Product Overview

ocCam

programming
system




Occam

Occam is the first commercially available language to be based on
the concepts of concurrency and communication. These concepts
enable today’s applications of microprocessors to be implemented
more efficiently. They are essential for tomorrow’s systems built from
multiple interconnected transputers.

Occam is easy to understand and encourages structured
programming, with clean interfaces between concurrent processes. lIts
syntax is specially designed for interactive use.

Occam overcomes the problems of programming microprocessors by
formalising the notions of input, output, interrupts, priority and
real-time. By introducing these ideas into the language, it is not
necessary to use real-time executives or machine level debugging.

An occam program naturally reflects the structure of the application,
describing how the hardware is arranged and providing the
specification and implementation of each component.

Occam has a formal basis, and its use improves confidence in the
correctness of a program. Programs can be transformed, preserving
functionality, in the same way as logic functions can be transformed
using Boolean algebra.

Product quality benefits from the use of occam for all stages of
design and implementation, and from the natural use of structured
programming.



The occam
programming system

The occam programming system provides a complete programming
environment for the generation of reliable, well structured and efficient
programs. The structured editing facilities provided by the fully
integrated user interface mirror the hierarchical structure of the occam
application under development. The integrated system provides a
secure mechanism for separate compilation and the use of separate
files, allowing fast editing and re—compilation for minor program
changes.

Major system functions are provided as components of a toolkit. The
individual tools are invoked by function keys, and the integrated editing
system allows the application of any tool to any part of the program
under design.

The benefits of the occam programming system combine to provide
excellent design productivity, and greatly increase confidence in the
timely and accurate implementation of highly concurrent and real time
systems.

Interactive —————> Program checker —— 3 Structured
full screen ——> Performance estimator ———> file
edit/command ———> Compiler — Sy system
system ———> Structured file access ——>
———> Execute/debug EE——




Occam and its
programming
environment

User interface

Folding

Occam is based on the principles of concurrency and communication.
Concurrency allows the many components of a system to execute
simultaneously while the communications allow them to work together.

Occam can capture the hierarchical structure of a system by allowing
an interconnected set of processes to be regarded from the outside
as a single process. In order to assist the programmer in the creation
of a program, INMOS has based the programming environment on the
same notion of hierarchical structure.

The user interface is based on a full screen structured editor, exploiting
the concept of folding. Folding provides a very effective method

of navigating around and viewing selected parts of a large design,
and yet operates within the constraints of an ordinary text vdu. The
programmer’s dependence on hard copy listings is much reduced,
and the system is able to exploit the structure to provide facilities such
as compilation control (exactly those parts of a program which have
been changed are recompiled), navigation to the part of the program
where an error (compiletime or runtime) was detected, as well as the
editing convenience of being able to reorganise the major structure of
a program simply and easily.

Folding is analogous to taking a letter or document with headed
paragraphs and then folding the paper such that the text of the
paragraph is invisible, leaving only the heading visible.

-—={{{ fold (Crease)

---}}2> end fold (Crease)

With a suitably folded program the programmer can see the structure
of the program at a glance without any distracting detail. Individual
sections can then be unfolded so that the detail can be worked on.
The user can create and delete folds at will as the text of the program
is created and edited. The editor imposes no restriction on folding,
which can be nested to any depth.

A program, such as the example described in the occam brochure,
would initially be displayed as a single fold:

... System



On opening the fold, the program would be displayed as:

{{{ system
CHAN Echo, App.in, App.out:
PAR

... keyboard handler

... application

... screen handler
3>

The screen handler could now be displayed by itself, eg

{{{ screen handler
... declarations and initialisation
WHILE running
SEQ
... reset alarm clock
ALT
... deal with Echo channel
... deal with App.out channel
... and timeout
33>

It is now possible to view how input from the application is treated:

{{{ screen handler
... declarations and initialisation
WHILE running
SEQ
... reset alarm clock
ALT
... deal with Echo channel
{{{ deal with App.out channel
App.out ? ch
IF
ch = terminating.character
running := FALSE
TRUE
Screen ! ch
3>
... and timeout
3>



Secure checking

Secure compilation

Running programs

File folds

Editing facilities

Performance
estimator

Toolsets

At any time the user may check the syntax of the source code. This
will locate the first error in the source and automatically position the
cursor at the appropriate point in the text, opening folds as required,
to allow the user to make the correction. The usage of variables and
channels by concurrent processes are also checked at the same time,
to ensure that variables are accessed by only one process at a time,
and that each channel is use for output in one process and for input in
one other process.

Some errors (for example array bounds violation) cannot be detected
at compile time. In all cases, the occam programming system provides
a safe environment in that either the editor/checker catches the error,
or it is detected at runtime.

The contents of a fold may be compiled separately. Separate
compilation can significantly reduce the recompilation time after a
minor change to the program. The compiled code is stored in a
separate sub—fold within the fold being compiled. The integrated
environment provides automatic recompilation of any part of the
program which has been edited (or compiled with a previous version
of the compiler) and ensures that source and object code are kept in
step.

The compiled code is linked with an appropriate kernel, which
implements the concurrency necessary to execute occam and
provides an interface to the host computer’s operating system for
access to the terminal and files.

To aid the debugging of occam programs, the occam programming
system provides the ability to locate the position, in the occam source,
of the cause of a runtime error. This can be used in cases such as
deadlock, array bounds range check, divide by zero, STOP.

Special function keys apply tags to a fold to indicate that it should
be filed separately. Filed folds are only read into the system when
needed, reducing disk traffic and improving system performance.

In addition to the specialised facilities, the editor supports the

normal editing functions of cursor movement, screen position control,
character insertion and deletion (including undelete), line (and
therefore fold) movemement, deletion (including undelete) and
duplication, search and replace (applied to the contents of a fold), and
output of listings.

A performance estimator is included which performs a static analysis
of the program within fold and reports transputer code size and
execution time.

The toolsets provided will depend on the host operating system
environment. In early releases, a fixed toolset is provided, in
subsequent releases, the user will have the ability to select an
appropriate toolset and develop further tools in occam.






Mmos*®

®

INMOS Limited
Whitefriars

Lewins Mead

Bristol BST 2NP

England

Telephone (0272) 290861
Telex 444723

INMOS Corporation

PO Box 16000

Colorado Springs

CO 80935

USA

Telephone (303) 630 4000
TWX 910 920 4904

INMOS GmbH

Danziger Strasse 2

8057 Eching

Munich

West Germany

Telephone (089) 31910 28
Telex 522645

INMOS SARL
Immeuble Monaco

7 rue Le Corbusier
SILIC 219

94518 Rungis Cedex
France

Telephone (1) 687 22 01
Telex 201222

INMOS reserves the right to change the materials and the products described therein at any time and without notice.
Copyright 1985 INMOS Limited. All rights reserved.
@, IMS, and occam are trade marks of the INMOS Group of Companies.

September 1985

72-0CC-028-000



