

Contents

Occam Tutorial

1 Introduction

2 Signposts

3 The Concepts

4 Fundamentals of occam programming

5 Arrays in occam

6 Channel communication

7 Characters and Strings

8 Replicators

9 Real·Time Programming in occam

10 Configuration

11 Terminating Concurrent Programs

12 Occam Programming Style

Occam Tutorial

Contents

Occam 2 language definition

A Introduction

B Notation

C Process

0 Replicator

E Case

F Multiple assignment

G Types

H Scope

Protocol

J Procedure

K Variable, Channel and Timer

L Literal

M Expression

N Function

0 Timer input

P Character set

Q Configuration

R Invalid processes

S Retyping

T External input and output

Occam Tutorial

1 Introduction

Introduction
The aim of this tutorial is to introduce the reader to concurrent programming using the occamlanguage. It
will provide examples of occam programs, and discuss the novel concepts which occam employs. It is not
however the definitive guide to the syntax of occam; that you will find in the Formal Definition by David May
which forms the second half of this book.

Occam is rapidly being recognised as a solution to the problem of programming concurrent systems of all
kinds, and as a powerful and expressive calculus for describing concurrent algorithms.

Occam bears a special relationship with the INMOS Transputer, a high performance single chip computer
whose architecture facilitates the construction of parallel processing systems. The Transputer executes occam
programs more or less directly (ie. occam is the "assembly language of the Transputer").

Parallel computer systems can be designed in occam, and then implemented using Transputers as "hardware
occam processes". This intimate relation between the software and hardware will be novel to most system
designers, who are perhaps used to a more rigid division of labour.

The approach taken in this manual is therefore governed by the realisation that some of its potential readers
will not be professional programmers, but rather professional engineers and system designers who wish to
use occam to design hardware systems.

For this reason we do not assume extensive knowledge of any other high-level computer language, nor of
machine level programming, on the part of the reader. We do however assume a familiarity with the general
concepts of computing and computer programming; it is not a manual for the novice to computing.

The tutorial is concerned purely with the language occam and will only briefly address the issues of installing
occam programs onto Transputer systems. It is intended as a general introduction to the language, equally
suitable for those reader$ who intend to use occam on conventional computers.

We shall not insist that any particular computer/compiler combination (or indeed any hardware at all) be
available to the reader; hardware dependent aspects of occam are concentrated into a single chapter at the
end of the course.

For the same reasons, there will be no instruction in the detailed workings of particular occam compilers. Error
reporting will not be covered except in a general way. Details of this kind are to be found in the Programmer's
Manual which accompanies an occam compiler.

Acknowledgements:- Many thanks to the Inmos staff who took time out from writing the compiler to check
this text and to improve the examples. In particular to David May and Ron Laborde. Any mistakes that have
crept back in are the responsibility of the author.

72 ace 043 07 Occam Tutorial

2 Occam Tutorial

2 Signposts

Signposts
As an aid to the reader, the author has placed a variety of signposts throughout the text, to signal points of
special interest. The meaning of these signposts is as follows.

Take care: Sections so marked are those which explain concepts which are especially likely to trip up novice
occam programmers. This may be because :-

1) This concept is intrinsically difficult.

2) Occam handles this area in a different way from traditional languages with which the reader may be familiar.

3) This is a limitation or restriction in current implementations of occam.

These sections will repay frequent re-reading, especially if you have written an occam program that doesn't
work!

Hint: These are tricks and devices which proved useful to the author while learning occam.

Key Idea: A concept which is fundamental to the understanding of occam. Make sure you thoroughly grasp
it.

Aside: A brief digression from the main thread of the tutorial into broader computing matters. Experienced
programmers might wish to skip them.

Technical Note: A brief explanation of some implementation issue. If you don't understand it, don't let it hold
you up but skip it and return later.

3 Occam Tutorial

4 Occam Tutorial

3 The Concepts

The Concepts
Concurrency

Since John Von Neumann discovered the principles over 40 years ago, all digital computers have been
designed in a fundamentally similar way.

A processor, which can perform a set of basic numeric manipulations, is connected to a memory system
which can store numbers. Some of these numbers are the data which the computer is required to process.
The other numbers are instructions to the processor and tell it which of its basic manipulations to perform.

The instructions are passed to the processor one after the other, and executed. Execution of a computer
program is sequential, consisting of a series of primitive actions following one another in time.

Everyday examples of similar activities in the real world could be reading a book (one word at a time), or
"executing" a knitting pattern by following the instructions in sequence.

Computers are mainly employed to model the real world. Even the simple act of adding 2 and 2 is a model of
the real world, except when it is performed by or for a mathematician who is interested in the pure properties
of numbers. Far more frequently 2+2 is a model for the act of adding two pounds, or dollars, or apples, or
aeroplanes, to an existing stock of two.

Certainly the major applications of computers, such as accounting, banking, weather forecasting, process
control and even word processing, are explicitly modelling objects, events and activities in the real world.

The world which we inhabit is inherently concurrent. At the scale of human affairs, indeed at any scale
between the cosmological and the quantum mechanical, the world behaves as if it were organised into three
spatial dimensions and one time dimension.

Events happen in both time and space. It is possible for two events to occur in the same place one after the
other in time (ie. sequentially), and equally possible for events to occur in different places at the same time
(ie. concurrently, or in parallel).

Concurrency is so much a feature of the universe that we are not normally concerned with it at all. The fact
that, for instance, the population of this planet all live different lives in different places at the present time is
so obvious that one feels slightly embarrassed in stating it.

However it is worthwhile to reflect on the contrast between the concurrent nature of the world, and the
sequential nature of the digital computer. Since the main purpose of the computer is to model the world,
there would seem to be a serious mismatch.

In order to model the world with a computer, programmers of conventional computers have to find ways
to mimic concurrent events using a sequence of instructions. This is not a problem in an application like
accounting, where it is perfectly reasonable to regard goods despatched, materials and moneys flowing in
and out as happening sequentially in time.

It is more of a problem when you wish to control a petro- chemicals plant by computer. Every process in
every part of the plant must be monitored and controlled at the same time, all the time. It is not acceptable for
a crisis in one reaction vessel to be overlooked because the computer happened to be looking at a different
reactor at the time.

Concurrent Programming

The earliest digital computers were programmed using the basic numeric intructions understood by the pro
cessor. Such programming is so tedious and error prone that computer scientists soon began to design
"high-level" languages, starting with Fortran and leading to the current proliferation which includes Basic,
Pascal, Modula 2, C, Ada, Forth, Lisp, Prolog and hundreds of others.

These languages allow programmers to express the logic of a program in notations which use readable

5 Occam Tutorial

3 The Concepts

English (or French etc...) words, albeit with a tightly constrained and reduced syntax. A program called a
compiler then translates these notations into the basic numeric instructions which the computer understands.

For the majority of languages, the product of the compiler is again a sequence of instructions, to be executed
one at a time by the processor just as if they had been produced by hand. In other words these languages
faithfully reflect the nature of the underlying sequential Von Neumann computer in a form more palatable to
human programmers.

To adequately model the concurrency of the real world, it would be preferable to have many processors all
working at the same time on the same program. There are also huge potential performance benefits to be
derived from such parallel processing. For regardless of how far electronic engineers can push the speed of
an individual processor, ten of them running concurrently will still execute ten times as many instructions in
a second.

Conventional programming languages are not well equipped to construct programs for such multiple proces
sors as their very design assumes the sequential execution of instructions.

Some languages have been modified to allow concurrent programs to be written, but the burden of ensuring
that concurrent parts of the program are synchronised (ie. that they cooperate rather than fight) is placed on
the programmer. This leads to such programming being perceived as very much more difficult than ordinary
sequential programming.

Occam is the first language to be based upon the concept of parallel, in addition to sequential, execution,
and to provide automatic communication and synchronisation between concurrent processes.

Synchronisation

It's possible to write concurrent programs in conventional programming languages, and to run them on con
ventional computers; in essence what happens is that the programmer writes a number of programs and the
computer pretends to run them all at the same time by running a piece of each one in turn, swapping at very
short intervals, until they are all done.

However, this kind of programming is more difficult than straightforward "do this, then do this, then do this"
sequential programming. Crudely put, this is because a sequential program has only one beginning and one
end, but a concurrent program may have many beginnings and many ends.

A sequential program starts, runs and then finishes; it's either running or it's not. Often we are not even
concerned about exactly when it finishes (though we usually want it to be as quick as possible on a given
computer).

The well worn metaphor of a knitting pattern can be instructive here. A knitting pattern consists of a list of
instructions on how to manipulate wool and needles, which if followed faithfully lead to the production of, say,
a sweater.

Some instructions will have to be repeated many times, and the pattern will use an appropriate notation which
tells the knitter to do this without having to write out every single step, just like the repetition structures of
computer languages.

For a single knitter who isn't in a hurry, the sweater will take as long as it takes to knit; the sweater is finished
when they've performed every instruction in the pattern.

In occam this could be represented by, say :-

SEQ
...knit body
... knit sleeve
... knit sleeve
.. . knit neck

where the SEQ means "do all these in sequence".

6 Occam Tutorial

3 The Concepts

Aside: The convention of using of three dots . . . will be used throughout the rest of this tutorial to describe
parts of a program, in ordinary English, whose internal details are not relevant to the example, as with
... knit body. They should be distinguished from pure comments, introduced by two dashes, as in -
This is a Comment. Such comments are purely for explanation purposes and do not form part of the
program.

But what about a small firm of knitters, who split up the sweaters into components (bodies, necks, sleeves)
and share out the jobs? They have orders to fulfill and so time now matters.

The most efficient way to proceed is for everyone to knit their individual bits concurrently. Unfortunately the
finishers who put sweaters together can't make a sweater until they have a neck, two sleeves and a body....

From a picture of unconcerned rural bliss by the fireside we switch to one of irascible finishers screaming
"hurry up with that sleeve". The point being that finishing the pattern for a sleeve is no longer sufficient
indication that the sweater is finished.

The time of finishing now matters very much and, more importantly, finishing one job may depend on the
finishing of other jobs outside the individual knitter's control. Unless all the knitters' activities can be suitably
synchronised the result is very inefficient production, with everyone waiting on the slowest knitter.

Computers magnify this problem enormously. They are not as intelligent nor as patient as even the the most
bad tempered of knitters. If several cooperating programs don't finish their parts of the job at the right times,
the result is usually that the program won't run at all, rather than it merely running inefficiently.

Computers are infinitely patient in another sense, for a program is perfectly prepared to wait forever for
something which will never arrive because the synchronisation is wrong (a situation known to concurrent
programmers as deadlock).

This being so, concurrent programs can be difficult to write. Achieving the necessary synchronisation between
parts has up until now been largely the responsibility of the programmer, who has to write in an elaborate
system of signals by which each part can tell the others whether or not it is ready.

Each part of the program must continually look at these signals to see whether or not it can carry on. The
program code required to achieve this is often considerable, and writing it consumes a lot of time which the
programmer could have spent writing those parts of the program which actually do the job (knitting sweaters
so to speak).

Given a concurrent program of any complexity it becomes difficult for the programmer to even understand
how the parts should relate at all.

Occam simplifies the writing of concurrent programs by taking most of the burden of synchronisation away
from the programmer. For instance, our concurrent knitters could be described by :-

SEQ
PAR

... knit body

... knit left sleeve

... knit right sleeve

... knit neck
... sew sweater

This expresses the fact that the parts are knitted in parallel (PAR) but that sewing follows sequentially when
all the parts are finished.

Communication between the different parts of a program is built into the language itself, and it is synchronised
communication - that is, a message will only be sent when both the sender and the receiver are ready.

If one party becomes ready before the other, it will automatically wait for the other without any explicit
command from the programmer. The only responsibility left with the programmer is that of avoiding deadlock
by ensuring that the second party becomes ready sometime (that someone actually is knitting that sleeve!).

7 Occam Tutorial

3 The Concepts

We could add such communications to our knitting description like this :-

PAR
SEQ

... knit body
· .. output body

SEQ
... knit right s1eeve
... output right s1eeve
... knit 1eft s1eeve
... output 1eft s1eeve

SEQ
... knit neck
· .. output neck

SEQ
PAR

... input body
SEQ

... input right s1eeve

... input 1eft s1eeve
... input neck

· .. sew sweater

body
knitter

s1eeve
knitter

neck
knitter

finisher

This is a description of the making of one sweater by four knitters all working at the same time, and all the
synchronisation required is implied in its structure. It works by combining simple processes ("knit body") into
larger processes (each kind of knitter) which can themselves be combined into a still larger process (make a
sweater).

Processes and Channels

In occam programming we refer to the parts of a program as processes.

Key Idea: A process starts, performs a number of actions and then finishes.

This definition fits an ordinary sequential program, but in occam more than one process may be executing at
the same time, and processes can send messages to one another.

In conventional programming languages such as BASIC, much of the activity of a program consists of changing
the values, such as numbers or strings of characters, stored in variables. Take for example this rather
unexciting BASIC program :-

10 LET A = 2
20 LET B = A
40 PRINT B
50 END

The result of running this program is that the value in both variables A and B becomes 2, and line 40 causes
this value to be printed out on a VDU screen.

There is communication of a limited sort going on in this program. The PRINT command provides one-way
communication between the program and an external device, the VDU screen.

There is also a sense in which the value 2 has been communicated from A to B, though we wouldn't normally
dignify this act with the name "communication" because there is only one BASIC program running and it's
being executed one line after another. Instead we tend to regard the value 2 as being stored in both A and
B.

Now imagIne that we could have two such programs running at the same time on different computers and
that in some as yet unspecified way they can communicate across space:-

8 Occam Tutorial

3 The Concepts

---------------+ +---------------
I 1

10 LET A = 2 1/\/\/\/\/\/\110 LET B =A
20 END I magi.c 120 END

I I
---------------+ +---------------

computer 1 computer 2

The desired result is that the value of A somehow crosses the gap between the computers and sets B to 2.

It is of course possible to achieve this end with a BASIC program; one could for instance connect the
computers together by means of serial communication ports. But the BASIC programs would both need to
have extra lines added containing special input and output instructions to send or receive data from the serial
port, and to match the physical attributes of the ports (eg. bits/second and word length), something like:-

---------------+ +---------------
10 LET A = 2 I I
20 RSCONFIG I 110 RSCONFIG ..
30 RSOUTPUT A 1/\/\/\/\/\/\120 RSINPUT A
40 END I RS232 130 LET B = A

I li.nk 140 END
---------------+ +---------------

computer 1 computer 2

Occam permits this sort of communication as a normal feature of programming, and doesn't require special
instructions which have to be different for each kind of communications device.

More importantly, occam doesn't mind whether the two programs which so communicate are running on
different computers, or are just two processes running concurrently on the same computer.

As well as variables for storing values, occam uses channels for communicating values. Channels look in
many ways like variables, except that rather than assigning a value to them for storage (eg. LET A = 2 in
BASIC) we output to thGm or input from them.

The value output by one process is input by another process, the channel behaving like a pipe joining the
two processes. A single channel can only join two processes; it's like a person-to-person call rather than a
conference. Channels are one-way only, so two would be needed for a two way communication.

Key Idea: A channel is a one-way, point-to-point link from one process to one other process.

A transfer over a channel is actually an act of copying; if the value is output from a variable, then that variable
retains its value and a copy of it is sent over the channel.

Occam uses the symbol ! to mean output and? to mean input so we could express the above examples by :-

---------------+ +---------------
I I

A ! 2 1/\/\/\/\/\/\1 A ? B
I I
1 I

---------------+ +---------------
process 1 process 2

where A is a channel and B is·a variable. This reads as "output 2 to A" and" input from A to B".

Since processes 1 and 2 are independent, they might well be executed at different times. The act of trans
ferring a value from one end of the channel to the other can only happen when both processes are ready.

In other words, if the output in process 1 is executed before the input in process 2 executes, process 1 will
automatically wait for process 2 before sending a value. Vice versa, if the input in process 2 were executed

9 Occam Tutorial

3 The Concepts

before process 1 had output, process 2 would wait for a value to appear. There is no way for a value to be
output into "thin air" and lost.

With our hypothetical BASIC programs above there is no such assurance. What would happen should the
programs be "out of step" depends on the detailed workings of the particular link we used.

It might well be that if program 1 reached RSOUTPUT A before program 2 reached RSJ:NPUT A, the value
of A would be sent and lost. Equally if program 2 arrived first it might stop the program and report an error
such as "bad connection".

The two novel features which distinguish channels from variables are:-

1) A channel can pass values either between two processes running on the same computer, or between two
processes running on different computers. In the first case the channel would in fact be just a location in
memory, rather like a variable. In the second case the channel could represent a real hardware link, such
as a Transputer link or other serial communication line. Both cases are represented identically in an occam
program.

Key Idea: An occam channel describes communication in the abstract, and does not depend upon its physical
implementation. You can thus write and test a program using channels without having to worry about exactly
where the different processes will be executed. The program can be developed on a single processor
workstation; when it's finished and proved you may decide to distribute various processes in the program
qnto different computers, and do so by making a few simple declarations at the beginning of the program.

2) Channels are patient and polite. If an input process finds that no value is ready it will wait until one
is supplied, without any explicit instruction from the programmer. Equally an output will not send until the
receiver is ready. This introduces the time factor into programming, but in a way which lifts much of the
responsibility for "timekeeping" off the programmers shoulders.

The description of our knitters could now be written using channels to transport the parts :-

PAR
SEQ body knitter

... knit body
bodychan ! body

SEQ -- s1eeve knitter
... knit right s1eeve
s1eevechan ! right.s1eeve
... knit 1eft s1eeve
s1eevechan ! 1eft.s1eeve

SEQ neck knitter
... knit neck
neckchan ! neck

SEQ -- finisher
PAR

bodychan ? body
SEQ

s1eevechan ? right.s1eeve
s1eevechan ? 1eft.s1eeve

neckchan ? neck
... sew sweater

Three different channels are needed because each may only join two processes; for example bodychan joins
the body knitter to the finisher. As we shall see in the next chapter, when occam is used as a computer
language, rather than for an informal description as here, channels and variables must be declared before
they are used.

Communication over self-synchronising channels is a novel and powerful part of occam, and it can render
the writing of concurrent programs a far less formidable task than it is with conventional languages. In the
next chapter we shall start in earnest to construct occam programs from the simple processes just outlined.

10 Occam Tutorial

4 Fundamentals of occam programming

Fundamentals of occam programming
Primitive Processes

All occam programs are built from combinations of three kinds of primitive process. We have seen all three
kinds already; they are assignment, input and output.

Assignment Process

An assignment process changes the value of a variable, just as it would in most conventional languages. The
symbol for assignment in occam is : =. So the assignment process :-

fred := 2

makes the value in variable fred two. The value assigned to a variable could be an expression such as :-

fred := 2 + 5

and this expression could contain other variables :-

fred := 5 - jim

Take care: Be sure not to mix up = and : =. In occam = means a test for equality, not an assignment.

Input Process

An input process inputs a value from a channel into a variable. The symbol for input in occam is ? The input
process :-

chan3 ? fred

takes a value from a channel called chan3 and puts it into variable fred.

Input processes can only input values to variables. It is quite meaningless to input to a constant or to an
expression.

An input process cannot proceed until a corresponding output process on the same channel is ready.

Hint: As an aid to memory think of the question mark as meaning "Where's my value ?"

Output Process

An output process outputs a value to a channel. The symbol for output in occam is !. The output process :-

chan3 ! 2

outputs the value 2 to a channel called chan3.

The value output to a channel can be anything that you could assign to a variable, so it may be a variable or
an expression, and the expression may contain variables.

An output process cannot proceed until a corresponding input process on the same channel is ready.

Hint: As an aid to memory, think of the exclamation mark as meaning "Here's your value i".

11 Occam Tutorial

4 Fundamentals of occam programming

Communication

Communication over a channel can only occur when both input and output processes are ready. If during
the execution of a program, an input process is reached before its corresponding output process is reached,
the input will wait until the output becomes ready. Should the output be reached first, it will wait for its input.

A value communicated over a channel is copied to the input variable and the value of the output variable
remains unchanged.

Key Idea: Communication is synchronised.

These then are the building blocks from which occam programs are made. Each such primitive process must
occupy a separate line in an occam program, and is the simplest action that occam can perform, an "atom"
of occam programming.

Key Idea: Occam programs are built by combining primitive processes.

SKIP and STOP

Occam has two special processes called SKIP and STOP.

. Key Idea: The process SKIP starts, does nothing and then finishes.

SKIP may be thought of as representing a process which does nothing. It might be used in a partly completed
program in place of a process which will be written later, but which for the moment can be allowed to do
nothing.

For example a process which is to drive an electric motor could be replaced by SKIP when testing the
program without a motor. There are also occasions when you want nothing to happen, but the syntax of
occam requires a process to be present.

Key Idea: The process STOP starts but never proceeds and never finishes.

STOP may be thought of as representing a process which doesn't work, or is "broken". It might be used, like
SKIP, to stand in for a process which has yet to be written.

For example a process to handle errors could be replaced by STOP in the early stages of testing a program.

The effect of a "broken" process tends to spread, because any process which communicates with a broken
process will itself never finish, and hence it becomes broken too.

Termination and Stopping

So far we have loosely used the term "finish" when referring to processes. Concurrent programming in occam
requires us to be rather more precise than this.

A process which completes all its actions is said to terminate. Normally a process starts, proceeds and then
terminates.

A process which cannot proceed is said to be stopped which is not at all the same thing. A stopped program
never terminates. A process might be stopped by waiting for an event which will never happen, due to a
programming error, in which case it is said to be deadlocked.

Correct termination of concurrent programs is not a trivial matter, since they may have many parallel processes
which communicate with one another. This topic is of sufficient importance to merit a chapter to itself (see
Chapter 9).

12 Occam Tutorial

4 Fundamentals of occam programming

Constructions

Several primitive processes can be combined into a larger process by specifying that they should be performed
one after the other, or all at the same time. This larger process is called a construction and it begins with an
occam keyword which states how the component processes are to be combined.

SEQ construction

The simplest construction to understand is the SEQ (pronounce it "seek"), short for sequence, which merely
says "do the following processes one after another". Here is an example :-

SEQ
chan3 ? fred
ji.m := fred + 1
chan4 ! ji.m

This says, "do in sequence, input from chan3 to fred, assign fred + 1 to ji.m and output ji.m to
chan4". In sequence means, to be more precise, that the next process does not start until the previous
one has terminated. A SEQ process therefore works just like a program in any conventional programming
language; it finishes when its last component process finishes.

Notice the way that the processes which make up this SEQ process are indented by two characters from the
word SEQ, so that they line up under the Q. This is not merely to make the program look prettier, but is the
way that occam knows which processes are part of the SEQ.

Whenever a construction is built, we indicate the extent of the new process by indenting all its component
processes by two characters. Other languages use special characters like { ... } or begi.n ... end for this
purpose, but occam uses indentation alone.

Key Idea: A SEQ construction terminates when its last process terminates.

Take care: SEQ is compulsory in occam whenever two or more processes are to run in sequence. In
conventional programming languages, sequence is taken for granted and merely writing one statement after
another guarantees they will execute in sequence. Because occam offers other modes of execution apart
from the sequential, sequence must be explicitly requested.

PAR construction

The PAR construction, short for parallel, says "do the following processes all at the same time", ie. in parallel.
All the component processes of a PAR start to execute simultaneously. For example :-

PAR
SEQ

chan3 ? fred
fred := fred + 1

SEQ
chan4 ? J1m
ji.m := ji.m + 1

says "at the same time, input from chan3 to fred and then add one to the result, while inputting from
chan4 to ji.m and then adding one to the result".

Notice again the indentation. The first two character indent tells occam that the PAR process consists of
two SEQ processes. The second level of indentation shows that each SEQ is composed of two primitive
processes.

Notice also that the processes which are to run in parallel are still written in sequence just as in any ordinary
program. This is purely a matter of writing convenience. The designers of occam could have chosen to make
us write parallel processes side by side, which would give a stronger impresslon of what is going on :-

13 Occam Tutorial

4 Fundamentals of occam programming

PAR
SEQ

chan3 ? fred
fred := fred + 1

SEQ
chan4 ? jim
jim := jim + 1

As you will quickly see though, this would become hopelessly clumsy once you had more than two or three
parallel processes in a PAR; it would exceed the width of standard VDU screens and printer paper, as well
as involving the typist in tedious tabulation.

The important thing to keep in mind is that in a PAR, the written order of the component processes is irrelevant
as they are all performed at the same time. PAR is not quite so easy to understand as SEQ, because the
idea of things happening simultaneously in computer programs is new to many programmers.

For instance we can now no longer know for sure which of the two parallel processes in the above example
will finish first; it depends upon which input becomes ready first, which in turn depends upon a couple of
output processes elsewhere in the program.

The beauty of occam is that this doesn't matter, because the PAR construction itself has a single well defined
beginning and a single well defined end. We know that the two SEQ processes will start at the same time,
run when their inputs become ready and then terminate.

All the component processes in a PAR start at the same time, and the PAR itself terminates when all its
component processes have terminated and that is all we need to know.

Key Idea: This is the central principle of occam programming; compound processes built up from simpler
processes behave just like simple processes ie. they start, perform actions and then terminate. They can in
turn become the components of a still more complex process.

There is a lot more to be said about PAR, especially in relation to communication over channels. Moreover
there are several more constructions in occam, which build processes that repeat or make conditional choices.

But before going on to such matters, something needs to be clarified. Up till now we have been using
channels and variables like chan3 and fred as if they, so to speak, grew on trees. This is most definitely
not the case; in occam both channels and variables need to be specified before they can be used. It makes
sense to discuss specifications and types before we go any further, so that the examples we study can be
valid occam programs.

Types, Specifications and Scope

Occam, like Pascal and many other languages, but unlike BASIC, requires that every object that is used by
a program should have a type which tells occam what sort of object it is dealing with. Furthermore the type
of an object must be specified before it can be used in a process.

We have been using named channels (chan3 and chan4) and variables (fred and jim) without any
specification so far, a situation which will now be rectified.

Names

First let's deal with names themselves. In occam the names of objects can be as long as you like, and they
must start with a letter of the alphabet. The rest of the name, if there is one, can be made up of letters,
digits and the dot character. Upper and lower case are distinguished by occam, so that fred and Fred are
different names. These are all valid names :-

x Y fred chan3 Chan3 new.fred old.fred

Occam keywords such as SEQ, PAR and CHAN are always in upper case and they are reserved. In other
words they cannot be used as names that you create.

14
Occam Tutorial

4 Fundamentals of occam programming

These are not valid names :-

3chan
ol.d-fred
fred$
ol.d fred
CHAN

Data Types

doesn't start with a l.etter
contains il.l.egal. character
contains il.l.egal. character
contains a space
reserved word CHAN

'-'
'$'

Variables may take on one of several data types, ie. kinds of value. The following are the types which are
always provided by occam :-

INT
BYTE

BOOL

an integer or whol.e number.
an integer between 0 and 255;
very often used to
represent characters.
one of the l.ogical. truth
val.ues TRUE or FALSE.

We could specify the variables in the above examples as ;-

INT fred, jim :

which means that they can be used to represent positive or negative whole numbers. Several variables may
be specified at once, as above, by listing them separated by commas.

Technical Note: Occam actually provides more data types than those outlined above. Catering for non
integral numbers by supplying various Real Number types. These types also provide fixed length number
representation. INT16, INT32, INT64, REAL32 , REAL64 are numeric types represented using 16,32 or
64 bits respectively. The details of these types can be studied in the Formal Definition at the rear of this book.
For the purposes of this tutorial we will work only with INT, BYTE and BOOL and will make no assumptions
about the physical size of an INT.

Channel type and protocol

Channels are all of the type CHAN OF protocol. It is necessary to specify the data type and structure of the
values that they are to carry. This is called the channel protocol. For the present we shall be content to
regard channels as able to carry single values of a single data type, rather like variables.

A channel which carries single integer values would be specified by :-

CHAN OF INT chan3 :

where the INT specifies the type of values which may pass along the channel chan3. The type of chan3
is CHAN OF INT. In general the protocol of a channel is specified by CHAN OF protocol.

Timer Type

The type TIMER allows the creation of timers which can be used as clocks by processes. Timers will be
discussed further in Chapter 7.

Characters and Strings

Occam does not have any type CHAR or STRING to represent alphabetic characters or words. Instead
characters are represented as numbers of type BYTE and strings as arrays of numbers of type BYTE. We
shall return to this sUbject in a later chapter.

15
Occam Tutorial

4 Fundamentals of occam programming

Soolean Type

Boolean values, or truth values are produced as the result of tests performed by comparison operators.
Occam provides the following tests :-

= equal. to
<> not equal. to
> greater than
< l.ess than
>= greater than or equal. to
<= l.ess than or equal. to

These tests may only be applied to two values of the same type, and they always yield a value of type BOOL.
For example the test 2 <> 3 yields the value TRUE since 2 does not equal 3.

The truth values TRUE and FALSE are occam constants which can be used in any situation where a test
could be used; you may like to think of them as tests whose outcome is decided in advance.

Constants

A name can be given to a constant value by specifying it with VAL type name IS value:. So we could write :

VAL INT year IS 365:
VAL INT l.eap.year IS 366:

The type can be omitted as occam can deduce it from the value :-

VAL year IS 365:

Possible ambiguities over BYTE and INT are resolved by explicitly specifying the type of the value, which
we'll see later on.

Notice the colon, which is used to end all the different kinds of specification. This colon joins a specification
to the process which follows it.

Scope

In occam, variables, channels and other named objects are local to the process which immediately follows
their specification. What this means is that the object to which the name refers effectively does not exist
inside any other process. For instance in this example :-

PAR
INT fred :
SEQ

chan3 ? fred
...more processes

INT jim
SEQ

chan4 ? fred
...more processes

an error will be reported, because fred exists only inside the first SEQ and jim exists only inside the second
SEQ. The second fred will therefore look to occam like an unspecified variable.

The colon which ends a specification in effect joins the specification to the process which follows it and, to
reinforce the connection, specifications are indented to the same level as the process. This following process
is the scope throughout which the specification holds.

16 Occam Tutorial

4 Fundamentals of occam programming

The same name may be used for different objects with different scopes. For instance, we could use fred
for both variables in the above example :-

PAR
INT fred :
SEQ

chan3 ? fred
...more processes

INT fred :
SEQ

chan4 ? fred
•.•more processes

the two freds are now different variables, each local to its own SEQ process, and altering the value of fred
in the first process has no effect on the second.

If inside the scope of a variable (or other named object), another variable is specified with the same name,
then within its own scope this namesake replaces the original. The original object is masked by the newcomer.
For example :-

INT fred :
SEQ

chan3 ? fred
INT -fred :
SEQ

chan4 ? fred
••.more processes

...more processes

In this case, the input from chan4 goes into the second fred, and the first fred is effectively invisible
throughout the second, nested SEQ.

Let's now fix up the PAP. example we saw in an earlier section with some correct declarations :

CHAN OF INT chan3, chan4:
PAR

INT fred:
SEQ

chan3 ? fred
fred := fred + 1

INT jim:
SEQ

chan4 ? JJ.m
jim := jim + 1

Now the channels chan3 and chan4 are known throughout the PAR process; we could legally refer to
either of them in either of the SEQs. On the other hand fred and jim are known only within their respective
SEQs.

Take care: Specifying a variable in occam does not initialise its value to zero. The value of a variable is
undefined garbage until it has been assigned to or has input a value. The value of a variable only has
meaning during the execution of the process for which it is declared. Since the variable doesn't exist outside
this process, it makes no sense to ask what is its value outside the process. But more importantly, it makes
no sense either to ask what is its value once the process has terminated. The next time that process is
executed, the variable starts out as undefined garbage again. You cannot and must not assume that it keeps
the value which it had at the end of the previous execution. For example :-

17 Occam Tutorial

4 Fundamentals of occam programming

WHILE x >= 0 --ILLEGAL! x not dec1ared here
INT x
SEQ

input ? x
output ! x

INT x
WHILE x >= 0 unwise: x is garbage here

SEQ
input ?x
output ! x

INT x :
SEQ

x := 0
WHILE x >= 0 -- correct

SEQ
input ? x
output ! x

(WHILE is one way that occam uses to repeatedly execute a process; we'll see it in more detail soon).

Hint: If you need a variable to keep its value from one execution of a process to another, declare it in an
outer scope that is, before a process which contains the process which is being repeatedly executed.

Communicating Processes

Communication between parallel processes is the essence of occam programming.

At its simplest it requires two processes executing in parallel and a channel joining them :

INT x :
CHAN OF INT comm :
PAR

comm ! 2
comm ? x

This trivial program merely outputs the value 2 from one process and inputs it into the variable x in the
second. Its overall effect is exactly as if we had a single process which assigned 2 to x.

Shared Variables: A Warning

Communication between the component processes of a PAR must only be done using channels. Occam
doesn't allow us to pass values between parallel processes by using a shared variable.

In fact if a component of a PAR contains an assignment or input to a variable, then the variable must not be
used at all in any other component :-

INT x, y :
PAR

SEQ
x := 2
... more

SEQ
y := x
... more

processes

-- ILLEGAL!
processes

Keeping variables local to component processes and using channels to communicate values is the right way
to do it.

18 Occam Tutorial

4 Fundamentals of occam programming

This may seem like a severe restriction to programmers who have experience with conventional languages.
It will certainly be the biggest source of errors when first programming in occam.

Like all prohibitions it will be more easily borne if the reason for it is understood. The reason is both simple
and necessary.

Parallel processes run at the same time, and in general they run asynchronously ie. at their own pace, only
coming into synchronisation with each other briefly when forced to by communication over a channel.

If occam allowed one parallel process to read from a variable which has its value altered in another parallel
process, what value will be read? It depends upon whether or not the other process has altered it yet, and
this can't be known since the processes are asynchronous. And what if the altering process chooses to alter
the variable's value at the precise moment that the second process is reading it? What would the value be
then?

Such a scheme is obviously unworkable, hence the prohibition. But couldn't we organise it so that a variable
warns the other process that it has had its value changed? We could indeed; the resulting object already
exists in occam and is called a channel! Q.E.D.

Key Idea: In occam variables are used for storing values, while channels are used for communicating values.

Let's now return to the main track with a more complicated example of a PAR which performs some arithmetic
on a value before passing it on :-

CHAN OF INT comm:
PAR

INT x:
SEQ

input ? x
comm ! 2 * x

INT y:
SEQ

comm ? y
output ! y + 1

Here we have two channels called input and output which lead to other processes or perhaps to the
outside world. We assume that they have been declared elsewhere in a larger program. This piece of
program uses two processes working in parallel one of which multiplies an input value by two, the other adds
one to the result and sends it on its way to the output. The times-two process and the add-one process
communicate on channel comm.

Aside: In case it worries you, this is not a particularly useful thing to do; it is purely for illustration. It would
be much simpler to do times-two and add-one in a single SEQ process, or indeed in a single expression. But
later on when we have more of occam at our disposal, we shall see how this sort of thing can be very useful
indeed. At this early stage, all examples of communicating PARs will tend unfortunately to appear trivial.

It's been said several times already that an occam channel is a one-way link between a pair of processes,
but it is useful to now examine exactly what this implies. In a communicating PAR construct it means that :-

1) Only two component processes of the PAR may use any particular channel, one as the sender and the
other as receiver.

19 Occam Tutorial

ILLEGAL! two processes
inputting from same channe1

4 Fundamentals of occam programming

CHAN OF INT comm:
PAR

SEQ
comm 2

INT y:
SEQ

comm ? y
INT z:
SEQ

comm ? z

2) The sender process must only contain outputs to the channel and the receiver must only contain inputs
from the channel.

CHAN OF INT comm:
PAR

SEQ
comm 2

INT y:
SEQ

comm ? y
comm ! y+l

ILLEGAL! input and output
-- from the same channe1 in
-- the same process

For mo-way communication bemeen mo processes we would need mo channels :

CHAN OF INT comml, comm2:
PAR

INT x:
SEQ

comml ! 2
comm2 ? x

INT y:
SEQ

comml ? y
comm2 ! 3

The effect is that each process sends a value to the other; x ends up with the value 3 and y with the value
2. The order of the inputs and outputs in each SEQ matters very much here and it's important to understand
why.

If we were to write :-

CHAN OF INT comml, comm2:
PAR

INT x:
SEQ

comm2 ? x
comml ! 2

INT y:
SEQ

comml ? y
comm2 ! 3

then the program would never terminate; we have the dreaded deadlock.

Why deadlock? Because both SEQs wait patiently for an input to become ready. But since each is waiting for
the other to output, neither can proceed to make the necessary output! It's rather like those comical scenes
when mo people passing in a narrow doorway repeatedly step to the same side to make way, so repeatedly
blocking each other. Swapping the input and output in either process resolves the deadlock.

20 Occam Tutorial

4 Fundamentals of occam programming

Take care: Sequence your programs to ensure that two parallel processes are never each waiting for a
sequentially later output from the other. This is the only circumstance in which occam requires you to worry
about such matters, but watch out for it. Like certain stalemates in the game of chess, it may be disguised
in complex processes.

Repetitive Processes

All programming languages provide some means of looping, ie. performing an action repeatedly. In general
it's convenient to distinguish two kinds of repetition; repeat for a specified number of times, or repeat while a
given condition holds. Occam has both types of repetition. The first, or counted loop we'll see later on. The
second conditional loop is performed by a construction called WHILE, which includes a test such as x < 0
or fred = 100. The resulting process is executed while the test result is true, or looked at another way,
until it becomes false.

For example :

INT x
SEQ

x := 0
WHILE x >= 0

SEQ
input ? x
output ! x

will continue to read values from channel input and send them to output so long as the value is not less
than zero. Every time the inner SEQ process terminates, the WHILE process will be performed again and
the test repeated. This continues so long as the test result is TRUE ie. so long as x is greater than or equal
to zero. When a negative value is received the WHILE process terminates.

Aside: The net effect of this process is to buffer (ie. store) a single value on its way from input to output.
Occam programs are often designed by making the major processes communicate on a channel, then inserting
simple processes like this into the channel to buffer, filter, or transform the transmitted values, almost as if
they were electrical components rather than programs.

The logical values TRUE and FALSE can be used as constants in an occam program, anywhere that a test
could be used. So :-

WHILE TRUE
INT x :
SEQ

input ? x
output ! x

will continue to read values for ever (or until you pull the plug!), whereas :

WHILE FALSE
INT x :
SEQ

input ? x
output ! x

is a pointless sort of process which terminates immediately and will read no values at all.

Conditional Processes

In addition to repetition, all programming languages need to provide a way for programs to choose to do
different things according to a condition ie. the results of a test. In occam one form of conditional choice is
provided by the construction called IF.

IF can take any number of processes, each of which has a test placed before it, and make them into a single
process. Only one of the component processes will actually be executed, and that will be the first one (in the
order in which they are written) whose test is true :-

21 Occam Tutorial

