IMS B016
VMEbus master card

Incorporating the IMS FOO8A support software.

3

/== SGS-THOMSON

Contents

1 Introductionc.c.n R |

11 Howtousethismanual e T o1

1.2 Background S [A 1

2 Atourof the IMS BO16 hardwareooceeenen. - 3

2.1 IMS T801 and private SRAM ..., . 3

2.1.1 Dual-AccessDRAM P 4

212 MAP-RAM e 6

213 Bytemultiplexor il 6

2.1.4 VMEbus master operation i 8

215 VMEDbus block transfer (BLT) [P 12

216 Eventsand Interrupts 12

217 VMEbus interrupter e 13

218 Control of thelocalbus...................... 13

219 F-ROM e L. 14

2110 Serialports i 14

.2.1.11 Resets and transputer system services 14

2112 Thefrontpanel 15

3 Installing thelIMSBO016 e erereeaeas 17
3.1 Configuring prior to installation P 17 .

32 Handling 0.0 D 19

3.3 Installing the IMS B016 for use with IMS 8514C in a

‘workstation e 20

34 Installing the IMS B016 in a VMEbus card—cage 20

4 ' The IMS FO08A support library S |
41 Packagefeatures...................... S 21

4.2 Installing and using IMS F008A 22

43 Monitorcode e . 24

4.4 ExamplesandBSPcode e L. 27

45 Basiclibrary A A 28

46 VMEbuslibrary P 32
4.7 RTClibraryt e 36 .

48 Eventlibrary....................... P 37

(:_"_"j‘j 49 DUARTIibrary e S 39

410 ROMlbrary J 42

411 Clllibraryot e 44

i | | Contents

5 Detailed hardwaredescription..................... 49
" 51 UsingtheIMSBO16 P S 49
5.2 Primary controlregisters 49
53 VMEbus MASTER configuringovvuenvnnen.. 50 Ly
531 MAP-RAMcoo.... ieeae... 50 ST
5.3.2 Configuring the byte—multlplexor 53
5.3.3 BusEmor.........ccooiiiiiiiiiiiiiian.. . 58
54 VMEbus SLAVE configuring (Dual-Access DRAM) 55
54.1 Configuring the VMEbus slave decoder 55
54.2 VIC programming for slave access e 56
5.5 System controller functions U 56
56 ~ VMEbus interrupterot 57
5.7 Interprocessor communications registers P 57
5.7.1 Interrupts - 58
572 DRAMRefresh e e 60
58 Serial Portsand DUART e 60
5.9 Real-time clock e e 61
- 5.91 F-ROM .. i 63
510 PEXBoardsccciiiiiiiiiiiiaann e 64
511 Mechanical and thermal details e 64
5.11.1 Mating connectors P 65
5.11.2 ' Environmentaldetails 65
6 References...........cvcvveirnenrnennes e 67
Appendices
A Memory map of IMSB016 G heeeeesranaena [4/
B Connector diagrams andcables 75
B.1 Connector pinassignments S £
B2 Cables i ... 18
C Electrical specifications e 79
C.1 Electrical Details [79
C.1.1 Powersupply e .. 19
C.1.2 Board-to—-board link connections 79

C13 Non—local link connections 79

Contents ‘ | | | iii

I
e

D

Monitor command language e e e 81
D.1 Language basics e PR - &
D11 Components O 81
D12 Delimiters i . 8
D.2 Abbreviations il ... 82
D.21 Defaultingccoiiiii i, 82
D.22 Errorreporting e e 83
D3 Variables and eXpressions et 83
- D.31 Numberscco i, 83
D.3.2 Numeric expressions e - 83
D.3.3 Numericsymbolscccovviinnnn.. 84
D.34 Assignments....... [A 85
D.3.5 Stringsymbols e R - 86
D.3.6 Stringassignment............ 86
D4 Intrinsic commands e et ... 86
D.5 Macros e e 88
| D.5.1 Formal and actual parameters e - 88
D.5.2 Returningresults 89
D53 Controiflowt Lo 90
IMS B016 designrevisionscccvintn 92
Compatibility with the IMSB011 P 95
F.1 General compatibility issues e ... 95
' F.1.1 VMEbus interface e 95
F.1.2 Memorymap e e e 95
F1.3 Bytemultiplexort 96
F14 TRAMslots e 96
F1.5 Serialports e 96

VMEbus performance e e . . 97

Contents

1 Introduction

11 How to use this rhanual
The manual is organised into roughly three sections:

e Ageneral overview of the IMS B016 hardware functions and the access to
those functions via the IMS FOO8A procedure library. This section also cov-
ers jumper configuration and installation details. Refer to chapters 2 and

3.

o Adetailed description of the IMS FOO8A support iibrary and example appli-
cations. This section also covers software installation, configuration and

loading of the sample applications. Refer to chapter 4.

 An in—depth discussion of IMS B016 hardware functionality and the de-
tailed procedures for setting up and using all the board level features. Refer

to chapter 5.

The appendices contain memory map and connector information and also an over-
view of the monitor command language used in the example code.

1.2 Background

-

The IMS B016 is a VMEbus board incorporating a 32-bit transputer processor, lo-
cal RAM, peripherals, and interface circuitry to allow efficient communication be-
tween the transputer and other VMEbus boards. See figures 1.1 and 1.2

" Sustained transfer rates in excess of 12Mbytes/s are achievable, given a fast

VMEbus system. The IMS T801 on-board is capable of 12.5 MIPS and has its own
private fast SRAM for speed-—critical code and data. Some memory on the board
can be accessed by both the transputer and other VMEbus Masters. This is called

‘the Dual-Access Memory. The transputer, an IMS T801, can perform Master ac-

cesses to other VMEDbus slaves. It can also interrupt other VMEbus Interrupt Han-
dlers and itself handle VMEDbus interrupts:.

The IMS B016 can be used as the gateway hardware in a SUN workstation hosted
transputer development system. A board support software product, the IMS
S514C is available to support this use of the card. S514C users need not read this
manual in detail as the User Guide supplied with the software contains specific in-
stallation and configuration details for the IMS BO16.

Users wishing to proceed directly to install the IMS B016 in their equipment should
read section 3.1. :

VMEbus béckplane

IMS /O | Memory ‘ I/O
B016

i
asar

Any VMEbus cards

Links communicating
with other transputers

Figufe 1.1 The IMS B016 used to create a VMEbus |/O subsystem

VMEbus backplane
Host | u
computer
IMS
B016
"‘)

I I I i | | N

Links communicating
with other transputers

Figure 1.2 The IMS B016 used as an interface from a host cbmputer

2 Atourofthe IMS BO16
hardWare

; INMOS provides a set of soﬁware libraries, written in the C language and compat-
ible with transputer toolset development systems. These libraries (IMS FO08A)
provide the easiest way to program the card for the majority of users. This section

- explains the card's features and operation from the perspective of a code which -

- makes calls to IMS FOO08A libraries. Users who would like to perform functions
which are not catered for in the IMS FOO08A libraries should read sectlon S.1and
refer to the IMS FOO8A source code. \

i

v,
TET,

“Latching Latching
data address
VIC068 | ‘ buffers | buffers
— 0 7
< Synchroniser
Yy Flash ROM
> RS-232
: RTC

1-16 | r801
Byte . IMS T801

MBytes <:> multiﬁgxor@ plus 256K |

DRAM SRAM

Figure 2.1 IMS B016 Block Diagram

21 IMS T801 and private SRAM

The card’s processor, an IMS T801 floating’ pomt processor, has four INMOS serial

links. These links allow connections to be made to other transputer devices on oth-

er boards via the P2 connector. 256Kbytes of fast memory (the private SRAM) is

directly connected to the IMS T801. This cycles in 80ns and is only accessible by

the transputer. Typically this memory would be used to store transputer code and

data which does not need to be accessed from the VMEbus. The SRAM is about

e twice as fast as the next fastest available memory, as seen from the transputer,

- so its use is recommended whenever possnble The SRAM occupies the first

256Kbytes of the transputer’s address space, minus the IMS T801's 4Kbyte inter-
nal RAM which overlays it (#80001000-#8003FFFF).

IMST801IC==1 st SRAM

ngate

Prima ‘ us Rest of card—
“contro <£:> Byte | ———> DRAM, VMEbus
registers ‘ multiplexor |

Figure 2.2 IMS T801 and private SRAM

Note that most transputer compilers have storage allocation strategies which at-
-tempt to put frequently used data at a low memory address. This strategy will work
well with the private SRAM as it is located just above the transputers internal
memory. However, in seeking ultimate performance, the user may wish to perform
his own analysis of where code and data are placed. Refer to memory maps in Ap-

pendix A.

211 Dual-access DRAM

A large memory, using fast DRAM devices, is accessible from both the IMST801"
and (with appropriate programming) from the VMEbus as slave memory. This kind
of dual-access is sometimes called “dual-port memory” but since this is not strictly
true (true dual-port memory is very expensive and about 100 times less dense than
the devices used on the IMS B016) the term “dual-access" will be used here.

Two variants of the IMS B016 are available. The IMS B016—1 has four megabytes
of dual-access DRAM. The IMS B016—4 has sixteen megabytes of dual-access
DRAM. Otherwise the variants are identical. Without any special configuring, the

dual-access DRAM appears as the first four or sixteen megabytes of the transput-

er’s address space, minus the internal RAM and private SRAM which overlay it
(#80040000-#803FFFFF or #80040000-#80FFFFFF) and cycles in 160ns
(four CPU cycles).

When accessed from the VMEbus as slave memory, the dual-access DRAM can
occupy any VMEDbus address in any address space (except A16). Programmable
decode circuitry on the card allows the card’s memory to appear in one or more
64Kbyte blocks of VMEbus address space. This means that one can arrange for
less than the full amount of card memory to be accessible on the VMEbus. This
feature is useful both when implementing a system which uses the A24 address
space (which is only 16 megabytes). It also permits decoding at multiple different
locations which may be an advantage in a multi-master application. The corre-
spondence between VMEbus addresses and IMS T801 addresses can appear

slightly confusing. For a 4 Megabyte board, a VMEDbus address can be repre-

sented as follows:

Ay
Eh,

~ IMS B016 VMEbus master card | 5

31 22 21 16 15 - 0
A | B C

Bitﬁelds “A"” and “B" together form a 16-bit value which is used in a table look—up
to determine if the card should respond to the VMEbus transfer. Bitfields “B” and
“C” together form the 22-bit index into the card's DRAM.

To determine what address is being accessed in dual-access DRAM, write the
VMEDbus address in the form shown and verify that bitfields “A” and “B" do in fact
match the values programmed by prog_slave_access () . Then take bitfields
“B” and “C” and replace “A” with 1000000000 to form the corresponding

IMS T801 address.

Note that some “lost” memory which the IMS T801 can not see because it is over- -
laid by the private SRAM will be accessible from the VMEbus. The first location in
dual-access DRAM which is available to the IMS T801 is at offset #040000 so

“applications sharing data between other VMEbus masters and the cards
IMS T801 should not use locations below this. '

When the card is first switched on or reset, VMEbus slave accesses to the dual-ac-
cess DRAM are disabled. The VMEbus address decoded and the type of address
modifier recognised must first be programmed by the IMST801. VMEDbus slave ac-
cess would then be enabled. All these configuration functions are performed by
writing control registers on the card from a program running on the IMS T801.

Using the IMS FOO8A libraries, VMEbus slave configuration of the dual-access
DRAM is achieved using the routine prog_slave_access(). |

prog_slave access(decode_address, decode window,
address type, writepost)

‘decode_address is the base of the VMEbus address space to be decoded. de-
code vn.ndow is the number of bytes of address space to decode (routine rounds
this up to the nearest 64 Kbytes block). address_ type signifies whether the card
should decode A32 or A24 cycles — value is either 32 or 24. Witepost controls
- whether the card buffers one outstanding write from the VMEbus — value 1 to en-
able writeposting. After configuring the routing enables VMEbus slave accesses.

'#include’”vme.h”
#include "basic.h”

int main()

{

basic_board init();
prog_. slave access((v01d*)0x10000000 0x00400000 32,0);

}

This complete program first initialises the card and then sets up for decoding the
dual-access DRAM as a four megabyte region from VMEbus address #10000000

in the A32 address space. Writeposting is not enabled. So after running this pro-
gram, the IMS B016 card will function like a four Mbyte D32 VMEbus memory card
in the A32 address space, decoded at address #10000000. The card will respond
to both “user” and “supervisor” address modifier codes.

2.1.2 MAP-RAM

The MAP-RAM is a look—up table, connected directly to the top 12 bits of the
IMS T801’s address bus. For every IMS T801 memory cycle, the MAP-RAM pro-
duces a set of control information which is used to determine how the various parts
of the board’s circuitry behave. For instance the MAP-RAM determines what kind
of VMEbus cycle will be performed when the transputer attempts to perform a
VMEbus master cycle. : o

Since there is one MAP-RAM location per megabyte of IMS T801 address space,
different functions may not be programmed for two addresses wnthln the same me-

gabyte page.

The writing of MAP-RAM locations and the generation of the control bit-patterns

- which need to be written has been automated by routines in the IMS FOO8A sup- .
port library. For most applications it should not be necessary to write MAP-RAM
contents directly.

Users wishing to perform low-level MAP-RAM programming are directed to sec-
tion 5.1.

~ 2.1.3 Byte multiplexor

There are two main databuses on the board. One is private to the IMS T801 and
its SRAM (and some control registers). The other connects everything else includ-
ing the dual-access DRAM and the VMEbus. Between these two 32-bit busses is
a transceiver which has the ability to re-order bytes (see figure 2.2). This feature
allows data to be moved at high-speed between little-endian processors (the
IMS-T801) and big-endian processors and peripherals (most VMEbus cards). The
byte multiplexor can perform any byte reordering operation, the particular opera-
tion is programmable on a megabyte-by-megabyte basis using the MAP RAM Up
to eight reordering functions can be active at any time. ‘ ‘

——
PREEEY

IMS B016 VMEbuS master card ” ‘ , 7

——= Switch option select
| — > Programming port
Storage for switch
options
8 bits :3 b‘tsc
:8 b'ts: 8 bit:
i Multiplexors | s
<:8__b‘:> allow any Byte <:>8 e
its| | to be sourced !
<> from any other <>
8 bits byte 8 bits

@
@

Figure 2.3 Byte Multiplexor

In order that the board behaves in a sane fashion at system start—up, the ope'ratlon '

of the Byte Mulitiplexor is disabled on reset and must be explictly enabled via a con-
trol register. When disabled, the Byte Multlplexorfunctlons as a simple 32-bit trans-
ceiver.

The eight re-ordering functions can be re-programmed at any time bywriting the
relevant registers. Note however that chaos is likely if the Byte Multiplexor is in-
structed to re-order memory where the currently executing program (or its data)
resides. Note also that transputer byte-wntes do not function correctly for regions
of memory where byte multipexing is in operation. Control over the byte multiplex-

~or is provided via various low-level IMS FOO8A routines. program byte mux ()

sets up a swap function, turnon/off_byte_mux () enable and disable the multi-
plexor. basic_board init() clears the swap function code for all memory and
programs swap p function zero to “transparent”. Thus memory areas which have not
been explicitly configured for byte-multlplexmg will retain a default transparent

- swap function when the byte-mux is enabled for a region of memory.

Since the majority of byte-multiplexing applications are assomated W|th master
VMEDbus access, the routine prog_master_access () allows swap functions to
be specified along with other VMEbus access parameters.

2.1.4 VMEbus master operation

The IMS T801 can perform VMEbus master cycles simply by making memory ac-
cesses to certain regions of its address space. However, regions of address space
must be programmed in advance for the appropriate VMEbus options.

The VMEbus supports various address spaces, including three different address .
sizes, 16—bit which is termed “A16”, 24-bit (A24) and 32-bit (A32). Generally, sim-
ple I/O cards use the A16 space, complex 1/0 cards use A24, while CPU and
memory cards use A32. The VMEbus also supports various data size options, in-
cluding 32-bit (D32), 16-bit (D16) and 8-bit (D08). D32 tends to be used for CPU
to memory transactions and for high-speed /0, D16 for medium speed I/O and old-
‘er cards and D08 for slow 1/O such as serial ports.

The IMS B016 can generate many combinations of different address and data
transfer VMEbus master cycles. The particular kind of transfer to be performed is
determined by a look-up table, indexed on the IMS T801 address bus called the
“MAP-RAM”. Since the MAP-RAM has a separate entry for each and every mega-
byte of IMS T801 address space, the VMEbus master characteristics may be pro-
grammed on megabyte blocks. The IMS FOO8A routine prog master_ac-
cess () provides the mechanism for setting up such regions.

The VMEDbus uses a byte-addressed scheme which is big-endian. That is, byte 0
corresponds to the upper byte of a 32-bit (D32) word, byte 1 to the upper middle
byte and so on. Cards which support D32 transfers must also support D16 and D08
transfers to the same locations. However, all VMEbus memory spaces are concep-
tually 32-bit words, each composed of four bytes (called BYTE 0, BYTE 1, BYTE 2
and BYTE 3). Because the IMS T801 only performs 32-bit external memory
cycles, it presents a 30-bit address to the rest of the card. This is sufficient to identi-
fy an individual VMEbus D32 longword, but lacks sufficient bits to address the
words and bytes within D16 and D08 transfers. The IMS B016 works around this
lack of address bits 0 and 1 by storing these bits within the MAP-RAM entry.

This means that one region of IMS T801 memory can be programmed to generate,
for example a D16(BYTE3-2) transfer, while another can generate a
D16(BYTE1-0) transfer. Working within the A16 or A24 address spaces, the upper
16 and 8 address bits respectively from the IMS T801 are not relevant to the VME-
bus. These can be used to create multiple different regions in IMS T801 memory
space which in fact generate the same A24 (or A16) VMEbus address. The effect
is that all combinations of different D16 and D08 BYTEs can be addressed by the

card.

In the A32 address space, this feature is not available since there are no redundant
address bits. This means that practically it is not possible to use any data transfer
size other than D32. Usually this would not be a limitation since the smaller data
sizes are associated with I/O cards which are usually placed in the A16 and A24
address spaces. :


~~~~~~~

IMS B016 VMEbus master card . : 9

The following example program, using IMS FOO08A library routines, prog‘rams the
card such that for VMEbus A24 address region #100000—#1FFFFFF , various

. regions in IMS T801 address space generate VMEbus master transfers wnth all the

different sizes and byte selections.

#include ”“vme.h”
#include ”“basic.h”

#define MEGABYTE 0x00100000

int main()
{
int i=0;
unsigned int
*d32, *d16b01, *d16b23,*d08b0, *d08b1, *d08b2 *d08b3;
unslgned 1nt tl,t2;

d32 = (unsigned int *)0x00100000;
dl6éb0l = (unsigned int *)0x04100000;
d16b23 = (unsigned int *)0x05100000;
do8b0 = (unsigned int *)0x06100000;
do8bl = (unsigned int *)0x07100000;
dO8b2 = (unsigned int *)0x08100000;
- do8b3 = (unsigned int *)0x09100000;

basic_board init();
1—1n1t vme master(3 RELMODE_ROR, TRUE),
1-prog " master _access (d32, MEGABYTE 32,24,0 0),
i=prog_master access(lebOl MEGABYTE le, 24 0
1-prog;paste:_;ccess(d16b23 MEGABYTE, 16,2
' i=prog;maste:_access(dOSbO,MEGABYTE,8,24,
i=prog master_access(d08bl,MEGABYTE,8,24,0
i=prog_master_ access(d08b2,MEGABYTE, 8,24,
i=prog_master_ access(d08b3,MEGABYTE, 8,24,
i=turnon_vme master();

}

Example number 3 in the IMS FOO8A contains a more comprehensive Version of
this program, including byte—multlplexor anda second IMS B016 used as the slave

-card.

IMS T801 byte writes

* Unlike many other microprocessors, the IMS T801 can only perform 32-bit and |

8-bit write operations and only 32-bit reads. The VMEbus supports many more
data transfer options and usually these are supported by using the IMS T801 per-
forming only 32-bit reads and writes and using the card’s capability to map those
accesses into whatever VMEDbus cycle is required. However, should the IMST801

perform an 8-bit write operation on a memory region programmed for VMEbus
D32 transfers, the card will in fact generate the appropriate D08 VMEbus cycle.



10

" Thatis, DO8(BYTEO) for an upper byte write, DOS(BYTE1) for an upper-middle byte
write and so on. This feature means that for a region programmed to be VMEbus
D32, the IMS T801’s view of memory-including byte-write—will be identical to on-
card memory. Thus such regions of VMEbus memory can be used for program
code and data storage. | |

VMEDbus error

Should a VMEbus transfer cycle, where the IMS B016 is master, receive a bus er-
ror, circuitry on the card causes an event to be signaled to the IMST801. The
IMS T801 has no feature corresponding to the M68000 the bus error pin and this
mechanism (where an event is raised) is the only way to inform the CPU asynchro-
nously of a bus error. The IMS T801 memory cycle which resulted in the bus er-
ror'ed VMEbus transfer will complete but with meaningless data if itis aread. The

 actions taken on bus error depend upon the application program. IMS FOO8A pro-
vides a very simple interrupt handler for bus error which sets a global wvariable—this
can be checked every so often. More sophisticated schemes using channels to sig-
nal the error can be implemented by modifying the FOO8A code.

IMS FOO8A provides an event handler, complete with an event service routine for
bus error interrupts. User’s application code can make use of these library routines
to detect bus error and take appropriate action.

#include “vme.h”
#include "event.h”
#include "basic.h”

int main()
{ .
basic_board init();

start_event_handler();

install berr_handler (standard berr_handler);

my_vmebus_master_setup();

for (;;) {
- my_vmebus_master_activity();
if (berr_happened == 1)
exit(l),

VMEbus request modes

IMS FOO8A routine init_vme_master ( ). should be called before attempting to
perform any master operations. It configures the VMEbus request level which the
card will use, the request mode and whether the card will perform master writepost-

ing.




N

¥
\'{Y.f :

~ IMS B016 VMEbus master card B N

Request modes allowed:

» RORfor “release on request”. Meaning that the card captures the VMEbus
on a master transfer and retains bus ownership until it sees another card
requesting the bus.

 RWD for “release when done”. Meaning that the card captures the VME-
bus on a master transaction and then releases the bus immediately.

¢ ROC for “release on bus clear”. Meaning that the card captures the VME-
bus on a master transaction and then releases the bus when it sees a bus
clear signal.

o BCAP for “bus capture and hold”. Meamng that once the VMEbus has
been captured by the card, it is never released.

Users who are in doubt about which bus request mode to use should probably be

- . using ROR. Bus request level 3 should always work. Some system controllers only
 support this level. .

VMEbus write posting

The VIC chip, and consequently the IMS B016, is capable of performing posted
VMEDbus write cycles. When a write cycle is initiated—either by the T801 as a VME-
bus master or by another VMEbus master as a slave cycle to the IMS B0165 dual-
access DRAM, the card’s circuitry can store the data to be written and immediately
acknowledge the writing device. The writing device can then proceed to perform
other cycles and the write cycle completes some time later. This is termed “write
posting”. Write posting can greatly speed up many applications. However, it has
the disadvantage that if the posted cycle actually never completes, then the writing
device will have assumed that the write cycle did complete. Master and slave write
posting are separately enabled. It is not possible to select writeposting on an ad-
dress-basis. :

System controller options

Certain VMEbus backplane housekeeping functlons, such as system clock gener-
ation and bus arbitration, must be undertaken by the card installed in slot 1 (left-
most). Any VMEbus system must have a system controller and it must be in Ioglcal
slot 1. In workstations which have a VMEbus the system controller function is usu-
ally performed by the mothercard.

The IMS B016 can perform system controller functions, when enabled by fitting
jumper K3. Users who are not installing the card in slot 1 of their backplane need
not read this section.

IMS FOO8A routine init_slot_one () configures both the backplane arbitration
style and the bus timeout delay.

Arbitration style can be either priority or round-robin meaning that the next master
granted the bus is either the one with the highest request level, or one requesting
on the level given access least recently. ‘

Bus timeout delay is the time after which the system controller signals bus error
on. a transaction which has not completed. A timeout delay of 32us is normal.



12

2.1.5 VMEbus block transfer (BLT)

The IMS B016 does not support master BLT operation. Slave BLT transfers are
handled.

2.1.6 Events and interrupts

The IMS B016 provides the capability to handle VMEbus interrupts. It also pro- i
vides several local on-card interrupt sources such as the Serial Ports, Bus Error
detection and Interprocessor Communication Registers. All these interrupt condi-

tions can be programmed to cause an IMS T801 event'.

The IMS T801 lacks any vectored interrupt system. In the IMS B016, extra circuitry
is provided to allow VMEbus interrupt vectors (status/ID) to be read from a VIC sta-

tus register. When this register is read, if a VMEbus interrupt is pending then the
VIC requests the bus and fetches the Status/ID byte (vector). The value fetched
is returned as the contents of the register to the IMS T801. In the case of a local
interrupt, the vector is fetched from one of the vector registers within the VIC. Pro-
vided that the programmer has ensured that all interrupt sources have distinct vec-
tors, an event process running on the transputer can distinguish between inter-
rupts using the vector. IMS FOO8A provides an event handler library which allows -
interrupts, both VME and local, to be used from °C" programs.
start_event_ handler () is called, allowing handler routines to be installed via
calls to routines such as install vme_int handler() |

#include ”"vme.h”
#include ”"event.h”
#include ”“basic.h”

void my int handler_ 1 (void)
{

printf (”Got Interrupt on irq 1\n”);
}

int main()
al
basic_board init();
start_event handler(); ;
vec=install vme_int_handler(1l,VECTOR_INT 1, my int handler 1

)

printf(”\n Waiting for interrupts”);

for (;;) ; .
} o
This example code programs a handler routine for VMEbus interrupt level 1. After
initialising, the program loops forever, printing a message if an interrupt is re-
ceived. ,

1. ' _
“Event" is the transputer terminology for “interrupt”. Users should consult the Transputer Databook

for details of event.



IMS B016 VMEbus master card | | 13

IMS F008A provides a header file contalnmg suggested vector values for the local
interrupt sources.

2.1.7 VMEbus interrupter

VMEDbus interrupts can be generated (as opposed to handled) by the card. The
IMS FOO8A routine send_vme_interrupt(level) generates an interrupt on
the level specified (1-7). This routine will not return until a VMEbus interrupt han-
dier has acknowledged the interrupt. The routine prog_vme_interrupt vec-
tor (level,vector) programs the vector (status/ID byte) returned by the card
during such an acknowledge cycle. |

#include “vme.h”
#include ”"basic.h”
#include “event.h”

int main()
{
basic board init();
prog_vme J.nterrupt vector(l VECTOR INT 1);

A separate handler can be installed to deal with mterrupt acknowledge cycles
install_wvme_int_ack handler.

2.1.8 Control of the local bus

The local bus on the board (the bus to which the Dual-Access DRAM is connected)
~can be under the control of any of three entities:

1 The IMS T801.

2 The VMEbus control circuitry (VIC), when a VMEbus SLAVE cycle is in
progress.

3 DRAM refresh circuitry.

Arbitration is performed at the end of each access. For the IMS T801 this means
at the end of every memory cycle which requires the local bus (all memory cycles

except those for private SRAM, primary registers and Byte-switch configuration -

registers). For the VIC this means the end of every VMEbus slave access to the
IMS B0162. The arbiter reverts to an idle state after every refresh cycle. The design
of the arbiter and the board is such that fair access is allowed to the Dual-Access
DRAM for both the IMS T801 and VMEbus masters performing slave cycles. That
is, if both the IMS T801 and a VMEbus master attempt to saturate the Dual-Access -
DRAM, then DRAM cycles will be given fairly to each requester.

2. : ' o ~
OnBLT (Block Transfer) slave cycles, the bus is secured for the the duration of the whole block trans-

fer.



14

219 F-ROM

The IMS T801 may boot from a link or from the on-board 256 Kbyte ROM, These.
ROM devices are electrically reprogrammable Flash devices which are repro-

grammed in-situ. Reprogramming is achieved using the IMS T801, booted via a

link with programming software. :

For programming and erasing to function, jumper K4 must be fitted correctly for
F-ROM. ‘

The devices are soldered to the board for extra reliability. F-ROMs can be erased
and reprogrammed in excess of 10000 times. , ‘

IMS FOO8A supports F-ROM programming and erasing from a host development
* system. Library routines which erase and program individual ROMs and ROM lo-
cations are also provided. These can provide a useful basis for writing custom

F-ROM applications.

The IMS FOO8A monitor can be programmed into the F-ROMS and the card will
then boot stand-alone—communicating via the serial port. The makefile used to op-
erate the ROM version of the monitor provides an example which can be followed
by users building stand-alone ROM applications.

2.1.10 Serial ports

The card provides two independent asynchronous serial ports, buffered to EIA-
RS232 levels on connector P2. IMS FOO8A provides a library of functions which
drive the serial ports, including support for Xon/Xoff flow control and buffering us-

ing interrupts.

Baud rates up to 19.2K are supported and the IMS FOO8A monitor program can
be configured to talk to a terminal via the serial ports. :

2.1.11 Resets and transputer system services

The card circuitry is reset at power-on and following a VMEbus reset and someone
pushing the front panel reset button. All these actions create a board reset. In addi- -
tion, the IMS T801 is reset at this time. However, the IMST801 can also be reseté
from the “ServicesUp” port on connector P24 This reset will not affect any other cir-
cuitry apart from the tranpsuter and allowsthe transputer to be re-booted &/ithout
disturbing the rest of the card’s circuitry. Note that this means that after a board
reset , all the configuration for VMEbus access and suchlike will be lost. However
following an IMS T801 reboot this configuration will not be lost. ‘

It is possible to stop the operation of the CPU completely by performing a memory
access to an address which does not correspond to either an on-board resource
like DRAM or F-ROM or to a region programmed for VMEbus master access. In
this event it is necessary to perform a board reset in order to recover correct opera-

tion.




IMS B016 VMEbus master card 15

Note that transputers do not typically clear their error signals on reset, a program
which explicitly clears the error signal must be run. Transputer programs usually
have this code included automatically. This means that users should not be sur-
prised if the “error” LED remains lit after the card is reset. '

The IMS T801 is provided with a ‘subsystem” services port which is electrically
compatible with other INMOS cards. In addition, three extra subsystem ports which
are electrically compatible are provided for users who wish to control four indepen-
dent sub-networks of transputers. These three extra ports are not software com-
patible with any other card and are dealt with in section 5.8.

The “traditional” subsystem port is addressed as two of the registers in the primary
control registers (see figure 5.2). The reset register allows assertion of the
notSubReset signal. Similarly the analyse register allows assertion of the
notSubAnalyse register. Both these registers use only bit 0 and are not readable.
In addition, the card’s circuitry (including the IMS T801) can be reset when aVME-
bus master writes the appropriate data into the VIC mailbox registers. This feature
allows a F-ROM booted card to be re-booted under the control of another VMEbus

master card (see section 5.7).

2.1.12 The front panel

There is a push-button on the front panel (see ﬁguré 2.4). This resets all the card
circuitry (including the IMS T801) and also produces a VMEDbus reset if the card
is configured as a slot 1 system controller. / |

‘The top LED (amber) lights when the IMS T801 error pin is asserted (please read
section 2.1.11 about the error flag's behaviour). -

The other three LED's light respectively when the IMS T801 makes a VMEbus
master access; when another VMEbus master makes a slave access to the
IMS B016's dual-access DRAM: and when the local bus is accessed by either the
T801 or by the VMEbus. The brightness of the LED's indicates the density of cycles
being performed. Note however, that the LED' are not intended to be balanced
for brightness or calibrated with respect to each other.



16

@ | Reset button
O | IMS T801 error

o) Master VMEDbus
0O Slave VMEbus
O | Local bus

Figure 2.4 Front panel showing LEDs

S
‘;L o



17

3 Installing the
IMS BO16

3.1 Conflgurmg prior to mstallatxon

Since the lMS B016 is based around a VLSI controller, there are far fewer conf igu-

ration switches and jumpers than are usually found on VMEbus cards. However,
‘some functions are controlled by switches and jumpers.

The VMEbus address §f the VIC VMEbus slave registers (mailboxes and so on)
is selected by two hex switcheiisee figure 3.1). In setting the VMEbus address,
a unique 8-bit binary number is*being selected which will be compared with the
VMEbus addresses. The upper four bits of this number are set by SW%Nhile the
lower four bits are set by SWSK small screwdriver or trim-tool can be used torotate
the pointers on SW2, 3. The pointer must be rotated to the desired hex character

Here is an example setting:

The desired addresses are #DBOO—#DBFF. This means that the 8-bit number to
be compared is #DB . Its upper four bits are #D , its lower four bits are #B . Ac-
cordlngly we set SW2 to “D” and SW3 to “B”. ‘

. Care should be taken not to select a VMEbus slave decode address which conflicts
with addresses which may be generated by the IMS 801 performing VMEbus mas-
ter accesses (self-accesses). Note also that users should ensure that they do not
have a situation where the slave registers occupy the same address region as
another A16 slave on the bus.

* The IMS T801" s serial links can be set to work at two different speeds. For a link
on one device to talk successfully to another device, they must be set to the same
speed. Current technology allows link speeds of 10 or 20Mbits/s. Jumper K2 sets

“the link speeds for all four of the IMS T801’s links. When K2 is fi tted the Ilnks ar
set to 10Mb|ts/s otherwise they are set to. 20Mb|tsls'

The IMS BO16 can perform the VMEbus ‘Slot 1’ system controller functions. To en-
able this function, fit jumper K3. K3 should only be fitted if the board is mstalled in

slot 1 of a VMEbus rack.




18

Table 3.1 summarises the jumper functions.

ID

Function

K1

K2

K3

K4

IMS T801 boots from link when fitted, otherwise
from F-ROM

IMS T801 links are 10MBits/s when fitted, 20 |
MBits/s otherwise.

When fitted, IMS B016 perfonhs VMEDbus slot 1

functions.
Do not fit unless the IMS B016 is installed in slot

1 of the VMEbus card—cage.

When not fitted F-ROM programming cannot
occur. It must be fitted for F-ROM programming
to function.

Table 3.1 Jumper functions

'

7y,

Y
L
I

G



IMS B016 VMEbus master card A19

DRAM

P1

| sw2
—— SW3

Byte
Multi);;}exer

Flash J

ROM el
I Jumpers
K1, K2, K3

P2

N~

256k SRAM

Figure 3.1 Board layout

3.2 Handling

The unpacking note in the shipping carton will give details on how to unpack the -
IMS B016. Standard anti-static precautions should be observed since the
IMS B016 contains MOS devuces which are liable to static-discharge damage.

Some VMEDbus compatlble card-cages, notably SUN workstations, make use of
the user-defined pins on connector P2. It is extremely |mportant that the IMS BO16



20

is not plugged' into such a card-cage because permanent destruction of the

IMS B016 and/or SUN can result. This restriction only applies to some slots in-

some kinds of SUN (and probably other card-cages) but users should always be
aware of the danger. The solution required for the SUN is to use a special holding
frame which isolates the P2 user-defined pins from the backplane. Such a frame
is available from INMOS, part number IMS CA12.

3.3 lnstallmg the IMS B016 for use with IMS S514C in a
workstation o

If you are using the IMS B016 as the gateway hardware from a SUN workstation
to your transputer development system, INMOS board support software product
IMS S514C is required. The S514C User Guide contains installation information
specific to this application and should be consulted in preference to the following

sections.
3.4 Installing the IMS B016 in a VMEbus card—cage

Before installing any board, first make sure that the power is turned off.

Inspect the VMEbus connectors for bent pins. Next, align the corners of the board

with the ends of the card-guides. The component side of the board should be to

the right. Slide the card home. If resistance is encountered the board is probably
not allgned properly with the card guides. Now push firmly on the handles until the

board is fully home. The front panel will fit against the card-cage. Lastly screw in -

the retaining bolts at the top and bottom of the front panel.

Remember that if you are using interrupts, the interrupt daisy-chain jumpers on the
VMEbus should be configured correctly. Please consult the documentation for
your VMEbus system to find out how to do this.

¥
)
o



21

4 The IMS FOOBA
support library

The IMS F0O08A is a package of software components, in INMOS ANSI C source
format, that acts to document and to demonstrate the features of the IMS B016
VMEbus master card. It is written as a series of library modules whose routines fo-
cus on programming the devices and control registers of each sub—set of the
board’s functions.

Included with the library functions is an mteractlve monitor program which has
command line options for setting up and exercnsmg the 1/O features and memory
confi guratlon The monitor program comes in two configurations, one which is
used via a development host interface, and another which can be burnt into the
board EPROM and controlled via the serial ports.

For those who would like to use a ReaI—Tme operating system in their IMS B016
application, the IMS FO08A includes the source of a board support package for the
VRTX32/T executive from Ready Systems Inc.

4.1 Pa‘ckage features

o Basic board setup procedures control address mapped access to VMEbus
address space and byte—order swapping functions.

. VMEbus interface procedures controlk bus master and slave access and
VME interrupt handling.

¢ RTC interface allows setting and reading of autonomous clock registers.
o Event library controls vectored interrupt handling capability

o DUART support functions allow interrupt driven serial I/O over two chan-
- nels. « :

o ROM support allows programming and reading of Flash ROM devices

o Command Line Interface allows easy expenmentatlon and example appli-
cation.

e VRTX32/T board support combines device access with pre—emptlve |
scheduler regime.

-o Compatible with INMOS ANSI C toolkit.

The following sections will describe the software installation and fully document the
functions within each category together with their interfaces.



2

4.2 Installing and using IMS F008A

The release of the IMS FOO8A software is delivered oh DOS format diskettes in
1.2Mb 5 1/4” format and 720Kbyte 3 1/2” format. To mstall and use the release
about 2.5 Mb of dlsk space will be required. .

To install the software:
¢ Insert Disk 1 of the release into your floppy disk drive.

» Run the command file ‘install’ on this diskette giving as parameters the let-
ters of the source diskette drive and the destination hard disk drive. For ex-
ample, if the floppy disk drive was identified as drive A and you wish to in-
stall the software on drive C then use the command

a: 1nsta11 ac

During the installation process a new directory tree is created, contammg the soft-
ware and associated files, at the top level of the destination drive.

You will need an INMOS ANS! C toolkit {Dx214B or later) to use the IMS FOO8A
software. Although it is delivered in DOS format, the code can be used in conjunc-
tion with a toolkit hosted on any machine. You will also need a transputer interface
of some kind, either a card inserted in your host machine or a transputer develop-

ment node accessible across the network. The subsystem and link connections

that come from this interface must be connected to the appropriate connector pins
of the IMS B016 card in order to boot programs onto the IMS B016 from a develop-
ment system. It must be ensured that the card is configured to boot from a link as
opposed to boot from ROM by fitting jumper K1. A typlcal development example
is shown in figure 4.1.

Subsystem control

o Links | IMSBO16 | |ins | IMS BO16
Host K—> "Fe%a’d Link 1 Link 2 T Link 1 Link 2
IMS B008| 4 |
Figure 4.1

The IMS B016 is cabled to the development system by connecting a link cable be-
tween one set of serial link pins on connector P2 and the link ouput from the devel-

i

i
o
N




IMS B016 VMEbus master card | 23

opment system interface. Also cdnhect a subsystem control cable between the
services ‘up’ pins of connector P2 to the subsystem output from the development

- system interface. The nature of P2 connections varies on different VMEbus card

cages but usually long wire—wrap tails are provided for pin rows A and C. Standard
INMOS link connector cables can be plugged directly onto such pins provided the -
keyway is removed from the plug. As an example, using an IMS B008 interface in-

stalled into a PC development host, the link connection would typically appear on

the ‘pipetail’ pins on the breakout board fitted to the IMS B008 rear connector. This
should be connected to link 1 of a master IMS B016 (pins A5 through A9 of P2).

Also connect the subsystem, labelled ‘SS’ on the breakout board, to pins C28

through C32 of P2. Ensure that the lmkspeed selection of the interface board

matches that of the IMS B016 configured using jumper K2.

With the equipment powered up, it should be possible torun a dlagnostic tool such
as |spy on the transputer network and confirm the connections made An example
output is shown below:

Using #200 ispy 2.33.1
# Part rate Mb Bt [ Link0 Linkl Link2 Link3 ]
0 [

0 T800c-20 0.05 HOST  1:1  3:1 ... ]
i1T2 -170.881 [ ... 0:1 ... CO04]
3 T801b-25 0.88 1 [ ...  0:2 ... v ]

' Ifthe diagnostic program does not report having found the processor on the IMS

B016, re-check all the connections and linkspeed settings. Some of the example
programs require two IMS B016 cards for operation. The link connections required
between the cards are specified in the confi iguration files for those programs.

| The rest of this discussion will assume access to a C toolkit and a connection to

one or more IMS B016 cards. It will also assume familiarity with the transputer de-
velopment tools and transputer terminology. It will also assume that the software

is installed in a directory/drive called $INSTALL.

To work with IMS FOO8A set your ISEARCH environment variable to include the
paths $INSTALL/include/, $INSTALL/libs/ and $INSTALL/clilib/. It
should already contain references to the C toolkit include and library directories.
Each directory of source should include one or more link control files and configura-
tion source files which specify, in a host independent manner, the files required to
build each target executable. There is also an existing makefile, but it may not be
in a form suitable for your host environment. The toolkit utility program ‘imakef can
be used to generate the appropriate makefile in all circumstances based on the
search paths, link control files and configuration sources. It will also re-use the
macro definitions and rules defined above the ‘cut line’ seen in the files. Once the
the software installation is complete, ‘imakef’ should be run routinely to generate
consistent makefiles for the local setup and environment.

A PRI, AN AN Al smteabe e AN



24

4.3 Monitor code

Two monitor implementations are provided within the IMS FOO8A installation - one
communicates via a host development system and the other is totally standalone,
using the serial /O facilities of the IMS B016. This second implementation can be
programmed into the ROM of the IMS B016. In addition a nhumber of examples of
function usage are supplied that illustrate particular functions of VMEbus interface
programming. The two sets of code can be combined if desired to give a compre-
hensive user experimentation interface across multiple boards.

The source code for the monitor implementations is in the files
$INSTALL/monitor/monitor.c and S$INSTALL/monitor/boardmon.c.
See Appendix D for a description of the generic features of the monitor command
language. The command set specific to the IMS B016 monitor is documented be-

low: '

Toruna rhonitor program on the IMS B018, the following steps must be taken:
¢ Configure ISEARCH variable as previously} described
e Change directdry to $INSTALL/F008/monitor.

o Make sure connéctions from development system to IMS B016 are known
~ and correspond to the host link descriptions in the monitor. c£s configu-

ration source file.
» On a PC development host run
imakef /d /c monitor.btl ;
which should complete without error or warning if the search paths have
been set up cormrectly. |
e Run a make utility referencing the makefile
make /x monitor.mak
All referenced code should compile and link to produce monitor.btl

« Use iserver to boot the executable code onto the IMS B016
iserver /ss / sb monitor.btl
o As the code runs, a prompt should appear
IMS B016 board monitor v1.0

B016>

A set of monitor commands .can be run using the command statement
source ‘‘test.com’’

If compiling the ROMable monitor code is desired, the code, link and configuration
files are supplied as boardmon.c, boardmon.lnk, boardmon.cfs. Note
that it will be necessary to delete the object file for the c1i1ib module in order to




IMS B016 VMEbus master card | 25

force a recompilation WIth a drtTerertt compiler parameter. The binary file -
boardmon .bin that results from making this variant of the monitor code can be

- programmed into the ROM of the IMS B016 usmg the FLASH command of the

hosted monitor.

The monitor CLI commands |mplemented for the IMS 'BO16 are descnbed below
Note that commands that require host file system support are not included in the

ROMable monitor implementation.

DISPLAY
DISPLAY <address><range>

Performs a formatted printout of memory words from the start address given for
the specified number of bytes. Both Hex contents and an ASCIl decode are shown.
The address parameter defaults to the value of the BASEADDRESS variable and
the range parameter defaults to the value of the RANGE variable. The command
returns the value of the highest address reached. \

‘SEARCH

SEARCH <address><range><value>

Searches for a given word value over a range of addresses. The range parameter
specifies the length in bytes of the search area. All word values within this area are
compared, including those that span word boundaries.The address parameter de-
faults to the value of the BASEADDRESS variable and the range parameter de-
faults to the value of the RANGE variable. The value parameter defaults to the val-
ue of the DATAVALUE variable.

FILL

FILL <address><range><value>
Fills a range of memory words with a specified value. The range parameter speci-
fies the byte length of the filled area.The address parameter defaults to the value

of the BASEADDRESS variable and the range parameter defaults to the value of
the RANGE variable. The value parameter defaults to the value of the DATAVALUE

variable.

COPY
COPY <address><range><newaddress>

Copies memory contents from one address to another The range parameter spec-
ifies the number of bytes to be copied. The copy is done in such as way as to avoid
problems with overlapping areas of memory.The address parameter defaults to -
the value of the BASEADDRESS variable and the range parameter defaults to the

value of the RANGE variable.

MAPRAM
MAPRAM <address>

Displays the IMS B016 mapram entry for a given address. The given address is
truncated to the Megabyte boundary below the value given.



26

MUXRAM .
MUXRAM <address><range><mapcode><rswop><wswop>

Command to set up the mux function and corresponding mapram entry for an
range of addresses. The mapcode is formed by ORing togther the control bits (de-
fined as constant symbols) and the byte mux function number. The byte mux func-
tion is programmed according to the swop values given.The address parameter
defaulis to the value of the BASEADDRESS variable and the range parameter de-
- faults to the value of the RANGE variable.

SLAVE
SLAVE <address><range>

- The command sets up a slave decode area comresponding to the address and
range passed as parameters.The address parameter defaults to the value of the
BASEADDRESS variable and the range parameter defaults to the value of the
- RANGE variable. 32 bit addressmg is assumed.

ROM
ROM

" Displays the size and device codes of the Flash ROM devices on the IMS B016.
The command will fail if the VPP generator is disabled.

FLASH
FLASH <filename>

Command will read the binary formatted ROM file (as produced from ieprom) and

program its contents into the Flash ROM devices of the IMS B016. The data will
be alligned such that its last byte is programmed at addresss 7fffffff in order that
code bootstrap sequences will be correctly placed. The filename is a string param-
eter or symbol reference.

BWRITE
BWRITE <string>

The command uses the B channel of the DUART device on the IMS B016 to write.
out a string value. The default setup of the port is 9600 baud.

BREAD
BREAD

The command reads a string from the B channel of the DUART device. The input

is terminated by CR or LF characters.

RTC

RTC <timecode>
The command will set or read the clock device on the IMS B016. If a time value
. is given, it is expressed in seconds since 1st Jan 1970, and this is programmed
into the clock. If no value is given, the current clock value is returned and formatted
into a date/time string. The command will fail if standby power is not applied to the

clock device.

.........




IMS B016 VMEbus master card | ‘ \ 27

INIT ‘
INIT <analyse><linkno>

Command resets and reads the error status of the transputer subsystem port. It
is possible to change the link number associated with this port. The default is link
2. If the analyse flag is TRUE, then an analyse and reset cycle is performed |

PEEK
PEEK <address><range>

Performs a formatted printout of memory words from the start address given for
the specified number of bytes. The data is obtained via transputer peek instruc-
tions given to a reset processor connected by a link. Both Hex contents and an
ASCII decode are shown. The address parameter defaults to the value of the
BASEADDRESS variable and the range parameter defaults to the value of the
RANGE vanable _

POKE

POKE <address><range><value>
Fills an area of remote transputer memory with the given value The address pa-
rameter defaults to the value of the BASEADDRESS variable and the range pa-
rameter defaults to the value of the RANGE variable. The data defaults tothe value
of the DATAVALUE symbol. \

44 Examples and BSP code

The source of the example programs is contained in the directory
$INSTALL/examples. -

‘"The example code includes configurations that test rrlultl—board operation. To
build an example bootable, copy the appropnate master and slave source files to
master.cand slave.c before running make. The bootable f' le in each case is

called vmetest.btl.

e example 1 (masterl.c, slavel.c) demonstrates simple setup of mas-
ter and slave access capabilities between two IMS B016 cards

¢ example 2 demonstrates VMEbus interrupt operation under software con-
trol. ,

e example 3 demonstrates both remote memory access and byte swapping
functlons

o example 4 demonstrates the interfacing the IMS B016 to a ADC /O card.

An additional tmplementatlon example is included in the $INSTALL/vrtxbsp di-
rectory. This code is the support package required to run tasks under the
VRTX32/T real time executive product from Ready Systems Inc. and shows how
the IMS FOO08A routines can be used in conjunction with this package. For further
details of VRTX32/T, contact your INMOS/SGS-THOMSON sales office.



28

4.5 Basiclibrary

The basic library forms the core of the IMS FO08A software. It should be linked with
all programs which use any other parts of the IMS FOO08A libraries. It contains the
fundamental setup routines to initialise the IMS B016 for use. Note that most of
these routines are below the level of abstraction normally required to program the
IMS B016 and therefore will only be used for special low level programming re-
quirements. The routines in the VMEDbus library use these basic functions, but the
overall functions are expressed in a higher level manner.

The source code of these routines is in the file $INSTALL/libs/basic .c The
header file associated with use of this library is $INSTALL/include/basic.h.

~ basic_board_init
void basic_board init()

This routine must be called before any other routine in the libraries can be used. -
Other parts of the library check to make sure that this routine has been called and,

where possible, return an error if initialisation has not been done.

When this routine is called, the board is initialised, the mapram and decode ram
are cleared to zero, the byte multiplexer is disabled and low-level routines used
to write to the mapram and the decode ram are moved into the internal memory
of the transputer. This process assumes that the stack space allocated to the run-
time code has been configured to be at the lowest memory addresses (normally
done using the order statement in the configuration description) and that sufficient
space has been allowed on the stack such that the area where these routines are
placed does not get reached in the normal expansion of stack at runtime. In prac-
tice the routines occupy about 22 words of memory and therefore do not run any
real risk of being corrupted by the expansion of the stack.

check_board_init _

int check_board init()
This routine tests to see if basic_board_init() has been called. TRUE is re-
turned if this is the case and FALSE is returned otherwise.

clear_map_ram

void clear map_ ram()
This routine clears all the IMS B016’s mapram entries to zero. On the IMS B016,
mapram entries cannot be read back. They can only be written. To get around this,

the mapram routines store all mapram entries in a shadow array from which they
can be read and examined. These shadow entries are also cleared by this routine.

shadow_write_map_ram '
void shadow_write map ram(void *address,int data)

*address pointer to the memory region whose map ram entry
you wish to set.

data “the mapping value for this region




IMS B016 VMEbus master card - o 29

A region of memory is defined to be a 1 Megabyte page extending upwards from
the given address or the 1 Megabyte page containing the given address. Since
these addresses will be related to the VMEbus address space, it will be usual to
‘give positive valued addresses (MSB zero) which can relate most readily to the ad-
dresses available on the other cards in the racked system.

The map RAM entry is a bitfield whose elements determine the mapping function
required for a region of memory. Constants are provided in the $INSTALL/ in-
clude/mapran.h file to generate this value. These are:

MASTER PERMIT

' AM_UDATA
AM_UPROG
AM SDATA
AM_SPROG
'ASIZ AMSOURCE
ASIZ_32BIT
- ASIZ_24BIT
ASIZ 16BIT
LADDOO
"LADDO1
LADD10O
LADD11
DSIZ_32BIT
. DSIZ_ 16BIT
i DSIZ_8BIT
i DSIZ_THREE
Constants with the same prefix (e.9. AM_ or ASIZ_) are mutually exclusive. The
appropriate constants should be OR'd together to make a valid mapram entry de-
scribing the function required for this region.
For example, to access a region on the VMEbus using 24 bit address and 32 bit
data with the lower address bits always equal to 00 and specifying supemsor data
access the following code would be used.
data = (MASTER PERMIT | AM . SDATA | ASIZ_24BIT |
| DSIZ 32BIT | LADDOO);
A mapram entry will need to be set up for each region of memory to be accessed.
~ Ifthe address space to be accessed is more than 1 Megabyte in extent, then multi-
ple entries will need to be set up.
shadow_read_map_ram
int shadow_read ) map_ram (void *address)
*address pointer to the memory region whose mapram entry
( you wish to read.

This routine returns the mapram entry of the memory region specuf ied by the ad-
dress given. ,



30

turnon_byte_mux
void turnon_byte mux()

This routine enables the byte multiplexor function of the IMS B016.

turnoff_byte_ mux
void turnoff byte mux()

This routine disables the byte multiplexor function. The multiplexor should be dis- -

abled when updating a swap function.

set_mux_0_transparent

void set_mux 0 transparent() -
This routine programs swap function 0 of the byte multiplexor to be transparent
~ (that is a null mapping function). This will typically be done so that the boards regis-
ters and memory can be accessed without mapping operations being performed
on them while the byte multiplexor is turned on.

‘program byte_mux
void program byte mux(int which_fn, 1nt read swap, int
- write_swap)

which fn is a number from 0 to 7 that specifies the swap func-
tion to be programmed.
read swap is a 32 bit integer where each nibble is a number

from 0 to 7, specifying the number of the nibble on
the boards data bus which will be mapped into that

~nibble position, as seen from the transputer, when a
read is performed. |

write_swap performs the same function as above but define the
mapping which will take place on a write operation.

This routine programs one of the 8 available byte swapping functions of the byte
multiplexor. Setting a read swap value of 0x76543210 for a given function would
be a null mapping operation for the word being read, since each nibble is mapped
~ into the its original position. A mapping code of 0x32103210 would map the lower
16 bits of a 32 bit word on the data bus into both the upper and lower 16 bits as
seen by the transputer. _

program_mux_map_ram
void program mux map ram(int which_ fn void *address)

which_fn a number from 0 to 7 which specifies the swap func-
t|on used in conjunction with this mapram entry.
void *address pointer to the memory region whose

map ram entry is to be set.
This routine programs the multiplexor select bits of a mapram entry. These bits de-

fine which swap function will be invoked when a region of memory is being ac-

cessed. This function must be used in conjunction with the other mapram entry ca-
pabilities described above.




IMS B016 VMEbus master card , | 31

‘clear_decode_ram

void clear_ decode_ram()
This routine clears all the IMS B016’s decode ram to zero. This effectively dlsables
slave access to the boards memory. ‘

write_decode_ram
void write_decode_: ram(void *address int val)

*address pomter to the memory region whose decode ram
, entry is to be set.
val the value for the decode ram control bit.

This routine allows setting the contents of the decode ram. Setting the decode ram -
control value to 2 enables slave mode access to that region. Setting it to zero dis-
ables slave accesses.

- Decode memory regions are specified by the upper 16 bits of the address value

glven and thus slave access can be enabled or disabled over regions 64Kbytes
in size as seen from the VMEbus address space. See also the VMEbus Ilbrary for

- additional decode ram programming functions.



32

4.6 VMEbus library

The VMEDbus library provides a set of functions which can be used to configure the
interface of the IMS B016 to the VMEbus. Since the board can function as a slot
one controller or a general purpose master/slave processor and memory card, the
interfaces allow a variety of control options. This is the normal library of routines
that have usefully abstract functions, enabling rapid and error free setup of board
functionality. It is therefore recommended that this is the primary library used for
master and slave programming.

4

All routines in this library return zero for success and a non-zero value for failure.

The source code for this library is in the file $INSTALL/libs/vme.c and the
header file associated with its use is $INSTALL/ :anlude/vme h.

Since much of the operation of these routines is concerned with the mapping of

VMEDbus address space to transputer address space in multiple cards, the reader -

is referred to Appendix A for a full discussion of this subject.

init_vme_master »
int init vme master(int request level, int re-
quest _mode, int writepost)

request _level a number from 0 to 3, which specifies on which bus
grant chain the bus requests will be made.

request_mode  identifies the mode of bus request made.

writepost may be TRUE or FALSE which enables or disables
\ master mode writeposting.

This routine sets up the parameters for master mode accesses from the IMS B016
across the VMEDbus. It should be called early in the board initialisation process and
certainly before remote memory access is required. The bus request mode can be
one of:

RELMODE_ROR for release on request mode.
RELMODE_RWD for release when done mode.
RELMODE_ROC for release once complete mode.
RELMODE_BCAP for bus capture and hold.




G

<
e

IMS B016 VMEbus master card a3

init_slot_one
int init_slot one(lnt arbitration, int bus_timeout)

arbitation can be ARBITER_PRI for prioritized arbitration or ARBI-
TER_RRS for round robin arbitration.

bus_timeout identifies bus error time out strategy.

This routine enables the system controller functions of the IMS B016. These will
take effect if the board is located in slot one of a VMEbus backplane, and should
be called early in a system initialisation process. The parameters of the function
set the mode of operation for the bus arbiter and the timeout time for VMEDbus ac-
cesses. The timeout strategy value should be one of the following constants:

VMETIMEOQOUT_4US for 4us timeout

- VMETIMEOUT_16US for 16us timeout

VMETIMEOUT _32US for 32us timeout
VMETIMEOUT_64US for 64us timeout
VMETIMEOUT_128US for 128us timeout
VMETIMEOUT_256US for 256us timeout
VMETIMEOUT_512US for 512us timeout
VMETIMEQUT_INF for no timeout

prog_slave_access

int pfog_slave access (void *decode_address, int de-
code _window, int address _type, int wri-

tepost)

decode_address the starting address of the desired memory region as
seen from VME address space.

decode_window s the size of the slave memory reg‘ion in bytes. This
value is rounded up to the next 64kbyte boundary.

address_type may be either 24 or 32 to indicate the number of val-
id address bits that will be used on the VMEbus.

writepost may be either TRUE or FALSE and enables or dis-
~ able writeposting on slavemode write accesses.

This routine sets up slave mode access and enables a region of memory to re-
spond as slave memory. Regions of memory accessible as slave memory across
the VMEbus are multiples of 64Kbytes. The base location of any region of slave
memory, in terms of an offset from the base address of the transputer memory, is
given by bits 16—21 of the region address. The upper region address bits (16-31)
determine the base address of the region within the VMEbus address space.



34

prog_master_access
int prog master access(void *address, int address win-
dow, int data_ type, int address_type,
int low_bits, int mux_fn)

address Start address of memory region, expressed as a

VMEbus address ‘ ‘
" address_window the size of the memory region to be accessed.
data_type ~ may be 8, 16 or 32 signifying the expected data val-
: ue width.
address_type may be 16, 24 or 32 signifying the expected address
| | width.

lower_address may be 0,1,2 or 3 to set lower address bits for this
access. :

mux_£n The byte mux function to be applied to data values

from this region

This routine sets up a memory region for master accesses by programming the ma-
pram appropriately. It also enables the byte multiplexor function. Regions of
memory accessible via master access across the VMEDbus are multiples of 1Mbyte

turnon_vme_master
int turnon_vme master()

This routine enables mastermode accesses for all memory regions whose ma-
~ pram master enable bit is set.

~ turnoff_vme_master
int turnoff vme master()

This routine glbbally disables mastermode accesses, overriding the mapram mas-
ter enable bits.

send_vme_ihterrupt ’
int send_vme_interrupt(int int_level)
int_level VMEDbus interrupt number between 1 and 7 inclusive.

This routine generates an interrupt on the VMEbus interrupt line specified in the
parameter. :

e -
i
[Tt

PN



RS
I-ﬁwn

IMS B016 VMEbus master card 35

prog_vme_interrupt_vector
int prog_vme_interrupt vector(int int_level,int vector)

int _level - s the level of VMEbus interrupt between 1 and 7
whose vector you wish to program.
vector the vector number between zero and 255 to be asso-

ciated with this interrupt. Not all vectors are available
| for re—allocation.
This routine is used to specify the interrupt vector number used when an specific

VMEDbus interrupt is acknowledged. This vector number is used to associate a spe-
cific handler with the interrupt using routines in the event library.



36

4.7 RTC library

One of the support devices on the IMS B016 card is a Real Time.Clock chip. This
is an autonomous time-keeping device with a resolution of 1/100 second. If the
card is supplied with stand-by power, then this device will maintain timekeeping
even during power and programming cycles of the other hardware. The routines
in this library allow setting and reading of the clock registers as though they were
expressed in ANSI C time format. The routines therefore operate with parameter
types of time_t as defined in <time.h>. Time in this regime is expressed as the
integer number of seconds since 1st Jan. 1970.

The source code for this library is in the file $INSTALL/1ibs/rtc.c and the
header file associated with its use is $INSTALL/include/rtc.h.

rtc_settimeofday |
time_t rtc_settimeofday(time_t *time);
time pointer to time value

The time value given is programmed into the clock chip and the time cycle is
started. The clock will be maintained from this point unless stand—by power is re-
moved.

rtc_gettimeofday
time_t rtc_gettimeofday(time t *time);
time pointer to time value |
The current time value maintained by the clock is returned.




-

IMS B016 VMEbus fnaster card , ' 37

48 Eventlibrary

Although the transputer does not directly support a vectored interrupt scheme, the
large number of interrupt sources in the VMEbus environment make such a
scheme very desirable. The routines in this library support a implementation of a
vectored scheme using a single high priority transputer process acting as a dis-
patcher. This mechanism gives an easy way to assign event handlers at run—time
to each source of interrupt. The source of interrupts is determined using the VIC
support features. The dispatcher function clears the generic control registers asso-
ciated with the generation of an interrupt, but specific event handlers must clear
the individual source of interrupt associated with their vector.

~ VMEbus errors are handled by a default bus error handler once the event handler

has been initialised, however a function is provided to substitute this for another
handler if required. Interrupt vectors with no associated handler routine are passed
to a default handler and the event dlspatcher attempts to clear the event by generic
actions. This should be avoided though, since if the interrupt does not clear, the
system may be held in a tight service loop in response to repeated events.

The source code for this library is in the file $INSTALL/libs/event.c and the
header file associated with its use is $INSTALL/include/event.h.

start_event_handler
int start_event_handler();

This routine initialises the interrupt vector table and installs the high priority dis-
patch process. It also initialises some default handlers in pre-specified vector
slots. The pre—defined vector numbers for particular handler functions are:

" VECTOR_PEX 11

VECTOR_DUART 12
VECTOR BERR 9
VECTOR_RTC 10
VECTOR_ACFAIL 16
VECTOR_WRITEPOST 17
VECTOR_ARBTIME 18
VECTOR_SYSFAIL 19
VECTOR_INTACK 20
VECTOR_ICMSO 4
VECTOR_ICMS1 5
VECTOR_ICMS2 6
VECTOR_ICMS3 7
VECTOR_ICGSO0 24
VECTOR_ICGS1 25
VECTOR_ICGS2 26
VECTOR_ICGS3 27
VECTOR_INT_1 28
VECTOR_INT_2 29
VECTOR_INT_3 30
VECTOR_INT_4 31
VECTOR_INT_5 32
VECTOR_INT_6 33
VECTOR_INT_7 34



38

install_vme_int_handler
int 1nsta11 vme_int handler(int level int vector,void
(*rout:.ne) ())
level . The VMEbus interrupt level to be serviced.

vector The vector number which will be generated by lnter- ,
' rupt when |ssued

(*routine) () Function pomter to the interrupt handler routlne to be
- called. . .

This routine is called to install an interrupt handler routine for a VMEbus interrupt

and programs the VIC to receive interrupts at that interrupt level. Ifthe vectoris not
available, the routine will return a non—zero value. Locally generated interrupts can
require some different setting up to VMEbus interrupts. Therefore separate han-
dler install routines are prowded for the local DUART and bus error mterrupts

install _vme_int_ack_| handler P
int 1nstall_yme_;nt;eck_handler(void (*routine) ())

(*routine) ()  Function pointer to the interrupt handler routine to be
| called on the occurrence of the interrupt.

This routine is used to install an interrupt handler routine which is called when a
remote board acknowledges a locally generated VMEbus interrupt. A default han-
- dler is installed initially that simply resets the appropriate VIC register. This routine
allows the installation of a handler that adds additional user functionality.

install_duart_int_handler
int install duart_int handler(void (*routine)())

(*routine) () Function pointer to the interrupt handler routine to be
called when the DUART interrupts.

This routine is used to install the interrupt handler for local DUART interrupts.

~install_berr_handler
int install berr handler(void (*routine) ()

(*routine) () Function pointer to the interrupt han-
dler routine to be called on local bus

errors.

This routine is used to install a handler routine for bus error interrupts. Bus error
control registers are in fact cleared by the default berr handler, therefore this rou-
tine allows setup of explicit user handling of the fact that a bus error has occurred.
As an alternative, the default berr handler can be used and user software may poll
the public variable berr_happened which gets set to TRUE on a bert This flag
should be explicitly reset each time it is found set by user code.




~ IMS B016 VMEbus master card - 39

give next_vector ‘
int give next vector(int vector, void (*routine) ())

, vector Start vector number for search.
(*routine) () Function pointer to the interrupt handler routine to be
. installed.

This routine installs the handler function in the next available vector above the giv- -
en value and returns the vector number If this is not possible it returns a negative
value.

ask_to_ use vector
int ask_to_use_ vector(int vector, v01d (*routine) ())

vector vector number to test.
(*routine) () Function pointer to the interrupt handler routine to be
installed.

Th|s routine will program the function pointer into the vector table at the specified
position unless that vector number is already taken, when the routine returns a
non-zero value.

4.9 DUART library

The IMS B016 supports serial /O using a DUART device. The routines i in this li-
brary can be used to program this device and support its use in interrupt driven 1/O .
operations with or without flow control. The library therefore depends on the opera-
tion of the event library previously described.

The source ¢code for this library is in the file $§INSTALL/1ibs/duart.c and the
header file associated with its use is $INSTALL/include/duart.h.

Incoming and out—going characters for the /O routines are stored in circular buff- -
ers of lengths defined in the header file. The flow control characteristics, given by
XON-XOff handshakes, are also set by margin values, also in the header file.

Most routines in this library come in pairs — one for the A port and one for the B port.
The two channels work completely mdependently after initialisation is complete.

duart_init 7
‘void duart_init()
This routine initialises the DUART handler, installs the interrupt handler routines

and sets up the buffer management processes. It must be called after the event
handler code is initialised, but before any other use of the DUART library routines.

duart_use_xon_a/b

void duart use_xon_a(int use)

void duart use xon b(int use)
This routine is used to switch on and off Xon/Xoff flow control for the ports. If the
parameter value is TRUE then flow control will be used, otherwise not.



40

duart_write_a/b
void duart write a(char *text)
void duart_write b(char *text)

This routine outputs a null terminated string given as the parametér The maximum - 1
Iength for this string is 255 characters. The routme will block if there is insufficient o

room in the output buffer.

duart_putchar_a/b
int duart putchar_a(char c)
int duart_putchar_b(char c)

This routine outputs a smgle character on the serial port. The routine will block if
there is insufficient space in the output buffer.

duart_getchar_a/b
char duart getchar_ a()
char duart getchar b()

This routine accepts a character from a serial port and will walt untiloneis recelved
The character is not echoed or interpreted in any way.

duart_setup _
int duart setup(int parameter, int value)
parameter key value to sub—def ine function to be setup B
value value of option M"?é

This routine is used to setup the various parameters of the IMS B016 serial ports.
After the initialisation function is called, the ports are in a reset state. In calling this
setup routine the ‘parameter value specifies what function is set and what signifi-
- cance, if any, should be attached to the value parameter.



IMS B016 VMEbus master card o 41

‘Parameter’ may take any of the following values:

DUART_TX_BAUD_A
DUART_TX_BAUD_B

. DUART_RX_BAUD_A

¥ DUART_RX_BAUD_B

o DUART_DATA_BITS A
DUART DATABITS B
DUART_STOP_BITS_A
DUART_STOP_BITS_B
DUART_PARITY_A
DUART_PARITY B
DUART_ENABLE_TX_A
DUART_ENABLE_TX B
DUART_ENABLE_RX_A
DUART_ENABLE_RX B
DUART_RESET_ERROR_A
DUART_RESET_ERROR_B
DUART_RESET_TX_A
DUART_RESET_TX B
DUART_RESET RX A

DUART_RESET_RX B

The defined values for setting the baud rates, stop bits and parity functions are pro-
vided in the header file. The reset and enable commands take no value parameter.



42

410 ROM library

The IMS BO016 is fitted with re—programmable ROM devices - Flash ROMs. The

board includes all control circuitry to re—program these devices in situ, and this li-

brary supports this process. The programming voltage required for this (VPP) must - -

be controlled explicitly and must be enabled via the appropriate board jumper.

There is insufficient power to program all 32 data bits at once and so the program-

- ming routines select an individual byte—wide ROM (0-3) as well as an address of
the 32 bit word in which this byte is found. .

Note that the ROM address space on the IMS B016 is based at transputer address
0x7fe00000. If the physical ROMs fitted occupy less address space than this, then
the data will repeat through this address space to the top of transputer memory.
If you are programming an IMS B016 to boot from ROM, then the topmost word
in the memory space must contain a jump vector as described in the toolkit manual.

The source code for this library is in the file $INSTALL/1libs/rom.c and the
- header file associated with its use is $INSTALL/include/rom.h.

reset_rom ,
void reset_ rom()

This routine initialises all ROM devices to a known read only state and turns off any
programming voltage.

blank_check_rom
int blank check_rom()

This routine searches the contents of the ROMs and returns a code indicating their
programming state. Oxff is returned if they are blank (i.e. all bytes are unpro-
grammed), zero is returned if they are fully programmed (i.e all locations are ze-
roes). If the ROMs are found with any other value, the function returns with the ad-

- dress of the first inconsistent address.

turnon_vpp
void turnon_vpp()

This routine turns on the 12 volt VPP power generator. There is a small delay built

into this routine after turning the supply on in order to allow voltage to stabilise.

turnoff_vpp
- void turqofﬁ_ypp()

This routine turns off the 12 volt VPP power supply.

find_rom_size
int find rom size()
This routine returns the size in bytes of the ROMs. It does this by reading the device

| code of the chips to establish their capacity. intel and AMD parts are recognised.

i



IMS B016 VMEbus master card 43

read_rom_device_code

int read_rom_device_code(int which_rom)

which_rom selects the ROM (0-3) for this operation
This routine returns the single byte device code each ROM on the board. VPP must
be on for this to work.
read_rom_ma’nf__code

int read rom manf_ code(int which_rom)

‘which_rom selects the ROM (0-3) for this operation

This routine returns the single byte manufacturer code of each ROM on the board.
VPP must be on for this to work. '
rom_read_mode

void rom read mode(int which_rom)

which_rom selects the ROM (0-3) for this operation
Thirsk routine sets the selected ROM into read mode. VPP must be on for this to
work.

program_byte
' int program byte(int which_rom,int address,int data)

which_rom selects which byte wide ROM to be programmed
address address of word to be programmed |
data i byte of data to be programmed

This routine programs the byte in the lower 8 bits of the data parameter into the
selected ROM at the specified address. A non-zero value is returned if the opera-
tion fails. VPP must be on for this to work.

erase_rom .
int erase_rom(int which_rom)
which_rom _selects the ROM (0-3) for this operation

This routine erases the selected ROM. A non-zero value is returned if the opera-
tion fails. VPP must be on for this to work.



44

4.11 CLllibrary

To support the creation of a useful command line driven monitor program, a library
of utility functions is included and used within this software package. The library
implements a command language as described in Appendix D and is extensible
and configurable as shown within the IMS B016 monitor.

The source code for this library is in the ﬂlé‘$INSTALL/ cli/clilib.c and the
header file associated with its use is $INSTALL/include/clilib.h.

The example monitor code demonstrates how the basic language can be used in
different environments and with different command sets. All commands required
in a given environment can be built out of library procedures offered by this module
and described below. ,

The command line parsing routines use a structure of type parse_t which car-
ries information about the current line and the state of parse operations. The struc-
ture is defined in the header file. The implementation also defines various types
of symbolic variable, and keeps a table of such variables organised as a stack.

init_pars ‘ ,
void init pars(parse_t *pars_p, char *new_line_p);
pars_p pointer to structure which will be initialised to perform
parsing of a new line. '
nev_line_p new string to be deComposed.

Initialises parse structure with a fresh input line. By declaring and initialising muliti-
ple parse structures several different lines can be parsed together. '

get_tok
short get tok(parse t *pars_p, char *delim p);
pars_p pointer to structure defining current line of interest
’ and parse position. y
delim p string containing a set of characters that will be al-

lowed to terminate a token.

This is the fundamental parsing routine within the library. It allows the decomposi-
tion of the current line into tokens delimited by specified characters. The call is
made with an initialised or previously used parse structure and the function ex-
tracts the next set of characters on the line ending in one of the given delimiter char-
acters. A token is also terminated by reaching the end of current line. All details
about the fresh token are returned in the updated parse structure. The function also
retums the length of the token found, not including the delimiter Tokens found can
span pairs of matched double quotes, and matched numbers of opening and clos-

ing brackets.




IMS B016 VMEbus master card | ' 45

assign_value
boolean assign_integer (char *token_p, long value, bool-
ean constant);

boolean assign float(char *token p, double value, bool-
ean constant);

boolean a551gn string(char *token_ p, char *value, bool-
ean constant);

token p a name for a new or existing symbol.

value a new value for the symbol (of each type)

constant for a new symbol, makes the value un—-modifiable if
true.

These routines create and assign values to symbols of integer, floating point and
string types. The routine will return TRUE if the assignment cannot be perfonned
This could be the case if a symbol exists but is a constant, or a new symbol is to
be created but the name would clash with an existing symbol.

register_command

boolean register_ command(char *token_p, boolean (*ac-
tion) (parse_t*, char*), char *help_p);

token_p | name of new command procedure
(*action) () routine to be called when command is recognized
help p - short help string associated with the command

This routine allows the programmer to add command procedures to the language
and provide simple help facilities for them. The command procedure will be called
with a parse structure containing the line in which it is referenced and a possible
symbol name to which it can assign a value.

evaluate_value ) >
boolean evaluate integer(char *token p, long *value_p,
short default base);
boolean evaluate_ float(char *token_p, double *value_ p);

boolean evaluate comparlson(char *token_p, boolean *re-
sult p, short default base);

boolean evaluate_string(char *token_p, char *string p,
short max_len);

token_p token containing possible value or expression
value_p pointer to variable-in which to return result
max len maximum length of string result

default_base default number base with which to interpret integer
numbers



46

This set of routines allows an arbitrary string to be examined and decomposed in
an attempt to resolve a single value from its structure. The input may vary from a
simple constant number to-a.complex nested expression involving symbol refer-
ences. Each routine will look for unique characteristics to determine the type of the

possible value. The functions will return TRUE if the string could not be resolved

to a value.

cget_value
boolean cget_string(parse_t *pars p, char *default p,
char *result p, short max len);
boolean cget_ integer(parse_t *pars_p, long default,
.long *result p);

boolean cget float(parse t *pars_p, double default,
double *result p);

boolean cget 1tem(parse t *pars_p, char *default, char
*result p, short max len);

pars_p pointer to structure defining current line of interest
and parse position.

default- A value to be returned if the parameter is mlssmg or

‘ ... . _inerror

result p - A pointer to a variable in which to return the result

m len The maximum length for string results

Building on the evaluatlon routines described above, these functions attempt to
find a token on the current line and resolve a value from it. The current position on
the line is advanced during each call. The delimiters used for these functions are
a default set including white space, commas and backslashes. If a partlcular type
of parameter is expected for a command, the appropriate routine is called and it
returns a value. This value could be the given default, if the parameter was not
present, or the result of an evaluation operation as above. The routines return
TRUE if a parameter was found on the line but it could not be evaluated. If no pa-
rameter was found, then no error is returned. :

print .
~ void print(const char* format, R B
format ~ format string as used by ‘printf’ etc.

variable list of pn'nted values

This function performs formatted output using standard facilities, but does not write
to the standard /O stream. It uses instead a user supplied function
io_write(char *string) which can be supplied for any 1/O device.

i
Tyn.
‘

3
g




AT
S0
v B

IMS B016 VMEbus master card | 47

tag_current_line -
void tag_current_line(parse t *pars_p, char *mes-
sage_p); , ‘
pars_p ~ pointer to structure defining current line of interest |
and parse position.

message p error message string | |

The explicit way to generate an error message for the current input line. The input
line is echoed and the current position, assumed in error, highlighted.

cli_main
void cli_main(boolean (*Setup;r)(), long max_symbols,
- short default_base, char *ip_prompt p,
char *file_p); :
(*setup_r) () pointer to a routine that adds user commands and
variables. :

max_symbols defines the size of the symbol table that will be need-
ed at run-time.

default base the initial number base forkinteger input and output.
ip_prompt p the prompt string to use for interactive input
file p ~ the name of an initial file of commands to be ex-

| ecuted or NULL.

This is the entry point of the command line code. It allows for the calling of a user
setup routine which can have any content, but is expected to register commands
and create variables. It also optionally allows for a named file of commands to be
executed at start-up. The size of the symbol table should include an estimate for
the depth of macro calls which will be employed. ‘ -



48




<,

49

5 Detailed hardware
description

5.1 Using the IMS B016
For the majority of users it is intended that IMS FOO8A should prowde all the facili-

ties reqmred for applications programming. This chapter gives low level hardware

programming details for users who are either modifying IMS FOO8A code for thelr
own purposes or writing configuration code from scratch.

5.2 Pi'imary control registers

The primary control registers are only accessible by the IMS T801 and appear in
two possible places in the memory map. The primary position is from #7FDC0000,

while a secondary address at location zero is provnded for compatibility with other
transputer boards and TRAMs (table 5.1). This region of the address space is often
required for VMEbus addressing and on the IMS B016 can be disabled by writing
a one to the register as indicated in table 5.1.

The primary control registers are accessed as memory locations as shown in table
5.1. Bit 0 is the only active bit in these registers. The other bits are undefined when
read and must be written as zero. These registers contain the traditional “subsys-
tem” registers as found on other transputer cards; control bits for the MAP-RAM
and decode ram; enable control bits for VMEbus master and slave cycles and Byte

Multiplexor control registers.



50

Function

Address Register
#7FDC0000 Subsystem Reset/Error |Write ‘1’ to assert notSubReset sig-
E , nal on P2.
Read bit 0 to sense level of
o notSubError signal on P2
#7FDC0004 Subsystem Aalyse Write ‘1’ to assert notSubAnalyse
: sighal on P2.
#7FDC0040 Enable VMEbus Slave | Write bit 0 to allow other VMEbus
- Accesses MASTERSs to access IMS B016’s
dual access DRAM as SLAVE
|memory. Note that decode RAM
and VIC must be setup first.
#7FDC0O044 Enable Byte Multiplexor |Write bit.0 to enable the byte multi-
plexor function. When disabled, all
data passes through byte-mux un-
affected. \
1#7FDC0048 Next Cycle is to the Map |Indicates a write to MAP~-RAM is to
, ' RAM occur next.
#7FDC0O04C Next Cycle is to the Indicates a write to slave VMEbus
Slave Decode RAM decode RAM is to occur next.
#7FDCO050 Do not Map these regis- {Disable decode of these primary
' ters to address zero registers at address #000000
—useful for accessing that address
region as VMEbus memory in-
. stead.
#7FDCO054 Enable VMEbus Master |Write ‘1’ to allow VMEbus master
_ Accesses operation.

53 VMEbus MASTER configuring

Configuring for VMEbus MASTER access requires the MAP-RAM, Byte Multiplex-
or, VIC and primary control registers to be setup correctly. Generally one would
program the MAP-RAM first, then the Byte mux (if required), then the VIC and final-

Table 5.1 T801 Primary Control Registers

ly enable master operation by setting bit 0 in the register at address #7FDC0054.

5.3.1 MAP-RAM

The MAP-RAM contains control information for every address which can be gener-
ated by the IMS B016's IMS T801 transputer. For every IMS T801 cycle, the MAP-
RAM produces a set of control information which is used to determine how the vari- -
ous parts of the board’s circuitry behave. For instance the MAP-RAM determines
what kind of VMEbus cycle will be performed when the transputer attempts to per-

form a VMEbus master cycle.



IMS B016 VMEbus master card | 51

The MAP-RAM has an entry for each memory page . Pages are one megabyte in
size and so it is impossible to have different MAP-RAM entries for two addresses

unless they lie on different megabyte pages.

The MAP-RAM needs to be initialised at system start-up to contain the correct in-
formation for the application. Because of the way the MAP-RAM is written, it is un-

- wise to attempt to change it\sICOntents after this point.

MAP-RAM entries are written as follows:
1 Wirite a “Qne" into tﬁe “Next Cycle is to MAP-RAM" control register.

2 The very hext cycle must be é write to the address of the MAP-RAM page
to be programmed. The data for the 12 MAP-RAM bits must be located in
bits 4-15. _

Note that the address written to is in fact the address to which the MAP-RAM entry
refers. For instance, if you wished to set up the. MAP- RAM entry for addresses
#01000000-#01100000 (one megabyte), then you could write your MAP-RAM
contents to any address in that range. Note that addresses
#80000000—#80001000 are the IMS T801’s internal RAM and registers and so
no MAP-RAM configuration cycles can be performed to these addresses. For con-
sistency, it is recommended that the last address in the page is always used.

It is most important that there are no IMS T801 memory cycles performed between
steps 1 and 2 above. Examples of situations which would break this rule are:

. Runnmg multlple tasks on the transputer—execute this code at high priority.

. Runmng the code which does the initialisation of the MAP-RAM from ROM
or any other memory apart from on-chip RAM. Note that this does not pre-
vent ROM booted programs from configuring the MAP-RAM, one would ar-
range for the relevant code to execute from internal RAM.

o Compilers which perform “constant caching”~that is, code is written which
specifies that a constant (usually located alongside the program code) is
to be written to the MAP-RAM; but the compiler actually stores the constant

~ into atemporary Iocatlon because itis used multiple times in the same pro-
gram-segment

IMS FOO8A routine write map ram() achieves these conditions by copymg a

code fragment into internal RAM "and jumping to it. Users may wish to examine the
source code. This technique is tuned to the requirements of INMOS’ toolset ‘C’

compiler and other compilers may need a different approach.



52

The MAP-RAM controls thefollowing aspects of the board's behaviour:

o Whether the page is allocated as VMEbus address space. You can restrict
which address regions will, when accessed by the IMS T801, cause VME-
bus master cycles to be initiated. The MAP-RAM pages for addresses defi-
nitely not to be used for VMEbus access should have the VMEbus Master
Access Enable bit cleared otherwise strange things can happen. The best

‘way to ensure that this is the case is to have initialization code clear the
complete MAP-RAM contents before programming any MAP-RAM pages
with valid contents. |

e The VMEbus address modifier codes produced when the board preforms
VMEbus master cycles. This is controlled by two MAP-RAM bits, working
in conjunction with other control bits in the VIC registers. It is possible to
make the board generate all the usual address modlf ier codes and any us-
er-defined onesS.

For most applications, itis sufficient to program these two bits to 0,0 for “‘User Data
access”.

¢ The value presented on the lower two VMEbus address lines during D08
and D16 cycles. Since the IMS T801 has no way of generating the byte and
word cycles available on Motorola M68000 series processors, all VMEbus
master cycles are seen by the transputer as 32-bit memory accesses. One
consequence of this feature is that the IMST801 only produces 30 bits of
address bus. The MAP-RAM supplies the one or two lower address lines
for the VMEbus.

In use, these MAP-RAM bits allow different pages to be programmed such that the
transputer can perform a BYTE(0—1) access using one page and a BYTE(2-3) ac-
cess using another. The two pages would actually cause VMEbus transfers to the
same slave. Similarly, four pages can be usedto access all four different bytes from

a D08 slave.

3.

VMEbus address modifiers are basically five extra address lines which are used to indicate certain
things about the bus cycle in progress. The value present on the address modifier lines is called an
address modifier code . The codes defined in the VMEbus specification specify the type of address-
ing (A32/24/16), whether a block-transfer is beginning, whether the CPU initiating the transfer is run-
ning in user or supervisor state and whether the access is a code or data access. Since the transput-
er does not currently have either a user or supervisor state and does not give an external indication
of data and code accesses, the MAP-RAM can be used to generate this information.




IS B016 VMEbus master card | )

This means that one can only usefully perform D08 and D16 transfers in the ‘A16
and A24 address spaces. Hopefully this is not a practical restriction.

¢ The VMEbus data size. This can be selected to be D32, D16, D08 and
THREE-BYTE. This is selected by MAP-RAM bits 10 and 9 as follows: 0,0
for 32-bit, 0,1 for 8-bit, 2,0 for 16-bit and 1,1 for 24-bit. For those interested
in the full story, these bits are connected to the VIC S1Z1,0 pins.

o The VMEbus address space used for master transfers. This can be
A16,A24 or A32. Bits 8 and 7 in the MAP-RAM control the address size as
follows: 0,1 gives A32, 1,1 gives A24 and 1,0 gives A16. Again, for those
interested in the full story, bits 8 and 7 are connected to the VICs ASIZ1
and ASIZ0 respectively. :

e The particular swap-function performed by the Byte Multiplexor for this
page. Note that this field applies to all transputer accesses (except to the
private SRAM and primary control registers), not just to VMEbus cycles.
The three byte multiplexor control bits feed the set number selects to the

“multiplexor, provided that the byte multiplexor enable bit in the primary con-
trol registers has been set. . ‘

5.3.2 Configuring the byte-multiplexor

The behaviour of the byte-multiplexor is controlled by a bit in the primary contrbl
register and by a set of multiplexor control registers.

“The register is at address #7FDC0044. Writing “1” enables the byte multiplexor.
This bit is cleared on board reset and should be set after the multiplexor control

registers have been configured., '

For the purpose of conﬁguring the ‘byte muiltiplexor, the local and board databuses
are subdivided into four-bit groups and numbered as shown in table 5.3.

Bit |Function

4 |Byte Multiplexor control bit 0

5 | Byte Multiplexor control bit 1 -
6 |Byte Muiltiplexor control bit 2
7

8

9

VMEbus Address Size control bit 0
VMEbus Address Size control bit 1
VMEbus Data Size control bit 0

10 |VMEbus Data Size control bit 1

11 |VMEbus Address bit 0

12 |VMEbus Address bit 1

13 |VIC Function Control bit 1

14 |VIC Function Control bit 2

15 |VMEbus Master Access Enable bit -

Table 52 MAP RAM Control Bits (Note bits 4—15)




Bus and Bit Group Multiplexor Number
Local bits 0-3 0
Local bits 4-7 | 1
Local bits 811 2
Local bits 12-15 3
Local bits 16—-19 4
|Local bits 20-23 5
Local bits 24-27 6
Local bits 28-31 7
Board bits 0-3 8
Board bits 4-7 9
Board bits 8-11 10
Board bits 12-15 1
Board bits 16—19 12
Board bits 20-23 13
Board bits 24-27 14
Board bits 28-31 15

Table 5.3 | BUs Numberihg for BYte Multiplexor

The Multiplexor Control Registers (see table 5.4) contain a field for each of the
four-bit groups as defined in table 5.3. The bit patterns stored in the Muitiplexor
Control registers represent the source bit groups for each. of the destination bit

groups.

Theré are eight sets of multiplexor control registers (one for each muitiplexing set-
up as selected by the MAP-RAM) and the “x” in the addresses in table 5.4 should
be replaced by “8” plus the set number (0-7).

Address Bits 26-31 | Bits 24-27 | Bits 20-23 | Bits 16-19
#7FDC00x0 12 8 ] 0
#7FDCO0x4 13 9 5 1
#7FDCO0x8 14 10 6 2
#7FDCO0XC 15 1 7 3

Table 5.4 Multiplexor Control Registers

Note that the configuration registers occupy bits 16-31 of the local databus and
that they are never subject to any multiplexing themselves. The registers are also
readable although the data returned on bits 0—15 is undefined.



IMS B016 VMEbus master card B 55

5.3.3 Bus Error

The card takes the bus error signal and converts it to a local interrupt. Circuitry
latches a bus error and asserts VIC local interrupt number 1. Thus, with appropri-
ate programming, the IMS T801 and the application program may be alerted to a
bus error. The IMS T801 cycle which resulted in the bus error'ed VMEbus transac-
tion completes. Data read will be meaningless.

After the application program has picked up the interrupt relating to a bus error, the
latch circuit should be reset by writing #100 (bit 8) to address (#7FD98000).

5.4 VMEbus SLAVE configuring (Dual-Access DRAM) |

Configuring for SLAVE VMEbus accesses to the Dual-Access DRAM involves the
decode-RAM, the VIC and the primary register at address #7FDC0040 which en-
ables slave operation. ‘

5.4.1 Configuring the VMEbus slave decoder

The decoding of which addresses the IMS B016's dual-access DRAM appears at
inthe VMEbus address spaces is performed by a programmable circuit based on

a very fast RAM. The RAM has 65536 locations of one bit each. Decoding is per-
formed by presenting the top 16 VMEbus address bits to the decoder. If a “one”

is stored in the RAM location corresponding to that address then the board re-

sponds to the access. A bit in the primary control registers enables/disables all de-

coding and this bit is cleared on board reset. This means that the random contents

of the decoder RAM at power-on do not cause spurious decoding.

Programming of the decoder is similar to the programming of the MAP-RAM and
the same condltlons as to code placement apply One should proceed as follows:

1 Ensure that the decoder is disabled by writing a zero into the Enable VME '
Slave Decode register.

2 Foreach of the 65536 64K byte Address pages perform the following oper-
ation:

e Write “1” into the Next Cycle to VME decode RAM register (address
#7FDC004C). | |

e Immediately perform a write cycle at the decode address. Write “2”
(bit 1) if that page is to be decoded or a zero if not.

3 After configuring the VIC (if necessary), enable VMEbus decoding by writ-
ing aone to the Enable VME Slave Decode register (address #7FDC0040).

Of course this is describing a program running on the IMS T801, it is not poSsibIe
to program the decoder from the VMEbus. This decoding scheme allows multiple



56

decoding regions in the address space as well as *holes"” to avoid clashes with oth-
er cards. It also allows a VMEbus decode region which is much smaller than the
dual-access DRAM (as small as 64K bytes). This can be useful when it is desired
- to provide some privacy and protection for most of the DRAM while still allowing

intercard commumcatton and data sharing.

542 VIC Programming for slave access
VIC registers should be programmed as follows for slave accesses:
1 Local Bus Timing Register (address #7FD900A4) should contain #73.

2 Slave select 1 Control Register 1 (address #7FD900CC) should contain
#11.

3 Slave select 1 Control Register 0 should have bit 7 set to enable slave wri-
teposting. Bit 5, when set restricts access to “supervisor” transfers. Bit 4
must be set. Bit 3 should be clear. Bit 2 should be set to recognise A24 ad-
dresses, clear for A32. Bit 1 should be clear and bit 0 should be set if BLT
transfers are to be accepted Note that bit 6 should be preserved as it re-
lates to master operation. e

User-defined address modifier codes can be recognised by programming the AM

code into the Address Modifier Source Register (address #7FD900B4) and pro-
gramming bits 2 and 3 of Slave select 1 Control Register 0 to 1,1.

5.5 System controller functions

The VIC can perform all the normal VMEbus system controller (or solt 1) functions.
These include SYSCLK driving, bus arbitration, IACK daisy-chain driving and bus
timeout. A card performing system controller functions (that is one which is in-
stalled in slot 1), should have jumper K3 installed.

Functions associated with arbitration and bus timeout are programmable via the
VIC. Bit 7 in the “Arbiter and Requestor Configuration Register’ (at' address
#7FD900B0) should be set to select prlorltyarbltratlon If cleared, round-robin arbi-
tration will be selected. Note that the remaining bits in this reglster should be pre-
served as they relate to other master functions.

L

i
o
&4



IMS B016 VMEbus master card : ' 57

- Bits 5-7 of VIC “Transfer Timeout” register select the VMEbus timeout delay ac-

cording to the following table:

Bit7 | Bit6 | Bit5 | timeout

(us)

0 0 0 4

0 0 1 16

0 1 0 32

0 1 1 - 64

1 0 0 128

1 0 1 256

1 1 0 512

1 1 1 Infinite

5.6 VMEbus interrupter

VMEbus interrupts can be generated by writing to VIC “VMEDbus Interrupt Request/
Status Register” (at address #7FD90080. Write a bitfield with bit O clear and
bits 17 set if an interrupt should be generated on any of those VMEbus interrupt
levels. The VIC will recognise the interrupt handler’s status/ID read cycle (vector

fetch) and clear the outstanding VMEDbus interrupt. The status/ID byte retumed by

the VIC at this time is programmable in the VIC's “VMEDbus Interrupt Vector Regis-
ters 1-7" (at addresses #7FD90084—#7FD9009C). ;

The VIC also provides the capability to interrupt the IMST801 when an interrupt
handler performs a status/ID read cycle for a pending VMEbus interrupt which was
generated by the card. :

5.7 Interprocessor communications registers

There are eight Interprocessor Communications Resigters in the VIC. These are
accessible from the VMEDbus using the VMEbus data lines D07-D00 or from the
IMST801 using VIC register accesses in the address range
#7FD90060~#7FD9007C. From the VMEbus, the ICR's respond to address modi-
fiers #2D and #29 and with A05,A04 = 0,0. Address bits 06 and 07 are don’t care
and bits 08 to 15 are programmed accordmg to the HEX switches on the card (see

sectlon 3.1)

Reglsters 04 are general purpose dual port reglsters Register 5 is a dual port
read-only |D register to identify the VIC and its revision level. Register 6 is amodule
status register which is read only from the VMEbus and contains bits as shown in
table 5.5. Register 7 prowdes semaphores for registers 0—4 and several system ,
control functions as shown in table 5.6.



58

Bit position- |Function ,
7 | | This bitis read only from the VMEbus and IMS T801. Ona VME-

bus read a ‘1’ indicates that the board is in reset. On an IMS
T801 read, the value of VMEbus signal ACFAIL is retumed.

6 This bitis read only from the VMEbus and can be read or written
by the IMS T801. The VIC will set this bit upon assertion of card

whenever this bit is set.

5--0 These bits are read only from the VMEbus and can be read or
written from the IMS T801. The VIC will set these bits on certain
error conditions which are not usually relevant to the IMS B0O16.

Table 5.5 Interprocessor Communications Registér 6 Functions

Bit position |Function |
7 A This bit allows masking of VMEbus signal SYSFAIL. A ‘1’ in this

~ bit location inhibits the VIC from assertmg SYSFAIL inresponse
to a zero in bit 6 of ICR6.

6 , This bit allows reset of the IMS B016 card from other VMEbus

cards. Writing a ‘1’ to this bit will assert card reset until this bit
is cleared or until a VMEbus SYSRESET orthe front panel reset

button is pressed.
5 . This bit indicates the status of the VIC as VMEbus master. Thls

4--0 These bits provide semaphores to interprocessor communica-
tions registers 4-0 respectively. Each bit is set when the corre-
sponding ICR is written. These bits can be read or written from
either the VMEbus or the IMS T801.

‘Table 5.6 Interprocessor Communications Register 7 Functions

The Interprocessor Communications Registers can be configured to cause local
interrupts (events) to the IMS T801. This is achieved by programming the “ICMS
Interrupt Control Register”, the “ICGS Interrupt Control Register”, and the asso-

ciated “ICGS Interrupt Vector Base Register” and “ICMS Interrupt Vector Base

Register”. A full description is outside the scope of this manual and users are di-
rected to read the VIC Specification, [7].

57. Interrupts o

Many different things can cause an interrupt condition. All these are signaled
through the VIC and cause the IMS T801 event pin to be asserted. Since only one
process may wait on an event at a time, a suitable process needs to pickup the VIC
interrupt vector to determine what caused the event. The vector is read from a ‘pe-
sudo reglster" at address #7FDA0004. The complete list of. p053|ble interrupt
sources is as follows:

reset. If bit 7 of ICR7 is zero, the VIC will assert SYSRESET

bit will have the value ‘1’ if read while the VIC is VMEbus master. | |



IMS B016 VMEbus master card ' ‘ 59 .

1 VMEbus interrupts being handled by the card The vector is the statusllD
byte supplied by the VMEbus interrupter-card.

2 Bus Error. On the IMS B016, bus error asserts local interrupt number 1 tor ‘
the VIC. The vector is sourced from the VIC and should be programmed
in the local interrupt vector base register (address #7FD90054)

RTC interrupt signal which is connected to VI“C local interrupt number 2.
PEX interrupt signal which is connected to VIC local interrupt number 3.

DUART interrupt signal which is connected to VIC local interrupt number 4.

o o A~ W

Interrupts relating to Interprocessor Communications Switches, where the
vector is sourced from the VIC. \

7 Various error conditions such as bus error on a writeposted cycle, where
the interrupt vector is sourced from the VIC. ,

~ A short explanation of the circuitry used to generate events on the IMS B016 will
“help users understand the requirements of service routines.

All interrupts, both local from the on-board peripherals and BERR logic, and VME-

- bus interrupts, plus error interrupts generated by the VIC chip itself, are processed

within the VIC. The VIC chip produces one unified mterrupt output which is used

to event the IMS T801 as follows:

The IMS T801 has two event pins (EventRequest and EventAcknowledge). When
EventRequest is asserted, the processor schedules the process which is waiting
on event. When this process is started, the processor asserts EventAcknowledge.
The external circuitry can then disassert EventRequest. A subsequent re-asser-
tion of EventRequest will now result in the processor taking another event.

The IMS B016 has a state-machine circuit which generates EventRequest. This
circuit is present to convert the VIC interrupt signal, which is level sensitive, to an
edge sensitive signal for EventRequest. After an idle period, or reset, an interrupt
will cause EventRequest to be asserted. Once EventRequest is asserted, the cir-
cuit then looks for EventAcknowlege and when it becomes asserted it dis-asserts
EventRequest. Next the circuit waits for EventAcknowlege to be dis-asserted. Only
then will it wait for the clear-event signal (caused by writing'the value #100 the
relevant control register at address #7¥D90004). Finally, after the clear-event sig-
nal, the circuit reverts to the inactive state and the next interrupt may be processed.



60

This four-state interlocked scheme makes sure that each interrupt can only cause
one T801 event, provided that the user correctly removes the interrupt source be-
fore writing the “Clear event” register. The setup requirements for local interrupts
are as follows:

-1 Program the VIC interrupt control registers.

2 Program all VIC and VMEDbus vector registers such that every dlstlnct inter-
rupt source has a distinct vector.

3 Program the peripheral chips and possibly a PEX board to generate their
interrupts correctly.

4 Write to the Clear Event"register to_ clear any spurious event.
5 Enable all interrupts by writing to the VIC.

Now, when an interrupt is generated and therefore an event, the event process
“should perfom'l the following tasks: ‘

1 Determine the source of the interrupt by readlng the reglster at address
#7FDA0004 and disable or remove that interrupt by writing to the relevant

control registers.
2 Write #100 to the clear event register to clear the event circuitry.
3 Perform any other actions necessary for handling the interrupt.

4 Wait on the event again.

Note that‘MAP-RAM control bits 11 and 12 must be programmed to 1,1 for the ad-

dress region corresponding to the VIC registers for interrupts to function.

Users may find it useful to examine the source code for IMS FOOSA event library
routines as well as the DUART library code.

5.7.2 DRAM refresh

The VIC “DRAM Refresh” function must not be enabled. It is turned off at power-on
and reset and if enabled will cause the board to stop working.

5.8 Serial ports and DUART

The IMS B016's serial ports are provided via a Philips SCN2681 DUART device.
This part provides two independent asynchronous serial channels and on-chip
baud-rate generation. It is addressed between #7FD80000 and #7FD8003C and
appears in the lower byte of the databus. IMS FOO8A contains predefi nes for all
the DUART registers in the file $INCLUDE/ J.nclude/ duart.h.




IMS B016 VMEbus master card | | | 61

DUART serial transmit and receive signals, along with uncommitted pins OPO0, 1
and IP0,1 are buffered to EIA-RS232 levels (no filtering) and routed to pins on P2.
The buffering uses VMEbus +12V supplies, which must be present for the serial
port signals to function.

The DUART interrupt signal is connected to VIC local interrupt number 4. It shouid
be programmed to be level sensitive, active low.

Spare input and output bits available on the DUART chip are used to create three
extra “subsystem” ports. These signals are available on connector P2 (see fig-
ures 3.1 and A.1). Table 5.7 shows which DUART control bits correspond to which
subsystem port. Note that these three extra subsystem ports control bits in the
DUART use the logic level on the actual subsystem signals directly rather than per-
forming an inversion as in the “traditional” subsystem port. For instance, to assert

“notAReset, one would write a zero into the relevant control bit in the DUART.

DUART control Bit | Function
IP4 : notAError
IPS notBError
IP6 notCError
OP2 notAReset
|op3 notAAnalyse
OP4 ~ |notBReset
OoP5 notBAnalyse
OP6 notCReset
OP7 notCAnalyse

Table 5.7 Three Extra Subsystem Ports

- For DUART programming without the functions provided in IMS F008, the user is

directed to consult IMS FOO8A duart library functlons source code and to read the
SCN2681 Datasheet (Philips/Signetics).

5.9 Real-time clock

The IMS B016's real-time ¢lock function is provided via a National Serhiconductor
DP8572 RTC device.

The RTC contains a total of 61 8-bit registers. These are addressable as byte 1
(bits 8~15) of the 32-bit words at addresses #7FD88000—#7FD88080. An indirec-
tion scheme using bits in control registers allows more registers to be addressed
than are available in the memory map. A total of 33 bytes of non-volatile RAM are
available in the RTC.

RTC interrupt output is connected to VIC local interrupt number 2 and should be

programmed active low, level sensitive.



62

The RTC clock frequency is adjusted by means of the trimmer located adjacent to
the DP8572 chip. Local temperature and supply variations mean that it may be
necessary to re—calibrate the clock. This is done by first using a frequency counter
connected to pin 11 of the DP8572 and adjusting for 32.768kHz. Next, for exact

adjustment, run the clock for a period and note whether it runs fast or slow Make

fine adjustments to the trimmer to achieve accurate timekeeping. Note that the
clock may run at a slightly different frequency depending upon whether it is
supplied from the main or standby power supply. Most accurate timekeeping will
be achieved by performing the calibration when the clock is powered from the sup-
ply most commonly used. That is to say, if the equipment is usually switched off
at night then it would be best to calibrate using the standby power supply.

Address

Register.

#7FD88000
#7FD88003
#7FD88007
#7FD8800C
#TFD88010

Main status

Real-time mode

Output mode

Interrupt control 0/Periodic flag
Interfupt control 1/Time save control

#7FD88013 |100% second counter
#7FD88017 |Seconds.counter
#7FD8801C |Minutes counter
#7FD88020 |Hours counter
#7FD88023 |Day of the month counter
#7FD88027 |Months counter
#TFD8802C |Years counter
#7FD88030 | Units julian counter
#7FD88033 |100's julian counter
#7FD88037 |Day of week counter
#TFD8B04C |Seconds compare
#7FD88050 |Minutes compare
#7FD88053 |Hours compare
#7FD88057 |Day of month compare
#7FD8805C |Months compare
#7FD88060 |Day of week compare
#7FD88063 |Seconds time save
#7FD88067 |Minutes time save
#7TFD8806C |Hours time save
#7FD88070 [Day of month time save

aaaaaa




(o

;o
(£

IMS B016 VMEbus master card o 63

continued
Address Register

#7FD88073 | Months time save
#TFDBSOTT |RAM
#TFD880TC |RAMITEST

Table 5.8 Real-Time Clock Registers

Note that correct RTC operation is only possible with a supply connected to the
VMEDbus standby power rail on the backplane. This supply must be available atall .
times, including when the main +5v supply is present. ‘

For RTC programmmg without the functions provided in IMS F008, the user is di-
rected to consult IMS FOO8A RTC library functions source code and to read the
DP8572 Datasheet (National Semiconductor).

591 F-ROM

Four 32K x 8-bit Flash Memory devices, arranged as a 32-bit word, are addressed
between #7FE00000 and #7FFFFFFF (repeated eight times within that region).
This addressing is compatible with the IMS T801's BootFromROM behaviour,

which starts fetching code from #7FFFFFFC on reset. Jumper K1 is connected to
the CPU BootFromROM pin such thatwhen it is removed the IMS T801 will attempt

- to boot from ROM.

The devices are normally Intel 28F512 parts, although it is possible that larger me-
mories (up to 2Mbit) and devices from other manufacturers could be fitted. The
flash memories are soldered to the card and m-system programming is achieved
with the on-card VPP generator and a program running on the IMS T801 (which
for this purpose would be booted from one of its links).

Users wishing to program the flash memories without using the facilities offered
in IMS FOO8A should consult the device datasheet (28F512).

The programming voltage to the Flash memories is turned off at board reset. To
enable the VPP, write #100 (bit 8) into the “Enable Vpp"” register (address
#7FD98008). Similarly, VPP can be turned off again by wrltmg zero into this regis-
ter. Note that this reglster is readable but that.only bit 8 is valid on readmg Note
also that bit 8 reads the inverse of the value written.

When the VPP generator is enabled, read the “Read Vpp voltage sensor” register
(address #7FD9800C), If bit 8 is set then the VPP generator is functioning correct-
ly. Otherwise something is wrong with the VPP rail and Flash device programming
should not be attempted. Note that this status bit will not read a valid status unless
the VPP generator has been enabled first. :

At least 100ms should be allowed for VPP to stabilise after being enabled under
software control. Jumper K4 aIIpws_VPP to be permanently disconnected for extra



64

Flash memory contents security. However, damage to the devices or loss of con-
tents is extremely unlikely even with VPP permanently enabled. This is because
the correct programming enable sequences must be sent to the memories before
they will carry out programming operations. This means that it is entirely feasible
to use the.devices for non-volatile data storage. Note that the programming voltage
generator on the IMS B016 only provides sufficient power to program one FROM
at a time. Programming software must be written such that each FROM is erased
and programmed separately. |

IMS FOO8A contains routines and tools which support programming and erasing
from a host development system. :

5.10 PEX boards

Connector P3 allows one PEX card to be fitted to the IMS B016. The PEX interface
is addressed between #7FDB8000 and #7FDB803C and provides a set of byte
registers on the lower byte of the 32-bit word. The PEX interrupt signal is connected
to VIC local interrupt number 3. The PEX interface is very similar to a 68000 bus.
'Full details of the interface are available in the “PEX Bus Specification” from Rad-
stone Technology Ltd.

5.11 Mechanical and thermal details

The IMS B016 is designed to accord with DIN 41494 and IEC 297 standards. The
board is nominally 160mm by 233.35mm. Nominal board thickness is 1.6mm. The
supplied front panel width is 4HP (aprox 20mm). This is compatible with a board-to-
board pitch in a card cage of 0.8". M2.5 fastening bolts are provided on the front
panel, these mate with tapped holes in the card cage and fix the board securely.
Front panel handles allow the board to be removed from the card cage (by un-
screwing the retaining bolts and pulling hard on the handles). Note that the front
panel is required when operating the IMS B016 in a card cage, both for mechanical
rigidity and to give correct cooling air flow. ' “

No components protrude more than 2.47mm below the surface of the board. To
" fit in a 0.8” pitch card-cage, no component should protrude more than 13.7mm

‘above the surface of the board.

Adequate cooling air flow must be provided to maintain the components on the
board within their operating temperature. Air flow should run parallel to the board
surface and parallel to the front panel. The IMS B016 dissipates 25W maximum.
This means that a J1/J2 backplane? must be used. The cooling air flow required
for a particular application will probably need to be determined empirically.

4,
J1 is the minimum VMEbus backplane and mates with P1 connectors on VMEbus boards. J2 mates

with P2 connectors and is sometimes called a 32-bit backplane because itis needed for 32-bit VME-
bus operations. Combined J1/J2 backplanes mate with both P1 and P2 and are needed for reliable
operation of fast 32-bit VMEbus transfers. : '




IMS B016 VMEbus master card | 65

A single board operating in static air at room temperature (and not in a card-cage) .
will usually not need forced air cooling. This kind of set-up should only be used for
lab and development work. High reliability is not to be expected from boards which

are not provided with adequate cooling.

The two DIN 41612 (603 -2-IEC-C096Mx-xxx) connectors (P1 and P2) have
class 2 contact finish (1 micron gold) and are specified to glve 400 matmg cycles

minimum.

5.11.1 Mating Connectors

- Connectors to mate with the connectors on the IMS B016 are as follows:

P1/P2: 96-way DIN41612 female connectors which are available from
most connector manufacturers. These must be gold plated to at least com-
mercial class Il in order to ensure contact reliability.

P3: 0.025" square post pin header. Pins 8mm long, gold plated. Connector
on the IMS B016 is Berg (DuPont) type 76342-320.

Jumpers: 0.1" pitch jumpers or programming shunts, again available from
many manufacturers. Some types are very stiff-fitting and suit fixed config- -
urations, others are slacker and are more useful when conf igurations are

changed often.

Note that INMOS does not guarantee that these connector descriptions and part
numbers remain correct.

5.11.2 Environmental details

Operating Storage
Temperature - 0 to 50°C ambient air |55 to 85°C
Relative humidity 95% non condensing | 95% non condensing
Thermal shock < 0.08°C/s <0.15°C/s
|Altitude -300 to +3000m -300 to +16000m

Table 5.9 Environmental details



£
E
8 =
N [T}
«
N )
o™
N
i J - 160mm _l
i
Components must not protrude
further than 13.7mm above board surface
“"‘“““““‘““37‘;““““""“f‘“ 1.6mm
,,,,,,,,,,,,, . [T _u
__.__.__"_"._‘L‘.';“.”_";;';”“__’_;_”_'.;"_“';";‘;"__. s —— )

further than 2.7mm below board

Figure 5.1 Board dimensions




67

» [ 6 References

1 Microcomputer Interfacing, Harold S. Stone, Addison Wesley 1982.

2 The Transputer Databook, second edition, 1989.

3 The Transputer Development and iq Systems Databook, second edition,
INMOS Ltd 1991. (pp 191-208.) ,

4 The Transputer Applications Notebook — Systems and performance,
- INMOS Ltd 1989,

5 MECL System Design Handbook, William R. Blood Jr, Motorola Inc., 1983

6 VMEbus Specification Manual Revision C.1, VITA, Printex Publishing Inc.,
1985

7 Cypress, VMEbus Interface Controller Specification, Cypress, VTC Inc.,
1989.

- A, AAA AN klnllnmk’\" 410041



68




69

ot .
T
YO
ooy wanm oW

w 9

Appendices



70

.




n

~A Memory map of
IMS BO16

Bit

Function

Byte Multiplexor control bit 0

Byte Multiplexor control bit 1

Byte Multiplexor control bit 2
VMEbus Address Size control bit 0
VMEbus Address Size control bit 1
VMEbus Data Size control bit 0
VMEbus Data Size control bit 1
VMEbus address bit 0

'IVMEDbus address bit 1

VIC Function Control Bit 1
VIC Function Control Bit 2

VMEDbus Master Access Enable bit

P v

Table A.1 MAP RAM Control Bits




72

Address | Function _
#80400000-#FFFFFFFF |VMEbus address space
#80040000-#803FFFFF |Dual-Access DRAM (4—cycles)
#80001000-#8003FFFF |Private SRAM (2—cycles)
#80000000-#80000FFF |On-Chip RAM (1-cycle)
#7FE00000~-#7FFFFFFF |ROM Address Space

#7FDC0000-# 7FDFFFFF
#7FD80000-# 7FDBFFFF
#00040000—-#7FCFFFFC
#00000000-¥0003FFFC

Control Registers
Peripheral Address Space
VMEbus Address Space
(optional) Control Registers

~ Table A.2 T801 Memory Map (4MByte DRAM)

#7FDCO000-#7FDFFFFF
#7FD80000-# 7FDBFFFF
#00040000~#7FCFFFFC
#00000000~-#0003FFFC

Address Function
#81000000-#FFFFFFFF |VMEbus address space
#80040000-#80FFFFFF |Dual-Access DRAM (4—cycles)
1#80001000-#8003FFFF |Private SRAM (2-cycles) |
#80000000-#80000FFF |On—Chip RAM (1—cycle)
#7FE00000-#7FFFFFFF |ROM Address Space

| Control Registers

Peripheral Address Space
VMEbus Address Space
(optional) Control Registers

Table A.3 T801 Memory Map (16MByte DRAM)

Address Register

#7FDB8000 | PEX-Daughterboard
#7FD98000 |Secondary Control Registers
#7FD90000 |VIC Programming Registers
#7FD88000 |Real-Time Clock
#7FD80000 |DUART

Table A4 T801 Peripheral Address Map

.._:“ o
fetarc
o



73

IMS B016 VMEbus master card

Address Function |
#7FD90000 VMEbus Interrupter interrupt Control
#7FD90004-#7FD90001C |VMEDbus Interrupter Control 1-7
#7FD90020 DMA Status Interrupt Control
#7FD90024-#7FD90002C |Local Interrupt Control 1-7
#7FD90040 ICGS Interrupt Control
#7FD90044 ICMS Interrupt Control

| #7FD90048 Error Group Interrupt Control
#7FD9004C ICGS Interrupt Vector
#7FD90050 ICMS interrupt Vector
#7FD90054 Local Interrupt Vector
#7FD90058 Error Group Vector
#7FD9005C Interprocessor Comms. switch
#7FD90060-#7FD9007C |Interprocessor Comms. 0-7
#7FD90080 VMEDbus interrupt request and status
#7FD90084-#7FD9009C |VMEbus interrupt vectors 1-7
#7FDS00OAO Transfer timeout register
#7FDSO00OAS Local bus timing
#7FD90OAS Block transfer definition
#7FDY00AC VMEDbus interface configuration 1
#7FD900BO Arbiter and requester configuration
#7FD900B4 Address modifier source
#7FD900BS Bus error status
#7FD900BC DMA status (not used) |
#7FD900CO Slave select 0 control 0 (not used)
#7FD900C4 Slave select 0 control 1 (not used)
#7FD900C8 Slave select 1 control 0
#7FD900CC Slave select 1 control 1
#7FD900DO ‘| Release control
#7FD900D4 Block transfer control
#7FD900D8 Block transfer length 0
#7FD900DC Block transfer length 1
#7FDS00EO System Reset

Table A.5 VIC Register Memory Map (bits 0-7)



74

Address Register

#xx00 Subsystem Reset/Error

#xx04 Subsystem Analyse

#xx40 Enable VMEbus Slave Accesses
|#xx44 Enable Byte Multiplexor

$xx48 Next Cycle is to the MAP RAM

#xx4C Next Cycle is to the Slave Decode RAM

#xx50 Do not MAP these registers to address zero

#xx54 Enable VMEbus Master Accesses -

#xx80-#xxFF |Byte Multiplexor Control Registers

Table A.6 T801 Primary Control Registers (bit 0)

Address Register

#7FD98000 |Clear BusError Interrupt
#7FD98004 |Clear Event '
#7FD98008 |Enable Vpp to F-ROMs
#7FD9800C |Read Vpp voltage sensor
#7FDA0004 |{Read VIC Interrupt Vector

Table A7 T801 Auxiliary Registers (bit 8)




75

B Connector diagrams
and cables

B.1 Connector pin assignments

CBA
Pin 1
Pin 40
Keyway
Viewed from
: component side
Viewed from of board -
rear of
backplane
Pin 1
arked by
S dot on PCB
Pin 32| - -
P1/P2 96 way P3 ‘PEX
DIN connector 40 way connector
pin arrangement pin arrangement

Figure B.1 Connector arrangements

The IMS B016 has three connectors— P1, P2 and P3. P1 and P2 are the VMEbus

connectors. Although only P1 is needed for a 16-bjt VMEbus system, it is recom®
mended that the power pins on P2 are connected

he outer two rows of pins on

P2 are used to carry links and RS-232 signals off the card. Connector P3 is the
‘PEX’ connector and carries address, data and control signals to PEX daughter-
boards. Pin assignments for all the connectors are shown in section the following

t_ables.



76

Pin |Row C RowB Row A
1 |DO8 BBSY* D00

2 |Do9 BCLR* D01

3 |D10 ACFAIL* D02

4 |D11 BGOIN* D03

5 |D12 BGOOUT* {D04
6 [D13 BG1IN* D05
7 |D14 BG1OUT*  |D06

8 |D15 BG2IN* D07
9 |GND BG20UT* |GND
10 |SYSFAIL*  |BG3IN* SYSCLK
11 |BERR* BG30OUT* |GND
12 |SYSRESET* |BRO* DS1*
13 |LWORD* BR1* DS0*
14 |AM5- BR2* WRITE*
15 |A23 . BR3* GND
16 |A22 AMO DTACK*
17 |A21 AM1 GND
18 |A20 AM2 AS*
19 |A19 AM3 GND
20 [A18 GND IACK*
21 |A17 SERCLK IACKIN*
(22 [A16 SERDAT IACKOUT*
23 |A15 GND  |AM4
24 |A14 IRQ7* A07
25 |A13 IRQ6" A06
26 |A12 IRQ5* A05
27 |A11 IRQ4* A04
28 |A10 IRQ3* A03
29 [A09 IRQ2* A02
30 |A08 IRQ1* AO1
31 [+12v +5VSTDBY |-12V
32 [+5V +5V |45V

- Table B.1 Connector P1 pin 'assignments

i
A




~ IMS B016 VMEbus master card

Pin |[Row C Row B Row A

1 |TxA VCC TxB
| 12 |RxA GND RxB
EB 3 |[opA  |RESERVED (nc) |OpB
o 4 |ipA A24 ~ |1pB
5 [GND - |A25 GND
6 ([(nc A26 nc
7 |P2LinkOOut - [A27 P2Link10ut
-8 | P2LinkOIn A28 P2Link1in
9. |GND A29 GND
10 [GND A30 GND
11 |nc A31 nc
12 {P2Link20ut GND « P2Link30ut
13 |P2Link2In vee P2Link3In
14 |[GND D16 GND
15 [nc D17 nc
16 |notAReset D18 notBReset
) 17 |notAAnalyse |D19 notBAnalyse.
{.;- 18 |notAEmor D20 notBError
19 |GND D21 GND
20 |GND D22 GND
21 [nc D23 nc
22 |notCReset GND notSubReset
23 |notCAnalyse |[D24 notSubAnalyse
24 |notCError D25 notSubError
25 |GND D26 GND ‘
26 (GND D27 GND
27 |nc D28 nc
28 | notUpReset D29 notDownReset
29 |notUpAnalyse |D30 | notDownAnalyse
30 (notUpError D31 notDownError
31 |GND GND - GND
. 32 |GND . Jvee GND

Table B.2 Connector P2 pin assignments



78

Pin | Signal Pin | Signal

1 [+12v 21 |VCC

2 |Vec. |22 |VALWAYS
3 |A7 23 |PEXSEL*
4 |A6 . 24 |DSACKO*
5 |A5 " |25 |PROCLK*
6 |Ad 26 |BERR*
7 |A3 27 |Reserved
8 |A2 28 |PEXINT*
9  |A1 29 |PEXRES*
10 (A0 - 30 |PEXIN*
11 |GND 31 |PEXOUT*
12 |GND 32 |GND
13 |D7 33 |GND

14 |D6 34 |SYSCLK
15 |D5 135 |[RW*
16 |D4 136 |AS*

17 |D3 37 |Ds*

18 |D2 38 |PEXPRES*
19 |D1 39 |[vce

20 |DO 40 |-12v

Table B.3 Connector P3 pin assignments

B.2 Cables

INMOS has developed a standard cable set for evaluation boards. Link cables
have 5-pin single-in-line connectors at each end with a key pm Services cables
have 5-pin single-in-line connectors at each end with two key pins. The keyed pms

prevent the connectors being inserted incomectly The cables are available ina

range of packs of various lengths. Using this system it is quick and easy to connect
links and services signals from board to board and system to system. These cables
must not be used between equipment on different mains circuits and ideally, to en-
sure noise-free operation, should only be used within one system operating from

the same 5V power supply.

IMS B016 users may find it convenient to remove the key pins from cable connec-
tors mating with a VMEbus J2 backplane, (P2 pins on the IMS B016).




79

C Electrical
specifications

C.1 Electrical Details

C.1.1 Power supply

The IMS B016 requires power supply voltages in accordance with the VMEbus
specification. That is, the +5V DC supply must be between 4.875V and 5.25V and
have less than 50mV pk-pk noise and ripple between DC and 10MHz. The
IMS B016 does not incorporate protection against incorrect power supplies. Major
damage can result from operating the board outside its power supply range.

C.1.2 Board-to-board link connections

The INMOS serial links provided on the IMS B016’s connectors may be used to
communicate directly with other boards in the same electrical environment (same
DC supply, ground reference and low electromagnetic noise). However, these link
connections must be made with transmission lines of characteristic impedance

100Q.
The following are examples of valid connection methods:

1 A printed circuit trace of about 0.008” width over a ground plane on a multi-
layer board. ‘

2 Twisted pair ribbon cable.
3 INMOS link cables.
4 Twisted pair wire-wrap wire.

Single wires, PCB traces without ground planes and coaxial cable should not be
used. It is recommended that link connections are not longer than 1m. Although
long connections will function, enhanced reliability will be gained by making longer
connections using buffered connections.

Services connections are not subject to the same conditions and can be carried
on simple wires.

C.1.3 Non-local link connections

Links may be used to communicate between TRAMs arid transputers (and other
boards containing transputers, even boards not manufactured by INMOS) wherev-
er their location. However, when using links to communicate between TRAMs or



80

transputers which are not powered from the same DC supply some special consid-
erations need to be addressed:

1 Electrical noise may corrupt Imk data when ordinary INMOS link cables are
~ used over long distances and between equipment which is powered from
different supplies.

2 Since the INMOS cables and boards use single-ended, common ground
signaling, earth loops between equipment can lead to signal corruption
(not necessarily on the link signals but perhaps on the services signals
causing spurious system resets).

3 The common ground in the cables can c(:on.travene.electrical safety regula-

tions which prevent earth signals being connected between equipment
more than a certain distance apart. These regulations prevent, among oth-
er things, fire damage during electrlcal storms.

INMOS suggests that when such inter-box connectlons are required that differen-
tial, double-ended balanced connections are used. These may be constructed
from ordinary 26LS31 and 26L.S32 driver/receiver devices for 10Mbits/s link opera-
tion and from ECL drivers/receivers for 20Mbits/s links. New driver/receiver de-
vices (DS892xA) designed for high-speed disk drives allow non-ECL 20Mbits/s op-
eration. Signals should be receiver terminated to a floating ground and not to the
. ground at the receiving end. The services signals must be treated in a similar way
although the tlmlng constraints are not critical. Background information on thls sub-
ject is to be found in [NO TAG] [NO TAG] and [NO TAG].

Connections driven by DS892xA (Natlonal Semiconductor) devices and termi-
nated in 100Q are compatible with the IMS B415 Differential-Link TRAM, the IMS
- B019 rack-mounted differential link card and the IMS B300 TCP/IP gateway.

Adm el



81

D Monitor command
language ’

As there is an ever present need to provide a textual user interface capability for
programs and testbeds, a generalised module has been created to make this kind
of implementation easier and, as a by—product, encourage a degree of uniformity
between interfaces created for different uses. The module implements a configur-
able Command Line Interface; in other words a prompted, command driven form
of interaction, with a language like format that enables the interface to be extended
at run time by the scripting of complex interpreted macro commands in a natural

syntax. S

The basic capabilities of the language and the CLI commands are described be-
low.

‘D.1  Language basics

The CLI is an interpreted environment — that is the lines of the language are ana-
lysed and executed individually as presented. This is somewhat slower than the
used of a compiled language at execution time but offers many advantages for an
interactive environment. The general characteristics of the language are defined
by the interpreter that accepts the lines of input and some of these characteristics
are important in understanding the syntax that the language features possess and
the errors that may be encountered when using the tool.

D.1.1 Components

Executable language consists of a series of commands, assignments or control
flow statements. Commands can be built in — i.e. the code that determines their
action has been compiled and linked with the interpreter or they can be macros,
which are collections of other language statements. No terminator is required for
a language statement — they are all assumed to be contained on one line and the
line-feed or carriage—return character terminates the statement.

D.1.2 Delimiters

White space (spaces, tabs and CR/LF) is significant and generally used to delimit
components of the command statements, but the amount of space is not signifi-
cant. In particular, any number of spaces at the beginning of the language state-
ment will not affect its meaning or interpretation. Other command delimiters that
can be used interchangeably are commas and backslash characters. The number
of these is significant and can be used, for instance, to introduce place—holders into.

command statements. :



82

D.2 Abbreviations

A name abbreviation scheme is used which applies to obmmands, control flow
statements, symbols and macro names, as follows:

o Case is not significant
» Symbols are internally stored and printed in upper case for consistency.

 Any number of characters that umquely identifies the correct object canbe
used.

. In the case of ambiguity, the symbol name which most closely matches the
given string is used; i.e. the shortest of the declared names.

o Where multiple variable types can be accepted, the possible variable

names are searched in the order integer, floating point, string. Thus abbre-

viations which could match variables of more than one type will match the
first appropriate definition found.

For example, given the symbols “fred” and “fredsMum?”, the following abbrewatlons
are vahd

Name typéd Symbol matched
| fr fred

fred fred

freds fredsMum

fredsmum fredsMum

This abbreviation strategy has been designed to give flexibility, especially in inter-

active use, o reference fully descriptive names by some sub—string. Almost all situ- -

ations of abbreviated reference will be resolved un—ambiguously. This includes
usage of symbol names declared as substrings of other symbol names such as
above. However, if a symbol “fredsDad” is introduced, then “freds” will match either
“fredsDad” or “fredsMum” depending on the order of declaration (since they are,
the same length). In general, specify the full name of a symbol to be sure of match-

ing the correct one

D.2.1 Defauiting

To ease the use of the Iangdage in an interactive mode, a general policy of default-

ing has been adopted. Typical command statements will have a set of position sen-
sitive parameters with the most frequently used parameters appearing first. The
user can then specify only those parameter values which are explicitly required
and omit others whereupon they will default to ‘sensible’ values. In particular com-
mands will often default to the most general mode of usage or adopt a default ac-
tion that has been explicitly set by a previous statement.




IMS B016 VMEbus master card N 83

D.2.2 Error reporting

. Syntax errors from all command are reported as they are interpreted and, on find-
ing an error, the interpretation and execution will be aborted. Errors are reported
as meaningfully as possible with an explicit identification of the position of the error
on the supplied line. All macro and control flow execution will be terminated by any .
such error, even at a nested level. '

D.3 Variables and expressions

The implementation of extensive programming features has been sidestepped in
- the command language, but there still exists a powerful underlying mechanism for -
mathematical manipulation and expression handling.

D.3.1 Numbers -

An integer type of basic variable is provided. The number range is limited by the
machine’s natural 32 bit representation of integers, but this allows considerable
scope for operations on large numbers. For more precision in calculation, a floating
“point type is also provided. Constants and variables of both types can be used free-
ly. Constant integers can be used at any point where a value is required in the lan-
guage. The constant can be expressed in hex, decimal octal or binary notation. A
floating point value is signified by including a decimal point in the notation and can
be given with no decimal places, or any number of digits after the decimal point.

40 - integer

#4£f — hex integer

067 - octal integer
$010 - binary integer
+2 - decimal integer
4.0 - floating point
0.2 - floating point
3.2e5 - floating point

D.3.2 Numeric expressions

In place of any explicit number, a mathematical expression of arbitrary complexity
can be used.The expression must not contain embedded spaces, since these
might be interpreted as value terminators, but may include brackets to make prece-
dence clear. Precedence will be exercised from right to left in normal evaluation.



84

The available mathematical operators are:

» + integer and floating point addition

- integer and floating point subtraction | , B }

* integer and floating point multiplication

/ integer and floating point divi'-sion‘
% integer remainder |
& bitwise AND

| bitwise OR

A bitwise XOR |

~ bitwise NOT ( this is a unary operatdr)
o ! Iogical’ NOT ( thisis a unéry operator)

Examples of the use of these operators in the context of expressions are given be-
low: ’

23+44.0 |
1002*3 : | | £
24/ (34+2) Y
(23-22) * (400.0+0.1)

Note that there is no facility to include function calls inside an expression — this is
precluded by both syntax and convention since the language is purely procedural.

D.3.3 Numeric symbols

In place of any constant number or expression a symbol can be used. Symbols can
take constant or variable numeric values and can be used freely within the lan-
guage. Constant symbols are established by the programmer and pre—declared
within the interpreter — this is used for command constants such as TRUE, FALSE
and Pl. Symbol variables can be pre—declared or freely created and deleted by the
interactive user. A symbol is declared using the assignment statement as shown

here:

apples=23
oranges=0.1




......

IMS B016 VMEbus master card | 85

The symbol is declared and takes on the initial value given using the C style syntax.
Thereafter the symbol can be used by referencing either its full or abbreviated

name:

apples/34.2
oranges+apples-1
(or*app)-22

Symbols can be used either as variables are used in programming languages or
simply as a meaningful name for a commonly used numeric parameter value. In
this way constants, for instance, can be abbreviated or made symbolic (e.g. PI).
Care must be taken when using abbreviations to reference the correct symbol i.e.
use as full a name as possible. The abbreviations are convenient when using inter-
active commands but can be misinterpreted in longer macro usage.

" The rules for symbol names are typical of many programming languages: no lead-

ing numeric characters are allowed, only alphanumeric digits and underscore

‘characters can be used within names and only 32 characters are significant.

D.3.4 Assignments

A variable assignment can be used to hold the resuits of an expression evaluation.
The syntax of the assignment is that of C, and the target of the assignment may
or may not already have been declared. Since some symbols may have been
created as constants, not all assignments can succeed even in the case where the

syntax is correct.

apples=orénges+(4/1.2)
bored=TRUE

' Commands can and do return values of various sorts and thus can be used within
~ an expression statement. Due to limitations of the syntax, it is not possible to mix

commands and generalised expressions so the format is limted to statements of
the type : . | ,

: temp=pr “a” 1 2 3
ala3
sho temp
ala3

The type and value of return values from commands shbuld be documented with
the command. : ‘



86

D.3.5 String symbols

Variables can also be created to hold string values. The strings can be used by
commands as parameters where appropriate. ldentical rules apply about declara-
tions and usage, but the contents of a string are case preserved. All string con-
stants are represented by enclosing text within double quotes.

card="the string is CARD”
paper="thinner than CARD”

The double quotes are necessary to identify a string constant, since all other fea-
tures of the commands syntax are the same.

D.3.6 String assignment

Once a string has been declared it may be reassigned freely and concatenated
with other strings using the ‘+’ operator.

temp="hello”
temp=temp+” world”

The quotes symbol may be included wuthln a string by preceding it with the escape
\' character.

D.4 Intrinsic commands

~ The operation of the Ianguage interpreter is simplified by the inclusion of some ba-
sic facilities which bind the individual command functions into a cohesive whole.
The following pages give some details of these commands and their use.

Intrinsic commands may have special limited properties which restrict their use in
general circumstances. Itisn't necessarily very useful to be able to print help within
a repeat loop for instance. In all other ways they are model examples of the type
of behavior found in all commands.

EXIT or END
EXIT
'END <value>

The EXIT statement is used to terminate the entry of macro bodies and to terminate

the interpreter when at the interactive level. Both EXIT and END can be used inter- -

changeably. When a value is given in an END statement in a macro definition, this
value can be assigned to a variable by the caller of the macro.

HELP
‘HELP <command>

The HELP command provides an online and rapid aide—-memoir facility for the

language environment. If a particular command name is given as a parameter (in




L
A
v

IMS B016 VMEbus master card o 87

full or abbreviated form) then a (usually) one line summary of that commands’ func- .

tion and parameters are given. This is not intended as a substitute for full documen-
tation of the command function but a quick and easy way to remember parameter
order and type. \

SHOW
. SHOW <symbol>

This utility command allows the display of selected symbols in a somewhat control-
lable format. The type and value of the symbol, if recognised, is displayed. If the
symbol is a macro definition, then its contents are shown. If no parameters are giv-
en, the current symbol definitions are listed.

SOURCE
SOURCE <fileString> <echof1ag>

This command allows the execution of streams of commands that res:de in ASCII
files. The streams can be echoed as input using the optional flag which defaults
to FALSE. There is no restriction on the commands that can be contained in the
files, but they are often used to define macro commands which can later be ex-

ecuted in interactive mode.

itis important to realize that the filename is a string 'parameter and therefore must
be given surrounded in double quotes. if no name is given a default string variable
COMMAND_FILE is used as the source for the filename. Any other string variable
can of course be used on the command line to specify the file.

. LOG

LOG <fileString> _
The LOG command allows definition of a file to which all command statements will

~ be echoed before execution. When this command is used any already existing

LOG file is closed and a new file opened according to the name and path given in
the file string parameter. By default there is no LOG file opened at start-up.

DEFINE

DEFINE <macro> <>|<parameters>

The DEFINE command allows the creation of command macro procedures. The
macros possess a hame and a number of formal parameters which are supplied
on the definition line. The content of the macro is a sequence of command state-
ments, declarations, assignments, etc. \

There is no restriction on the contents of a macro, but the validity of the contents
is only checked at execution time and any error will terminate execution. Macros
can be defined recursively (be carefull) and can contain other macro definitions.
Entry of the definition of a macro will termihate when the number of END (or EXIT)
statements equals the number of DEFINE statements in the flow.

Formal parameters are of undefined type and are only instantiated as symbols
when the macro is executed with actual parameters. Any number of such parame-



88

ters can be declared and given names which will override globals of the same
name within the scope of the macro execution. To return values from execution
some of the formal parameters may have to be used as reference symbols This
will also take place at the time of macro execution.

Macro names are subject to the same restrictions as other symbols and additional-
ly may not clash with existing command names or other macro definitions. Again,
if there is an existing macro of the same name in the current scope, it will be re-
placed by the new definition. \

DELETE :
DELETE {<variable> |<macro>}

'DELETE is a command used for removing defined symbols and macro definitions.
All symbols declared in the scope of a macro execution are deleted when it exits
so this command will normally only be used in interactive mode. Use SHOW to es-
tablish the current symbol table contents.

VERIFY
VERIFY <true| false> <>

This command controls the automatic echoing of executed lines to the screen. This
can be useful when debugging macros as it allows you to see which lines are being
executed, which line causes an error and so on. It can be turned on or off at any
point. The command VERIFY without a parameter reports the current state of the

mode.

D.5 Macros

The language is considered to be user extensible. The interpreter contains a set
of hard coded base routines which operate dlrectly on programmatic structures.
These base commands are set up and used in a ‘particular fashion according to
the implementers’ idea of the functional usage. The functions are usually created
to be simple in form and atomic in operation. When a more complex function is de-
sired, or simply a base function with a different set of default parameters or options,
it can be created by the user using macro definitions and thereafter used in an iden-
tical way to the original command. The use of macro commands is very similar to
that of the base commands even down to the defaulting and error reporting proce-
~ dures. If this facility were simply an aliasing function it would be quite powerful, but
limited by the demands of textual substitution. Instead it has been implemented as
a full procedural language function and offers a variety of control constructs to pro-
vide a rich functional development envuronment

D.5.1 Formal and actual parameters |
A macro is defined by specifying a name and any number of formal parameter
names. ' ' ' |

> define muldiv .a b c

The formal parameter names can be considered to be equivalent to symbol decla-
rations which are in effect during the execution of the macro. The types of these




IMS B016 VMEbus master card 3 | 89

formal parameters symbols are, however, undefined until the macro is called as

~explained below. Additional declarations of symbols can be made using assign-
ment statement in the body of the macro as required. All of these symbols will be
created as the macro is executed and will cease to exist when the macro exits.
Statements within the macro will also be able to access global variables, that is
variables declared in the enclosing scope of the macro whose names do not clash-
with the variables declared locally. The body of the macro can contain any com-
mand statements that are used elsewhere and entry of body statements must be
terminated using an EXIT or END statement. These statements are equivalent i in
function.

>> res=0

>> res:=(a*b) /c

>> sho “the result is “ res
>> exit

Executing the macro defined above is very simple:

> muldiv 3 2 1
the result is 6
>mu b 4 2

the result is 10

~ Note that the macro is invoked by simply giving its name, in full or abbreviated form,

on the command line along with its parameters. Any value parameters given will
be fully evaluated before being passed into the macro. If a string parameter is given
to the macro above, a string symbol will be created under the name of the formal
parameter and will probably result in an error when evaluating the macro’s internal
expression. If a value is left unspecified on the invocation line, a numeric symbol
is created for the actual parameter, with a value of zero.

D.5.2 Returning results

Clearly the example given above has only a limited use and at some stage it will
be necessary to return results from a macro execution. The could be achieved by
storing the result in a global variable of course but this is inflexible and only allows
operation of the macro in certain ways. The other alternative is to have the value
calculated and returned into the calling scope by means of an assignment.

> define muldiv a b ¢
>> num= (a*b)/c
>> exit num

At first sight this does not appear to achieve anythmg However when called, the
target of the assignment in the macro invocation RES is given the value that results
from the calculation within the macro and referenced in the END statement.



90

> res= muldiv 3 2 1°
- > sho res

6 : ‘
Again, note that the use of macros is purely procedural in nature. it would be impos-
sible to use a macro call in the context of an expression due to both the syntax in-
volved (the use of spaces as parameter separators) and the fact that no function
or command value concept is exhibited.

D.5.3 Control flow

Macros are given real programming power with statements that control conditional
execution. These are presented in a strictly structured fashion and, in fact, are im-
plemented using a parameterless macro system themselves. The functions avail-
able are IF/ELSE, WHILE and FOR, and their formats are described on the follow-
ing pages. The logical expression which controls these statements can be formed

as a comparison between two numeric values or a numeric expression which eval-

uates to a logical result. In this sense a value of zero equates to logical FALSE
The functlons available for comparison are:

¢ > greater than

< less than

e ==gqual to

e != not equal to

o >= greéter or equal
e <=less or equal

e <> not equal

The following illustrates the use of this_mechanism.

> if a>=b

> if a

>.if a<>b

> if (a*2)/3>=1

Note that comparisons cannot be nested and that comparisons between floating

point values will in fact be performed in the integer domain.

WHILE
WHILE <comparison>

> while a<b
>> a:=a+l
> end

The execution of the macro body statements is controlled by the evaluation of the
~ logical expression before each execution. The comparison must be formed from

< e ind
R



T

.
A

IMS B016 VMEbus master card o | 91

currently declared variables and expressions, at least one half of which is assumed
to be changed in value by statements within the macro body The macro body can
contain other statements as desired including other control flows and macro def ini-
tions but must be terminated by an END or EXIT statement. '

FOR
FOR <control variable> <initial> <final> <step>

The execution of the body statements is repeated over the range of values given
for the control variable. The step defaults to unity and can be negative. The initial
and final values default to unity as well. The control variable symbol name need
not exist before the statement, but will exist after the loop has terminated with an
undefined value. The macro body can contain other statements as desired includ-
ing other control flows and macro definitions but must be terminated by an END
or EXIT statement. :

IF and ELSE

IF <comparison>
ELSE

The result if the logical expressionis used to determine which of the two parameter-

- less statement bodies is executed. The body statements can be of any form, in-

cluding other macro definitions and control ﬂows but must be terminated withan .
END or EXIT statement. :

WHILE
WHILE <comparison>

- The execution of the macro body statements is controlled by the evaluation of the
logical expression before each execution. The comparison must be formed from

currently declared variables and expressions, at least one half of which is assumed
to be changed in value by statements within the macro body The macro body can
contain other statements as desired including other control flows and macro defini-
tions but must be terminated by an END or EXIT statement.



92

E IMS B016 desugn
‘revisions

The IMS B016 along with other INMOS iq Systems products is subject to periodic
design review. In the case of the IMS B016 there has been one major design chan-
ge—instigated to allow faster operation and reduce component count. While the two
designs implement the same functions and are intended to be transparently com-
patible, there are some minor differences which some users should be aware of.
In addition, there are some enhancements in the newer design which were not
present in the original.

Physical inspection of the card will show a set of identification numbers adjacent
to jumpers K1-K3. Original design cards show the ID:

IMS BOl6 221-CBRD-218-02 ‘
and have the circuit revision below that at CT. Rev 5 .

“Newer cards have the ID:
IMS B016 221-CBRD-218-04
andCT Rev 1 .
‘A small number of intermediate cards exist with the ID:

IMS B0l16 221-CBRD-218-03

and CT Rev 2 -these are identical in operation to the normal “newer” cards Still
newer cards, with revisions “05” and higher, incorporate manufacturing improve-
ments and will be identical in operation.

Software can distinguish between the two design revisions by reading the register

at #7FD98000 (Clear BusError interrupt). On an original card, bit 8 reads ‘0’. A

newer card will read ‘1’ in bit 8.

Documentation and software for the original design instructs the user to disable
VIC DRAM refresh. In the newer design, DRAM refresh is automatically disabled
at reset and must not be enabled. If refresh is enabled the card will stop working
with the middle LED lit brightly (Slave Access Indication). Since the original design
in fact worked with DRAM refresh enabled it is possible that users’ application soft-
ware which inadvertently enabled VIC DRAM refresh would work on an original
card and fail on a newer card. The IMS B016 uses its own refresh circuitry to en-
sure Dual-Access DRAM refresh.

The original design did not support the use of the PEX connector while the newer
design does. The original design did not function correctly with IMS T801 byte
writes to VMEbus D32 regions (the card’s specification did notinclude this feature).

The older cards were fitted with revision F4 and F5 VIC chips. These device revi-

sions feature a number of bugs — most of which are not relevant to the IMS B016.

ﬁ‘

R

AOPN



IMS B016 VMEbus master card 93

However some have proved to be inconvenient such as the lack of software reset
for the card from the VMEbus. The newer cards are fitted with VICO68A devices
(F9 revision) which do not suffer from the bugs which are present in the older parts.
Users wishing to do so may change the VIC068 device in an old card for a new part
(available from Cypress Semlconductor part number VIC068A-BC).

The newer design allows functlonal testing of the MAP-RAM devices by read-back
of MAP-RAM contents. This is achieved by proceeding as per a MAP-RAM pro-

gramming cycle, except that data is read rather than written and the data appears .
on bits 20-31 of the word read. After reading the data, a subsequent write cycle

must be performed fo reset the circuitry.



94




bz
2

it

95

F Compatibility with the
MSBO11

Other INMOS VMEDbus boards include the IMS B014 TRAM Motherboard and the
IMS B011 Master/Slave board. The IMS B011 is older than the IMS B016 and was
designed to fill many of the same application areas. Consequently many custom-
ers who currently use the IMS B011 will be interested in moving to the IMS B016.

This section outlines the relevant differences between the two boards and how

they would affect users moving from the IMS B011 to the IMS B016.

F.1 General compatibility issues

Since the technology used to implement the IMS B016's VMEbus interface is sig-

~ nificantly different to that used in the IMS B011, the two boards are not software

compatible. Rather they are functionally compatible. That is, all functions per-
formed by the IMS BO11 (with a few exceptions) are also available on the
IMS B016. The IMS B016 of course also has many additional features and is sig-
nificantly faster than the IMS BO11. ' | ‘

F1.1 VMEbus interface

The programming and operation of the VMEbus interfaces are completely different

‘between the two boards. The software routines which configure the interface must

be totally re-written.

F.1.2 Memory map

The IMS B016’s memory map is broadly compatible with the IMS BOt-memory
and VMEbus address spaces are compatible. Peripherals and registers are placed
in different regions. F-ROM is located in the same region as the ROM on the
IMS B011. The IMS B016 adds the ability to address VMEbus address zero (by
mapping the IMS T801 registers to a different address). The IMS B011 lacked this
ability but compatibility- for certain transputer software which address the subsys-
tem registers is ensured by having the registers mapped to address zero at board
reset. The MAP-RAM feature of the IMS B016 removes the need for fixed VMEbus
address regions for the different VMEbus cycle-types. Users should be able to con-
figure the MAP-RAM to reflect the IMS B011’s VMEbus memory-map. Note how-
ever that it may be necessary to configure the byte multiplexor in order to obtain

the data bits in the same part of the transputer's 32-bit word as found on the BO11.

The IMS B011 will initiate VMEbus cycles when its transputer makes accesses to
any address allocated to the VMEbus in the board’s memory map. This means that
runaway software can make erroneous accesses to the VM Ebus. The IMS B016
allows VMEbus MASTER accesses by the IMS T801 to be restricted on a page-by-



96

‘page basis using the MAP-RAM. It is recommended than use is made of this fea-
- ture when moving applications to the IMS B016. Also, for applications which
should never make VMEbus MASTER accesses, all MASTER cycles are disabled

on reset and need to be explicitly enabled using the appropriate control register. -

F.1.3 Byte multlplexor

The IMS B011 does not have a byte multlplexor like the IMS B0165s. The
IMS BO16, on reset, disables its byte multiplexor so applications which do not re-
quire this feature should not need to configure it. :

F.1.4 TRAM slots

. The IMS B011 has two TRAM slots. The IMS B016 has no TRAM slots and also

lacks the IMS C004 used to switch links on the IMS B011. The function of TRAM
motherboard is provided by the IMS B014, which was designed after the
IMS B011. Applications which have TRAMs installed in an IMS B011 will need to
add an IMS B014 to the card-cage.

F.1.5 Serial ports.
The IMS B016 implements it's serial ports using the same DUART IC as used on

the IMS B011. This means that software for the IMS B011 serial ports should need

~ minimal modification in order to work on the IMS B016. Due to mechanical con-

straints, the IMS B016 lacks the serial port connector on the front panel. Also, be-
cause of the increased number of connections to P2, the IMS B016 serial port con-
nections are on different pins on P2 when compared to the IMS BO11.

i

..........



o7

G VMEbus performance

Unfortunately the data-transfer performance of VMEbus systems is difficult to esti-
mate without performing characterisation experiments on the actual system. How-
ever, some specific timings can give the user an idea as to what performance to

expect from the board.

The IMS B016 will respond to slave accesses with a DSx to DTACK delay of 70ns
for writeposted transfers and 290ns for reads and non-writeposted transfers.

As a master, the IMS B016, when transferring to and from another IMS B016 is ca-

“pable of the following transfer cycle times (measured while performing IMST801

block transfers from SRAM):
Transfer cycle times ‘ Speed (ns
VMEbus read - \ 700 |
VMEbus write | 700 J
VMEDbus slave writeposting 520
VMEbus master writeposting 4380
VMEbus master and slave writeposting | 400

Peak transfer rates of 12.5Mbytes/s are achievable using master and slave write-
posting with IMS T801 block moves from internal RAM. Due to the benefits of write-
posting, higher performance is always obtained by moving data from where it origi-
nates, rather than fo its destination. That is, the VMEbus transfers should be writes

not reads.

These figures assume no VMEbus aquisition overhead which would be system-
dependent.



98




~ Index

A | | E

ask_to_use_vector, 39 | erase_rom, 43
evaluate_value, 45

'EXIT or END, 86

B ' - F

assign_value, 45

basic_board_init, 28 - FILL, 25
blank_check_rom, 42 ﬁnd__rorh_size, 42
BREAD, 26 ' : FLASH, 26
BWRITE, 26 FOR, 91
c .
get_tok, 44
cget_value, 46 give_next_vector, 39
check_board_init, 28 :
clear_decode_ram, 31 " H
clear_map_ram, 28 HELP, 86
cli_main, 47 ’
COPY, 25 o I
, IF and ELSE, 91
D CINIT, 27
init_pars, 44
DEFlNE' 8 ! init:zlot_1, 33
DELETE, 38 , | ~init_vme_master, 32
DISPLAY, 25 . install_berr_handler, 38
duart_getchar_a/b, 40 install_duart_int_handler, 38
duart_init, 39 install_vme_int_ack_handler, 38
duart_putchar_a/b, 40 ' install_vme_int_handler, 38
o duart_setup, 40 | .
( - duart_use_xon_a/b, 39 | L

duart_write_a/b, 40 LOG, 87



100

MAPRAM, 25
MUXRAM, 26

P

PEEK, 27

POKE, 27

print, 46
prog_master_access, 34
prog_slave_access, 33
prog_vme_master, 35
program_byte, 43
program_byte;mux, 30

program_mux_map_ram, 30

R

read_rom_device_code, 43
read_rom_manf_code, 43
register_command, 45
ROM, 26
rom_read_mode, 43

RTC, 26

rtc_gettimeofday, 36
rtc_settimeofday, 36

S
SEARCH, 256
send_vme_master, 34
set_mux_0_transparent, 30
shadow_map_ram, 28
shadow_read_map_ram, 29
SHOW, 87
SLAVE, 26
SOURCE, 87
start_event_handler, 37

T

tag_current_line, 47
turnoff_byte_mux, 30
turnoff_vme_master, 34
turnoff_vpp, 42
turnon_byte_mux, 30
turnon_vme_master, 34
turnon_vpp, 42

'

VERIFY, 88

w

WHILE, 90, 91



101

£
L‘, .v



Sales Offices

EUROPE

DENMARK

2730 HERLEV

Herlev Torv, 4

Tel. (45-42) 94.85.33
Telex:35411

Telefax: (45-42) 948684

FINLAND
LOHJA SF-08150
Karjalankatu, 2
Tel. 12.155.11
Telefax: 12.155.66

FRANCE

94253 GENTILLY Cedex
7, Avenue Gallieni~BP 93
Tel. (33-1)47.40.75.75 .
Telex: 632570 STMHQ
Telefax: (33-1)47.40.79.10

67000 STRASBOURG
20, Place des Halles
Tel.(33)88.75.50.66
Telex: 870001F

Telefax: (33)88.22.29.32

GERMANY

6000 FRANKFURT
Gutleutstrasse, 322

Tel. (49-69) 237492
Telex: 176997 689
Telefax: (49-69) 231957
Teletex:6997689=STVBP

8011 GRASBRUNN
Bretonischer Ring, 4
Neukerloh Technopark
Tel. (49-89) 46006-0
Telex: 528211

Telefax: (49—89) 4605454
Teletex:897107=STDISTR

5000 HANNOVER 51
Rotenburgerstrasse,28A
Tel. (49-511) 615980
Telex: 175118418

Telefax: (49-511)6151243

8500 NURNBERG 20
Erlenstegenstrasse, 72
Tel. (49-911) 59893—0
Telex: 626243

Telefax: (49-911) 5980701

.5200 SIEGBURG
Frankfurter Str. 22a

Tel. (49-2241) 660 84-86
Telex; 889510

Telefax: (49-2241)67584

7000 STUTTGART

Oberer Kirchhaldenweg, 135
Tel.(49-711) 692041

Telex: 721718

Telefax: (49-711) 691408

ITALY
20090 ASSAGO (M)
V.le Milanofiori — Strada 4 —
" Palazzo A/4/A
Tel. (39-2) 89213.1 (10 lines)
Telex: 330131 -330141
SGSAGR
Telefax: (39-2) 8250449

40033 CASALECCHIO DI RENO

1D A

00161 ROMA

Via A. Torlonia, 156

Tel. (39-6) 8443341
Telex: 620853 SGSATE |
Talefax: (39-6) 8444474

NETHERLANDS
5652 AM EINDHOVEN
Meerenakkerweg, 1

Tel. (31-40) 550015
Telex: 51186 :
Telefax: (31-40) 528835

SPAIN

08021 BARCELONA

Calle Platon, 8, 4™ Floor, 1
Door _

Tol. (34-3) 4143300~ 4143361
Telefax: (34-3) 2021461

28027 MADRID

CalleAlbacete,5
Tel. (34-1) 4051615
Telex: 27060 TCCEE

~ Telefax: (34-1) 4031 134

SWEDEN

S$-16421KISTA
Borgarfjordsgatan, 13 -Box
1094

Tel. (46-8) 7939220
Telex: 12078 THSWS
Telefax: (46-8) 7504950

SWITZERLAND

1218 GRAND-SACONNEX
(GENEVA)
CheminFrangois-Lehmann18/A
Tel. (41-22) 7986462

Telex: 415493 STMCH

Telefax: (41-22) 7984869

United Kingdom And Eire
MARLOW, BUCKS SL7 1YL
Planar House, Parkway

Globe Park

Tel. (44-628) 890800

Telex: 847458 '

Telefax: (44—628) 890391

AMERICAS
BRAZIL

' 05413 SAO PAULO

R. Henrique Schaumann
286-CJ33

Tel. (55~-11)883-5455
Telex: (391) 11-37988
*UMBR BR"

Telefax: 11-551-128-22367

CANADA
BRAMPTON, ONTARIO
341, Main St. North

Tel. (416)455-0505
Telefax:416-455-2606

USA .
NORTH & SOUTH AMERICAN
MARKETING HEADQUARTERS
1000, East Bell Road

Phoenix, AZ 85022
(1)+602)867-6100

SALES COVERAGE BY STATE

Al ADARMA

ARIZONA
1000, East Bell Road

. Phoenix, AZ 85022

Tel. (602) 867~6100

CALIFORNIA

200 East Sandpointe,
Suite 120,

Santa Ana, CA 92707
Tel. (714) 957-6018

2055, Gateway Place,
Suite 300

SanJosé, CA95110
Tel. (408) 452-9122

COLORADO

1898, S. Flatiron Ct.
Boulder, CO 80301
Tel.(303)449-9000

FLORIDA

902 Clint Moore Road
Congress Corporate Plaza i}
Bldg. 3 - Suite 220

Boca Raton, FL 33487
Tel.(407)997-7233

GEORGIA

6025, G.Atlantic Bivd.
Norcross, GA 30071
Tel. (404) 242 -7444

ILLINOIS

600, North Meacham

Suite 304,

Schaumburg, ILL 60173—4941
Tel. (708) 517-1890

INDIANA

1716, South Plate St.
Kokomo, IN 46902
Tel. (317)459-4700

MASSACHUSETTS

55, Old Bedford Road
Lincoln North

Lincoln, MA 01773
Tel. (617) 259-0300

MICHIGAN

17197, N. Laurel Park Drive
Suite 253,

Livonia, M1 48152

Tel. (313)462—4030

MINNESOTA

7806, Telegraph Road
Suite 112 i
Bloomington, MN 55438
Tel. (612) 944-0088

NEW JERSEY

Staffordshire Professional Ctr.
1307, White Horse Road Bidg. F .
Voorhees, NJ 08043

Tel. (609) 772-6222

NORTH CAROLINA
4505, Fair Meadow Lane
Suite 220

Raleigh, NC 27607

Tel. (919) 787-6555

TEXAS

1310, Electronics Drive
Carroliton, TX 75008
Tel. (214) 466-7402

ASIA/PACIFIC
AUSTRALIA

NSW 2027 EDGECLIFF
Suite 211, Edgecliff Centre
203-233, New South Head Road

“Tel.(61-2) 327.39.22

Telex: 071 126911 TCAUS
Telefax: (61-2) 327.61.76

'"HONG KONG

WANCHAI

22nd Floor - Hopewell Centre
183,Queen’s Road East

Tel. (852-5) 8615788

Telex: 60955 ESGIES HX
Telefax: (852—5) 8656589

INDIA

NEW DELHI 110001
Liaison Office ‘

62, Upper Ground Floor
World Trade Centre
Barakhambal.ane

Tel. 3715191

Telex: 031-66816 STMI IN
Telefax; 3715192

KOREA

SEOUL 121

8th Floor Shinwon Building
823-14, Yuksam-Dong
Kang-Nam-Gu

Tel. (82-2) 5653-0399
Telex: SGSKOR K29998
Telefax: (82-2) §62-1051.

MALAYSIA

PULAU PINANG 10400

4th Floor, Suite 4-03 .
BangunanFOP, 123D Jalan An-
son

Tel. (04) 379735

Telefax: (04) 379816

SINGAPORE

SINGAPORE 2056

28 Ang Mo Kio — Industrial Park,
2

Tel. (65) 4821411

Telex: RS §5201 ESGIES
Telefax: (65) 4820240

TAIWAN

TAIPEI

12th Floor

5§71, Tun Hua South Road
Tel. (886-2) 755-41 11
Telex:10310 ESGIE TW
Telefax: (886~2) 755-4008)

JAPAN
TOKYO 108

Aisnali Takanmun RIA AC




	IMS B016 VMEbus master card
	Contents
	Introduction
	A tour of the IMS B016 hardware
	Installing the IMS B016
	The IMS F008A support library
	Detailed hardware description
	References

	Appendices
	Memory map of IMS B016
	Connector diagrams and cables
	Electrical specifications
	Monitor command language
	IMS B016 design revisions
	Compatibility with the IMS B011
	VMEbus performance

	Index

