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Preface

Parallel computing has come of age and is moving into the mainstream of the
computing world. As this technology matures, the variety and number of parallel
computers are growing rapidly. Multiple-instruction, multiple-data machines,
which use many communicating processors, are one of the several types of parallel
computers available today and are becoming increasingly popular. The transputer,
a single-chip microcomputer developed by the Inmos Corp., was the first of these
communicating processors to be built into a single, integrated circuit, and to be sup-
ported within a complete parallel computing environment. This environment in-
cludes not only internal hardware support for parallelism within the transputer it-
self, but also a parallel programming language, occam, and a supporting develop-
ment system.

One of the truly enjoyable aspects of parallel computing with transputers is
the variety of ways, and the ease with which, transputers can be used to build dif-
ferent parallel computers. In this book, I explore and illustrate this diversity. In
addition to a discussion of parallel computing approaches and examples of a vari-
ety of computer architectures, six programming methodologies for parallel com-
puting are presented. Each of these methodologies is developed with numerous
programs illustrating techniques ranging from the simple to the complex. The tech-
niques are compared, the various practical trade-offs between them examined, and
their relative performance and efficiency measured. Every complete program pre-
sented is taken directly from a working example.

My goal is to illustrate and educate, not to create performance benchmarks.
None of the example programs are optimized for execution speed, and any perfor-
mance measures are presented solely for comparison with other examples. Indeed,
the programs are all compiled with the error checking compiler switches turned on.
This may increase one’s confidence in a program but certainly does not enhance the
program’s performance.

It is most definitely not my expectation that these programming examples are
“perfect,” or even unique. Programs can often be written in a half dozen different
ways, and the examples in this book are no exception. The programs presented here
are used to illustrate, explain, analyze, and compare methods that many people can
readily program themselves.

This book will be useful to both the novice and the experienced parallel pro-
grammer for the transputer, although a rudimentary knowledge of occam and trans-
puters will be very helpful. Novice users will benefit from the introduction of pro-
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Preface

gramming approaches and their illustration. Experienced programmers will find
the more complex examples and their comparisons with simpler routines useful and
enlightening. In addition, readers familiar with some of the topics may not have
explored all of the different methodologies presented. After a careful study of this
book, any reader will be thoroughly familiar with a broad variety of parallel pro-
gramming techniques for transputers, and will understand the system trade-off’s in-
volved in using them.

Although some readers may study chapters selectively, the topics do follow
a logical developmental order, with the more difficult programming techniques
presented later in the book. This developmental order is found within each chapter
as well as in the progression of chapters. Experienced programmers may wish to
proceed directly to the more advanced material.

The first two chapters, 0 and 1, are primarily introductory in nature. In these
chapters is presented an overview of parallel computing efficiency, transputer sys-
tems, occam, and of general classes of parallel computers. The first part of Chapter
2 is also introductory and contains a discussion of configuration descriptions; in the
second part, a variety of architectures is described and configured. The remaining
chapters continue with the actual presentation of various programming methods,
together with an analysis of the efficiency of the techniques illustrated.

A good book is never written in isolation, and this book is no exception. I
wish to express my appreciation to those colleagues whose suggestions or ideas
contributed to the many examples in this book. Thanks are also due to my patient
grammarian and wife, Sueanne, and to the editors and reviewers, especially David
Cok, whose corrections, additions, and deletions did so much to improve and clar-
ify the writing. Any remaining faults are my own.

frt A

Ronald S. Cok
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Chapter 0

Introduction

Parallel processing is one of the most promising and fascinating fields in
computer science today. Computers using parallel processors can provide high
performance at a reasonable cost. As a result of new advances in integrated circuit
technology and software development, it is now possible to build useful, powerful,
and inexpensive parallel computers. One of the most intriguing advances has been
the development of the transputer, a single-chip computer developed by Inmos Ltd.
The word transputer is a combination of the words transistor and computer and is
meant to imply that parallel computers can be built of transputers just as traditional
computers are built of transistors.

The advent of the transputer and its gradual acceptance by the computing
world have made it possible to experiment widely with parallel architectures and
programming methodologies with a minimum of effort. This book introduces the
different architectures found in parallel computers and presents in detail program-
ming methodologies useful for transputer-based computers of various architec-
tures. One of the strengths of the transputer approach to computer design and pro-
gramming is the variety of techniques and implementations that can be used for dif-
ferent applications. Many parallel computers using different architectures can be
designed around the transputer, and each is likely to require a different parallel pro-
gramming approach.

The programming approaches presented here are not always unique to paral-
lel processing and may have been developed in other contexts as well, but the tech-
niques described are very useful for transputer-based parallel computers. Some of
the methods are simple and straightforward and have undoubtedly been developed
by many other parallel programmers. Other methods are less common. In either
case, it is the author’s hope that a clear exposition of a variety of parallel program-
ming methods will be useful to both the novice and experienced parallel program-
mer. Most of the techniques discussed have been implemented by the author in real
applications. Others are drawn from interesting and useful examples of common
computing tasks.

Transputer-based parallel computers exhibit a diversity of network architec-
tures, both switched and unswitched. Obviously, how any program will be written
for a transputer network will depend heavily on the interconnection scheme used in
the system. The techniques presented are useful for a variety of networks, but the
emphasis is on unswitched transputer networks which are simply connected with
links. The programming examples for each parallel processing methodology are

Parallel Programs for the Transputer 1



Introduction Chapter 0

developed over several levels of complexity and are described together with com-
ments about the strengths, drawbacks, and difficulties of each parallel program-
ming technique.

In the remainder of this chapter are presented a discussion of efficiency in
parallel computers, a brief description of the transputer and the systems used by the
author to develop the examples, and a short tutorial on the occamt programming
language. This discussion is a rudimentary introduction to the transputer and oc-
cam; a basic knowledge of occam, the parallel programming language used for all
of the examples, is necessary for understanding the programs.

Parallel Computer Efficiency

Efficiency measures are important for the effective use of any computer. In
a traditional computer, efficiency is largely a matter of carefully using the cache
and memory storage and using good programming methods. In addition to dealing
with these traditional concerns, a parallel programmer must effectively use every
processor in a network so that no processor is idle while other processors work and
so that no work is done more than once. Achieving this can be very difficult.

A simple metric which will be used throughout this book for calculating the
efficiency of a program on a parallel computer compares the time required to run a
program on a single processor to the time required to run the program on a parallel
computer:

Time on sequential computer
Time on parallel computer X Number of processors

Efficiency =

If a program takes ten seconds to run on one processor and one second on ten pro-
cessors, the efficiency is 100%. If the program takes two seconds on ten processors
the efficiency is 50%.

The relative efficiency between two parallel processors can be found by di-
viding the efficiency of one by the efficiency of the other. This relative efficiency
can be reduced to:

Time on parallel computer B x Number of processorsin B

. A
Effi = =
cency g Time on parallel computer A x Number of processorsin A

. occam is a trademark of the INMOS Group of Companies, and is used in lower case to
distinguish it from the 13th century philosopher, Sir William of Occam, for whom the pro-
gramming language is named.

2 Parallel Programs for the Transputer



Chapter 0 Introduction

A second common performance measure for parallel computers is the speed-
up. The speedup of a parallel computer is the ratio of its processing time to that of
a sequential, single-processor computer for a given problem:

Time on sequential computer
Time on parallel computer

Speedup =

The speedup of a parallel computer compared to a single processor is also the effi-
ciency of the parallel computer times the number of processors in it.

All other things being equal, the efficiency of a parallel computer can never
truly be greater than 100%. Efficiency greater than 100% is called superlinear. It
is possible that a multiprocessor system will appear to exhibit superlinear efficien-
cy, but closer examination of the system will show that this apparent efficiency is
due either to subtle program differences between the multiprocessor and single pro-
cessor systems or differences within the systems themselves. We can easily see the
impossibility of superlinear efficiency by observing that a single processor can per-
form sequentially the same operations that a parallel processor does in parallel. The
sum of the time each processor takes cannot be greater than the time a single, se-
quential processor needs. It is not difficult, however, to create situations in which
not all things are equal, situations in which a parallel system seems to exhibit su-
perlinear efficiency.

As an example of apparent superlinear efficiency in a parallel computer, con-
sider a single processor with a given amount of memory and a two-processor par-
allel machine with that same amount of memory in each processor. Both proces-
sors have access to a slow, very large memory (such as a magnetic disk) in which
data is stored (Fig. 0-1). If the data to be processed can be divided into two parts,
each of which must be repeatedly accessed, and if the data set is twice as large as
each processor’s individual memory, the single processor will have to fetch data re-
peatedly from the slower storage. In contrast, the parallel machine can read the data
once, storing one part of the data set in one processor and the rest in the other. Since
the two-processor computer only reads the data from the slow disk once, it can pro-
cess the data at more than twice the speed of the single processor computer, giving
the impression of superlinear efficiency. In this case, however, not all things are
equal in these two systems because the parallel computer has twice the memory of
the single processor, even though each processor in both computers has the same
amount of memory.

A second, simple example of apparent superlinear speedup readily demon-
strable on transputer systems involves the use of program loops. If a given task re-
quires that an operation be repeated ten times, a one-processor system might per-
form the task by executing a loop ten times. In contrast, a ten-processor system will
perform the task with a single step in each processor. Since the single processor
will encounter program overhead in executing the loop which the parallel processor

Parallel Programs for the Transputer 3
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A one-processor system A two-processor system

-} ——— Processor —P»

-¢— Memory ———P

Figure 0-1
Computer systems with memory and disk storage

will not, the ten-processor system will perform the task more than 10 times as fast
as the single processor. Of course, if the program loop in the single processor is
unrolled, the discrepancy disappears.

In actual practice, apparent superlinear speedup is rarely experienced since
parallel programs encounter other kinds of overhead not found in sequential pro-
grams. For example, in order to coordinate their work, the processors in a parallel
computer must communicate. This communication takes time, time which a se-
quential, single-processor computer does not spend. The result is that parallel com-
puters are never 100% efficient. Typically, the more communication the proces-
sors must do, the worse the efficiency becomes. To help alleviate this problem,
transputers have been built to perform communication at the same time as process-
ing. This capability reduces the overhead but does not eliminate it, since any com-
munication must at least be set up by the processor.

Figure 0-2 is a typical logarithmic graph of the efficiency of a parallel com-
puter as the number of processors grows. If there are more processors in a network,
more communication is needed while the amount of work to be accomplished re-
mains the same. Thus the relative efficiency of the processor network becomes
worse as the number of processors increases. At some point the work cannot be
further subdivided among more processors and, as more processors are added, the
additional communication overhead actually may cause the overall performance to
decrease. At this point, the processing can no longer speed up as the communica-
tion overhead continues to rise. At best, the performance will asymptotically ap-
proach a limit.

To make this point more concretely, let us consider the hypothetical problem
of convolving a 128-element vector with the small two-element kernel [1,1]. A sin-

4 Parallel Programs for the Transputer
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Practical performance limit
Processing
Time .
Asymptotic
performance limit
Theoretical performance limit—#
-
Number of Processors
Figure 0-2

Performance limit for a parallel processor (logarithmic scales)

[128]INT a:
INT temp:
SEQ
temp:=al[0]
SEQ i=0 FOR 126
SEQ
al[i]l:=a[i]l+a[i+1]
afl27]:=a[l27])+temp

Figure 0-3
Convolution listing for hypothetical performance demonstration
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gle processor must perform 128 adds to calculate the convolution. Figure 0-3 lists
a simple program which does this. If we assume that an add can be done in one
cycle, 128 cycles are required to convolve the vector. In contrast, a parallel com-
puter with N processors arranged in a ring will have 128 / N elements in each pro-
cessor and require 128 / N cycles. However, the last element in each processor
must be combined with the first element in the processor to the right in order to per-
form the two-element convolution. This neighboring element can be obtained if
each processor performs an input from the right and an output to the left. A simple
program to do this is listed in Fig. 0-4. Let us assume that this communication also
requires one cycle to complete. If N =2, the total work will then require 65 cycles;
if N =4, 33 cycles are needed; and so on. For N greater than 128, some processors
will have no work, and the performance of the system will no longer improve. Fig-
ure 0-5 is a graph of the performance of our hypothetical convolution; the efficien-
cy of the calculation is shown in Fig. 0-6. (The simple convolution program listed
in Fig. 0-4 works only when num. procs is a power of two, and will not work with
more than 128 processors.) From an examination of these figures, we can see that
efficiency problems begin occurring when the amount of communication becomes
significant compared to the amount of processing. While it is true that in transputer
systems, and in this example, the communication can be done concurrently with the
processing, thereby reducing the communication overhead, the communication
overhead often does prove to be a very significant factor in the total system effi-
ciency.

Although this simple vector convolution is an artificial example, it serves to
illustrate a basic cause of inefficiency in parallel machines. Real examples using
real programs are presented in the following chapters.

[128)INT a:
size IS 128/num.procs:
PAR j=0 FOR num.procs
local IS [a FROM j*size FOR size]:
SEQ
PAR
left! local[0]
right? data
SEQ i=0 FOR (size-1)
local[i) :=locallil+locall[i+1]
local[size-1]:=local[size-1]+data

Figure 04
Convolution program for a parallel processor

6 Parallel Programs for the Transputer



Chapter 0 Introduction

128,
64 T
320
Processing
Time 16 1

Theoretical “\Actual performance
8 1 performance limit "
_>'

4 1
Asymptotic
2 performance limit
1 —
1 2 4 8 16 32 64 128
Number of Processors
Figure 0-5

Convolution performance for different network sizes

100+
80 +
Percent
Efficiency
40 +
20 +
0 } } t } } } }
1 2 4 8 16 32 64 128
Number of Processors
Figure 0-6

Convolution efficiency for different network sizes
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Transputers

The transputer is a single-chip microprocessor developed by Inmos Ltd. Itis
the first microcomputer designed specifically for use in parallel processing sys-
tems. Among its distinguishing features are special hardware for context switching
between parallel processes on a single transputer processor; point-to-point commu-
nication links for connecting two processors together; special direct memory access
hardware to move data quickly into and out of the links; and an on-chip memory
array. All of these features contribute to the efficient implementation of parallel
processing tasks.

Figure 0-7 is a diagram of a generic transputer microprocessor. Several dif-
ferent transputer microprocessors actually exist, all of which share the special fea-
tures listed above. The actual size of the memory array, the number of links, and
the structure of the processing units and external memory interface differ among
the various transputers available. This particular representation was drawn from
the Inmos transputer documentation.t Future transputer products may have hard-
ware features different from those described in this book. In particular, the pro-
grams discussed in this book, do not assume the use of virtual or monitor link hard-
ware. The programs are based on the T8xx and earlier series of transputer products.

The transputer links are bidirectional and can pass data both into and out of
the processors to which they are connected. Although the link bandwidth in either
direction is the same, when the links are used to simultaneously pass data in both
directions the overall throughput is not twice the throughput possible when data is
passed in only one direction. The transputers used for the demonstrations discussed
in this book are capable of passing 1.8 MBytes per second in one direction at a time,
and 2.4 MBytes in both directions simultaneously. Therefore, a bidirectional com-
munication can pass only 33% more data than a communication which sends data
in one direction.

All of the examples in this book were tested using networks of transputers
connected by their links. The architectural structure of the networks is shown in
Fig. 0-8. Networks of different sizes are actually used for the various examples,
but all of the examples use the same toroidal architectural configuration with an ad-
ditional processor inserted in one row. The additional processor also connects to
the host computer responsible for file handling, display, and keyboard input. The
networks themselves consist of T800 transputers running at 20 MHz. In order to in-
crease the overall memory available, an additional 1 MByte of relatively slow, five-
cycle dynamic RAM is connected to each processor.

The architecture shown in Fig. 0-8 can be used to implement ring networks,
as well as grids and toroids. Subsets of this network are used in different ways to
create the various examples and demonstrations presented.

t. INMOS Limited, Transputer Reference Manual, (Hemel Hempstead, U.K.: Prentice
Hall International (U.K.) Ltd., 1988), p. 46.
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Processor node consisting
of one T800 transputer
with 1 MByte of dynamic
RAM

Host

Figure 0-8
Architecture used for program examples

Performance comparisons between program examples are based on measure-
ments taken using the on-chip timer in the transputer. This timer provides a mea-
sure of elapsed time in 64-microsecond intervals; thus, the timing measurements
will have some variability depending on the state of the timer when the measure-
ments are taken. The performance measurements for each example are generally

rounded to a value which is greater than the timer variability. Another source of |

unpredictable variability in programs with different code sizes is the effect of the
on-chip, high-speed memory. Accesses to this memory are much quicker than to
the off-chip memory, so that a program with a greater amount of its code on-chip -
will generally perform better.

10 Parallel Programs for the Transputer
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occam

The transputer was developed with the specific intention of providing an ef-
ficient platform for the execution of the occam programming language. A brief re-
view of the occam programming language is provided here for the benefit of those
who may be unfamiliar with the language structure and syntax. This discussion is
drawn from the occam 2 Reference Manual¥, which provides a complete reference
for the language. All of the program examples in this book are written in occam.
The word occam is a trademark of Inmos Ltd.

Because occam is an indentation-sensitive language, the programs listed in
this book use a nonproportional font which maintains an equal spacing of charac-
ters, including spaces. Each figure listing is justified on the left margin of the page.
Subsequent pages of a single program may be indented from the left margin. This
margin indentation preserves the actual program indentation, and the indentations
on different pages of a single program are consistent and can be directly compared.

In the program examples, variables are given the name of the value or object
they represent. This feature promotes a readable program style. References to the
program names within the text are printed using the same font type as is used in the
programs themselves so that we may avoid confusion between names from a pro-
gram with similar words in the text. In-line comments in the code are preceded by
a double hyphen.

The most commonly used editor for creating occam programs employs a
folding structure which represents portions of a program with a single line begin-
ning with three dots. These folds represent program sections which may be illus-
trated in other figures. Listing the programs in this way helps to clarify the presen-
tation of many of the larger programs. Each fold is labelled with a comment de-
scribing the contents of the fold and, if the program section is illustrated in another
figure, labelled with a reference to that figure. See Fig. 3-11 for an example.

The basic program structure in occam is the process. A process is an instruc-
tion or group of instructions in a program. These instructions initiate a variety of
operations, the most primitive of which are assignment and communication. As a
simple example of a process consider the assignment of two integer variables, a
and b.

INT a,b:
a:=b

The first statement instantiates, or defines, the variables. Within this first
statement, the word INT defines the data type, and the list of variables to be defined
follows. An array of variables is defined similarly with an array size prefix of the
form [size], where size indicates the number of elements in the array. The scope

t. INMOS Limited, occam 2 Reference Manual, (Hemel Hempstead, UXK.: Prentice Hall
International (U.K.) Ltd., 1988).

Parallel Programs for the Transputer 11
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of a variable is limited to the process following its definition. The assignment of b
to a, done in the second line, is a simple process. Larger processes can be con-
structed from groups of smaller processes. These smaller processes must then be
indented as a group by two spaces.

In describing the temporal relationship between multiple processes, occam is
among the most elegant of languages. Any process may execute before, after, at
the same time as, or in place of another process. There are three occam statements
which define the relationship between multiple processes: SEQ (sequential), PAR
(parallel), and ALT (alternate). These three statements, together with the CHAN
statement, replicated structures, and control structures, are presented below.

SEQ

The SEQ (sequential) construct causes all of the following processes indent-
ed by two spaces to execute in the order listed. For example:

INT a,b:
SEQ
a:=3
b:=a

assigns 3 to a, and then a to b. Together, the four lines of the program can be con-
sidered a single process. The SEQ construct is the implicit programming structure
found in traditional, single-processor computers.

PAR

The PAR (parallel) statement defines a set of processes which execute in par-
allel, at the same time. Each individual process included must be indented by two
spaces in just the same way as the SEQ process. For example, consider three inte-
ger variables, a, b, and ¢. Using a PAR construct, we can multiply all of these vari-
ables by two at the same time:

INT a,b,c:

PAR
a:=a*2
b:=b*2
c:=Cc*2

Programs written in occam use a traditional arithmetic structure with the assign-
ment operation performed by :=. The arithmetic operators used are the common
symbols (+, -, *, /) with the addition of the backslash (\) for modulo.

The occam programming model does not support shared memory. The fol-
lowing example is not legal, and will not compile, since b is assigned to simulta-
neously in both processes.

12 Parallel Programs for the Transputer
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INT a,b:

PAR
b:=a
b:=2

The final value of b cannot be determined, since in a parallel construct it is impos-
sible to predict which process will execute first.

If several processes must use different portions of an array at the same time,
the array must be broken down into disjoint subsets of elements using abbrevia-
tions. Each of the processes can then uniquely access an abbreviated portion of the
original array. For example:

[2]INT array:
INT vall IS array([pointerQ]:
INT val2 IS array[pointerl]:
PAR

vall:=3

val2:=4

The values pointer0 and pointerl must be defined and assigned earlier in the
program. If they are equal, the program will return a run-time error.

Although all of the processes in a PAR construct should, by definition, exe-
cute at the same time, on a single-processor computer the parallel processes will in
fact have to time-share the cpu.

An additional structure, the PRI PAR (priority parallel) construct, provides a
means of executing one process in preference to another. Only when the priority
process is unable to proceed further (while waiting on an input or output, for exam-
ple) can the other processes execute. A PRI PAR structure is written in the same
way as a PAR, but with the first process listed in the PRI PAR structure having the
higher priority.

The PRI PAR structure is especially useful for programs which need to exe-
cute a communication shell at the same time as a normal program task. Typically,
the communication should be expedited at the expense of the task, since delaying
the communication may mean starving another processor of work. PRI PAR struc-
tures are also very useful for real-time systems which must react to external inter-
rupts.

Processes executing at the same time may communicate with each other and
can run on physically separate processors. Described in detail in Chap. 2, the
PLACED PAR structure configures parallel processes to run on physically distinct
processors. This structure essentially associates a complete process with each pro-
cessor in a network, and defines the link interconnections within the network.

Parallel Programs for the Transputer 13
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CHAN

Although two parallel processes cannot both assign values to the same vari-
ables, they can communicate variables through a CHAN (channel) structure. An
input from a channel is performed with a statement of the channel name followed
by a question mark and the variable to be assigned. An output on a channel is per-
formed with a channel name followed by an exclamation point and the variable to
be communicated. For example, one process can pass an integer value to another
through the integer channel talk:

CHAN OF INT talk:
INT a,b:
PAR

talk! a

talk? b

The channels are defined in terms of the type of values communicated on
them. In the previous example, the channel talk communicates integer values
(INT). A channel type can also be any of the other variable types (for example,
BYTE or REAL32), arrays of such types, or a combination of these. A channel
with no defined type is defined as CHAN OF ANY. Channels can also be defined
in arrays just as variables are.

The channel communication itself must take place simultaneously in both the
input and output processes. This means that the two processes communicating
must, at some level, be executing in parallel with each other. If one process wishes
to output on a channel and there is no corresponding process doing an input on the
same channel, the process attempting to output cannot proceed.

The TIMER channel is a special channel defined in occam. The TIMER def-
inition allows an input from an associated channel to return the current system time.
This channel is useful for real-time systems and performance measurements.

TIMER time:
INT a:
SEQ

time? a

ALT

The ALT (alternative) construct provides a mechanism for selecting among
a group of input processes. In an ALT construct, the first process able to input will
proceed and none of the other processes will execute. For example, given two
channels, talkl and talk2, we can write:
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INT a,b:
CHAN OF INT talkl, talk2:
ALT
talkl? a
b:=a*34
talk2? a
b:=a+l

In this case, if talkl inputs a, then a * 34 will be assigned to b. If talk2 inputs
a, then a + 1 is assigned to b.

A processor implements an ALT structure by sequentially testing each of the
channel inputs. If several inputs can proceed simultaneously it is not possible to
predict which process will be chosen. Just as the PRI PAR provides a means to
preferentially execute one of a group of parallel processes, so a PRI ALT will pref-
erentially select one of several simultaneous inputs.

An ALT input can be combined with a boolean guard which will selectively
exclude the input if the guard is FALSE. The boolean “guards” the process, either
allowing it to, or preventing it from, executing. For example:

BOOL go:
CHAN OF INT inputl, input2:
INT data:
ALT
inputl? data
data:=data+l
go & input2? data
data:=data+2

If go is FALSE, input2 cannot input dat a, even if the channel is available.

There is an ALT structure which is especially useful for real-time systems.
When combined with a TIMER channel input, an ALT can be constructed to time
out on an input which is delayed.

TIMER time:
CHAN input:
INT t,a:
SEQ
time? t
ALT
input? a
a:=3+a
time? AFTER (t+1000)
a:=0
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If input does not proceed for 1000 timer cycles after the first t ime input,
the second ALT process will perform an input and zero will be assigned to a. The
AFTER provides a comparison between the current time and the argument; the
t ime input will only proceed after the time of the argument is reached.

Replicated Structures
The SEQ, PAR, and ALT structures can all be replicated, that is, a single

statement can define multiple processes.
A replicated SEQ structure is written:

SEQ i=start FOR count

This statement creates a sequential loop indexed by the integer i which is initial-
ized to start and repeats count times. The parameters start and count are
also integer values. Because the structure is a SEQ, each iteration will proceed se-
quentially in numerical order. The integer variable i is within scope only inside
the process and does not have to be defined outside the process.

A replicated PAR structure is written:

PAR i=start FOR count

This statement creates count number of processes which proceed in parallel.

Each process-is-indexed by the integer i, whose value ranges from start to
start + count - 1.

A replicated ALT structure requires an array of channels of size start +
count, and is written:

[start+count]CHAN OF INT in:
INT a:
ALT i=start FOR count
in[i]? a
a:=a+i

This code creates a set of processes, each of which attempts to do an input with its
respective element of the array of channels in. The first process to do an input on
its channel will proceed and add the index value to the input value.

Control Structures

The occam language also includes control structures which permit branching
in a program. These structures include WHILE, IF, and CASE statements, as well
as subroutine and function calls.

To support the IF and WHILE structures, logical variables are used which
can be either TRUE or FALSE. A WHILE statement will repeat a process as long
as its associated logical variable is TRUE. For example:
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INT a:
SEQ
a:=0
WHILE (a<4)
a:=a+l

will iterate in the WHILE loop until a = 4.
An IF structure will select the first process in its list whose guard is TRUE.
For example:

INT a:
SEQ
a:=0
IF
a=4
a:=8
a=0
a:=2

will select the second alternative and set a equal to two. Note that at least one of
the logical processes must be TRUE or the IF statement will never complete.
IF structures can also be replicated:

[start+count]INT a:
IF i=start FOR count
af[i]l=0
al[i]l:=3

This process will iteratively test the elements of a. The first element equal to zero
will be set to three. If none of the elements is zero, the process will halt. Once
again, the values st art and count must be integers.

Logical variables, useful within control structures, can be explicitly defined
with the BOOL type. These variables can be used in a logical test and combined
with the usual logical operators AND, OR, and NOT. The values TRUE and
FALSE can also be used as logical arguments. The following code creates an infi-
nite loop repeatedly setting a to 0:

INT a:
BOOL stop:
SEQ

stop:=FALSE
WHILE (NOT stop)
a:=0
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Logical variables can also be associated with input statements. The follow-
ing example will only attempt to do an input on channel in1 if the guard ok is
TRUE.

INT a:
BOOL ok:
CHAN OF INT inl, in2:
ALT
ok & inl? a
a:=a+l
in2? a
a:=a+2

The CASE statement, another control structure, is similar to an IF in that one
process from a group is selected and the others are ignored. The CASE statement
does not use logical variables, but executes the process whose guard is equal to the
argument of the CASE itself. For example:

INT a:
SEQ
a:=3
CASE a
7
a:=at4
3
a:=a/4
2
a:=a*4
ELSE
a:=0

The ELSE process at the end will execute only if no previous processes were exe-

cuted. .
Procedure subroutines are created with the PROC (process) definition.” A

simple process with two arguments, double, is illustrated here. Notice that the
type of each argument must be stated.

PROC double (INT argl,arg?2)

SEQ
argl:=arg2*2
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A colon indicates the end of a process definition. The procedure is called with a
statement of the procedure name:

INT a,b:
SEQ
a:=4

double (a,b)

Functions are defined in a slightly different way. A function is defined with
a data type, and must explicitly return a value:

INT FUNCTION double (INT arg)
VALOF
RESULT (arg*2)

As with a process, a function is called by using the name of the function with
the appropriate arguments:

INT a,b:
SEQ
a:=4

b:=double (a)

In order to assist programmers in the organization and construction of large
programs, the occam language supports the use of libraries. These libraries can be
defined as separate routines accessible to any program which references the library.
A library can be accessed by including the statement:

#USE "library file name"

within the scope of any references to routines or variables defined within the li-
brary.

Debugging

Not only do parallel programs inherit all the potential errors of conventional
programs, but they also provide new and interesting ways to frustrate users. Since
a single node of a parallel computer is, of course, very similar to any conventional
computer, all of the errors which one might encounter on a conventional computer
are also likely to be found on any of the nodes of a parallel computer.

In addition to these familiar errors, parallel computers provide two new ways
to create incorrect programs. These errors are commonly called deadlock and live-
lock. Deadlock occurs when a program halts because one of the processors on
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which the program executes is forced to wait forever while trying to send a message
to, or receive a message from, another processor. This condition generally will
cause an entire network to come to a halt as each processor tries to communicate
with one that is stopped. A very simple example of deadlock occurs when each of
two processors simultaneously tries to send a message to the other while neither is
listening.

Livelock is a more difficult communication problem, similar to the well-
known infinite loop in conventional programs. When a network is livelocked, all
of the processors continue to execute some portion of their program, but because of
an error in the communication structure of the program, no processor is able to exit
the loop. Livelock errors occur much less frequently than deadlock errors, but are
also more difficult to trace.

Finding and correcting errors in parallel programs is more challenging than
in conventional programs. In a parallel program, many processors may be execut-
ing simultaneously and the flow of data communicated between processors can be
difficult to track. Tracing a programming error may involve inspecting data in
many processors and trying to follow an extremely convoluted control flow.

Despite these difficulties, in recent years utilities have been developed which
are very useful in debugging parallel systems. These debuggers typically allow us-
ers to easily inspect variables in any processor, check the status of any internal pro-
cesses within one processor, and examine any data which is being read or output to
another processor. These debuggers are most useful for detecting conventional er-
rors or for tracing the control flow of a program which leads to deadlock.

If a debugger is not available, one simple and effective technique for tracing
errors in programs is to write a routine which unloads to the host processor some
useful parameters from every processor in the network. Using this approach is re-
ally equivalent to inserting “print” statements in conventional programs. However,
unloading data from every processor has another very important consequence in
parallel systems: the successful execution of an unloading routine demonstrates
that the processor network is free from both deadlock and livelock at the point in
the program where the unloading routine is inserted.

Miscellaneous

Although the programs presented in this book are written exclusively in oc-
cam, compilers for other languages do exist. Both C and FORTRAN compilers for
programming transputers are available, as well as compilers for some of the less
common languages such as Pascal. These languages must have specialized exten-
sions built into them to support the features necessary for parallel programs, such
as the ability to create parallel processes and communicate between the processes.
The resulting extended languages are less elegant and expressive than occam, but
are obviously more familiar to the many programmers accustomed to conventional
programming.
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The demonstration examples described in the following chapters are simple
programs which can execute on a parallel transputer system directly, without the
support of any operating system. Operating systems for parallel machines, includ-
ing transputer-based ones, do exist, however, and can be very useful for construct-
ing programs in a parallel processor environment. These operating systems typi-
cally provide to the programmer a communication shell which simplifies interpro-
cessor communication and control among the multiple processors within a
network, as well as providing an interface to any other system resources. This shell
can also be very helpful when programming errors must be traced. Chap. 6 dem-
onstrates some simple communication programs which perform rudimentary com-
munication functions necessary in a parallel operating system.

In Summary

In this chapter we have considered the basic definition of parallel processor
efficiency in computer systems and reviewed the transputer microprocessor itself.
The architecture of the parallel processor used to develop the programs we will be
considering is based on a toroidal structure. The occam programming language
with its unique structures is used for programming all of the examples. Although
each of the elements described can be used in a much more complex way than the
very simple illustrations given in this chapter, most of the programming examples
presented in later chapters use the structures described. For more detailed and com-
plete information, the reader should consult an occam programming manual. The
bibliography lists several useful books.
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Chapter 1
SISD, SIMD, MIMD, and All That

Computers today come in a bewildering profusion of varieties. One might
expect that special-purpose computers would be built in all sorts of shapes and sizes
and with varying abilities, but today even general-purpose computers have many
different designs. Contemporary computer designers face a host of choices, from
the basic transistor implementation to the computer architecture to the operating
system software which runs the machine. Itis instructive to examine these choices,
since various program methodologies useful on transputer systems can resemble
many of these computer designs.

Computers are often sorted into architectural classes which describe the con-
nections between a computer’s “brain” and its memory. Understanding these class-
es helps users to appreciate the architectural advantages and disadvantages of the
various computers themselves. Within any class, a computer might be constructed
using any combination of integrated circuit technologies and be controlled by any
suitable operating system software. Although the choice of a particular transistor
technology and software may have a great influence on the practicality, usefulness,
and performance of a computer, the choice is independent of the architectural class
of the machine. Thus one may find architecturally similar computers implemented
with very dissimilar technologies.

Computer architecture classifications in use today reflect the history of com-
puting. The first practical computers built used one group of circuits to calculate
(the central processing unit, or cpu) and a second group to store instructions, data,
and the re