stdio.h>

main()

2-Installation Guide 15

{ char ch;
printf ("Hello, World\n");
ch = getch();

while(ch != 7'\\"')
{ printf("%c", ch);
ch = getch();

}
}

Type the following line to compile the program (substitute 1sc8 for Lsc4 if your board
contains a T800/805 transputer):

1sc4 example

The batch file 1sc4 runs the C preprocessor, the C compiler, the C Toolset assembler and
linker. Approximately two pages of status messages are displayed during the compilation. If
these status messages are not displayed or if errors are reported during the compilation go
back to section 2.4.1 Installing the C Toolset and make sure you have the
environment variables set correctly and that installation was complete.

After the program is successfully compiled, type the following line to load and run the program -
on the transputer:

ld-one example cio
You should see the following line displayed on the screen:

Hello, World

After this line is displayed, the program will echo any characters typed on the keyboard to the
screen. Program operation is terminated by typing a backslash (\).

The procedure used to compile and run this program will work for any C program that is
contained in one source file (include files do not count as separate files). Just replace
example in the commands above with the name of the file you are using. If you are compiling
several different files and then linking them together, or writing programs to run on more than
one transputer, refer to the C Toolset Users Manual. For more information on the C tools
refer to the C Toolset Users Manual.

2.5.3 An Assembly Program

If you have installed the C Toolset on your computer as instructed in section 2.4.1
Installing The C Toolset, you are ready to compile and run a simple transputer assembly
language program.

Type the following commands to make a directory named \ tasmxamp on your hard drive and
change to it:

mkdir \tasmxamp
cd \tasmxamp

16 2-Installation Guide

Copy the file example.tal to this directory from the directory \1sc\example with the
following command:

copy \lsc\example\example.tal
The file example . tal contains the following transputer assembly program which displays

Hello, World on the screen, and then echoes all characters typed at the keyboard to the
screen:

; Definitions,
;
#define BOOT_CHAN_OUT 1 /*Boot channel output address */
#define BOOT_CHAN_IN 2 /*Boot channel inpout address */
#define TEMP 3 /*temp storage */
#define A_PARAM 1 /* Parameter offset to ¥A" x*/
#define B_PARAM 2 /* Parameter offset to “B®" */
#define C_PARAM 3 /* Parameter offset to "C" */
str .db "Hello, World\r\n"
;
; Main program.
;
_main
ajw -20 - ;Leave room for a few variables
H Get input bootstrap channel address (held in register "C" on
entry).
;
stl TEMP ;pop A
stl TEMP ;pop B
stl BOOT_CHAN_IN :8ave boot input link address
;
: Compute corresponding output channel address.
;
1dl BOOT_CHAN_IN ;Save boot input link address
ldc 4
bent ;Areg will be 8 for T2, 16 for T4/T8
xor
stl BOOT_CHAN OUT
7
; Print messages for user,
;
1dl BOOT_CHAN_OUT ;load output link address
ldc str ;load address of the string

call @printstring

; Echo characters.
7
echo
ldlp TEMP
1dl BOOT_CHAN_IN

ldc 1
in

2-Installation Guide 17
1dl BOOT_CHAN_OUT
1dl TEMP
outbyte
i @echo

e

The following routine prints the '/O'terminated character string

~

H whose address is in register A. The link channel address to use
is
: in register B.
;
printstring
1d1l A_PARAM ;Get string pointer
stl C_PARAM ;Make a copy
;
length
1d1l C_PARAM ;String character address
1b ;Fetch corresponding byte
cj Qwrite ;Done, if zero termination
1dl1 C_PARAM ;Increment pointer
adc 1
stl C_PARAM
3 @length
[
H Determine string length and write it out.
7
write
1d1l A_PARAM ;String start pointer
1d1 C_PARAM ;String end pointer
141 A_PARAM ;String start pointer
sub ;String length
1ldl B_PARAM ;Get link address
rev ;Length in A, 1link in B, start in C
out ;Write string out
ret
.end

Type the following command line to assemble the program:

1sa example
The batch file 1sa runs the C preprocessor, the transputer assembler and linker.
Approximately two pages of status messages are displayed during the assembly. If these
status messages are not displayed, or if errors are reported during the process, go back to
section 2.4.1 Installing the C Toolset and make sure you have the environment
variables set correctly and that installation was complete.

After the program is successfully compiled, type the following line to load and run the program
on the transputer:

ld-one example tio
You should see the following line on the screen.

Hello, World

18 2-Installation Guide

2-Installation Gulde 19

After this line is displayed, the program will echo any characters typed on the keyboard to the
screen. Program operation is terminated by typing a Control-C or Control-Break.

The procedure used to compile and run this program will work for any transputer assembly
language program that is contained in one source file (include files do not count as separate
files). Just replace example in the commands above with the name of the file you are using.
If you are compiling several different files and linking them together, or writing programs to run
on more than one transputer refer to the C Toolset Users Manual. For more information
on the C tools refer to the C Toolset Users Manual.

Both the C and Occam Toolsets support in-line assembly code. For more details refer to the
respective Toolset documentation.

2.5.4 An Occam Program

If you have installed the Occam Toolset on your PC as instructed in section 2.4.2
Installing the Occam Toolset and have 1 Mbyte or more of memory on your transputer
board, you are ready to compile and run a simple Occam program.

Type the following commands to make a directory named \ occexamp on your hard drive and
change 1o that directory:

mkdir \occexamp
cd \occexamp

Copy the file example . occ to this directory from the directory itools\examples with
the following command:

copy \itools\example\example.occ

The file example.occ contains the following Occam program which displays Hello,
World onthe screen, and then echoes all characters typed at the keyboard to the screen:

#INCLUDE "hostioc.inc™

PROC simple (CHAN OF SP fs, ts, []INT memory)
#USE "hostio.lib"
BYTE char, result:
SEQ
so.write.string(fs, ts, "“Hello, World*C*N")
so.getkey(fs, ts, char, result)
WHILE char <> '\’
SEQ
so.write,char(fs, ts, char)
so.getkey(fs, ts, char, result)
so.exit(fs, ts, sps.success)

Type the following command line to compile the program (substitute occ5 or occ8 for occd
if your board contains a T425 or T800/805 transputer):

occd example

The batch file occ4 runs the Occam compiler, linker and booter. if errors are reported during
the compilation go back to section 2.4.2 Installing the Occam Toolset and make sure
you have the environment variables set correctly and that installation was complete.

After the program is successfully compiled, type the following line to load and run the program
on the transputer:

iserver /sb example.b4dh
You should see the following line on the screen:
Hello, World

After this line is displayed, the program will echo any characters typed on the keyboard to the
screen. Program operation is terminated by typing a backslash (\).

The procedure used to compile and run this program will work for any Occam program that is
contained in one source file (include files do not count as separate files). Just repiace
example in the commands above with the name of the file you are using. If you are compiling
several different files and then linking them together, or writing programs to run on more than
one transputer refer to the Occam Toolset Users Manual. For more information on the
Occam tools refer to the Occam Toolset Users Manual.

2.6 The Next Step

If you want to change the default jumper settings or add multiple boards to your setup,
continue on to Chapter 3; otherwise, you are ready to explore the world of transputing. Here
we present a few possible directions to take in your exploration of transputers and parallel
processing.

If you know little or nothing about the transputer and its architecture and would like to lean
more about it while learning Occam, read the Tutorial Introduction to Occam
Programming and refer to it while working through chapters 1-5 of the Occam Toolset
User's Manual and the examples in the Workbook.

If you want to write C programs and learn the transputer architecture as welt as paraliel
processing start by working through the examples in section 15.4 of the C Toolset Users
Manual. You will probably also want to read the Workbook even though it is couched in
Occam, as it contains a great deal of information that is not language specific.

If you want to get to know the architecture of the transputer at the machine language level
read the Transputer Instruction Set section of the Transputer book and use it in
conjunction with the assembler furnished in the C Toolset. For further information, order the
Transputer Databook and Communicating Process Architecture, availabie from
CSA.

It you want to explore hardware interfacing and real-time control, refer to section 4 External
Interface of this book, and also the hardware interfacing examples in the back of the
Workbook. You might want to order either the user 8-bit parallel port interfacing kit or

20 2-Installation Guide

transputer serial link interfacing kit to facilitate building the example circuits on your own. For
more detailed hardware information on all aspects of the Transputer order the Transputer

Databook , available from CSA. 3 I n Stal I ati O n O pt i O n S

Whichever direction you take, you are at the start of an exciting educational and computing
experience. Happy transputing!

3.1 Board Layout

External Link Connections PC/Link Interface Transputer

i

- _ u TC514256AP I

i gsg | D D —

b 2 | xeara M T

b e J

(PLIEKEE || wzen 5| 7 il ez s Ufcusers g

D cve—— © H%mmed K

@) - 1= el Freres { 7B | (1 xciaty S e
¢ w P L \\

Memory

System Services

Transputer
Jumper Blocks

External Interface Jumpers
The Transputer Education Kit board is designed for experimentation with transputers and
multiprocessing. All active components are socketed for ease of repair should they somehow
become damaged during a hardware experiment. Use the exact components described
below to replace any damaged devices.

3.1.1 List of Components

i Component # | Description Component # | Description
c1,2 CAP 1.0 uf ceramic || RN4 180/390 8 pin resistor net.
C1 CAP 10 uf tantalum|| U1 74LS245
C2,3,5-23,25 CAP 0.1 uf ceramic || U2 DS8921
C26-33 CAP 0.47 pf U3 26LS32
P1-5 MiniDIN u4 26LS31

connectors
R1 Resistor uUs 74F14
RN1,2,5 1.5k 10 pin resistor|| U6 IMSC012P-20
net.
RN3 220/330 8 pinjlu7 7406
resistor net.

22 3-Installation Options

Component # | Description Component # | Description

Usg 74L.S13 U19 74F32

(8] 7415259 u20 74F14

U10 7406 U21 DIP24 socket (600mil)

Uit1 74F138 U22 74F157

Ut2 74F139 U23 74F157

U13 74F32 U24 IMS TXXX (transputer)

Ui14 74LS125 u2s5 DIP 24 socket (for optional
741.S652)

U15 74L. 8259 U26 74F157

U16 DiP16 socket U27-34 256Kx4 memory

U7 74L8373 Y1 5 Mhz Osc.

Ui18 7418373

3.1.2 Optional Cbmponents

The following components are only needed when interfacing with external hardware and are
optional. The components U16, U25, Q1 and Q2 are available from CSA. U21 is a socket that
provides signals for external interfaces. These options are further explained in section 4
External Interface:

Component # | Description Component # | Description
U1é 8 LED's u25 74L.8652
u21 /O port Q1, Q2 Power transistors

3.1.3 Jumper Locations

Three groups of jumperblocks are outlined on the silk-screen of the Transputer Education Kit
board. Shunts are placed across the pins within these jumper blocks to allow hardware
changes to the board or to interconnect boards in a multi-transputer system. Their use is
detailed in sections 3.2-3.6.

Memory Size & Configuration
Link & Transputer Speed
Jumpers
System Services ™
Jumpers
PC-Link Address & — (ILT—1 _/
Link Adaptor Speed
Jumpers

Jumper Block Locations

3-Installation Options 23

3.2 Adding Memory

The Transputer Education Kit is designed to accommodate 8 pieces of 256Kx4 (or 1Mx4)
dynamic random access memory (DRAM) in 300 mil. 20 pin dual-in-line-packages (DIPs).
Adapter daughter boards are available from CSA for other memory configurations. Please
contact CSA for information on memory expansion adaptors (i.e. 2Mb using 16 pieces of
256x4 DRAM or 4Mb using 8 pieces of DRAM in zig-zag-in-line-packages(ZIPs)).

The board is preconfigured to accept 1 Megabyte of memory. If 2 or 4 Megabytes are to be
added, see section 3.2.3 Memory Size for the correct jumper settings. Any user
modifications to the Transputer Education Kit board voids the CSA warranty. CSA-performed
upgrades are covered under warranty.

When installing memory, be sure to take precautions to avoid damaging static-sensitive
components. On the top surface of each memory chip is an indentation marking its pin
orientation. When installed, these chips must be aligned so that the marked end of each chip
is facing the mounting bracket on the far board edge. Inspect the rows of pins on each chip
before inserting it into its socket. Bent pins can be carefully straightened with needle-nose
pliers to fit the socket.

insert Memory with Indentations
Facing the Mounting Bracket

R

Mounting Bracket

-
3 Indentat
>n ntations

After the eight memory chips have been inserted into their sockets, examine each chip from
both sides and from the ends to be sure that all pins are seated properly. Also check to see
that the indentations are all aligned with each other and are facing the mounting bracket.

Check for Bent Pins

WARNING: Improperly inserted memory may result in damage to the board and/or the
memory when power is applied. This damage cannot be covered under CSA's warranty.

3.2.1 Memory Speed

The MSpd jumper block is preconfigured for one extra cycle for external memory access (if a
20MHz processor is installed, as with the entry-level kit). This extra cycle is commonly referred
to as a wait state. The numbers 0-3 below the block correspond with the possible number of
walit states. If you are adding your own memory to the board, see the table below to determine
the correct number of wait states.

XptrSpd MSz__LSpd MSpd
ooooooooooo.loo

o o o|lo o oj® 0|0 0 oj0 L)
0123

MSpd Set for 1 Wait State

24 3-Installation Options

3-Installation Options 25

256Kx4 MEMORY TYPES WAIT STATES REQUIRED
Manufacturer | Part Number 20 MHz | 25 MHz | 30 MHz
Fujitsu MB81C4256-10 3
MB81C4256-12
Hitachi HM514256AP-80
HM514256AP-10
HM514256AP-12
intel 1 21014-08
| 21014-10
Motorola MC514256P-08
MC514256P-10
MC514256P-12
NEC MSM514256-08C
MSM514256-10C
MSM514256-12C
OKI MSM514256-10
MSM514256-12
Texas Inst. TMS44C256-80
TMS44C256-10
TMS44C256-12
TMS44C256-15
Toshiba TC514256P-70
TC514256P-80
TC514256P-10

2 OOIWN 2O 20OV = Ol OJN = O =
N =k | WA =N = =2 |WON =[N =W N =N
WM T WO DWW WND[WNIT WL

3.2.2 Memory Size

The MSz jumper block is preconfigured for 1 Mbyte of memory. It is selectable for 1, 2 or 4
Megabytes but is irrelevant if no off-chip memory is instalied. 2 Mbyte and some 4 Mbyte
configurations require a daughter board which can be ordered from CSA.

XptrSpd MSz LSpd MSpd XptrSpd MSz LSpd MSpd
o o oo o @ e o oje o o o o o ojo o o/l o oo ¢ o o
¢ ¢ ole o o Il o o ole o 0 o o o ole o o|llllie ¢ o0 ¢ o o

MSz configured for 1 Mbyte MSz configured for 2 or 4 Mbytes

3.2.3 Memory Tests

When you have instalied memory as indicated above, use kit_test onthe Test and Demo
disk to test that memory for proper operation. To do this, insert the Test and Demo disk in the
floppy drive and type the following at the command line (if you are not using floppy drive a,
replace a with the appropriate drive letter):

a:kit_test

You should see the following display on your screen:

CSA KitTest Version 1.00
Installation and Diagnostic tests for the
Transputer Education Kit.

PC/Link found at 150 (hex) SS found at 160 (hex)

1) Get warranty number

2) Show/Select PC/Link Interface address(es)
3) PC/Link loopback test

4) Channel I/0 test

5) On-chip memory test

6) External memory test

7) Show/Set/Clear error flag

0) Quit

Select the external memory test by typing 6 at the prompt and you will see the following:

How much memory is installed in the board
1) 1 Mbytes

2) 2 Mbytes

3) 4 Mbytes

0) Return to main menu

>

Select the option that indicates the amount of memory that you have installed. The following
lines will be displayed if you have instalied 1Mb of DRAM:

Checking 1 Meg of memory

To test all possible combinations let the test go through
at least 67 passes

Type any key to continue

Type any key. The program will repeatedly check the memory and display the results on the
screen. If the test finds no errors, the results will be displayed as follows:

Pass number 1

writing data......... ... i,
checking data........iiiiivennennnns
There are (0 memory errors

If the test does find errors, the number of the defective chip will be displayed on the screen:
pass number 1
writing data.........ciiiiiiiienn,

checking data.......cviiiienernennnes
There are 461822 memory errors

chip U28 is bad

26 3-Installation Options

Type any key to stop the test. If the test finds errors, replace the defective chip and run the
test again.

3.3 PC/Link Interface Settings
3.3.1 PC/Link Interface Address

The PC/Link Interface portion of the Transputer Education Kit circuit board performs two
distinct functions: 1) it interfaces a bidirectional transputer-style link to the PC host, and 2) it
allows the PC to generate and respond to a set of transputer control signals referred to as
system services. The PC sees the bidirectional transputer link as a byte-wide I/O device. This
device has several registers which the PC can address to read link data in, to write link data
out, and to determine the status of the link input and output registers (i.e. link-data-ready or
link-ready-for-data). System services signals consist of transputer reset, analyse, and error.
The reset signal, as the name implies, is the means by which the PC host can reset or
initialize,the attached transputer or network; analyse provides a mechanism for debugging a
transputer network; and error is used to notify the PC host of an error condition existing in one
or more transputers within an attached network.

Although each of these signals is discussed in great detail in the accompanying
documentation, it is sufficient for most transputer users to understand only that every
transputer within a network must be provided with a complete set of these signals. Without an
incoming link a transputer would have no source of program, nor of data on which to operate.
Without an output link a transputer would have no way to report computed results (or for that
matter, to pass along program and data to other transputers within a network). And without
system services signals there would be no way to initialize or reinitialize, nor to properly
debug, even a single transputer.

The software included with the Transputer Education Kit copes very well with the details of
the PC/Link Interface, and manages to insulate the novice from those details with but one
possible exception. The portion of the software which runs on the PC expects the PC/Link
Interface registers to be within a specific PC /O address range. The Transputer Education Kit
circuit board is preconfigured at the factory to appear within this address range. In the unlikely
event that your PC has an already installed device which conflicts with those addresses, orin
the equally unlikely event that you are using an early model IBM-brand PC, or very early PC-
compatible (which didn't decode those addresses for 1/0), you might need to alter some on-
board jumper settings (in the jumper block labeled PC Link Address), and to instruct the
software to utilize a different-than-normal address range.

The PC Link address can be selected from various addresses in the range of 100-370h. The
coarse address (the hundreds digit) jumper block selects between 100, 200 and 300. The
fine address jumper block selects from 00 through 70 and distinguishes between PC Link
and system services addresses. Separate fine addresses must be chosen for system
services and the PC Link. The Transputer Education Kit board is preconfigured with the PC
link addressed at 150 and system services at 160. These addresses will work for most
installations. In some very early PC compatibles, 150 and 160 are reserved addresses. In this
case addresses 300 and 310 can be used. The following diagram shows the jumpers as set
at the factory. Other address configurations are explained below.

3-Installation Options 27

 SSfe o
10jle o

Fine Address
Jumper Block

Coarse Address
Jumper Block

To set a coarse address of 100, 200, or 300 (do not select 000, it is reserved for PC
operations), place a shunt between a numbered pin and a common pin in the coarse address
selection block. Placing a shunt between pin 1 and Com chooses a coarse address of 100,
placing a shunt between pin 2 and Com selects 200, etc.

In addition to selecting the tens digit the fine address block is also used to distinguish
between the PC Link and system services addresses. Placing a shunt between Lnk and the
pin numbered 0 chooses the PC Link fine address 00. Placing a shunt between SS and the
pin numbered 1 chooses the system services fine address 10. The form of the addresses of
such a configuration would be Lnk = X00 and SS = X10, where X is the coarse address
chosen.

The Lnk and SS addresses are actually just base addresses. The actual addresses used by
SS and Lnk range between the base address and the base address + 7. That is, when Lnk
is at 150 and SS is at 160, the addresses in the block 150-157 and 160-167 are used.

PC Link Address PC Link Address PC Link Address
[oooooo-oo o i *°cc o N e|e
REREREN 10 oo ol ¢ 00 0l0o0 0le

g oo x .
G2EJRIERY S A2EJRSERY $§o§
wd

Lnk=160 SS=170 Lnk=300 SS=310 Lnk=220 SS=230

Most transputer software expects the PC Link at 150 and SS at 160, however, many software
packages allow any address as long as the PC Link address is 10 less than the SS address, for
example PC Link = 160, SS = 170. The Occam Toolset provided with the Transputer
Education Kit uses 150 and 160 unless another adress is specified in which case it allows any
address where the PC Link address is 10 less than the SS address. The C Toolset uses 150
and 160 by default and can run at that address or at the address 300, 310.

If you are using more than one PC/Link interface in the same PC they must be at separate
addresses. If you want to put put more than one Transputer Education Kit board in a PC but
only plan to use one PC/Link Interface remove al! shunts from the coarse and fine address
blocks of the PC/Link Interface(s) you are not using.

Both the PC Link and PC Link System Services signals can be accessed from a PC program.
For detailed information see appendix A.2 Memory Mapped /O Interface Addresses

3.3.2 PC Link Speed

The PC Link can be set to operate at 10 or 20 Megabits per second (Mb/s). The PC Link
speed must correspond with the speed of the link to which it is connected (usually Link0 of
the transputer on the same Transputer Education Kit circuit board - see section 3.4.2 Link

28 3-Installation Options

Speed). The LSpd jumper block is used to select the PC Link speed. Placing a shunt on
the pins in the LSpd jumper block results in a PC Link speed of 10 Mb/s. Removing the
shunt in the LSpd jumper block results in a PC Link speed of 20 Mb/s. The PC Link speed is
preconfigured to 20 Mb/s at the factory.

PC Link Address PC Link Address
......Q....Ol ® © & & 0 & 0 0 0|0 O o
® © & © 0 0 & & 0|0 0 0 ® & 6 © 06 0 0 ¢ 00 0 o0
82Z383E28 3558 BRENGIERASES]

i | -

LSpd shunted for 10 Mb/s LSpd open for 20 Mb/s

3.4 Transputer Settings
3.4.1 Transputer Speed

The XptrSpd jumper block is preconfigured to 20, 25, or 30 MHz depending on the processor
installed in your board. IMPORTANT: Processors are not reliable when operated above
their rated speed but can be reliably operated slower than their rated speed.

XptrSpd MSz _ LSpd MSpd XpirSpd ~ MSz LSpd MSpd
e o ¢l N[o[¢ ¢[00 o o] [e ¢ o[W[® o]¢ © ¢ ¢ ¢ o
o e Hll|e ol @ /0 ¢ ¢ o B olec | ol o ¢le ¢ ¢ ¢

0123 0123

XptrSpd configured to run at 20 MHz XptrSpd configured to run at 25 MHz

XptrSpd MSz LSpd MSpd

e o olo l[® ®|® © o]0 o ¢ o
B {0l oo ¢|0o ¢ ¢lo ¢ 0 ¢
01223

XptrSpd configured to run at 30 MHz

There are many possible shunt combinations in the XptrSpd jumper block. The three shown
above are the only combinations supported on the Transputer Education Kit board.

3.4.2 Link Speeds

The transputer links can be set to operate at 5, 10 or 20 megabits per second (Mb/s). The
speed of Links 1, 2 and 3 are always the same and Link 0 can be set to a different speed. The
T400 processor delivered with the entry-level Transputer Education Kit has only two links.
The Transputer Education Kit circuit board is designed to accommodate other transputer
models which do have four links.

3-Installation Options 29

XptrSpd MSz LSpd MSpd
@ © ¢|o © o/ o/ & S0 O 0 o
® @ 0|0 o o/ 9] o o|® & O ©

0123

LO=20 Mb/s L1-3=20 Mb/s
LSpd Unshunted as Preconfigured

Shunts are placed in the LSpd jumper block to select the various link speed combinations as
indicated in the table below. Although link communication is independent of processor
speed, communications across a link can be performed only when the link speeds are set the
same at both ends of the link. The transputer links are set at the factory to run at 20 Mby/s.
XptrSpd MSz_ LSpd MSpd
e © 0|0 © ojo oj© o6 |0 & °
® © 6| & o 86 O e & o o

0123

LSpd o ! 113 LSpd o 1 L3
=10 | 10 = 5| 10

Bod -»|=»

The signals in the LSpd jumper block are often referred to in fransputer documentation as
LinkSpecial, LinkOSpecial, and Link123Special. LinkSpecial is on the pair of pins on the right,
Link123Special is in the center pair and LinkOSpecial is on the left pair.

=20 20

'

3

o
—~ P §
3] a

"

o

@

Note that 5 and 10 Mb/s speeds can be used for more reliable communications when long
distances (10-40 meters) exist between transputers or when transputers are operated in
electrically noisy environments. Although the transputer links can be set to 5, 10 or 20 Mb/s
the PC Link is limited to speeds of 10 and 20 Mb/s.

3.5 PC-Xptr Jumpers

The PC-Xptr jumper block is used to connect the PC/Link Interface to the transputer. It is
preconfigured at the factory as shown below. This configuration connects the PC Link to Link
0 of this same board's transputer circuitry. It also connects the PC/Link Interface system
services signals to that transputer.

30 3-Installation Options

g'.. L] ® @]
e o o L] e oje
(mn... ¢ eofe g
1
ol o] =]|o|

=
® o oo o ole o ole o

S i

TVi{e © sjo & ¢ls ¢ o]0 o

The system services jumpers as preconfigured

Jumper blocks 0-3 are used when interconnecting multiple transputers. But remember that
the T400 processor which is delivered with the entry level Transputer Education Kit has only
two links, and thus blocks 2 and 3 will not be active with those systems. The following section
shows how to set up multi-transputer networks. '

3.6 Setting Up Multi-Transputer Networks

Transputers are designed to communicate with each other over high-speed, bidirectional,
serial links. The Transputer Education Kit supports this capability in an extremely convenient
and flexible way by providing several 8-pin mini-DIN external connectors (along the rear edge
of the circuit board) to which cables can be attached in order to "link together" multiple boards.
These connectors accommodate industry-standard cables (compatible with Macintosh printer
cables), and carry not only bidirectional-link data, but system services signals as well
(transputer reset, analyse and error). Cables can range inlength from a few inches to 50 feet
or more, and can interconnect transputers residing within a number of different. PC's or
expansion chassis throughout the room. Within the constraint of the number of links per
transputer, the user can wire up an entire network of transputers in any of a humber of
possible configurations. '

in such a network , one transputer; called the root; is connected to a PC host via a PC/Link
Interface. This is usually accomplished using the PC-Xptr jumpers (as described in section
3.5), but could alternatively be accomplished with an external cable as described later on. The
root transputer is simply the one through which communication with the PC host occurs. That
-is, it's the one through which the network is initialized (i.e. reset) and loaded with program and
input data. It is also the transputer through which run-time 1/0 messages must pass. When an
error condition is encountered, it's through this root transputer that the network is debugged.

Connecting transputers into a network is really quite a straightforward process, as far as the
links are poncerned. With T400's that's especially true. Since these transputer models have
only two links each, the only possible network topology is a linear chain as shown below.

Don't be dismayed with the simplicity of this configuration. It is not only an easy one to learn
with, but it is, in fact, one of the most popular configurations in use by seasoned practitioners.

3-Installation Options 31

With T425's or T805's one can, however, go further, and configure a tree or a toroidal mesh as
shown next.

A Transputer Tree

As can be deduced from the above diagrams, link signals are point-to-point. That is, a link
connection on one transputer connects to one and only one link connection on another
transputer. (Although not usually done, it is also possible to connect two links on one
transputer together with an external connection.) The only way to have one link go to several
links or to have several links multiplexed onto one link is to use a transputer. In the case of
many links to one, the transputer reads data from the links to be multiplexed and sends it to
one iink. Inthe case of one link to many the transputer reads data from the one link and sends
it to each one of the other links. If one link is to go to more than three links, or more than three
links are multiplexed onto one link, then more than one transputer must be used since
transputers come with a maximum of four links.

The above diagrams and foregoing discussion have been concerned with link
interconnections. As was stated earlier, however, the same cables which carry link
communication also carry transputer system services signals which are used to initialize a
transputer network and detect run-time error conditions. The nature of these system services
signals is quite different from that of the link signals, and the topic of system services signal
distribution is somewhat more complex than the corresponding topic for links.

Transputer system services are actually comprised of three separate unidirectional signals;
two flowing in one direction (reset and analyse) and one in the other (error). The direction of
reset and analyse is always outward from the PC host (and therefore from the root transputer),
and the direction of error is always inward. Reset and analyse are generally initiated by the PC
host and then propagated throughout the entire network, while error may be asserted
simultaneously by any one or more of the processors out in the network, with the logical OR of
those assertions being asserted back at the host. An exception to this rule can occur,
however, in that it is possible to configure a network such that some intermediate processor
can act as sub-host to a sub-set of processors in that network. In this case the program
running in the sub-host controls reset and analyse and responds to error for that sub-network.
That is, when it comes to system services signals, the PC host is usually the master and the
transputers the slaves, but it is possible, if desired, to configure a hierarchy of master/slave
relationships throughout the network.

Actually, besides the three signals which comprise system services, there are also three
categories of system services, designated up, down, and sub-system (UP, DN, and SS)
Every transputer, whether a single root attached directly to the PC host or one of many
transputers in a network, must have a source of system services (UP). Furthermore, every
Transputer Education Kit transputer is capable of either passing along a copy of those same
signals (DN), or of generating a new set of them under local program control (SS), for the

32 3-Installation Options

benefit of the remaining transputers in a network. Thus one transputer's DN (or SS) is another
transputer's UP.

Using the jumper blocks labeled 0, 1, 2, and 3 on the Transputer Education Kit circuit board, it
is possible to specify (using shunts supplied with the Transputer Education Kit) over which
cable the transputer will receive its system services (UP), and over which cables (if any) system
services will be sent out. Jumper block 0 corresponds to the Link 0 cable connector, jumper
block 1 to the Link 1 cable connector, and so on. (Remember that the T400 transputer has
only 2 links.) In the diagram below, the transputer on Board A is configured to receive its
system services (UP) over its Link 0 cable, to send copies of those signais (DN) out over its
Link 1 and Link 2 cables, and to send locally originated system services (SS) out over its Link
3 cable. The transputer on Board B is also configured to receive its system services (UP) over
its link 0 cable, but will send only one copy of those signals (DN) out over its Link 3 cable.
Note that transputer B's DN is transputer C's UP. That is, both transputer A and transputer B
are slaves to the same PC host or transputer sub-host.

To UP on the next Passing only link
communication signals

To DN or SS on the board

boards in the network above in the network

Board A Board B

You will notice that there are five cable connections on the end of the Transputer Education
I_(lt board ra'ther than 4 as might be expected given that a transputer has a maximum of four
links. The fifth connector is for the PC Link. The PC/Link Interface converts signals from the

PC bqs to transputer link and system services compatible format. This PC Link is the means
by which the PC communicates with the root transputer.

Until now, the connection between the PC Link and Link 0 has been made by connecting the
shunts in the PC-Xptr jumper block. These shunts also connected the system services
signals from the PC/Link Interface to the transputer on the same board. The equivalent
connection could be made by removing the shunts in the PC-Xptr block, placing shunts in
block 0 on the UP pins, and connecting a cable between PC Link and Link 0.

3-Installation Options 33

Connection Using Shunts Connection Using External Cable
The PC-Xptr jumper block is thus not really necessary, but is provided for the convenience of
not having to use any external cables on single-transputer systems. When shunted, the
shunts in the PC-Xptr block connect the PC Link to Link 0 of the transputer and the PC/Link
Interface system services to the UP system services of the transputer. When the shunts are
removed, and in the absence of an external cable, there is absolutely no connection between
the PC and the transputer on the board being considered. The transputer circuitry is simply
drawing power from the PC. The transputer could derive its UP system services from another
board, or even from another PC/Link Interface on a different board.

The following sections contain examples of three common transputer network configurations
with the jumper and link cable connections necessary to implement them. Studying these
examples below will help you become familiar with the concepts necessary 1o create your own
configurations. When you feel comfortable with these ideas, you might make your own
configuration using one of the examples below-as a starting point.

IMPORTANT: As a safety check to avoid iIIegaI‘ jumper settings, observe the following three
rules when placing shunts:

« Only one jumper block on each board may be shunted to UP.
« In any single jumper block, only one section (UP, DN, or SS) may be shunted.
« If the PC-Xptr jumper block is shunted, jumper block 0 must be left empty.

The Check utility on the Test and Demo disk is very useful in setting up networks. This utility
is included on the Test and Demo disk in an archived format. The instructions to install and
use Check are in the read . me file in the check subdirectory of the Test and Demo disk.

Check loads itself into a network of transputers and prints the actual link connections on the
screen. To set up a multi-transputer network, verify that each board works individually, then
build the network one board at a time. Run Check after each board is added to see if the
network connections are as you intended.

For a more technical description of the link and system services signals discussed above see
appendix A.3 Board Schematics and Block Diagram and the Technical Specifications
in the Transputer book. For information on how to generate system services signals in
software on the PC see section. For information on how to generate SS system services
signals on the tranputer see section

34 3-Installation Options

3.6.1 Chain Jumper Settings

' ;A Transputer Chain

]

! PC/Link Interface 4
Transputer
Board i
Root 4
Transputer [
[}

Additional Transputer Boards

A transputer chain uses only two links to join multiple transputers in a linear chain. The root
transputer is connected to the PC host with the PC/Link Interface using the PC-Xptr jumper
block and to the second transputer in the chain. The root transputer receives system services
signals from the PC/Link Interface and passes them down the chain through its Link 1 cable.
The second transputer receives system services signals on its Link 0 cable and passes them
further through its Link 1 cable to the next transputer, continuing until the chain terminates.

On the root transputer board, place shunts in the PC-Xptr jumper block and in jumper block 1
as shown below. The PC-Xptr shunts connect the PC/Link Interface system services to the
root transputer and the PC Link to that transputer’s Link 0. The shunts in jumper block 1
enable a copy of the PC/Link Interface system services to be passed over an external cable to
the next transputer in the chain,

SS/NG
.
.
.
s 00
.
.
.
°

€
4
1
0

dn

Root board connected to the PC/Link Interface and to DN

The second transputer in line (and all following) receives system services through its Link 0
cable and passes them on to the next transputer through its Link 1 cable. Jumper block 0 has
shunts on UP to receive system services and jumper block 1 has shunts on DN to send
system services to the next transputer down the line.

Ooooooolllooo
%oooooo e e e
(| o ojo o ¢|o ¢ oo o o

€
.2
i
0

[BN]
.. ndx-0d

® ©® O|® o o|0 ¢ o
® ® oo ® 9|0 0 9 I I I
Following boards in the chain receiving

through Link 0 and sending through Link 1

External cables, as shown below, interconnect each transputer's Link 1 to the next

transputer’s Link 0, as well as interconnecting each transputer's DN system services to the
next transputer's UP system services.

dn

3-installation Options 35

To UP on the next
board in the chain

SS/ING
SS/NG
ces

N -

dn

Second Board Root Transputer Board

3.6.2 Tree Jumper Settings

A Transputer Tree

Additional Transputer Boards

Configuring a transputer network as a tree requires the use of T425 or T805 transputer
models, as T400s have only two links. The root transputer is connected to the PC/Link
Interface and to the three transputers on the second level of the tree. The root transputer
receives system services signals from the PC/Link Interface and passes them on to the
transputers on the second level of the tree through Link connectors 1, 2 and 3. The second
level transputers receive system services signals on their Link 0 connectors and pass them to
the next level transputers through their Link connectors 1, 2 and 3 and so on until all
transputers have a source of system services.

To start off this tree network, shunts on the root transputer board are placed in jumper blocks
PC-Xptr, 1, 2 and 3 as shown below. The PC-Xptr shunts connect the PC/Link Interface
system services to the root transputer and the PC Link to Link 0 of the root transputer.
Jumper blocks 1, 2 and 3 have shunts on DN to send copies of the PC/Link interface system
services to transputers in the next level of the tree.

36 3-Installation Opti

ons

SS/NA

Cc
T|e o @

[I J
L N]
el 3
° |g

-
..llIII
[BN J

Root board connected with the PC/Link Interface through
Link 0 and passing on through Links 1 - 3

The remaining transputer boards (those at level two and below) should have shunts placed in
jumper blocks 0, 1, 2 and 3 as shown next. For each of these boards, system services UP
comes through the Link 0 connector, and copies of it (DN) are sent to the next level of
transputers via the Link 1, 2 and 3 connectors.

Note that all shunts are removed from the PC-Xptr jumper block on these boards.

SS/Nd

dn

® & o

® e
B

® & O
o
o |&
=
1. .
[B)

Following boards in the tree receiving through
Link 0 and passing on through Links 1 - 3

External cables are connected from link connectors shunted for DN to link connectors

shunted for UP as shown below.

To the next level
of the tree

To the second level
of the tree

Second Level Board

Link3| Link 2| Link 1] Link 0 |PC Linl o

SSING

dn

® o ¢|l®o 0 o)l 0
W N -

® 0 &0 o o]0 o 0

Root Transputer Board

3-Installation Options 37

3.6.3 Mesh Jumper Settings
A Transputer Mesh

iy PC/Link.ln:erface- :
Transputer :
! Board '
0 3 Root Transputer :
¢ 4
]

N

Additional Transputer Boards

&

&

o
O

e
>
>

&

This example connects T425 or T805 transputers into a toroidal mesh. The system services
connections in this example are different from those in the previous two examples. In those
examples, every link cable carried system services signals as well. In a mesh network, some
cables carry only link communication signals.

The diagram above shows only the link connections for a transputer mesh. Inthe diagram
below, double lines indicate the link cables that carry system services signals as well. System
services are passed from the root transputer to the other transputers in a linear chain even
though the link interconnections form a toroidal mesh. ,

)
e

bie

Additional Transputer Boards

—)
S— e
Pur || OO
S OO

SCA€I0]

38 3-Installation Options

The following diagrams show the jumper connections for some of the transputers in this
mesh. You should be able to figure out the connections for the rest of the boards using
these as guides.

g

ndx-Od

L1 1 | pepepapes
Board Number 4 Board Number &

SSNG

Board Number 8

Note that in each of the preceding examples, each transputer had one, and only one, UP
system services connection. Without an UP, a transputer could not be initialized (i.e. reset).
With more than one UP connection, a system services “loop” might occur, and once a reset
was asserted, it would last until the power was shut down.

4 External Interface

4.1 Description

The External Interface area of the Transputer Education Kit consists of a Programmed 1/0
port, an LED port and two optional power transistors. The Programmed 1/O port provides a
byte-wide I/O port for hardware interfacing. The LED port can be populated with light-emitting
diodes (LED’s) for use as a software debugging aid, or as a set of 8 control signals in
conjunction with the 1/0 port for a more versatile hardware interface. Power connections are
included on the Programmed 1/O port and the LED port. This eliminates the necessity of an
extra power supply for hardware interfaces with modest current requirements (< 500
milliamps). The two power transistors provide a modest switchable power source for
interfaces attached via a link.

There are two basic ways to interface external hardware with the Transputer Education Kit.
The first method uses the Programmed I/O port signals and the LED signals when needed.
This provides a versatile, memory-mapped hardware interface to the transputer. Power
connections are brought to these ports so that for many projects, no external power supply is
needed. See section 4.2 for examples using this interface. The second method of
interfacing is to communicate with the interface circuitry through a link cable. An Inmos C012
link adaptor chip can be used to convert a serial link into a byte-wide output port and a byte-
wide input port with associated control signals. Installing the optional power transistors
provides up to 250 milliamps of current to a hardware interface connected through a link
cable. Section 4.1.3 Power Transistors explains how power is sent along the cable. The
Workbook included as part of the Transputer Education Kit contains several interface
examples that use a link and a link adaptor chip.

/(LED Port /

Programmed Power Transistors
VO Port

4.1.1 LED Port

The LED port consists of 8 transputer writeable memory-mapped signals Q0-Q7 and 8 Vcc
connections. These are made available to the user through a 16 pin DIP socket having the
pinout shown below. 8 LED’s (available from CSA) can be plugged directly into this socket
and used as a debugging aid. These signals can also be used in conjunction with the
Programmed /O port to provide a more versatile hardware interface.

40 4-External Interface

VEC maem

[»]
o

LED Pinouts

Indicator lights that can be turned on or off under program control are useful in debugging
parallel programs. They serve as an alternative to displaying information on the screen. In
most transputer networks only one transputer has a direct connection to the screen and
displaying information from the other transputers can sometimes be difficult if not impossible.
The LED’s can be used by the programmer to indicate the status of program execution on the
board. When multiple processes are running on one transputer, often only one process has
direct access to the screen. The LED’s can be used to display information from the processes
without access to the screen. As you experiment and gain experience you will find other uses
for these LED's.

The LED signals can be used in conjunction with the Programmed I/O port to provide a very
versatile hardware interface that can control most byte-wide microprocessor bus peripheral
chips as well as many other devices. Sections 4.2.2 and 4.2.3 contain examples of an A/D
converter and a D/A converter that use the LED port in conjunction with the Programmed /O
port. Appendix A.2.4 External Intertace LED Port and Power Transistors tells
how to write this port in software. Sample C and Occam procedures illustrating how to control
the LED signals are provided on the Examples disk.

IMPORTANT: QO and Q1 perform double duty, in that they are the same memory mapped
latches that are used for SS system services reset and analyse signals (although inverted).
Also Q2 doubles as the reset signal for the Programmed /0O Port. Keep this in mind if you use
SS (see section 3.6 and A.2) or the Programmed I/O Port in conjunction with the LED
signals.

4.1.2 Programmed /O Port

The Programmed 1/O port provides a byte-wide bidirectional parallel port that can be used for
input and/or output to external circuitry provided by the customer. Most of the port signals are
generated and received by a 7415652 chip (not included with the Transputer Education Kit).
it is available from CSA as well as from electronic component vendors. The signals on the
Programmed 1/O port not connected to the 74LS652 are connected to circuitry included on all
Transputer Education Kit configurations.

The Programmed 1/O Port socket (the empty 24-pin socket along the top edge of the board)
makes available the following signals: a) 8 shared data /O bits going to and from the
transputer via the 74LS652 chip; b) 4 status and control signals related to the 74L.S652; ¢) 3
transputer event signals (event being the transputer’s equivalent of an external interrupt); d) a
5 MHz clock; e) 2 transputer programmed 1/O signals (one coming from the transputer and the
other going to it); and f) 6 conductors carrying power and ground (1 power and 5 ground).

4-External Interface 41
OEnAB Vee
Voo 1101
Vo2 1103
voq 1105
1108 1107
SBA CIkAB
ISSErmr CIkBA
[EvntReq
/EvntWait
JEvntAck
SMH2B
GNDt ™ Q2

Programmed /O Port Pinouts

The pinout for this port is shown in the diagram above. A brief description of the signal on
each pin of the Programmed /O port socket is given below. Following these discriptions are
short discussions on how the Programmed /O port could be used. See Appendix A.2.5
External Interface Programmed I/O Port for details on reading from and writing to the
110 port from the transputer. See Appendix A.3 Board Schematics for more details on the
hardware implementation of the Programmed /O port.

7418652 Octal Bus Transceiver/Register Signals

The 74LS652 is an octal bus transceiver/register chip. This symmetrically bidirectional device
consists of bus transceiver circuitry, a pair of D-type registers (one for each direction), and
control circuitry. As configured in the Transputer Education Kit, the customer’s external
circuitry can, at any point in time, read data written into the 652’s "output” register by the
transputer, write data into the 652’s "input" register for later reading by the transputer, or
present data to the transputer via the 652 in write-through mode (i.e. bypassing the “input"
register). For more information on the 652, consult the block diagram in Appendix A.3 and
the data sheet for the 74LS652 (included with the chip when ordered from CSA).

1100-7 (pins 2, 23, 3, 22, 4, 21, 5, 20): The 652's eight data I/O bits. Made available to the
customer’s circuitry such that it can pass byte-wide data back and forth to and from the
transputer. These lines can be used in only one direction at a time as controlied by OEnAB.

OEnAB (pin 1): Controlled by the customer’s circuitry. This signal determines the direction of
the I/O port. When asserted high this signal enables output of the 652’s eight data 1/O bits
such that the data written by the transputer into the 652's “output” register is presented to the
customer’s circuitry. When held low, this signal causes the 652 to disable data outputs (i.e. it
takes these signals to a high impedance state) allowing the customer’s cucuntry to present
data to the 652 so it can be read by the transputer.

CIkBA (pin 18): Controlled by the customer’s circuitry. The rising edge of this sngnal strobes
data generated by the customer’s circuitry into the 652’s "input” register. Prior to taking this
signal from low to high, the customer’s circuitry should have taken OEnAB low and then
placed the desired data onto the 652's data I/O pins, I/O0-7. Note that the transputer has no
way of detecting that this signal has been asserted. The customer’s circuitry must notify the
transputer in some other way, possibly by using the EvntReq or the /SSErr signals.

CIkAB (pin 19): Controlled by the transputer. When the program running on the transputer
attempts to write a byte to the 652’s output register, this normaily-high signal is momentarily

42 4-External Interface

4-External Interface 43

taken low (for 1/5 - 4 processor cycles depending on memory speed selection which results in
a pulse width of 75 - 200 nanoseconds when using a 20 MHz processor). This signal is
brought to one of the pins on the Programmed 1/O Port socket so that the customer's external
circuitry can detect when new data has been made available to it by the transputer.

SBA (pin 6): Controlled by the customer’s circuitry. When held low this signal causes data
made present on the 652’s 8 1/O pins by the customer’s circuitry to bypass the 652’s “input”
register. In this case, when the transputer reads a byte from the 652, it will be reading data
directly from the customer’s circuitry via the data lines 1/0O0-7. If this signal is held high, when
the transputer reads a byte from the 652, it will be reading the data last loaded into the 652’s
"input” register by the customer’s circuitry.

Transputer Event Signals

The Event signals provide an asychronous handshake interface between an internal
transputer process and external circuitry. The Event signals are used to implement the
transputer's equivalent of an external interrupt. They can also be used to perform
handshaking for data transfer via the Programmed 1/O port. For more information on the Event
signals see p. 58 of the Transputer Technical Specifications in the Transputer Databook.

/EvntReq (pin 17): Controlled by the customer’s circuitry. /EvntReq is the complement of the
transputer’s EvntReq signal. This is equivalent to an external interrupt signal. When asserted
low by the customer’s circuitry, this /EvntReq signal will present an Event request to the
transputer, which will cause a transputer process which performs an input on Event to be
rescheduled. This signal should only be asserted low if /EvntAck is in its quiescent high state,
and should then only be returned to high upon /EvntAck being asserted low.

/EvntAck (pin 15): Controlled by the transputer. /EvntAck is the complement of the
transputer’s EvntAck signal. This /EvntAck signal will be asserted low by the transputer upon
rescheduling of a transputer process which was suspended after performing an input on
Event (i.e. following assertion of /EvntReq by the customer’s circuitry). Once asserted low by
the transputer, /EvntAck will remain low until deassertion of /EvitReq by the customer’s
circuitry.

/EvntWait (pin 16): Controlled by the transputer. /EvntWait is the complement of the
transputer's EvntWait signal. This /EvntWait signal will be asserted low by the transputer
whenever a transputer process performs an input on Event. It will return to its quiescent high
state following the assertion by the customer’s circuitry of /EvntReq, as soon as the process
which performed the input on Event is rescheduled for execution. The EvntWait signal is not
implemented on earlier transputer models such as the T414 and the T800. The T400, T425
and T805 do, however, implement EvntWait.

Miscellaneous Signals

Q2 (pin 13): Controlled by the transputer. This is just a copy of the LED Port’s Q2 signal;
brought to the Programmed I/O Port for convenience. The transputer can cause this signal to
go high or low by writing a 1 or a 0, respectively, to the appropriate bit of the LED Port.

/SSErr (pin 7). Controlled by the customer’s circuitry. Like Q2, /SSErr does double duty, and
derives its signal name from its other duty as the Error signal for the transputer's SS system
services. See section 3.6 Setting Up Multi-Transputer Networks for more info on

system services. /SSErr is a single-bit signal which can be controlled by the customer's
circuitry, and read by the transputer. It should be noted that the use of /SSErr in this context
will result in a contlict if SS System Services is also utilized.

S5MHzB (pin 14): This signal is the complement of the crystal oscillator-generated clock used
by the transputer, and is made available to the customer’s circuitry through the Programmed
110 Port as a convenience.

Vee (pin 24): +5vdc derived from the PC host via the Kit circuit board. Capabile of supplying
several hundred milliamps, if necessary, to power the customer’s circuitry.

Gnd (pins 8-12j: Digital ground, or common, derived from the PC host via the Kit circuit
board. Provides an electrical reference for the Programmed /O Port signals, but can also be
used in conjunction with Vcc to supply power to the customer’s circuitry.

Using the Programmed /O Port

Although the Programmed I/O port can be used to interface to external hardware in a wide
variety of ways, both by itself and in conjunction with the LED pont, the discussion here will be
limited to three methods of interfacing that illustrate the basic use of the port. Two of these
methods use the Programmed 1/O Port by itself and the third uses it in conjunction with the
LED port signals. The examples in section 4.2 illustrate these three methods.

The first interface method employs 1/00-7, OEnAB, CIkBA, CIkAB, SBA, Q2, and /SSErr (i.e.
all of the Programmed 1/O Port signals except those dealing with Event). Q2 might be used to
reset the customer’s circuitry under transputer program control. 1/00-7, of course, carry the
data to be transferred. OEnAB determines the direction of data flow, and when directed
toward the transputer, CIKBA and SBA determine the manner in which the data flows through
the interface (i.e. registered or direct). Finally, CIkAB and /SSErr can be used to indicate
when data is available in one direction or the other (i.e. for handshaking). Data transfer is one
way only unless the customer's circuitry contains enough intelligence to interpret direction
change commands sent as data. Section 4.2.4 illustrates this type of interface.

The second interfacing method is similar to the first, but uses the transputer's Event lines for
handshaking during data transfer. As with the first method, Q2 might be used to reset the
external circuitry, 1/00-7 would be for the transfer of data, and OEnAB, CIkBA and SBA would
determine the direction and manner of data transfer. The signaling of data availability (i.e.
handshaking) would be handled using the Event signals, leaving /SSErr as a status or flag bit.
The use of CIkAB is not required. Section 4.2 illustrates this type of interface.

The third method adds the LED Port signals to the Programmed /O Port to emulate a byte-
wide microprocessor interface. This method results in there being 8 data bus lines (1/00-7), 8
lines for address, chip select, and read/write signals (Q0-7 of the LED Port), and one status
line (/SSErr). Using this method, SBA is tied low, and CIkAB and CIkBA are not used, and
OEnAB could be tied to one of the LED Port bits. Section 4.2.2 and 4.2.3 provide
examples of this type of interface.

4.1.3 Power Transistors

As mentioned in the introduction to this chapter, there are two methods of implementing
hardware interfaces with the Transputer Education Kit board. The first uses the Programmed

44 4-External Interface

1/0 port and the LED port signals as described in sections 4.1.1 and 4.1.2 and illustrated
with the examples in section 4.2 Examples. Power for these projects is available through
the socket connector eliminating the need for an external power supply. The second method
of interfacing provides communication with the external hardware using a link. Examples
illustrating this method of hardware interfacing are given in the Workbook included with the
Transputer Education Kit.

Circuitry is included on the Transputer Education Kit board which allows one of the signal
wires in the link cable to provide power to an interface connected through a link cable. Two
power transistors which are needed for this circuitry to function are not provided in the entry
level kit but are available from CSA or electronic component vendors. The power provided by
this circuitry can be turmed on and off under program control.

The power transistors are controlled by the system services SS analyse signal which in turn
are controlled by Q1 of the LED port signals (see section 4.1.1 LED Port). Writing a 0 to
Q1 turns the power on and writing a 1 turns the power off. Depending on the output voltage
of your PC’s power supply, this power source can provide between 200 and 250 milliamps
while still keeping the voltage at the end of the link cable above 4.75 Volts. Two procedures
to switch the poweron and off are provided on the Examples disk.

Side A Side B

Each power transistors (Part # IRFD9123) comes in a 4 pin package. On one side of the
Transistor, two pins are connected together. This connection serves as a heat sink and also
as the marker indicating chip orientation. The diagram above identifies the two sides of the
transistors as A and B and shows how they are placed in the power transistor socket.

4.2 Examples
4.2.1 Printer Interface

This design interfaces a printer to the Programmed I/O port using a subset of the Centronics
parallel printer interface standard, which is used by most paraliel dot matrix printers including

Epson and IBM. This interface provides the transputer with direct access to a standard printer
device.

4-External Interface 45
/Evntwait Strobe > g
o
3 voo0-7 Da‘aﬁl -
@ 2
< = £
o« =
25 a
< 9
o F
8 g (]
E /EvntWait Ack 5

Parallel Printer Interface Block Diagram

The protocol used to send data to the printer is described here in a non-technical manner.
Most printer manuals have a section explaining this protocol in more detail. The controlling
device writes the data to the eight I/O pins. 1t then takes the Strobe line low to signal the
printer that the data is ready to be read. When the printer has read the data, it sends a low
pulse on the Ack line indicating to the controlling device that it has the data and the cycle is
complete.

The interface described in this example implements the communication protocol using the
Programmed I/O port. The transputer program writes the byte to be sent to the Programmed
I/0O port. It then performs an input on the Event channel. The transputer program will wait
here until /EvntReq goes low. When the transputer is waiting for an input on the Event
channel, it holds /EvntWait low. This takes the printer's Strobe line low, indicating to the
printer that the data is ready. When the printer has read the data, it takes Ack low. Ack is
connected to /EvntReq which also goes low. This allows the Event channel input to
complete, which takes EvntWait and Strobe high and completes the protocol.

Although intended to provide simple access to a printer, this interface could be used to make
print spoolers or provide graphical output on a printer with such capabilities. There are sample
programs in both Occam and C on the Test and Demo disk which illustrate how to send data to
the printer. No extra IC’s are involved in this interface; only a cable with the proper end-
connections. The simplest cable has a 24 pin DIP header on one end and a parallel printer
port connector on the other end. Another option, if the cable must reach more than one or
two feet, is to make a short cable with a 24 pin DIP header on one end and a PC-type 25 pin
connector on the other end and then plug this into a standard PC printer cable.

Sample programs showing how to send characters to the printer aré provided in both Occam
and C on the Test and Demo disk.

46 4-External Interface

ut P1
e /EvntWai;l"‘fZ o N
O /EvntReq> =

gt’ 58? 2 N —

5 =
g vozHs T
S vosr’ | Z ot
= VO4 . o O
[@) vos 21 | - o
S~ loap s

. — Q

o yorf® 2
p——o"ia

Al o o

N

]

Parallel Printer Interface Schematic
4.2.2 Eight Channel A to D Converter

This project uses the Programmable e} port together with the LED port signals to controt an 8
bit, 8 channel analog to digital converter. With this A/D circuit the transputer can read up to 8
different voltages that are between 0 and 5 volts.

w
2 100-7 Address A0-7 —
at :
E ALE —————
2o Data i :
<% DO-7 g |e——— | Eight
€9 8 W g 0-5 Volt
S /oEnAB @2 |e—n | Analog
E] g o) Ports
(&) L
a Q7 OE T —
“a 08 Start -

Eight Channel A/D Converter Block Dlagram

The National Semiconductor ADC0808 is used for the actual analog to digital conversion.
The ADC0808 is an A/D converter with additional bus-interface logic to simpilify interfacing to
an 8 bit microprocessor. This interface uses the Programmed I/O port as an 8 bit bus and Q2,
Q6 and Q7 of the LED port to provide the control signals.

The following process converts an analog signal to a digital value and reads it. Q2, Q6 and Q7
are low at the beginning of the conversion. Q2 is taken high, setting the Programmable 1/O
port for output. The channel number to be read is written to the Programmable 1/O port. Q6 is
taken high to latch the channel number into the ADC0808 and start the conversion cycle. Q6
is then taken low and the transputer uses its internal timer to wait while the conversion takes
place (at least 120 us). When the conversion is complete, Q2 is taken high to set the
Programmabile 1/0O pont for input. Q7 is taken high enabling data from the the ADC0808 onto
the Programmable 1/0O port. The value is read from the Programmable /O port. Q7 is taken low
to disable the output of the ADC0808, and everything is ready for another conversion.

4-External Interface 47

Sample programs for the A/D converter circuit are provided in both Occam and C the Test and
Demo disk.

The National ADC0808 has no sample and hold capability, so is only accurate for slowly
changing signals. The pin-compatible Texas Instruments ADC0808 contains on-chip track
and hold circuitry which allows it to digitize signals up to 4 KHz. This is enough to do simple
experiments with voice digitizing. You will notice that the Programmable 1/O and LED port
signals are used in a way that allows this project to be combined with the digital to analog
converter in section 4.2.3 Two Channel D to A Converter to form a simple combination
D/A, A/D conversion system.

Parts List
Qty. Description
1 National ADC0808 8 Channel A/D Converter
1 74LS161 4 Bit Synchronous Counter
Vee
Vee la
U > Clk _ {3\ t
L Enp © S_q_
i)
" 02""1 t—2q9Load 9B acpjs-
0 Cr < QaAH
w N~ Q
- QG'E QDL
arft Gnd Q
Vee "'L'
U1 Pus
O OEnAB :‘ ANog Vee
0 5MHzB[L—é Start ClK 4
S 4 VOOT] ALE Vee
E glotp VRef+{ig—3
EQ 58% % —2A0 VRef- —LL
€O yoafs 22|
D= 21 A2
S VosiE - foe)
Q. vord 41
SRA 15 D2 (=] 2]
4p3 ©Q 2
T B £
D7 o
1] e
HEOC Gnd g

<

Eight Channel A/D Converter Schematic

48 4-External Interface

4.2.3 Two-Channel D to A Converter

This project uses the Programmable 1/0 port together with the LED port signals to control two
8 bit digital to analog converters. This interface gives the Transputer Education Kit board two
analog outputs that can be varied between 0 and 5 volts.

DACO

Data

VO 0-7 ’

. 0-5 Volts
LF351 Analog Out

DAC0830 D/A
Converter

Q
»

»
»| XFER

PROGRAMMABLE
/0 PORT

DAC1

Qo
Qi1 »CS

. 0-5 Volts
LF351 Analog Out
+

Q3 P »| XFER

Two Channel D/A Converter Block Diagram

DAC0830 D/A
Converter

LED
PORT

The National Semiconductor DAC0830 is a fast (1 us conversion time) 8 bit D/A converter with
an 8 bit microprocessor interface and internal latches to allow for simultaneous updating of
more than one DAC0830. This interface uses the Programmed I/O port as an 8 bit bus and
Q0, Q1 and Q83 of the LED port to provide the control signals.

There are two steps to to writing a new value to the D/A converters (DAC). In the first step, CS
(Chip Select) is used to place a byte in aninternal latch. At this point, the output of the DAC is
the same as it was before the byte was written to the internal latch. Next XFER is taken high
which moves the byte in the internal latch into the DAC output register. After the transfer, the
DAC’s output reflects the new vaiue. The two steps are necessary so that the output of two or
more DACs can be updated simultaneously. To do this, the new bytes for all DACs are first
written to the internal latch. XFER is then taken high and low to update the outputs
simultaneously. The LF351 op amps convert the current output of the DACs to a voltage
output.

To update both DACs, start with the control signals Q0, Q1 and Q3 low. Write the byte for
'DACQO to the I/O port. Then take QO high to select DACO and write the byte on the /O port to
the DAC'’s internal latch. Take QO low to deselect DACO. Write the byte for DAC1 to the /O
port. Then take Q1 high to select DAC1 and write the byte on the I/O port to the DAC's
internal latch. Take QO low to deselect DAC1. Take Q3 high to transfer the bytes from the
internal latches on both DACs to the output registers. The output voltages will then reflect
the new values that were written.

Sample programs for the D/A converter in both Occam and C are provided on the Test and
Demo disk. ‘

4-External Interface 49

This interface gives the transputer access to two fast (1us) 8 bit D/A Converters. It can be
used in music synthesis, signal generation, control and many other applications. It is
designed to accept the pin-compatible National Semiconductor DAC1230 12 bit D/A
Converter with slight modifications. One more control line must be provided for the
Converters, and the software must be changed. See the Data Sheet of the DAC1230 for
more detail. You will also notice that the Programmable 1/0 and LED port signals are used so
that this project can be combined with the analog to digital Converter in section 4.2.2 Eight
Channel A to D Converter to form a simple combination D/A, A/D conversion system.

Parts List
Qty. Description
2 National DAC0830 8 Bit Converter
2 LF351 JFET Operational Amplifier
2 10KQ Potentiometer
Vi
Vee Vee <
U2 U3 120
1
— Qo wlcs Ve pegf?
3} 7 Q1 14 L_Hllleef
) R I 2o il
5 18
—] W Q4-:-$— ENVrz 8 foutt 12, — Vout
7] ~ Q5[~ o lou—f- US
8 QG [] [DO o ~—
Pl IS
u1 =103 g VRef -3—1 Veo
D4
15 -V
2 oenash 1|5 Gnd j;_ i
n
S 1 257 DACO ™| =+
S o2z
S~ VO3
{®] VO4 21
D= |/05 Vee
S wosls Vo iy
o o | P
/Cs cc
I i Xrer RFB
- i
T
18 Wr2 8 10ut1
-, o lour
<100 o
=101 &)
2|02 <
751D3 O VRet
=04
~b7__DAC1""

Two Channel D/A Converter Schematic

50 4-External Interface

4.2.4 Two-digit LED Display

This project uses the Programmable 1/O port to control two seven segment LED displays and
to read a switch. It might be used as a debugging aid with more functionality than is available
using LED’s plugged into the LED port. The simple parallel program which controls this
display illustrates a simple use of the transputer’s on-chip timer.

————= Digit Control

o7 t
9 10 0-6 madla F
b
3
T Y
88 ;
% /SSErr
7 SEGMENT
LED DISPLAY
-
SWITCH 7 SEGMENT
LED DISPLAY

Two-Digit LED Display Block Diagram

The hardware interface is quite simple. 1/00-1/06 are connected to the seven segments of
both LED Displays through current limiting resistors. 1/07 turns on one digit of the display
after the other in rapid succession. The values on I/0O0- /06 are changed each time 1/07 is
changed, so that a different value is displayed on each digit. The switching is fast enough that
both digits appear to be continually lit.

The switch is connected to SSErr which is read by the transputer. SSErr is normally held high
by a pull-up resistor. Pressing or toggling the switch connects SSErr to ground.

The software to use this display contains a parallel process that does nothing but update the
display. This display process creates a byte that contains the correct segment values for the
low order digit in bits 0-6 and the value in bit 7 set to turn on the low order digit display. This
byte is written to the I/O port which displays the low order digit on the LED display. Using the
transputer timer, the display process waits for 5 milliseconds then creates a byte for the high
order digit in the same manner as it created the byte for the low order digit. This byte is then
written to the I/O port which displays the high order digit on the LED display. The display
process waits 5 more milliseconds then starts all over by creating the byte for the low order
digit.

Each time the display process turns off one digit and turns on the other, it checks to see if
there is a new value to display. The main program runs in parallel with the display process. It
sends the byte to be displayed to the display process and then continues execution. The
display process uses very little of the transputer's processing power and requires no
intervention from the main program except initial setup.

The switch gives a way for a program to wait for outside input before continuing. This is useful
when you want to see the value on the display before a new one is written. To pause until the
switch is closed the program reads and checks SSErr every 20 milliseconds until it goes low.

4-External Interface 51

The program then waits 20 milliseconds to allow the switch to stop bouncing and then reads
SSErr again. If it is still ow, it is assumed that the switch has been closed and program
execution continues. The inclusion of the switch in this interface allows a program to write a
byte to the display and then pause until the programmer closes the switch.

Sample programs illustrating the use of the two-digit LED display are provided in both Occam
and C on the Test and Demo disk.

Parts List
Qty. Description
2 Common Anode LED Displays
2 3906 NPN Bipolar Transistors
2 7406 Open Collector Hex Inverter
4 2.2K Bias Resistors
8 1K Current Limiting Resistors
1 SPST Switch
Vee
V;': | 2.2K &
u1 1K< : L B
Y vool2 1oL ! -
%,_ yo1 123 35044 Dy
Vo2 Do Laicy
§ voal] agos 8 g
é Vo4 11 E' 02 a E_
g2 ooty .
g ',;89"20 Ty 3 o e

g.D""Dl"D"D

3538
s

3%

Switch =

Two-digit LED Display Schematic

52

4-External Interface

5 Troubleshooting

This chapter consists of two sections. Section 5.1 Simple Solutions contains
suggestions to help resolve some commonly encountered difficulties. Section 5.2 Step
by Step Diagnostics contains directions for testing the board and software one element at
a time, isolating the problem and suggesting possible solutions. When the suggested
solutions don't help you fix the problem, the results of the diagnostics provide CSA Technical
Support with the information necessary to help you further. To help us better serve you,
please have the results of the diagnostic tests in section 5.2 Step by Step Diagnostics
ready when you call CSA Technical Support at 1-800-753-4CSA.

It is important to keep things simple when you are troubleshooting. Stay with the default
settings whenever possible. Get the board to work with the fewest possible changes from the
default, then add changes one by one. If you are using Add-On-Processor boards, get the
Transputer Education Kit board working first, then add extra boards one at a time.

IMPORTANT: To avoid damaging the Transputer Education Kit board or your
PC, always turn off the power before changing any settings or removing any
boards.

5.1 Simple Solutions

This sections contains suggestions that will resolve many difficulties encountered while
installing or modifying the hardware or software in the Transputer Education Kit. If your
problem is related to one of the following categories, try the solutions listed here; if not, go to
section 5.2 Step by Step Diagnostics.

5.1.1 Installing the Board

If you've just installed your board and it doesn't work, check the jumpers for the correct
settings. The settings made at the factory (shown in the diagram below) will work in most
cases. lf your installation requires changes, start by making only the changes necessary for
your board to work in your system. Add other changes one by one, running kit test (on
Test and Demo disk 1) after each change until you isolate the problem.

gfe e o[@ e[e ¢ sje e e
éoooooooooo.o
o
IR
Q
w » - =
=

dan

Default Jumper Settings

54 5-Troubleshooting

If your board still doesn't work, try putting it in another slot. If this doesn't solve your problem,
go to section 5.2 Step by Step Diagnostics.

5.1.2 Installing the Memory

If you have installed memory in your board and it fails the external memory testin kit_test,
check that all chips are correctly oriented in their sockets (see the diagram in section 3.2
Adding Memory). Next check the memory for pins bent during the installation. Pins
sometimes bend under the chip where they are easily overlooked. Double-check the
memory size and speed jumper blocks for appropriate settings.

. Set the memory speed in
s the MSpd jumper block as
Jumper settings for 1 Mbyte indicated by the table in

XptSpd___MSz_LSpd section 3.2.2 Memory
FolaEr T iy |speed

0123

Jumper settings for 2 or 4 Mbytes

If these steps don't solve your problem, go to section 5.2 Step by Step Diagnostics.
5.1.3 Software

The most common cause of software malfunction is incorrectly configured hardware. f you
have successfully worked through section 2.2 Hardware Installation, refer to section
5.1.1 Installing the Board.

The second most common cause of software malfunction is incorrect environment variables.
Review section 2.4 Software Installation if you are using the default PC/Link Interface
address and have installed the software as outlined in chapter 2 Installation Guide. If you
are using a PC/Link Interface address other than the default or have modified the installation
process, review the file install.doc on disk 1 of the software installation disks for more
information on environment variables.

If these suggestions don't solve your problem, go to section 5.2 Step by Step
Diagnostics.

5.1.4 Miscellaneous

If you have problems with your Transputer Education Kit board after recently installing another

board in your system, there may be an address conflict. Check the documentation for the

new board to see which I/O addresses it uses. If I/O addresses for both boards are in the
same range (default for the Transputer Education Kit board is 150-170h), the addresses for
one of the boards must be changed. Section 3.3.1 PC/Link Interface Address
explains how to change the Transputer Education Kit address. If you do change the PC/Link
Interface address, run kit_test following the instructions in section 5.2.1 PC/Link
Interface to assure you the address selected is the one you intended.

5-Troub|eshooting 55

5.2 Step by Step Diagnostics

The following section uses the kit _test program on the Test and Demo disk to exercise
various sections of the board individually. The testsin kit test build upon each other and
should be thus run in the sequence indicated below. If problems persist after working
through the diagnostic tests, call CSA Technical Support (1-800-753-4CSA) with the results
of these tests.

5.2.1 PC/Link Interface

All communication between the PC and the transputer is through the PC/Link Interface. If the
PC/Link Interface is not functioning correctly, nothing else will work. To check the PC/Link
Interface operation insert the Test and Demo disk in the floppy drive and type the following at
the command line (if you are not using floppy drive a, replace a with the correct drive letter):

a:kit_test
You should see the following display on your screen:

CSA KitTest Version 1.00
Installation and Diagnostic tests for the
Transputer Education Kit.

PC/Link found at 150 (hex) SS found at 160 (hex)

1) Get warranty number

2) Show/Select PC/Link Interface address (es)
3) PC/Link loopback test

4) Channel I/O test

5) On-chip memory test

6) External memory test

7) Show/Set/Clear error flag

0) Quit

If the addresses indicated in line four are not the addresses you intended, check the PC/Link
Interface address jumper settings. Section 3.3.1 PC/Link Interface Address explains
address selection. After you are sure the jumpers are correct, run the test again; if addresses
indicated in line four are correct, continue on; if they are not, call CSA Technical Support.

Run the PC/Link loopback test in kit test to make sure the PC/Link is sending and
receiving data correctly. To run this test, the jumpers in the PC-Xptr jumper block should be

shunted as shown in the diagram below. Turn the PC off when making the indicated
changes.

SSNG
OK)
€ oo
XX
. o0
C oo
e & o
.
.
»
oo
0 e

Jumper settings for PC loopback test in kit_test

56 5-Troubleshooting

Turn the PC back on and run kit_test. Select the loopback test by typing 2 at the prompt.
The results of the test will be displayed on the screen. If the board passes the loopback test,
turn the PC off and restore jumper block PC-Xptr to its original configuration. Turn the PC
back on and continue with the next section. If the board fails the test, call CSA Technical
Support.

U........ L AN)
Zlo o ajo o 0le 0 sje s o
&............g
3
x
w N - o g

dn

PP P e b | £ 11 1 |
Jumper block PC-Xptr preconfigured settings

5.2.2 Transputer

This section tests the transputer. Run kit_test and type 4 at the prompt to select the
Channel I/0 test. This tests communication between the PC and transputer. If the board
passes the Channel I/0O test, continue on. If it fails the Channel /O test, check that the PC
Link speed matches the transputer Link 0 speed. Sections 3.3.2 PC Link Speed and
3.4.2 Link Speeds show how to select the link speed. When you are sure the link speed
settings are correct, run the Channel I/O test again. If the board passes, continue on; if not,
call CSA Technical Suppont.

Runkit_test and type 5 at the prompt to select the On-chip memory test. This tests the
transputer’s 2 or 4K of on-chip memory. If on-chip memory passes the test, continue on. If it
does not, call CSA Technical Support.

5.2,3 Memory

This section tests the external memory on the Transputer Education Kit board. Run
kit_test andtype 6 at the prompt to select the External memory test. This tests the
external memory and identifies any defective chip(s) by their socket number (see section 3.1
Board Layout). If the memory passes the test, continue on to the next section. If the

memory fails the test, check the memory size and speed jumper settings using the diagram
below as a guide.

prSpd MS2z pd Mspd

: Elﬂm Set the memory speed in

o123 the MSpd jumper block

Jumper settings for 1 Mbyte | as indicated by the table

XptSpd p p in section 3.2.2
Memory Speed

Jumper settings for 2 or 4 Mbytes

When you are sure the memory jumpers are correct, run the External memory test again. If
results are positive, continue onto the next section; if they are not, check the indicated
memory chips for pins bent during installation and for proper chip orientation (see section 3.2
Adding Memory). |f no problems are found during a visual inspection, swap the indicated

5-Troublesh ooting 57

defective memory chip with another memory chip and run the External memory test again. If
the error follows the swapped chip, replace it with a new one. If the test finds the same socket
number defective, call CSA Technical Support.

5.2.4 Software

If you have isolated and solved any problems while working through the hardware diagnostic
section, you may well have soived your software problems. If the problems persist, check the
environment variables. Review section 2.4 Software Instaliation if you are using the
default PC/Link Interface address and have installed the software as outlined in chapter 2
Installation Guide. If you are using any PC/Link Interface address other than the default or
have modified the installation process, review the file install.doc on disk 1 of the
software installation disks for more information on environment variables. f these
suggestions don't solve your probiem, call CSA Technical Support.

5.2.5 Add-On-Processor Boards

To test a single Add-On-Processor board, connect its transputer to the PC/Link Interface of
your Transputer Education Kit board using the jumper settings and cables as indicated in the
diagram below. You can then run the tests outlined in sections 5.2.2-5.2.3 to test the
hardware of the Add-On-Processor board.

—

[Link3 | Linkzl tnk 1] Linko oL © Link3 | Link2 | tink 1 | Linko [pcLind ©

o OO o[t e s[s s e[e e sjee s
5.000.0...00. gooooooooooul
RIS o © o|le o s]o e olee e

w N - o © N - o
Coooooo.oolll clo o ojecoleaolees
Tle o olo o o|e o o Tlo o oo 0 ofe o ole o0

Add-On-Processor board Transputer Education Kit board
with PC/Link Interface

To connect an Add-On-Processor board to the PC/Link Interface

5.2.6 Multi-Board Networks

If you are having difficulties setting up or debugging a network of transputers, test each board
in the system individually. Test all Transputer Education Kit boards as explained in sections
5.2.1-5.2.3. Test all Add-On-Processor boards as explained in section 5.2.5. When all
boards pass these preliminary tests, proceed with the network setup.

Use the Check utility described in section 3.6 Setting Up Multi-Transputer
Networks to test the network connections. Start with the root board, then add other boards

one at a time, running the Check utility after connecting each additional board, until the
network is fully functional.

58

5-Troubleshooting

6 C In On-Chip Memory

6.1 The Basics

|
The compiler in the C Toolset is what is called & cross-compiler. That is, the compiler itself runs
on the PC host, but generates code for the transputer. (This is not the case with the Occam
Toolset compiler wherewith the compiler itself must be run on a transputer.) If you program in
C, you could, in fact, perform all the early stages of code development without-even having

.the transputer installed. Only when you are ready to load, execute and debug, would you

actually make use of it.

Once a C program has been compiled and downloaded by the PC host to the transputer (or to
a network of them) the job of the PC is not over. While the transputer(s) are busy computing,
the PC must be available as an I/O device, since without the PC, the transputer has no means
of accessing a display, keyboard or disk files. Thus every PC-based transputer application
runs with complementary code executing concurrently on both the PC and the transputer(s).
At the very least, the PC runs a simple I/O "server" program (several versions of which are
supplied with the Kit software). The server allows the root transputer (the one attached to the
PC) to execute what appear to be standard /O functions. However, rather than directly
accessing I/O devices, these functions pass special IO request messages over a transputer
link (via the Kit's PC/Link Interface) to the server program, which in turn actually performs the
/0.

The PC could, of course, run an application-specific program — such as an interactive graphical
front end — which communicates with the transputer programs using an application-specific
message protocol. In this case, the program in the root transputer would entirely avoid the
use of the standard I/O functions.

The transputer's standard C I/O functions operate in conjunction with a server called cio. This
set of functions is very complete (adhering to ANS! standards), and as a result, the transputer-
resident portion of the code occupies from 6K to 8K of transputer memory. Since transputer
on-chip memory is limited to from 2K (for the T400) to 4K (for the T425 or T805), the
Transputer Education Kit circuit board cannot support standard C I/O unless off-chip memory
is installed.

A special cut-down version of C 1/O, called the Lt I/O Library, has been provided as an
alternative, however, so that purchasers of Kits with no off-chip memory installed can
productively use and experiment with the transputer. With Lt /O (which stands for Link-
terminal I/0) the user can perform screen and keyboard I/O functions which are similar to their
standard C 1/0 counterparts, but require very little transputer memory. Lt /O also contains
simplified heap management (i.e. dynamic memory allocation) procedures.

So if your Transpdter Education Kit was purchased with no off-chip memory installed, and if
you haven't already instalied some yourself, you can still get started, using C and the Lt IO

60 6-C In On-Chip Memory

Library. Lt VO is small enough to coexist with a hundred or so lines of C code, even within the
2K limit of the T400 on-chip memory.

The remainder of this chapter contains a description of the LT /O Library functions, as well as
instructions on how to selectively divide the transputer's on-chip memory between stack,
code and heap, and helpful hints for conserving memory when running parallel processes.

6.2 The Lt I/O Library

Sections 6.2.1-6.2.3 contain examples illustrating the Lt I/O Library procedures. Section
6.2.4 Lt I/O Library Reference contains an in-depth description of each procedure.
The batch files 1t1sc4 and 1t 1sc8 are included with the C Toolset and should be used
when compiling programs to run exclusively in on-chip memory.

To load a program which uses the Lt I/O Library onto a single transputer, you should type the
following command line:

ld-one foo 1ltio
where foo represents the name of the program which you wish to load.

6.2.1 Output Using the Lt I/O Library

The Lt I/O Library output functions, It_putch, It_puts and It_printf, are similar to their standard
C counterparts, putch, puts and printf. Below is a program illustrating their use:

#include <ltio.h>

main ()
{
int i;

1t _printf("\nHere are the 1t output procedures");
1t_puts("\nThis puts a string on the screen");
lt_puts("\nNow let's print five characters");
for (i='a'; i< 'f'; i++)
1t_putch(i);
lt_printf("\nHere are all the possible 1t _printf combinations");
lt_printf("\nA string %s, two characters %c%c",
"This is a string", ‘'r', 's');
lt_printf("\nThe number 47 printed in decimal %d, octal %o",

47, 47);
lt_printf("\n unsigned decimal %u and both hex formats %X, %x",
47, 47);

1t_printf("\nFinally we print a void pointer $%p", &i);
) .

6.2.2 Input Using the Lt I/O Library

The Lt /O Library input functions, 1t_getch, 1t_gets and It_atoi are similar to their standard C
counterparts, getch, gets and atoi. Below is a program illustrating their use:

6-C In On-Chip Memory 61

#include <ltio.h>

main ()

{ char string{80] ;
int num, ch;
lt_printf("\nThese are the input possibilities™);
lt_printf(" with the 1t library"):
1t_printf{("\nYou can input a string");
1t_printf("\nInput a string:");
1lt_gets(string);
1t_printf("\nThe string input was %s ", string);
1t_printf("\nYou input a string and convert into a number");
l1t_printf("\nEnter a number");
1t_gets(string);

num = 1lt_atoi(string);
1t_printf("\nThe number is %d", num);
l1t_printf("\nFinally we echo characters till you type a [|");
do
{ ch = 1lt_getch();
1t_putch{(ch);
} while (ch ! = '|');

}
6.2.3 Lt /O Heap Management

The Lt I/O Library heap management (dynamic memory allocation) procedures, 1t_malloc and
1t_free, are similar to their standard C counterparts, malloc and free. Lt heap management
procedures differ from the standard C heap management procedures in that the Lt
procedures maintain no linked list of allocated memory blocks. Lt heap management
procedures use a stack model instead. As memory is allocated using 1t_malloc, the bottom of
free memory moves up. When a block of memory is deallocated using 1t_free, all memory
above that block is also deallocated. Because of this, memory allocation must be carefully

ordered if you intend to allocate some memory, free it, and then reallocate it later in the
program.

The standard C heap management procedures (malloc, free etc.) can also be used when
writing programs that run exclusively in on-chip memory only, although they require more
space. Both sets of heap management procedures, standard and Lt, cannot be combined in
the same program, however. If your program uses any of the standard C heap management
functions, or other standard C functions which use malloc internally, you cannot use 1t_malloc
or lt_free.

Below is a program illustrating the use of these procedures:
#include <ltio.h>
main()
{ int *array;

char *string;

array = 1lt_malloc(100 * sizeof(int));
string = 1lt_malloc(80);

62 6-C In On-Chip Memory

6-C In On-Chip Memory 63

6.2.4 Lt I/O Library Reference

1t_atoi
convert a string to a number

Synopsis
#include <ltio.h>
int atoi(const char *cptr)

Description
The 1t_atoi function converts an ASCII numeric string pointed to by cptr into the equivalent

integer. The strings are assumed to be base 10, white space is allowed before the numeric
string, and the first unrecognized character stops the conversion.

atol recognizes integral numbers consisting of an optional sign and digit sequence.

Return Value
1t_atoi returns the converted value.

Related Function
atoi

1t_free
free heap memory

Synopsis
#include <ltio.h>
void it_free(void *ptr)

Description
The 1t_free function returns the previously allocated region of heap memory pointed to by
ptr and all regions of memory above ptr to the heap free storage pool.

Return Value
None

Related Functions
1t_mailoc, malloc, free

1t_getch

read a character

Synopsis
#include <ltio.h>
int It_getch(void)

Description

The 1t_getch macro reads, without echoing, a single character from the keyboard. When
reading a cursor or function key, 1t_getch must be called twice (the second call gets the actual
scan code). To get a functional version, precede the function call with:

#undef 1lt_getc

Return Value
It_getch returns the character, or portion thereof, read. There is no error return.

Related Functions
getch, getchar, 1t_putch, putchar

1t_gets

read a line

Synopsis
#include <ltio.h>
char *1t_gets(char *ptr)

Description

The gets function reads characters from the keyboard into memory starting at ptr.
Characters are read until a newline character is read (it is discarded). A "\0' character is added
after the last character read.

You must ensure that the character array (pointed to by ptr), is large enough to hold the
longest possible input line, otherwise corruption of other data or code is likely.

Return Value
1t_gets returns ptr. It returns NULL if an error was detected.

Related Functions
gets, It_puts, puts,

1t_malloc
allocate heap memory

Synopsis
#include <ltio.h>
void *1t_malloc(size_t size)

Description
The 1t_malloc function allocates a region of heap memory large enough to hoid an object of
size bytes.

64 6-C In On-Chip Memory

Return Value
If it is impossible to satisfy the request, or if size is zero, a NULL pointer is returned.
Otherwise, a pointer is returned to the start of the allocated region.

Related Functions
malloc, 1t_free, free

It_putch

write a character

Synopsis
#include <ltio.h>
int It_putc(int ch)

Description

The 1t_putch macro writes the character specified by ch to the screen. Since It_putch is
defined to be a macro, the arguments may be evaluated more than once, and must not have
side-effects. To get a functional version, precede the function call with:

#undef putc

Return Value
It_putch returns the character written.

Related Functions
putchar, It_getch, getchar

1t_puts

write a line

Synopsis
#include <stdio.h>
int 1t_puts(const char *ptr)

Description
The 1t_puts function writes the string pointed to by ptr to the screen. A newline is written to
replace the terminating "\O' character.

Return Value
1t_puts returns EOF if an error occurs; otherwise it returns a non-negative value.

Related Functions
puts, It_gets, gets

6-C In On-Chip Memory 65

1t_printf

simple formatted write

Synopsis
#include <stdio.h>
void It_printf(const char *format, ...)

Description

The 1t_printf function is a stripped down version of the normal printf function that works with
the ltio server. Lt_printf doesn't suppont floating point, option flags, field widths or
precision values. it also doesn't support any retumn value

Return Value
None

Related Functions
printf

6.3 Optimizing Memory Use

The diagram below contains a map of transputer on-chip memory usage. The first 70 (hex)
words are reserved for use by the transputer, and overwriting them leads to undefined
transputer behavior. The stack is placed above the reserved memory and grows downward
from the start of the code area. The code area contains executable code and any static
variables. The heap consists of all remaining on-chip memory.

T T t
HEAP
CODE
STACK
! { $
RESERVED MEMORY

Transputer On-Chip Memory Usage

1t1lsc4 sets the boundary between stack and code at 80000400 (hex) dividing memory
evenly between code and stack. The linker allows you to place this boundary at any address
you wish by modifying the load address (where the code is placed) and the stack address
(where the stack starts). Three versions of 1t1sc.bat are shown below. The first is the
version that comes with the C Toolset and sets the boundary between code and stack at
80000400 (hex). The second places the boundary at 80000200 (hex) reserving more
memory for code, and the third places the boundary at 80000600 (hex) giving more stack
space.

66 6-C In On-Chip Memory

Batch File 1 (standard 1t1sc4 batch file):

pp %l.c -dT414

tcx %1 -c

tasm %1 -ct

echo FLAG ¢ >%1.1nk

echo LIST $l.map >>%1.1lnk

echo INPUT %1l.trl >>%1.1lnk

echo ENTRY 1t main >>%1.1lnk
echo LIBRARY t4lib.tll >>%1.1lnk
echo LOAD 0x80000400 >>%1.1nk
echo STACK 0x80000400 >>%1.1lnk
tlnk %1.1lnk

Batch File 2 (batch file dividing memory at 80000200):

pp %l.c -dT414

tex %1 -~c

tasm %1 -ct

echo FLAG c¢ >%1.1lnk

echo LIST %1l.map >>%1l.lnk

echo INPUT %1.trl >>%1.1lnk

echo ENTRY _1t main >>%1.1nk
echo LIBRARY t4lib.tl1l >>%1.1lnk
echo LOAD 0x80000200 >>%1.1nk
echo STACK 0x80000200 >>%1.1lnk
tlnk %1.1lnk

Batch Flle 3 (batch tile dividing memory at 80000600):

pp %l.c -dT414

tcx %1 -c

tasm %1 -ct

echo FLAG c¢ >%1.1lnk

echo LIST %l.map >>%1.lnk

echo INPUT %l.trl >>%1.1lnk

echo ENTRY _lt _main >>%1.lnk
echo LIBRARY td4lib.tll >>%1.1lnk
echo LOAD 0x80000600 >>%1.1lnk
echo STACK 0x80000600 >>%1.1lnk
tlnk %1.1nk

6.4 Multi-processing in On-Chip Memory

It is possible to write concurrent (i.e. multiple process) transputer programs that execute
exclusively in on-chip memory. The Mandelbrot fractal demonstration program on the Test
and Demo disk has seven concurrent processes, and not only runs in on-chip memory, but
will run in parallel on as many processors as can be found in a multi-transputer network.

As standard C does not support transputer-style multi-processing, a special library of
functions is provided with the C Toolset for the transputer. Basically, there are functions to
start and to stop processes, and to pass messages between them. A few of these functions
will be used below, but with little explanation. A complete list of them, along with descriptions
of their usage, can be found in the C 89.1 book which came with the Kit.

6-C In On-Chip Memory 67

The functions most frequently used in process instantiation are ProcAlloc and ProcRun.
ProcAlloc dynamically allocates space in memory for the process state, and initializes that
memory with the proper content. ProcRun is used to start execution of the newly created
process. Unfortunately for the programmer using on-chip memory only, the function
ProcAlloc references the function malloc which requires extensive memory. But fortunately
there is a lower level process nhamed Procinit which can be employed in conjunction with the
smaller It_malloc to accomplish the same job as ProcAlioc.

Concurrent processes can communicate with each other (and are synchronized) by passing
messages over "channels." Multiple processes executing within the same processor use
memory locations for channels. Processes executing in true parallel fashion on different
processors use the transputers’ serial links as channels.

Commonly used channel communication functions include ChanAlloc, ChaninChar and
ChanOutChar. ChanAlloc dynamically allocates a channe! location and initializes it.
ChaninChar and ChanOutChar are used at opposite ends of a channel to pass information
between two processes (and to synchronize them). Unfortunately, again, ChanAlloc
references malloc. But fortunately, again, a lower level process is available, named
ChanReset, which can be used along with 1t_malloc to do accomplish the same job as
ChanAlloc.

Below are three versions of a simple program which utilizes a pair of concurrent processes
(the main process, plus another called echo which is instantiated on the fly. The first version
uses the standard C libraries, ProcAlloc, ProcRun, ChanAlloc, ChaninChar and ChanQutChar.
The second version uses Proclnit and It_malloc in place of ProcAlloc, and ChanReset and
1t_malloc in place of ChanAlloc. The third version uses Proclnit and ChanReset in place of
ProcAlloc and ChanAlloc, but uses static variables instead of dynamically allocated memory.

Program 1 {using standard C memory aliocation):

#include <ltio.h>
#include <conc.h>
#define TRUE 1

int echo(Process *p, Channel *in, Channel *out);

main ()
{
Process *echo_proc;
Channel *to_echo, *from_echo;

int ch;
to_echo = ChanAlloc(); /* Allocate and initialize */
from_echo = ChanAlloc(); /* memory for channels */
/* Allocate and set up memory forx/
/* the echo process */
echo_proc = ProcAlloc{echo, 100, 2, to_echo, from_echo);
ProcRun(echo_proc); /*Start the echo process running*/

while (TRUE)
{ ch = getch();/*Read a character from the keyboard*/
ChanOutChar (from_echo); /*Send it to echo*/
¢ch =ChanInChar(from_echo);/*Read it back from echo*/
putchar(ch); /*print it on the screen*/

68 6-C In On-Chip Memory

6-C In On-Chip Memory 69

}

int echo(Process *p, Channel *in, Channel %*out)
{ int ch;
while (TRUE)
{
ch = ChanInChar(in);/*Read a char from the main process*/
ChanOutChar (out, ch);/*Send it back to the main process*/

}

Program 2 (using 1t_malloc):

In this program, ChanAlloc is replaced by a call to It_malloc and then a call to ChanReset;
ProcAlloc is replaced by two calls to 1t_malloc and then a call to Procinit.

#include <ltio.h>
#¢include <conc.h>
#define TRUE 1

int echo(Process *p. Channel *in, Channel *out);

main()

{ Process *echo_proc;
char *echo_ws;
Channel *to_echo, *from_echo,
int ch;

/*Allocate memory for Channels*/

to_echo = lt_malloc(sizeof(Channel));
/*Allocate Process structure*/
from_echo = 1t_malloc(sizeof(Process));

/*Initialize channels*/
ChanReset (to_echo);
ChanReset (from_echo);

echo_ws = 1t_malloc(100);/*Allocate memory for workspace*/
/*Allocate Process structure*/
echo_proc = 1lt_malloc(sizeof(Process));

/*Initialize workspace and Process structure*/
ProcInit (echo_proc, echo, echo_ws, 100, 2, to_echo, from_echo);
ProcRun(echo_proc); /*Start the echo process running*/
while (TRUE)
{ <ch = getch{();/*Read a character from the keyboard*/
ChanOutChar (from_echo) ; /*Send it to echo*/
ch = ChanInChar (from_echo);/*Read it back from echo*/
putchar (ch); /*print it on the screen*/

}

int echo{Process *p, Channel *in, Channel *out)
{ int c¢h;
while (TRUE)
{
ch = ChanInChar(in);/*Read a char from the main process*/

ChanOutChar (out, ch);/*Send it back to the main process*/

}
Program 3 (using static variable declaration):

In this version, ChanAlloc is replaced by declaring a channel variable and a pointer and by
assigning the pointer to the channel. The channel is reset, then passed to various

procedures. ProcAlloc is replaced by declaring two static variables of the correct size and
calling Proclnit.

#include <ltio.h>
#include <conc.h>
$define TRUE 1

int echo(Process *p. Channel *in, Channel *out);
static char echo_ws[100];

main()
{
Process *echo_proc, ep;
Channel *to_echo, *from_echo, te, fe;

int ch;

to_echo = &to; /*Initialize channel pointers*/
from_echo = &fo; /*to address of te and fe*/
ChanReset (to_echo); /*Initialize channels*/

ChanReset (from_echo) ;

echo_proc = &ep; /*Initialize Process pointer to echo_proc*/
/*Initialize workspace and proc structure*/
ProcInit (echo_proc, echo, echo_ws, 100, 2, to_echo, from_echo);
ProcRun{echo_proc); /*Start the echo process running*/
while (TRUE)
{ ch = getch();/*Read a character from the keyboard*/
ChanOutChar (from_echo) ; /*Send it to echo*/
ch = ChanInChar (from_echo);/*Read it back from echo*/
putchar (ch) ; /*print it on the screen*/

}

int echo(Process *p, Channel *in, Channel *out)
{ int ch;
while (TRUE)
{
ch = ChanInChar(in);/*Read a char from the main process*/
ChanOutChar (out, ch);/*Send it back to the main process*/

70

6-C In On-Chip Memory

A Appendix

A.1 Memory Map

The transputer (with the exception of the 16-bit models) has a flat 32-bit address space.
Contrary to what might be expected, memory addresses are considered to be signed
numbers, and as such the lowest memory location is addressed by the negative integer
having the greatest possible magnitude, 8000 0000 (hex). Note in the memory map below
that the transputer’s on-chip memory is in the same memory space as external DRAM. When
these on-chip locations are referenced by a program, external memory in the same region is

disabled. See Note 2 for a way to get at this blocked out section of external memory.

Wrap Around
» System Services & <
Note § External Interface

System Services &
> External Interface

4 Wrap Around
Memory

Noe 2

External
Memory

On-Chip
Memory

Note 1 Reserved

Memory

Note 1 This area is used by the transputer and is not available for code or data. For further

BYTE ADDRESS
7FFFF FFFC

0000 0020
Nowe 3
0000 0000

8040 0000 (4 Mbytes)
8020 0000 (2 Mbytas)
8010 0000 (1 Mbyte)

Noe s

8000 1000 (T800/TB05/T425)
8000 0800 (T400)

Note 4

8000 0070

8000 0000

RITE

BYTE ADDRESS
READ

0020

001E

Wi T

B

LED bit 7 (Q7)
L LA L .

001C

001A

0018

0018

0014

0012

LED

S HE X

0010

000E

TEDBA 3 [00)

W B0 POl

000C

000A

LED bit 1 (Q1)
= /S5An

Write /0 Port

Read O Port | 20

0002

LED bit 0 (Q0)

= /SSRe

ISSEm

0000

information look in the Transputer Technical Specifications in the Transputer book.

72 A-Appendix

~

Note 2 There are 32 address lines on the transputer. Only 20 are used when one Mbyte of
memory is installed and 22 when two or four Mbytes of memory are installed. The other
address lines are not used. The result of this (called memory wrap around) is that the same
memory cell can be written or read at two different addresses. For example, in a board with 1
Mbyte of memory, the following addresses all refer to the same memory cell: 80008000,
80108000, 80208000, etc. In a board with two or four Mbytes the following addresses refer
to the same memory ceil: 80008000, 80408000, 80808000, etc. On a two Mbyte board. half
the addresses in the memory region don't access any memory at all. The addresses
80000000 - 80200000 do access memory, 80200000 - 80400000 do not, 80400000 -
80600000 do access memory, etc.

Note 3 The Extemal Interface is described in Chapter 4

Note 4 The SS (SubSystem) system service signals (see section 3.6) are decoded in this
range. The LED Port bits 0 and 1 (Q0 and Q1) are equivalent to the SS Reset and Analyse
(/SSRes, /SSAn).

Note 5 The /O space, like the memory space, is not totally decoded (that is, not all 32
address lines are used). The I/O port can be written or read at any address that can be
described in the form 3 + 4n (n being an integer). Some addresses where the I/O port can be
written or read are 3, 7, 11, 15, etc. The /SSErr can be read at any address described in the
form 8n (i.e. 0, 8, 16, etc.). The LED bits appear every 32 bytes. They are written at address
described by 4b + 32n where b is the bit number and n is any integer. /SSRe and /SSAn are
controlled by writing bits 0 and 1 (Q) and Q1) of the LED port respectively. To maintain
compatibility with future products, use the lowest possible address to read or write to the VO
signals (these are the ones that are not shaded in the map above).

A-Appendix 73

A.2 Memory Mapped I/O Interface Addresses
A.2.1 PC Link

PC 110 Addr Write Read
Lnk+0 Invalid Byte from Link
Lnk+1 Byte to Link invalid

Lnk+2 Input Status Input Status
Lnk+3 Qutput Status Qutput Status

The PC Link is implemented with an Inmos C012 link adaptor which offers a microprocessor
interface, converting serial link data to byte-wide paraliel data and vice versa. The C012 sends
bytes from the PC host to the PC Link and conversely allows the PC host to receive bytes
from the PC Link. It has four registers: an input data register, an input status register, an
output data register and an output status register. Only one bit from each of the status
registers is used by the Transputer Education Kit. Bit 0 of the input status register is
automatically set to indicate that a byte has been brought in over the link and is ready to be
read from the input data register. Reading the input data register resets Bit 0 of the input
status register. Bit 0 of the output status register is automatically set whenever the output
data register is ready for another byte. Wiriting to the output data register causes this bit to be
reset until the written byte has passed out the link and the output data register is again empty.

To read a byte from the PC Link, you can poll the input status register until Bit 0 is set then
read the byte from the input data register.

To write a byte to the PC Link, you can poll the output status register until Bit 0 is set then
write the byte to be sent to the output data register.

Lnk in the table above refers to the Lnk address selected in the PC Link Address jumper
block. For example if Lnk was selected to be 150 (hex) then the four addresses 150, 151,
152 and 153 are used to access the C012 Link Adaptor chip. Note that these addresses are
in the I/O space of the PC and not the memory space. See section 3.3.1 PC/Link
interface for more information on selecting the PC/Link Interface addresses.

Example procedures demonstrating how to read and write the link are included on the
Examples disk. Three different versions are supplied; one in Microsoft C, one in Turbo C, and
one in 8086 assembly language.

For more information on the Inmos C012 Link Adaptor chip see the Transputer Databook.

74 A-Appendix

A-Appendix 75

A.2.2 PC Link SS (SubSystem) System Services

PC /O Addr. | Write Read
$S+0 PC Link Reset PC Link Error
SS+1 PC Link Analyse | Invalid

PC Link Reset is asserted by writing a 110 SS + 0. ltis deasserted by writing a 0 to SS + 0.
PC Link Analyse is asserted by writing a 1 to SS + 1. Itis deasserted by writinga 0 SS + 1.

PC Link Error is read at SS + 0. The state of the Error line is indicated in Bit 0. If Bit 0 is 1 the
Error line is asserted. If Bit 0 is 0 the Error line is deassented.

The actual signals associated with these locations are active low. That means writing a 1to PC
Link Reset puts the Reset line low, etc.

For more information on the timing needed to reset or analyse a transputer refer to the T805
data sheet section of the Transputer book.

$S in the table above refers to the SS address selected in the PC Link Address jumper
block. For example, if SS was selected to be 160 (hex), then the addresses 160, 161 are
used to read and write the system services signals. Note that these addresses are in the I/O
space of the PC and not the memory space. See section 3.3.1 PC/LInk Interface for
more information on selecting the PC/Link Interface addresses.

A small note about nomenclature. SS for the PC/Link Interface does not actually stand for
SubSystem as indicated above but rather for System Services. The PC/Link Interface
system services work in the same manner as SubSystem system setvices on a transputer in
that it a allows a subsystem to be reset by the transputer. The addressing is scheme is the
same as can be seen by looking at the address diagram for this section and the address
diagram for the transputer SS section below.

Example procedures demonstrating how to read and write PC Link system services and reset
a transputer are furnished in Microsoft C, Turbo C and 8086 assembly. These procedures are
included on the Examples disk.

A.2.3 Transputer SS (SubSystem) System Services

Xptr_Addr. Write Read
0 SS Reset SS Emor
4 SSAnalyse Invalid

SS Reset is asserted by writing a 1 to address 0. Itis deassérted by writing a 0 to address 0.
SS Analyse is asserted by writing a 1 to address 4. It is deasserted by writing a 0 to address 4.

SS Error is read at address 0. The state of the Error line is indicated in Bit 0. If Bit 0 is 1 the
Error line is asserted. If Bit 0 is 0 the Error line is deasserted.

The actual signals associated with these locations are active low. That means writing a 1 to
SS Reset puts the Reset line low, etc. For more information on the timing needed to reset or
analyse a transputer refer to the T805 data sheet section of the Transputer book.

Example procedures demonstrating how to read and write the SS system services of a
transputer and reset a sub-system (SS) are fumished in C and Occam. These procedures are
included on the Examples disk.

Note 1 The SS system services signals share a common word address with the Programmed
I/0Q port. The difference is that the SS system services signals are mapped into the low order
byte and the Programmed I/O signals are mapped into the high order byte. For this reason
these signals should be modified with a byte write rather than a word write. If this is not done
writes to SS system services will very likely change some of the signals on the Programmed
/O port. The inverse is also true. Word writes to the Programmed /O port will affect SSReset.

76 A-Appendix

A.2.4 External Interface LED Port and Power Transistors

Qn | Address | Qn | Address
in decimal in decimal

Qo0 0 I Q4 16

Q1 4 I Qs 20

Q2 8 i Qe 24

Q3 12 I a7 28

The LED signals Q0-Q7 are taken high or low by writing the desired signal level to the low
order byte of the word addresses in the diagram above. To write to Qn, write to the address
4n. Writing a 1 in bit 0 sets the line high (turning the LED off); writing a 0 sets the line low
(turning the LED on). These lines are low on power up and are not effected by a transputer
reset. Thatis they retain their state between program runs. Sample C and Occam procedures
are provided on the Examples disk illustrating how to write these signals.

The power transistors are controlled by the system services SS analyse signal which in turn is
controlled by Q1 of the LED port signals (see section 4.1.1 LED Port). Writing a 0 to Q1
turns the power on and writing a 1 turns the power off. Sample C and Occam procedures are
provided on the Examples disk illustrating how to write these signals.

Note 1 QO and Q1 perform double duty as they are the same signals memory-mapped
signals that are inverted to generate SS system services reset and analyse signals. Keep this
in mind if you use SS (see section 3.6 and A.2.3) or the programmed I/O port in conjunction
with the LED signals.

Note 2 This port shares common word addresses with the Programmed 1/O port. The
difference is that the LED port is written with the low order byte and the Programmed I/O port
is written with the high order byte. For this reason these signals should be modified with a
byte write rather than a word write. If this is not done writes to this port will very likely change
some of the signals on the Programmed I/O port. The inverse is also true. Word writes to the
Programmed I/O port will affect one of the signals of the LED port.

Note 3 The I/O port which includes the LED port is not completely decoded. This means that
each bit of the LED port may be written at many addresses. That is Q0 can be written at 0, 32,
64 etc. Q1 can be written at 4, 36, 68. Any address of the form 32i + 4n will work when n is
the signal number (for Q3 n = 3) and i is any number that results in an address with bit 31 set to
0.

A-Appendix 77

A.2.5 External Interface Programmed /O Port

Xptr Addr. Write Read
0 SS Reset SS Ermror
4 SSAnalyse Invalid

The signals of the Programmed 1/O port that are directly under program control are 1/00-7, Q2
and /SSErr.

The programmed I/O port signals I/00-7 are accessed by reading or writing the high order byte
of the word at physical memory location 0. I/O0 corresponds to bit O of this byte and /07
corresponds to bit 7. The signal level presented on the I/O lines is a high if the corresponding
bit is 1 and low if the corresponding bit is 0. These signals are low on power-up and are not
aftected by a transputer reset so they retain their state between program runs. Sample C and
Occam procedures are provided on the Examples disk illustrating how to write these signals.

Q2 is one of the signals from the LED port. Its operation is described in the preceding
section. /SSErr is the Error signal for the transputer’s SS error. [t's operation is described in
Appendix A.2.3. Note that this signal cannot be used on the Programmed /O port if the
transputer's SS system services are connected. .

Note 1 This port shares common word addresses with the LED port. The difference is that
the Programmed I/O port is mapped into the high order byte and the LED port is mapped into
the low order byte. For this reason these signals should be modified with a byte write rather
than a word write. If this is not done writes to this port will affect one of the signals of the LED
port. The inverse is also true. Word writes to the LED port will very likely change some of the
signals on the Programmed I/O port.

Note 2 The VO space which includes the Programmed I/O port is not completely decoded.
This means that the Programmed I/O port may be written at any physical address that can be

described by the equation 3 + 4n where n is any integer that results in an address with bit 31
setto 0.

78 A-Appendix . A-Appendix 79

A.3 Board Schematics and Block Diagram

Control Logic Addressable Latches E §
o7 LED Pont Q7 N
Wit - /A3Y Lo o8 » igponos ' PUp— 8 gas h 2
- Port O5 = 2rNoyvenoagc & 2
) R —-=davboll |- LELEELELE LR PR R B PR R Ry E R H %
03— ———3 LED Port O3 (O b4
w [
: S |8 e TR RA AT T YY
L—AZAL o Lawn o1 » LED Pont Q1 £ LI T LI S M MAA 19878 3 Hﬁ‘
= S e mee R L TR R HHHH I I
o LYY il T i e
. 3 2
Power FET
seace) # Programmed 1/O Port Pin 14 (SMHz) IMS T800 (S ’§
fas = than — Registered | Transceiver Prog d /O Port Pin 19 (CIKAB) v
3 P10
2 £ § % e—«2 g »E‘ Hé-«
2% 8§ 5= b
o iid R 2355 3 i 0
@ Programmed O Port Pin 1 {OEnAB) 5 = ERE : s
;:. Programmed /0 Port Pin 2,23,3,22,4,21,5,20 (1/100.7) % 1 1 1 I TTT1 g 4?(: ’ﬁl
. 1} -3 2 E-3-4: ¢ aQ
e - @ Programmed 110 Port Pin 6 (SBA) i DI | Irﬂ = & B
% soosp 82 &1
Transputer E ,é_‘
WB0.WB3,Rd s 292ogge] ’f 'ﬁ‘
w031k, @ Programmed 1O Port Pin 18 (CKBA) g 2202288 §
Event Wai # Progr d /O Port Pin 16 (/EvntWait) g‘
Evont Aok Programmed 1O Port Pin 15 (/EvntAck) 1 &
4@ Progs d VO Port Pin 17 (/EvntReq) bicd Ll(-‘
» Prog d /0 Port Pin 13 ((2)
- Prog d IO Port Pin 7 (SSEr3)]
Uﬂ::iln
Lot Differential
u:;'z:;" Drivers and
Linn 1O o .
i v
- | Transputer System Services Ss N up Linkin3 o
fase: por MRe Gl e LinkOut3 2
Anmyze | —& UP DN S5 Reset 3
Error St | — DN §§ Analyze / UPEmor | £
48 DN SS Error3 / UPAnalyze| ~
_g el Linkin2 Yo N
e LinkOut2 2
~—@P UP DN SS Reset 3
4 4 DN SS Analyze / UPEmor |
@ DN SS Error2 / UPAnalyze] ~*
& Linkint Jew 8
meeradld LinkOut1 2 3
4D UP DN SS Reset 3 LA
~ 9 DN SS Analyze / UPEmor | ¥ 5 -
3 @ DN SS Errort / UPAnalyze| =
beeetl Linking le N
Shaded areas to the right and below represent - t:;'::‘u& Reset é R ﬁ
jumper block positions 3, 2, 1, 0, and PC-Xptr. 5
Small open circles indicate connection only it DN SS Analyze / UPEnor g g
corresponding circuit board shunt is installed. DN 8S Error0 / UPAnalyze]
PC/Link Interface
U Oifwrenta Linkino 12
PCLInWOuI LinkOuto 3 2 = g 3
PCTrenspunritase] UP DN SS Reset i B <
PCTranspumrAnstyre DN SS Analyze / UPEmor | =¥
PCTranspumrError DN SS Error0 / UPM‘Y!O‘ 2

80 A-Appendix A-Appendix 81

5 33 3333 23§18 P, ;
. & 2
B/ ;eggwﬂb'{'ﬁﬁﬁ_ﬁ{;ﬂj{)=ﬁxawj{> ‘—fé
5 8 nrisr |8 uFisy 8 © 74r157 ” o
ssss:aeawq -u!-movvq 3 s::guq 3 3 £
gz THTH] W ik Hgl B
g| 85 g2s%8 -
2 2232 gsgg 8 g
N Sadadodsu
5 F N-—wn‘ga_v_j
<2
&
i M
¥ B&833838 g 222233 432 £ &1 Jasans 21" Jarsars
2 8 “|ersessesls] |eqsesseely
o [E
e 3 i
@ l T g 838853 55553555 &
HEEEW! "
gz o 8
. 4 L1 L LT
| P o Pas -
| e
1} HiL T
48(4:8| 3 |88(38| 2 |dB|2B| = (88(4¢8(3 [a8(2:8 4
2
38 J §38 -§§§§J -E-é\J . 2 ELML“
4256AP/400 b 1Y 44 4 § &8 9997
399228280 g“.'.\wlg" s o30obbs Soswobs ELELE
T [Meee™ T Tl Tl
R U E R R
) dssaisig
g 1 3 o .
sssiiels Slald olld [eaasssas
1 [y W e] i gl
132125 : 2 2 TR B
§33331 & 84 84 8388

82 A-Appendix

A.4 External Cable Schematics
A.4.1 Cables between Transputer Education Kit Boards
SS DN UP None
1 | /SSAn /DNAnR /UPErr NC
2 | /SSErmr /DNErr /UPAN NC
8 Pin MiniDIN Cable 3] LinkOut- | LinkQut- { LinkOut- | LinkQut-
Connector Pinout 4 | Gnd Gnd Gnd Gnd
5 | Linkin- Linkin- LinkIn- LinklIn-
6 | LinkOut+ | LinkOut+ | LinkOut+ | LinkOut+
7 | /SSRes /SSRes /SSRes /SSRes
8 | Linkin+ Linkin+ Linkin+ Linkln+

1/0 Connector
Pinout

8 Pin MiniDIN
Cable Connector

Link cable I/O pinouts for corresponding system
services jumper connections (SS, DN, UP, None).

8 Pin MiniDIN
Cable Connector

2 D4
3
X
4
p AN
8 N
8 Link In+ X

1

oo BN Fo NV, R VO N)

Note that pins 1 and 2 are used differently, depending on the UP, DN and SS jumper settings
in jumper blocks 0, 1, 2 and 3 of the Kit circuit boards at each end of a given cable. As such,
pin 1 of the connector is always an output signal, and pin 2 is always an input.

83

A-Appendix
A.4.2 Education Kit to CSA PART Series (Internal
Connectors).
e 678 oo
31425 30
8 Pin MIniDIN Cable 2x2 Cable
Connector Pinout Connector Pinout
8 Pin MIniDIN 2x2 Cable
Cable Connector Connectors
1 Linkln-
LinkOut-
2 LinkOut+
3 Linkln+
4
5
6 AN
7
8 AN

8 Pin MIiniDIN
Cable Connector

ONO b WN =

Link In+

Linkin+

Transputer Education Kit board reset by CSA PART board
Transputer Education Kit board receives UP system services

2x2 Cable
Connectors

Linkln-
LinkQut-
LinkOut+
Linkln+

CSA PART board reset by Transputer Education Kit board
CSA PART board receives UP system services

WON =

HLWN -

BWN =

HSWN -

84 A-Appendix

A-Appendix

85

A.4.3 Education Kit to CSA PART Series (External Connector)

8 Pin MiniDIN Cable
Connector Pinout

D-Subminiature 37 pin shell
AMP 745498-1 or equivalent

—
0

yd YG <(2:D
II 21 3.>
7 // 1/1/ (22 4.)
Z 2 Z 7 rGTN

1 s = D!
2 2 7.
3 % g,
4 .y
5 29 11.
6 30 5.
7 (_Reset) 31 5,
8 2 14
® 15

;‘;' 160

360 i;

CSA PART board reset by Transputer Education Kit board
‘ CSA PART board receives UP system services

1e
e P —— T 3
/ = 22 2:;

I, (23' S
1 20
2 25 4.
3 ? 8
4 s
5 20 10
6 2 13
7 31- 13
8 32+ 14

Transputer Education Kit board reset by CSA PART board
Transputer Education Kit board receives UP system services

A.4.4 Education Kit to Inmos Boards

12 3 45
1x5 Connector

Pilots

8 PIin MiniDIN Cable

Connector Layout Layout
8 Pin MiniDIN 1x5 Cable
Cable Connector Connectors
1 1
> 2
3
3
4 [4
5 3 650 | 5
6
7
8 (LLinkin+ 1
2
3
4
5
Transputer Education Kit board reset by Inmos board
Transputer Education Kit board receives UP system services
8 Pin MiniDIN 1x5 Cable
Cable Connector Connectors
9 1
2 2
3 Link Out 3
4 [ink In 4
5 2 650 5
6
7 DN/SS
8 Link In+

Inmos board reset by Transputer Education Kit board
Inmos board receives UP system services

86

A-Appendix

Index

\cexample 14
\itools 12
\itools\tools 12
\Isc 11
\Isc\bin 11
\Isc\example 13
\Itxample 13
\occexamp 18
\tasmxamp 15
Ato D Converter 42
Ack 41
ADC 42
ADCO0808 42
Add-On-Processor boards 6, 57
diagnostics 57
Adding Memory 10, 22
Anti-static Precautions 7
autoexec.bat 11, 12
base address 27
Bent Pins 23
Board Installation.i.Installing the Board 8
Board Layout 21
Board Schematics 74
Cable
Schematics 70
to CSA PARTSs external 72
to CSA PARTs internal 71
to Education Kit 70
to Inmos Boards 73
cables
to Education Kit 33
Centronics 41
cga9
ChanAlloc 66, 67, 68
ChanReset 66, 67
Check 32, 58
CIkAB 39
CIkBA 39
coarse address 26
Components
list 21
optional 22
D to A Converter 44
DAC 44

DACO0830 44

DN 30, 31

ega 9

Epson 41

/EvntReq 41

/EvntWait 41

External Interface 37
C VO Procedures 48
Occam I/O Procedures 50

fine address 26

Fractal 9, 66

Getting Started 7

Hardware Checks 8

heap management 60

hercules 9

IBM 41

IBOARDSIZE 12

install.bat 11, 12

install.doc 11, 12

Installing the Board.i.Board Instaliation 53

ISEARCH 12

iserver 19

ITERM 12

Jumper blocks 28, 30, 32, 34, 35

Jumper Locations 22

kittest 8, 53, 55

LED Display 46

LED port 37

Library 59

link 5, 26, 27, 28, 29

Link Terminal 59

Linkin 29

linkname 11

LinkOut 29

loopback 55

lsa 17

Isc4 13

1sc8 13

Lt 1O 59

1t_atoi 60, 61

1t_free 60, 62

1t_getch 60, 62

1t_gets 60, 62

1t_malloc 60, 63, 67

88 Index

It_printf 59, 64
It_putch 59, 63
1t_puts 59, 64
Itisc4 13, 65
Mandelbrot fractal 9, 66
memory
adding 10, 22, 54
diagnostics 56
dynamic allocation 60
errors 24, 54, 56
installation 54
Map 69
off-chip 6, 10
on-chip 5, 10, 13
optimizing use 64
size 24
speed 23
tests 24, 56
type 23, 24
memory allocation 60
memory more than 1 MByte 12
memory requirements
C Compiler 10
Occam Compiler 10
Multiboard Transputer Networks 29, 57
occd 18
occ8 18
OENAB 39
off-chip memory 6
on-chip memory 5, 10
PC-Xptr 31
PC Link
PC address 26
PC Link Speed 27
PC/Link Interface 5, 6, 26
address 26
diagnostics 55
power transistors 37, 40
ppinc 11
Printer interface 41
ProcAlloc 66, 67, 68
Proclnit 66, 67, 68
Programmed /0 37
Programmed /O port 38

Sample /O Procedures.i.external interface

Sample I/O Procedures 48
SBA 39
Schematics 74
slot requirements 8

software
installation 10, 54
problems 54, 57
SS 30, 31
static-sensitive 7
Step by Step Diagnostics 55
Strobe 41
System Requirements 7
system services:
jumpers 29
PC address 26
Theory of Operation 5
tiib 11
transputer 5, 12
chain 32
diagnostics 56
link speed 28
mesh 35
processor speed 27
tree 34
Troubleshooting 53
UP 30, 31
vga9
warranty registration card 7
warranty validation number 9
wrist strap 7

Notes

89

	1 Introduction
	1.1 Forward
	1.2 Brief Theory of Operation

	2 Installation Guide
	2.1 Getting Started
	2.2 Hardware Installation
	2.2.1 Anti-static Precautions
	2.2.2 Board Installation
	2.2.3 Running Hardware Checks
	2.2.4 Mandelbrot Demonstration
	2.2.5 Additional Memory

	2.3 Software Options and Memory
	2.4 Software Installation
	2.4.1 Installing the C Toolset
	2.4.2 Installing the Occam Toolset

	2.5 Your First Transputer Program
	2.5.1 A C Program in On-Chip Memory
	2.5.2 A C Program
	2.5.3 An Assembly Program
	2.5.4 An Occam Program

	2.6 The Next Step

	3 Installation Options
	3.1 Board Layout
	3.1.1 List of Components
	3.1.2 Optional Components
	3.1.3 Jumper Locations

	3.2 Adding Memory
	3.2.1 Memory Speed
	3.2.2 Memory Size
	3.2.3 Memory Tests

	3.3 PC/Link Interface Settings
	3.3.1 PC/Link Interface Address
	3.3.2 PC Link Speed

	3.4 Transputer Settings
	3.4.1 Transputer Speed
	3.4.2 Link Speeds

	3.5 PC-Xptr Jumpers
	3.6 Setting Up Multi-Transputer Networks
	3.6.1 Chain Jumper Settings
	3.6.2 Tree Jumper Settings
	3.6.3 Mesh Jumper Settings

	4 External Interface
	4.1 Description
	4.1.1 LED Port
	4.1.2 Programmed I/O Port
	4.1.3 Power Transistors

	4.2 Examples
	4.2.1 Printer Interface
	4.2.2 Eight Channel A to D Converter
	4.2.3 Two-Channel D to A Converter
	4.2.4 Two-digit LED Display

	5 Troubleshooting
	5.1 Simple Solutions
	5.1.1 Installing the Board
	5.1.2 Installing the Memory
	5.1.3 Software
	5.1.4 Miscellaneous

	5.2 Step by Step Diagnostics
	5.2.1 PC/Link Interface
	5.2.2 Transputer
	5.2.3 Memory
	5.2.4 Software
	5.2.5 Add-On-Processor Boards
	5.2.6 Multi-Board Networks

	6 C In On-Chip Memory
	6.1 The Basics
	6.2 The Lt I/O Library
	6.2.1 Output Using the Lt I/O Library
	6.2.2 Input Using the Lt I/O Library
	6.2.3 Lt I/O Heap Management
	6.2.4 Lt I/O Library Reference

	6.3 OptimiZing Memory Use
	6.4 Multi-processing in On-Chip Memory

	A Appendix
	A.1 Memory Map
	A.2 Memory Mapped I/O Interface Addresses
	A.2.1 PC Link
	A.2.2 PC Link SS (SubSystem) System Services
	A.2.3 Transputer SS (SubSystem) System Services
	A.2.4 External Interface LED Port and Power Transistors
	A.2.5 External Interface Programmed I/O Port

	A.3 Board Schematics and Block Diagram
	A.4 External Cable Schematics
	A.4.1 Cables between Transputer Education Kit Boards
	A.4.2 Education Kit to CSA PART Series (Internal Connectors)
	A.4.3 Education Kit to CSA PART Series (External Connector)
	A.4.4 Education Kit to Inmos Boards

	Index

