
A INSTALLING THE M200

I:

1 Introduction

2 Hardware Description
2.1 Disk system
2.2 M212
2.3 The module system

3 Software
3.1 Testing the board

4 . Configuration
4.1 Jumper setting

5 Software lis~ings

6 PAL Equations

7 Logic Diagram

I;

Disclaimer

Every ~ffort has been made to test this product and its
oper-a.tion.

~;;.: ,

';"~Tthreser-ves the right to make cha.nges in specifications at any.
time and without notice. The information in this document is
believed to be accurate, but no responsibility is assumed for' its
use, nor for any infringements of patents or other rights of
third parties resulting from its use.

I:

INSTALLING THE M200

The M2~~ should fi~st be checked for any signs of visible damage
which may have resulted from transportation.

It is advisable to read the user guide fully before applying
power to the M200.

The M200 has to be fitted to the connector slots inside the PC
machine. This ~equires the removal of the outer cove~, normally
achieved by removing some screws from the rear and sliding the
outer cover forward e>{posing the main circuit board of the PC.

Installation requires removing a blanking plate from the rear
face of the machine, this provides a free slot for the M20~ to be
installed in. It is important to note that the M200 takes up 2
slats of' space inside the machine and that the blanking pla.te
should be removed from a slot which has a free slot to its right
as viewed from the front of the machine.

The M200 simply plugs into the free slot by using minimal
pressure from the top, be carefull not to use excessive force to
push the board home as this could jar the hard disk or cause
other forms of damage. Ensure that the trailing edge of the M200
is securely fitted into the card guide for it.

The M200 is secured using the screw which was holding .the
bla.nking pla.te in ·place. As the M2 QHZ), is a fa.irly heavy 'item it is
recommended that the. retaining screw be used at all times and not
forgotten about.

The main circuit board derives power directly from the edge
connector.

*** The hard disk derives its power separately from one of the 4
drive power connectors fitted to the machine, this typically is a
white plastic 4 way connector which fits into the similar mating
half which is located on the M20m hard disk unit. This connector
is polarised and can only be fitted one way round, do not use
excessive force to fit this connector as this may indicate that
the connector is the wrong way round. Should your machine not
have a spare drive power connector then contact your supplier.

The unit can now be tested as described in the-user guide. It is
recommended· that the machine that it is fitted to is not run with
the cover off as this allows foreign matter entry to the machine.
whi~h can cause damage.

1 Introduction

USER GUIDE

The QMS M20~ is a four transputer module motherboard for IBM XT
and AT type machines. It has a disk interface circuit built onto
the motherboard. The disk interface is controlled by the M212
transputer which has one of its two INMOS links attached to a
link adaptor which in turn is present on the IBM I/O bus, the
second link of the M212 is brought to the 'D' type connector
togethe~ with another link adaptor link, which is also connected
to the IBM bus, and ten links from the four module sites. The
four module sites are connected in a default pipeline using links
2 and 1, with all the links 0 and 3 together with the pipehead
and pipetail brought to the ~D' type to allow simple network
configuration to be done by hardwire at the plug in to the '0'
connector.

The interface to the IBM bus is used to allow data to pass to and
from both the M212 disk interface and also to the transputer
modules, the interface has full DMA and Interrupt capability to
allow quick and efficient data transfer.

, :

2 Ha~dware Description

2.1 Disk system

The Disk interface is driven directly from the M212 transpute~

and is a standard ST506 interface, which will directly drive the'
single 3.5 11 winchester disk provided with the M2~0, but it is ,
capable of driving .uP to two disks which can be remotely sited
and therfore physically larger when used with a simple buffer
board (QMS M2~1).

2.2 M212

The M212 transputer uses its two liriks to act as a disk
controller capable of recieving commands from two sources. The
hardwa~e configuration determines these two sources: the IBM
system.via a link adaptor onto the IBM bus, and the transputer
module system. This means that the transputer domain can access
the disk system directly without having to go through the IBM
disk system, this allows much faster I/O for the transputer
system to disk. The kinds of improvement in performance possible
are given in the following e~amples :

a) A standard transputer board using a software polled
link adaptor achieves transfer rates of about
30Kbytes/sec, this takes over two seconds to load a
64Kbyte file. b) A transputer module connected ~irectly to
the M212 over a 20Mhz link will pass data at
800KBytes/sec t this typically exceeds the capability of
the disk to supply data· and consequently the time taken is
now limited by the disk.' If the file is contiguous on the
disk then a 64K file is about 8 tracks of data which will
probably also require a couple of step commands to read
all 8 tracks, the total time for this to be read by the
M212 with an interleave of 2 would be about 150ms and with
an interleave of 1 only 75ms.

The overall improvement in performance to a system depends upon
how much disk I/O is actually done. In systems which are disk
intensive the benefits can become significant, without havfng to
use software buffe~ing techniques which can still be irnplimented
at a future date to enhance performance. If the data on the disk
is severely fragmented requi~ing a lot of head stepping to
recover the data then the possible benefits will not be as
easilly seen because the disk unit will be spending more time
stepping to the data than transfering the data.

To r~lease the full potential outlined above special software is
required to run on the M212 which will interpret disk filing,
commands as generated by applications programs and operate on
them in the same way as the IBM operating system would. This'
requires the special software to operate as both a disk filing
system and a protocol converter,~·~TM is producing some simple
software products for the disk filing operation which will work
with some of the currently used server system protocols. It is
not our intent to support every different protocol variation,
users would have to program at this level themselves.

2.3 The module system

The M20~ motherboard has 4 Transputer module (TRAM) sites which
can accomodate a maximum of 4 TRAMs. The module sites are
organised :

I;

2 1 3
* = pin 1

Module site 0 has 3 e>~tra pins which are used by module 0 to
generate reset signals to other modules, These are known as the
subsystem pins. The module system has a variety of reset
configurations, they are most easily defined with 2 signals
firstly module 0 can be reset from the IBM or from the external
world via the UP set of pins on the '0' type, secondly the rest
of the modules can be reset from either module 0 SUBSYSTEM or
from the signal chosen in the first step above.

These selections are achieved by using jumper plugs on the 2 way
connector mounted adjacent to the '0' connector.

* 1 *:
* 2 *1
* 3 *1

* 4 *:
* 5 *1

Link out Mod0 > IBM * 6 *1 Link in Mod0 > UP
Link out ModN > 6 * 7 *1 Link in ModN > Mod0 SS

These jumper plugs are easilly obtainabie, or can be supplied
with the unit.

When modules are fitted it is sometimes necessary to jumper over
the default pipeline connections, eg if only modules 0 and 1 are
fitted then jumpers at the sites for modules 2 and 3 are needed
to bring link 2 of module lout to pipetail. These jumpers are
simply connections between link2 and linkl in and out pins, they
can easily b~ made, or they can be supplied with modules or
motherboards.

2.4 The IBM interface

The IBM in't,erface consists of 3 elements., the BI08 EPROM which
sits at $D0~~X in the IBM memory map and is 32KBytes long, and 2
Link Adaptor systems.

The Link adaptor systems a~e fo~ the M212 disk inte~face and the
Module control interface. The I/O address range that these
devices occupy are selectable by jumpers (see below>. It is
possible to select one of four different sources of interrupt
event whi~h the transputer domain can signal to the IBM domain,
these are:

1) Interrupt on end of DMA transfer
2) Interrupt on transputer error
3) Interrupt on link data input ready
4) Interrupt on link data output ready

The register addressing in I/O space is :

L/A 1 at a.ddress $300 or $250 L/A 2 at address $150 or $200

Data. in @ L/A 1 + $(2)0 Data in @ L/A 2 + $00
Data. out @ L/A 1 + $(2)1 Data out @ L/A 2 + $01
I/P St'at @ L/A 1 + $02 liP Stat @ L/A 2 + $02
DIP Sta.t @ L/A 1 + $(2)3 O/P Stat @ L/A 2 + $03
Reset (W)@ L/A 1 + $10 Reset (W)@ L/A 2 + $10
Error (R)@ L/A 1 + $10 Error (R)@ L/A 2 + $10
Ana.lyse @ L/A 1 + $11 Analyse @ L/A 2 + $11
DMA @ L/A 1 + $12 DMA @ L/A 2 + $12
IRQ @ L/A 1 + $13 IRQ @ L/A 2 + $13

The function of the unique registers is given by:

Reset register

Writing bit (2)

..Error regi ster

a WRITE ONLY register

to '1' asserts Reset

a READ ONLY register)

to '(2')' deasserts

Reading bit 0 as '1' indicates Error I as '0' no Erlror

Analyse register

Writing bit 0

DMA request register

a WRITE ONLY register)

to ' 1', asserts Anal yse

a Read/Write register

j

to '0'deasserts
I
I

Writing bit 0 as '(2)'

as '1'
initiates DMA FROM IBM TO M200
initiates DMA TO IBM FROM M200

" IRQ control register (a Read/Write register

bit (2) '1' enables '(2)' disables IRQ on DMA end
bit 1 ' 1 ' enables ' (2) , disables IRQ on Error
bit 2 '1' enables ' (2) , disables IRQ on Data Rx read)'
bit 3 '1 ' ena.bles '(2)' disables IRQ on Data Tx rea.d)'

3 Software

The M20~ is provided with sDftwa~e written in 8~B6 assembly
language to allow the IBM interface to the disk to operate. This
software is provided in the EPROM on the main board and is also
available on disk. This software is the MS-DOS device driver
which allows MS-DOS to access the hard disk. The device d~iver

provided will typically show a 20% improvement in performance
over a standard hard disk in an 8086 machine, but benchmarks at
about the same level as a standard AT disk drive.

The transputer software which can be run on the M212 to provide
fast transputer disk access are separate products, these can be
supplied in a replacement EPROM which needs to be selected for
the particular protocol desired, should a range of different
protocols be desired then dife~ent software modules can be
provided on disk to allow the user to tailor transputer code to
individual server variants. Please check with your supplier for
further details on any of these options.

3.1 Testing the board

Included with the unit are sepa~ate routines which allow the user
to test the functionality of the board, these test for the Link
conections, the DMA interface and the Inter~upt interface on both
the M212 and the module(s) (if module(s) are fitted), the unit as
supplied will be pre-formatted to MS-DOS standard and should work
from power up. All the test software i"s self documenting and
should function automatically, the user has to select which DMA
and IRQ channels are in use as well as the addresses of the link
adaptors if changed from the default.

4 Configuration

4.1 Jumper setting

There are 8 jumper selectors on the main board, they are located
clpse to the M212 transputer as shown. They select as indicated:

ABt 1
ItR 2
BtL 3
A3 4
A2 5
Ai 6
10M 7
M2c 8

1 ink DL\t

off
(Model M212 ROM on)
(Boot from Model ROM)
}

) $ee below
}

20Mhz links
M2 control via IBM

link in

(auto-boot from winchester>
off
of f (i e boot 1 ink)

10Mhz links
M2 control external

The addressing of the link adaptor-s follows the following table I

Ai A2 A3 ladp M2 ladpmod0
0 0 (2)

0 0 1 $200
1 = Ink out 0 1 0 $250

0 1 1 $250 $20~

(ZJ = 1nl< in 1 12) 0 $300 $200
1 0 1 $150
1 1 0 $300
1 1 l' $300 $150

The selection of DMA channel is also done with jumpers

1 DRQ 2 1 DAI< 2

* * *
------~ *
* *-------*

* * **------* *
* *-------*

No DMA selection
Sel ects DMA ·1
Selects DMA 2

DMA chan 1 is nominally free but is often used for ethernet
cards, DMA chan 2 is the floppy disk DMA chan which can be
disabled by writing to I/O location $3F2, allowing it to be used
by the M200 for, data transfer. Whenever a diskette access is
required the disk _bios always enables location $3F2 this means
that the M200 driver must disable location $3F2 and enable its
drivers at the start of a DMA transfer and then disable its
drivers at the-end of a transfer. Separate software routines are
provided for handling the diferent DMA channels.

The selection of IRQ channel is done with a jumper selection I

3 IRQ 6

* * *
------- *
* *-------*

No IRQ Selected
Selects IRQ 3
Selects IRQ 6

IRQ channel 3 is nominally given over to the second RS232 port,
while channel 6 is associated with the diskette driver. The
software routines for DMA channel 1 support IRQ 3 and the

routines for DMA channel 2 suppo~t IRQ 6.

5 Software listin~s

These software listings are designed to provide a brief overview
of the kind of techniques which can be used to program the M20~

I B.M i nter-f ace.

CONST
{ M2eJt2l REGISTERS)

boardbase INTEGER = $030~

inputData INTEGER = 0
QutputData INTEGER = 0
i nputStatLls INTEGER = 0
outputStatus INTEGER = 0
resetM2 INTEGER = eJ
analyseM2 INTEGER = (Z)

DMAr-equest INTEGER = (2)

INTenable INTEGER = 0

wr-iteDMA = 0
readDMA = 1
IBMtoM200 = 8
M200toIBM = 4
t±hanl = 1

DMAchannel

DMAstatus = $08
DMAcommand = $08
softDRQ = $09
DMAsingmask = $0A
DMAmode = $0B
DMAffclear = $0C
DMAmastclr = $00
DMAallmask = $0F
addrc:hl = $02
wordc:hl = $03
pagechl = $83

INTEGER = chanl

;
l

VAR

PICbase
spurioustuff
DMAlnt

Intc:hannel
intmask
intvec
eoi "
f 1agi nt .'
intcQunt
intd~ta

= $20
= 7
=: 1

BYTE = 3
BYTE = $F7
BYTE = $28
BYTE = $20 ;
BOOLEAN = FALSE

: INTEGER = 0
BYTE = 0

teststr-ing
a.nswer
data-block

STRING [200 J;
: STRING [10 J ;

ARRAY [0 .. 511J OF CHAR

J:

transfers INTEGER
counter INTEGER
blocklength ~ INTEGER

PROCEDURE initconst
BEGIN

inputData := boardbase
outPL{ tD f3.ta := boardbase + 1
inputStatus := boardbase + 2
QutputStatus := boardbase + 3 ;
resetM2 :== :boardbase + $10;
analyseM2 := boardbase + $11 ;
DMAr-eqLlest := boardbase + $12;
INTenable :== boardbase + $13;

END ';

intmask
intvec
eoi

:= :iF7
:= $28 ;
:= $20

PROCEDURE IntDMA ; { Int routine exec on DMA end Interrupt)
BEGIN

INLINE ($50/$53/$51/$5?/$56/$57/$lE/$06/$FB)
flagint := TRUE { flag that DMA has ended }
~ORT [INTenable J :=0 { toggle Inten~ble to clear Int }
PORT [PICbase J :=eoi;
INLINE ($07/$lF/$5F/$5E/$5A/$59/$5B/$58/$CF) ;

END

PROCEDURE initINT

VAR
IntServAddr
oldmask

BEGIN
IntServAddr

INTE'GER
BYTE

:= OFS (IntDMA) + spurioustuff ;

HEM [$0000:intvec + (2)] := IntservAddr ·AND $FF
MEM [$0000:intyec + 1 J .- IntServAddr SHR 8.-
MEM [$0000:intvec: + 2J := CSEG AND $FF J
MEM [$0000:intvec + 3J := CSEG SHR 8 .,
oldmask .- POR'T [PICbase + 1 J ;.-
PORT [PICbase +lJ := oldmask AND intmask ,
PORT [INTenableJ := 0 ;

END

PROCEDURE i ni,tC012
BEGIN

PORT [inputStatus J 1= 2
PORT [outputstatus J := 2

END •!I

{ Enable inputlnt)
(Enable inputlnt)

FUNCTION dataPresent
BEGIN

BOOLEAN

I:

dataPresent := ODD (PORT [inputStatus J)
END;

RUNCTION QutputReady BOOLEAN
BEGIN

QutputReady := ODD (PORT [outputStatus])
END ;'t

PROCEDURE QutByte (b : BYTE)
BEGIN

·PORT [QutputData] := b ;
WHILE NOT ODD (PORT [outputStatus J) DO

END ;

FUNCTION inByte ~ INTEGER .;
BEGIN

WHILE NOT ODD (PORT [inputStatusJ) DO
~nByte ':= PORT [inputData J ;

END;

PROCEDURE loopFor (i
BEGIN

INTEGER)

WH I LE i <> 12) DO i : = .i --1
END ;

PROCEDURE doReset ;.
BEGIN

PORT [analyseM2 J := 0
loopFor (800)
PORT [resetM2 J:= 1
loopFor (3~00)

PORT [resetM2 J:= 0
loopFor (1000)

END ;

PROCEDURE cl~arError

BEGIN
doReset ;
initC012 ;
QutByte (4) ;
QutByte ($22)

END

PROCEDURE SetError
, BEGIN,

Qutbyte ($F9) ; QutByte ($60) QutByte ($0E)

doReset ;
initC012,;
QutByte ('6) ;
outByte ('$22) ; outByte ($F9)
outByte ($FS)·; outByte ($21)

END ;

PROCEDURE loadT2code
VAR

outByte ($25)
OLtt8yte ($F0)

BEGIN

data
bootcode

BYTE
FILE OF BYTE ;

ASSIGN (bootcode , 'seclis.b2') ;
RESET (bootcode);
WRITELN ('Loading bootcode to transputer- ')
REF'EAT

END ~

READ (bootcode , data
QutByte (data) ;

UNTIL EOF (bootcode) = TRUE
WRITELN (I Loaded code ') ;

PROCEDURE add24bit (segment,offset
VAR

INTEGER; VAR byte~,bytel,byte2 B"r'1

resLllt INTEGER
temp INTEGER
a BYTE ;
b BYTE
carry BYTE

BEGIN
temp := segment SHL 4 ;
a := temp AND $FF J
b := offset AND $FF ;
result := a + b .,
byte0 == resLll t AND $FF ;
carry .- result SHR 8.-
a := temp SHR 8
b := offset SHR 8 .,
resLllt := a + b + ca.rry .,
bytel := result AND $FF
carry := result SHR 8 .,
temp := segment SHR 12
by~e2 := temp + carry ,

END

PROCEDURE setDMA (mode:BYTE; length,segdata,ofsdata:INTEGER) , EXTERNAL 'se

PROCEDURE setDMAup (mode:BYTE~length,segdata,ofsdata:INTEGER); EXTERNAL '~

PROCEDURE setupDMAC (readnotwrite = BYTE
VAR

length,segdata,ofsdata : INTE(

BYTE)

addrch J := addr0
addrch J :== addrl
.pagec:h J := addr2 .,
wordch J := length AND $FF
wordch J .- length SHR 8 ..- ,

addr0 , addrl , addr2 , direction: BYTE;
PROCEDURE addressandcount (addrch, pagech, wordch
BEGIN

PORT [
PORT [
PORT' [
PORT [
PORT [

END
BEGIN

PORT [DMAsingmask J := 4 OR DMAchannel
PORT [softDRQ J := 0 OR DMAchannel J
PORT [DMAffclear J := 0 ;
add24bit (segdata , ofsdata ,addr0 addrl, addr2)

add~essandcount (addrchl , pagechl , wordchl)
PORT [DMAmode J := ($4~ OR readnotwrite OR DMAchannel
PORT [DMAcommand J := $0~ ;
PORT [DMAsingmask J := 0 or DMAchannel ;

END ;

PROCEDURE pollDMAC
VAR

chanmask = BYTE
BEGIN

chanmask := 1 SHL DMAchannel ,
WRITELN (' Polling DMA controller ')
WHILE « PORT [DMAstatus J AND chanmask
WRITELN (' Finished polling') ;
WRITELN ;

END ;

PROCEDURE polllntflag ;
BEGIN

WRITELN ('Waiting for inter-rupt .••• ')
WHILE flagint = FALSE DO ;
WRITELN (' Inter-rupt complete ') ;
WRITELN ;

END

PROCEDURE DMAwrite ;
VAR

wtmode = BYTE
BEGIN

= 0) DO

{

{

END;

WRITELN (' Transfering data to M200 ') J
wtmode := $40 OR IBMtoM200 OR DMAchannel
setDMA (wtmode , 1 ,SEGCdatablock[0]),OFS(datablock[0J»

PORT [DMArequest J := writeDMA; }
poll DMAC ;)

PROCEDURE DMAread
VAR

rdmode
strcount
msgbac:karr

BEGIN

.. BYTE
INTEGER ;
ARRAY [0 .• 511J OF CHAR;

WRITELN (' Reading data from M200 ') •
rdmode := $40 OR M200toIBM OR DMAchannel ;
setDMA (rdmode , 1 , SEG(msgbackarr[0J>,OFS(msgbackarr[0J»

{ PORT [DMArequest J := readDMA ; }
{ pollDMAC;)

WRITELN (' Message received is : ') ;
FOR strcQunt := 0 to 511 DO WRITE (msgbackarr[strcountJ)

END ;

PROCEDURE switches;
BEGIN

boardbase := $0300
DMAchannel:= 1 ;
intchannel:= 3 ;

END

BEGIN

J,

WRITELN (, Star-ting ••• ')
switches;
initCTonst
initINT ;
t~ansfer-s : = Q) ,;

doreset '.;
initC012 ;
WRITELN (' alp T2 code? Y/N ') ;
READLN (answer) ;
IF (answer =, 'V') OR (answer ~ 'V') THEN loadT2code

{ FOR transfer"s : = 1 TO 2DO
BEGIN

}

END.

WRITELN ('------------~-----------------')
WRITELN ;
FOR counter := 0 to 511 DO datablock [cQunterJ := 'u' ;

.{ FOR counter := 0 to 511 DO WRITE (datablock[cQunterJ) }
{ WRITELN (~type in a teststring') ;)
{ READLN (teststring) ;)

teststring := 'This is a DMA test and this is another test
WRITELN ;
FOR counter := 0 to (LENGTH (teststring) -1) DD

BEGIN
datab 1 QC k [coLlnter J :' =teststr i ng [cQunter+l J

END
I ;

datablock [509J := '3'
datablock [510J := '2'
datablock [511J := '1' ;
FOR counter := 0 to 511 DO WRITE (datablockCcounterJ) ;
WRITELN ;

{ WHILE TRUE DO)
{ BEGIN)

outbyte' (1) ;
DMAwrite ;
WRITELN ('dma write complete I starting read');

{ outbyte (11);)
(END ;)

outbyte (0) ;.

DMAread
WRITELN ('dma read complete')

(outbyte (0) ;)
{ DMAread; }
{ WRITELN ('and aga.in') }

END

6 ~ PAL Equations

These PAL equations are intended to provide insight into the
board operation and supliment the logic diagram shown below.

NAME Ielv
REVISION Qll
DATE 21/12/87
DESIGNER ARG
COMPANY QTM (Design) Ltd;
ASSEMBLY m201ZJ
DEVICE p22v10

1* CLOCKS *1
PIN 1 = Pclk

1* INPUTS *1
PIN 2 = InlntM2LADP
PIN -:r = OutlntM2LADP.....
PIN 4 = InlntMODeJLADP
PIN 5 = Out IntMODeJLADP
PIN 6 = 03
PIN 7 = 02
PIN 8 = Dl
PIN 9 = 00
PIN 10 = !EndDMA
PIN 11 = !Writelnt

/* DE *1
PIN 13 = !Readlnt

/* INPUTS/OUTPUTS *1

1* D~ .. 3 registered to provide fback *1

1* register clock

1* input (a) *1
1* OLltput (a) */
1* input (b) *1
1* output(b) *1

1* ic3 piS *1
/* ic2 p23 *1

/* ic2 p15 *1

PIN 14 = !Errorfr-omMOD0 1* I ic6 p17
PIN 15 = ErrorfromM2 1* I
PIN 16 = IRQ 1* 0
PIN 17 = 00 DMASel /* liD D registered for const fbac-PIN 18 = 01 ErrSel 1* liD D registered for const fbac-PIN 19 = D2 OutSel 1* I/O D registered for const fBac-PIN 20 = 03 InSel 1* 110 D registered for const fBac:-PIN 21 = IRQenable 1* 0/1 needed for pterms
PIN 22 .= ne2 1*
PIN 23 -= nel 1* I

j

FIELD DataOut6= [D3_InSel,D2_0utSel,Dl_ErrSel,D0_DMASelJ
I
I

D0_DMASel.d = D0 & Writelnt
£ D0_DMASel & !Writelnt

D0_DMASel.ar='b'0 ; D0_DMASel.sp='b'0
'Dl_ErrSel.d = 01 & Writelnt
, £ Dl_ErrSel & !Writelnt
pl_ErrSel.ar='b'0 ; D1_ErrSel.sp='b'0
D2_0utSel.d = D2 & Writelnt

£ D2_0utSel & !Writelnt
D2_0utSel.ar='b'0 ; D2_0utSel.sp='b'0
D3_InSel.d = D3 & WriteInt

£ D3_InSel & !Writelnt
D3 InSel.ar ='b'0 ; D3_InSel.sp ='b'0

D0_DMASel.oe=Readlnt

D1 ErrSel.oe=ReadInt

D20utSel.oe=Readlnt

D3 InSel.oe =Readlnt .. ;
/* DataOut.oe = !Readlnt

· IRQ

IRQenable
IRQ.oe

EndDMA

= (InlntM2LADF' £ InlntMOD0LA~)F') 8..; D3_InSel
£ (OutlntM2LADP £ OutlntMOD0LADP) & D2_0utSel
£ (ErrarfromM2 £ ErrorfromMOD0) & Dl_ErrSel
£ (EndDMA £ IRQ) & D~ DMASel

= D3_InSel £ D2 OutSel £ Dl ErrSel £ D~ DMASel
= IRQenable

= TC &: DACf'~

NAME
REVISION
DATE
DESIGNER
COMF'ANY
ASSEMBLY
DEVICE

I:

IC2v
01
21/12/87
ARG

\
QTM (Design) Ltd;
m2'l1~

p22v10 ' 1* 22v10 for external M2 res/ana/err *

/ * CLOC~<S * I
PIN 1 = FIe 1 k

1* INPUTS *1
PIN 2
PIN 3
PIN 4
PIN 5
PIN 6
PIN 7
PIN 8
PIN 9
PIN 10
PIN 11

= !notIDW
= !notIOR
= !notSYS 1* ic::4 p17 *1
= Ai
= !notSYSMOD0 1* ic4 p16 *1
= A0
= !notSYSM2 1* ic4 p15 *1
= nel
= Err-orfromM2 1* M212 error *1
= !Errorfr-omMOD0 1* MOD 0 error *1

1* oe *1
PIN 13 = SelectM2 1* external 0v jumper onto 22v10 *1

1* INPUTS/OUTPUTS *1
PIN 14 = Res'ettoM2
PIN 15 = !readlnt 1*, icl p13 *1
PIN 16 = D0
PIN 17 = AnalysetoMOD0 1* d *1
PIN 18 = AnalysetoM2 1* d *1
PIN 19 = !notStatWR 1* d *1
PIN 20 = ResettoMOD0 1* d *1
PIN 21 = !writeDMA 1* ic3 p10 *1
'PIN 22 = !readDMA 1* ic3 p9 *1
PIN 23 = !writelnt 1* icl pi! *1

notStatWR.d = notIDW
notStatWR.ar = 'b'0 ; notStatWR.sp = 'b'0

FIELD Register = [Al •• A0J

readsysM2
readErrM2
writesysM2
wr-iteResetM2
writeAnalyseM2

= not 10R &: not,SYSM2
= readsysM2 & Register:t0J
= not IOW & notSYSM2
= writesysM2 & Registe~=[0J

= writesy~M2 & Register:C1J

1* Read ~ Write Declaratio

readsysMOD0 = notIOR & notSYSMOD0
readErrMOD0 = readsysMOD0 & Register:'[0J
w~itesysMOD0 = not IOW & notSYSMOD0
writeResetMOD0 = writesysMOD0 & Register:[0J
writeAnalyseMOD0= writesysMOD0 & Register:[lJ

readSys
writeSys

= notIOR & notSYS
= not IOW & notSYS

readErr
writeDMA
rea.dDMA
writelnt
readlnt

= readSys & Register:[0J
~= writeSys & Register:[2J
= readSys & Register:[2J
= writeSys & Registe~:[3J

= readSys & Register:[3J

D0 = !ErrorfromM2 & readErrM2
£ !Erro~fromMOD0 & readErrMOD0

D0.oe = readErr

1* Error flag to IBM

1* IBM reads inverted

1* Latch
ResettoM2.d = D0 8~ writeResetM2

£ Resettot'12 & !writeResetM2
£ D0 & ResettoM2

ResettoM2.oe = SelectM2
AnalysetoM2.d = D0 & writeAnalyseM2

£ AnalysetoM2 & !writeAnalyseM2
£ D0 & AnalysetoM2

AnalysetoM2.oe = SelectM2
ResettoMOD0.d = D0 & writeResetMOD0

£ ResettoMODeJ 8< !writeResetMOD0
£ 00 &: ResettoMOD(z)

reset & analyse from IBM

1* active hi=M2 *1

Anal ysetoMOD0. d = 00 & wri t-eAnal yseMOD0
£ AnalysetoMOD~ & !writeAnalyseMOD0
£ D0 & AnalysetoMOD0

ResettoM2.ar = 'b'0 . ResettoM2.sp = 'b '0 ;,
AnalysetoM2.a.r = 'b'0 ; Ana 1 ysetoM2. Sp. = 'b ' 0 ;
ResettoMOD0.a.r = 'b '(2) ; ResettoMOD0.sp = 'b~0 ;
AnalysetoMDD0.a.r = Ib ' (2) . AnalysetoMOD~.sp = 'b·'",

NAME
REV I S I or~

DATE
DESIGNER
COMPANY
ASSEMBLY
DEVICE

IC3v
01
21/12/87
ARG
QTM (Design) Ltd;
m2eJ(z)
p22v1eJ

I:

/* INPUTS *1
PIN 1 = elk endDMA
PIN 2 = A0
PIN 3 = A1
PIN 4 = ! DACI<
PIN 5 = InlntM2LADP
PIN 6 = OLtt IntM2LADP
PIN 7 = InlntMOD0LADP
PIN 8 = OutlntMOD0LADP
F'IN 9 = ! rea.dDMA
PIN 10 == !wr-iteDMA
PIN 11 == !SYSM2
PIN 13 == resetDRV

1* OUTPUTS *1
PIN 14 = DRQ 1* 0 */
PIN 15 = TC I~ I *1
PIN 16 = D0 /* I/O */
PIN 17 = D1 1* 0 *1
PIN 18 = !EndDMA 1* 110 ic:l p10 */
PIN 19 = dirnofDMA 1* 110 ne *1
·PIN 20 = !DMAactive 1* I/O ic4 -p1S actually true */
·PIN 21 = DMAchM2notMOD0 /* 110 ic4 'p19 *1
PIN 22 = DAl . 1* 0 */,
PIN 23 = DA0 1* 0 */

dirnofDMA = D0 & wr-iteDMA
£ dirnofDMA 8t. !writeDMA
£ 00 & dirnofDMA . 1* set dirn of txfer

.'
D0 = dirnofDMA 1* echo dirn
D0.oe = readDMA

DMAchM2notMOD0 = SYSM2 Si. writeDMA
£ DMAchM2notMOD0 ~ !writeDMA
£ SYSM2 & DMAchM2notMOD~ 1* frQm SYS set chan

D1 = DMAchM2notMOD0 1* echo selected chan
Dl.oe = readDMA

DA0 = A0 Si. !DACI< £ ! di rn"ofDMA & DACK •'.DAl = A1 So(!DACI<

1* Set DMA active when write dma is on , clr @ end of dma cycle £ reset */

EndDMA

DMAactive.d

= TC 8< DACt<
£ resetDRV

='b'l 1* clocks an inactive 0/5 pal

DMAactive.ar
DMAactive.sp

= writeDMA
='b'0

1* this resets to active o/s pal *1

DRQ = InlntM2LADp: & DMAchM2notMOD0 & dirnofDMA
£ InlntMOD~LADP & !DMAchM2notMOD0 & dirnofDMA
£ OutlntM2LADP & DMAchM2notMOD~ & !dirnofDMA
£ OutlntMOD0LADP & !DMAchM2notMOD0 & !dirnofDMA ;

1* generate DMA req *1
DRQ.oe = !DMAactive 1* ils pal inverted *1

NAME IC4v
REV I S I Ot\i (2)1
DATE 21/12/87
DESIGNER ARG ,,
COMPANY QTM (Design) Ltd;
ASSEMBLY m2(2'J(2)

DEVICE p22v10

/* INPUTS *1
PIN 1 = !StatWR
PIN 2 = A9
PIN 3 = AB
PIN 4 = A7
PIN 5 = A6
PIN 6 = A4
PIN 7 = AEN
PIN 8 = ! IOW .

!I

PIN 9 = ne1
PIN 10 = sela.ddMOD0
FaIN 11 = seladdM2
PIN 13 = !DACK
PIN 14 = nc2 ;
PIN 18 = DMAactive ,
PIN 19 = DMAc:hM2notMOD0;
PIN 20 = A5
PIN 21 = ! IOR

1* OUTPUTS *1
PIN 15 = !SYSM2
PIN 16·= !SYSMOD0
PIN 17 .= !SYS
PIN 22 = !CSMOD0LADP
PIN 23 = !CSM2LADP

J:

FIELD IBMaddr = CA9 •• A4J

LADPaddMOD0a. = IBMaddr:[150] SYSaddMOD0a = IBMaddrl[160J
LADPaddMOD0b = IBMaddr:[200J SYSaddMOD0b = IBMaddr:[210J
LADF'addM2a. = IBMaddr:[300J SYSaddM2a = IBMaddr:[310J J
LADPaddM2b = IBMaddr:[25(Z)J ; SYSaddM2b = IBMaddr:[260J

WE = StatWR & IOW ; 1* short T3/T4 strobe

LADPM2 = LADPaddM2a 8t. ~AEN &: seladdM2
£ LADPaddM2b 8< !AEN ~ !seladdM2
£ DACK 8< DMAchM2notMOD0 & D~Aactive . 1* Link in IBM I/O ma,

LADPMOD0 = LADPaddMOD0a 81. !AEN Se seladdl';10D0
£ LADPaddMOD0b & !AEN & !seladdMOD0
£ DACK 81. !DMAchM2notMOD0 ~ DMAactive 1* Liflk In IBM 110 ma

CSM2LADP = LADPM2 &: (WE £ IOR)

CSMOD0LADP = LADPMOD0 8< (WE £ IOR

SYSM2 = SYSaddM2a & !AEN t: seladdM2
£ SYSaddM2b & !AEN Sf. !seladdM2 1* SubSys in IBM I/O rr

SYSMOD0 = SYSaddMOD0a &: !AEN & seladdMOD0
£ SYSaddMOD0b & !AEN & !seladdMOD0 1* SubSys in IBM I/O IT

SYS = SYSM2 £ SYSMODel

I:

1* BOARD sys in I/O me

NAME IC5v ~ ;
REVISION 01
DATE 21/12/87
DES I Gt-.J ER ARG
COMPANY QTM (Design) Ltd
ASSEMBLY m200
DEVICE Ft 22v10
1* CLOCI< *1

PIN 1 = pr-ocelockOLlt
PIN 2 = GND 1* tied to 0V *1

1* INPUTS *1
PIN 3 = !M2CS
PIN 4 = M2A15
F'IN 5 ::: AEN
PIN 6 = A19
PIN 7 = A18
PIN 8 = A17
F'IN 9 = A16
PIN 10 = A15
PIN 11 = !StatWR

PIN 13 = ! IOW
PIN 15 = !MEMR
PIN 17 = !CSMOD0LADP
PIN 18 = !CSM2LADP

1* OUTPUTSj*1
PIN 14 = !BfrSel
PIN 16 = !BfrDirn
PIN 19 = !ROMSEL
PIN 20 = !M2ramlo
PIN 21 = !M2ramhi

PIN 22 = VCC
PIN 23 = !Wait

FIELD IBMbios = CA19 .• A15J

;
J
J

1* Tied to VCC *1

ROMSEL = IBMbios:[D0eJ00J SI. !AEN Se MEMR 1* Define ROM in IBM Mem Mc
1* as a read only peripherc

M2ramlo = M2CS & !M2A15
M2ramhi = M2CS & M2A15

BfrSel = CSM2LADP £ CSMOD0LADP t ROMSEL
BfrDirn = StatWR £ IOW I 1* a wide pulse *1

Wait.d == M2CS . 1* delay by M2 clock *1,
Wait.sp = 'b't?) ; Wait.a.r = 'b '0 Wait.oe = ' b' 1

NAME IC6v
REVISION (2)1
DATE ei5/01/88
DESIGNER ARG ;
COMPANY QTM (Design) Ltd,;
ASSEMBLY m2e)eJ
DEVICE p22v10

1* INFtUTS *1
PIN 1 ::: ncl
PIN 2 = from IBM
PIN 3 = ! f r omMOD0SS
PIN 4 = AnalysefromIBM 1* active hi *1
PIN 5 = ResetfromIBM 1* active hi *1
PIN 6 = !Errorfr-omSubSys 1* active le *1
PIN 7 = ! Ana.l ysefrom~~P 1* active 10 *1
PIN 8 = !Resetfr-omUP 1* active 10 *1
PIN 9 = !ErrorfromDDWNorMOD0 1* active 10 *1
PIN 10 = AnalysefromMOD0SS 1* active hi *1
PIN 1 1 = ResetfromMODeJSS 1* active hi *1
PIN 13 ::: !ErrorfromModules 1* active 10 *1

1* OUTPUTS *1
PIN 14 = !ErrortoMODeJSS 1* active 10 *1
PIN 15 = AnalysetoModules 1* active hi *1
PIN 16 = I ResettoModules 1* active hi *1
PIN 17 = !Error-toUPandIBM 1* active 10 *1
PIN 18 = ResettoMOD0 1* active hi *1
PIN 19 = AnalysetoMOD0 1* activE hi *1
PIN 20 = !AnalysetoDDWN 1* active 10 *1
PIN 21 = !ResettoDDWN 1* a.ct i ve 10 *1
PIN 22 = !AnalysetoSubSys 1* active 10 *1
PIN 23 = !ResettoSubSys 1* active 10 *1

ResettoMOD0 = ResetfromIBM & from IBM
£ Resetfr-omUP & ! fromIBM

AnalysetoMOD0 = AnalysefromIBM Se fromIBM
£ AnalysefromUP & ! fromIBM

I
ResettoDDWN = ResettoMOD0
AnalysetoDOWN = AnalysetoMOD0

I

I
ResettoModules = ResettoMOD0 tt ! f r omMOD0SS

£ ResetfromMOD0SS ~ fromMOD0SS
AnalysetoModules = AnalysetoMOD0 It ! f romMOD0SS

£ AnalysefromMOD0SS &: fromMOD0SS

ResettoSubSys = Reset toModul es ,
Anal ysetoSL\bSys = AnalysetoModules

ErrortoUPandIBM = ErrorfromDOWNorMOD2
Error-toMOD0SS = Er-rorfromModules

£ ErrorfromSubSys

,,

;

7 Logic Diagram

I:

	Contents
	Disclaimer
	Installing the M200
	USER GUIDE
	1 Introduction
	2 Hardware Description
	2.1 Disk system
	2.2 M212
	2.3 The module system
	2.4 The IBM interface

	3 Software
	3.1 Testing the board

	4 Configuration
	4.1 Jumper setting

	5 Software listings
	6 PAL Equations
	IC1v
	IC2v
	IC3v
	IC4v
	IC5v
	IC6v

	7 Logic Diagram
	Sheet 1
	Sheet 2
	Sheet 3

