
Parallel
Programs

for the
Transputer

Ronald S. Cok

Eastman Kodak Company

Prentice Hall
Englewood Cliffs, New Jersey 07632

L1brary of Congress Cataloging-in-Pub11cat1on Data

90-37870
CIP199110 JU',

Cok, Ronald S.
Para lle 1 programs for the transputer / Rona ld S. Cok.

p. em.
Includes bibliographical references and index.
ISBN 0-13-651480-4
1. Transputers--Programm1ng. 2. Parallel programming (Computer

science) I. Title.
QA76.6.C6245 1991
005.28--dc20

Editorial/production supervision: Harriet Tellem
Cover design: Bruce Kenselaar
Manufacturing buyer: Kelly Behr

© 1991 by Prentice-Hall, Inc.
A division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

Special Sales/College Marketing
Prentice-Hall, Inc.
College Technical and Reference Division
Englewood Cliffs, New Jersey 07632

EX

occam is a registered trademark of the INMOS Corp.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-651480-4

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty.Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Dedicated to

Sueanne

for her patience, perfection, and other things beginning with p.

Contents

Preface xi

Chapter 0 Introduction 1

Parallel Computer Efficiency 2
Transputers 8
occam 11

SEQ 12
PAR 12
CHAN 14
ALT 14
Replicated Structures 16
Control Structures 16

Debugging 19
Miscellaneous 20
In Summary 21

Chapter 1 SISD, SIMD, MIMD, and All That 23

Multiple Data Paths 25
Multiple Instruction Paths 26

Shared Memory 26
Distributed Memory 28

i\rchitecturalIssues 31
In Summary 33

Chapter 2 Architectures 35
Configuration Descriptions 36
Networks 39

Irregular Networks 39
Rings 42
Toroids 44
Hypercubes 47
Ternary Trees 51

In Summary 56

Parallel Programsfor the Transputer vii

Contents

Chapter 3 Processor Farms

A Simple Processor Fann
Efficiency Concerns
Large Processor Farms
Storage and Communication Issues
A Real-World Example
Efficiency Measurements
In Summary

Chapter 4 Pipeline Processing

Program Issues
Pipeline Efficiency
A Pipeline Example
Communication Methods

Single Buffering
Double Buffering
Triple Buffering

A Buffered Pipeline Test
Multidimensional Pipelines
In Summary

Chapter 5 Data Parallelism

Program Issues
Data Distribution
Loading Data

A Simple Load Routine
A Fast Load Routine
Bidirectional Loading
Performance Measures

Sampling
Expanding Data Sets

One-Dimensional Expansion
Two-Dimensional Expansion
Performance Issues

Communicating Data Sets
Shifting
Performance Issues

An Efficiency Comparison
In Summary

57

59
60
63
69
70
83
86

89
89
91
94
96
98
99

101
103
106
111

113
113
115
119
119
121
124
127
128
130
131
131
135
137
137
141
142
144

viii Parallel Programs for the Transputer

Contents

Chapter 6 Deadlock-Free Routing 145

Program Issues 146
One-Way Virtual Channels 150
A One-Way Ring Router 156
Two-Way Virtual Channels 160
A Two-Way Ring Router 163
A Four-Way Toroidal Router 165
Performance Comparisons 172
In Summary 173

Chapter 7 Worms 175

Searching Strategies 176
Bootstrapping a Processor 183
A Simple, Sequential Worm 185
A Simple, Parallel Wonn 193
A Robust, Exploratory Wonn 199
In Summary 211

Chapter 8 Real-Time Processing 213

Interrupt Handlers 214
A Simple Handler 214
A Buffered Handler 215
A FIFO Handler 217

Performance Comparisons 223
In Summary 226

Bibliography 227

Index 231

Parallel Programs for the Transputer ix

Preface

Parallel computing has come of age and is moving into the mainstream of the
computing world. As this technology matures, the variety and number of parallel
computers are growing rapidly. Multiple-instruction, multiple-data machines,
which use many communicating processors, are one of the several types ofparallel
computers available today and are becoming increasingly popular. The transputer,
a single-chip microcomputer developed by the Inmos Corp., was the first of these
communicating processors to be built into a single, integrated circuit, and to be sup
ported within a complete parallel computing environment. This environment in
cludes not only internal hardware support for parallelism within the transputer it
self, but also a parallel programming language, occam, and a supporting develop
ment system.

One of the truly enjoyable aspects of parallel computing with transputers is
the variety of ways, and the ease with which, transputers can be used to build dif
ferent parallel computers. In this book, I explore and illustrate this diversity. In
addition to a discussion of parallel computing approaches and examples of a vari
ety of computer architectures, six programming methodologies for parallel com
puting are presented. Each of these methodologies is developed with numerous
programs illustrating techniques ranging from the simple to the complex. The tech
niques are compared, the various practical trade-offs between them examined, and
their relative performance and efficiency measured. Every complete program pre
sented is taken directly from a working example.

My goal is to illustrate and educate, not to create performance benchmarks.
None of the example programs are optimized for execution speed, and any perfor
mance measures are presented solely for comparison with other examples. Indeed,
the programs are all compiled with the error checking compiler switches turned on.
This may increase one's confidence in a program but certainly does not enhance the
program's performance.

It is most definitely not my expectation that these programming examples are
"perfect," or even unique. Programs can often be written in a half dozen different
ways, and the examples in this book are no exception. The programs presented here
are used to illustrate, explain, analyze, and compare methods that many people can
readily program themselves.

This book will be useful to both the novice and the experienced parallel pro
grammer for the transputer, although a rudimentary knowledge of occam and trans
puters will be very helpful. Novice users will benefit from the introduction of pro-

Parallel Programs/or the Transputer xi

Preface

gramming approaches and their illustration. Experienced programmers will find
the more complex examples and their comparisons with simpler routines useful and
enlightening. In addition, readers familiar with some of the topics may not have
explored all of the different methodologies presented. After a careful study of this
book, any reader will be thoroughly familiar with a broad variety of parallel pro
gramming techniques for transputers, and will understand the system trade-offs in
volved in using them.

Although some readers may study chapters selectively, the topics do follow
a logical developmental order, with the more difficult programming techniques
presented later in the book. This developmental order is found within each chapter
as well as in the progression of Chapters. Experienced programmers may wish to
proceed directly to the more advanced material.

The frrst two chapters, 0 and 1, are primarily introductory in nature. In these
chapters i~ presented an overview of parallel computing efficiency, transputer sys
tems, occam, and of general classes of parallel computers. The frrst part of Chapter
2 is also introductory and contains a discussion ofconfiguration descriptions; in the
second part, a variety of architectures is described and configured. The remaining
chapters continue with the actual presentation of various programming methods,
together with an analysis of the efficiency of the techniques illustrated.

A good book is never written in isolation, and this book is no exception. I
wish to express my appreciation to those colleagues whose suggestions or ideas
contributed to the many examples in this book. Thanks are also due to my patient
grammarian and wife, Sueanne, and to the editors and reviewers, especially David
Cok, whose corrections, additions, and deletions did so much to improve and clar
ify the writing. Any remaining faults are my own.

xii

Ronald S. Cok

Parallel Programs for the Transputer

Parallel

Programs

for the

Transputer

Chapter 0

Introduction

Parallel processing is one of the most promising and fascinating fields in
computer science today. Computers using parallel processors can provide high
performance at a reasonable cost. As a result of new advances in integrated circuit
technology and software development, it is now possible to build useful, powerful,
and inexpensive parallel computers. One of the most intriguing advances has been
the development of the transputer, a single-chip computer developed by Inmos Ltd.
The word transputer is a combination of the words transistor and computer and is
meant to imply that parallel computers can be built of transputers just as traditional
computers are built of transistors.

The advent of the transputer and its gradual acceptance by the computing
world have made it possible to experiment widely with parallel architectures and
programming methodologies with a minimum of effort. This book introduces the
different architectures found in parallel computers and presents in detail program
ming methodologies useful for transputer-based computers of various architec
tures. One of the strengths of the transputer approach to computer design and pro
gramming is the variety of techniques and implementations that can be used for dif
ferent applications. Many parallel computers using different architectures can be
designed around the transputer, and each is likely to require a different parallel pro
gramming approach.

The programming approaches presented here are not always unique to paral
lel processing and may have been developed in other contexts as well, but the tech
niques described are very useful for transputer-based parallel computers. Some of
the methods are simple and straightforward and have undoubtedly been developed
by many other parallel programmers. Other methods are less common. In either
case, it is the author's hope that a clear exposition of a variety of parallel program
ming methods will be useful to both the novice and experienced parallel program
mer. Most of the techniques discussed have been implemented by the author in real
applications. Others are drawn from interesting and useful examples of common
computing tasks.

Transputer-based parallel computers exhibit a diversity of network architec
tures, both switched and unswitched. Obviously, how any program will be written
for a transputer network will depend heavily on the interconnection scheme used in
the system. The techniques presented are useful for a variety of networks, but the
emphasis is on unswitched transputer networks which are simply connected with
links. The programming examples for each parallel processing methodology are

Parallel Programs/or the Transputer 1

Introduction Chapter 0

developed over several levels of complexity and are described together with com
ments about the strengths, drawbacks, and difficulties of each parallel program
ming technique.

In the remainder of this chapter are presented a discussion of efficiency in
parallel computers, a brief description of the transputer and the systems used by the
author to develop the examples, and a short tutorial on the occamt programming
language. This discussion is a rudimentary introduction to the transputer and oc
cam; a basic knowledge of occam, the parallel programming language used for. all
of the examples, is necessary for understanding the programs.

Parallel Computer Efficiency

Efficiency measures are important for the effective use of any computer. In
a traditional computer, efficiency is largely a matter of carefully using the cache
and memory storage and using good programming methods. In addition to dealing
with these traditional concerns, a parallel programmer must effectively use every
processor in a network so that no processor is idle while other processors work and
so that no work is done more than once. Achieving this can be very difficult.

A simple metric which will be used throughout this book for calculating the
efficiency of a program on a parallel computer compares the time required to run a
program on a single processor to the time required to run the program on a parallel
computer:

Time on sequential computer
Efficiency = -----------------

Time on parallel computer x Numberofprocessors

If a program takes ten seconds to run on one processor and one second on ten pro
cessors, the efficiency is 100%. If the program takes two seconds on ten processors
the efficiency is 50%.

The relative efficiency between two parallel processors can be found by di
viding the efficiency of one by the efficiency of the other. This relative efficiency
can be reduced to:

Efficiency~ Time on parallel computerB x NumberofprocessorsinB
=---~------.;;;..------~~----

Time on parallel computerA x Numberofprocessors inA

2

t. occam is a trademark of the INMOS Group of Companies, and is used in lower case to
distinguish it from the 13th century philosopher, Sir William ofOccam, for whom the pro
gramming language is named.

Parallel Programs for the Transputer

Chapter 0 Introduction

A second common performance measure for parallel computers is the speed
up. The speedup of a parallel computer is the ratio of its processing time to that of
asequential, single-processor computer for a given problem:

Speedup
Time on sequential computer= -----------

Time on parallel computer

The speedup of a parallel computer compared to a single processor is also the effi
ciency of the parallel computer times the number of processors in it

All other things being equal, the efficiency of a parallel computer can never
truly be greater than 100%. Efficiency greater than 100% is called superlinear. It
is possible that a multiprocessor system will appear to exhibit superlinear efficien
cy, but closer examination of the system will show that this apparent efficiency is
due either to subtle program differences between the multiprocessor and single pro
cessor systems or differences within the systems themselves. We can easily see the
impossibility of superlinear efficiency by observing that a single processor can per
form sequentially the same operations that a parallel processor does in parallel. The
sum of the time each processor takes cannot be greater than the time a single, se
quential processor needs. It is not difficult, however, to create situations in which
not all things are equal, situations in which a parallel system seems to exhibit su
perlinear efficiency.

As an example of apparent superlinear efficiency in a parallel computer, con
sider a single processor with a given amount of memory and a two-processor par
allel machine with that same amount of memory in each processor. Both proces
sors have access to a slow, very large memory (such as a magnetic disk) in which
data is stored (Fig. 0-1). If the data to be processed can be divided into two parts,
each of which must be repeatedly accessed, and if the data set is twice as large as
each processor's individual memory, the single processor will have to fetch data re
peatedly from the slower storage. In contrast, the parallel machine can read the data
once, storing one part of the data set in one processor and the rest in the other. Since
the two-processor computer only reads the data from the slow disk once, it can pro
cess the data at more than twice the speed of the single processor computer, giving
the impression of superlinear efficiency. In this case, however, not all things are
equal in these two systems because the parallel computer has twice the memory of
the single processor, even though each processor in both computers has the same
amount of memory.

A second, simple example of apparent superlinear speedup readily demon
strable on transputer systems involves the use of program loops. If a given task re
quires that an operation be repeated ten times, a one-processor system might per
form the task by executing a loop ten times. In contrast, a ten-processor system will
perform the task with a single step in each processor. Since the single processor
will encounter program overhead in executing the loop which the parallel processor

Parallel Programs for the Transputer 3

Introduction

A one-processor system

~--- Processor

Memory

A two-processor system

Chapter 0

Figure 0-1
Computer systems with memory and disk storage

will not, the ten-processor system will perfonn the task more than 10 times as fast
as the single processor. Of course, if the program loop in the single processor is
unrolled, the discrepancy disappears.

In actual practice, apparent superlinear speedup is rarely experienced since
parallel programs encounter other kinds of overhead not found in sequential pro
grams. For example, in order to coordinate their work, the processors in a parallel
computer must communicate. This communication takes time, time which a se
quential, single-processor computer does not spend. The result is that parallel com
puters are never 100% efficient. Typically, the more communication the proces
sors must do, the worse the efficiency becomes. To help alleviate this problem,
transputers have been built to perform communication at the same time as process
ing. This capability reduces the overhead but does not eliminate it, since any com
munication must at least be set up by the processor.

Figure 0-2 is a typical logarithmic graph of the efficiency of a parallel com
puter as the number ofprocessors grows. If there are more processors in a network,
more communication is needed while the amount of work to be accomplished re
mains the same. Thus the relative efficiency of the processor network becomes
worse as the number of processors increases. At some point the work cannot be
further subdivided among more processors and, as more processors are added, the
additional communication overhead actually may cause the overall performance to
decrease. At this point, the processing can no longer speed up as the communica
tion overhead continues to rise. At best, the performance will asymptotically ap
proach a limit.

To make this point more concretely, let us consider the hypothetical problem
ofconvolving a 128-element vector with the small two-element kernel [1,1]. A sin-

4 Parallel Programs for the Transputer

Chapter 0

Processing
Time

Introduction

Asymptotic
......................... performance limit

Number of Processors

Figure 0-2
Performance limit for a parallel processor (logarithmic scales)

[128] INT a:
INT temp:
SEQ

temp:=a [0]

SEQ i=O FOR 126
SEQ

a [i] : =a [i] +a [i+1]
a[127] :=a[127]+temp

Figure 0-3
Convolution listing for hypothetical performance demonstration

Parallel Programs/or the Transputer 5

Introduction Chapter 0

gle processor must perform 128 adds to calculate the convolution. Figure 0-3 lists
a simple program which does this. If we assume that an add can be done in one
cycle, 128 cycles are required to convolve the vector. In contrast, a parallel com
puter with N processors arranged in a ring will have 128 / N elements in each pro
cessor and require 128 / N cycles. However, the last element in each processor
must be combined with the fIrst element in the processor to the right in order to per
form the two-element convolution. This neighboring element can be obtained if
each processor performs an input from the right and an output to the left A simple
program to do this is listed in Fig. 0-4. Let us assume that this communication also
requires one cycle to complete. IfN = 2, the total work will then require 65 cycles;
ifN =4, 33 cycles are needed; and so on. For N greater than 128, some processors
will have no work, and the performance of the system will no longer improve. Fig
ure 0-5 is a graph of the performance of our hypothetical convolution; the efficien
cy of the calculation is shown in Fig. 0-6. (The simple convolution program listed
in Fig. 0-4 works only when nurn . proc s is a power of two, and will not work with
more than 128 processors.) From an examination of these figures, we can see that
efficiency problems begin occurring when the amount of communication becomes
significant compared to the amount of processing. While it is true that in transputer
systems, and in this example, the communication can be done concurrently with the
processing, thereby reducing the communication overhead, the communication
overhead often does prove to be a very significant factor in the total system effi
ciency.

Although this simple vector convolution is an artificial exa~ple, it serves to
illustrate a basic cause of inefficiency in parallel machines. Real examples using
real programs are presented in the following chapters.

[128]INT a:
size IS 128/num.procs:
PAR j=O FOR num.procs

local IS [a FROM j*size FOR size] :
SEQ

PAR
left! local[O]
right? data

SEQ i=O FOR (size-l)
local[i] :=local[i]+local[i+l]

local [size-l] :=local[size-l]+data

Figure Q-4
Convolution program for a parallel processor

6 Parallel Programs for the Transputer

Chapter 0 Introduction

12

64

4

2

8

16
'.".

'.
'-'"

Theoretical Actual performance
performance limit--.

'.
'"''''

=J::~ limit .
•••1•••••••••••••••

".".
"""

32
Processing
Time

2 4 8 16 32 64 128

Number of Processors

Figure 0-5
Convolution performance for different network sizes

Percent
Efficiency

80

60

40

20

o
2 4 8 16 32 64 128

Number of Processors

Figure 0-6
Convolution efficiency for different network sizes

Parallel Programs/or the Transputer 7

Introduction Chapter 0

Transputers

The transputer is a single-chip microprocessor developed by Inmos Ltd. It is
the frrst microcomputer designed specifically for use in parallel processing sys
tems. Among its distinguishing features are special hardware for context switching
between parallel processes on a single transputer processor; point-to-point commu
nication links for connecting two processors together; special direct memory access
hardware to move data quickly into and out of the links; and an on-chip memory
array. All of these features contribute to the efficient implementation of parallel
processing tasks.

Figure 0-7 is a diagram of a generic transputer microprocessor. Several dif
ferent transputer microprocessors actually exist, all of which share the special fea
tures listed above. The actual size of the memory array, the number of links, and
the structure of the processing units and external memory interface differ among
the various transputers available. This particular representation was drawn from
the Inmos transputer documentation.t Future transputer products may have hard
ware features different from those described in this book. In particular, the pro
grams discussed in this book, do not assume the use of virtual or monitor link hard
ware. The programs are based on the T8xx and earlier series of transputer products.

The transputer links are bidirectional and can pass data both into and out of
the processors to which they are connected. Although the link bandwidth in either
direction is the same, when the links are used to simultaneously pass data in both
directions the overall throughput is not twice the throughput possible when data is
passed in only one direction. The transputers used for the demonstrations discussed
in this book are capable ofpassing 1.8 MBytes per second in one direction at a time,
and 2.4 MBytes in both directions simultaneously. Therefore, a bidirectional com
munication can pass only 33% more data than a communication which sends data
in one direction.

All of the examples in this book were tested using networks of transputers
connected by their links. The architectural structure of the networks is shown in
Fig. 0-8. Networks of different sizes are actually used for the various examples,
but all of the examples use the same toroidal architectural configuration with an ad
ditional processor inserted in one row. The additional processor also connects to
the host computer responsible for file handling, display, and keyboard input. The
networks themselves consist ofT800 transputers running at 20 MHz. In order to in
crease the overall memory available, an additional 1 MByte of relatively slow, five
cycle dynamic RAM is connected to each processor.

The architecture shown in Fig. 0-8 can be used to implement ring networks,
as well as grids and toroids. Subsets of this network are used in different ways to
create the various examples and demonstrations presented.

t. !NMOS Limited, Transputer Reference Manual, (Hemel Hempstead, U.K.: Prentice
Hall International (U.K.) Ltd., 1988), p. 46.

8 Parallel Programs for the Transputer

Chapter 0

System
services

Timers

On-chip
RAM

Introduction

Floating point unit

32-bit
processor

~_Link_~._ services ~

Link
interface

Link
interface

Link
interface

Link
interface

Event 1=
External memory

interface

Figure 0-7
Block diagram of a transputer

Parallel Programs for the Transputer 9

Introduction Chapter 0

Processor node consisting
of one T800 transputer
with 1 MByte of dynamic
RAM

Host

Figure 0-8
Architecture used for program examples

Performance comparisons between program examples are based on measure
ments taken using the on-chip timer in the transputer. This timer provides a mea
sure of elapsed time in 64-microsecond intervals; thus, the timing measurements
will have some variability depending on the state of the timer when the measure
ments are taken. The perfonnance measurements for each example are generally
rounded to a value which is greater than the timer variability. Another source of
unpredictable variability in programs with different code sizes is the effect of the
on-chip, high-speed memory. Accesses to this memory are much quicker than to
the off-chip memory, so that a program with a greater amount of its code on-chip .
will generally perform better.

10 Parallel Programs for the Transputer

Chapter 0

occam

Introduction

The transputer was developed with the specific intention of providing an ef
ficient platfonn for the execution of the occam programming language. A brief re
view of the occam programming language is provided here for the benefit of those
who may be unfamiliar with the language structure and syntax. This discussion is
drawn from the occam 2 Reference Manualt, which provides a complete reference
for the language. All of the program examples in this book are written in occam.
The word occam is a trademark of Inmos Ltd.

Because occam is an indentation-sensitive language, the programs listed in
this book use a nonproportional font which maintains an equal spacing of charac
ters, including spaces. Each figure listing is justified on the left margin of the page.
Subsequent pages of a single program may be indented from the left margin. This
margin indentation preserves the actual program indentation, and the indentations
on different pages of a single program are consistent and can be directly compared.

In the program examples, variables are given the name of the value or object
they represent. This feature promotes a readable program style. References to the
program names within the text are printed using the same font type as is used in the
programs themselves so that we may avoid confusion between names from a pro
gram with similar words in the text. In-line comments in the code are preceded by
a double hyphen.

The most commonly used editor for creating occam programs employs a
folding structure which represents portions of a program with a single line begin
ning with three dots. These folds represent program sections which may be illus
trated in other figures. Listing the programs in this way helps to clarify the presen
tation of many of the larger programs. Each fold is labelled with a comment de
scribing the contents of the fold and, if the program section is illustrated in another
figure, labelled with a reference to that figure. See Fig. 3-11 for an example.

The basic program structure in occam is the process. A process is an instruc
tion or group of instructions in a program. These instructions initiate a variety of
operations, the most primitive of which are assignment and communication. As a
simple example of a process consider the assignment of two integer variables, a
andb.

INT a,b:
a:=b

The first statement instantiates, or defines, the variables. Within this frrst
statement, the word INT defines the data type, and the list ofvarlables to be defined
follows. An array of variables is defined similarly with an array size prefix of the
fonn [size], where size indicates the number of elements in the array. The scope

t. INMOS Limited, occam 2 Reference Manual, (Hemel Hempstead, U.K.: Prentice Hall
International (U.K.) Ltd., 1988).

Parallel Programs/or the Transputer 11

Introduction Chapter 0

of a variable is limited to the process following its definition. The assignment of b
to a, done in the second line, is a simple process. Larger processes can be con
structed from groups of smaller processes. These smaller processes must then be
indented as a group by two spaces.

In describing the temporal relationship between multiple processes, occam is
among the most elegant of languages. Any process may execute before, after, at
the same time as, or in place of another process. There are three occam statements
which define the relationship between multiple processes: SEQ (sequential), PAR
(parallel), and ALT (alternate). These three statements, together with the CHAN
statement, replicated structures, and control structures, are presented below.

SEQ

The SEQ (sequential) construct causes all of the following processes indent
ed by two spaces to execute in the order listed. For example:

INT a,b:
SEQ

a:=3
b:=a

assigns 3 to a, and then a to b. Together, the four lines of the program can be con
sidered a single process. The SEQ construct is the implicit programming structure
found in traditional, single-processor computers.

PAR

The PAR (parallel) statement defines a set of processes which execute in par
allel, at the same time. Each individual process included must be indented by two
spaces in just the same way as the SEQ process. For example, consider three inte
gervariables, a, b, and c. Using a PAR construct, we can multiply all of these vari
ables by two at the same time:

INT a,b,c:
PAR

a:=a*2
b:=b*2
c:=c*2

Programs written in occam use a traditional arithmetic structure with the assign
ment operation performed by : =. The arithmetic operators used are the common
symbols (+, -, *, /) with the addition of the backslash (\) for modulo.

The occam programming model does not support shared memory. The fol
lowing example is not legal, and will not compile, since b is assigned to simulta
neously in both processes.

12 Parallel Programs for the Transputer

Chapter 0

INT a,b:
PAR

b:=a
b:=2

Introduction

The final value of b cannot be determined, since in a parallel construct it is impos
sible to predict which process will execute fIrst.

If several processes must use different portions of an array at the same time,
the array must be broken down into disjoint subsets of elements using abbrevia
tions. Each of the processes can then uniquely access an abbreviated portion of the
original array. For example:

[2]INT array:
INT vall IS array [pointerO] :
INT val2 IS array[pointerl]:
PAR

vall:=3
vaI2:=4

The values pointerO and pointerl must be defined and assigned earlier in the
program. If they are equal, the program will return a run-time error.

Although all of the processes in a PAR construct should, by definition, exe
cute at the same time, on a single-processor computer the parallel processes will in
fact have to time-share the cpu.

An additional structure, the PRI PAR (priority parallel) construct, provides a
means of executing one process in preference to another. Only when the priority
process is unable to proceed further (while waiting on an input or output, for exam
ple) can the other processes execute. A PRI PAR structure is written in the same
way as a PAR, but with the first process listed in the PRI PAR structure having the
higher priority.

The PRI PAR structure is especially useful for programs which need to exe
cute a communication shell at the same time as a normal program task. Typically,
the communication should be expedited at the expense of the task, since delaying
the communication may mean starving another processor of work. PRI PAR struc
tures are also very useful for real-time systems which must react to external inter
rupts.

Processes executing at the same time may communicate with each other and
can run on physically separate processors. Described in detail in Chap. 2, the
PLACED PAR structure configures parallel processes to run on physically distinct
processors. This structure essentially associates a complete process with each pro
cessor in a network, and defines the link interconnections within the network.

Parallel Programs/or the Transputer 13

Introauction Chapter 0

CHAN
Although two parallel processes cannot both assign values to the same vari

ables, they can communicate variables through a CHAN (channel) structure.. An
input from a channel is performed with a statement of the channel name followed
by a question mark and the variable to be assigned. An output on a channel is per
fonned with a channel name followed by an exclamation point and the variable to
be communicated. For example, one process can pass an integer value to another
through the integer channel talk:

CHAN OF INT talk:
INT a,b:
PAR

talk! a
talk? b

The channels are defined in terms of the type of values communicated on
them. In the previous example, the channel talk communicates integer values
(INT). A channel type can also be any of the other variable types (for example,
BYTE or REAL32), arrays of such types, or a combination of these. A channel
with no defined type is defined as CHAN OF ANY. Channels can also be defined
in arrays just as variables are.

The channel communication itself must take place simultaneously in both the
input and output processes. This means that the two processes communicating
must, at some level, be executing in parallel with each other. If one process wishes
to output on a channel and there is no corresponding process doing an input on the
same channel, the process attempting to output cannot proceed.

The TIMER channel is a special channel defined in occam. The TIMER def
inition allows an input from an associated channel to return the current system time.
This channel is useful for real-time systems and performance measurements.

TIMER time:
INT a:
SEQ

time? a

ALT
The ALT (alternative) construct provides a mechanism for selecting among

a group of input processes. In an ALT construct, the frrst process able to input will
proceed and none of the other processes will execute. For example, given two
channels, talkl and talk2, we can write:

14 Parallel Programs/or the Transputer

Chapter 0 Introduction

INT a,b:
CHAN OF INT talkl, talk2:
ALT

talkl? a
b:=a*34

talk2? a
b:=a+l

In this case, if talkl inputs a, then a * 34 will be assigned to b. Iftalk2 inputs
a, then a + 1 is assigned to b.

A processor implements an ALT structure by sequentially testing each of the
channel inputs. If several inputs can proceed simultaneously it is not possible to
predict which process will be chosen. Just as the PRI PAR provides a means to
preferentially execute one of a group of parallel processes, so a PRJ ALT will pref
erentially select one of several simultaneous inputs.

An ALT input can be combined with a boolean guard which will selectively
exclude the input if the guard is FALSE. The boolean "guards" the process, either
allowing it to, or preventing it from, executing. For example:

BOOL go:
CHAN OF INT inputl,input2:
INT data:
ALT

input1? data
data:=data+l

go & input2? data
data:=data+2

If go is FALSE, input2 cannot input data, even if the channel is available.
There is an ALT structure which is especially useful for real-time systems.

When combined with a TIMER channel input, an ALT can be constructed to time
out on an input which is delayed.

TIMER time:
CHAN input:
INT t,a:
SEQ

time? t
ALT

input? a
a:=3+a

time? AFTER (t+1000)
a:=O

Parallel Programs/or the Transputer 15

Introduction Chapter 0

If input does not proceed for 1000 timer cycles after the fIrst time input,
the second ALT process will perform an input and zero will be assigned to a. The
AFTER provides a comparison between the current time and the argument; the
time input will only proceed after the time of the argument is reached.

Replicated Structures
The SEQ, PAR, and ALT structures can all be replicated, that is, a single

statement can define multiple processes.
A replicated SEQ structure is written:

SEQ i=start FOR count

This statement creates a sequential loop indexed by the integer i which is initial
ized to start and repeats count times. The parameters start and count are
also integer values. Because the structure is a SEQ, each iteration will proceed se
quentially in numerical order. The integer variable i is within scope only inside
the process and does not have to be defined outside the process.

A replicated PAR structure is written:

PAR i=start FOR count

This statement creates count number of processes which proceed in parallel.
----------IEi"Ya~c~h~pRlFR='O~C~es~s~l~·s~imndexedby the integer i, whose value ranges from start to

start + count - 1.
A replicated ALT structure requires an array of channels of size start +

count, and is written:

[start+count]CHAN OF INT in:
INT a:
ALT i=start FOR count

in[i]? a
a:=a+i

This code creates a set of processes, each of which attempts to do an input with its
respective element of the array of channels in. The fIrst process to do an input on
its channel will proceed and add the index value to the input value.

Control Structures

The occam language also includes control structures which pennit branching
in a program. These structures include WHILE, IF, and CASE statements, as well
as subroutine and function calls.

To support the IF and WHILE structures, logical variables are used which
can be either TRUE or FALSE. A WHILE statement will repeat a process as long
as its associated logical variable is TRUE. For example:

16 Parallel Programs for the Transputer

Chapter 0

INT a:
SEQ

a:=O
WHILE (a<4)

a:=a+l

Introduction

will itemte in the WHILE loop until a =4.
An IF structure will select the fIrst process in its list whose guard is TRUE.

For example:

INT a:
SEQ

a:=O
IF

a=4
a:=8

a=O
a:=2

will select the second alternative and set a equal to two. Note that at least one of
the logical processes must be TRUE or the IF statement will never complete.

IF structures can also be replicated:

[start+count]INT a:
IF i=start FOR count

a[i]=O
a[i] :=3

This process will iteratively test the elements of a. The frrst element equal to zero
will be set to three. If none of the elements is zero, the process will halt. Once
again, the values start and count must be integers.

Logical variables, useful within control structures, can be explicitly defined
with the BOOL type. These variables can be used in a logical test and combined
with the usual logical operators AND, OR, and NOT. The values TRUE and
FALSE can also be used as logical arguments. The following code creates an infi
nite loop repeatedly setting a to 0:

INT a:
BOOL stop:
SEQ

stop:=FALSE
WHILE (NOT stop)

a:=O

Parallel Programs/or the Transputer 17

Introduction Chapter 0

Logical variables can also be associated with input statements. The follow
ing example will only attempt to do an input on channel inl if the guard ok is
TRUE.

INT a:
BOOL ok:
CHAN OF INT inl, in2:
ALT

ok & inl? a
a:=a+l

in2? a
a:=a+2

The CASE statement, another control structure, is similar to an IF in that one
process from a group is selected and the others are ignored. The CASE statement
does not use logical variables, but executes the process whose guard is equal to the
argument of the CASE itself. For example:

INT a:
SEQ

a:=3
CASE a

7
a:=a+4

3
a:=a/4

2
a:=a*4

ELSE
a:=O

The ELSE process at the end will execute only if no previous processes were exe
cuted.

Procedure subroutines are created with the PROC (process) definition. - A
simple process with two arguments, double, is illustrated here. Notice that the
type of each argument must be stated.

PROC double (INT argl,arg2)
SEQ

argl:=arg2*2

18 Parallel Programs for the Transputer

Chapter 0 Introduction

A colon indicates the end of a process definition. The procedure is called with a
statement of the procedure name:

INT a,b:
SEQ

a:=4
double (a,b)

Functions are defined in a slightly different way. A function is defined with
a data type, and must explicitly return a value:

INT FUNCTION double (INT arg)
VALOF

RESULT (arg*2)

As with a process, a function is called by using the name of the function with
the appropriate arguments:

INT a,b:
SEQ

a:=4
b:=double(a)

In order to assist programmers in the organization and construction of large
programs, the occam language supports the use of libraries. These libraries can be
defined as separate routines accessible to any program which references the library.
A library can be accessed by including the statement:

IUSE "librarY_file_name"

within the scope of any references to routines or variables defined within the li
brary.

Debugging

Not only do parallel programs inherit all the potential errors of conventional
programs, but they also provide new and interesting ways to frustrate users. Since
a single node of a parallel computer is, of course, very similar to any conventional
computer, all of the errors which one might encounter on a conventional computer
are also likely to be found on any of the nodes of a parallel computer.

In addition to these familiar errors, parallel computers provide two new ways
to create incorrect programs. These errors are commonly called deadlock and live
lock. .Deadlock occurs when a program halts because one of the processors on

Parallel Programs/or the Transputer 19

Introduction Chapter 0

which the program executes is forced to wait forever while trying to send a message
to, or receive a message from, another processor. This condition generally will
cause an entire network to come to a halt as each processor tries to communicate
with one that is stopped. A very simple example of deadlock occurs when each of
two processors simultaneously tries to send a message to the other while neither is
listening.

Livelock is a more difficult communication problem, similar to the well
known infinite loop in conventional programs. When a network is livelocked, all
of the processors continue to execute some portion of their program, but because of
an error in the communication structure of the program, no processor is able to exit
the loop. Livelock errors occur much less frequently than deadlock errors, but are
also more difficult to trace.

Finding and correcting errors in parallel programs is more challenging than
in conventional programs. In a parallel program, many processors may be execut
ing simultaneously and the flow of data communicated between processors can be
difficult to track. Tracing a programming error may involve inspecting data in
many processors and trying to follow an extremely convoluted control flow.

Despite these difficulties, in recent years utilities have been developed which
are very useful in debugging parallel systems. These debuggers typically allow us
ers to easily inspect variables in any processor, check the status of any internal pro
cesses within one processor, and examine any data which is being read or output to
another processor. These debuggers are most useful for detecting conventional er
rors or for tracing the control flqw of a program which leads to deadlock.

If a debugger is not available, one simple and effective technique for tracing
errors in programs is to write a routine which unloads to the host processor some
useful parameters from every processor in the network. Using this approach is re
ally equivalent to inserting "print" statements in conventional programs. However,
unloading data from every processor has another very important consequence in
parallel systems: the successful execution of an unloading routine demonstrates
that the processor network is free from both deadlock and livelock at the point in
the program where the unloading routine is inserted.

Miscellaneous

Although the programs presented in this book are written exclusively in oc
cam, compilers for other languages do exist. Both C and FORTRAN compilers for
programming transputers are available, as well as compilers for some of the less
common languages such as Pascal. These languages must have specialized exten
sions built into them to. support the features necessary for parallel programs, such
as the ability to create parallel processes and communicate between the processes.
The resulting extended languages are less elegant and expressive than occam, but
are obviously more familiar to the many programmers accustomed to conventional
programming.

zo Parallel Programs for the Transputer

Chapter 0 Introduction

The demonstration examples described in the following chapters are simple
programs which can execute on a parallel transputer system directly, without the
support of any operating system. Operating systems for parallel machines, includ
ing transputer-based ones, do exist, however, and can be very useful for construct
ing programs in a parallel processor environment. These operating systems typi
cally provide to the programmer a communication shell which simplifies interpro
cessor communication and control among the multiple processors within a
network, as well as providing an interface to any other system resources. This shell
can also be very helpful when programming errors must be traced. Chap. 6 dem
onstrates some simple communication programs which perform rudimentary com
munication functions necessary in a parallel operating system.

In Summary

In this chapter we have considered the basic definition of parallel processor
efficiency in computer systems and reviewed the transputer microprocessor itself.
The architecture of the parallel processor used to develop the programs we will be
considering is based on a toroidal structure. The occam programming language
with its unique structures is used for programming all of the examples. Although
each of the elements described can be used in a much more complex way than the
very simple illustrations given in this chapter, most of the programming examples
presented in later chapters use the structures described. For more detailed and com
plete infonnation, the reader should consult an occam programming manual. The
bibliography lists several useful books.

Parallel Programs/or the Transputer 21

Chapter 1

SISD, SIMD, MIMD, and All That

Computers today come in a bewildering profusion of varieties. One might
expect that special-purpose computers would be built in all sorts of shapes and sizes
and with varying abilities, but today even general-purpose computers have many
different designs. Contemporary computer designers face a host of choices, from
the basic transistor implementation to the computer architecture to the operating
system software which runs the machine. It is instructive to examine these choices,
since various program methodologies useful on transputer systems can resemble
many of these computer designs.

Computers are often sorted into architectural classes which describe the con
nections between a computer's "brain" and its memory. Understanding these class
es helps users to appreciate the architectural advantages and disadvantages of the
various computers themselves. Within any class, a computer might be constructed
using any combination of integrated circuit technologies and be controlled by any
suitable operating system software. Although the choice of a particular transistor
technology and software may have a great influence on the practicality, usefulness,
and perfonnance of a computer, the choice is independent of the architectural class
of the machine. Thus one may find architecturally similar computers implemented
with very dissimilar technologies.

Computer architecture classifications in use today reflect the history of com
puting. The fIrst practical computers built used one group of circuits to calculate
(the central processing unit, or cpu) and a second group to store instructions, data,
and the results of the calculations (the memory). In such computers, the cpu and
memory must pass infonnation back and forth (Fig. 1-1) to do any work. No matter
how fast or large the cpu or memory becomes, all infonnation passes through this
single channel. When circuits were, by today's standards, relatively small, the
communication channel could pass more data than the cpu or memory could pro
vide. This is no longer true. Processors today can produce much more data than
can be easily moved from one place to another. This information channel between
memory and cpu is known as the "von Neumann bottleneck," named for the pio
neering computer and infonnation scientist John von Neumann, who first devel
oped many of the concepts used in computer science.

It is interesting to note that as technology has developed through the years,
the computing bottleneck has moved from one module to another. Originally, the
cpu was the most difficult device to build and the cpu itself constrained the appli
cations for which computers were appropriate. As integrated circuit technology de-

Parallel Programs/or the Transputer 23

SISD, SIMD, MIMD, and All That

Information

Chapter 1

, Figure 1-1
An SISD computer with three parts: a central processing unit (cpu),
a memory, and a communication channel through which information passes

veloped, the power of cpus grew, and the amount of memory within a computer
limited its performance. Today, memories are much larger and faster and cpus are
more powerful than ever before, and we have reached the point where the von Neu
mann communication bottleneck is often the most significant problem facing a de
signer of high-performance computers.

In order to conquer or avoid this communication bottleneck, designers have
developed alternatives to the simple architecture shown in Fig. 1-1. The simplest
approach to improving the performance of a computer which is limited by its com
munication bandwidth is to increase the size of the communication channel. Doing
this may not actually solve the bandwidth problem, but it at least defers the prob
lem, although at the cost of larger and more expensive systems. Unfortunately, this
cost is becoming increasingly less affordable and designers can no longer simply
increase the size of a communication channel to improve its performance. The pins
devoted to communications on computer chips are often more than half the total
number, and increasing their number further is dauntingly expensive. Nor can sig
nals be moved more quickly through channels since the speed of light appears to be
an ultimate limit and the propagation of signals in today's fastest computers is al
ready facing that limit.

Because of the cost of bigger or faster channels, an alternative to using a sin
gle channel must be found. The most natural alternative, multiple channels, re
quires either (or both) more memory modules or more cpu modules. This is the ap
proach that nearly all of today's high-performance computers are taking. Since
there is no limit, other than financial, to the number of processors or memory mod
ules a computer performance enthusiast might desire, and there is no limit to the
number of ways to interconnect these modules, researchers have had a field day de
signing and publishing reports of new computers, both theorized and realized.

Because there exists such a plethora of ideas, it is important that we classify
the various computing machines so that they can be sensibly compared and evalu
ated. In the most common classification method, a machine is described in terms
of its data and instruction streams, tl)at is, whether it has one or many independent
processing units each with its own instruction stream, and one or many communi
cation channels, each providing an independent data stream. These classes are
somewhat imprecise and can be interpreted in different ways depending on one's

24 Parallel Programs for the Transputer

Chapter 1 SISD, SIMD, MIMD, and All That

perspective, but they are still helpful and instructive.t Thus the computer shown
in Fig. 1-1 is called a single-instruction (because there is only one cpu which exe
cutes one instruction at a time), single-data (because there is only one data store and
one channel by which data is retrieved) computer, or an SISD computer.

Multiple Data Paths

It is a simple matter, given our basic three computer building blocks, to de
sign a new parallel computer. The difficulty is in creating a design that is efficient,
flexible, cost-effective, and intelligibly programmable. Perhaps the simplest ap
proach to parallelism is to perfonn identical operations simultaneously on many
pieces of data. A computer that does this avoids the traditional von ;Neumann bot
tleneck by storing data in many independent devices, each connected separately to
a processor. This approach, known as single-instruction, multiple-data, or SIMD,
is the usual approach taken to implement very large parallel computers. This tech
nique is popular with designers of high-perfonnance computers because it simpli
fies the programming task; only one program must be written regardless of how
many data elements are operated on at once. On the other hand, one must operate
on many pieces of data in the same way simultaneously or the approach is a waste
of time. Fortunately, many difficult problems in science and engineering do re
quire such manipulation of massive amounts of data.

Because it is difficult to build many independent cpus, each cpu in a parallel
computer is usually quite simple and uses identical circuitry (Fig. 1-2). Each circuit
module is a complete processor, but without independentprogram control, so that

t. This taxonomy was originally developed by MJ. FlYnn in "Some Computer Organiza
tions and their Effectiveness," IEEE Transactions on Computers, C-21, No.9 (Sept. 1972),
pp.948-60.

.::::::::;:::;:;:;:::;:::::::;:::::;:::;:::;:::;:;:::::::::::::::::::::::.

r~;;;;;1

111 1
laElElIa

II ftoce~~

1EI Memory

Figure 1-2
A single-instruction, multiple-data computer executing one instruction at a time
using many simple processors to process many data elements at once

Parallel Programs for the Transputer 25

SISD, SIMD, MIMD, and All That Chapter 1

every processor executes the same instructionat the same time. Modern SIMD ma
chines generally also have the ability to selectively disable operations on particular
processes depending on local data values.

Since each of the small cpu elements is very simple and must execute the
same instruction as all of the others at a given time, these small units can be made
and controlled in vast quantity. Current machines have tens of thousands of pro
cessors and can demonstrate extraordinary performance. However, nothing in life
is free. The processors in an SIMD computer usually have very limited ability to
communicate with each other and the controller. If communication between the
processors or the host is important for a particular application, the performance of
an SIMD computer will suffer badly.

Among today's conventional supercomputers are SIMD machines with a
somewhat different flavor. These supercomputers are generally tenned "vector"
machines because they operate on an entire vector or array ofdata at once. The cir
cuitry which perfonns operations in parallel, however, is not truly a multiprocessor.
The parallel operations in a vector supercomputer tend to be much more complex
than the parallel operation on most SIMD parallel computers, but operate on much
smaller data sets, generally 128 elements or fewer. Indeed, some observers do not
classify vector supercomputers as SIMD machines, despite their specialized hard
ware. These conventional supercomputers are reaching performance plateaus, es
pecially because of signal propagation delays. Because of such limitations, super
computer companies are also beginning to incorporate some of the multiple proces
sor techniques discussed below.

Multiple Instruction Paths

Shared Memory

The natural opposite to a single-instruction, multiple-data machine is a mul
tiple-instruction, single-data computer. Strictly speaking we can see that no such
computers are actually built, since each of the multiple instructions requires sepa
rate hardware, and this hardware also stores data objects, providing multiple data
paths. However, computer systems with restricted access to a general storage de
vice do exist, and are commonly called shared-memory systems. Such systems will
typically have multiple processors connected to a single storage device through a
common communication channel, usually a standard computer bus of some sort.
Figure 1-3 shows a logical representation of such a shared-memory system. Notice
that, in addition to the primary storage, every processor also has local memory stor
age with independent access to the storage. Therefore, a practical shared-memory
computer is a multiple-instruction, multiple-data (MIMD) computer with a com
mon interprocessor communication channel. Parallel computers of this sort clearly
need a very high-performance communication channel to accommodate the many
processors moving information around. It is also clear that shared-memory sys
tems cannot expand themselves endlessly since the channel bandwidth is constant

26 Parallel Programs for the Transputer

Chapter 1 SISD, SIMD, MIMD, and All That

Local memory

Processors

Figure 1-3
A practical shared-memory computer with a small local memory
for data cache and program storage as well as a common memory

and every processor must work through it. This lack of expansibility is in sharp
contrast to SIMD machines of the type shown in Fig. 1-2.

Shared-memory computer systems may require complex data control meth
ods to ensure the integrity of the data used in a program. Since every processor can
access all of the data, anyone processor can destroy or misuse information allocat
ed to another. To prevent this, information in the shared memory is generally
"locked" by one processor when in use and cannot be accessed by another. When
the fIrSt processor has finished working with the information it is "unlocked" and
made available to the next user.

A shared-memory system is the first parallel system described so far that has
the capability of actually running more than one totally independent program at a
time. A single-instruction machine has a sequential control flow, even though it
may be doing a particular operation in many processors and on many pieces ofdata
at the same time. Since a shared-memory system can execute entirely different pro
grams at the same time, the control flow is much more complex and obscure. Pro
cessors can now easily interact with each other rather than being limited to inter
acting primarily with data.

Effectively controlling multiple processors is a difficult task. Most people
are accustomed to one-track programming and fmd using multiple-track program
ming problematic. Moreover, control is not the only thorny issue. Parallel algo
rithms can be difficult to devise and'implement efficiently. An SIMD machine uses
a fIXed approach to solving a problem in parallel: identical operations must affect
multiple data elements concurrently. A shared-memory system is not limited to us-

Parallel Programs for the Transputer 27

SISD, SIMD, MIMD, and All That Chapter 1

ing this approach, and problems can be divided up in many different ways to make
use of the multiple processors available. Some of these approaches, suitable for im
plementation on transputer systems, are described in the chapters that follow.

Processors in a shared-memory machine generally interact in one or both of
two ways: through direct message-passing from one processor to another, or by
leaving information in the common memory. Message-passing is the more direct
approach but also involves more hardware, since the communication channel must
be able to handle messages and the processors must be able to signal each other in
some way through interrupts, message buffers, or the like.

Using the common memory as a repository for messages can provide versa
tility. Processors can scan through variously allocated blocks of memory leaving
messages, receiving messages and instructions, and generally treating the common
memory as a combination postal service and safety deposit box. Indeed, the pro
gramming techniques used to drive a shared-memory machine often make it look a
little like a data-flow computer, with the memory controlling the processors rather
than the other way around.'

Real implementations of shared;memory machines generally use traditional,
von Neumann, SISD processors as the actual cpu engines. The local memory at
each processor is used to store programs and cache data taken from the shared
memory. This approach reduces the bandwidth requirements of the communica
tion channel, but requires that every processor hold a copy of the program. If each
processor runs a different program, no memory is wasted. If each processor is es
sentially running the same program, however, the identical program will be stored
in each processor, a redundant waste. The inverse relationship between the amount
of program memory and the bandwidth required to move program code is often
demonstrated in parallel computer design.

Distributed Memory

If a multiple-instruction, multiple-data computer does not include a shared
memory, it is considered to be a distributed-memory system. Distributed-memory
MIMD computers can use either a single communication channel for interproces
sor communication, as do shared-memory computers, or multiple communication
channels. Transputer-based MIMD computers use the latter technique, since the
multiple transputer links form point-to-point processor communication channels.
A distinguishing feature of distributed-memory MIMD machines is that one pro
cessor cannot access the memory of another. In fact, for multiple-cpu computers,
the distinction between shared and distributed memory is much more useful than
the distinction between multiple and single data streams. Figure 1-4 is a simple di
agram of a generic MIMD distributed-memory parallel computer.

In some ways, a distributed-memory MIMD c9Inputer is the most complex
design we will discuss. It has the complexity inherent in both the single-instruction
multiple-data approach and the shared-memory approach. An SIMD machine must
distribute its data in a useful way; a shared-memory machine must distribute its
program in some way; and a distributed-memory MIMD computer must do both.

28 Parallel Programs/or the Transputer

Chapter 1 SISD, SIMD, MIMD, and All That

Figure 1-4
A distributed-memory MIMD computer with many communicating processors,
each with its own local memory but no shared memory

The advantage of this complexity is the resulting performance. A shared-memory
MIMD computer inevitably faces limitations in its ability to access data from a
common memory, while a SIMD machine faces interprocessor communication dif
ficulties. In contrast, a distributed-memory MIMD computer circumvents both of
these limitations, but at the expense of programming complexity.

MIMD computer hardware ranges from very simple, replicated processor
units to very complex, high-powered cpus composed of many integrated circuits.
Typically, the more integrated circuits there are in a processor node, the fewer
nodes there are in the computer. This circumstance points out a basic trade-off
available to parallel computers which is not found in typical SISD machines. The
speed ofan SISD computer can only be increased through hardware improvements,
while the speed of a parallel computer can be increased either by the addition of
processor nodes or by the improvement of the hardware at each node. Generally it
is more cost-effective to add processors; however, a thorough analysis of this trade
off for a particular parallel computer can be quite difficult.

In common with the SIMD organization, MIMD machines can grow fairly
readily in size and performance. Because the number of data paths and amount of
memory usually increase with the number of processors, there is no obvious limit
to the number of processors that can be used and the performance an MIMD com
puter can realize. Limitations in performance do exist but the limits are reached in
more subtle ways, generally because of computational inefficiencies, communica
tion requirements, or hardware constraints.

Parallel Programs for the Transputer 29

SISD, SIMD, MIMD, and All That Chapter 1

Output processors

Crossbar switch

Input processors

Figure 1-5
An MIMD computer with a crossbar switch connecting every processor
to every other with the switches represented by e

Distributed-memory computers can be further distinguished from each other
by the flexibility of their interconnections. The interconnection in a system can ei
ther be switched or not switched. If the processor interconnects are not switched,
they are either point-to-point, that is from only one processor to only one other pro
cessor', or broadcast, from possibly anyone processor to all other processors. The
most direct implementation of a transputer system uses point-to-point interconnec
tions between transputer processors since the transputer links themselves form
point-to-point interconnections.

Switched-interconnect systems also use point-to-point interconnections, but
those interconnections can be changed under program control. In such systems,
each processor's links are connected to a switching network (often a crossbar
switch) as shown in Fig. 1-5. This switching network provides the ultimate flexi
bility in real-time reconfigurability but is expensive and can be problematic to con
trol. The same effect can be achieved through software in a point-to-point system
although with much lower performance. The issue of switched versus non
switched interconnection can be reduced to a choice between increased hardware
expense and correspondingly higher performance on the one hand, and software
cost and communication overhead on the other hand.

In addition to cost and control, the limited expansibility of a switched system
can be a problem. The number of switches needed to completely connect proces
sors together grows faster than does the number of processors. In a large system,
completely interconnecting all of the processors is both expensive and difficult.
Sometimes multilayered switching systems are used to reduce the total number of

30 Parallel Programs/or the Transputer

Chapter 1 SISD, SIMD, MIMD, and All That

switches needed. Using this technique adds delay in switching but reduces the total
number of switches needed. Regardless of the switching scheme used, switching
is expensive.

Architectural Issues

Any computer faces inherent limitations in its ability to do work. The origi
nal single-instruction, single-data machines were limited by the speed of the cpu
and the rate at which it could get information or work to do. The same limitations
are ofcourse equally applicable to parallel systems, but in such systems the bounds
are somewhat more elastic. The performance of old-fashioned SISD computers
was increased by making the cpu faster or the communication channel larger, and
these same improvements can be applied to parallel machines.

We can also speed up a parallel machine by increasing the number of cpus
and communication channels. Since we can presumably increase the number of
channels and processors forever, if we are rich enough, what performance limits
will parallel machines ultimately face? One limit mentioned earlier is the difficulty
of getting information into and out of the machines themselves, but channels to do
this can be replicated, and storage and display facilities can be built in parallel as
well.

In addition to practical constraints on the performance of parallel computers,
there are natural performance limits internal to the parallel machines themselves.
One such limit is the overhead involved in distributing work. If more than one pro
cessor is working on a task, the processors must communicate, if only to agree on
when they are finished. If each processor has a different task and none of the tasks
require communication, there is no limit to the petfonnance of the computer; how
ever, in this case the processors are really separate machines and can hardly be
thought of as working "in parallel."

One fundamental perfonnance limitation of parallel computers, then, is the
cost of communication. The more processors and communication channels there
are in a computer, the higher this cost, since it will either cost more to switch the
communication channels or take longer to pass a message through more processors.
A system with instantaneous point-to-point communications connecting all of the
processors would help but has yet to be built. In any case, communication overhead
in a multiprocessor computer does not decrease when processors are added as does
the work per processor, but rather increases or, at best, stays the same.

A second fundamental limitation to the performance of parallel computers is
related to the type of problem being solved. Although there is some controversy
about this issue, it appears that certain problems, perhaps the majority, cannot be
solved in parallel; their mathematical structure will not permit it. Fortunately there
are many useful problems which can be successfully solved in concurrent pieces.
Even so, the algorithms which pennit us to solve these problems often involve
much communication. In an effort to reduce the total amount of communication

Parallel Programs/or the Transputer 31

SISD, SIMD, MIMD, and All That Chapter 1

ordained by a particular algorithm, computer scientists devise many special-pur
pose architectures, matching the architecture to the algorithm.

Given the fact that parallel computers are practical for solving certain prob
lems, which designs are best? Does the choice of design make any difference? In
a very general sense, all computers are equivalent What can be done by one can
be done by all; only the performance efficiency changes. This is obviously true if
one considers that a sequential, single-instruction computer can do the same tasks
as a parallel machine, merely doing the tasks one at a time. It is not so clear that
the parallel MIMD and SIMD machines are equivalent An MIMD machine can
be programmed so that each processor acts identically just as each processor of an
SIMD machine does; but what about the reverse? Essentially, the SIMD machine
can do the same tasks as an MIMD, but must do them sequentially.

A simple example of this is a CASE or IF statement in which, depending on
a local value, a processor chooses an operation. Since each processor in an MIMD
machine is running an independent program, the processors together can execute
different instructions simultaneously. In contrast, an SIMD machine can only ex
ecute one instruction at a time. This means that each instruction path must be run
sequentially, one operation after another. In the extreme case, if every element of
an array required a different computation, an SIMD machine would be reduced to
sequentially processing one element at time.

Distributed-memory and shared-memory systems can also be considered
equivalent. It is quite easy to see how a shared-memory computer can behave like
a distributed-memory computer. If a shared-memory computer divides its memory
so that each processor has a partition, and if the shared-memory computer is pro
grammed so that each processor accesses only its own partition, it is essentially be
having like a distributed-memory computer. Some mechanism must be included to
accommodate interprocessor communication, but this is easily done by allowing
shared blocks of memory to be accessed only by those processors which must com
municate. This arrangement can accommodate broadcasts, in which a piece of data
is sent to every processor, by having all processors share one small block, or point
to-point communication, in which only pairs of processors can share a message
block.

It is considerably more difficult and less efficient for a distributed-memory
machine to mimic a shared-memory machine. It can be done, however, by distrib
uting the "shared" memory over the array as is done with any distributed computer.
A memory handler is placed in every processor to intercept requests for data. If the
data requested are not stored locally, messages are sent to the processor with the
needed information. The data are then passed back to the requesting processor.
When all of the processors are' actively requesting data, the communication load
can be quite heavy. The same precautions regarding data integrity must be taken
as were mentioned earlier for shared-memory systems.

It is also possible to replicate a "shared" memory at each processor. If every
processor has a copy of the data, communication overhead is greatly reduced. As

32 Parallel Programs for the Transputer

Chapter 1 SISD, SIMD, MIMD, and All That

usually happens in this kind of arrangement, however, the communication over
head is reduced at the expense of using n times more storage for n processors. In
any case, communication overhead is not eliminated since after each operation the
data at each processor will have to be communicated to every other processor, in
order that the integrity of the shared data be maintained.

Classifying a particular parallel computer can be quite difficult. As we have
seen, one type of computer sometimes mimics the behavior of other types. Al
though classifications are usually based on hardware features, particular machines
often have features from different classes, making them hard to classify. For ex
ample, the multiple SIMD (MSIMD) computer can use many (or at least several)
SIMD machines together. An MIMD computer with a vector processor at each
node could be considered an MSIMD computer, as could some of the new super
computers being built with more than one processor.

The distinction between shared-memory systems and distributed-memory
systems is also blurred if a distributed machine uses a direct broadcast facility. The
broadcast acts as a shared facility which can be accessed by all processors simulta
neously.

In Summary

In this chapter we have considered a variety of parallel processing architec
tures. Parallel processing computers are generally classified according to the num
ber of different instructions which can be executed simultaneously and according
to the number of communication channels used to access data. In addition, parallel
computers are often classified as shared-memory (if all of the processors can access
a given memory location) or distributed-memory (if only one processor can access
a given memory location). Parallel computers can be built with various features
from different categories, making them difficult to classify.

The performance of parallel computers can be expressed in terms of number
ofprocessors, amount of memory, and communication bandwidth. Each variety of
parallel computer will have its particular limitations in ultimate perfonnance.
Shared-memory machines generally encounter a hardware limit to their perfor
mance, usually due to contention between processors for the shared memory re
sources. Distributed-memory computers have no such contention but encounter
overhead from communication requirements. This overhead tends to depend on the
task perfonned and is difficult to quantify, but will eventually impose an ultimate
limit on performance.

Transputer systems are most often used in distributed-memory multiple-in
struction, multiple-data parallel computers. The transputer's point-to-point links
offer communication channels which are independent of any memory-sharing re
quirements. Arbitrarily large systems can be built using these processors. Local
memory provided on each processor chip, hardware support for task switching, and
elegant software support for distributed parallel processing make the transputer es
pecially appropriate for constructing distributed-memory MIMD computers.

Parallel Programs/or the Transputer 33

SISD, SIMD, MIMD, and All That Chapter 1

Such computers have a wide variety of uses and can be programmed in many
ways. These advantages make the transputer a highly flexible tool. Techniques
used to achieve this flexibility are presented in subsequent chapters.

34 Parallel Programs/or the Transputer

Chapter 2

Architectures

One of the most popular architectural classes of parallel computers is the
multiple-instruction, multiple data (MIMD) class. Most transputer-based comput
ing machines fall into this class. Although members of a single class ofcomputing
machines, multiple-instruction, multiple-data computers are extraordinarily di
verse in their architecture. Even though every node in an MIMD computer may be
identical, the number of ways in which the nodes can be connected is very large,
and every different architectural or interconnect scheme gives rise to a different
computer with its own special abilities and limitations.

Any MIMD architecture can be classed as either regular or irregular. Most
MIMD computers use a regular architecture, one that can be described with a math
ematical fonnula. In contrast, an irregular architecture cannot be described with a
fonnula and therefore must be described with a list of the nodes in the network and
their communication channels. However, any subset of an irregular network may
be regular, or a network may be regular except for a few aberrations which make it
irregular.

A regular architecture can generally be scaled proportionately without its es
sential structure changing. But just because a network is scalable does not neces
sarily mean that each processor node in the network will remain the same as the net
work is scaled. Indeed, some network architectures actually require that processor
nodes add communication channels as the network grows. Other networks can
only grow by a fixed amount at a time.

Regular networks have some distinct advantages over irregular networks.
One sigQificant advantage is that a regular network can be changed in size without
its fundamental characteristics being altered. Thus, a parallel computer built
around a particular regular network can have different numbers of nodes, making
it large or small, fast or slow. A second advantage is that regular networks are well
defined so that programs written for them can be somewhat portable between net
works of different sizes and between computers with the same architecture. Thus
a properly written program for a regular network can also execute on a larger or
smaller network with the same architecture. Likewise, a program written for one
parallel computer may be portable to another computer with the same architecture.
Other advantages are that regular networks are more modular, easier to construct,
and often easier to program than irregular networks.

In contrast to the generality of regular networks, irregular network architec
tures are usually made to match specific problems. Such networks can be used for

Parallel Programs/or the Transputer 35

Architectures Chapter 2

general computing but are more often found in special-purpose computers. Parallel
computers with irregular architectures tend to be built with nodes of different ca
pabilities at different locations in the network. Even if the same cpu is used for
each node, the nodes often have different supporting hardware. These peculiarities
in connection and capability within a network can make programming problematic.
The various methods used for implementing parallelism demonstrated in this book
cannot automatically be used in an irregular network without the special resources
and connections which might be available in such a network being wasted. On the
other hand, the parallel implementation of a problem on an irregular network is
generally obvious, since the network is usually chosen to suit the problem very
closely. What is often not so obvious is how to organize the problem and design a
suitable network in the fIrst place.

Irregular networks are used most often with pipeline parallelism, and regular
networks with distributed data parallelism. However, either mode of parallelism
can be used with either type of network. Indeed, pipeline parallelism can easily be
implemented on a regular network in order to build a system very similar to a sys
tolic processor. These issues will be discussed in more detail in later chapters.

Transputers are ideally suited to the construction of a wide variety of MIMD
network· architectures, both regular and irregular. .Because the transputer's links
provide such a simple mechanism for processor interconnection, it is easy to build
or modify any particular network. And because the occam language provides a
highly flexible programming tool for parallel systems, programming the many pos
sible networks is not especially difficult.

There is, however, one major restriction on the construction of networks with
transputers. Because the number of links in each processor is fixed, transputers
cannot be used to construct networks with more communication channels than
there are links, unless link-switching devices are used. These switches can provide
greater interconnectivity in a network but do so at the cost of reduced perfonnance
and increased expense and complexity.

Configuration Descriptions

Transputer networks programmed in occam are defined by a configuration
description. Clearly, this description must match the physical network, or a pro
gram meant to run on the network will not execute properly. Ifa program uses only
a portion of a network, only that portion must be defined in the configuration de
scription. This configuration description must include each processor in the net
work, the type of each processor, and the link interconnections between the proces
sors. In addition, the configuration description must associate each processor with
an individual program which that processor. executes. The program must also
match the physical network if it is to execute.

In occam, a channel is a programming abstraction through which two parallel
processes can communicate in one direction; where appropriate, a channel is asso
ciated with a hardware link on a processor. The processor links physically inter-

36 Parallel Programs/or the Transputer

Chapter 2 Architectures

Link 0 0
4 +--

Link 1 SC work(proc.num)

5 +-- PLACED PAR

2 PROCESSOR o T8
Link 2

6 +-- work(O)

Link 3 3
7 +--

Figure 2-1 Figure 2-2
Transputer link and address assignments A single-node network configuration description

connect a network of processors. Thus one complete interconnection between two
processors is defined in a configuration description with two channels, one for the
input from a processor, and one for the output to the same processor. The processor
used in the following examples is a T800 transputer with eight unidirectional links,
so that each processor can be associated with eight channels. Processors that be
come available in the future may have more links which are arranged in different
ways.

Each channel is associated with a particular link on a processor by means of
a PLACE statement matching the channel with that link's hardware address. Since
the links are actually used in pairs (for input and output), two channels are used to
completely connect a link on one processor to a link on another. The link pairs have
the addresses 0 and 4, 1 and 5, 2 and 6, and 3 and 7. The link pairs are convention
ally considered to be a single bidirectional link and named link 0 through link 3
(Fig. 2-1). Addresses 0 through 3 are all output links, and addresses 4 through 7
are input links.

The simplest "network" that can be constructed is a single processor with no
interconnections. The configuration description for such a network is shown in
Fig. 2-2. The fIrst line indicates a fold representing the actual program being run
on the processor. The SC indicates that the fold is an independent program unit
(separately compiled). A copy of the fIrst line of the program is included on the
fold line to demonstrate any formal parameter names used in the program. The val
ues of the dummy parameters are passed from the configuration description. In this
simple case, the processor number, a 0, is passed to the program from the configu
ration description and assigned to the parameter proc. num.

The configuration description continues with a PLACED PAR construct on
the second line. This construct is similar to a PAR as used in occam but, in this
case, places the construct on a physical processor. Including a PAR is necessary
because most networks have more than one processor, all of which must run in par
allel. The processor is defined on the third line as a T8 processor and given the ar
bitrary number of O. Each processor in the network must have a unique processor

Parallel Programs for the Transputer 37

Architectures

G---c_b__O
a

Figure2-3a
A two-node network

Chapter 2

number to distinguish itself from the other processors in the network. The fourth
and flnalline actually associates the program work with processor O.

Since there is only one processor in the "network," this very simple configu
ration description lacks any link connections to other processors. A more complex,
two-processor system with one link is shown in Fig. 2-3a. Figure 2-3a shows two
processors, arbitrarily called processor 0 and processor 1, which communicate over
two channels, a and b. Processor 0 talks to processor 1 through channel b, while
processor 1 talks to 0 through channel a. Recall that each physical hardware link
on the transputer is actually either an input or an output link. A pair of channels,
one for input and one for output, is generally considered to be one-complete, bidi
rectionallink, so an interconnection is usually drawn with one line. Except for Fig.
2-3a, every drawing in this book uses this one line representation for a bidirectional
link. Nonetheless, the configuration description does require that both channels be
explicitly defmed.

The configuration description for the two-node network (Fig. 2-3a) is shown
in Fig. 2-3b. Within the PLACED PAR structure, two processors are defined. Each
processor runs the same program, wor k, and uses the same dummy processor num
bers as in Fig. 2-3a. The two processors communicate over a pair of channels
named a and b. Processor 0 uses channel a as an input which is placed at address
4. Channel b is placed at address 0 as an output. Notice that these links are asso
ciated with the in and out channel variables in the program work. In this way,

SC work(CHAN OF ANY in, out)
CHAN OF ANY a,b:
PLACED PAR

PROCESSOR 0 T8
PLACE b AT 0:
PLACE a AT 4:
work(a,b)

PROCESSOR 1 T8
PLACE a AT 0:
PLACE b AT 4:
work(b,a)

Figure 2-3b
Configuration description for a two-node network

38 Parallel Programs/or the Transputer

Chapter 2 Architectures

any output to channel out in processor O's program will be output on link 0 over
channel b.

Processor 1 uses the same configuration structure as processor 0 except that
the channel names must be reversed. Whatever is output from processor 0 is input
to processor 1. Thus processor 1 will use channel a as an output and b as an input.
Notice that the addresses in the PLACE commands are reversed and that the argu
ment order in work is reversed. This exchange of input and output channels must
be consistently programmed for every link connecting a pair of processors in any
network.

Since both processor 0 and processor 1 are using link 0 as their communica
tion channel, the configuration describes two processors, each of which has link 0
connected to the other processor. Any link could just as well have been used by
either processor.

Once a transputer network is configured, it must be booted. A transputer can
be booted either by link or from memory, but most often transputer networks are
booted through the network links. In order for this to happen, at least one processor
somewhere in the network must have a free link, one which is not connected to an
other processor in the network. This free link is unconnected according to the con
figuration description, but must actually be connected to a root processor which
passes the initial booting program down the free link. The processor with the free
link must be listed flfSt in the configuration description so that the compiler knows
where the root node is connected in the network, and so that the compiler can create
the correct boot code for the network.

If, in a network, every processor's links are all connected to other processors,
one of the processors in the network must be booted from memory. Since the two
node network in Fig. 2-3a connects only one link, anyone of the other links may
be connected to a root processor. If, instead of having only one link from each pro
cessor connected, all of the links were actually connected in a closed network, no
link would be free for booting and one of the processors would have to boot from
memory.

In the remainder of this chapter, the configuration ofan irregular network and
a variety of interesting or popular regular networks is described, and a few com
ments about their implementation with transputers are made. The irregular net
work is configured as a more complete example than the two-node network shown
in Figs. 2-3a and 2-3b.

Networks

Irregular Networks

An example of an irregular network is shown in Fig. 2-4a. This network is
not developed for any particular application but is simply used for illustration and
is also found in Chap. 7. The corresponding configuration description is listed in
Fig. 2-4b. Notice that for an irregular structure such as this one, every processor

Parallel Programs/or the Transputer 39

Architectures Chapter 2

Figure 2-4a
An irregular network

SC work4(CHAN OF ANY inO,outO,inl,outl,in2,out2,in3,out3)
SC work3(CHAN OF ANY inO,outO,inl,outl,in2,out2)
SC work2(CHAN OF ANY inO,outO,inl,outl)
SC workl(CHAN OF ANY in.O,out.O)

[2]CHAN OF ANY a,b,c,d,e,f,g,h,k,m:
PLACED PAR

PROCESSOR 0 T8
PLACE a[l] AT 0:
PLACE a[O] AT 4:
workl(a[O],a[l])

PROCESSOR 1 T8
PLACE a[O] AT 0:
PLACE a[l] AT 4:
PLACE b[O] AT 5:
PLACE b[l] AT 1:
PLACE C[O] AT 6:
PLACE c[l] AT 2:
PLACE d[O] AT 7:
PLACE d[l] AT 3:
work4(a[1],a[0],b[0],b[1],c[0],c[1],d[0],d[1])

Figure 2-4b
Configuration description for an irregular network

40 Parallel Programs for the Transputer

Chapter 2

PROCESSOR 2 T8
PLACE e[O] AT 6:
PLACE e[l] AT 2:
PLACE d[O] AT 3:
PLACE d[l] AT 7:
work2(e[0],e[1],d[0],d[1])

PROCESSOR 3 T8
PLACE c[O] AT 0:
PLACE c[l] AT 4:
PLACE h[O] AT 5:
PLACE h[l] AT 1:
PLACE k[O] AT 6:
PLACE k[l] AT 2:
PLACE g[O] AT 7:
PLACE g[l] AT 3:
work4(c[1],c[0],h[0],h[1],k[0],k[1],g[0],g[1])

PROCESSOR 4 T8
PLACE h[O] AT 2:
PLACE h[l] AT 6:
PLACE b[O] AT 3:
PLACE b[l] AT 7:
work2(h[1],h[0],b[1],b[0])

PROCESSOR 5 T8
PLACE e[O] AT 1:
PLACE e[l] AT 5:
PLACE g[O] AT 2:
PLACE g[l] AT 6:
PLACE f[O] AT 7:
PLACE f[l] AT 3:
work3(e[1],e[0],g[1],g[0],f[0],f[1])

PROCESSOR 6 T8
PLACE f[O] AT 2:
PLACE f[l] AT 6:
PLACE m[O] AT 7:
PLACE m[l] AT 3:
work2(f[1],f[0],m[0],m[1])

PROCESSOR 7 T8
PLACE m[O] AT 0:
PLACE m[l] AT 4:
PLACE k[O] AT 1:
PLACE k[l] AT 5:
work2(m[1],m[0],k[1],k[0])

Figure 2-4b (cont.)
Configuration description for an irregular network

Parallel Programs/or the Transputer

Architectures

41

Architectures Chapter 2

must be explicitly listed together with each connecting channel. All of the proces
sors with the same number of link connections run the same program: work4 for
processors with four connected links, wor k 3 for those with three connections, and
soon.

Each bidirectional channel in the example is organized as an array of two el
ements. This arrangement makes it easy to perfonn the input/output exchange of
links necessary for proper communication. For each connected pair of processors,
the zero element of a channel is the input for one processor and the output for the
second. The one element is the input for the second processor and the output for
the fIrst

Regular networks are much less tedious and more interesting to define than
are irregular ones. PLACED PAR structures can be replicated just as PAR struc
tures are in occam, and, with a judicious use of these replicated structures and care
ful organization of channels, large, regular networks can be easily defined.

Rings

Among the classes of regular networks, a ring of processors is the simplest.
Each processor in a ring requires a bidirectional link: for each of its two neighbors.
Figure 2-5a shows a simple four-processor ring. In Fig. 2-5b is listed the configu
ration description for this network. The first two lines of the description represent
the program running on every processor. To each processor are passed its proces
sor number, p, and four channels, the input and output channels on both the left and
right sides of each processor.

Configuration descriptions can include simple parameters which assist in the
definition of the network. For the ring network shown, the parameter num . t rans
is defined to be four, the number of processors in the network. Channels a and b
are defined as an array of size num. trans. For this network, a and b are used to
exchange the input and output channel pairs for connected processors, and the array
elements define the connection from processor to processor.

The ring network shown in Fig. 2-5a is configured using only one PLACED
PAR structure. The configuration uses two pairs of channels, a and b, which are
associated with each processor, creating bidirectional link connections to the pro
cessors on both the left and the right. For the nth processor, the channel on the left
is the nth channel element for both channels a and b (input and output) and the
channel on the right is the nth+I element for a and b. Thus processor 0 is connect
ed on the left to channel element 0 and on the right to channel element I.The right
most processor, however, is a special case and must be connected to channel ele
ment 0 on the right. To correctly connect this channel, we define the value q as the
processor number plus one modulo the ring size. Thus, value q will be the right
side channel element number for every processor including the right-most one, for
which q will be O. The processors are labelled and the channel element numbers
are shown in Fig. 2-5a near.the links they represent.

In this ring network, each processor is physically connected to hardware link
oon the left and hardware link 2 on the right. To maintain the correct input and

42 Parallel Programs for the Transputer

Chapter 2 Architectures

Channel element number Link address

Figure 2-5a
A ring network

output connections, the right-hand link channels are reversed with respect to the
channels on the left, both in the program definition and the address assignment.
The program call then correctly associates the links with the channels left. in,
left. out, right. in, and right. out in the program itself. Figure 2-5a
shows the link addresses for each processor and its link connections. Because of
its structure, we can extend this configuration ofprocessors to a network of any size
simply by changing the num. trans definition.

Ring networks are easy to program and use, and can be infinitely scaled to
larger and larger networks. No matter how large the network becomes, each pro
cessor requires only two bidirectional links. Thus a single hardware module can be
used repeatedly to build ever-larger parallel computers. The network can also grow
one processor at a time while maintaining its ring structure, allowing for very fine
control of the number of processors in a network. In addition, this type of network
is simple to program for both pipeline and distributed data applications.

Simplicity, ease of construction, and scalability are a ring network's greatest
advantages. But a ring network also has a great drawback. The largest interpro
cessor distance between any two processors in a ring is one half the number ofpro
cessors in the ring. This distance creates significant overhead when one processor

... SC work(VAL INT p,
CHAN OF ANY left.in,left.out,right.in,right.out)

VAL num.trans IS 4:
[num.trans]CHAN OF ANY a,b:
PLACED PAR p=O FOR num.trans

VAL q IS (p+l)\num.trans:
PROCESSOR p T8

PLACE a[p] AT 4:
PLACE b[p] AT 0:
PLACE b[q] AT 6:
PLACE a[q] AT 2:
work(p,a[p],b[p],b[q],a[q])

Figure 2-Sb
Configumtion description for a ring network

Parallel Programs/or the Transputer

--ring size

--next channel

--left

--right

43

Architectures Chapter 2

communicates with another. As the network grows, this distance and the associat
ed communication overhead grow at the same rate.

Because of their communication overhead, rings are most useful with pipe
line parallelism and distributed data parallelism requiring little communication.
One-dimensional problems are ideally suited to the one-dimensional structure of a
ring. Higher-dimensional problems can be implemented by distributing the data
in only one dimension.

Toroids

The next logical step up in complexity from a ring network is a toroid, a two
dimensional array ofprocessors with the sides wrapped around. Figure 2-6a shows
a toroidally connected network of sixteen processors. Each processor has four oth
ers connected to it, one each on the left, right, top, and bottom. Figure 2-6b shows
the configuration description for this toroid.

The configuration description begins with two parameter statements which
define the size of the network as x. trans by y. trans for the x and y dimen
sions respectively. Following the network dimension statements, the code for each
processor is defined in the separately compiled fold. Each processor receives pa
rameters defining its position in the array (i, j) and the size of the entire array (x,
y), followed by the eight one-way channels for the left, right, up, and down con
nections.

After the process declaration, the external channel array is defined in one
large array. Since there is one channel for each connection between pairs of pro
cessors, there is exactly one channel for each processor in the horizontal and one in
the vertical dimension. The channel definition thus creates an array of x . t r ans
by y. trans channels with two additional dimensions, one for the horizontal and
vertical set of channels, and a second for the input and output pairs necessary to im
plement a bidirectional link.

The processor configuration is created with one doubly nested PLACED
PAR structure. The structure is replicated in two dimensions, x and y, using the i
and j variables. The processors are ordered from upper left to lower right using
the value p. As with the ring configuration, each processor is connected on the left
to the channel whose element is the same as its processor number and on the right
to the channel element one greater. The vertical assignment is similar. Since one
array of channels is used to connect the processors in both the horizontal and ver
tical directions, the horizontal and vertical channels are distinguished by subscript
ing the channel array using the harz and yert constants. The a and b elements
perfonn the input/output exchange, just as they did with the ring.

A toroid wraps its link connections around in both the x and y dimensions.
This link connection is accomplished in the same way that the ring created a closed
processor loop. Two values, mand n, are defined to be one greater than the i or j
replicator modulo their respective dimension size. Thus value m will be the right
side channel element for every processor including the right-most ones, while n

44 Parallel Programs/or the Transputer

Chapter 2

Figure 2-6a
A toroidally connected network

Architectures

Channel
elements

will be the bottom-side channel element for every processor including those on the
bottom row.

In the toroidally connected network shown in Fig. 2-6a, each of the proces
sors and the link connections are labelled as they are defmed in the configuration
description. Each processor uses link 0 to connect to the processor on the left, link
2 on the right, link 3 above, and link 1 below.

Notice that a toroid is a closed surface. Ifeach processor in a toroid has only
four links, none is available to boot the network. In this case, either one processor
in the network must be booted from memory, or the toroid must be opened at one
point to incorporate an extra processor which can boot the network. An easy way
to implement the latter approach is to insert the extra processor into one row of the
network. Two links from the new processor may be used to maintain the toroidal

Parallel Programs/or the Transputer 45

--x dimension size
--y dimension size

--place processor in y dimension
--place processor in x dimension

--processor number
--next channel in x dimension
--next channel in y dimension

Architectures

VAL x.trans IS 4:
VAL y.trans IS 4:

SC work(VAL INT i,j,x,y
CHAN OF ANY left.in,left.out,right.in,right.out,

up. in, up. out, down. in, down. out)
[2] [2] [x. trans] [y.trans] CHAN OF ANY link:
VAL horz IS 0:
VAL vert IS 1:
VAL a IS 0:
VAL b IS 1:
PLACED PAR

PLACED PAR j = 0 FOR y.trans
PLACED PAR i = 0 FOR x.trans

VAL p IS i+(j*x.trans):
VAL m IS (i+1)\x.trans:
VAL n IS (j+1)\y.trans:
PROCESSOR p T8

PLACE link[a] [horz] [i] [j] AT 4:
PLACE link[b] [horz] [i] [j] AT 0:
PLACE link[b] [horz] em] [j] AT 6:
PLACE link[a] [horz] em] [j] AT 2:
PLACE link[a] [vert] [i] [j] AT 7:
PLACE link[b] [vert] [i] [j] AT 3:
PLACE link[b] [vert] [i] en] AT 5:
PLACE link[a] [vert] [i] en] AT 1:
work (i,j,x.trans,y.trans,

link[a] [horz] [i] [j] ,link[b] [horz] [i] [j],
link [b] [horz] em] [j] , link [a] [horz] em] [j] ,
link[a] [vert] [i] [j] ,link[b] [vert] [i] [j],
link [b] [vert] [i] en] , link [a] [vert] [i] en])

Chapter 2

Figure 2-6b
Configuration description for a toroidally connected network

structure and the rest are then available for booting. This is most easily accom
plished by configuring the network with two PLACED PAR structures, one for a
two-dimensional block ofprocessors, and one for a ring of the toroid. The end pro
cessor of the ring must then be connected to the external processor.

Two-dimensional processor arrays like toroids are a very popular architec
ture for MIMD computers and have many advantages over simpler architectures
such as rings, or more complex architectures such as trees or hypercubes. Two-di
mensional arrays are infinitely scalable and map easily to a wide variety of com
puting problems and techniques. The number of links needed by each processor
stays the same as the toroid grows. This fact makes scaling, connecting, and con
structing a toroidal array quite easy.

As in the ring, however, interprocessor distance in a toroid becomes a con
straint as the toroid grows. The maximum distance between any two processors in

46 Parallel Programs for the Transputer

Chapter 2 Architectures

a toroid is the sum of one half the x and one half the y dimensions of the toroid.
Thus, the amount of communication overhead varies with the square root of the
number of processors in the toroid.

A ring is a subset of a toroid and can be created from a toroid in either of two
ways: a one-dimensional slice of the toroid in either dimension can be taken, or the
toroid can be considered as a "snake" with connected rows of processors moving
alternately across and up the array. An even number of rows is needed to complete
the ring and the last processor in the top row must use the wrap-around link to con
nect to the fIrst processor on the bottom row. In the toroid shown in Fig. 2-6a, the
embedded ring consists of processors 12-13-14-15-11-10-9-8-4-5-6-7-3-2-1-0.

A minor difficulty in working with toroids is that they cannot be scaled quite
as flexibly as rings. To change the size ofa toroid, we must add or subtract one full
row or column at a time. Rows and columns can be added independently of each
other, however, so the aspect ratio of a toroid can be changed at will. But, for a
given number ofprocessors, the less square the array, the greater the relative inter
processor distance will be. Therefore, creating toroids which are very much wider
than high, or vice versa, should be done with caution.

Because toroids can be created in such a wide assortment of shapes, they can
be used with many different styles of programming. Just as on the ring, both one
and two-dimensional pipeline structures are easy to implement on a toroid. And,
in the same way that one-dimensional data structures map easily to rings, two-di
mensional data structures distribute efficiently over toroids.

Hypercubes

Hypercube architectures are much more complex than either rings or toroids.
A binary hypercube is a binary n-cube, with two processors on each edge of the n
cube, and where n is the cube's dimension and can represent any number greater
than or equal to zero. If n is two, a square is created; if n is three, a cube is created;
n equal to four defines a four-dimensional "cube," or hypercube, and so on. Each
dimension larger than the previous requires twice as many nodes and one additional
link for each node. Higher-order hypercubes which have more than two processors
on each edge (for example, ternary hypercubes have three processors on each edge)
require an extra link and cannot be constructed from the following example.

Figure 2-7a is an attempt to represent a four-dimensional cube on a two-di
mensional page. This binary hypercube can be more easily imagined as two cubes,
one nesting inside the other, with the comers of one cube connected to the corre
sponding comers of the second cube. Each comer is a node, and each node in a
four-dimensional hypercube has four neighbors, the three found in a nonna! three
dimensional cube, plus the fourth node which connects to the other cube. The
nodes of the outside cube are shaded darkly, while the nodes of the inside cube are
shaded more lightly. The configuration description for this hypercube is listed in
Fig.2-7b.

The configuration description (Fig. 2-7b) begins on the fIrst line with the sep
arately compiled fold for the program which runs in each node of the hypercube.

Parallel Programs/or the Transputer 47

Architectures Chapter 2

Figure 2-7a
A four-dimensional binary hypercube

Eight one-way links are passed to the program. These links are called dO • in,
dO • out, and so on, continuing to d3 • out. The d refers to dimensions zero
through three. The next few lines of the description define some constants: dim is
the dimension of the hypercube, n is two since we are creating a binary, multidi-

mensional cube, size is one half the number of processors ndim /2, and num.
1 inks is the number of links. Since two processors must always share a point-to
point link, the number of links is always one-half the number of processors times
the number of links per processor. The number of links per processor is always the
dimension of the hypercube. Thus, the total number of links defined is

dim x 2 (dim -1) • A second dimension ofchannels must also be defined to provide
for the input/output link exchange on each unidirectional link.

48 Parallel Programs for the Transputer

Chapter 2 Architectures

--up-down

--32 links

--front-back

--fourth dim

SC node(CHAN OF ANY dO.in,dO.out,d1.in,d1.out
d2.in,d2.out,d3.in,d3.out)

-- binary hypercube
--number dimensions

VAL n IS 2:
VAL dim IS 4:
VAL size IS (n«(dim-1»:
VAL num.links IS size*dim:
[num.links] [2] CHAN OF ANY a:
PLACED PAR k3 = 0 FOR n -- dim 3

PLACED PAR k2 = 0 FOR n -- dim 2
PLACED PAR k1 = 0 FOR n -- dim 1

PLACED PAR kO = 0 FOR n -- dim 0
VAL nO IS «(k3*(n*n»+(k2*n»+k1)+0: --link dim 0
VAL n1 IS «(k3*(n*n»+(k2*n»+kO)+size: --link dim 1
VAL n2 IS «(k3*(n*n»+(k1*n»+kO)+(size*2) :--link dim 2
VAL n3 IS «(k2*(n*n»+(k1*n»+kO)+(size*3) :--link dim 3
PROCESSOR ««k3*(n*(n*n»)+(k2*(n*n»)+(k1*n»+kO) T8

PLACE a[nO] [kO] AT 4: --left-right
PLACE a[nO] [1-kO] AT 0:
PLACE a[n1] [k1] AT 5:
PLACE a[n1] [1-k1] AT 1:
PLACE a [n2] [k2] AT 6:
PLACE a[n2] [1-k2] AT 2:
PLACE a[n3] [k3] AT 7:
PLACE a[n3] [1-k3] AT 3:
node (a [n0] [k0] , a [n0] [1-k0] ,

a [n1] [k1], a [n1] [1-k1],
a [n2] [k2], a [n2] [1-k2] ,
a [n3] [k3] , a [n3] [1-k3])

Figure 2-7b
Configuration description of a binary hypercube

The binary hypercube architecture is actually defined in a somewhat recur
sive manner within the PLACED PAR structure. The configuration description
(Fig. 2-7b) shows dim levels of nested PLACED PAR structures with the proces
sor definition at the innermost level. Each level is replicated n times and defines
the processors in one dimension. Since the configuration language does not direct
ly support recursive structures, these four levels must be explicitly included and
cannot be made in a PAR structure replicated dim times. Associated with each di
mension is a constant equal to the correct channel number connecting the corre
sponding processor to its counterpart in that dimension. Making networks larger
cannot be done simply by changing the value ofdim; also required are an addition
allevel of nesting, another value for connecting processors in the new dimension,
and additional PLACE parameters.

To number the processors in the binary hypercube, we assign the processor's
position in each dimension of the network to a bit in a four-bit, base-two number.

Parallel Programs/or the Transputer 49

Architectures Chapter 2

The processor numbers then range from 0 to 15 and correspond to the position, rep
resented by a 0 or 1, of each processor in each of the four dimensions.

Once the processors in the hypercube are defined, the most difficult part of
the configuration, ensuring that the links are connected properly, begins. The chan
nel array a is defined as one large array (with a second dimension for exchanging
the input/output pair) so that connecting the processors correctly becomes a matter
of numbering the channels appropriately. Referring to Fig. 2-7a, consider the di
mension from left to right across the page to be dimension 0, from top to bottom as
dimension 1, in and out of the page to be dimension 2, and dimension 3, the "fourth
dimension," to be the direction which connects the inner cube to the outer. Vari
ables k 0 through k 3 in the PLACED PAR structures correspond to the dimensions
othrough 3.

The channels in this binary hypercube structure, elements ofchannel array a,
are numbered in dimensional order. Those links which go from left to right (dimen
sion 0) are numbered first, then those from top to bottom (dimension 1), and so on.
To accomplish this numbering, the values nO to n3 are used. Each PLACED PAR
structure uses one of the values kO through k3 to define n processors. These val
ues indicate the position of that processor within the hypercube. The links are then
numbered much as the processors are. While each of the dimensions corresponds
to a bit in a four-bit, base-two number, the bit to which the dimension corresponds
depends on which dimension the channels being numbered are in. Value nO counts
the dimension zero channels and does not depend on kO. Value nl counts the
channels in dimension one and adds to this count the number of channels already
assigned. Values n2 and n 3 do the same for dimensions two and three. The actual
channels are then PLACEd with appropriate attention given to exchanging the in
put and output links. The dimension number of a link is the same as that link's
hardware address. Figure 2-7a shows the processor number and channel element
assignments for the hypercube.

The configuration file for the binary hypercube creates a closed network us
ing all of the links of a four-link transputer, just as the toroid did. IT the network
must be booted from a link, the network must be opened. This, however, is much
more difficult with the hypercube than it is with the toroid. To open a link on a
four-dimensional hypercube, we must break down the hypercube into two three-di
mensional cubes which are separately defined. These two cubes are then connected
piecemeal, and an additional processor is inserted on an edge between processors
of the two different three-dimensional cubes.

The binary hypercube architecture is very popular; several commercial par
allel computers use it. It can be scaled to an arbitrary number of dimensions, but
not without some difficulty. The network size in a hypercube can only be increased
by doubling its size and adding an additional link to every processor. This require
ment makes it difficult to make a practically scalable machine in a wide range of
sizes. Either the nodes themselves must be replaced when the network size changes
or some hardware will be wasted for the unused links in smaller networks.

50 Parallel Programs for the Transputer

Chapter 2 Architectures

Although they present greater hardware difficulties, binary hypercubes do of
fer better interprocessor connectivity than toroids. The greatest distance between
any two processors in a binary hypercube varies as the logarithm of the number of
processors. If a network doubles in size, the greatest interprocessor distance in
creases only by one. The total communication overhead in the computer, therefore,
remains relatively small. The higher connectivity enjoyed by a binary hypercube
gives it great flexibility.

A binary hypercube ofdimension greater than four contains a toroid as a sub
set, just as a toroid contains a ring. Indeed, a four-dimensional binary hypercube is
actually identical to a four-by-four toroid. The binary hypercube configured in Fig.
2-7b is thus a four-by-four toroid as well, although the link address assignments are
different than in the toroid.

Hypercube architectures are most useful for distributed data applications.
Since rings are a simple subset of a hypercube, it is very easy to pipeline data, but
pipelining will generally waste much of the rich interconnectivity available in the
hypercube. Because of the higher connectivity found in hypercube architectures,
problems requiring much interprocessor communication can be done more effi
ciently on a hypercube than on a simpler architecture such as a toroid. Notable
among these problems are frequency transforms. A Fourier transform, for exam
ple, can be partitioned on a binary hypercube so that data need never move farther
than one processor.

Ternary Trees

Tree networks are very different from both toroids and hypercubes. Most ar
chitectures are homogeneous, but trees are layered structures which grow larger at
lower levels. Trees typically begin with a single root processor at the top layer.
This root processor is connected to a second layer of processors, each of which is
a "child." Each child has its own "children" to which it is connected in the third
layer, and the structure continues growing in this fashion. At the bottom layer of a
tree, the nodes have no children. These childless nodes are sometimes called
"leaves," and all of the higher nodes except the root node are called "branches," so
that the entire tree structure resembles an upside-down natural tree. Figure 2-8a
shows a ternary tree, a tree whose members each have three children, so that each
layer has three times as many members as the layer above. In a binary tree, each
processor has two children in the layer below it.

The configuration description for a ternary tree is given in Fig. 2-8b. This
configuration actually describes a tree with one more layer (of twenty-seven nodes)
than is shown in Fig. 2-8a. It includes three node programs, one for the root pro
cessor, one for the branch nodes, and the last for the leaf nodes. In the example, a
node number and a set of channels are passed to each processor. The root node has
no parent and as a result has six channels, two each for the three bidirectional links
connected to its children. The branch nodes also include a pair of channels for the
parent link, making eight channels in all. Only a processor number and the chan
nels connected to its parent are passed to a leaf node.

Parallel Programs/or the Transputer 51

Architectures Chapter 2

Figure 2-8a
Ternary tree network

SC root(VAL INT p,
CHAN OF ANY childl.in,childl.out,

child2.in,child2.out,
child3.in,child3.out)

SC branch(VAL INT p,
CHAN OF ANY parent.in,parent.out,

childl.in,childl.out,
child2.in,child2.out,
child3.in,child3.out)

SC leaf(VAL INT p,
CHAN OF ANY parent.in,parent.out)

VAL width IS 3:
VAL node. count IS 40:
[node. count] CHAN OF ANY a,b:
VAL pl IS 0:
VAL kl IS 0:
VAL p2 IS «pl+kl)*width)+l:
PLACED PAR --level 0

VAL P IS pl+kl:
VAL n IS kl+l:
PROCESSOR p T8

PLACE a[n] AT 5: --child 0 link
PLACE b [n] AT 1:
PLACE a[n+l] AT 6: --child 1 link
PLACE b[n+l] AT 2:
PLACE a[n+2] AT 7: ~-child 2 link
PLACE b[n+2] AT 3:
root(p,a[n],b[n],a[n+l],b[n+l],a[n+2],b[n+2])

Figure 2-8b
Configuration description for a ternary tree network

52 Parallel Programs for the Transputer

Chapter 2 Architectures

PLACED PAR k2 = 0 FOR width
VAL p3 IS «p2+k2)*width)+1:
PLACED PAR --level 1

VAL P IS p2 + k2:
VAL n IS p3:
PROCESSOR p T8

PLACE b[p] AT 4: --parent link
PLACE a[p] AT 0:
PLACE a[n] AT 5: --child 0 link
PLACE ben] AT 1:
PLACE a[n+1] AT 6: --child 1 link
PLACE b[n+1] AT 2:
PLACE a[n+2] AT 7: --child 2 link
PLACE b[n+2] AT 3:
branch(p,b[p],a[p],

a[n],b[n],a[n+1],b[n+1],a[n+2],b[n+2])

PLACED PAR k3 = 0 FOR width
VAL p4 IS «p3+k3)*width)+1:
PLACED PAR --level 2

VAL P IS p3+k3:
VAL n IS p4:
PROCESSOR p T8

PLACE b[p] AT 4: --parent link
PLACE a[p] AT 0:
PLACE a[n] AT 5: --child 0 link
PLACE ben] AT 1:
PLACE a[n+l] AT 6: --child 1 link
PLACE b[n+1] AT 2:
PLACE a[n+2] AT 7: --child 2 link
PLACE b[n+2] AT 3:
branch(p,b[p],a[p],a[n],b[n],

a[n+l],b[n+1],a[n+2],b[n+2])

PLACED PAR k4 = 0 FOR width --level 3
VAL P IS p4+k4:
PROCESSOR p T8

PLACE b[p] AT 4: --parent link
PLACE a[p] AT 0:
leaf(p,b[p],a[p])

Figure 2-8b (cont)
Configuration description for a ternary tree network

Parallel Programs/or the Transputer 53

Architectures Chapter 2

The tree configuration includes two parameters, one that defines the number
ofdescendants ofeach node (width), and a second which defines the total number
of nodes in the tree (node. count). The node. count is the sum of as many
powers of width as there are layers in the tree, counting the root node as layer
zero. This calculation is easy to make for a binary tree; the number of nodes will
be one less than two raised to the power of the number of layers. For a ternary tree
with four layers, the number of nodes will be 1 + 3 + 9 + 27, equaling 40. The
general expression for the number of nodes in a tree of k layers, each of whose
nodes have n children is:

nk_l
Number ofnodes =-

n-l

The number of two-way channels needed to interconnect the nodes is the same as
the number of nodes. Each node except the root node must have a channel connect~
ing it to its parent For this tree configuration, a parent channel is numbered with
the same value as its processor.

In the configuration description for the ternary tree network, both a and b
channel arrays are defined; each pair is used to do the input/output exchange of
channels between pairs of processors. The parent channel's input must always be
connected to the output of its children, and vice versa.

The tree configuration listed in Fig. 2-8b is organized as a series of nested
layers, much like the hypercube configuration. Each configuration layer defines a
layer of nodes with its children. The replicated nodes in each layer have two pa
rameters associated with them, a p variable (pi in layer one, p2 in layer two, etc.),
and a k variable (ki for layer one, k2 for layer 2, etc.). The p variable for each
node defines the processor number of the frrst processor in the replicated set of
three nodes, and k is used as the replicating variable in the PLACED PAR structure.
Together, the p and k variables are used to construct p itself, the processor number
of the node being defined and its associated parent channel element. Notice that
the p variables for a layer are defined in the previous layer and are needed to con...
nect each child's parent link (the node's child link). Parent links are put at address
0, and the children's links assigned to addresses in the order in which they are de
fined.

Each layer of PLACED PAR structures in the ternary tree network configu
ration has two members. The frrst of these implements the node itself, and the sec...
ond implements the node's children using a replicated structure. This replicated
PAR then constitutes the next layer. Each definition of a p variable uses the p value
from the previous layer to keep track of how many nodes have been defined to this
point. Processors in the bottom layer need not define a p value for their children,
since they have none.

54 Parallel Programsfor the Transputer

Chapter 2 Architectures

The configuration description for a tree can be enlarged to any extent as long
as the nested structure is extended properly. In creating a larger tree, the value of
node. count must be set properly and additional nested layers added. Since the
number of links for each node stays the same regardless of the network size, a real
network can use the same processor modules for a system of any size.

The interprocessor distance in trees generally varies with the logarithm of the
number of nodes, just as the interprocessor distance for the hypercube does. The
tree grows exponentially as layers are added, but the greatest possible distance from
any leaf to another is twice the height of the tree.

As is true of hypercubes, tree networks are most useful for distributed data
applications. It is difficult to create a sensible processor pipeline from a tree. Tree
architectures are often used for applications in rule-based artificial intelligence and
for searching large quantities of infonnation. Trees are especially useful for an
swering questions made up of a hierarchy of subquestions which can be mapped
onto a tree structure. Tree architectures can also be used to execute programs
which begin with a large amount of raw infonnation at the leaves and progressively
reduce the amount of data while increasing the information content of the data at
successively higher branches.

Trees do not often contain other regular networks as subsets, but other net
works can contain trees. A tree embedded within a regular network, however, usu
ally either is irregular or does not use every processor and link in the regular net
work. As an example of an embedded tree, one constructed by an exploratory pro
gram on a toroidal network (discussed in Chap. 7) is shown in Fig. 2-9.

Figure 2-9
A processor tree as a subset of a toroidal network

Parallel Programs/or the Transputer 55

Architectures Chapter 2

In Summary

Transputers can easily be configured in a wide variety of useful and interest
ing architectures. These architectures can be elegantly described using the
PLACED PAR structure and channel interconnections available in occam. In this
chapter we have examined ring, toroid, hypercube, and ternary tree networks. Ring
networks are the simplest and can be infmitely scaled by one processor at a time.
However, the maximum interprocessor distance in a ring is significant, resulting in
reduced performance efficiency. The more complex toroidal architecture can also
be infinitely scaled, but only by one row or column at a time. The maximum inter
processor distance in a toroid is much less than in a ring. A hypercube network is
yet more complex and more densely connected. It, too, can be scaled infinitely, but
can only change in size by a factor of two. A ternary tree is a very different archi
tecture, useful for data base searching and artificial intelligence applications.

56 Parallel Programs for the Transputer

Chapter 3

Processor Farms

The processor farm approach to parallel processing is one of the most flexi
ble. This approach is generally independent of system architecture, can be used for
almost any kind ofproblem with a parallel solution, and, once the basic software is
set up, is very easy to use and adapt for a variety of purposes. In a sense, farming
is considered to be parallel processing only in that farms require a controlling pro
cessor to direct other processors (worker nodes) and to organize communications
between itself and the worker processors. The worker nodes themselves operate
alone just as a traditional processor does.

A processor farm is a group of independent processors assigned tasks by a
controller. Each processor performs its assigned task, returns the results of the task,
and waits for new work (Fig. 3-1). Generally, the controller keeps track of which
processors are busy or idle, what work has been completed, and what work remains.

To direct a processor farm, the controller must be able to communicate with
each worker. Beyond this obvious requirement, there are virtually no restrictions
on the actual hardware. Thus, practically any MIMD parallel processor can be used
to implement a processor fann. Because communication between the processors is
the only system requirement (other than the presence of the processors themselves),
the transputer is an excellent candidate to use for processor farm systems. The
transputer links provide a simple and efficient means of interprocessor communi
cation, and the cpu itself is an effective distributed memory processor node.

Saying that any architecture or processor network can implement a processor
farm does not imply that every network will perform equally well on any task. Pro
cessor farms generally receive all of their input data and instructions and output all
of their results through their communication channels. This communication load
can put a heavy burden on the channels. Thus, although almost any task can be per
formed using a processor fann, it may be more practical and efficient in some cases
to use other approaches to distributing tasks and data. Generally, tasks, that require
a lot of work but little communication of data, and which do not generate large
amounts of data to be returned to the controller, are good candidates for processor
farms. Likewise, networks in which both the total amount of interprocessor com
munication hardware and the software required to support communication are rel
atively small will be most effective for use with processor farms. Transputer net
works programmed in occam effectively meet both of these criteria.

Processor farms generally utilize identical processor nodes which do identi
cal work. For the sake of simplicity, all of the following examples assume this to

Parallel Programs/or the Transputer 57

Processor Farms

•Controller

Results

Work

Chapter 3

/...Ir.\
.....

.....................
...

Workers

58

Figure 3-1
A processor farm consisting of a controller which communicates work
to a group ofprocessors and receives results from the processors

Controller

Figure 3-2
Aprocessor farm with four processors connected directly to the controller

Parallel Programs/or the Transputer

Chapter 3 Processor Farms

be the case. If this is not true for a given system, it will be difficult to port the soft
ware to larger or smaller systems of the same type.

A Simple Processor Farm

The simplest processor farm structure that can be envisioned using transput
ers is shown in Fig. 3-2. The farm controller can be directly connected to as many
processors as it has links. Two programs must be written to organize a simple pro
cessor farm: one for the controller and one which is run by each of the workers in
the processor array.

The workers have a very simple program (Fig. 3-3), one which reads instruc
tions and data (called work), processes the data according to instructions in a rou
tine called do, places the computed information into results, and then writes
results back to the controller. At this point the worker awaits a new task. The
channels in and out are local names for the channels which are connected to the
controller. These names must be PLACEd to match the actual channel used in the
hardware.

The program run by the controller is more complex than the worker program.
Assuming that there are more tasks than workers, the simple control routine allo
cates work to the available processors, and stores the results (Fig. 3-4). The number
ofprocessors in the processor farm and the number of tasks to be performed are de
fined as shown. The tasks are stored in tasks and their results in results. The
next variables defined, tasks. done and tasks. assigned, keep track of
which tasks have been done and which remain to be assigned. The in and out
channel arrays pass tasks to and receive work from the workers. These channels
must be assigned to the correct hardware address with a PLACE statement (not
shown).

The controller begins work by initializing the tasks, an application-specific
job, and the variables tasks. done and tasks. assigned are cleared. Since
none of the processors has any work at the beginning, it is safe to begin with the
immediate assignment of number. of .processors tasks. These tasks are

CHAN OF INT in, out:
INT work, results:
... Process do(results, work)
... channel placement
WHILE TRUE

SEQ
in? work
do(results, work)
out! results

Figure 3-3
Code for a worker in a simple processor fann

Parallel Programs for the Transputer 59

Processor Farms Chapter 3

VAL number.of.tasks IS 100:
VAL number.of.processors IS 4:
[Number.of.tasks]INT results, tasks:
INT tasks.done,tasks.assigned:
[number.of.processors]CHAN OF INT in,out:
SEQ

... Initialize task array
tasks.done:=O
tasks.assigned:=O
PAR i=O FOR number.of.processors

out[i] !tasks[i]
tasks. assigned:=number. of.processors
WHILE tasks.assigned < number.of.tasks

ALT i=O FOR number.of.processors
in[i]?results[tasks.done]

SEQ
out[i] !tasks[tasks.assigned]
tasks.assigned:=tasks.assigned+1
tasks.done:=tasks.done+1

PAR i=O FOR number.of.processors
in[i]?results[tasks.done+i]

--start up workers

--while tasks remain
--listen for any worker

--input results

--send new work

--empty the workers

Figure 3-4
Code for a processor farm controller

passed out, and as the workers begin computing, tasks. assigned is incre
mented. The controller then enters an interactive phase, waiting for work to be re
turned on any channel. This is accomplished with an ALT which waits for any in
put, reads the input into the results array, assigns new work to the worker, and
updates the tasks. assigned and tasks. done pointers. Note that the work
perfonned may not be completed and stored in the same order in which the tasks
were assigned.

When tasks. assigned equals number. of • tasks there is no more
work to be assigned, but there is still data being produced by each of the workers.
The controller then waits for the remaining data from each worker. The code in
Fig. 3-4 shows this being done with a PAR structure and the data being assigned to
the results buffer.

Efficiency Concerns

This simple example illustrates two basic efficiency concerns about proces
sor farm programs: the assignment and receipt of tasks by the controller, and the
efficient distribution of tasks through the network.

The controller assigns tasks and receives results from the processor farm
within an ALT; it could also, however, be received within a PAR, potentially mak-

60 Parallel Programs/or the Transputer

Chapter 3 Processor Farms

ing use of four links at once rather than just one. This is a much more efficient use
of links, but it can cause some problems with work distribution and load balancing.

For maximum efficiency in a processor fann, every processor should do the
same amount of work; that is, the work load should be evenly balanced among the
processors. In the first example, the tasks originated from a single process in the
controller which assigned the tasks on a frrst-come, fIrSt-served basis. This proce
dure is reasonably efficient since, if one job is more difficult than another, the pro
cessor doing the easier job can receive another task before the processor with the
more difficult task is finished. Thus there is inherent load balancing in the ap
proach, unless there are only a few tasks per processor so that the whole job doesn't
have time to balance out.

H PARs are used in the controller, the task assignment can be done somewhat
differently. One approach is to distribute the work among the PARs at the begin
ning; each PAR would then essentially be an independent program doing a com
pletely independent task (Fig. 3-5). This amounts to apportioning the work ahead
of time and does not allow for load balancing of the work. If one of the processors
falls behind, there is no way to transfer some of its work to another processor.

Figure 3-6 shows another solution to the problem of task assignment. If an
other process is constructed within the controller, all of the links can be employed
at once to communicate with the workers while the work assignment is still load
balanced. In this solution, however, the communication bottleneck has simply
been moved back one stage. The process feeding the four PARs will now handle
requests for data one at a time. This may be better than the original approach (a
single-process controller), however, since the feeder process has less work to do
and the internal communications are very fast. A strict comparison of approaches
would require an actual implementation with work and result buffers of a well-de
fined size.

Another load-balancing issue affecting the efficient distribution of tasks must
be dealt with when multiprocessor farms are used. Earlier we alluded to problems
involved in having only a few tasks per processor. If one task is substantially more
difficult than the others, the processor with that task will continue to work long af
ter the other processors have finished. This is clearly inefficient. Since the goal is
to have every processor working for the same amount of time, there must be enough
tasks so that if the tasks are assigned on a first-come, frrst-served basis to each of
the processors, all of the processors will finish at the same instant.

It is not easy to ensure this happy state. If every task is identically difficult,
the processing load will be perfectly balanced if the number of tasks is a multiple
of the number of processors. Every processor will do the same number of identical
tasks and finish at the same time. Since it is not often the case that the tasks are the
same and that their number divides evenly by the number of processors, we must
look further.

If the tasks become more and more varied in their difficulty (although the av
erage difficulty remains the same), more and more tasks will be needed to average

Parallel Programs for the Transputer

Processor Farms Chapter 3

Controller

:~::::::::':':':"':':'

Workers

Figure 3-5
A processor fann controller running with four parallel processes,
one for each worker

•••••••• i ••.•.....••......•.. .•••.......r......................................•..•..•.. 4:~~::}.........~...I-- ~•

:::::::::::::.:.:.:.: :.:~ ~; ~~~; ~;~; ~;~ ;~;~;~; ~;~;;; ~; ~;~ ~~~~ ~:::::::::.:.,

-: -:.:-:.:.:.:-:.:- :-:-:.:-:-: ...

Controller

{{{::::~::::::::::: ..

::::;:;:::;::::0"'::::-:-'"
.....

.....

...-
Workers

62

Figure 3-6
A processor fann controller running with five parallel processes,
one for each worker, and one to distribute the tasks among them

Parallel Programs/or the Transputer

Chapter 3 Processor Farms

out the random fluctuations in task difficulty and maintain load balancing. Thus as
the task difficulty becomes more varied, the ratio of number of tasks to number of
processors must increase for an even work distribution over the processors to be
maintained.

Solving any specific problem on a parallel machine requires that the problem
be divided up into tasks, each of which can be done by a processor. If the size of
each task is very small, the problem is said to be fine-grained; if each task is large,
the problem is said to be large-grained. The granularity of a problem, then, is a
measure of the size of the tasks into which a problem is divided. Computers are
also often referred to as large- or fine-grained depending upon whether they have a
few very fast and powerful processors (the typical supercomputer) or many small,
less powerful processors (an SIMD machine, for example). Computers between
the two extremes are called medium-grained.

Clearly, if a problem is inherently large-grained, and if the difficulty of each
subtask is very different from that of other subtasks, it will be difficult to balance
the computing load using a processor farm. Many problems, however, can be di
vided up into increasingly smaller pieces and the granularity of the tasks can, within
limits, be arbitrarily decided. Such problems can be handled well with processor
fanns.

It is easy to assume from this discussion that the fmer the grain of a problem,
the more efficiently it can be processed; but this is not necessarily true. It is cer
tainly true that fine-grained tasks are easier to load balance, but there is more to ef
ficiency on a parallel computer than load balancing. As we remarked in the fIrst
chapter, one of the fundamental limits of parallel processing is the communication
overhead. As the number of tasks increases, the communication required to set up
the task, pass it to a processor, and return the results increases as well. Thus there
is an optimum granularity for any given problem. The optimum granularity is the
granularity which minimizes the communication overhead and maximizes the load
balancing. Figure 3-7 shows an idealized CUlVe representing the relationship be
tween granularity and efficiency.

Generally, the maximum efficiency for a particular computer is achieved
when the granularity of the problem matches the granularity of the computer.
Large-grained computers need large-grained tasks and small-grained computers
need small-grained tasks. The granularity of a computer is determined by the ratio
of its computing power to its communications capability. Since the transputer is a
single-chip microprocessor with significant communications capability, it qualifies
as a medium-grained computer. Thus a processor farm composed of transputers
should generally be given a collection of medium-grained tasks.

Large Processor Farms

Processor fanns are typically made of many more than just the five proces
sors shown in Fig. 3-2. In any larger system, all of the nodes must still communi
cate with the controller to receive data and return results. If there are insufficient

Parallel Programs/or the Transputer 63

Processor Farms Chapter 3

Inefficient load
balancing

Optimum

Task granularity
matches computer
granularity

100%

Percent
Efficiency

/'0, all communication, no work l/number processors,
~ one processor working

0% -----------------------
Granularity too small Granularity too large

Task Granularity

Figure 3-7
Idealized plot of task granularity versus efficiency for a given parallel processor

links to make a direct connection between each processor node and the controller
(as is always the case for larger networks), there are two alternatives open to the
designer.

In the fIrst alternative, the network can be switched so that every processor is
connected directly to the controller (although not all at the same time). A second
alternative is for the processors to communicate through other processors which are
connected to the controller. Figure 3-8 shows such a tree structure of processors
connected to a controller through interprocessor links. Processors lower in the tree
must receive or pass messages through those higher in the tree. This tree can be
made as large as is desired, but the taller the tree is the farther messages must pass
between controller and processors. A wider, shorter tree has a smaller communi
cation distance between processor and controller, but the width is constrained by
the number of communication links available to each processor.

A switched network can use the programs described in Figs. 3-3 and 3-4 with
some additions for switch controlling. The actual hardware, of course, will be
much more complex than with a simple tree of link interconnections. On the other
hand, a network with direct, unswitched links is more complex because it uses an
interprocessor message-passing scheme to communicate with the controller.

In an unswitched processor tree like the one shown in Fig. 3-8, each node is
connected to one processor above it, usually termed the parent. The nodes connect
ed below are called children. Thus each processor has one parent and zero or more
children (Fig. 3-9).

Since each processor node is running asynchronously, every processor with
children must be prepared to pass data up or down the tree at any moment. Figure
3-10 shows a logical schematic of such a processor node with two children. The

64 Parallel Programs for the Transputer

Chapter 3 Processor Farms

Figure 3-8
A processor tree with a controller at the top and worker nodes
connected by channels in a tree below

Figure 3-9
A processor node in a simple tree with one parent and zero or more children
connected by communication channels

Parallel Programs for the Transputer

Children

Processor Farms

from. parent

to. child

up. to. down

Chapter 3

to.parent

I \
from. child

Figure 3-10
A logical block diagram of a processor node with three processes: one for
communications down the tree, one for communications up the tree, and one to do work

input/output processes must run totally independently and at a higher priority than
the local worker process in order to guarantee that communications up and down
the tree are never delayed. If the input/output processes are not at a higher priority
and independent of the worker process, the worker process will slow down the
communications. This in turn will slow down the assignment of tasks and the de
livery of results, leaving some processors farther down the tree with nothing to do.

In Fig. 3-10, there are three processes shown running in parallel: one process
perfonns work locally (the "work" process), a second process inputs infonnation
from a parent and passes it either to the local worker or to a child (the "down" pro
cess), and the third process reads information from the children or the worker and
passes it to the parent (the "up" process). Figure 3-11 shows the program organi
zation. Of the three processes, the worker process is the simplest (Fig. 3-12). This
process waits for work to appear on its local channel down. to. work, processes
it, passes the results through the local channel work. to. up, and then awaits
more work.

The down process (Fig. 3-13) is the most complex. It distributes data re
ceived from the parent to the appropriate channel. To accomplish this distribution,
the down process must keep a record of which processors are free, and it must have
some method for deciding to which processor the work must go if more than one
processor is available. For this example, a very simple algorithm is used for mak
ing the decision. The down process will try to pass the work to the subtree with the
greatest number of free processors in link order; if the subtrees are full, the work is
passed to the local work process. Work will thus tend to be passed to the bottom
of the tree. If there are fewer tasks than processors, using this approach will result

66 Parallel Programs for the Transputer

Chapter 3 Processor Farms

Fig. 3-13
Fig. 3-14
Fig. 3-12

CHAN OF INT up.to.down, down.to.work, work. to. up,
CHAN OF INT from.child1, from.child2, to.child1, to.child2:
CHAN OF INT from. parent, to.parent,
PRI PAR

PAR
..• down process
..• up process

...worker process

Figure 3-11
Code for worker node with down, up, and worker routines

WHILE TRUE
INT work, results:
SEQ

down. to. work? work
... do<work,results)
work. to. up! results

Figure 3-12
Code for work process in a worker node in which work is read in, processed, and sent out

Parallel Programs/or the Transputer 67

results

results
1
results
2
results

Processor Farms

INT countl,count2,work,link:
SEQ

up.to.down? countl;count2
WHILE TRUE

ALT
from. parent? work

IF
countl > count2

SEQ
to.childl! work
countl:=countl-l

count2 > 0
SEQ

to.child2! work
count2:=count2-1

TRUE
down.to.work!work

up.to.down? link
IF

link=l
countl:=countl+l

link=2
count2:=count2+1

Figure 3-13
Code which passes work down the tree

INT countl,count2,results:
SEQ

from.childl? countl
from.child2? count2
to.parent! (countl+count2)+1
up.to.down! countl;count2
WHILE TRUE

SEQ
ALT

work. to. up?
SKIP

from.childl?
up.to.down!

from.child2?
up.to.down!

to.parent!

Figure 3-14
Code which passes data up the tree

Chapter 3

68 Parallel Programs/or the Transputer

Chapter 3 Processor Farms

in unnecessary communication, but if there are many tasks, this algorithm will have
the tendency to leave processors high on the tree without work and free to devote
themselves to communication. Since processors higher on the tree must do more
communication than those lower down (because there are more results produced
below them to pass up), this algorithm should have the effect of increasing overall
efficiency.

A simple comparison shows which subtree has the greatest number of free
processors. If there is no subtree with a free processor, work will be sent to the local
work process. If the various subtrees are unbalanced, this algorithm will have the
effect of filling the largest tree fIrSt. When the number of free processors in the
largest subtree equals the number ofprocessors in the next largest subtree, the work
will be shared between the two subtrees, and so on, until all of the subtrees are re
ceiving equal shares of work.

The down process (Fig. 3-13) keeps a count of free workers in the subtree
connected to each channel. Once the count of these workers is initialized (more on
that later), the down process simply subtracts one from the available processor
count for the appropriate channel whenever a job is passed to that channel. If that
count reaches zero, a different channel must be used. With this arrangement, the
controller must never pass work if there is not a free worker available to perform it.

When results are passed up the tree, the up process becomes involved. The
up process very simply waits for an input from any child processor or the local
worker, passes the input results to the parent, and reports to the down process that
another worker is available (Fig. 3-14). The down process must then increment the
count of available processors for that channel.

In order for each processor to obtain the initial count of available processors
beneath it on the tree, the tree must calculate its own size. A simple way to perform
this calculation is to have each processor pass a message up the tree to the control
ler. The message is a count ofprocessors in the subtree to which the channel is con
nected. The up process in each node inputs a count from each of its children, passes
the count to the down process which records it, sums and increments the count from
all the children, and passes the total to the parent processor. This procedure repeats
in every processor, and a total count bubbles up to the controller. Obviously a pro
cessor at the bottom of the tree, with no children, will simply output a one, repre
senting itself.

Storage and Communication Issues

One of the drawbacks to a farming program like the one just described is the
amount of storage space required. Because each of the three processes is run in par
allel, each must maintain a separate memory space. Both the down and worker pro
cesses must allocate storage for the task data, and both the worker and up processes
must allocate storage for the results data. For small data sets this storage space re
quirement will not matter much, but if the data sets become very large, it might be

Parallel Programs/or the Transputer 69

Processor Farms Chapter 3

necessary to sacrifice some communications capability or processor asynchronicity
to keep the programs running.

A second drawback to this fanning scheme is the communication overhead.
A significant amount of time can be wasted while work and results pass up and
down the tree. When a processor completes a task it must wait until the results trav
el all of the way up the tree to the controller, competing all the while for the use of
the link with other results. It must then wait for a task to make its way back down.
For a processor low on the tree, this wait may be lengthy. Clearly, the link traffic
can form a bottleneck.

To minimize this problem, individual processors can queue work locally.
Then while the results of the frrst task are making their way to the processor, work
can begin on the queued task. To implement this queue, we can insert a high-pri
ority buffer between the down and worker processes. When the tree frrst initializes
the count of processors, each processor must count itself as (size of queue + 1)
workers, rather than one worker as before. There are, however, two problems with
this approach. First, the storage requirements within each processor must be in
creased, and second, when there is no more work to be distributed to a network, it
is possible that some processors may have queued tasks remaining while other pro
cessors have no work at all.

Notice that processors high on the tree will spend proportionately more time
doing input and output than processors lower on the tree. If the results are not need
ed in any particular order this work distribution is not an issue, and the communi
cation can be run at a higher priority than the work, so that the network maintains
a reasonable efficiency.

A Real-World Example

Consider a practical example illustrating this discussion, the calculation of
the Mandelbrot set over a 512 by 512 array of points using a processor farm. This
example is a popular exercise and easily adaptable to fanning methods on a parallel
computer.

The Mandelbrot set (named for the mathematician Benoit Mandelbrot) is the
set of points in the complex plane which are quasi-stable when iterated in a func-

tion. The most commonly used function is z = z2 + c, with the complex value z
initially equal to zero and the constant c the point being tested in the complex plane.
After the frrst iteration, z will be equal to c. The stability of a point in the plane can
be measured by iterating the function until its magnitude exceeds an arbitrary limit,
usually two.· The number of iterations (up to some arbitrary maximum) required to
exceed the limit is the stability. If the function does not exceed this limit, the point
in the·plane is considered to be in the Mandelbrot set. This calculation is popular
because it is a simple test of raw processor power and because the image produced
by assigning colors to the stability levels for a two-dimensIOnal set of points is ex
ceedingly strange and beautiful.

70 Parallel Programs for the Transputer

Chapter 3 Processor Farms

PROC man.calc.64 (INT count, VAL REAL64 p.real,p.imag)
VAL INT max. count IS 255:
VAL REAL64 max.size IS 4.0 (REAL64):
REAL64 z.real,z.imag,z.size,t.real,t.imag:
SEQ

count .= 0
z.real .= p.real
z.imaq .= p.imaq
t.real .= z.real*z.real
t.imaq .= z.imaq*z.imaq
z.size .= t.real+t.imaq
z.size:=z.size-max.size
INT64 test RETYPES z.size:
WHILE (count<max.count) AND (test < 0 (INT64»

SEQ
z.imaq :=«z.real+z.real)*z.imaq)+p.imaq
z.real .= (t.real-t.imag)+p.real
t.real .= z.real*z.real
t.imaq .= z.imag*z.imaq
z.size .= t.real+t.imaq
z.size:=z.size-max.size
count :=count+l

Figure 3-15
Mandelbrot calculation routine

Figure 3-16
A mesh used as an unbalanced tree

Parallel Programs/or the Transputer 71

Processor Farms Chapter 3

The procedure used to actually calculate the stability of a point is shown in
Fig. 3-15. This procedure takes a complex value (p. real, p. imag) and returns
an iteration count; the computation is done with 64-bit floating point arithmetic.
The maximum number of iterations is set at 255, and the magnitude threshold for
z squared is set at four. The z and t values are used as local temporary variables.

The stability calculation routine fIrSt initializes count, assigns the complex
p values to z, and calculates the magnitude squared minus the threshold (stored in
z . size). This magnitude must be compared to the max. size limit. So that a
floating-point comparison is avoided, z . size is fIrSt retyped to a 64-bit integer
and then compared to zero to test the threshold limit. The routine then enters a
WHILE loop predicated on a check of the iteration count and the threshold limit.
If neither limit is exceeded, the loop simply calculates the function and magnitude
until either the count or the threshold is exceeded. The library mande1_1ib . t s r
includes this entire routine.

When calculating the Mandelbrot set with a processor fann, we must distrib
ute the computation routine to every processor. Each processor in the fann must
calculate a two-dimensional block of points, receiving the complex values for the
block from its parent and returning an array of bytes which are the iteration values
for the function at each point in the block.

The network for this processor farm (Fig. 3-16) is a simple, unbalanced tree
connected to a root node and built of a subset of the connections available in a
mesh-connected array of processors. The configuration of this network is shown
in Figs. 3-17 and 3-18. Figure 3-17 simply defines two channel protocols, one for
passing data down the tree, and the second for passing results up the tree. The
i . s i z e and r . s i ze values determine the size of the block of points to be calcu
lated. Generally, in this program, variables prefixed with i represent imaginary val
ues and variables prefixed with r represent real values. The code in Fig. 3-17 is
stored in a library called protocol_lib. tsr.

Figure 3-18 shows the configuration description of the network. It includes
the protocol library and the frrst line of each procedure for the various processors
in the network. The root node (shown with an R in Fig. 3-16) is frrst, followed by
the processors with zero, one, two, or three children. Only the link connections

VAL INT i.size IS 32:
VAL INT r.size IS 32:
PROTOCOL DOWN IS INTiINTiREAL64iREAL64iREAL64iREAL64:
PROTOCOL UP

CASE
counti INT
datai INTi INTi [r.size] {i.size]BYTE

Figure 3-17
Protocol and block size definition for the Mandelbrot set calculation

72 Parallel Programs for the Transputer

Chapter 3 Processor Farms

:fUSE "protocol_lib.tsr"
PROC node.controller(CHAN OF UP from. network,

CHAN OF DOWN to. network)
PROC no.child(CHAN OF DOWN from. parent,

CHAN OF UP to.parent)
PROC one.child(CHAN OF DOWN from. parent,

CHAN OF UP to.parent,
CHAN OF UP from.child1,
CHAN OF DOWN to.child1)

PROC two.child(CHAN OF DOWN from.parent,
CHAN OF UP to.parent,
CHAN OF UP from.child1,
CHAN OF DOWN to.childl,
CHAN OF UP from.child2,
CHAN OF DOWN to.child2)

PROC three. child (CHAN OF DOWN from.parent,
CHAN OF UP to.parent,
CHAN OF UP from.childl,
CHAN OF DOWN to.childl,
CHAN OF UP from.child2,
CHAN OF DOWN to.child2,
CHAN OF UP from.child3,
CHAN OF DOWN to.child3)

VAL x.trans IS 10:
VAL y.trans IS 12:
VAL num.trans IS x.trans*y.trans:
VAL num.left IS x.trans/2:
VAL num.right IS x.trans-(num.left+1):
[num.trans]CHAN OF DOWN d.link:
[num.trans]CHAN OF UP u.link:
PLACED PAR

PROCESSOR 999 T4 --root node
PLACE u.link[num.left] AT 7:
PLACE d.link[num.left] AT 3:
node.controller(u.link[num.left],d.link[num.left])

Figure 3-18
Configumtion file for the tree network

Parallel Programs for the Transputer 73

Processor Farms Chapter 3

--replicate top rows

--center node for top rows
AT 5:
AT 1:
AT 7:
AT 3:
AT 4:
AT 0:
AT 6:
AT 2:

u.link[p],
d.link[p-1],
d.link[p+1],
d.link[p+x.trans])

PLACED PAR k=O FOR (y.trans-1)
VAL i IS (k*x.trans):
PLACED PAR

VAL P IS i+num.left:
PROCESSOR p T8

PLACE d.link[p]
PLACE u.link[p]
PLACE u.link[p+x.trans]
PLACE d.link[p+x~trans]

PLACE u.link[p-1]
PLACE d.link[p-1]
PLACE u.link[p+1]
PLACE d.link[p+1]
three.child(d.link[p],

u.link[p-1],
u.link[p+1],
u.link[p+x.trans],

PLACED PAR
VAL P IS i:
PROCESSOR p T8 --end node for left side

PLACE d.link[p] AT 6:
PLACE u.link[p] AT 2:
no.child(d.link[p],u.link[p])

PLACED PAR p=(i+1) FOR (num.left-1) --left side
PROCESSOR p T8

PLACE u.link[p-1] AT 4:
PLACE d.link[p-l] AT 0:
PLACE d.link[p] AT 6:
PLACE u.link[p] AT 2:
one.child(d.link[p], u.link[p],

u.link[p-l], d.link[p-l])
VAL q IS i+num.left:
PLACED PAR

VAL P IS q + num.right:
PROCESSOR p T8 --end node for right side

PLACE d.link[p] AT 4:
PLACE u.link[p] AT 0:
no.child(d.link[p],u.link[p])

PLACED PAR p=(q+l) FOR (num.right-1) --right side
PROCESSOR p T8

PLACE u.link[p+l] AT 6:
PLACE d.link[p+l] AT 2:
PLACE d.link[p] AT 4:
PLACE u.link[p] AT 0:
one.child(d.link[p], u.link[p],

u.link[p+l], d.link[p+l])

Figure 3-18 (cont.)
Configuration ftIe for the tree network

74 Parallel Programs for the Transputer

Chapter 3 Processor Farms

--bottom row

--center node for bottom row
AT 5:
AT 1:
AT 4:
AT 0:
AT 6:
AT 2:

u.link[p],
d.link[p-1],
d.link[p+1])

VAL i IS «y.trans-1)*x.trans):
PLACED PAR

VAL P IS i+num.left:
PROCESSOR p T8

PLACE d.link[p]
PLACE u.link[p]
PLACE u.link[p-1]
PLACE d.link[p-1]
PLACE u.link[p+1]
PLACE d.link[p+1]
two.child(d.link[p],

u.link[p-1],
u.link[p+1],

PLACED PAR
VAL P IS i:
PROCESSOR p T8 --end node for left side

PLACE d.link[p] AT 6:
PLACE u.link[p] AT 2:
no.child(d.link[p],u.link[p])

PLACED PAR p=(i+1) FOR (num.left-1) --left side
PROCESSOR p T8

PLACE u.link[p-1] AT 4:
PLACE d.link[p-l] AT 0:
PLACE d.link[p] AT 6:
PLACE u.link[p] AT 2:
one.child(d.link[p], u.link[p],

u.link[p-1], d.link[p-1])
VAL q IS i+num.left:
PLACED PAR

VAL P IS q + num.right:
PROCESSOR p T8 --end node for right side

PLACE d.link[p] AT 4:
PLACE u.link[p] AT 0:
no.child(d.link[p],u.link[p])

PLACED PAR p=(q+1) FOR (num.right-l) --right side
PROCESSOR p T8

PLACE u.link[p+l] AT 6:
PLACE d.link[p+l] AT 2:
PLACE d.link[p] AT 4:
PLACE u.link[p] AT 0:
one.child(d.link[p], u.link[p],

u.link[p+1], d.link[p+1])

Figure 3-18 (conl.)
Configuration file for the tree network

Parallel Programs for the Transputer 75

Processor Farms Chapter 3

needed to construct the tree of processors are passed as arguments to each routine.
Channels passing data down the tree use the DOWN protocol, and those returning re
sults use the UP protocol. The x and y dimensions of the array of processors are
defined with x •trans and y •trans. By changing these values, we can make
the network dimensions and aspect ratio larger or smaller. '

Each row of the tree is constructed in three parts: a left side, a right side, and
a center processor. The left and right sides are constructed with a replicated ~AR
and have a processor with no children on their ends. The other processors each
have one child. The center processor connects the two sides and has three childTen.
Each row is then replicated to create a deeper tree; the bottom layer is identical'with
those above it except that its center processor has two children. The configuration
description defmes the root node fIrst, followed by a replicated structure of rows.
In each row, the center processor is defined frrst, then a replicated structure for the
left side of the row, and last, a replicated structure for the right side of the row. Fi
nally, the bottom row is defined (center fIrst, then left side, then right side) with a
two-child central processor.

In a tree structure, there are as many bidirectional channels needed to connect
the processors as there are processors. Therefore, the channels are created with an
array, each of whose elemeIits are associated with the processor of the same num
ber. Figure 3-16 shows the processor and channel numbering. The physical pro
cessor links are actually connected with link 0 on the left, link 2 on the right, link
1 above, and link 3 below. Notice that the parent channel ~s associated with link 2
on the left side of each row but link 0 on the right side. Two arrays of channels are
actually defmed to accommodate the input and output for each of the links. Chan
nel names prefixed with u are used for links which ~ansmit results up the tree, and
channel names prefixed with d pass data down.

Two of the procedures which run in the processor nodes are shown in Figs.
3-19 (zero children) and 3-20 (three childreq). The procedures for 0Qe and two
children are simply stripped down versions of the three-child routine. All of these
proceduf~S use the same methods described earlier, but with one minor differ~nce:
the initial count ofproces~orsin the tree is done before the PAR structure is entered.

The child routine begins with library definitions. Next, the channels ar~4~

fined with the UP and DOWN protocols whicq describe the information passe<! 'pn
the channels. The information passed. down is a work assignment and compri~es
6 values, an x and y pair which are not need.edfor the computation but Whic~ ~4en
tify the resulting data, and four real values. X and y give the address (in the 5l,2 by
512 array) of the upper left value of the block of values being generated. 'The fIrst
two 64-bit real values identify the first point to be calculated in the complex plane;
the second two values represent the increment to be added. in the real3.Il,d i~aginary

directions when the next point is calculated.
The UP protocol has two cases. In the fIrst case an INT is used. ~ define the

communication protocol for passing the count up the tree at the hegjnning of the
program. In the second case the protocol used. to pass calculat~data back up to

76 Parallel Programs for the Transputer

Chapter 3 Processor Farms

XiYiimage
xiYiimage

XiYireal.startiimag.starti
r.deltaii.delta

xiYireal.startiimag.starti
r.deltaii.delta

image:

down.to.work!

[r.size] [i.size]BYTE
INT x,Y:
WHILE TRUE

SEQ
work. to. up? CASE datai
to.parent! datai

CHAN
CHAN
SEQ

to.parent! counti 1
PRI PAR

PAR
REAL64 real.start,imag.start,r.delta,i.delta:
INT x,Y:
WHILE TRUE

SEQ
from. parent ?

IUSE "mandel_lib.tsr"
IUSE "protocol_lib.tsr"
PROC no.child(CHAN OF DOWN from.parent,

CHAN OF UP to.parent)
OF DOWN down.to.work:
OF UP work. to. up:

[r.size] [i.size]BYTE image:
REAL64 r.current,i.current,r.delta,i.delta,r.start:
INT count,x,y:
WHILE TRUE

SEQ
down.to.work? xiYir.startii.currenti

r.deltaii.delta
SEQ i=O FOR i.size

SEQ
r.current:=r.start
SEQ r=O FOR r.size

SEQ
man.calc.64 (count,r.current,i.current)
r.current:=r.current+r.delta
image[i] [r] :=BYTE count

i.current:=i.current+i.delta

work. to. up! datai xiYiimage

Figure 3-19
Code for processor with no children

Parallel Programs for the Transputer 77

Processor Farms Chapter 3

CASE counti num.free.1
CASE counti num.free.2
CASE counti num.free.3

counti (num.free.1+num.free.2)+
(num. free. 3+1)

IUSE "mandel_lib.tsr"
IUSE "protocol_lib.tsr"
PROC three.child(cHAN OF DOWN from.parent,

CHAN OF UP to.parent,
CHAN OF UP from.child1,
CHAN OF DOWN to.child1,
CHAN OF UP from.child2,
CHAN OF DOWN to.child2,
CHAN OF UP from.child3,
CHAN OF DOWN to.child3)

INT num.free.1,num.free.2,num.free.3:
CHAN OF INT up.to.down:
CHAN OF DOWN down. to. work:
CHAN OF UP work. to. up:
SEQ

from.child1?
from.child2?
from.child3?
to.parent!

PRI PAR
PAR

REAL64 real.start,imag.start,r.delta,i.delta:
INT x,Y:
WHILE TRUE

ALT
from.parent? XiYi real. starti imag. starti

r.deltaii.delta

XiYireal.startiimag.starti
r.deltaii.delta

num.free.3:=num.free.3-1
TRUE

down.to.work! xiYireal.startiimag.starti
r.deltaii.delta

XiYireal.startiimag.starti
r.deltaii.delta

num.free.2:=num.free.2-1
num.free.3>O

SEQ
to.child3!

IF
(num. free. l>num. free. 2) AND (num. free.1>num. free. 3)

SEQ
to.childl! xiYireal.startiimag.starti

r.deltaii.delta
num.free.1:=num.free.1-1

num.free.2>num.free.3
SEQ

to.child2!

Figure 3-20
Code for processor with three children

78 Parallel Programs for the Transputer

Chapter 3 Processor Farms

INT link:
up.to.down? link

IF
link=1

num.free.1:=num.free.1+1
link=2

num.free.2:=num.free.2+1
TRUE

num. free. 3:=num. free. 3+1
[r.size] [i. size] BYTE image:
INT x,y:
WHILE TRUE

SEQ
PRI ALT

work. to. up? CASE datai xiYiimaqe
SKIP

from.child1? CASE datai xiYiimaqe
up.to.down! 1

from.child2? CASE datai xiYiimaqe
up.to.down! 2

from.child3? CASE datai xiYiimaqe
up.to.down! 3

to.parent! datai xiYiimaqe
[r.size] [i.size]BYTE image:
REAL64 r.current,i.current,r.delta,i.delta,r.start:
INT count,x,y:
WHILE TRUE

SEQ
down.to.work? x;Yir.startii.currenti

r.deltaii.delta
SEQ i=O FOR i.size

SEQ
r.current:=r.start
SEQ r=O FOR r.size

SEQ
man.calc.64 (count, r.current, i.current)
r.current:=r.current+r.delta
image[i] [r] :=BYTE count

i.current:=i.current+i.delta
work. to. up! data; xiy;image

Figure 3-20 (cont.)
Code for processor with three children

Parallel Programs/or the Transputer 79

Processor Farms Chapter 3

the root node is defined. It comprises both the x and y values mentioned earlier,
and a two-dimensional byte array of results. The internal channels down. to.
work and work. to. up are also defined with the DOWN and UP protocols respec
tively. The up . to. down channel simply passes an integer value and uses an INT
protocol.

The code for the processor nodes with no children is much simpler than the
code for those with children. The no. child routine (Fig. 3-19) does not need the
ALTinput in the up code, the up. to. down channel, or the calculation and testing
of the number of free children below it on the tree. Initializing this no. child
routine is straightforward and simply consists of a one being passed to the proces
sor's parent. The three-child routine uses the same structure described earlier and
is shown in Fig. 3-20.

Other than the differences in the channel protocols and the actual work done
in the work routine, this real-world example is substantially similar to the example
in the earlier discussion of fanns. As with the earlier example, the work code itself
is identical in every processor and simply reads in the task, calculates results, and
passes the results on. The actual work of the Mandelbrot calculation begins with
an initialization of the current real and imaginary values defining a point in the
complex plane, and continues with a calculation of the stability. A doubly nested
loop in the real and imaginary dimensions serves to iterate the current values ap
propriately, using the delta parameters passed from the controller. The loop count
is the same as that of the block of points being calculated, i . s i ze by r . s i ze.
The count returned from the man. calc. 64 call is converted to a byte and
stored in the image array. When all of the values have been computed, the data to
gether with the x and y identifiers are output on channel work. to. up, and the
processor begins waiting for another task.

The code running in the network controller for the Mandelbrot example is di
agrammed in Fig. 3-21. Two' parallel processes basically constitute the controller:
one for receiving instructions from the host and sending tasks to the network (send
work), and a second process for reading results from the network and passing the
data back to the host (get-results). These two processes are connected by the inter
nal channel ready. To begin the program, the host passes four real values to the
send-work process. The fIrst pair of values defines the fIrst and last boundary
points to be examined in the real dimension, and the second pair of values defines
the frrst and last values in the imaginary dimension. The number of points to be
computed is defined as a value in the routine itself. From this infonnation, process
send-work can define each of the tasks to be perfonned. These tasks .are passed to
the network whenever the second process sends a "ready" command over channel
ready.

The get-results process in the root node controls the input of results and the
output of "ready" commands. When the network is initialized, a count of the num
ber of processors available in the network is passed up the processor tree and,read
in by get-results. Tasks can be immediately assigned to each of the processors in

80 Parallel Programs for the Transputer

Chapter 3

from. host

to. network

ready

Processor Farms

to.host

from. network

Figure 3-21
A logical block diagram of the controlling root node

the fann, so get-results passes tree. size signals to send-work, which passes
tasks on to the network. Thereafter, every time a task is finished and some tasks
remain to be done, get-results sends another signal to send·work. The data itself is
passed on to the host. By decoupling the assignment ofwork and the receipt ofdata
in this way, the network controller avoids bottlenecks in the flow of infonnation ei
ther to the host or to the network.

The network control code itself is listed in Fig. 3-22. The controller is con
nected to the network through the to . network and from. network channels,
which are defined with the UP and DOWN protocols just like the channels in the net
work itself. The host channels do not use a protocol and are PLACEd at link O.
Channel ready is an internal channel which passes only dummy integer values.
After the channel definitions, the image size and a calculation of the number of
blocks (tasks) are listed. Of course, the number of blocks depends directly on the
block size defined in the protocol library.

After the variables and channels are defined, the network control program be
gins with an infinite WHILE TRUE loop by reading the starting values from the
host and calculating the incremental values for the address of the frrst point in each
block (r . de1t a and i . de1t a). It then calculates the incremental value for each
point in the real and imaginary planes themselves (i. inc and r. inc). The send
work process then initializes the current point values (r . current and i . cur
rent), enters a double loop which moves the current values through the correct se
quence of points in the complex plane, and waits for a "ready" signal from process
get-results. The incremental values passed to the network remain the same for ev
ery task, whereas the address of the frrst point in each block must be updated (by

Parallel Programs/or the Transputer 81

Processor Farms Chapter 3

fUSE "protocol_lib.tsr"
PROC node.controller(CHAN OF UP from. network,

CHAN OF DOWN to. network)
CHAN OF ANY to.host,from.host:
PLACE from.host AT 4: 0

PLACE to.host AT 0:
CHAN OF INT ready:
VAL INT x.image IS 512:
VAL INT y.image IS 512:
VAL INT r.blocks IS x.image/r.size:
VAL INT i.blocks IS y.image/i.size:
PAR

INT x.start,x.end,y.start,y.end,r.block,i.block:
REAL64 r.current,i.current,r.start,i.start,r.end,i.end:
REAL64 r.inc,i.inc,r.delta,i.delta:
WHILE TRUE

SEQ
from.host? r.startir.endii.startii.end
r.delta .= (r.end-r.start)/(REAL64 ROUND r.blocks)
i.delta .= (i.end-i.start)/(REAL64 ROUND i.blocks)
r.inc .= r.delta/(REAL64 ROUND r.size)
~.1nc .= i.delta/(REAL64 ROUND i.size)
i.current:=i.start
SEQ i=O FOR i.blocks

SEQ
r.current:=r.start
SEQ r=O FOR r.blocks

INT link:
SEQ

ready? link
to. network ! riiir.currentii.currenti

r.incii.inc
r.current:=r.current+r.delta

i.current:=i.current+i.delta

VAL INT num.blocks IS r.blocks*i.blocks:
VAL INT image. size IS r.size*i.size:
[r.size] [i.size]BYTE image:
INT tree. size:
SEQ

from. network? CASE counti tree. size
IF

tree. size > num.blocks
tree.size:=num.blocks

TRUE
SKIP

Figure 3-22
Code for network controller in the Mandelbrot example

82 Parallel Programs for the Transputer

Chapter 3

WHILE TRUE
SEQ

SEQ i=O FOR tree. size
ready! 0

INT x,Y:
SEQ i=O FOR num.blocks

SEQ
from. network? CASE datai xiYiimage
PRI PAR

IF
i < (num.blocks-tree.size)

ready! 0
TRUE

SKIP
to.host! xiYiimage.sizeiimage

to.host! OiOiO

Figure 3-22 (cont.)
Code for network controller in the Mandelbrot example

Processor Farms

r. del ta and i . del ta) with each new block assigned. After r. blocks times
i .blocks tasks have been assigned, the entire job is finished and send-work
awaits a new assignment from the host.

The get-results process begins by reading in the network size (tree. size).
If the number of tasks is less than the network size, however, the size variable is set
equal to the number of tasks. This change prevents process get-results from initi
ating more tasks than are available. The process then enters an infinite loop and
sends tree. size signals to process send-work, which starts up the tasks. Data
may now be available from the network, and if available will be read in by get-re
sults. Each time a task is completed and read in, process get-results must pass a
signal to process send-work to initialize another task, unless there are no tasks re
maining (number of tasks received is less than the network size). At the same time,
the results read from the network are returned to the host. The signal to send-work
and the output to the host are done in a PRI PAR structure so that a delay on one
channel will not delay the other. The signal on channel ready has priority, on the
assumption that it is more important to start new work than to deliver old results.
When all of the tasks have been completed, get-results passes three zeros to the host
to indicate the end of the work.

Efficiency Measurements

The calculation of the Mandelbrot set for a 512 square set of values was ac
tually run on a variety of network sizes and the performance of the processor fann
measured for a variety of block sizes. The block size is a measure of the granularity
of the task. If larger blocks are used, fewer are needed, and the granularity of the

Parallel Programs/or the Transputer 83

Processor Farms Chapter 3

Computation time for tree size (seconds)
Number ofBlock size
blocks

lOx 12 7x9 5x6 3x4

1 x 1 32.77 32.71 32.66 45.31 262144

2x2 8.60 9.50 14.79 34.17 65536

4x4 3.50 6.36 13.05 32.24 16384

8x8 3.33* 6.18* 12.79* 31.78 4096

16' x 16 3.58 6.43 12.95 31.75* 1024

32x32 4.75 7.33 13.88 32.39 256

64x64 10.71 10.71 18.21 34.64 64

128 x 128 42.17 42.15 42.14 45.41 16

256 x 256 143.20 143.13 143.09 143.05 4

512 x 512 379.82 379.52 379.36 379.21 1

*Optimum granularity
Figure 3-23

Timing measurements for various tree sizes and granularity

Efficiency of optimum block size for tree size

lOx 12 7x9 5x6 3x4
"

Efficiency .950 .975 .989 .994

Figure 3-24
Computational efficiency of various networks at optimum granularity

84 Parallel Programs for the Transputer

Chapter 3 Processor Farms

problem increases; smaller blocks result in a smaller granularity. The network di
mensions were chosen to maintain a consistent aspect ratio over a large range of
network sizes. Figure 3-23 is a table of the timing measurements. The center four
columns show the times in seconds for the array size printed at the top of the col
umn. The granularity of the problem increases towards the bottom ofeach column.

The program described constructs a 512-by-512 array of values by comput
ing many smaller blocks which together make up the full 512 square array. A 1
by-l block size (listed at the top of the left column) requires 262144 blocks (listed
at the top of the right column) to complete the array, while a 16-by-16 block size
requires 1024 blocks. Both the block size and the number of blocks define the gran
ularity. The granularity ranges from the smallest possible (a block with one ele
ment) to the largest possible (one block constituting the entire calculation). Al
though all of the blocks are the same size for a given computation, some blocks
require more effort to calculate than others.

An examination of the table entries reveals some interesting points. Very
large granularity problems are inefficient on a processor fann since many of the
processors are unused. Very small granularity problems are likewise inefficient
since each calculation requires so much communication overhead. The optimal ef
ficiency is found somewhere in the middle with a block size of 8-by-8 elements per
task, a size somewhat smaller than one might expect. This observation points out
the importance ofkeeping processors busy even if higher communication overhead
results. The optimum block size is about the same for every tree size, although a
close inspection of the measurements reveals that the optimum granularity for larg
er networks is slightly smaller than the optimum granularity for smaller networks.
For example, the 12-processor network has an optimum granularity with blocks of
size 16-by-16 while the 120-processor network has an optimum granularity with
block sizes of about 8-by-8. The efficiency of each network at optimal granularity
is shown in Fig. 3-24.

It is also interesting to note that passing data to the bottom of the network tree
has only a very small effect on the performance of the system, even when the gran
ularity of the problem is very large and there may be many free processors high up
in the tree. For any given granularity, those networks with more processors than
tasks perform nearly identically, regardless of the size of the network. For exam
ple, if the computing task is divided into four blocks of 256-by-256 elements each,
the performance of the different networks varies by only about one tenth of a per
cent.

Figure 3-25 is a graph of the efficiency for each of the networks with various
task granularity. The efficiency is the time for one processor to do the calculation
(379 seconds) divided by the product of the number of processors in the network
and the time for the network to do the calculation. This graph nicely corresponds
with the idealized curve shown in Fig. 3-7 and demonstrates that smaller networks
tend to be less sensitive to the granularity of the problem. This is obviously true if
one considers a single processor network which gives the same efficiency for any

Parallel Programs/or the Transputer 85

Processor Farms Chapter 3

Efficiency vs. Granularity

100%

181614

7x9-+-~\

4 6 8 10 12

Granularity: Block Size (2x)

2

OL----+---+---t-----+----+-----I---4---....---.

o

40%

20%

80%
Percent
Efficiency

60%

Figure 3-25
Plot of efficiency versus granularity for four network
sizes and ten block sizes

granularity and would be plotted as a flat line at 100% efficiency. Also as expected,
the smaller networks are more efficient at any granularity; there simply is not as
much communication overhead.

In Summary

A processor farm is a simple parallel processing approach appropriate to
nearly any MIMD computer. Under the guidance of a controlling processor, each
processor in the network receives instructions, performs work, and returns results.
If the network is switched, each processor can communicate directly with the con
troller, and very simple programs can be used to implement the farm. If an un
switched network is used, communication must take place through intervening pro
cessors in the network. In this case, special communication processes must be in
cluded in each processor to pass instructions and data to and from the controller.
For an unswitched network, the drawbacks of communication overhead and redun
dant storage requirements are exchanged for the advantage of simplified hardware.

In an optimized processor farm, the granularity of each task will be matched
to the granularity of the computer itself, and the overall computing task will be dis-

86 Parallel Programs/or the Transputer

Chapter 3 Processor Farms

tributed evenly over the network. If the tasks are too large to be evenly distributed,
some processors may not have enough work. If the tasks are too small, communi
cation overhead will come to dominate the computer's performance. If a parallel
program has only a few tasks which vary greatly in difficulty, the work may be un
evenly distributed. Either the tasks must be broken up into smaller pieces which
can be spread more evenly over the processor network or they must be made more
consistent in difficulty.

Because the communication overhead in a processor fann can be trouble
some, processor farms are most useful for tasks which require a relatively large
amount of computing compared to communication. While any parallel machine is
most efficient when running programs with a high ratio of work to communication,
it is especially important that programmers using processor farms be careful of the
amount of communication required for each task accomplished.

Parallel Programs/or the Transputer 87

Chapter 4

Pipeline Processing

A parallel pipeline system is one in which every data element is passed
through every processor with each processor performing a different operation on
each of the data elements. This approach is sometimes called algorithmic parallel
ism because the algorithm tasks are distributed among multiple processors. In con
trast, data parallelism (Chap. 5) is a method in which the entire program is placed
in every processor and data is distributed among the processors.

Parallel pipeline systems are among the simplest ofparallel systems to create.
They are simple to understand, construct, control, and program. The communica
tion techniques needed for pipelining are easy to develop and the programs easy to
write. Because of their regular structure and simple data flow, pipeline systems are
especially useful for real-time systems. But, although pipeline systems are easy to
create and use, they do have some serious drawbacks. Because it is often difficult
to distribute a processing task over a pipeline, pipeline systems can be problematic
to use efficiently and to apply to many kinds of problems. Therefore, although use
ful in many situations, pipeline parallelism is suitable for a limited variety of appli
cations.

Perhaps the most common pipeline systems are linear arrays and rings. A lin
ear array of processors is shown in Fig. 4-1; the data flow and the interprocessor
links are illustrated with arrows. In Fig. 4-2, the data flow and task distribution are
shown. A linear structure is used for most of the examples of pipeline processing
presented in this chapter, and will often be referred to as a pipe.

This chapter continues with a discussion of program issues and pipeline effi
ciency. Three communication methods with different buffering schemes for pipes
are presented together with a demonstration illustrating the advantages and disad
vantages of each. The chapter concludes with a discussion and example of multi
dimensional pipeline systems.

Program Issues

Pipeline methods tend to be fairly inflexible because the data must pass se
quentially through a set of processors with specified operations perfonned on the
data in each processor within the pipeline. Since the program is distributed over
the processors in the pipe, the programmer must fmd some way to divide the work
into different tasks, each of which can be perfonned at a different stage in the pipe.
Because the data moves from one processor to the next, no processor can proceed
until the previous processor in the pipe has completed its task and passed the data

Parallel Programs for the Transputer 89

Pipeline Processing Chapter 4

Figure 4-1
A linear pipeline of processors

to it. This means that if one processor has less work than another, the faster pro
cessor will simply have to wait for the slower. In order to guarantee efficient use
of processors in a pipeline, a programmer must ensure that every processor in the
pipeline has exactly the same amount of work. If the tasks perfonned within the
different processors of the pipeline are very different, accomplishing this can be
quite difficult.

Because it is difficult to distribute a program over a pipeline efficiently, the
program and pipeline size cannot be easily changed. Any change in the pipeline
size requires a reallocation of tasks over the pipe to accommodate the difference in
pipeline size. Unless the overall program can be divided into many small tasks
which can easily be moved from one processor to another, this reallocation is likely
to be difficult. Such inflexibility in program and pipeline size can be a considerable
drawback in parallel systems for which scalability is important.

If each data element can be processed independently, there is one simple pro
gramming technique which can be implemented on a pipeline and which does
maintain pipeline scalability. This technique is similar to distributed data parallel
ism but uses a pipeline communication structure. In this approach, data is passed
sequentially through every processor, as is the case in any pipeline, but rather than
perfonning one specific operation on every data element, each processor perfonns
all of the processing on some of the data elements. All of the processors together
will process every piece of data. Each processor except the fIrst will then read in
some processed and some unprocessed data. This approach is clearly scalable,
since the amount of data processed in each processor can easily be changed to
match the number of processors in the pipeline.

In addition to dealing with program allocation issues, a programmer using
pipeline processors must be careful to minimize the amount ofdata passed between
processors in order to lower the communication and storage overhead in the pipe.
When processing data, many programs require extra storage for intermediate vari
ables needed to compute the final result. It is important to organize the computa
tion over the pipeline so that it is unnecessary to pass these intermediate variables

Data
in --..

90

Data1---. out

Figure 4-2
Task and data distribution for a pipeline of processors

Parallel Programs for the Transputer

Chapter 4 Pipeline Processing

between processors. This consideration adds another constraint to the distribution
of a program over a pipeline.

Pipeline Efficiency

The efficiency of parallel pipeline systems depends frrst and foremost upon
the distribution of the program over the multiple processors. The program must be
divided into as many parallel pieces as there are processors, and each piece should
require the same amount of work. The following analysis ofpipeline efficiency as
sumes that this distribution has been done perfectly. Beyond program distribution,
the efficiency of a pipe will depend on the number of processors in the pipe in re
lation to the amount of data to be processed, and the efficiency with which the pro
cessors can communicate.

One of the disadvantages of pipeline systems is that it is not possible for an
entire pipe to begin working immediately on a set of data. Since the data is pro
cessed sequentially by each processor in turn, a particular processor in the pipe will
not get any work until all of the previous processors in the pipe have finished work
ing on the frrst data set. The same problem occurs at the end of the whole task as
the frrst processors complete their work and the last processors are still hard at
work. The overhead of filling and emptying the pipeline decreases the efficiency
of the parallel system. Ofcourse, if the work going on in a pipe continues for a very
long time, the overhead of starting up and emptying the pipe becomes insignificant.

This overhead is easy to calculate for a theoretical parallel pipeline with no
interprocessor communication overhead. The performance of such a theoretical
system will be the maximum possible for a processor pipeline. A practical system,
of course, will encounter some interprocessor communication overhead, and the
system's performance will fall short of this theoretical limit.

Any set ofdata to be processed in a pipeline can be divided into packets, each
of which is communicated as a group with one instruction. Consider the extreme
case of a pipeline network processing all of its data in one packet. Each processor
will work in turn, but since there is only one packet, only one processor can work
at a time. Figure 4-3 is an activity diagram representing the activity in each pro
cessor for a five-processor pipe working with one packet. In this figure, a row of
boxes represents the activity ofeach processor for each of the labelled time periods.
A filled box represents a working processor for the time period, while an empty box
represents an idle processor for the time period. The efficiency of the pipe shown
is then 20%, since only one processor in five is working at a time (five time periods
used out of 25 available). If n processors are used, the efficiency is lIn.

If this same data set is divided into three packets, the efficiency improves
(Fig. 4-4). In this case, every processor works for three time periods; each time pe
riod is one third as long as the time periods in Fig. 4-3 because there is only one
third as much data in each packet. The overall efficiency is now 43%, since the
pipe is busy for 15 of the 35 time periods available. This pipeline will therefore
process the data in half the time of the single-packet pipeline.

Parallel Programs/or the Transputer 91

Pipeline Processing Chapter 4

Processor 0

Processor 1

Processor 2

Processor 3

Processor 4

Figure 4-3
Activity diagram for a five-processor pipeline with one data packet

Processor 0

Processor 1

Processor 2

Processor 3

Processor 4

92

Figure 4-4
Activity diagram for a five-processor pipeline with three data packets

Parallel Programs for the Transputer

Chapter 4 Pipeline Processing

To completely fill or empty a pipe of n processors requires n time periods.
Therefore, the total wasted time for starting and stopping a pipe of n processors is
n - 1 periods per processor, or n x (n - 1) time periods for all of the processors
in the pipe. The total wasted time in filling and emptying a pipe can be reduced by
dividing the data into smaller packets, each of which can be processed more quick
ly. The smaller the packets, the more quickly the pipe is completely filled and the
better the overall efficiency. Obviously, there is a lower limit ofone element to the
size of a data packet.

The number of time periods required to completely process a task will de
pend on the number of data packets into which the task is divided and the number
ofprocessors in the pipe. Again, if we ignore communication overhead, given N
packets, P processors, and T seconds to process the slowest stage, the total process
ing time can be expressed as:

Ttotal = (N + (P - 1» X Tslowest stage Equation 4-1

The overall efficiency of a pipeline system is defined as the time to do the
task with one processor, divided by the time for a pipeline processor to do the task
times the number of processors. The processing time for the pipeline processor is
the total time from Eq. 4-1. Given N packets, P processors, and T seconds to pro
cess the slowest stage, the overall efficiency can be expressed as:

E = Ttota] with one processor

P X (N + P - 1) X Tslowest stage
Equation 4-2

Ifwe assume that the problem is perfectly distributed over the pipeline (every
stage has the same amount of work) and that there is no communication overhead
needed to pass data through the pipeline, the equation can be simplified. The total
time on one processor can then be expressed as the processing time per stage for
one packet times the product of the number ofpackets and the number of stages (the
number of processors). Given T seconds to process each packet at each stage, this
can be expressed as:

E= NxPxT
P x (N + P - 1) x T

or N
N+P-l

Equation 4-3

Equation 4-3 represents the theoretical limit of efficiency for a pipeline pro
cessor. In real life, communication overhead and task distribution problems will
keep a practical system from reaching that limit so that the time in the numerator

Parallel Programs/or the Transputer 93

Pipeline Processing Chapter 4

and the denominator cannot be considered as equal, and the equation cannot be sim
plified. That is, the time in the denominator must include the effects of interpro
cessor communication overhead.

This equation demonstrates two things. First, the more packets into which
the data sets are divided, the greater the efficiency becomes. This makes sense,
since the overhead of loading and unloading the pipe becomes less important as the
number of packets becomes larger. Second, the efficiency is greater with fewer
processors; this is also reasonable, since shorter pipelines with fewer processors do
not take as long to load and unload and thus have lower overhead.

Theoretically, in order to maximize pipeline efficiency, the data packets
should be made as small as possible. Practically, this is often the case, but it is also
true that with smaller packets the communication overhead in the processors them
selves becomes relatively greater, thereby reducing the overall efficiency. This
trade-off between communicatio,n overhead and pipeline efficiency is hardware
and program-dependent, as is demonstrated in the next section.

Programmers should also note that if a pipeline is intended to run for a long
time, the number of data packets will be very large and the overhead of starting up
becomes insignificant. In that case, the packet size can be made as large as desired
to reduce the communication overhead between processors.

A Pipeline Example

Consider, as an example, a 20-processorpipeline which must process 32,768
data elements. Each element in this example requires 1 millisecond of processing.
With a perfect distribution of the problem over the pipe and with no communication
overhead, the processing would take 32,768 divided by 20, or 1638.4 milliseconds.
As we have seen, however, loading, unloading, and communicating data to the
pipeline imposes overhead on the system. The program used to demonstrate this is
the fIrst example given later in the section on communication methods (Fig. 4-7).

Figure 4-5 presents the measured performance of the 20-processor pipeline.
The number of packets in each test is shown in the left column and the consequent
packet size in the right column. For each test, the communication overhead, the ac
tual processing time (including any overhead), and the best performance theoreti
cally possible are presented.

To measure the communication overhead for the pipeline, we run the test
without any processing. This overhead includes the time needed to fill and empty
the pipe, as well as the time required for communicating the data from one proces
sor in the pipe to the next. The processing time is the actual measured computing
time, including the time needed to fIll the pipe, process all data, and communicate
data from one stage in the pipe to the next. The processing task itself is generated
artificially and can be perfectly distributed among the processors in the pipe. The
best time is a calculation of the theoretically best performance'that the pipeline
could achieve given the number of packets, the length of the pipe, and the work to
be done. To find this number, we divide the processing time on a perfectly distrib-

94 Parallel Programs for the Transputer

Chapter 4 Pipeline Processing

Computation time for each packet size (milliseconds)

32768 elements with 1 millisecond processing each
Number of Packet
packets Communication Total Best size

time only time time

1 1650 34419 32768 32768

2 933 18135 17203 16384

4 574 9996 9421 8192

8 395 5923 5530 4096

16 306 3890 3584 2048

32 261 2872 2611 1024

64 238 2364 2125 512

128 228 2110 1881 256

256 222 1984 1760 128

512 221 1923 1699 64

1024 221 1896 1669 32

2048 224 1890 1654 16

4096 231 1903 1646 8

8192 245 1938 1642 4

16384 273 2016 1640 2

32768 330 2164 1639 1

Figure 4-5

This table shows the performance measurements for various packet sizes on a
ring with 20 processors. Each four-byte data element requires 1 millisecond of process
ing. The communication time shows only the time needed to pass the data through the
pipe without any processing, and demonstrates the communication overhead; the total
time is the actual measured performance; and the best time is the fastest the pipe could
theoretically process the data if there were no communication overhead.

Parallel Programs for the Transputer 95

Pipeline Processing Chapter 4

uted 20-processor pipe (1638.4 milliseconds) by the efficiency of the pipeline
(found from Eq. 4-3).

A comparison of the measured performance and the theoretical limit of per
formance in Fig. 4-5 readily demonstrates that, in the real world, communication
overhead is a significant factor in pipeline processing. The assumption made in
simplifying Eq. 4-3 (no significant communication overhead) is inaccurate. A
more accurate representation of the situation, explicitly including the effect of the
communication overhead, is:

E = Ttotal on 0IIe processor

Tcommunication +P X (N +P - 1) X Tslowest stage

Equation 4-4

The communication time for the 20-processor pipeline is shown in the sec
ond column ofFig. 4-5. When the communication time is subtracted from the total
time in the third column, the result agrees very well with the best possible process
ing time shown in column four. The agreement is not quite as good for tasks with
small packet sizes (smaller than 16 elements per packet). This fact can be ex
plained if we note that the processor overhead of function calls, process switching,
and so on, is relatively greater for small packet sizes so that the true processing time
per element is substantially greater. This effect will be more pronounced for pro
cessing tasks which are small compared to the program overhead.

A closer inspection of the communication times shown in Fig. 4-5 also shows
that the overhead depends upon the packet size. This is easily explained by noting
that, with only a few large packets, the pipeline can only use a few links at a time,
while with many small packets the overhead required to set up the packet commu
nication becomes significant. This means that, for a given pipe length and number
of data values to be processed, there is an optimal packet size. For this example,
the most efficient packet size is about 32 words since the communication overhead
measurement for 32-word packets is the smallest.

As we noted before, however, the more packets a pipeline processes, the bet
ter efficiency the pipeline can achieve. Thus the optimal processing time (includ
ing both the communication overhead and the pipeline overhead) is achieved with
2048 slightly smaller packets of 16 words each.

The efficiency of this pipeline example is plotted in Fig. 4-6 together with the
theoretical limit of efficiency calculated from Eq. 4-3. This graph shows that the
best efficiency actually achieved is less than 90%. Various simple programming
methods that can improve the efficiency and decrease the communication overhead
in a pipeline are discussed in the next section.

Communication Methods

Obviously, in any kind of multiprocessor system, including pipelines, each
processor must communicate with its neighbor in order to pass data to it, and this

96 Parallel Programs for the Transputer

Chapter 4

100%

80%

60%
Percent
Efficiency

40%

20%

Pipeline Processing

Measured efficiency

4 16 64 256 1024 4096 16384

Number of Packets

Figure 4-6
Number of data packets versus efficiency for a 20-processor pipe

VAL PacketSize IS 100:
PROC pipe(CHAN OF [PacketSize]INT left.in,right.out)

PROC work(data)
[PacketSize]INT data:
WHILE TRUE

SEQ
left.in? data
work (data)
right.out! data

Figure 4-7
A pipeline processor with a single buffer for input and output

Parallel Programs for the Transputer 97

Pipeline Processing Chapter 4

communication represents overhead that a single processor does not encounter. It
is important that this overhead be made as small as possible in order for a pipeline's
efficiency to be as great as possible. The preceding efficiency analysis did not con
sider different methods of communication between the processors in a pipeline.
The communication methods used will, of course, affect the pipeline's efficiency.
Illustrated in the following examples are different methods for performing the com
munication between each processor and its neighbor as an infinite flow of data
moves through the pipeline. The configuration description for all of the examples
is similar to the ring described in Chap. 2.

Single Buffering

Single buffering, the simplest method for passing data in a pipeline, is pro
grammed in Fig. 4-7. In this routine, each processor in the pipe has a single buffer,
or memory space, for storing data. The processor fIrst reads the data in, processes
the data with process work, and then outputs the result. This very simple buffering
structure has the drawback of perfonning the input and output sequentially with the
work itself; it takes no advantage of the transputer's ability to do communication at
the same time as processing. Thus the total processing time for any given processor
is the sum of the time needed to do the input, the time to do the work, and the time
to do the output.

A detailed activity diagram for this simple process using single buffering is
shown in Fig. 4-8. Each row shows the activity of the labelled processor in each
time period. In each box, I represents an input, P represents processing, 0 repre
sents output, and an empty box represents no activity; the subscript value indicates
which data packet is involved. Each processor in turn does an input, some process
ing, and an output. The output ofone processor is done at the same time as the input
for the following processor. The processing box is drawn twice the size of the input
or output boxes to signify that the processing takes twice the time of the input or
output. (The factor of two is chosen for consistency with the double-buffered ex-

Processor 0

Processor 1

Processor 2

Processor 3

Processor 4

98

10 Po °0 11 PI °1 ~ P2 °2 13 P3 °3

10 Po °0 11 PI °1 12 P2 °2 13

10 Po °0 11 PI °1 12 P2 I
10 Po °0 11 PI

10 Po °0

Figure 4-8
Detailed activity diagram for a five-processor, single-buffered pipeline

Parallel Programs for the Transputer

Chapter 4 Pipeline Processing

ample.) Thus the total processing rate for the pipe is one data packet in every four
time periods. Only the frrst 16 time periods are shown.

It is clear from the diagram that the five-processor pipe shown in Fig. 4-8 will
not output its frrst packet of data until time period 15. The IS-period delay is the
latency of the pipeline, the time actually needed to process a single data packet. Al
though the processing rate for each stage is four periods per cycle and there are five
processors in the pipe for a product of 20, the latency is only 15 periods since the
input ofone stage overlaps with the output of the previous stage, giving an effective
delay of three periods per packet.

Double Buffering

A double-buffered pipeline (Fig. 4-9) is more efficient than the single-buff
ered pipeline. A double-buffered communication method uses two buffers so that
data can be processed in one buffer while the second is used for input and output.
This doubles the data storage requirement but allows communication and process-

--input and output

--initialize pointers

--second input
--first work

--start pipe up
--first input

--work
--exchange pointers

VAL PacketSize IS 100:
PROC pipe (CHAN OF [PacketSize]INT left.in,right.out)

PROC work(data)
[2] [PacketSize]INT data:
INT pO,p1,temp:
SEQ

pO:=O
p1:=1
[PacketSize]INT work.data IS data [p1] :
[PacketSize]INT io.data IS data[pO]:
SEQ

left. in? work.data
PAR

left.in? io.data
work (work.data)

WHILE TRUE
SEQ --main pipeline loop

[PacketSize]INT work.data IS data [pO] :
[PacketSize]INT io.data IS data [p1] :
PAR

SEQ
right.out! io.data
left.in? io.data

work (work.data)
temp:=pO
pO:=p1
p1:=temp

Figure 4-9
A pipeline processor with a double buffer for work and communications

Parallel Programs/or the Transputer 99

Pipeline Processing Chapter 4

ing to proceed at the same time. The total delay for one stage of the pipe is now the
slowest of either the processing, or the input plus the output. In this example, the
processing takes just the same time as the input and input together, so the total pro
cessing rate for a double-buffered pipe is two time periods for each data packet
compared to four periods per data packet in the single-buffered pipe.

The double-buffered program uses a two-dimensional array to store the data
and two pointers to alternately select each of the buffers. Initially, the pointers are
arbitrarily set to point to one or the other of the buffers; at the end of each process
ing cycle these pointers are exchanged so that the pointer to the input and output
buffer points to the work, and vice versa. Each processing cycle comprises, in par
allel, a work process, and an output followed by the input. Initially, an input fol
lowed by a parallel input and work process is done to load the pipe for the fIrst two
processing cycles. The initial loading does not include an output, so it will also pre
vent an initial output of invalid data.

Figure 4-10 is an activity diagram for the double-buffered pipeline. The ac
tivity of each processor is shown in two rows of boxes; the top row represents the
interprocessor communication and the bottom row represents the processing. N
data sets must be output to fill a buffer in each processor of an n-Iength pipe before
any data sets are output. If the initial input before the main loop were not included
in the program, the fIrst n data sets output would be invalid, but a data set would be
received for every data set loaded, simplifying the control of the pipe.

Processor 0

Processor I

Processor 2

Processor 3

Processor 4

100

10 II °0 12 ° 1 13 °2 14 °3 IS °4 16 Os 17 °6

Po PI P2 P3 P4 Ps P6 P7 I
10 II °0 12 ° 1 13 °2 14 °3 IS °4 16

Po PI P2 P3 P4 Ps

10 II °0 12 ° 1 13 °2 14 °3

Po PI P2 P3 P4 I
10 II °0 12 ° 1 13

Po PI P2

10 II °0

Po PI I
Figure 4-10

Detailed activity diagram for a double-buffered five-processor pipeline

Parallel Programs for the Transputer

Chapter 4 Pipeline Processing

Since a double-buffered pipe has two buffers at every stage, the latency is ef
fectively doubled. Every data packet stays in each processor for two complete cy
cles or, in this example, four time periods. Again, since the input and output be
tween two processors occur at the same time, the effective delay is one time period
less, for a total delay of three time periods per processor. The five-stage pipe will
thus have a total latency of 15 time periods (three periods per packet) while it pro
cesses data packets at the rate of one packet every two time periods.

Note that although the processing is shown in parallel with the communica
tion in this example, the two processes could be organized differently. If the
amount of data to be communicated grows larger or smaller as it passes to the next
processor so that the input and output are not the same size, or if the work process
becomes faster than either the input or output process, it can make sense to have the
work process also use its buffer for the faster communication process. The point is
that when using double buffering with input, output, and work processes in one
node, the two fastest processes should share a buffer.

Triple Buffering

A double-buffered approach to pipelining is effective as long as some work
needs to be done on the data being passed through the pipe. However, if the pro
cessing time is less than the sum of the input and output time, triple buffering can
be used to improve the pipeline efficiency even further. A triple-buffered pipeline
is a pipeline with three buffers in each processor, one for input, one for output, and
one for the work process.

Figure 4-11 shows the activity diagram for a triple-buffered pipe; each pro
cessor has three rows representing the input process at the top, the work process in
the middle, and the output process at the bottom. The program finishes processing
a data packet in each time period (except the first two) although each packet stays
in each processor for three time periods. Again, the latency per processor is one
less than three because of the overlap between input and output for communicating
processors. The overall latency for a triple-buffered, five-stage pipe is thus ten time
periods. In order to ftIl an n-stage pipe, 2n data packets must be input before any
packets are output. Again, the overlap between input and output effectively keeps
the third buffer from causing an extra delay.

Figure 4-12 shows the essential code for a triple-buffered pipeline. This code
is similar to that of the double-buffered pipeline except that three pointers are need
ed to support three buffers, and the input, output, and processing all occur in paral
lel. The pointers are cycled around during each loop of the main process. The ini
tial input of data to load the pipe is identical to that in Fig. 4-9.

Triple buffering a pipe makes maximal use of a processor's input and output
capabilities but it does require triple the storage space of the simple, single-buffer
ing method. Triple buffering is most useful when the processing to be done re
quires less time than the input plus the output. If this is not the case, double buff
ering will give equal or better performance, and with less storage overhead.

Parallel Programs/or the Transputer 101

Pipeline Processing Chapter 4

Processor 0

Processor 1

Processor 2

Processor 3

Processor 4

10 11 ~ 13 14 IS 16 ~ IS ~ 110 111 112 113 114 115

Po PI P2 P3 P4 Ps P6 P7 Ps P9 P10 P11 P12 P13 P14

°0 °1 °2 °3 °4 °5 °6 °7 Os °9 °10 °Il °12 °13

10 11 12 13 14 IS 16 ~ IS ~ 110 111 112 113

Po PI P2 P3 P4 Ps P6 P7 Ps P9 P10 PI1 P12

°0 °1 °2 °3 °4 °5 °6 °7 Os °9 °10 °Il

10 11 12 13 14 15 16 17 IS 19 110 111

Po PI P2 P3 P4 Ps P6 P7 Ps P9 P10

°0 °1 °2 °3 °4 °5 °6 °7 Os °9

10 11 12 13 14 IS 16 17 IS 19

Po PI P2 P3 P4 Ps P6 P7 Ps

°0 °1 °2 °3 °4 Os °6 °7

10 11 12 13 14 IS 16 17

Po PI P2 P3 P4 Ps P6

°0 °1 °2 °3 °4 Os

Figure 4-11
Detailed activity diagram for a triple-buffered five-processor pipeline

102 Parallel Programs for the Transputer

Chapter 4 Pipeline Processing

--second input
--first work

--start pipe up
--first input

--input
--work

--output
--exchange pointers

--main pipeline loop

--initialize pointers

work. data

VAL PacketSize IS 100:
PROC pipe (CHAN OF [PacketSize]INT left.in,right.out)

PROC work(data)
[3] [PacketSize]INT data:
INT pO,pl,p2,temp:
SEQ

pO:=O
pl:=l
p2:=2
[PacketSize]INT work.data IS data[pl]:
[PacketSize]INT out.data IS data[p2]:
[PacketSize]INT in.data IS data[pO]:
SEQ

left.in?
PAR

left.in? in.data
work (work.data)

WHILE TRUE
SEQ

[PacketSize]INT work.data IS data[pO]:
[PacketSize]INT out.data IS data[pl]:
[PacketSize]INT in.data IS data[p2]:
PAR

left.in? in.data
work (work.data)
right.out! out.data

temp:=pO
pO:=p2
p2:=pl
pl:=temp

Figure 4-12
A pipeline processor with a triple buffer for work, input, and output

A ButTered Pipeline Test

To illustrate the advantages and disadvantages of each of the three buffering
techniques, we measure the performance ofeach method on a 20-node pipeline pro
cessing 32768 data elements divided into 2048 packets and with various amounts
of work per element. The packet size chosen is the most efficient packet size found
in Fig. 4-5.

Figure 4-13 shows the results of the test comparing the efficiency of the three
buffering techniques. The work per element ranges from zero microseconds (leav
ing only the communication overhead) to one thousand microseconds (used in Fig.
4-5). The measured results for each buffering method are shown in columns two

Parallel Programs for the Transputer 103

Pipeline Processing Chapter 4

Computation time (milliseconds)
Work per 32768 elements in 2048 packets, pipe of 20 processors
element Theoretical
(JJ.secs) Single buffer Double buffer triple buffer best

0 228 236 163 0

50 306 238 164 83

100 405 238 198 165

150 468 257 265 248

200 571 357 365 331

250 634 423 432 413

300 736 522 532 496

350 799 588 599 579

400 901 687 699 661

450 964 753 766 744

500 1067 853 866 827

1000 1890 1679 1700 1654

Figure 4-13
Tabulated performance of a 20-node pipe with different buffering schemes

500

Theoretical limit

400300200100
O----t----+---+----t----..---+-_I---t----+--....

o

200

400

800

1000

Processing
Time (msecs)

600

Work per Element {J.t.secs)

Figure 4-14
Performance plot of a 20-node pipe with different buffering schemes

104 Parallel Programs for the Transputer

Chapter 4 Pipeline Processing

to four; the best possible results, found from using Eq. 4-3, are shown in the final
column.

The results of the tests using the three buffering methods are plotted in Fig.
4-14. As expected, single buffering is the slowest technique; this is not surprising
since the input and output processes are run sequentially. Only when there is no
work at all does single buffering have a very slight advantage over double buffer
ing. This advantage is due to the double-buffer process overhead of switching be
tween the parallel processes, exchanging pointers, and so on.

Double buffering basically uses the same sequential structure for the input
and output as single buffering, and, as long as there is some work to do, double
buffering is much superior to single buffering. The results using double buffering
demonstrate that the communication is effectively performed in parallel with the
computation. Until the work done on each element reaches about 150 J,Lsecs, the
communication takes longer than the computation and the pipe's performance re
mains constant. As the work done on each element increases past 150 J,Lsecs, the
work takes longer than the communication and the processing time increases with
the work.

The efficiency results for the triple-buffered pipeline are similar to those for
the double-buffered pipeline except that, since the input, output, and work are all
overlapped, the performance of the triple-buffered processor pipeline is higher as
long as the work takes less time than the input plus the output. Triple buffering
does require a substantial amount of context switching to support each of the par
allel processes, so that even with no work at all, a triple-buffered program will not
execute twice as fast as a double-buffered program.

As the amount of work in a triple-buffered system increases beyond the time
needed for the slowest data communication (either input or output), the processing
time will begin to increase as the amount of work increases. When the processing
time is greater than the time needed for both input and output, triple buffering pro
duces the same results as double buffering. In fact, at that point, triple buffering is
marginally worse than double buffering since it requires more overhead to organize
three parallel processes.

The relative performance of the various buffering methods is summarized
with the following observations, with P representing the time needed to process the
work, / representing the time needed to do an input, and 0 the time needed to do
an output:

• Double buffering is always superior to single buffering.
• A double-buffered system uses its resources most efficiently when

P=/+o.
• The total computing time for a double-buffered system will be the maxi

mum of the computing times for each buffer and will remain constant as long as
the maximum does not change. If the input and output share one buffer and
P < / + 0, the total computing time will remain constant as P increases. When
P > / + 0, the total computing time will scale with P.

Parallel Programs/or the Transputer 105

Pipeline Processing Chapter 4

• A triple-buffered system uses its resources most efficiently when
P = 1=0.

• The total computing time for a triple-buffered system will be the maxi
mum of the processing, input, and output times, and will remain constant as long
as the maximum does not change.

• Triple buffering will be superior to double buffering when P < I + 0 and
I < P + 0 and 0 < P + I. Again the last two cases are important only when the in
put and output times are not equal.

Multidimensional Pipelines

All of the pipeline examples discussed so far have had one dimension, and
the data in the pipes have moved in one direction. With more than one bidirectional
link connected to a processor, much richer pipeline structures can be built. For ex
ample, all of the previous pipelines mentioned in this chapter could have had two
identical processes in every processor running totally separate pipelines in opposite
directions (Fig. 4-15). This kind of structure is especially useful if the processing
rate for a particular program is limited by the communication speed. Sending data
through a pipe in both directions effectively doubles the communication band
width. But since there is still only one processor at each stage, the computing rate
does not increase, and, if the computation at each node takes longer than half of the
communication, there is little point in organizing a bidirectional data flow in a pro
cessor pipeline.

A more interesting situation arises if the data going in each direction is of a
different type and the processors need both data flows to compute the results. This
situation is quite possible in real-time systems which might obtain data from differ
ent sources and need to combine them in some fashion. Multidimensional pipelines
provide a mechanism for implementing such systems.

Multidimensional pipelines can also be built quite easily. Figure 4-16 shows
a two-dimensional structure with data flowing in two directions through a mesh of
processors, from top to bottom and from left to right. Obviously, as is the case with
any pipeline, the processors on the edge or end of an array must make special pro
vision for the data input or output. All of the discussions and methods presented
earlier for the one-dimensional pipeline are equally applicable to the multidimen
sional pipeline. In the two-dimensional example shown in Fig. 4-16, a triple-buff-

106

Figure 4-15
A pipeline of processors with data flowing in two directions

Parallel Programsfor the Transputer

Chapter 4 Pipeline Processing

! ! ! !

! ! ! !

Figure 4-16
A two-dimensional pipeline of processors with data flowing in two directions

ColI Col 2 Col 3 Col 4

1 1 1 1
Row I .~RIC2

1 1 1 1
Row 2 ·8 •

1 1 1 1
Row 3 ·0 •

1 1 1 1
Row 4 .~R4C2

Figure 4-17
Matrix multiplication distributed over a two-dimensional pipeline

Parallel Programs/or the Transputer 107

Pipeline Processing Chapter 4

ered input/process/output structure can be readily designed for data that moves both
vertically and horizontally.

Matrix multiplications are one commonly used example of a computation
which can be done on a pipelined, two-dimensional grid of processors. If the rows
of one matrix are passed through the pipe in one direction and the columns of the
second matrix are passed through the pipe in the other direction, each processor can
compute the portion of the result corresponding to the portions of the two matrices
passed through it (Fig. 4-17). Each processor will compute a different portion of
the final matrix since no two processors will receive both the same row of the frrst
matrix and the same column of the second matrix. Notice that this case does not
strictly meet our earlier definition of a pipeline system since not every data value
passes through every processor. In a sense, the data in this situation is distributed
over two sets of intersecting pipelines.

An example of the code used to implement a matrix multiplication in a single
node is shown in Fig. 4-18. This program uses a single buffer for communication
and, as a result, cannot overlap communication and computation. The program
reads in NumBlocks of data in PacketSize groups. Data could be read in one
element at a time but, as we have seen, it is more efficient to pass larger data sets
with each communication. Each group then has its partial product computed and
summed in the variable product.

The matrix multiplication program begins by zeroing product and entering
a sequential loop with NumBlocks iterations. In each loop, the program simulta
neously inputs a block of data from the left into row, and from above into col.
After the data is read, it is passed to the right and down while the product of the new
data elements is calculated and summed. When the loop is completed, all of the

PROC mult(CHAN OF [PacketSize]INT left.in,right.out,
up. in, down. out)

[PacketSize]INT row,col:
INT product:
SEQ

product: =0
SEQ i=O FOR NumBlocks

SEQ
PAR

left.in? row
up.in ? col

PAR
right.out! row
down.out! col
SEQ i=O FOR PacketSize

product:=(row[i]*col[i])+product

Figure 4-18
Single-buffered node code for a matrix multiplication

--input

--output

--work

108 Parallel Programs for the Transputer

Chapter 4 Pipeline Processing

data has passed through the node and the total product has been calculated. Notice
that although the input cannot be overlapped with either the output or the product
calculation, the output can be perfonned at the same time as the computation since
the two operations do not assign any values to the same variables.

A much more complex way to do the same calculation is shown in Fig. 4-19.
This routine is again an example of code in a single node which computes a matrix
multiplication, but this time uses double buffering. Because the multiplication and
sum will take more time than the communication of a data element, using triple
buffering for the input and output is unlikely to give better performance.

In Fig. 4-19, two copies each of the arrays row and col are defined together
with the pointers pO, pI, and temp. The variable product is again used to ac
cumulate the product of the row and column element multiplications. Since the two
buffers create a delay in the pipeline, the buffers must frrst be primed, then used
alternately in a loop, and finally, emptied. To clarify the programming, we abbre
viate both the row and col variables to work and io for their respective buffers.
The io abbreviation is used for input and output while the work abbreviation is
used to compute the product.

The buffer initialization is done after product is set to zero and pO and pI
are set to zero and one respectively. After initialization, the work and io buffers
are abbreviated. The first input from the left and top is read into wor k and the sec
ond input read into i 0 while the first products from the wo r k variable are summed
in product. At this point the pipeline buffers are completely filled with the ap
propriate data.

The program then moves into its main loop. This loop is perfonned only
NumBlocks-2 times to correct for the initial priming and final emptying of the
buffers. In each iteration of the loop the work and io values are reabbreviated
with the pointers. These pointers switch back and forth between the two row and
col buffers. After the wo r k and i 0 buffers are selected, the data input and output
begins with the io buffers while the product is calculated from the work buffers.
The processor must frrst do an output to pass along the current values, and then an
input to get the next data set. After the work and communication are done, the
pointers are exchanged and the process repeats.

After all of the iterations in the main loop are complete, the pipe must be
emptied. This procedure runs in reverse of the buffer initialization. The variable
io is passed down and to the right while the product is accumulated with work.
No data is read in. Finally, the last data is output and the program is finished.

While this example demonstrates a two-dimensional pipe with double-buff
ering, there is in fact no limit to the number ofdimensions which can be used in this
manner as long as the hardware can support the necessary communication. A three
dimensional structure, for example, only needs another link input or output com
mand added in each of the input or output PAR structures and another dimension
of links connected.

Parallel Programs for the Transputer 109

Pipeline Processing Chapter 4

PROC mult(CHAN OF [PacketSize]INT left.in,right.out,
up. in, down. out)

--work

--pass col

--pass row

--first work

--first input

--second input

work. row
work. col

[2] [PacketSize]INT row,col:
INT pO,pl,temp,product:
SEQ

product:=O
pO:=O
pl:=l
[PacketSize]INT work. row IS row[pl]:
[PacketSize]INT io.row IS row[pO]:
[PacketSize]INT work.col IS col[pl]:
[PacketSize]INT io.col IS col [pO] :
SEQ

PAR
left.in?
up.in ?

PAR
PAR

left. in? io.row
up.in ? io.col

SEQ i=O FOR PacketSize
product:=(work.row[i]*work.col[i])+product

SEQ j=O FOR NumBlocks-2 --main pipeline loop
SEQ

[PacketSize]INT work.row IS row[pO]:
[PacketSize]INT io.row IS row[pl]:
[PacketSize]INT work.col IS col [pO] :
[PacketSize]INT io.col IS col[pl]:
PAR

PAR
SEQ

right.out! io.row
left.in? io.row

SEQ
down. out ! io.col
up.in? io.col

SEQ i=O FOR PacketSize
product:=(work.row[i]*work.col[i])+product

temp:=pO --exchange pointers
pO:=pl
pl:=temp

Figure 4-19
Double-buffered node code for a matrix multiplication

110 Parallel Programs for the Transputer

Chapter 4 Pipeline Processing

[PacketSize]INT work.row IS row[pO]:
[PacketSize]INT io.row IS row[pl]:
[PacketSize]INT work.col IS col[pO]:
[PacketSize]INT io.col IS col[pl]:
PAR

PAR
right.out! io.row
down.out! io.col

SEQ i=O FOR PacketSize
product:=(work.row[i]*work.col[i])+product

[PacketSize]INT io.row IS row[pO]:
[PacketSize]INT io.col IS col [pO] :
PAR

right.out! io.row
down.out! io.col

Figure 4-19 (cont.)
Double-buffered node code for a matrix multiplication

--empty pipe

--out io

--work last

--out last

The different buffering techniques discussed earlier, single-, double-, and tri
ple-buffering, can be applied equally well to higher-dimensional structures.

In Summary

Pipeline parallelism is a powerful computing method which is relatively easy
to implement. Pipeline parallelism can provide performance flexibility with differ
ent pipe sizes and structures. Efficiently decomposing a problem to run on a pipe
line is the most significant difficulty in using such an approach to parallelism. The
overhead involved in communicating the data from one processor to another in the
pipeline can also be significant.

Since all of the data processed in a pipeline typically passes through every
processor, it is important to perform the data communication efficiently. The size
of the data packets passed with each communication should be optimized for the
pipeline length and the total amount of data. This communication can be done at
the same time as the processing, but only at the expense of more buffers for storing
data. Single buffering is most useful when the overhead of communication is less
important than the cost of memory storage for data. Double buffering is most use
ful when the computation time equals the data input and output times together. Tri
ple buffering is most useful for high-speed applications in which the data input,
data output, and computation times are approximately equal, and the cost of data
storage is small.

Pipeline structures are not limited to one dimension. Data can flow in many
different ways depending on the configuration of the parallel computer. A bidirec
tional data flow can be used but will increase the communication bandwidth at the
expense ofgreater storage requirements. Different data streams can also be merged

Parallel Programsfor the Transputer 111

Pipeline Processing Chapter 4

in a processor where the different streams intersect. The same programs used to
minimize the communication overhead for a one-dimensional data stream can be
used in any multidimensional case.

112 Parallel Programs for the Transputer

Chapter 5

Data Parallelism

Data parallelism is the most common fonn of processing implemented on
parallel computers. Computers using data parallelism generally distribute all of the
data to be processed equally over all of the processors in the computer. Each pro
cessor is programmed to perfonn all of the processing on a subset of the data. This
is in contrast to a pipeline system, in which the program is distributed rather than
the data. Data parallelism is sometimes referred to as geometric parallelism.

Creating parallelism by distributing data is a popular approach because it
largely avoids the difficulty of finding a way to decompose a problem into parallel
pieces. In the distributed data approach, each processor contains the complete pro
gram. Not only is program decomposition largely irrelevant, but distributing data
by dividing it equally among the processors also provides automatic load balanc
ing. If data parallelism is to work efficiently, however, the task must have enough
data with a small enough granularity to be sensibly divided. If there is not enough
data or the granularity of the task is too large, some other approach is probably best.

At the same time that program decomposition becomes easier, however, in
terprocessor communication can become vastly more difficult. Because each pro
cessor contains only a portion of the entire data set, any processor which requires
other, nonlocal data must obtain it by communicating with other processors. The
difficulty of programming a processor network to communicate correctly and effi
ciently can more than compensate for the ease of program decomposition. Never
theless, data parallelism is generally more flexible and easier to implement effec
tively than is pipeline parallelism.

In many ways, a multiple-instruction, multiple-data computer using data par
allelism mimics the behavior of a single-instruction, multiple-data computer. Both
machines perform the same operation with every processor at the same time, and
both machines distribute data in much the same way. An MIMD computer imple
menting data parallelism does offer much greater communication flexibility than
an SIMD computer, but at the expense of greater hardware cost.

Program Issues

Data parallelism is easily applied to a wide variety of architectures, including
rings, toroids, and hypercubes. Generally, the architecture of the computing engine
is chosen to match the computational requirements of the problems to be solved so
as to minimize the communication overhead. For example, matrix operations are
often performed on toroids or grids since the two-dimensional structure of a matrix

Parallel Programs for the Transputer 113

Data Parallelism Chapter 5

is similar to a two-dimensional toroid or grid. Likewise, frequency transforms are
effectively performed with hypercube architectures since the data as it is trans
formed never needs to move farther than one processor at each step. The actual dis
tribution of the data in a parallel computer clearly depends upon the computer's ar
chitecture, but also upon the mathematical structure of the problem to be solved.

Data parallelism provides a high degree of flexibility within a parallel com
puter. Because the data is distributed over the processors, the computer's perfor
mance can scale (communication overhead pennitting) directly with the amount of
data or the number of processors. As the amount of data increases, each processor
gets more work and simply slows down. If the amount of data decreases, perfor
mance improves. If the number of processors in a (regular) network increases, the
amount of data in each processor decreases and the system performance improves.
Note especially that these changes in amount of data and number of processors do
not necessarily require any program modifications. In short, data parallelism pro
vides flexibility by allowing the programmer or user to trade off processing speed
with the number of processors and the amount of data processed. This flexibility
is the fundamental appeal of all parallel processing, but it is most easily achieved
with data parallelism.

Of course, it is simplistic to describe data parallelism by merely stating that
each processor in a distributed system includes the entire program and a subset of
the data. If indeed every data element can be processed independently ofevery oth
er element, data parallelism is very simple. But very often the data elements cannot
be processed alone; they must be combined in some fashion with other data. In this
case, the additional data will sometimes be found in another processor, and some
communication with the other processor will need to be done. This communication
represents overhead which is not found in single-processor computers, and reduces
the efficiency of computation.

The simplest distributed data architecture is a ring, shown in Fig. 5-1. The
ring structure will be used for most of the examples in this chapter. Figure 5-2 il
lustrates the distribution of data and program tasks over a ring.

This chapter continues with a discussion of programming issues, followed by
the presentation of a method for calculating the distribution of data over the proces
sors. Three data loading techniques are presented with a comparison of the advan
tages and disadvantages of the different techniques. A routine for sampling a dis-

Figure 5-1
A ring network

114 Parallel Programs/or the Transputer

Chapter 5

All tasks

Data partition
o

All tasks

Data partition
1

All tasks

Data partition
2

Data Parallelism

All tasks

Data partition
3

Figure 5-2
Task and data distribution for data parallelism

tributed data set is shown, after which two generic approaches for communicating
nonlocal data are presented and compared.

Data Distribution

The fIrst task to be done in any kind of data parallel system is to actually dis
tribute the data. If the total number of data elements is a multiple of the number of
processors, the data can be divided evenly among the processors. But more fre
quently the number of data elements is not a multiple of the number of processors,
or, for some reason, the data cannot be evenly divided but must be organized in
blocks which are not evenly divisible among the processors. This last situation
could occur, for example, if each processor required an even number of data ele
ments.

If the data cannot be evenly allocated among the processors, one or more pro
cessors will have more data, and therefore more work, than the others. This uneven
distribution of data is another source of inefficiency in a parallel computer and is
analogous to the uneven distribution of work in a pipeline system. In the most ex
treme case, it is possible that a processor might have no data at all. It is the pro
grammer's task to ensure that this does not happen.

One simple approach to distributing data among a ring of four processors is
illustrated in Fig. 5-3. In this example, the common data is the data which is evenly
divisible over all of the processors. The remaining data which is not evenly divis
ible over the processors is distributed evenly over as many processors as possible,
starting from the left processor. If the data must be distributed in blocks, any extra

Figure 5-3
Distributing data over multiple processors

Parallel Programs/or the Transputer 115

Data Parallelism Chapter 5

data less than a block in size will be left over and allocated to the last processor.
Data can only be left over if the total amount of data is not evenly divisible by the
block size. This happens, for example, when each processor must have an even
number of data elements and the total amount of data is an odd number.

Figure 5-4 shows the code necessary for implementing this data distribution
on the processor ring shown in Fig. 5-1. The frrst set of parameters passed to pro
cess setup describes the ring size and the amount of data. Parameter x. trans
is the number of processors in the ring, and i. trans is the local processor num
ber, which is calculated from a count of the processors from left to right around the
ring, starting with zero. Value x. vee is the size of the vector of data, and
x. block is the minimum-size block of data which can be distributed to a proces
sor. Process setup returns three values: parameter i. vee is the number of ele
ments in the local data partition, i . addr is the vector address of the frrst element
in the local partition, and i . min is the smallest nonzero common data partition in
any of the processors. This last parameter is useful when a processor must ex
change data with a neighbor and needs to know the minimum amount of data the
neighbor must have. Parameter i . max is the largest data partition found in any
processor, and can be used in every processor to calculate the same data partition
addresses.

The distribution calculation begins with a computation of the size of the com
mon data partition. This size is simply the total amount of data divided by the num
ber of processors and adjusted by the blocking factor. The remainder of data
(x . rem) is then found, and also the number of odd, unallocated blocks of data
(x . odd). The common data size is tested in the frrst IF structure and, if it is not
zero, then i . min is set to the common data size plus, if all but the last processor
get an extra block, any remainder which cannot be distributed in blocks. If the pro
cessor did calculate a common data partition size of zero, i . min is set to the left
over portion, or, if that iszero, to the block size. Parameter i . min is then the larg
est amount of data that every processor can be guaranteed to pass to a neighbor, as
suming that processors with no data simply pass on data received from one
neighbor to the next.

After the calculation of i . min, the routine continues with a second IF struc
ture to adjust the maximum size value. If there are any extra blocks to be allocated
(x. odd greater than zero), the maximum size of any processor's data partition
(i . max) must be the common vector size plus the block size. If there are no extra
blocks, the maximum local vector size is then the common size plus any remainder.

The address of the data partition (i. addr) is calculated next and initially set
to the processor number times the common vector size. This calculation does not
reflect any leftover data or extra blocks which might be stored in any processor to
the left of the local processor. Therefore, if the processor address (i. trans) is
less than the number of extra data blocks, the processor must store an extra block,
and both i . vee and i . addr must be corrected to reflect the extra data. Any left
over data will be stored in the last processor and does not need to be included in the

116 Parallel Programs for the Transputer

ChapterS Data Parallelism

--common blocks
--left over blocks

--left over elements

:= «x.vec/x.block)/x.trans)*x.block
.= x.vec-(i.vec*x.trans)
.= x.rem / x.block

PRoe setup (VAL INT x.trans,i.trans,x.vec,x.block,
INT i.vec,i.addr,i.min,i.max)

INT x.rem,x.odd:
SEQ

i.vec
x.rem
x.odd

IF
i.vec <> 0

IF
x.odd=(x.trans-l)

i.min:=i.vec+(x.rem \ x.block)
TRUE

i.rnin:=i.vec

--set i.min
--normal case

--add left over

--some processor has nothingTRUE
SEQ

i.min := (x. rem REM x.block)
IF

i.min=O
i.min:=x.block

TRUE
SKIP

IF
x.odd > 0

i.max:=i.vec+x.block
TRUE

i.max:=i.vec+x.rem
i.addr .= i.trans*i.vec

--set i.max

--set i.addr

--correct i.vec & i.addr
--extra blocks

IF
i.trans < x.odd

SEQ
i.vec .= i.vec+x.block
i.addr .= i.addr+(x.block*i.trans)

TRUE --no extra blocks
SEQ

i.addr :=i.addr+(x.odd*x.block)
IF

i.trans = (x.trans-l)
i.vec .= i.vec+(x.rem REM x.block)

TRUE
SKIP

Figure 5-4
Code for calculating the distribution of code over a ring of processors

Parallel Prog~amsfor the Transputer 117

Data Parallelism Chapter 5

i . addr calculation. IT the processor address is not less than the number of extra
data blocks, the address must still be corrected for all of the extra data stored in pro
cessors with lower addresses. This correction is equal to x. odd times x . block;
x . rem cannot be used since it also includes any leftover data.

At this point, only the data left over after the extra block correction remain.
If the local processor is the last processor (i . trans equals x. trans minus one),
it must add the leftover data to its data partition size. The amount of leftover data
is the data remaining after the common data and the extra blocks (x . rem modulo
x . block) have been subtracted.

As an example of this computation, consider a ring of four processors distrib
uting a vector of 21 elements in blocks of two elements. Four is the largest multiple
of two which, when multiplied by the number of processors (four), is less than 21.
Therefore, at least four data elements are stored in every processor. This leaves five
data elements to be distributed in blocks of two over the rest of the ring. Obviously,
there are two blocks of two with a remainder of one left over to be distributed over
the processors. The two lowest-address processors are given the extra blocks, and
the single remaining value is assigned to the processor on the right. The result is
illustrated in Fig. 5-5a, and the values of the various parameters are listed in Fig. 5
5b.

Processor 0 Processor 1 Processor 2

..
o II

Processor 3

Figure 5-5a .
Twenty-one data elements distributed in blocks of two over four processors

Processor

o
i.vee

6

i. addr i .min i . max

o 4 6

2

3

6

4

5

6

12

16

4

4

4

6

6

6

118

Figure 5-Sb
Parameter values for example in Fig. 5-5a

Parallel Programs for the Transputer

Chapter 5 Data Parallelism

This calculation ofdata distribution can be extended to multidimensional ar
rays ofdata. The distribution ofdata in each dimension is computed independently
and is easily calculated using the same routine for each dimension.

Loading Data

Once the data distribution for a block of data has been calculated, the data
must actually be loaded into the computer. Data loading is a source of communi
cation overhead in a parallel computer, so it is important to minimize the time re
quired for this operation, especially since many parallel computers cannot afford to
connect every processor to an interface with the outer world. For processors with
out such an interface, the data must be passed through one processor to reach an
other. This requirement exacerbates the problem of communication overhead.

It is important to note that in the following examples, the data is assumed to
distribute exactly evenly over the processors. With an exactly even distribution of
data, the program code is simplest and clearest, but for any application in which
processors might hold different amounts of data, the differences must be accom
modated in the program. This accommodation is especially important for the rou
tines using special buffering, since the data blocks may be of different sizes and
thus require different-sized buffers.

A Simple Load Routine

Figure 5-6 lists a simple routine for distributing data geometrically over a
ring. In the routine it is assumed that the right-most processor (with the highest ad
dress) reads in the data vector from the right and passes it to the left. The processor
with the lowest processor address keeps the data with the lowest address; the pro
cessor with the highest address keeps the data with the highest address. As data is
passed along, each processor inputs data in its tum, keeping whatever portion is al
located to it, and passing the rest to the left. The left-most processor will only re
ceive data from the right and will never pass data onward. Eventually, the right
most processor will read in its portion of data and pass nothing on. The entire pro
cedure could be run backwards, passing data from the left to the right and from the
lowest address processor to the highest, if the data with the highest address were
sent first.

The distribution process in the simple load routine uses the same parameters
as the setup routine discussed earlier (Fig. 5-4). The program begins by calculating
get, the count of data elements which it receives from the right. This value is the
same as the i . addr value of the processor's neighbor to the right and is equal to
the vector address of the frrst element plus the size of the local portion of the data.
Four different situations are now possible. Ifget is zero, no data is expected and
the routine is fmished. If i . addr is zero, no data needs to be passed to the left
and the routine simply reads in and stores the vector of data elements. If i . vee
is zero, no data is stored locally and any data read in is immediately passed along

Parallel Programs/or the Transputer 119

Data Parallelism Chapter 5

PROC 10ad([]INT vector,buffer,VAL INT i.vec,i.addr,
CHAN OF ANY left.in,left.out,right.in,right.out)

VAL INT get IS i.addr+i.vec:
IF

get=O --go to sleep
SKIP

i.addr=O --input only
right. in? [vector FROM 0 FOR get]

i.vec=O --pass only
SEQ

right. in? [buffer FROM 0 FOR get]
left.out! [buffer FROM 0 FOR get]

TRUE --pass & input
SEQ

right. in? [buffer FROM 0 FOR get]
PAR

left.out! [buffer FROM 0 FOR i.addr]
[vector FROM 0 FOR i.vec]:=

[buffer FROM i.addr FOR i.vec]

Figure 5-6
Simple code for data distribution on a ring

Processor 3

Processor 2

Processor 1

Processor 0

120

Figure 5-7
Link activity diagram for the simple load routine

Parallel Programs/or the Transputer

Chapter 5 Data Parallelism

to the left. Finally, if none of the previous cases is true, the routine must read in the
data elements, store some of them locally in vector, and pass the rest along.

The data transfers through the links are done in this example with simple
block input and output commands, but they can also be done with counted string
protocols. However, it is not necessary to use protocols since every processor can
calculate the amount of data to input, output, and keep.

This loading routine is simple, but because only one link is transferring data
at a time, it is inefficient, especially for large amounts ofdata. Figure 5-7 is a four
processor activity diagram of the link communications for each processor. A filled
box represents a busy link loading data into the processor. Four time units are need
ed to load all of the data into the fIrst processor, one time unit for each of the four
data partitions. The second transfer only requires three time blocks since the frrst
processor keeps one data partition. The third transfer requires two time blocks, and
the final transfer moves the last data partition into the last processor. In all, 10 time
blocks are needed to complete the load. Since only 10 of the 40 available commu
nication time blocks are used, the communication efficiency is 25%.

A Fast Load Routine

The rate at which data are loaded into a processor network can be substan
tially improved by the use of some pipelining techniques. If each processor double
buffers the data input and output so that both input and output can occur simulta
neously, the loading performance is much better. Figure 5-8 is an activity diagram
for such a pipeline load routine. First, the data partition for processor 0 is loaded
into processor 3. As the second partition is loaded, the first one is passed to pro
cessor 2. This procedure continues until the last data partition is loaded into pro
cessor 0, concurrently with every processor receiving its correct data set. The total
loading time is now four time blocks. Since 10 of the 16 time blocks are used for
data movement in this second example, the communication efficiency is 62.5%. As
the ring network grows larger, this efficiency will asymptotically approach 50%.

The code necessary for implementing the pipeline loading technique is
strongly reminiscent of the code used for pipeline communication in Chap. 4, and
is shown in Fig. 5-9. In this routine, data is moved in exactly the same way as in

Processor 3

Processor 2

Processor 1

Processor 0

Figure 5-8
Link activity diagram for the fast load routine

Parallel Programs for the Transputer 121

Data Parallelism Chapter 5

PROC load2([]INT vector,
VAL INT i.vec,i.addr,

CHAN OF ANY left.in,left.out,right.in,right.out)
[2] [block.size]INT buffer:
IF

(i.addr+i.vec) 0 --nothing to read
SKIP

i.addr=O --nothing to pass
VAL INT number.of.blocks IS i.vec/block.size:
SEQ i=O FOR number.of.blocks

right.in? [vector FROM (i*block.size)
FOR block. size]

--in & out

--in & out

--nothing to keep

--exchange pointers

--first input
--main loop

--first input
--main loop

--exchange pointers

--initialize pointers

--initialize pointers

i.vec=O
INT pointa,pointb,temp:
VAL INT number.of.blocks IS i.addr/block.size:
SEQ

pointa:=O
pointb:=l
right. in? buffer[l]
SEQ i=O FOR (number.of.blocks-l)

SEQ
buffer.in IS buffer [pointa] :
buffer.out IS buffer [pointb] :
PAR

right. in? buffer.in
left.out! buffer.out

temp:=pointa
pointa:=pointb
pointb:=temp

left.out! buffer [pointb] --empty buffer
TRUE --read keep and pass

VAL INT number.of.blocks IS i.addr/block.size:
INT pointa,pointb,temp:
SEQ

SEQ
pointa:=O
pointb:=l
right. in? buffer[l]
SEQ i=O FOR (number.of.blocks-l)

SEQ
buffer.in IS buffer[pointa]:
buffer. out IS buffer [pointb] :
PAR

right. in? buffer.in
left.out! buffer.out

temp:=pointa
pointa:=pointb
pointb:=temp

Figure 5-9
Code listing for the fast load routine

122 Parallel Programs for the Transputer

Chapter 5 Data Parallelism

PAR
left.out! buffer [pointb] --empty buffer
VAL INT number.of.blocks IS i.vec/block.size:
SEQ i=O FOR number.of.blocks --store last

right.in? [vector FROM (i*block.size)
FOR block. size]

Figure 5-9 (cont.)
Code listing for the fast load routine

the double-buffered pipeline. Two buffers are defined, and as one is filled the other
is emptied; the pointers to each buffer are exchanged so that what was an input
buffer becomes an output and vice versa; and then the procedure repeats. Note that
the last data communication will occur without a corresponding input, and that each
processor will simultaneously input its final data set.

The code for the fast load routine is organized so that the buffers can be of
any size that evenly divides the size of the data partition. For the case diagrammed
in Fig. 5-8, the buffer is the same size as the data partition. It is possible to use
smaller buffers, thereby saving memory space. Figure 5-10 is an activity diagram
showing the effect of using buffers one-half the size of each data partition. When
half-sized buffers are used, the communication ofeach data set must be done in two
stages. Although twice as many time blocks are used in the half-size buffer case,
each time block is one-half the size of the time block in the full-size buffer case,
since half as large a data block is being moved with each communication. This
shows that the buffer size itself makes no difference in the program's efficiency or
performance. For this case, 20 of 32 time blocks are used, resulting in a communi
cation efficiency rate of 62.5%, which is exactly the same as the rate achieved using
a full-size buffer. However, each data communication does involve some organi
zational overhead which increases the program overhead. Since the half-size buff
er case requires twice as many communications as the full-size case, it will have a

Processor 3

Processor 2

Processor 1

Processor 0

Figure 5-10
Link activity diagram for the fast load routine with half-size buffers

Parallel Programs for the Transputer 123

Data Parallelism Chapter 5

slightly lower performance. This lower performance must be traded off against the
cost of larger memory buffers.

Bidirectional Loading

One of the very useful features of the transputer links is their bidirectional ca
pability, which means that data can be passed around a ring in two directions at the
same time. In the previous example, data was only passed in one direction. By
passing data in both directions, we should be able to double the performance of the
loading routine.

The frrst question we face in considering bidirectional loading is whether
data should be passed all of the way around the ring in both directions, or only half
way around in each direction. Figure 5-11 is an activity diagram for the case in
which data is passed only halfway around the ring in each direction. In this case,
only two blocks of data are passed into the ring in each direction, the total time re
quired is two time blocks, and the total link utilization is three time blocks out of
eight, for a communication efficiency rate of 37.5%.

If, instead of passing data only halfway around the ring, we pass data all of
the way around in both directions, the efficiency is higher, as shown in Fig. 5-12.
Here, each link is passing half as much data in half the time on each transfer, but
the transfers continue all of the way around the ring in both directions. The effi
ciency is now back to 62.5%, but the same amount of time is required to actually
complete the load. The data itself must travel further, so the higher link utilization
does not improve the overall performance. We can prove this by noting that the
half-way routine moves six data blocks one processor, while the full-way load
moves ten data blocks one processor. Six blocks divided by 37.5% efficiency
equals ten blocks divided by 62.5% efficiency.

Although both of these approaches have the same overall performance, their
link utilization and data distribution differ. For both loading routines, the actual
bandwidth constraint is the rate at which data can be moved out of the loading pro
cessor.

Both of these bidirectional load routines can be implemented with the pipe
line load routine listed in Fig. 5-9. The halfway-around routine (Fig. 5-13) is es
sentially a o~e-direction load. Half of the processors will call the load routine so
as to pass data in one direction, and the other half will pass data in the other. Each
processor tests itself to see which side of the ring it inhabits (with respect to the pro
cessor from which the data is coming), and then "pretends" to be part of a linear
array whose end is the processor from which the data is coming. The routine listed
in Fig. 5-13 does this by testing i . trans and then calling setup with the ap
propriately adjusted parameters.

The bidirectional load which passes data all of the way around the ring uses
two parallel calls to the pipeline load routine (Fig. 5-14). Half of the data is passed
each way, and the two load calls order their links oppositely and use separate vector
storage variables.

124 Parallel Programs for the Transputer

ChapterS

Processor 3

Processor 2

Processor 1

Processor 0

Left-side links

Processor 3

Processor 2

Processor 1

Processor 0

Data Parallelism

Right-side links

Figure 5-11
Link activity diagram for a bidirectional load going halfway around the ring

to t1 ~ t3 to t1 ~ t3

Processor 3 Processor 3

Processor 2 Processor 2

Processor 1 Processor 1

Processor 0 Processor 0

Left-side links Right-side links

Figure 5-12
Link activity diagram for a bidirectional load going completely around the ring

Parallel Programs/or the Transputer 125

Data Parallelism Chapter 5

IF
i.trans >= (x.trans/2) --on right side

VAL h IS x.trans/2:
SEQ

setup (x.trans,i.trans-h,x.vec,x.block,
i.vec,i.addr,i.min,i.max)

load2(vector,i.vec,i.addr,
left.in,left.out,right.in,right.out)

TRUE --on left side
VAL h IS (x.trans/2)-1:
SEQ

setup (x.trans,hi.trans,x.vec,x.block,
i.vec,i.addr,i.min,i.max)

load2(vector,i.vec,i.addr,
right. in, right. out, left. in, left.out)

Figure 5-13
Code for initiating a bidirectional, halfway load routine

PAR

load2(vector.a,i.vec,i.addr, --pass to the left
left.in,left.out,right.in,right.out)

load2(vector.b,i.vec, (x.vec-i.vec)-i.addr, --pass to the right
right.in,right.out,left.in,left.out)

Figure 5-14
Code for initiating a bidirectional, full-way load routine

Figure 5-15
Necessary distribution of data packets for the halfway load routine

Figure 5-16
Necessary distribution of data packets for the full-way load routine

126 Parallel Programs for the Transputer

Chapter 5 Data Parallelism

While the bidirectional loading routines clearly give the best performance of
the different routines discussed, there is an important issue to consider concerning
the data's original organization in memory. If we use a bidirectional routine, the
data must be loaded from noncontiguous memory blocks. If one final block with
data stored in address order is desired, the processor loading the ring must be care
ful to pass the correct portion of the data in the correct direction. Figure 5-15 shows
the necessary organization of the data vector in the loading processor for the half
way loading routine; Fig. 5-16 shows the necessary organization for the full-way
routine. In both figures, L indicates a packet which must be sent to the left, R indi
cates a packet to be sent to the right, and the subscript value shows the order in
which the packets must be sent.

Since both of these routines have the same perfonnance, issues of data orga
nization or number of processors may well be the deciding factor in any choice.
The halfway around routine does have one important advantage. Since it only uses
links in one direction, an unload operation can be done at the same time by using
the links to communicate data in the opposite direction. This application combines
the greatest possible use of the links with the minimum data communication dis
tance. However, if the ring size is odd, note that the halfway routine will either be
come less efficient or more complicated to handle the case of the extra processor.

Performance Measures

The performance of each of these five basic routines for a 12-processor ring
loading 98304 32-bit values is shown in Fig. 5-17. The frrst column reports the
measured performance and the second column gives the theoretically best perfor
mance. The theoretically best performance is extrapolated from the timing of the
simple load program using the efficiency calculations done earlier. Each processor
will load 8192 values, evenly distributing the entire data set. The simple load rou
tine requires 78 transfers of 8192 words (12 + 11 + 10 + 2 + 1) to completely
distribute the data. This is done in 1.53 seconds for an overall data rate of 1.67
MBytes/sec. Because it uses double buffering to overlap input and output, the fast

Loading routine Measured Best

Simple load 1.53 sees 1.53 sees

Fast load with 8k-word buffer 0.29 sees 0.24 sees

Fast load with 32-word buffer 0.31 sees 0.24 sees

Bidirectional load (halfway) with 4k buffer 0.15 sees 0.12 sees

Bidireetionalload (full-way) with 4k buffer 0.15 sees 0.12 sees

Figure 5-17
Measured and theoretically best performance for loading routines

Parallel Programs for the Transputer

Efficiency

83%

77%

80%

80%

127

Data Parallelism Chapter 5

load routine requires only 12 time blocks to complete the transfers needed to load
the data. The best performance that could be expected using the fast load routine
would be 12/78 of the simple load time. Using much smaller buffers, the fast load
routine could theoretically load data at the same rate, but the increased communi
cation overhead for the additional transfers does reduce the overall performance.
The bidirectional load (using the largest possible buffers) should require one-half
the fast load time, but again, increased communication overhead slightly reduces
the overall performance.

As judged from the measured performance figures, these simple loading rou
tines are reasonably effective. The bidirectional load achieves an efficiency of 80%
(assuming the simple load performance as a base for extrapolation); the other rou
tines are roughly as effective. Compared with the fast load routine, the bidirection
alloads are nearly 97% efficient. The fast load with 32-word buffers is somewhat
less efficient at 77%.

Sampling

Once a data set has been loaded, it can be manipulated in parallel by the many
processors in a network. Sometimes, however, only sampled portions of a data set
need to be processed. Operations are often performed on a sampled subset of data,
and when the data is distributed over many processors it may not be obvious which
data elements in each processor are members of the subset. If a set of data is dis
tributed using the program listed in Fig. 5-4, the location of any subset of the data
can be determined in each processor using the code listed in Fig. 5-18.

The parameters passed to the sample. calc routine define the sampling of
the distributed data set. Five values are passed to the routine: frrst, the size of the
local portion of the data vector (i . vec); second, the address of the frrstelement in
that portion (i ~ addr); third, the starting element of the subset (start); fourth,
the ending element of the subset (end); and fIfth, the sampling frequency of the
subset (skip). These last three values are the sampling values and are passed to
all of the. processors.. The fIrst value (start) is the address of the frrst value in the
sampled subset, the second value (end) is the address of the last value in the subset,
and the third value (skip) is the sampling period. Calculated from this informa
tion are the offset address (from the beginning of the local data set) of the frrst sub
set data element in each processor (offset), the total number of subset elements
stored in processors with a lower address (before), the total number of subset el
ements stored in the processor itself (local), and the total number of subset ele
ments stored in processQrs after it (after).

The sampling calculation listed in Fig. 5-18 begins with the clearing of the
values to be returned. The local value r . vec, representing the number ofelements
in the sample, is calculated. The address of the local portion of the data set is then
checked to see if any of the sampled set is held locally. If the entire sample is stored
at an address greater than that of the local partition, after is set equal to r . vec.
If the ending address of the data sample is less than the address of the local parti-

128 Parallel Programs for the Transputer

ChapterS Data Parallelism

PRoe sample.calc(INT offset,before,local,after,
VAL INT i.vec,i.addr,start,end,skip)

--vector size

--overlaps me

--ends before me

--find before me

--starts after me

.= «i.addr+skip)-l)-start

.= (q+i.vec)/skip

.= q/skip
r

q
IF

start < i.addr
before .= q

TRUE
SKIP

INT r.vec:
SEQ

offset:=O
before:=O
after :=0
local :=0
r.vec:=«end-start)/skip)+l
IF

start >= (i.addr+i.vec)
after := r.vec

end < i.addr
before := r.vec

TRUE
INT r,q:
SEQ

q

IF --find after me
end >= (i.addr+i.vec)

after .= r.vec-r
TRUE

SKIP
local:=r.vec-(before+after) --find in me
IF

(local>O)
offset:=«before*skip)+start)-i.addr

TRUE
SKIP

Figure 5-18
Calculation for sampling a data set

Parallel Programs for the Transputer 129

Data Parallelism Chapter 5

tion, before is set equal to r. vec. If neither of these two cases is true, the data
set overlaps the local processor itself, which may then contain some of the sampled
set. The number of sampled elements stored before the frrst local element is then
calculated and assigned to q, and the number of values stored after the local parti
tion and corrected for the sampling frequency is assigned to r. After being set
once, q is corrected for the sampling frequency. If the sampled data begin before
the local partition, before is set to q. If the sampled data end after the local par
tition, after is set to the sampled vector size r. The local portion of the sampled
data set must then be the sampled vector size (r. vee) minus the before and af
t e r portions. If 10cal is greater than zero, the address offset of the frrst sampled
data element in the local data partition is simply the difference between the address
of the frrst local sampled element and the i . addr value. The address of the first
local sampled element is the sum of the start value and the product of the skip
and before values.

Just as the original distribution calculation is independent of dimension, so is
this sampling calculation. To calculate the distribution of a sampled data set, this
routine can be called as many times as there are dimensions in the particular pro
cessor architecture.

Expanding Data Sets

Data parallelism is extremely efficient as long as all data can be completely
processed locally inside a processor. This usually happens when data elements are
processed individually, without regard to any other element. There are many oper
ations, however, which do combine different data elements. In this case, each pro
cessor must get information from neighboring processors to perform the operation.

There are many ways in which a parallel, distributed computer can move data
internally to support nonlocal operations. Two different approaches are discussed
here, but these approaches are not mutually exclusive, nor are they the only possi
bilities. In the fIrst approach, the local data set is expanded so that redundant infor
mation is stored in each processor and does not need to be communicated. In the
second approach, no extra data is stored locally, but data is passed from processor
to processor so that each processor can temporarily take whatever data it needs to
perform its operation. Both approaches obviously require extra communication,
and so the overall efficiency of the parallel computer will suffer.

A convolution is a simple and typical operation for which each element re
quires information from neighboring elements. In a convolution, each data element
in an array is replaced with the sum of itself and the neighboring elements multi
plied by a set ofconstants called the kernel. The more values there are in the kernel,
the more neighboring data elements are needed for the results to be calculated. No
tice that some special provision must be made for data elements at the edges of an
array. That issue is ignored here. On a closed surface such as a toroid, the data
could simply be wrapped around the array, or special code written to handle the
special case.

130 Parallel Programs for the Transputer

ChapterS Data Parallelism

One-Dimensional Expansion

In order for a system to perform a convolution on a distributed data set, each
processor must exchange data with its neighbor. Figure 5-19 illustrates one way of
performing the exchange of information for a one-dimensional set of data distrib
uted over a ring. To begin with, each processor has a subset of the data organized
as an array in memory. These data are then copied into the middle of a larger mem
ory storage area. Next, the data set in each processor is expanded, or enlarged, so
that the data on the edges of each local subarray are augmented by the contiguous
data held in the neighboring processor. The data on the edges are now held in both
processors, and each processor has all of the data necessary to perform the convo
lution.

A simple code fragment which can accomplish this exchange of data is listed
in Fig. 5-20. The routine first moves data from the s rc buffer to the middle of the
expand buffer. The values left and right describe the overlap to be achieved
on the left and right sides of the array of data elements respectively, and must be
large enough to accommodate all of the data necessary for the convolution of the
first and last data elements in the processor's array. Four abbreviations are then
created to exchange the correct portions of the data: 1. pas s is an abbreviation
for the data sent to the left, r. pass for the data sent to the right, 1. read for the
data input from the left, and r. read for the data input from the right. The PAR
structure then performs both exchanges in parallel.

Two-Dimensional Expansion

The one-dimensional case is quite simple compared to the complexities en
countered in the two-dimensional case. If an array of values is distributed over a
two-dimensional grid, or toroid, of processors, each processor will have a two-di
mensional subarray of the data. If a two-dimensional convolution is performed on
the array, the overlap between subarrays must also be two-dimensional so that a
rectangular array of original data is stored within a larger rectangular array of ex
panded data. Figure 5-21 illustrates the exchanges necessary for expanding the
subarray in two dimensions. The white portion of the box shows the original data
with the left, right, top, and bottom portions to be exchanged marked off by dotted
lines. On the left-hand portion of the figure, the arrows indicate the exchange of
data to the left and right. The overlapped data for the left-right direction are stored
in the lightly dotted region. On the right-hand portion of the figure, the arrows in
dicate the subsequent exchange ofdata for the top and bottom. The overlapped data
for the top-bottom direction are stored in the more heavily dotted region.

Notice that for a rectangular grid, this expansion must be a two-step process
since each processor needs data from the diagonally neighboring processors. Data
from the right and left neighbors are exchanged and then passed to the top and bot
tom processors in the second step; this two-step process provides the data for the
comers of the larger, expanded array. If each processor is connected to its eight
nearest grid neighbors, then all eight exchanges can be done in parallel.

Parallel Programs for the Transputer 131

Data Parallelism Chapter 5

Vector n - 1 1··;W:i Vector n i:flt.;lt I Vector n + 1I

Vectorn - 1

Processor n - 1

Vectorn

1

Processor n

Vectorn+ 1

1

Processor n + 1

I

Figure 5-19
A data set distributed and expanded over multiple processors

PROC expand([]INT32 sre,expand,
VAL INT left,right,i.vee,
CHAN OF ANY left.in,left.out,right.in,right.out)

SEQ
[expand FROM left FOR i.vee-(left+right)] :=sre
l.pass IS [expand FROM left FOR left] :
l.read IS [expand FROM 0 FOR left]:
r.pass IS [expand FROM i.vee-(right*2) FOR right]:
r.read IS [expand FROM i.vee-right FOR right] :
PAR

left. out ! l.pass
left.in ? l.read
right.out! r.pass
right.in ? r.read

Figure 5-20
Code listing for a one-dimensional expansion

132 Parallel Programs for the Transputer

Chapter 5

-
left array right

Data Parallelism

top
.:.:.:.:.:.;.:.:.:.;.:.:.: -:.:.:.:.;.:.;.;.:.:.;.:.:
«.e<<<<<tC~ClCCCCItCcce:OCcco:tCCCCCC'::<<CCCtCCCtCcOCCCCCC<tCCCIl(IlXOl:ICCCC<<«<<<<«<<«............. .;",'-:.:-:-:-;.;.;.;.:-:

army

Figure 5-21
A two-dimensional expansion

This two-dimensional expansion is more difficult than the one-dimensional
expansion because of the way data is stored in the computer. Memory is addressed
as a one-dimensional array, and it is very straightforward to do an input or an output
on a sequential, contiguous block of data stored in memory as in the one-dimen
sional expansion (Fig. 5-19). In the two-dimensional expansion (Fig. 5-21), the left
and right columns of data are not stored contiguously in memory and therefore can
not be communicated as a block. The data must either be passed in small, one-di
mensional subblocks or copied into a buffer which can then be communicated with
one command.

The example in Fig. 5-22 demonstrates a two-dimensional expansion using
the fIrst of these two approaches. This example uses a single, generic exchange
routine (swap) to perform the data exchanges. The swap routine is called four
times to do the exchanges in each of the four directions. The expand routine is
called with a set of arguments: array is the expanded array; i. array and
j . array describe the width and height of the array; si. array and s j . array
are the width and height of the original, unexpanded data set; 10cal. s i ze is the
size of the expanded array; and left, right, top, and bottom define the over
lap in each of those directions, so that i. array = si. array + left + right
and j . array =s j . array + top + bottom. The eight communication chan
nels for doing input and output in each of the four directions are included last.

The swap routine actually performs the exchanges. It takes as arguments
repeat (the number of times data is actually to be exchanged), block (the
amount of data to be exchanged), the start addresses for the source and destination
of the data, and an input and output channel pair.

Parallel Programs for the Transputer 133

Data Parallelism Chapter 5

PROC expand.2d([]INT array, --subroutine
VAL-INT i.array,j.array,sj.array,local.size,

left, right, top, bottom,
CHAN OF INT left.in,left.out,right.in,right.out,

up.in,up.out,down.in,down.out)
INT src.point,dst.point:
PROC swap(VAL INT repeat,block,start.s,start.d,

CHAN OF INT out, in)
INT src.point,dst.point:
IF

block>O
IF

start.s=start.d --I have no data, pass through
data IS [array FROM start.d FOR block]:
SEQ q=O FOR repeat

SEQ
in? data
out! data

TRUE
SEQ

src.point:=start.s
dst.point:=start.d
SEQ q=O FOR repeat

SEQ
array. out IS

array.in IS

--I have data

--setup ptrs

[array FROM src.point
FOR block] :

[array FROM dst.point
FOR block] :

TRUE
SKIP

PAR
out! array.out
in? array.in

dst.point:=dst.point+i.array
src.point:=src.point+i.array

--exchange

--update ptrs

VAL start.a IS (top*i.array): --main routine
VAL start.b IS (local.size-(bottom*i.array»:
SEQ

swap(sj.array,right,start.a+left, --send left
start.a+(i.array-right),
left.out,right.in)

swap(sj.array,left, (start.a+i.array)-(left+right),
start.a,right.out,left.in) --send right

swap(l,i.array*bottom, --send up
start.a,start.b, up.out,down.in)

swap(l,i.array*top, --send down
start.b-start.a,O,down.out,up.in)

Figure 5-22 .
Calculation for sampling a data set

134 Parallel Programs for the Transputer

Chapter 5 Data Parallelism

If the amount ofdata to be expanded in a processor is zero, the whole routine
is abandoned. If there is some data to be exchanged, it is still possible that the local
processor itself does not have any and must merely pass data from one processor to
another. When this is the case, the routine simply reads data from the input channel
and sends the data to the output channel repeat number of times. If, as is nor
mally the case, the local processor does have data, they must be exchanged. Two
pointers (src . point and dst . point) are initialized to the source and destina
tion addresses, and the exchanges begin. For repeat cycles, the routine does a
parallel input and output of a block of values starting at the pointers. After each
exchange, the pointers are updated and the procedure repeats.

The main program in Fig. 5-22 assumes that the original array has already
been copied into the expanded array buffer, and begins by initializing two pointers,
start. a (indicated by the upper dot in Fig. 5-21) and start. b (the lower dot
in Fig. 5-21). The program proceeds by calling swap to do an exchange, passing
data to the left and receiving data from the right, and fuling the buffer on the right.
The program repeats the exchange for each line in the original, unexpanded array
by passing right values starting from the frrst element of the original array, and
reading them in starting at the last element of the frrst line of the original array. Af
ter each exchange, the address pointers in swap are updated by one full line of the
expanded array so that the entire block is passed sequentially, one line segment at
a time. The second exchange on the left side is done in the same way but with the
pointers reversed. The source of data is 1eft elements left of the first element of
the original array, and the destination is simply start. a.

The up and down transfers in Fig. 5-22 are considerably easier to perform
than the left and right, since the data can be moved in one block. The repeat value
is set to one, the block sizes are i . array times the top or bottom, and the
source and destination pointers simply use start. a and start .b.

In this expansion routine, the right and left (or up and down) exchanges could
actually be done in parallel, since the destination buffers do not overlap. However,
if the right or left values are large enough, it is possible that the source blocks over
lap. This makes it difficult for the programmer to use abbreviations or to complete
ly check the correctness of the program in occam, and so the exchanges are done
sequentially.

The expansion routine considered also does not take into account exchanged
buffers which might be larger than the portion of the array stored locally. For ex
ample, the size of the local array might be 10 elements by 10 elements, while the
overlap might be 50 by 50. In that case, the expansion operation must be done re-
peatedly. This situation will occur whenever s i . array < left or
s i. array < right or s j . array < top or s j. array < bottom.

Performance Issues

The overhead involved in expanding a local data set is relatively small as
long as the amount of data expanded is small relative to the total amount of pro-

Parallel Programs for the Transputer 135

Data Parallelism

100%

95%
Percent
Efficiency

90%

85%

80% 2
16

Chapter 5

642 1282 2562 5122 10242 20482

Number of Elements

Figure 5-23
Computational efficiency for various data set sizes

cessing done on the data locally. If the data set is large and the expansion is small,
efficiency will be high. Likewise, if the amount of processing per element takes a
long time relative to the time required to get nonlocal information, efficiency will
be high.

The relative efficiency of a ten-node by twelve-node toroid processing data
sets of different sizes is shown in Fig. 5-23. We test for efficiency by expanding a
data set and performing a nine-element two-dimensional convolution. The time re
quired to complete the test is measured and compared to the time required to simply
perform the convolution without exchanging the edge data. The data sets tested
range in size from a 16-by-16 array to a 2048-by-2048 array. With the largest data
set, the efficiency approaches 99%, while the smallest set which can be distributed
over a 120-processor array has an efficiency of just over 80%.

Notice that the amount of data exchanged depends upon the number of data
elements on the edge of each processor. If a processor contains a l00-by-l00 array
of data elements, it must frrst be augmented by 100 values on each of the frrst two
sides, and then by 102 values on each of the two remaining sides (including the two
new rows or columns from the frrst exchange), for a total of 404 values. If the array
quadruples in size to 200-by-200, the number of elements communicated does not
quite double, to 804 values. Thus the amount ofcommunication needed to perform
the same task (a nine-point convolution) decreases relative to the amount of work
as the size of the data set increases. The amount of work varies with the number of
data elements while the communication varies with the square root of this number.

While expanding data sets to get information from other processors is reason
ably efficient, this approach does require large amounts of memory. If larger and

136 Parallel Programs for the Transputer

Chapter 5 Data Parallelism

larger overlaps are needed for a computation, the processors may eventually reach
the natural limit at which every processor stores the entire data set from all of the
processors. While this approach may be reasonable for some problems, the storage
cost is very high.

Communicating Data Sets

Expanding a local data set is not the only way to provide nonlocal data to a
processor. A more common approach is to write communication routines that sim
ply pass the data from processor to processor until each processor has received
whatever data it needs. Most of the communicated data does not need to be stored
pennanently; thus the memory requirements within the system are not as great.
Matrix transpositions or multiplications, frequency transformations, and sorting
programs are examples of routines that are often programmed using communica
tion routines and do not store redundant data.

Shifting

As an illustration of one simple communication routine, consider once again
a convolution on an array ofdata distributed over a toroid ofprocessors. In the pre
vious section we demonstrated how we can perfonn a convolution on a distributed
set of data by enlarging the local data store so that each processor contains redun
dant information. We can also do this operation by shifting an entire copy of the
data array and combining the shifted array with the original. This second approach
requires less storage than the expanded data set approach since the processors do
not need to store any redundant data. However, a separate shift of the data set is
required so that the data set for each nonzero element of the kernel is aligned.

Figure 5-24 illustrates this shifting approach to data communication with an
upward shift ofdata for a two-dimensional data set. The data at the top of the array
is passed upward to the processor above the local processor, the main body of the
data is moved internally, and a new set of data is received from the processor below
the local one, and stored at the bottom of the array. A downward shift does the
same in reverse. A shift to the left or right is conceptually the same, but, because
the data is not stored in one sequential block, the transfers must either be done one
line at a time, or the data must be reassembled in a contiguous memory block and
passed as a group.

A program which implements an upward or downward shift of a distributed
data array is listed in Figs. 5-25 and 5-26. Figure 5-25 is a subroutine which actu
ally does the exchange of data between processors, while Fig. 5-26 is the control
ling routine.

Process move in Fig. 5-25 is called with an array argument containing the
data to be shifted (array), a temporary storage buffer, the size of the block to
be moved (blk. siz), a pointer to the start of the data to be passed (start.
send), a pointer to the start of the storage location of the data to be received

Parallel Programs for the Transputer 137

Data Parallelism ChapterS

1IIIIIfl"III.

Figure 5-24
Shifting the local piece of a distributed data set up

PROC move([]INT array,buffer,
VAL INT blk.siz,start.send,start.rec,mov.dir,size,

CHAN OF ANY in, out)
SEQ

PAR
in? [buffer FROM 0 FOR blk.siz]
out! [array FROM start. send FOR blk.siz]

VAL INT amt.to.move IS size-blk.siz:
INT k:
IF

amt.to.move<=O
SKIP

mov.dir>O
SEQ

k:=O
WHILE (k<amt.to.move)

SEQ
array[k] :=array[k+blk.siz]
k:=k+l

TRUE
SEQ

k:=size
WHILE (k>blk.siz)

SEQ
k:=k-l
array[k] :=array[k-blk.siz]

[array FROM start.rec FOR blk.siz] :=
[buffer FROM 0 FOR blk.siz]

Figure 5-25
Code for shifting a data set upward or downward

138 Parallel Programs for the Transputer

Chapter 5 Data Parallelism

(start. rec), an argument indicating the direction of the move (mov. dir), the
s i ze of the local data array, and input and output channels.

The move process for shifting data begins with a parallel output of the data
to be passed, and an input of the new data into buffer. Next, the new data must
be stored and the remaining local data relocated correctly. The remaining local data
to be shifted (amt . to. mov) is clearly the difference between the original array
size and the amount of data already passed. If the move direction is greater than
zero, the local data must be moved to a lower address. This is done in a simple
WHllE loop, one element at a time beginning at element zero. If the move direc
tion is less than zero, the local data is moved to a higher address, again with a sim
ple WHILE loop, but with the array subscript value beginning at the last element
and being decremented instead of incremented. The data can also be moved in a
series of block memory assignments, each smaller than the block size. After the
local data has been shifted, the new data received from the neighboring processor
is assigned to the correct spot in the local array.

This move routine can shift a data set to the left or right, as well as up or
down, if it is called a number of times to pass a subset of a single line. Of course,
the pointers into the array must then be assigned and updated differently than when
a single block is moved up or down.

The data movement is controlled with calls to process move. The process
supports data shifts of arbitrary size (even shifts greater than the size of the local
data in a processor) and can pass data either upward or downward. A similar but
somewhat more complex routine can move data to the left or right.

The shifting routine in Fig. 5-26 is called with the same array and buffer
arguments as the move subroutine, with the addition of the local. size of the
data array, the minimum size of any processor's local data array in the x and y di
mensions, and the number of lines to shift (positive for upward, negative for
downward).

The size of the data block to be passed from processor to processor is the frrst
value calculated by the shifting routine. This blk. mov is the minimum data size
that any processor must contain. Remember that every processor in a column will
have the same local line length for the local data array so that blk . mov will be
identical for every processor in a column. After the size of the data block has been
calculated, the processors must transfer the appropriate amount of data in blocks of
this size. The total amount of data to be passed is found in shi ft . bIk.

The shift routine continues by testing the direction of the shift. If the shift
value is less than zero, data will be passed down. The number of blocks . to.
move is calculated and the move subroutine called that number of times. The size
of the block to shift is blk . mov, and the pointer to the data to be passed is set to
the local size minus the block size. Data is received at the frrst element of the array.

Once all of the complete blocks of data have been passed, the routine contin
ues by passing whatever data remains. The value of left. over is simply the
amount ofdata remaining after all of the complete blocks ofdata have been moved.

Parallel Programs/or the Transputer 139

Data Parallelism Chapter 5

PROC shifty([]INT array,buffer,
VAL INT local.size,i.array,i.min,j.min,shift,

CHAN OF ANY up.in,up.out,down.in,down.out)
VAL INT shift.blk IS i.array*shift:
INT blk.mov:
SEQ

blk.mov := i.min*j.min --how much to move at once
IF

shift<O --shift one way
SEQ

VAL INT blocks.to.move IS
«-l)*shift.blk)/blk.mov:

IF
blocks.to.move>O --move blocks

SEQ i=O FOR blocks.to.move
move (array,buffer,blk.mov,

(local.size-blk.mov),O,shift,
local.size,up.in,down.out)

TRUE
SKIP

VAL INT left.over IS «-l)*shift.blk) REM blk.mov:
IF

left.over>O --move remainder
move (array,buffer,left.over,

(local.size-left.over),O,shift,
local.size,up.in,down.out)

TRUE
SKIP

shift>O --shift other way
SEQ

VAL INT blocks.to.move IS (shift.blk)/blk.mov:
IF

blocks.to.move > 0 --move blocks
SEQ i=O FOR blocks.to.move

move (array,buffer,blk.mov, 0,
(local.size-blk.mov),shift,
local.size,down.in,up.out)

TRUE
SKIP

VAL INT left.over IS (shift.blk) REM blk.mov:
IF

left.over>O --move remainder
move (array,buffer,left.over, 0,

(local.size-left.over),shift,
local.size,down.in,up.out)

TRUE
SKIP

TRUE
SKIP

Figure 5-26
Code for shifting a data set upward or downward

140 Parallel Programs for the Transputer

Chapter 5 Data Parallelism

The move routine is called one final time with left. over used in place of
blk.mov.

If the shift value is greater than zero, the same data blocks as before are
passed upward. The only difference is that the pointers to the data to be sent and
received are reversed.

Performance Issues

Using this shift routine, we can perfonn the same analysis as we did for the
expanded data set approach. With the same nine-element kernel on a variety of ar
ray sizes, we can measure the calculation time for the convolution implemented
with array shifts, and then compare this time with the time needed to perform the
same convolution arithmetic but without doing any array shifts.

The results of this comparison are shown in Fig. 5-27. The overall efficien
cies are much lower than in the expansion example. This is because the local data
is being continually relocated in memory as well as being communicated. It is very
important to realize that this data relocation is not necessary for most problems.
Here the entire data set is being moved; in many applications only small subsets of
the entire data set are moved.

As can be seen from the graph, the overall efficiency ranges from a high of
nearly 50% to a low just above 25%. The high and low positions on this efficiency
graph are reversed from the positions on the expand routine graph. As the array
gets larger, the effort of moving the local data with the shift routine increases faster
than the effort of doing the communication between the processors.

50%

45%
Percent
Efficiency

40%

35%

30%

25% ---+-----+---+----+0---1_--+--....

162 322 642 1282 2562 5122 10242 20482

Number of Elements

Figure 5-27
Computational efficiency for various data set sizes

Parallel Programs for the Transputer 141

Data Parallelism Chapter 5

In contrast to the data expansion approach, the great advantage of the shifting
approach is that it uses little extra memory. Regardless of the size of the convolu
tion kernel, the shift routine uses only enough memory to store a copy of the orig
inal data set. The data expansion routine, on the other hand, can very quickly use
several times as much memory for larger kernels.

An Efficiency Comparison

It is unwise to assume that, because the array shifting approach to communi
cating nonlocal data is less than half as efficient as the expanding approach, the
shifting method is not worth pursuing. Both examples used a nine-element kernel
for the convolution; because that is a small kernel, it requires neither much extra
work nor much extra storage for the expanded data set approach. Thus the expand
ed data approach is much more effective than the shifting approach for small kernel
sizes. For larger kernels, the shifting approach can be relatively more efficient,
while the expanded data set approach will require more and more memory storage
as the data communication and storage overhead increases.

To illustrate this point, let us consider a set of kernels of different sizes, all of
which have nine nonzero elements. Regardless of the size of the kernel, nine shifts
are needed for communicating the array and computing the convolution. Thus we
expect that the efficiency of the shifting approach should remain relatively constant
for all of the kernel sizes. The expanded data set approach, on the other hand, will
require the exchange of more and more data as the kernel size increases, and the
efficiency should consequently decrease.

A demonstration of the computational efficiency of these two approaches for
a range of kernel sizes is shown in Fig. 5-28. This demonstration program con
volves a 1024-by-l024 array with kernels of different sizes using the shifting ap
proach and the data expanding approach on a 10-by-12 processor toroid. The ex
panding approach is very efficient for small kernel sizes, but is much less efficient
as the kernel size increases. The program efficiency for the expanding approach
with the 257-by-257 kernel is found using a more general and faster routine than
the routine listed in Fig. 5-22, since the expansion routine in Fig. 5-22 cannot ex
pand data sets for kernel sizes larger than the amount of data stored in the immedi
ate neighbors of each processor.

The shifting approach, in contrast to the expanded data approach, does stay
relatively constant in efficiency as the kernel size changes. Efficiency actually im
proves somewhat as kernel sizes increase up to 257-by-257. This is because the
processors find it faster to communicate blocks of data with the links than to move
the data internally in memory. For the 257-by-257 kernel, data must be passed
across two processors in each direction, and the efficiency decreases.

From this demonstration we see that the expanding approach is more effi
cient than shifting for every kernel size. Not only is the expanded data approach
more efficient, it is also faster, requiring 0.74 seconds to compute versus 1.05 sec
onds for the shifted approach. But the speed and efficiency come at a great price.

142 Parallel Programs for the Transputer

Chapter 5 Data Parallelism

100% r-------_~_

Percent
Efficiency

80%

60%

40%

20%

0%

Efficiency of shifting method

Kernel Size

Figure 5-28
Convolution efficiency for various kernel sizes
using two approaches for a 1024 x 1024 array

1600%

Percent
800%

Memory
Increase

400%

200%

100%

32

Expanding meth\

Kernel Size

Shifting method

/

Figure 5-29
Convolution memory requirements for various kernel
sizes using two approaches for a 1024 x 1024 array

Parallel Programs for the Transputer 143

Data Parallelism Chapter 5

The shifted approach requires 8 MBytes of storage for two l024-by-1024 arrays of
four bytes per element. In comparison, the expanded data approach, on a 120-pro
cessor machine, needs about 62 MBytes of memory storage for the original 4
MByte array and the 58-MByte expanded data set. The percent memory increase
required for each approach for each of the kernel sizes is graphed in Fig. 5-29.

In Summary

Data parallelism is the most popular and simplest technique for programming
parallel computers. Geometrically parallel systems provide a simple way to de
compose a problem into parallel pieces and provide automatic load balancing. Be
cause the data are distributed among the processors, each processor will perfonn
the same operation on its portion of data, so that only one program need be written.
Calculating the distribution of the data among the processors is a fairly simple task,
as is finding a subset of the data once it is distributed.

When a computation requires data which is not stored locally, it must be
communicated from a neighboring processor. This communication can significant
ly reduce the efficiency of the computer, especially if the size of the data set is com
parable to the size of the processor array.

Loading and unloading data into and out of a parallel processor also reduces
the performance of the computer. By careful use of all of the available communi
cation links and by double buffering the input and output communication stages in
each processor, a programmer can reduce this overhead.

There are many ways to communicate data between processors when a com
putation requires such communication. One approach is expanding the local data
set to store redundant information from neighboring processors. This method can
require a great amount of extra storage if a lot of data are needed, but once the data
are communicated any subsequent computation is very efficient. Communicating
all of the necessary data from processor to processor without storing any of it per
manently is a second alternative. Only communicating the data reduces the storage
requirements but can involve more communication overhead. This second ap
proach may often be the only practical alternative for large data sets which require
infonnation from many very remote locations. Generally, practical programs will
use some combination or mixture of these two approaches to effectively meet the
needs of a particular application.

144 Parallel Programs for the Transputer

Chapter 6

Deadlock-Free Routing

Routing programs are a fundamental tool for creating message-passing par
allel computers. A general-purpose routing program provides a communication
structure within a network so that every processor in the network can pass informa
tion to every other processor. Routing programs are especially useful for network
architectures which are not highly structured and for programs in which communi
cation between processors occurs in an irregular manner. A routing program pro
vides a completely general method for an arbitrary collection of interconnected
processors to communicate in a completely random way.

In both geometric and pipeline parallelism, the architecture of a network is
tightly coupled to the communication methods of the parallel programs. In data
parallelism, a problem's data are generally distributed in a way structured to match
the network on which the program runs, thus minimizing the communication over
head in the parallel processor. In contrast, using pipeline processing reduces a net
work's communication overhead with the careful matching of an application's pro
gram structure to the processor network.

Using a general-purpose routing program frees the programmer from con
cerns both about the network structure and the distribution of data by providing a
generic platform on which to implement virtually any application. However, such
programming freedom comes at a high price; routing programs impose a substan
tial overhead on communication within a parallel computer. A user must trade off
the efficiency advantages and programming limitations of a structured network of
parallel processors for the programming advantages and efficiency limitations of
an unstructured network of parallel processors.

The programs implemented in a parallel computer using message passing are
generally similar in structure to those used in a processor fann (Chap. 3). In a pro
cessor fann, each processor works independently on a particular task allocated to it
by a controller. No interprocessor communication is necessary except for messag
es passed to and from the controller. Indeed, a processor farm basically implements
a simple message-passing scheme in which each processor only sends messages to,
and receives messages from, the controller.

A more general routing program allows the processors to send messages to
each other so that they can cooperate on computing tasks. With the use of a routing
program, there is no need for a particular processor to act as a controller, since any
processor can communicate with any other. In such a parallel system, the program

Parallel Programs for the Transputer 145

Deadlock-Free Routing Chapter 6

control may be distributed over the processor network in the same way that the
work is distributed.

One interesting characteristic of message-passing parallel systems is their
unpredictability. It is generally impossible to know at any given time just which
processors are doing what, and which messages are going where. Message-passing
parallel systems really create an environment in which the many processors form
an amorphous "sea ofprocessors" which works on problems in unpredictable ways.
This lack of structure can make it very difficult to find programming errors, espe
cially when the errors may be processor-interdependent.

Message-passing systems are especially useful for parallel operating sys
tems. Parallel operating systems must arbitrarily create and assign tasks to various
processors. Therefore, such systems must have a guaranteed, deadlock-free meth
od for communicating with any processor. This requirement can be met through
the use of a message-passing program. A message-passing operating system also
provides program portability from one processor network to another. As a program
moves from computer to computer, the details of the routing algorithms within the
operating system may change, but the way the application program interacts with
the message-passing engine does not.

Program Issues

Computers that use a routing engine for interprocessor communication uti
lize a communication shell which runs in each processor concurrently with the ap
plication program (Fig. 6-1). This communication shell allows any processor in the
network to communicate with any other processor. Each processor is given an ad
dress to distinguish it from every other processor. The address is often generated
from the structure of the parallel processor architecture, but in an arbitrarily con
nected network, the address may also be arbitrary. If any processor should need to
request information from, or pass information to, another processor, it simply sends
a message to the communication shell together with the address of the destination
processor.

The communication shell actually perfonns all of the interprocessor commu
nication. It receives messages from the local application program and from other
processors, and sends the messages on their way. If the network has a point-to
point connection between every processor, sending the messages on their way is
very simple; the message is sent directly to the destination processor. However,
much more frequently the network does not have connections between every pro
cessor, and the communication shell must fIrSt forward the message to some other
processor before the message reaches its final destination. The following discus
sion presents programs for use on systems which are not totally connected.

Any program shell which· implements a general message-passing scheme for
interprocessor communication must ensure that a message will ultimately be deliv
ered to its destination. Furthermore, it is likely that every processor in a network
will be generating messages at the same time, so the routing engine must also en-

146 Parallel Programs for the Transputer

Chapter 6 Deadlock-Free Routing

Processor node

To other processors

Figure 6-1
An application program and communication shell within a processor

sure that the network will not become completely clogged with messages and grind
to a halt, unable to pass any messages at all.

The frrst requirement, guaranteeing message delivery, is fairly easy to meet.
To do so, the routing algorithm must simply avoid the creation of closed loops
when calculating the path which a message must take in going from one processor
to another. Every step a message takes in moving from one processor to another
must move it logically closer to its final destination processor.

The choice of routing algorithm, which determines the interprocessor com
munication path for a particular message, obviously depends on the shape of the
network on which the communication shell is running. But even within a given net
work there are many ways a message can be routed, and many different algorithms
exist which optimize the routing engine for different factors, such as distance trav
eled, load balancing, message latency, and so on.

A routing algorithm can be dynamic, so that the particular route a given mes
sage travels is not the same each time the message is sent. As message traffic con
ditions within the network change, it is possible to reroute a message to avoid
heavier message traffic and thus distribute the communication load more evenly
over a network, increasing the network's efficiency.

The second requirement for routing engines is more difficult to meet. Any
communication and routing scheme must be able to guarantee that it will not dead
lock, that is, under any conditions whatsoever the communication program must be
able to continue moving messages closer to their destinations. Although as mes
sage traffic increases it is inevitable that network communications will slow down,

Parallel Programs/or the Transputer 147

Deadlock-Free Routing Chapter 6

the messages must be able to keep moving closer to their destination. It must be
impossible for any group of messages to mutually halt their own progress, no mat
ter how many messages there are, what order they are sent in, what processors they
are from, or to what processors t~ey are sent.

As an example of a deadlocked network, consider a ring ofprocessors around
which messages can pass in one direction. The communication shell within each
processor is made up of two buffers, one at the input from a link and one at the out
put. A message is input at one buffer, and, if that message is destined for another
processor, passed to the output buffer. Figure 6-2 shows a four-processor ring try
ing to pass a series of messages from each processor to the processor two to the
right. The CUlVed links on the ends of the ring indicate that the links are connected
around the two ends of the ring. Four stages of this process are shown with four
successive rings, beginning with the top ring. An empty box in a processor indi
cates an empty buffer; a number with a subscript in a box indicates a message
stored in the buffer. The number is the destination address for the message, and the
subscript labels the messages within the series. An arrow pointing into an output
buffer indicates that an application program is sending a message to the communi
cation shell.

Initially, at time 0, all of the buffers in the ring network are empty. At time
1, the application program in every processor tries simultaneously to send a mes
sage, filling all of the output buffers. At time 2, each output buffer passes its mes
sage to the right and receives a new message from the application program. At time

Time Processor 0 Processor 1 Processor 2 Processor 3

148

Figure 6-2
A four-processor ring becoming deadlocked

Parallel Programs for the Transputer

Chapter 6 Deadlock-Free Routing

3, the processors are deadlocked because every buffer is full and therefore none is
available to receive the message that another buffer is trying to pass. Because the
input buffers are full, the output buffers cannot pass any messages to them. The
input buffers cannot pass any messages because the output buffers are full and none
of the messages are at their destination processors yet. Because the output buffers
are full, the application program cannot pass any messages either. Each buffer is
waiting for the following buffer to clear, and together the buffers form a closed
loop, causing the network to deadlock. If the loop is broken, messages can continue
on their way. It is true that by executing the application at a lower priority than the
communication process, we can reduce the likelihood of deadlock. Nevertheless,
executing the communication shell at a higher priority than the application process
cannot guarantee that deadlock will not occur.

There are many routing algorithms which create deadlock-free message
passing programs, and there are many researchers looking for new and better
schemes. The one we will implement here uses a structure of virtual links to pre
vent the construction ofclosed loops. The algorithm for this method was published
by William Dally and Charles Seitz in 1987.t

This algorithm implements deadlock-free routing in rings by using a pair of
virtual channels communicating over a single hardware link (Fig. 6-3)" Each pro
cessor will pass messages on one channel or the other depending on its own address
and the destination address of the message it is sending. The choice of channels in
each processor is arranged so that it is impossible to fonn a closed loop ofchannels.

When routing a message, a processor chooses a channel by comparing the
destination address of the message with its own address. If the destination address
is greater than the processor's own address, the message is routed on the upper
channel; if the destination address is lower than its own, the message is routed on
the lower channel. Therefore, any message coming from processor 0 must use the
upper channel and any message coming from processor 3 must use the lower chan-

t. W. Dally and C. Seitz, "Deadlock-Free Message Routing in Multiprocessor Intercon
nection Networks," IEEE Transactions on Computers, vol. C-36, No.5 (May 1987),
pp.547-553.

Processor 0 Processor 1 Processor 2 Processor 3

Figure 6-3
A ring of processors with two virtual channels

Parallel Programs for the Transputer 149

Deadlock-Free Routing Chapter 6

nel, and the closed loop created with a single communication channel is opened.
Because processor 3 cannot use the upper channel and processor 0 cannot use the
lower channel, Fig. 6-3 does not show them. No set of messages can be mutually
interdependent on progress in one channel since the lower channel will never de
liver a message to the upper channel. Messages can move only along one channel
or from the upper channel to the lower one.

To demonstrate this freedom from deadlock, let us reconsider the earlier ex
ample of deadlock using the virtual channel structure. Figure 6-4 illustrates a four
processor system connected in a ring and passing messages around the ring to the
right. Each processor is connected to its neighbors with two channels and has a
buffer in which to read data from, and write data to, the channels. Again, every pro
cessor repeatedly attempts to send a message to the processor two to the right. Each
processor must use the correct channel according to the algorithm given. The pro
cessor channels which cannot be used are shown in a lighter gray.

At the beginning of the six-stage illustration (step 0), all of the buffers are
empty. In step 1, every processor sends its fust message. Once again, the message
destination is given by the number in the box representing the buffer in which the
message is written, and the message's position in the sequence of messages by the
subscript. The vertical arrow represents an application program writing a message
into a buffer. Processors 0 and 1 will write their messages into the upper channel's
buffer because their addresses are lower than the destination processors at 2 and 3
respectively. Processors 2 and 3 will use the lower channel's buffer because their
addresses are higher than the destination processors at 0 and 1.

In step 2 of the six-stage illustration, every processor sends a second, identi
cal message at the same time that each of the fust messages moves to the next pro
cessor. No message has been blocked yet. At step 3, however, only the messages
sent to processor 3 can progress. The lower channel in processor 2 is blocked, but
a message for processor 3 will use the upper channel, thereby preventing deadlock.
The same thing happens at steps 4 and 5; messages for processor 3 continue to
progress while all other links are blocked.

Except for the messages for processor 3, all messages will continue to be
blocked until processor 1 stops sending messages to processors on its right. If pro
cessor 1 then decides to send a message to processor 0, the message will travel by
the lower channel, freeing the message for processor 2 to continue on its way. Thus
the network will always be able to advance at least one message, regardless of des
tination or source, providing for a deadlock-free communication network.

One-Way Virtual Channels

In order to actually construct a deadlock-free communication network on a
ring using the virtual channel approach, two channels must be multiplexed onto the
one hardware link connecting each pair ofprocessors in the ring. This must be done
in such a way that if communication on one channel becomes·blocked, the other
channel can still proceed. The two channels must appear to be two completely dif-

150 Parallel Programs for the Transputer

Chapter 6 Deadlock-Free Routing

~ j
0

j~

~ j

~ _c. --+
j

~
~.

--+ --+ _J
2

~ ~ --+
j

\
~.

J
3

"'-c~ --+

~w.)- --+ --+
j

\
,;

~~~ --+ ~~

4

~ ...............~ --+ --+
j

\ J)
~ ~

5

'-. ccccccc;.)e. --+ --+
j

Processor 0 Processor 1 Processor 2 Processor 3

Figure 6-4
A ring of processors with two virtual channels and no deadlock

Parallel Programs for the Transputer 151



Deadlock-Free Routing

[2]CHAN OF MSG in, out:
PAR i=O FOR 2

WHILE TRUE
SEQ

in[i] ? message
out[i]! message

Figure 6-5
Virtual channel software model

Chapter 6

ferent devices. This virtual link structure can be supported in either hardware or
software. Newer transputer designs support virtual link hardware suitable for this
task, but older ones (T8xx or earlier) do not.

As an example of a software solution, the software model emulated by a vir
tuallink multiplexing program is shown in Fig. 6-5. This code simply establishes
two channels which read and write data in parallel. If one channel is blocked, the
other can easily continue. Our task is to create a software shell in which these two
channels can pass messages over the single, bidirectional hardware link. This shell
can be extended to handle any number ofvirtual channels, allowing two processors
to communicate with as many channels as a programmer might desire.

In order to implement the software shell, at least two communication han
dlers must be created, one to output messages to a link (an output handler), and one
to input messages from a link (an input handler). If, after receiving a message, the
input handler cannot pass the message onward, the output handler must not accept
another message for the same virtual channel, but, at the same time, must be free to
accept a message for the other channel. This program structure will emulate the
blocking of one single channel while preserving the freedom of the other. Each
processor must include both an input and an output handler for reading and sending
messages.

Figure 6-6 is a diagram of one way a communication handler might be con
structed. The labels on the channels in the diagram correspond to the names used
in the program itself. The large gray bar down the center of the figure separates the
left processor from the right processor. On the left side, an output handler accepts
messages from two channels and multiplexes them across the single hardware link
to the right-side processor. Once a message is passed on a channel, the output han
dler must not accept another until it receives an "all clear" message from the right
side processor. The right-side processor consists of four parallel parts. The fIrst
(upper left box) reads in messages and passes them to the two buffers. After the
buffers successfully pass their messages along, they pass a token to the return han
dler (bottom box) which then sends it to the output handler in the left-side proces
sor. Once the output handler has received the token, it knows that the message has
been successfully output by the buffer, and that it is free to receive another mes
sage.

152 Parallel Programs for the Transputer



Chapter 6 Deadlock-Free Routing

Buffers

Left processor Right processor

b [0]

Virtual
channels in

b [1]

Output
handler

in.to.chan[O]

right
out Input

Ieft handler
in

left
out Return.+----=*_----4 handler

::ight I
J.n I

I

a[l]

Figure 6-6
Block dia&raJ11 of a one-way virtual link implementation

Each buffer process must run in parallel with the other two processes in the
input handler, because if one of them fails to output a message, the other processes
must remain free to pass messages on the other channel. These buffer processes are
the only ones which can be blocked, while waiting for a message to output. The
return handler must also execute in parallel with the input handler; otherwise it is
possible that the right-side processor will be trying to return a token to the left-side
processor at the same time that the left-side processor is trying to send a message
to the right-side processor. If this happens, the processors will deadlock.

The code for a process which runs this communication shell is listed in Fig.
6-7. In this program, a protocol for the link communication is defined first. This
protocol has four parts: first, an integer representing the virtual channel along
which the message should pass; second, an integer for the destination address;
third, an integer count of the message length; and finally, an array containing the
message.

The process itself is called with parameters for the size of the ring,
x. trans, the address of the processor, i . trans, and the input and output links
to the left and right. Channels left. in and right. out are defined with the
link protocol, while the right. in and left. out channels, which onlycommu
nicate tokens, are defined with a simple INT protocol. After the channel argu
ments, the next statement in the program defines the virtual channel protocol,

Parallel Programs for the Transputer 153



Deadlock-Free Routing

PROTOCOL LNK IS INT;INT;INT:: [lINT:
PROC shell(VAL INT x.trans,i.trans,

CHAN OF LNK left.in,right.out,
CHAN OF INT left.out,right.in)

PROTOCOL MSG IS INT;INT:: [lINT:
VAL INT max. size IS 32:
VAL INT num.io.chans IS 2:
[num.io.chanslCHAN OF MSG a,b:
PAR

Output handler
Input handler
Buffer handler
Return handler

Figure 6-7
Code for virtual channel process

Fig. 6-8
Fig. 6-9
Fig. 6-9
Fig. 6-9

Chapter 6

which is identical to the link protocol except for the deletion of the initial channel
value. The maximum size of the message is arbitrarily defined at 32, and the num
ber of virtual channels in each direction (num. io. chans) is set at 2. Channel
array a is used for the output of the virtual channels and array b is used for the in
put. The program then creates four parallel processes, one each for the output han
dler, the input handler, the buffer processes, and the return handler.

The output handler in this multiplexing system is listed in Fig. 6-8, and be
gins with an abbreviation of the virtual input channels to chan. in, and the defi
nition of the two boolean variables ok. If ok is TRUE, the output handler is free
to accept an input on the same virtual channel; if ok is FALSE, an input must not
be attempted. The output handler then continues by initializing the ok variables to
TRUE and entering an infinite WHILE TRUE loop.

This infinite loop waits for an ALT input from anyone of three sources: from
either ofthe two virtual channels, or from the hardware link. The two virtual chan
nels are guarded by the ok variables to prevent an input on a channel which is not
free. If a message from a virtual channel is received, the message, prefixed with
the channel number, is passed to the output channel right. out, and the corre
sponding ok variable is set to FALSE. If the output handler receives an input from
the right-side processor, the input must be a token and indicates that the handler is
free to accept another message on the corresponding virtual channel. The output
handler then sets the appropriate ok variable to TRUE.

The input, buffer, and return handlers for the multiplexer are all listed in or
der in Fig. 6-9. Two arrays of channels connect the processes, one array of chan
nels using a message protocol, the other using a simple INT protocol for tokens. In
cluded in the Fig. 6-6 block diagram are the channel names. The input handler ex
ecutes a simple infinite loop, reading messages from the left-side processor on

154 Parallel Programs for the Transputer



Chapter 6 Deadlock-Free Routing

[num.io.chans]CHAN OF MSG chan.in IS
[b FROM 0 FOR num.io.chans] :

[num.io.chans]BOOL ok:
SEQ

SEQ i=O FOR num.io.chans
ok[i] :=TRUE

WHILE TRUE
ALT

INT length,x.addr:
[max.size]INT data:
ALT i=O FOR num.io.chans --channel input

ok[i] & chan.in[i]? x.addrilength::data
SEQ

right.out! iix.addrilength::data
ok[i] :=FALSE

INT channel: --return token
right.in? channel

ok [channel] :=TRUE

Figure 6-8
Output handler for one-way virtual channels

--return handler

--buffers, block here only

WHILE TRUE
INT length,channel,x.addr:
[max.size]INT data:
SEQ

left.in? channelix.addrilength::data
in.to. chan [channel] ! x.addrilength::data

PAR i=O FOR num.io.chans --buffer handler
INT length,x.addr:
[max.size]INT data:
WHILE TRUE

SEQ
in.to.chan[i] ? x.addrilength::data
chan.out[i] x.addrilength::data
chan.to.out[i]! i

WHILE TRUE
INT channel:
ALT i=O FOR num.io.chans

chan.to.out[i]? channel
left.out! i

[num.io.chans]CHAN OF INT chan. to. out:
[num.io.chans]CHAN OF MSG in.to.chan:
PAR

[num.io.chans]CHAN OF MSG chan. out IS
[a FROM 0 FOR num.io.chans] :

--input handler

Figure 6-9
Input, buffer, and return handler code for one-way virtual channels

Parallel Programs for the Transputer 155



Deadlock-Free Routing

WHILE TRUE
ALT i=O FOR num.io.chans

input[i]? destination;message
output[route(destination)]! destination;message

Figure 6-10
An example of a poorly designed routing engine

Chapter 6

channel left . in, and then passing them to the appropriate buffer, depending on
the value of the virtual channel prefIX sent by the output handler in the left-side pro
cessor.

Running in parallel with the input and return handlers, the buffer processes
simply read messages from the input handler and attempt to output the messages on
their virtual channels. When successful, they pass a token to the return handler.
The return handler waits for tokens from either buffer; when a message is received,
it is returned to the output handler in the left-side processor, completing a commu
nication loop from the left-side processor, to the right, and back again.

A One-Way Ring Router

A virtual channel multiplexer may be convenient for processes which need
the illusion that .more than one link actually connects two processors, but it does not
constitute a routing engine. In a deadlock-free router, there must be another pro
cess to read messages from the channels, decide where they should go, and send the
messages there. A good routing engine, moreover, will maintain independence
among the various channels in a processor, so that if one of them becomes blocked,
the others can continue.

An example of a routing engine which does not exhibit channel indepen
dence is shown in Fig. 6-10. This engine must pass messages from a set of input
channels to a set of output channels, and route them according to the route func
tion. In this case, if the router receives a message on one channel, and is blocked
trying to send the message out on another, the entire routing engine is stopped. Any
other input channel will be neglected until the frrst output succeeds.

To avoid stopping the entire routing engine if one output is blocked, we
might try constructing the engine with parallel processes, each of which is respon
sible for a single input. Figure 6-11 illustrates this approach. Unfortunately, this
program allows two parallel processes to output a message on the same channel at
the same time. Indeed, such a code fragment will not even compile without report
ing an error.

In order to properly construct a legal routing engine with channel indepen
dence, we must create a parallel process for each input and each output channel.
Furthermore, a practical machine must include a mechanism for communicating
with an application process which takes in and sends out messages. Figure 6-12 is

156 Parallel Programs for the Transputer



Chapter 6 Deadlock-Free Routing

PAR i=O FOR num.io.chans
WHILE TRUE

SEQ
input[i]? destination;message
output[route(destination)]! destination;message

Figure 6-11
A second example of a poorly designed and illegal routing engine

a diagram of such a routing engine, capable of reading messages from two input
channels and sending them to either of two output channels. This router uses five
parallel processes, one each for the two input buffers, one each for the two output
buffers, and one for the application process. The input processes are connected by
channels to both output processes and to the application process. In addition, the
application process can pass messages to either of the two output processes. If any
one of the process communications is blocked, the other free processes can still
continue to pass messages from one process to another.

Upon input of a message, the routing engine must decide which output pro
cess the message should be routed to. The application engine must make the same
decision when sending a message out.

The code implementing the input and output buffers for a simple routing en
gine is listed in Fig. 6-13. This code creates two groups of parallel processes, one
each for the input and the output. All of the processes are connected by a two-di
mensional array of channels called r. The fIrst coordinate of the array determines
the input channel, and the second coordinate determines the output channel. Since

o

1

a r

o

1

b
Input

Figure 6-12
A one-way routing engine

Output

Parallel Programs for the Transputer 157



Deadlock-Free Routing Chapter 6

PAR i=O FOR num.io.chans --input to router
INT length,x.addr:
[max.size]INT data:
WHILE TRUE

SEQ
a[i]? x.addrilength::data
r[i] [route[x.addr]]! x.addrilength::data

PAR i=O FOR num.io.chans --output to channel
INT length,x.addr:
[max.size]INT data:
WHILE TRUE

ALT
ALT j=O FOR num.io.chans --from router

r[j] [i]? x.addrilength::data
b[i]! x.addrilength::data

c[i]? x.addrilength::data --from application
b[i]! x.addrilength::data

Figure 6-13
A one-dimensional routing engine

the application program is also considered to be a message destination, three output
channels are actually needed; the channel array connecting the application process
with the output buffers is called c. Each channel name and subscript is marked on
Fig. 6-12. The channels for the input and output buffers are abbreviated from the
same a and b channels used in the virtual channel program.

The input processes simply read messages from the outside world and pass
them to the appropriate destinations, determined by the value of r 0 ute [x . ad
dr]. It is the route array which actually implements the routing function neces
sary for sending messages to the correct destination. The array returns the value
zero, one, or two depending on whether the messages must go to output buffer zero,
output buffer one, or the application process. Meanwhile, the output processes wait
in an ALT construct for messages from either of the input processes or the applica
tion process. When a message is received, it is output. An application process
which only reads in messages is shown in Fig. 6-14. This process reads messages
from any of the input buffers, but does not respond to them. Any useful system, of
course, would have to supplement the input code with an application task.

For a network whose processors do not include virtual link hardware, the
routing engine just described can be connected to the virtual channel multiplexer
discussed earlier, creating a complete router. Figure 6-15 shows the complete top
level code necessary for doing this; the listing is a superset of the code shown in
Fig. 6-7. Figure 6-15 also includes c channels for communicating between the ap
plication process and the output buffers, and an array of r channels for the router.
Variable x. trans defines an array of variables called route, which holds the
routing information for every destination.

158 Parallel Programs for the Transputer



Chapter 6 Deadlock-Free Routing

WHILE TRUE
INT length,x.addr:
[max.size]INT data:
ALT i=O FOR num.io.chans --read everything

r[i] [num.io.chans]? x.addr;length::data
SKIP --do nothing

Figure 6-14
An application process which simply accepts messages

PROTOCOL LNK IS INT;INT;INT:: []INT:
VAL INT x.trans IS 13:
PROC work(VAL INT i.trans,

CHAN OF LNK left.in,right.out,
CHAN OF INT left.out,right.in)

PROTOCOL MSG IS INT;INT:: []INT:
VAL INT max. size IS 32:
VAL INT num.io.chans IS 2:
[num.io.chans]CHAN OF MSG a,b,c:
[num.io.chans] [num.io.chans+1]CHAN OF MSG r:
[x.trans]INT route:
PROC router([]INT route) --route algorithm

SEQ i=O FOR x.trans
IF

i i.trans
route[i] :=num.io.chans

i > i.trans
route[i] :=1

TRUE
route[i] :=0

SEQ
router (route)
PAR

Application handler
Output handler
Input handler
Buffer handler
Return handler
Route handler

Figure 6-15
Complete code for a one-way, deadlock-free routing engine

Parallel Programs/or the Transputer

--me

--on right

--on left

Fig. 6-14
Fig. 6-8
Fig. 6-9
Fig. 6-9
Fig. 6-9
Fig. 6-13

159



Deadlock-Free Routing Chapter 6

At the beginning of the routing engine program, the route table is initial
ized in process router. This process uses the algorithm discussed earlier in
which messages with a destination address greater than the local processor's ad
dress are routed on output channel 1, and messages with a destination address
smaller than the local processor's address are routed on output channel O. If the
destination address is equal to the local processor's address, the message has ar
rived and is sent out on channel 2, which is connected to the application processor.

Once route is initialized, the program begins running in earnest. The ap
plication process, the output, input, buffer, and return handlers, and the routing en
gine are all run in parallel. The application process creates and absorbs messages,
interacts with the routing engine, and ignores the virtual link processes. It is im
portant to remember that the application process must guarantee that any message
sent to it is eventually consumed. Therefore, the application process must not be
come blocked when sending a message to an output buffer of the router.

As an example of what can happen if the application handler is not free to
read in messages, consider a hypothetical and pathological relationship between
two processors in which each starts by sending a message to the other. For every
message received, each processor replies with two more messages. Eventually, all
of the communication buffers between the two processors will be filled up. Unless
both processors can continue to receive messages despite their inability to send
messages, the two processors will deadlock. This problem can be avoided if the
input from the network is done in parallel with the output to the network, and if ad
equate message buffering is provided.

Two-Way Virtual Channels

The one-way virtual channel multiplexer described in the previous section
can be expanded for use in a bidirectional system. Using a bidirectional routing en
gine will obviously shorten the distance any message must go, since the message
can travel in either direction around the ring. On the ring example we have been
considering, the average interprocessor distance in the ring is halved if messages
can travel in either direction.

A bidirectional channel multiplexer must incorporate both the input and out
put processes used in the one-way example. Each processor will need one complete
multiplexer for each link used. Figure 6-16 is a diagram of the two-way channel
multiplexer. The multiplexer includes an input handler, an output handler, two out
put buffers, and a delay buffer. Message protocol channels connect the input han
dler to the output buffers. Token protocol channels connect the output buffers to
the output handler, the input handler to the delay buffer, and the delay buffer to the
output handler.

The input handler in the bidirectional channel multiplexer waits for data from
the neighboring processor. If it receives a message, the message is passed to the
output buffers; if it receives a token, the token is passed through the delay buffer to
the output handler. The output handler monitors the virtual channels, the output

160 Parallel Programs for the Transputer



Chapter 6

link.in

link. out

in.to.chan[O]

Input
handler

in.to.chan[l]

Output
handler

Figure 6-16
A bidirectional virtual channel handler

Deadlock-Free Routing

Output buffers

Virtual
channels out

Virtual channels in

buffer token channels, and the delay buffer channel. When a message arrives from
a virtual channel, it is passed to the neighboring processor. The link on which the
message arrived is then shut down until the neighboring processor replies with a
token indicating that the message has been successfully sent on its way. Thus, data
passes from the output handler to the neighboring processor's input handler, to the
neighboring processor's output buffer, which returns a token to its output handler.
The neighboring processor's output handler returns the token to the local input han
dler. The token then passes through the delay buffer and back to the original output
handler. This entire cycle is fundamentally similar to the one-way example, the
only real difference being that any link communication is one of two types, either
a returned token or a message. The handlers must be able to distinguish the two
communication types appropriately.

The delay buffer must be included between the input and output handlers so
that a new potential deadlock problem will be prevented. Assume that the proces
sors on both sides of a link have sent each other a message, and that they are about
to do so again. At this point each processor will be trying to send a second message
to the other as well as trying to return a token in response to the fIrst message. It is
possible that the output handlers of both processors will be attempting an output on

Parallel Programs for the Transputer 161



Deadlock-Free Routing Chapter 6

PRoe two.way(CHAN OF LNK link.in,link.out,
[]CHAN OF MSG chan. in, chan. out)

[num.io.chans]CHAN OF INT chan.to.out,buffer:
[num.io.chans]CHAN OF MSG in.to.chan:
PAR

[num.io.chans]BOOL ok: --output handler
SEQ

SEQ i=O FOR num.io.chans
ok[i] :=TRUE

WHILE TRUE
ALT

INT length,x.addr:
[max.size]INT data:
ALT i=O FOR num.io.chans --input from channel

ok[i] & chan.in[i]? x.addr;length::data
SEQ

link.out! msg; i;x.addr;length::data
ok[i] :=FALSE

INT channel:
ALT i=O FOR num.io.chans --input token

chan.to.out[i]? channel
link.out! ret; i

INT channel: --input from delay
buffer[num.io.chans-l]? channel

ok [channel] :=TRUE
INT length, channel,x. addr: -input handler
[max.size]INT data:
WHILE TRUE

link. in? CASE
ret; channel

buffer[O]! channel
msg; channelix.addr;length::data

in.to.chan[channel]! x.addrilength::data
INT channel: --delay buffer
PAR i=O FOR num.io.chans-l

WHILE TRUE
SEQ

buffer[i]? channel
buffer[i+l]! channel

PAR i=O FOR num.io.chans --output buffers
INT length,x.addr:
[max.size]INT data:

WHILE TRUE
SEQ

in.to.chan[i] ? x.addrilength::data
chan.out[i] x.addrilength::data --can block here
chan.to.out[i]! i

Figure 6-17
Listing for a bidirectional virtual channel handler

162 Parallel Programs/or the Transputer



Chapter 6 Deadlock-Free Routing

the link at the same time that their respective input handlers are trying to pass a to
ken to them. If the delay buffer were not placed between the input and output han
dlers, this situation would result in deadlock. If more virtual channels are added to
the system, the buffer must grow, so a simple fIrst-in, fIrst-out (FIFO) buffer of size
num. io. chans-l is used to delay the tokens being returned. Using a single
long buffer rather than multiple parallel buffers forces the system to handle the to
kens in the order in which they are received.

A process implementing the bidirectional channel multiplexer is listed in Fig.
6-17. The process is called with the hardware input and output links, as well as an
array ofvirtual input and output channels. Note that the link protocol (listed at the
beginning of Fig. 6-18) is more complex than the simple protocol used up to this
point. It now has two cases, the frrst for messages and the second for tokens. After
the PROC statement is made, the local channels connecting the input handler to the
output buffers, and the output buffers to the output handler, are defined. The pro
cess begins execution with a PAR construct running four parallel processes: the
output handler, the input handler, the delay buffer, and the output buffers, listed in
that order.

The output process for the bidirectional channel multiplexer is slightly dif
ferent than the output handler discussed earlier. The process no longer waits for a
token from the hardware link, but instead waits either for a token to be returned
from an output buffer or for a token to be passed from the delay buffer. The new
output handler must also insert the appropriate link protocol token for both the mes
sage output and the token return output.

The input process for the bidirectional multiplexer also differs from the ear
lier example in that it must be prepared to receive either messages or tokens. The
two possibilities are distinguished by a CASE statement. As before, messages are
forwarded to the output buffers, but tokens are now passed to the delay buffer. The
delay buffer simply reads in the token value and passes it on to the output handler,
which will then use the token to free up a virtual input channel. The output buffer
processes are just like the ones used in the one-way example.

A Two-Way Ring Router

Using the bidirectional virtual channel handler, constructing a routing engine
which can pass data from a source processor to any destination processor in either
direction around a ring is quite a straightforward task. Figure 6-18 lists the top-lev
el code for creating such a router. This routine is very similar to the one in Fig. 6
15 (the original, one-way communication shell), with just a few minor differences.
The new value nurn •rt • chans is double n urn • i 0 • chan s and reflects the fact
that there are now four input and output channels for the router to deal with (two in
each direction), while the channel arrays depending on these constants automatical
ly scale in size appropriately. The r array connects all of the input buffers to all of
the output buffers and the application process, just as it did in the one-way router
case.

Parallel Programs for the Transputer 163



Deadwck-FreeRouting Chapter 6

PROTOCOL LNK
CASE

msgi INTiINTiINT:: []INT
reti INT

Fig. 6-14

Fig. 6-19
Fig. 6-17

... Route handler

VAL INT x.trans IS 13:
PROC work(VAL INT i.trans,

CHAN OF LNK left.in,right.out,left.out,right.in)
PROTOCOL MSG IS INTiINT:: []INT:
VAL INT max. size IS 32:
VAL INT num.io.chans IS 2:
VAL INT num.rt.chans IS num.io.chans*2:
[num.rt.chans]CHAN OF MSG a,b,c:
[num.rt.chans] [num.rt.chans+l]CHAN OF MSG r:
[x.trans]INT route:

PROC router
. .. PROC two. way
SEQ

router (route)
PAR

... Application handler
two.way(right.in,right.out,

[b FROM num.io.chans FOR num.io.chans],
[a FROM num.io.chans FOR num.io.chans])

two.way(left.in,left.out, [b FROM 0 FOR num.io.chans],
[a FROM 0 FOR num.io.chans])

Fig. 6-13

Figure 6-18
Listing for a bidirectional virtual channel routing engine

PROC router([]INT route)
VAL INT half IS x.trans/2:
INT direction:
SEQ i=O FOR x.trans

SEQ
IF

(i > (i.trans+half» OR --wrapped arouhd
«i < i.trans) AND (i >= (i.trans-half»)

direction:=O
TRUE

direction: =2
IF

i = i.trans
route[i] :=4

i > i.trans
route[i] :=1+direction

TRUE
route[i] :=O+direction

--me

--right

--left

Figure 6-19
Listing for a bidirectional routing algorithm

164 Parallel Programs for the Transputer



Chapter 6 Deadlock-Free Routing

The main process in the two-way ring router creates four parallel processes:
the application handler, the routing engine, and two bidirectional channel multi
plexers. The application and routing engines are identical to the ones listed earlier,
although the number ofrouter processes in this case scales with the number of input
and output channels. Mutually exclusive subsets of the input and output channels
are passed to the two channel multiplexers. The frrst handler receives the left-side
links and the virtual channels subscripted from zero to one; the second handler re
ceives the right-side links and the virtual channels subscripted from two to three.
These virtual channels must then be correctly matched to the links connected by the
routing algorithm.

Although the routing engine code in the two-way case does not change from
the one-way case, the routing algorithm (shown in Fig. 6-19) is more complicated.
For a complete routing table to be created, each processor in the network must
choose a path on which to send a message to any other processor. The variable
half is defined to be one-half the ring size and is used to calculate the direction in
which to pass messages. The frrst IF statement in the router process makes this de
cision. The logical test determines whether the destination processor is more than
halfway around the ring to the right or less than halfway around the ring to the left.
Both tests must be made because of the discontinuous processor numbering be
tween processor 0 and its left-hand neighbor. If the destination is on the left, the
message should be passed to the left and direction is set to 0; if the destination
processor is closer on the right, direction is set to 2. The direction value
must match the pair of channels passed to the handlers in the main PAR statement.
In Fig. 6-19, channels 0 and 1 are used to pass messages to the left and channels 2
and 3 to pass messages to the right.

Once the direction to a processor is determined, one of the two virtual chan
nels going in that direction must be chosen. As before, we use the high channel if
the destination processor has a higher address than the local processor, and the low
channel otherwise. The same criterion is used for messages passed in either direc
tion, since the actual choice of high or low channel for passing messages to either
the left or the right is irrelevant as long as every processor chooses consistently.

A Four-Way Toroidal Router

The two-way router for a ring can be readily extended to become a four-way
router for a toroid. Obviously, the major differences will be the fact that links must
be connected in four directions and that the routing algorithm must take into ac
count the two-dimensional interconnection structure. The link multiplexing code
and the routing engine for the four-way router are identical with those of the two
way ring router.

Figure 6-20 is a block diagram of the resulting system running in each pro
cessor. Four handlers pass messages in the four directions: left, right, up, and
down. Each handler multiplexes a pair of virtual channels over its link. An appli
cation routine connects to the routing engine; the routing engine directs the mes-

Parallel Programs/or the Transputer 165



Deadlock-Free Routing

166

Chapter 6

Application

Figure 6-20
A four-way, toroidal routing shell

Parallel Programs for the Transputer



Chapter 6 Deadlock-Free Routing

o

Left input

1

2

Right input

3

4

Up input

5

6

Down input

7

a r

Figure 6-21
The eight-channel route engine

o

Left output

1

2

Right output

3

4

Up output

5

6

Down output

7

b

Parallel Programs/or the Transputer 167



Deadlock-Free Routing Chapter 6

sage traffic to and from the handlers. So that the independence of the various inter
handler channels is maintained, a channel from every input to every output is need
ed. Figure 6-21 is a diagram showing the necessary connections between the han
dlers and the application process.

The routing engine for the four-way router must connect eight input chan
nels, eight output channels, and the application process. Every channel input must
be connected to every channel output. The input channels to the router make up an
array of channels called a, and the output channels make up an array called b. The
handlers, of course, use a as the output and b as the input. The channel array from
the application process is called c, and the channel array internal to the route engine
is a two-dimensional array called r, which connects all of the inputs to all of the
outputs. Notice that this structure pennits a message travelling in one direction to
reverse its course and hea4 back out the way it came in. This capability may be
useful for some adaptive routing schemes, but is unnecessary for the deterministic
routing algorithm used here.

A program implementing this four-way routing engine is listed in Fig. 6-22.
The program is, once again, very similar to the two-way example of a routing en
gine on a ring, but with one major difference. Each processor in the toroidal pro
cessor array uses two values, an x . addr value and a y . addr value, to describe
its position in the array. These two values then become the destination address for
each message, rather than the one value used in the ring. To accommodate both
address values, the MSG and LNK protocols incorporate an extra !NT value.
Throughout the program, then, every time the x . addr parameter is used, it must
be accompanied by a y . addr parameter. Since this is really a trivial programming
change, the routines are not reprinted here. In addition to the use of y. addr, the
num. rt . chans value must be set to eight to accommodate the eight input and
eight output virtual channels in each processor.

The routing engine for the four-way toroidal router must be expanded to re
flect both the new two-dimensional structure of the processor array and the in
creased number of channel inputs and outputs. The routine implementing the two
dimensional routing algorithm is listed in Fig. 6-23. This algorithm is similar to the
one used for the ring router, but creates four paths at once, rather than two. Any
message is passed vertically fIrst until it arrives at its correct row. The message is
then passed along the row until it reaches its destination processor. To implement
this routing procedure, we must construct the array of routing information in two
dimensions, one each for the x and y portions of the destination address. Initially,
the same y routing information is placed in every x position, precluding any mes
sage routing in the x direction. This y calculation is repeated in a SEQ loop for
x. trans times.

Once the y addresses are calculated, the route array can be corrected so that
messages can be passed along the local row as well. For every destination proces
sor in the local processor's row only, the route is calculated. This value is then

168 Parallel Programs for the Transputer



Chapter 6 Deadlock-Free Routing

PROTOCOL LNK
CASE

msgi INTiINTiINTiINT:: []INT
reti INT

Fig. 6-24
Fig. 6-17

Fig. 6-14
[b FROM 0 FOR num.io.chans],
[a FROM 0 FOR num.io.chans])

two.way(right.in,right.out,
[b FROM num.io.chans FOR num.io.chans],
[a FROM num.io.chans FOR num.io.chans])

two.way(up.in,up.out,
[b FROM num.io.chans*2 FOR num.io.chans],
[a FROM num.io.chans*2 FOR num.io.chans])

two.way(down.in,down.out,
[b FROM num.io.chans*3 FOR num.io.chans],
[a FROM num.io.chans*3 FOR num.io.chans])

... Route handler with .io set to .rt Fig. 6-13

VAL INT x.trans IS 13:
VAL INT y.trans IS 10:
PROC work(VAL INT j.trans,i.trans,a,b,

CHAN OF LNK up. in, up. out, down. in, down. out,
CHAN OF LNK left.in,left.out,right.in,right.out)

PROTOCOL MSG IS INTiINTiINT:: []INT:
VAL INT max. size IS 32:
VAL INT num.io.chans IS 2:
VAL INT num.rt.chans IS num.io.chans*4:
[num.rt.chans]CHAN OF MSG a,b,c:
[num.rt.chans] [num.rt.chans+1]CHAN OF MSG r:
[x.trans] [y.trans]INT route:

PROC router
... PROC two.way
SEQ

router (route)
PAR

... Application handler
two.way(left.in,left.out,

Figure 6-22
Code for the eight-channel route engine

Parallel Programs for the Transputer 169



Deadlock-Free Routing Chapter 6

PRoe router([] []INT route)
VAL INT y.half IS y.trans/2:
VAL INT x.half IS x.trans/2:
INT direction, channel:
SEQ

SEQ j=O FOR y.trans --set up y
SEQ

IF
(j > (j.trans+y.half» OR
«j < j.trans) AND (j >= (j.trans-y.half»)

direction: =4
TRUE

direction: =6
IF

j > j.trans
channel:=l+direction

TRUE
channel:=O+direction

SEQ i=O FOR x.trans
route[i] [j] :=channel

--below

--above

--copy to all x

SEQ i=O FOR x.trans --set up x
SEQ

IF
(i > (i.trans+x.half» OR
«i < i.trans) AND (i >= (i.trans-x.half»)

direction: =0
TRUE

direction: =2
IF

i = i.trans
channel:=num.io.chans

i > i.trans
channel:=l+direction

TRUE
channel:=O+direction

route[i] [j.trans] :=channel

Figure 6-23
Route algorithm for the eight-channel route engine

--me

--right

--left

170 Parallel Programs for the Transputer



Chapter 6 Deadlock-Free Routing

Figure 6-24
Path taken by messages moving between processors (4,3) and (1,1)

placed into the routing array with the y address of the local processor (j. trans)
used to subscript the y dimension of the route array.

This two-step calculation will ensure that any message will be passed along
the column from which it originated until it reaches its destination row. The router
will then pass the message along the row to its final destination processor. Figure
6-24 illustrates this two-step procedure on a six processor-by-four processor por
tion of a larger array of processors. Processor (4,3) will send a message to proces
sor (1,1) by passing the message upward frrst, to row 1, and then horizontally to the
left till it reaches its destination processor. This path is indicated by the dark shad
ing filling the processors in the path. Processor (1,1), on the other hand, will pass
a message to processor (4,3) by first sending its message down, to row 3, and then
horizontally to the right. The processors on this second path are filled with a lighter
shading.

[max.size]INT data:
SEQ k=O FOR 1000000

SEQ i=O FOR x.trans
SEQ j=O FOR y.trans --send to all x & y

IF
((i = i.trans) AND (j j.trans» --except me

SKIP
TRUE

c [ rout e [i] [j] ]! i; j; 32 : : dat a

Figure 6-25
Test routine for the four-way routing engine

Parallel Programs/or the Transputer 171



Deadlock-Free Routing Chapter 6

Performance Comparisons

Each of these three routing engines has been carefully tested to establish its
correctness and performance. For each routing technique, every processor was pro
grammed to pass messages of 32 words to every other processor. The application
code which accomplishes this for the four-way router is shown in Fig. 6-25. The
inner loop using j is omitted for the one- and two-way route engines. This routine
was run in parallel with the routine in Fig. 6-14, which simply takes in each mes
sage at its destination.

Since, in this test, messages are passed from every processor to every other
processor, any regular network should have a relatively even distribution of mes
sages moving through it at any given time. This even distribution should maximize
the number of messages the network can pass at a time. If the distribution of mes
sages is not even, however, heavier message traffic in some processors might re
duce the overall communication performance of the network.

The results of a test for each of the three routing engines are shown in Fig. 6
26. In the fIrst test, performed on a ring of 13 processors, 624 million messages
were passed through the ring in one direction. The test required 29.629 hours, and
5850 messages per second were communicated, with the average message travel
ling six processors, or halfway around the ring. The maximum distance any mes
sage must travel in a 13-processor ring is through 12 processors, all of the way
around the ring.

We might expect that the two-way ring router would perfonn two, or perhaps
four, times faster than the one-way ring router, since messages can be sent on two
links at a time instead of one, and since the distance between any two processors
on a ring is halfway around the ring instead of all of the way around the ring. How
ever, there is still only one processor executing the router program, and the more
complex the program becomes, the more slowly it will execute. The one-way rout
er requires 10 parallel processes while the two-way needs 19. As more input and
output handlers are added, the ALT tests become larger as well. Thus we might
hope that the two-way router will pass 2.1 times more messages than the one-way

Number of Number of Messages
processors messages Total time per second

One-way ring router 13 624 million 29.629 hours 5850

Two-way ring router 13 1248 million 35.349 hours 9807

Four-way toroid router 120 7200 million 34.127 hours 58604

Figure 6-26
Route engine performance for three examples

172 Parallel Programs for the Transputer



Chapter 6 Deadlock-Free Routing

router (2 x 2 x 10/19). However, we must remember that the processor links are
only 33% faster when passing data in both directions simultaneously than when
passing data in only one direction. Thus a more realistic estimate of the overall in
crease in performance is 2 x 1.33 x 10/19, or 1.4.

The test result for the two-way router on a 13-processor ring does show that
the overall performance is better than that of the one-way router. The average mes
sage in the test traveled three processors with a maximum distance of six proces
sors, and a total of 1248 million messages were sent in 35.35 hours at an average
rate of 9807 messages routed per second. The message rate is 1.7 times the rate of
the one-way router, somewhat less than the optimistic estimate of 2.1 but better
than the pessimistic estimate of 1.4. This result implies that the system perfor
mance for the two-way ring router is not bound by the link bandwidth, but rather
by the processor node's ability to switch data.

The last network test ran with a four-way router on a 120-node toroid. A tor
oid has more paths available within its network than the ring, since every row and
column is another ring. Thus, the overall bandwidth on a 10 processor-by-12 pro
cessor network increases by a factor of 22 over a single ring. In this example, how
ever, not only does the routing engine become more complex, and thus slower, but
the messages must also travel farther. The routing engine for the four-way router
uses 37 parallel processes, nearly twice as many as the two-way ring router. The
average interprocessor message distance is also greater, up to five or six processors,
while the worst case distance is 11. Thus for this router we would expect that the
performance will be 6.2 times faster than that of the two-way router
[(19/37) x 22 x (6/11)].

The test result for the four-way router shows that the router's performance
actually scales fairly well. With a test of7200 million messages passed in 34 hours,
the four-way router passes 58604 messages per second, six times as many messages
as the two-way router. This result is very close to the improvement factor of 6.2
that we estimated.

It is interesting to note that this four-way message-routing scheme is not lim
ited by the link bandwidth, but rather by the ability of the processors to switch mes
sages. For the four-way routing test, 58604 messages of 128 bytes each are passed
an average of six processors in one second, or 45 MBytes/sec. Since this is more
than a factor of ten smaller than the total bandwidth available in the processor net
work, we can see that there is plenty of room for improvement in our deadlock-free
router.

In Summary

Message-passing communication programs are a very useful tool for the im
plementation of parallel processing. Such programs allow a user to concentrate on
the behavior of and application for each processor without having to be concerned
about the complex mechanics of interprocessor communication.

Parallel Programs for the Transputer 173



Deadlock-Free Routing Chapter 6

Communication shells are used to implement message-passing systems and
to hide the actual operation of the interprocessor communication. These shells
must provide a deadlock-free means for message passing which cannot fail regard
less of the volume of message traffic. In addition, good communication shells use
routing engines which continue to pass messages in one direction when messages
travelling in other directions may be halted.

We can create a deadlock-free router by multiplexing messages over links us
ing virtual channels to open any possible closed communication dependencies. If
the router is capable ofindependently passing data from any input buffer to any out
put buffer, the channels will not be dependent on each other, allowing messages to
pass in one direction even if they cannot pass in another. While these techniques
are useful in designing deadlock-free routers, they do create considerable system
overhead. Nonetheless, an implementation and test of a deadlock-free router for
three different networks shows that deadlock-free routers are practical and reliable
for thousands of millions of messages.

174 Parallel Programs for the Transputer



Chapter 7

Worms

Of all the kinds of programs which can be executed on a network of proces
sors, wonns are one of the most interesting. Propagating themselves from proces
sor to processor, worm programs can run on networks of arbitrary size and inter
connection. Worms are especially useful for exploring and testing unknown net
works of processors.

A wonn program is one which begins running in one processor of a reset net
work and then attempts to copy itself into any connected processor. Each of the
successfully copied second-generation wonn programs then attempts to do the
same thing to its connected processors, and the procedure goes on as the newly cop
ied worm programs continue propagating. In the end, a network of processors is
running the same worm routine in each of its component members.

Because a wonn program copies itself into a network connected in any man
ner (that is, an arbitrarily connected network, or simply an arbitrary network), it can
be used to initialize programs which run on such networks (for example, processor
farms). For programs which require a regularly structured network of processors
(such as a hypercube), a worm can find the size of the network structure and pass
that infonnation to the program which follows it. This capability allows the subse
quent program to know the size of the network on which it is to run without that
information being explicitly included in the program. Thus, this capability allows
a user to write programs which can run on a network of any size, provided that the
network structure is consistent with the program requirements.

Not only are worm programs useful for loading subsequent programs into
networks, but they are also very useful in themselves as testers or debuggers of
multiprocessor systems. In order to load a network, a worm must explore it any
way, and this exploration can serve to test or debug the network. In this case, a host
processor must be connected to the network, must boot the frrst processor in the
network, and must control the replicating worm program.

Worm programs are especially easy to construct for transputer systems be
cause the transputer links are simple to use and because the transputer itself can be
booted from data passed down any link. Thus a worm program in one processor
can easily initialize another processor connected to one of its links. Indeed, the pro
gram loader in the development system used to boot a network of transputers gen
erally boots each transputer in this way. These programs assume the use of the data
links in each transputer for both communication and booting, and do not consider
the use of any special monitor links which might be available on a given transputer.

Parallel Programs/or the Transputer 175



Worms

Searching Strategies

Chapter 7

Whether a worm program is used simply to explore a network or as a prelim
inary to another program, the worm must replicate itself throughout the network.
In order to replicate itself, the worm must discover which processors connected to
itself are in a reset state, boot them, and copy itself into the processors. To do this,
the worm must have a strategy for deciding which processors to boot, and in what
order to boot them.

To understand the different strategies, one can think of a worm program run
ning on a network of processors as making up a tree of processors. When one pro
cessor boots another it becomes a parent and the newly booted processor is consid
ered to be its child. The link over which the child was booted is the communication
channel between the parent processor and the child processor. Any link between
processors other than those between a parent and child processor are ignored and
not considered part of the tree. Figure 7-1a shows a very simple binary tree, an ex
ample of a regularly structured network on which worm programs can be used. In
this example, node a is the parent of nodes b and d, and nodes g and f are the chil
dren of node b. Worm programs, however, are not limited to regular networks, but
can readily be used on any network, regular or irregular.

There are two basic strategies a worm program can follow when searching a
tree: a depth-frrst search or a breadth-frrst search. A depth-fIrst search simply re
quires that a processor not boot a second child until all of the descendants of the
fIrst child are booted. A breadth-frrst search differs in that a processor must boot
all of its children before any of its grandchildren are booted. With nodes numbered
in the order in which they are booted, Fig. 7-1b illustrates the results of a depth-frrst
search of the tree in Fig. 7-1a while Fig. 7-1c shows the results of a breadth-frrst
search. Both searches begin at the top of the network and examine links from left
to right.

a

176

Figure 7-1a
A binary three-layer tree

Parallel Programs for the Transputer



Chapter 7

Figure 7-1b
A binary three-layer tree searched depth-first

Figure 7-1c
A binary three-layer tree searched breadth-first

Parallel Programs/or the Transputer

Worms

177



Worms Chapter 7

Figure 7-18
An arbitrary network

Figure 7-2a shows an arbitrary network with arbitrarily named nodes. The
order in which each node tests its connections will help determine both the final
shape of the network and the order in which the network nodes are numbered. If
we begin a depth-fIrst search of this tree starting at node a and examine nodes
clockwise from the left, the structure shown in Fig. 7-2b will result. The diagram
is redrawn to illustrate the search order. Parent processors are drawn above child
processors and connected by lines to their children. Links which are not needed for
the search are not drawn. If, on the other hand, we do a breadth-fIrst search of this
tree, the structure shown in Fig. 7-2c will result.

In the binary tree shown in Fig. 7-1a, there are no extra links in the network
which are not in the tree, so the order in which the links are tested is irrelevant.
This, however, is not the case in Fig. 7-2a. Node a in Fig. 7-2a could choose to
search node b, node d, node e, or node f first. An alternative approach (shown in
Fig. 7-2d) begins at node f rather than at node a and proceeds counterclockwise
from the right using a depth-first strategy.

There is a middle ground between depth-first and breadth-first searching. A
particular tree may be divided into subtrees, which are portions of the larger tree.
The subtrees as a group could be tested in breadth-fIrst order while the individual
subtrees themselves are searched internally depth-first. Alternatively, the subtrees
could be tested in depth-fIrst order, and each subtree examined breadth-fIrst.

Examination of the search results in Figs. 7-2b, c, and d shows clearly that
the order and search strategy used to explore a network can have a radical effect on
the tree ofprocessors constructed. Even regular networks can develop widely vary
ing structures, as can be seen in one of the most common architectures used in par
allel computers, the toroid. Figure 7-3a shows a toroidally connected processor

178 Parallel Programs for the Transputer



Chapter 7

Figure 7-2b
An arbitrary network searched depth-fIrst from node a

Worms

Figure 7-2c
An arbitrary network searched breadth-fll'St from node a

Parallel Programs/or the Transputer 179



Worms

180

Chapter 7

Figure 7-2d
An arbitrary network searched depth-rust from node f

Figure 7-3a
A toroidally connected network

Parallel Programs for the Transputer



Chapter 7 Worms

network. Figure 7-3b demonstrates the results of a depth-frrst search strategy ap
plied to a toroid starting from the upper-right node (zero). Figure 7-3c shows the
results of a breadth-frrst search. Nodes are labelled in the order in which they are
encountered, and their links are tested from the left in counterclockwise order. The
structures resulting from the two types of searches are dramatically different.

The depth-frrst search applied to a toroid creates a long string of nodes, each
having one parent and one child. If node 0 wished to communicate with node 15
through the tree, the message would have to travel through every processor in the
network. A breadth-frrst search produces a much shorter and wider tree. The dis
tance from node 0 to node 15 in this case is only four processors.

This example clearly demonstrates that the breadth-frrst search strategy pro
duces shorter trees and should require less communication overhead for subsequent
programs which talk to the root node. However, a breadth-frrst search strategy is
also more difficult to control and slower to run, especially for simple worms. The
advantage of a depth-first search is its simplicity, in that the order of search moves
from one node to a connected node, either from a parent to a child or vice versa.
When a node's children all signal that they have finished exploring, the node will
either attempt to boot a new child or tell its parent that it has finished exploring. At
this point the parent proceeds with the search by testing its next child.

In contrast, if a breadth-frrst search is proceeding and a node has finished ex
ploring, the next node to begin exploring may be far away, and almost certainly will
not be a parent or a child of the node which has just finished exploring. The fin
ished node then has no way to directly contact the next node which is supposed to
begin working. The only recourse the finished node has is to either broadcast a
message to all of the nodes or to pass a message up the tree of processors until a
node which can properly forward the message is found. In the frrst case a great deal
of message traffic results; in the second case some message-routing mechanism
must be supported. In addition to these complications, the nodes must name or or
der themselves so they can pass messages to the correct processor. For the depth
frrst searching approach, naming or ordering is not necessary.

There is one more strategic issue which must be considered in designing a
worm program. Until now, this discussion has implicitly assumed that a search
program proceeds one node at a time, testing one processor after another in a strict
ly defined order. This is essentially a sequential search with only one processor ac
tively testing another at a time. But each booted processor actually executes an in
dependent program and is capable of independent action at the same time as all of
the other booted processors. Thus, many of these processors could be doing tests
at the same time. Such a parallel exploration should be much faster. Unfortunately
it is also more complicated, since the worm will have to deal with the likelihood
that two processors will try to test another processor simultaneously. Another com
plication of parallel exploration is that the nodes cannot be labelled in chronologi
cal order since each active processor has no idea what other processors may be do-

Parallel Programs for the Transputer 181



Worms

182

Chapter 7

Figure 7-3b
A toroidally connected network searched depth-first

Figure 7-3c
A toroidally connected network searched breadth-fIrst

Parallel Programs for the Transputer



Chapter 7 Worms

ing and when they may be doing it. Indeed, it is possible that the same network will
develop as a different tree each time it is explored.

In the remainder of this chapter, two topics will be discussed. The fIrst is
bootstrapping a wonn program; and the second is three real wonn programs: a sim
ple, sequential wonn which builds a tree of processors; a simple, parallel wonn
which does the same thing; and a more complex, sequential worm which can com
pletely test and construct a map of a network. Each of these wonns can be run from
a processor connected by a link to the network. The program for this control pro
cessor, the root node, is also included for each example.

Bootstrapping a Processor

Transputer programs which are booted down a link are booted in two stages:
frrst, a small bootstrap program is sent down the link, and second, this bootstrap
program loads the main program which follows it. Usually, the bootstrap is gener
ated automatically by the compiler and included with the program code. The boot
strap for a normal multiprocessor program must pass the code for the various pro
cessors to the correct destination processor and then begin executing its own pro
gram.

The bootstrap for a worm program, on the other hand, is somewhat simpler.
Because the worm itself is a single-processor program, there is no need for a com
plex bootstrap program for ferrying code from processor to processor. The proces
sor is booted simply by passing the compiled wonn code (including the bootstrap)
down one link, where it then begins running. The difficulty comes when a program
tries to replicate itself. Where does the program to send down the new child's link
come from? A wonn has two choices: it can either keep a copy of itself (both pro
gram code and bootstrap) in memory or keep a copy only of the bootstrap in mem
ory and somehow pass the program which it is executing down the link. In the frrst
alternative, the bootstrap and wonn must be stored in an array in memory; in the
second alternative, only the bootstrap needs to be stored.

The frrst method, keeping a copy of the wonn in an array, is very easy to pro
gram since the compiler automatically creates a file containing both the bootstrap
and the worm program code. When booting a child, the wonn will simply send its
copy of the entire file, and then, when the child itself has woken up, send the copy
again. The second time the child can input the copy into memory. Initially, of
course, the root processor must get the wonn code from somewhere, perhaps from
the host computer. If a worm is booted in this way, the object code for the worm
itself is created just like any other program with one processor. The outer PRO
GRAM fold should look like Fig. 7-4. Notice that no links are defined.

The basic problem with this simple approach is that the worm must allocate
enough space to store a copy of itself. Doing this requires a large workspace and
effectively doubles the size of the worm.

The second approach, having the worm copy its own executing program
down the link, is more elegant but also more involved. Essentially, the wonn loads

Parallel Programs for the Transputer 183



Worms

... SC worm
PLACED PAR

PROCESSOR 0 T8
worm()

Figure 7-4
Program level code for a worm

Chapter 7

a small bootstrap routine separately, and this bootstrap in turn loads a new copy of
the worm program and records the program and parameter locations in memory.
This bootstrap must be explicitly written by the user. The bootstrap then runs the
worm, passing the appropriate information to the worm to enable it to copy itself.
Only the bootstrap is stored in the worm, but since this bootstrap is much smaller
than the worm program itself, it does not take up as much space as with the frrst
approach, keeping a copy of both the bootstrap and worm in memory.

The construction of a worm which copies its own executing program down a
link relies heavily on special routines and programs available in the development
system. (These routines are discussed in detail in the documentation for the devel
opment systemt.) In constructing the worm, we must frrst write a bootstrap which
can read in the worm program itself and pass the appropriate parameters to the
worm. Refer to Fig. 7-5 for the bootstrap used in the worm examples. This boot
strap is taken from an example in the development system. The channel down
which the bootstrap is loaded is automatically passed to the bootstrap itself. This
channel, the booting link boot. 1 ink, is the only argument the bootstrap has.
Three parameters are associated with the worm program to be booted: the work. 
size, the code. size, and the entry. offset. These parameters tell the
loaded worm program how to begin executing properly. The parameters are read
in by the bootstrap from the booting processor, and the total work space needed for
the routine is calculated; the size of this array depends on the size of the compiled
bootstrap itself. At this point, the space array is retyped and abbreviated. Next,
the bootstrap reads the code to be executed and organizes the parameters associated
with the subroutine call. These parameters can be passed to and returned from the
called routine, and include an array pointer which allows the called routine to copy
itself down a link. The bootstrap calls two LOAD. VECTOR routines which actually
set up the parameters to be passed to the worm. The KERNEL. RUN command then
begins executing the worm code read in. At this point the worm program itself is
running. If the worm were to fmish, control would be passed back to the bootstrap
which could, because of the WHILE TRUE loop, read in a new block ofobject code
and begin executing it.

t. INMOS Limited, Transputer Development System, (Hemel Hempstead, U.K.: Prentice
Hall International (U.K.) Ltd., 1988).

184 Parallel Programs for the Transputer



Chapter 7

PROC bootstrap (CHAN OF ANY from. boot)

Worms

INT total.work.space:
VAL INT num.of.parms IS 3:
[lO]INT data:
[1636+20]BYTE space:
INT work.size,code.size,entry.offset:
WHILE TRUE

SEQ
from. boot ? [data FROM 0 FOR 3]
code.size,entry.offset,work.size:=data[O],data[l],data[2]
total.work.space := «work.size+2)+num.of.parms)«2

[]INT work.space RETYPES[space FROM 0 FOR
total.work.space]:

code IS [space FROM total.work.space FOR code. size] :
SEQ

from. boot ? code
[]INT parameters IS [work.space FROM work.size FOR

(2+num.of.parms)] :
SEQ

[]BYTE byte.data RETYPES data:
LOAD.BYTE.VECTOR(parameters[l],byte.data)
LOAD.BYTE.VECTOR(parameters[2],code)
parameters [3] := data[O]

KERNEL.RUN (code,entry.offset,work.space,num.of.parms)

Figure 7-5
A bootstrap progmm

The wonn itself must contain the original bootstrap needed to boot a new
processor down a link. The development system provides a utility, which, when
applied to the compiled procedure, produces a file containing the object code of this
bootstrap. This file is also included in the wonn program.

A Simple, Sequential Worm

The fIrst worm we will discuss is a simple, sequential wonn which creates a
tree of processors searched breadth-fIrst. Each processor knows where its parents
and children are, but does not attempt to find other neighbors. This wonn is very
simple to program but relatively slow in execution, and is suitable for initializing a
network to run a fanning program such as the one described in the chapter on pro
cessor farms. It should not be used to test networks of unknown reliability since no
provision is made for error recovery.

A high-level view of the simple wonn program is shown in Fig. 7-6. Each of
the code folds is shown in subsequent figures as indicated on the fold line itself.

Parallel Programs/or the Transputer 185



Worms

PROC worm([10]INT link.data, []BYTE worm.code)
Channels and Variables

... Proc poke. link (channel)
SEQ

clear values
find parent and read data
wait for test command from parent

SEQ link=O FOR Number. of. Links
IF

link=parent.link
SKIP

TRUE
SEQ

test links
if child found, then boot

report number of children to parent
control loop
execute main program or return

Figure 7-6
High-level view of simple worm

Chapter 7

Fig. 7-8
Fig. 7-9

Fig. 7-10
Fig. 7-10
Fig. 7-10

Fig. 7-11
Fig. 7-11
Fig. 7-11
Fig. 7-12
Fig. 7-13

Figure 7-7
A portion of a network under investigation by the simple worm

186 Parallel Programs for the Transputer



Chapter 7 Worms

One can reconstruct the entire program by inserting each figure into the appropriate
fold. The wonn proceeds by initializing itself, finding its parent, and then testing
and booting any reset processors (children) connected to its links. When all of the
links have been tested, the wonn enters a passive mode, simply passing instructions
and results up and down the tree. When all testing on any descendants is complet
ed, the wonn can begin executing a user program.

Figure 7-7 depicts a portion of a processor network at one point in the simple
wonn's execution. Six processors are shown together with their position in the
wonn program. The question or exclamation mark by a processor's link indicates
whether the processor is doing (or trying to do) an input (question mark) or an out
put (exclamation point) on that link, and the numbers following the mark are the
figure number and the line in the figure which the processor is executing. The links
are ordered from left to right and their addresses indicated. By occasionally refer
ring to this figure as you read through the text and code, you may find it easier to
understand the overall wonn program. In this figure, the parent node has already
tested and booted all of its children. The fIrst child is completely finished testing,
the second link is not connected to any processor, and the second child is actively
testing and booting its second child.

The wonn program begins with a definition of the links (defined as CHAN
OF ANY for simplicity and flexibility) and the parameters passed by the bootstrap.
In Fig. 7-8 two libraries are included, one containing the object code of the boot-

fUSE reinit
fUSE "bootstrap_lib.tsr"
VAL boot.code IS T8.bootstrap:
VAL INT start IS f80000000:
VAL INT Number.of.Links IS 4:
VAL INT LinkTimeOut IS 500:
[Number.of.Links]CHAN OF ANY link. in, link. out:
PLACE link.in AT Number.of.Links:
PLACE link. out AT 0:

--TRUE if child exists on link

boot.data IS [link.data FROM 0 FOR 3]:
INT parent.link IS link.data[3]:
INT Number.of.Children IS link.data[4]:
[Number.of.Links]INT child.link IS [link.data FROM 5 FOR

Number. of. Links] :
IS link.data [5+Number.of. Links] :INT sum

INT address, data:
[Number.of.Links]BOOL child:
BOOL Aborted:
VAL INT NotTried is -1:

Figure 7-8
Channel and parameter definitions for the simple worm

Parallel Programs for the Transputer 187



Worms Chapter 7

strap (created with a routine from the development system) and the second contain
ing the time-out link input/output routines discussed later. The start address of the
on-chip memory is defined together with the Number. of . Links on the proces
sor and the time-out value for waiting on a tested link. Following this, the channels
are defined and placed at their hardware addresses. The parameters used for boot
ing a child, and which are returned to the bootstrap, are abbreviated conveniently.
The parameters describing the wonn code itself are included, as well as those for
the parent link, the number of children, a list of the links off which the children are
to be found, and the total number of children the wonn has. Two variables (ad
dress and data) are used for testing links, and a boolean array called child is
used to store a record of which links have been booted. An additional boolean for
testing is included, and a parameter called NotTr i e d is defined. Notice that some
of these variables are used globally, rather than being passed as parameters in pro
cedure calls. This is done to reduce the overall compiled code size.

In this simple, sequential wonn, the actual link testing is done by the process
poke .link shown in Fig. 7-9. The main part of the wonn program will begin
after this routine. The memory of an unbooted processor is tested in response to
messages passed to it by poke. link. If a message string begins with a zero byte,
the instruction is a write; a one byte indicates a read. The next word sent is the ad
dress, followed (for a write) by the data. An unbooted processor responds to a read
command with the data stored at the address given. If no processor is connected to
the link being tested, the link will hang up and the program will be unable to pro
ceed. To prevent this, the development system provides a set of routines which per
fonn an output, but which will time-out after a while if there is no response. These
routines are called OutputorFail. t and InputorFail. t. A discussion of
these routines can be found in the transputer development system documentation.

The simple wonn proceeds with the link test by creating a 14-byte string
which instructs the processor to do a write followed by a read. First Outputor
Fail. t and then InputorFail. t is called with the time-out parameter de
fined earlier. The boolean variable Aborted is set to TRUE or FALSE depending
on whether the write and read succeeded (FALSE) or not (TRUE). The routine
then returns control to the process which called it.

After the variables and the link-testing procedure are defined, the wonn itself
begins by clearing the count of children, the record of the children's existence, and
the record of the children's locations. The address used to test processors connect
ed to links is set and the testing data value cleared.

The next step in the worm program, shown in Fig. 7-10, is very important.
To avoid trying to test its parent and experiencing the resulting complications, each
processor must know where its parent is. The processor can find its parent by en
tering an ALT structure which attempts an input on each of its links (line 9). The
link connected to the parent then carries a dummy value from the parent processor
to the worm (sent in line 17, Fig. 7-11). The link over which the dummy value is
passed is the parent link. At this point, the processor stops and waits for a further

188 Parallel Programsfor the Transputer



Chapter 7

PROC poke.link(CHAN OF ANY link.in,link.out)
TIMER timer:
INT time:
VAL [4]BYTE byte. address RETYPES address:
VAL [4]BYTE byte.data RETYPES data:
[14]BYTE s:
SEQ

s[O] :=(BYTE 0)
[s FROM 1 FOR 4] := byte. address
[s FROM 5 FOR 4] := byte.data
s[9] :=(BYTE 1)
[s FROM 10 FOR 4]:= byte. address

Worms

--test sequence

timer? time --check time
OutputOrFail.t(link.out,s,timer, (time PLUS

LinkTimeOut),Aborted)
IF

Aborted --no response
SKIP

TRUE --response
SEQ

timer? time
InputOrFail.t(link.in, [s FROM 0 FOR 4],timer,

(time PLUS LinkTimeOut),Aborted)

Figure 7-9
Link-testing process for a simple wonn

SEQ link=O FOR Number.of.Links
SEQ

child.link[link] :=NotTried
child[link] :=FALSE

Number.of.Children:=O
data:=O
address:=start
ALT link=O FOR Number.of.Links

link.in[link]? parent.link
parent.link:=link

link.in[parent.link]? data

Figure 7-10
Initialization code for the simple worm

Parallel Programs for the Transputer

--clear data

--find parent

--command?

189



Worms Chapter 7

command from its parent. Since the worm is doing a sequential search, this wait
prevents more than one processor at a time from testing its own links. When the
processor does receive a command, it is ready to begin testing.

The testing proceeds sequentially on each link in turn in numerical order.
Figure 7-11 shows the simple worm's code for testing and booting. As each of the
links is tested in turn, the IF statement ignores the parent link and only tests the oth
ers. Testing a link is accomplished with the poke. 1 ink routine described earlier.
If the output is not read in by the supposed processor at the other end of the link,
Aborted will be set TRUE and the link will be ignored thereafter. If the output
succeeds, Aborted is FALSE and the new processor can be booted. Note that if
there is a processor at the other end of the link that has already been booted, it will
not be listening to this link; it will either be waiting for a test command from its
parent or running the control code in Fig. 7-12. In neither case will an already
booted processor input the test string output by the testing processor. Thus a link
test can only succeed if there is an unbooted processor connected to the link.

Once the worm program has detennined that there is a new (unbooted) pro~

cessor off a particular link, the wonn proceeds to boot it. In order for the worm to
do this, the processor must output the bootstrap code, the parameters associated
with the bootstrap, and the worm itself. Notice that these link outputs are matched
exactly by the inputs found in the bootstrap. The last value output is a dummy. It
simply tells the new worm which link is its parent. This dummy output corresponds
directly to the input done by the ALT structure in Fig. 7-10.

When the new processor has been booted, the worm records the fact by set
ting the appropriate child element to TRUE, assigning the link value to the prop
er element of child. link, and adding the new processor to the total count by
incrementing Number. of. Children. When all of the links of a given proces
sor have been tested, the processor notifies its parent by passing the total number
of the processor's new children back to the parent. At this point, the processor's
children have been booted but have not yet tested their own links.

Once a processor has completely tested its links and possibly booted some of
its own children, it is responsible for passing commands between its parent and its
new children. The control code for doing this is shown in Fig. 7-12. This portion
of the simple, sequential worm is really the most complex. As long as the processor
has some unexplored descendant, it must continue to pass instructions to its chil
dren. When all of its descendants have tested their links, the exploration is done
and the wonn's task is finished. The worm always knows how many unexplored
descendants it has since, after doing the testing, each descendant returns the count
of its children just booted. This count is passed upward through the network to the
controller.

The variable sum (in Fig. 7-12) keeps a running count of the number of each
processor's descendants which have not yet tested their links. Initially, sum is set
to the number of children that the worm has just booted and whose links still need
to be tested. This sum is then passed to the processor's parent. The worm program

190 Parallel Programs for the Transputer



Chapter 7 Worms

SEQ link=O FOR Number.of.Links
IF

link=parent.link --parent link
SKIP

TRUE --link to test
CHAN OF ANY Link.under.Test IS link.out[link]:
SEQ

poke.link(link.in[link],Link.under.Test)
IF

Aborted --set by poke. link
SKIP

TRUE
SEQ --boot child

Link.under.Test! boot.code
Link.under.Test! boot.data
Link.under.Test! worm. code
Link.under.Test! 0 --dummy output
child. link [Number. of.Children] := link
Number. of.Children:=Number. of.Children+l
child[link] :=TRUE

link.out[parent.link]! Number.of.Children --tell parent

Figure 7-11
Test and boot code for the simple wonn

--do test
--descendants?

--wait for command
--test children

--descendant count

--no descendants
--no more tests

--some descendants
--count descendants

--don't test

--test all descendants

sum

TRUE
SKIP

link.out[parent.link] !

sum: =Number. of.Children
WHILE sum>O

SEQ
sum:=O
link.in[parent.link]? data
SEQ test=O FOR Number.of.Children

VAL INT test.link IS child.link[testl:
IF

child[test.link]
SEQ

link.out[test.link]! 0
link.in[test.link] ? data
IF

data=O
child[test.link] :=FALSE

TRUE
sum:=sum+data

Figure 7-12
Control code for the simple worm

Parallel Programs for the Transputer 191



Worms Chapter 7

then enters a WHILE loop in which it remains until sum equals zero and the worm
has no untested descendants. The chi ld array is now used to keep a record of
which children still have their own untested descendants. Those children are still
active; the others can be ignored. Initially, none of the worm's children has tested
its own links, the children are all active, and the array simply contains a record of
each child that exists.

Once all of the links have been searched, the control loop proceeds by clear
ing sum. The controlling node initiates a new test by sending a command down to
its active children. Each worm receives the test command from its parent. The
worm passes the test command in turn down each link with an active child. Each
active child will pass the command and wait for a response from each of its active
children. The message will only stop at a processor with no children or a processor
whose links have not been tested.

The worm program finds the links with active children by testing child.
If chi ld is TRUE, the child off that link: is active, the command is passed, and a
count is returned by the testing node. If the count returned is zero, there are no more
unexplored descendants on that link and child is set FALSE (child is inactive) so
that no more commands will be passed down the link. If the count is not zero, sum
accumulates the count. When all of the links have been checked, the worm passes
the total count up to the parent processor. Since the parent processor is running the
same routine as its child, the parent in turn passes the total received from all its chil
dren up the tree until eventually the root node receives a total count ofnewly booted
processors for the network. Thus, with a single command, an entire generation of
descendants will be instructed to search its links, one processor at a time.

When a worm has no more untested children, its work is complete and the
processor can proceed to its final task, executing a user program. This might be a
fanning program such as that illustrated in the chapter on processor farms. As a
simple example of a user program following the worm, the network simply counts
its members. Figure 7-13 shows the code necessary to do this. If a processor has
no children, it sends to its parents a one, counting itself. A processor with children
reads the counts passed by its children, sums them, increments the total, and passes
it to its parent. The root node will then receive the complete count.

sum:=l
SEQ test=O FOR Number.of.Children

SEQ
link.in[child.link[test]]? data
sum:=sum+data

link.out[parent.link]! sum

--count me
--check all children

--children?
--sum descendants

--tell parent

192

Figure 7-13
User program following the simple worm

Parallel Programs for the Transputer



Chapter 7 Worms

--initial boot

--test next generation
--number new nodes

--total nodes in tree

INT count:
SEQ

SEQ
out! T8.bootstrap
out! [code.length,entry.offset,work.space.size]ibinarYiO

count:=l --one alive
WHILE count>O --while someone alive

SEQ
out! 0
in? count

in? count

Figure 7-14
Root node control code for the simple wonn

The root processor code necessary to start and run the simple, sequential
wonn discussed in this section is very simple and is shown in Fig. 7-14. The frrst
wonn is booted from a known link, and after a test command is sent to it, the frrst
wonn returns a count of the processors it in turn booted. Another test command is
then sent, and the process is repeated as long as the count returned is greater than
zero. When the count returned is zero, the exploration is finished and the controller
inputs the total count of processors in the network.

This simple, sequential wonn, when compiled with all compiler flags off, re
quires 760 bytes of code and work space and can test a 120-node network in less
than 8 seconds using a 32 msec time-out for the link tests. The time required de
pends to a great extent on the time-out value used. Every test of an unconnected
link, or of a link connected to a processor already booted, will time-out. Since tim
ing-out happens frequently, and only one test proceeds at a time, the overall search
ing rate is quite slow.

A Simple, Parallel Worm

Running a parallel wonn is a bit like driving an automobile without a steering
wheel. Once you have started it is difficult to remain in control. Nonetheless, it is
possible to create a simple, parallel wonn program which runs very fast, is quite
small, and is very simple to control. The parallel wonn described here is similar to
the simple, sequential wonn in that it constructs a tree from a network of unbooted
processors without attempting to discover anything about connected neighbors that
are neither parent nor child. The parallel wonn program is especially suitable for
quickly booting processor farm applications on arbitrary networks.

The overall structure of the parallel wonn is shown in Fig. 7-15. This struc
ture is similar to the sequential version, but has three important differences. First,
all of the links are tested in parallel; second, the link test uses the boot code itself
rather than the poke. 1 ink process; and third, no control loop is necessary since

Parallel Programs for the Transputer 193



Worms

PROC worm([10]INT link.data, []BYTE worm.code)
... Channels and Variables
SEQ

clear values
find parent

PAR link=O FOR Number.of.Links
IF

link=parent.link
SKIP

TRUE
SEQ

test links
if child found, then boot

count children
INT sum, data:

execute main program or return

Figure 7-15
High-level view of the parallel WOnD

Chapter 7

Fig. 7-17

Fig. 7-18
Fig. 7-18

Fig. 7-19
Fig. 7-19
Fig. 7-19

Fig. 7-13

Link

Unconnected

7-19,14 7-19,14

194

Figure 7-16
A portion of a network under investigation by the parallel WOnD

Parallel Programs for the Transputer



Chapter 7 Worms

each processor is running independently and has no need to report to its parent or
to the root node. This link testing approach lacks finesse, but using it simplifies the
control procedures for multiple worms running at the same time. The sequential
worm could also use the same link testing approach and would then run somewhat
faster.

Figure 7-16 depicts the same network shown in Fig. 7-7, but, in this case, the
network is being explored by the parallel worm. The link and figure notations in
this figure are similar to those in Fig. 7-7. This time, the network has three active
processors investigating their links at the same time. Two other processors are
done, and one is yet unexplored. The children of the two active processors at the
bottom of the tree are not shown. Once again, you will find it very helpful to refer
to Fig. 7-16 as you read through the text and programs.

The methods used for booting the parallel worm are identical to those de
scribed earlier for the sequential worm. Figure 7-17 shows the variables and chan
nels used. The only real difference between this and Fig. 7-8 (showing the defini
tions for the sequential worm) is the omission of the sum, address, and data
values, and the start address. The Aborted flag used for the Outputor
Fai 1 • t call is declared later in the parallel worm.

After it is booted, the parallel worm begins running by clearing the children
count and the list of chi ld. 1 ink, and by setting the chi ld variables to TRUE
(Fig. 7-18). Initially, the child variable is used to keep track of links which might
be connected to the parent, and does not indicate whether a child on a link is booted.
Later, child will indicate whether a child on a link is booted, and will be initial
ized to FALSE.

In order to find its parent, a processor running the parallel worm cannot sim
ply construct an ALT and listen on all of its channels as the sequential worm does,
because there may be many active processors running at any given moment and one
of them may be trying to test this particular processor. If an ALT reads the test in
put from a processor other than its parent, it might become confused. So that the
worm can distinguish between the test of another processor and a message from its
parent, the worm inputs the first byte and examines it. A boot packet cannot begin
with a zero byte because a zero indicates a memory write down a link rather than
program code. Therefore, if the parent passes a zero byte, the child can readily dis
tinguish the parent from other testing processors. To accomplish this, the parallel
worm sets a comparison byte to 1 and enters a WHILE loop, which repeatedly does
an ALT input on its channels and waits for a zero byte on a link. If a byte which is
not a zero arrives, it must be the first byte of a boot packet, and the entire packet
must be disregarded since it is not from the parent processor. To prevent subse
quent inputs on the same link, the input for the ALT structure uses a guard, the
chi Id boolean. When a nonzero byte does arrive on a link which is not connected
to the parent, the boolean is set to FALSE and the data on that link are ignored.
Eventually, the parent will get its zero byte through, the parent link is determined,

Parallel Programs for the Transputer 195



Worms

fUSE reinit
fUSE "bootstrap_lib.tsr"
VAL boot.code IS T8.bootstrap:
VAL INT Number.of.Links IS 4:
VAL INT LinkTimeOut IS 500:

[Number.of.Links]CHAN OF ANY link.in,link.out:
PLACE link. out AT 0:
PLACE link.in AT Number.of.Links:

Chapter 7

boot.data IS [link.data FROM 0 FOR 3]:
INT parent.link IS link.data[3]:
INT Number. of. Children IS link.data[4]:
[Number.of.Links]INT child.link IS [link.data FROM 5 FOR

Number. of. Links] :
[Number.of.Links]BOOL child:

VAL INT NotTried IS -1:

Figure 7-17
Variables and parameters for the parallel worm

SEQ
SEQ link=O FOR Number.of.Links

SEQ
child.link[link] :=NotTried
child[link] :=TRUE

Number.of.Children:=O
BYTE byte:
SEQ

byte:= (BYTE 1)
WHILE byte <> (BYTE 0)

ALT link=O FOR Number.of.Links
child[link] & link.in[link]? byte

IF
byte = (BYTE 0)

parent.link:=link
TRUE

child[link] :=FALSE
SEQ link=O FOR Number.of.Links

child[link] :=FALSE

Figure 7-18
Start-up code for the parallel worm

--clear everything

--wait for parent
--wait for input

--parent

--somebody else

--clear

196 Parallel Programs for the Transputer



Chapter 7 Worms

and the WHILE loop is escaped. The child variable is then set to FALSE and
serves as a record of processors booted, just as it does for the sequential WOnD.

Once a processor's parent link has been determined, the WOnD is ready to test
the rest of the links (Fig. 7-19). This testing operation can proceed in parallel on
each of the links. Since most of the time in the test code is spent doing link input
or output, a parallel structure should work very efficiently.

The parallel WOnD proceeds with testing links by constructing a PAR struc
ture for each of them. Each parallel process must create its own variables and ab
breviations. Aborted is defined as the time-out boolean. The link associated
with each process is abbreviated to distinguish it from the other links, as are the
variables which keep track of which link has a child booted on it.

If a process' link is the parent link, it does not need to be tested. If the link
is not the parent link, testing must proceed. The testing is done very simply, by the
program trying to output the frrst byte array necessary to boot a processor. If this
attempt fails, the test will time-out and Aborted will be set to TRUE. If, on the
other hand, the attempt succeeds, the WOnD program knows that there is a child to
be booted off the link and it proceeds to complete the boot process by passing the
boot data and WOnD code. The last byte sent to the new child from the processor
must be a zero byte which informs the new child which link is connected to its par
ent. This output (the zero byte) corresponds directly to the ALT input done in Fig.
7-18. Finally, once the child is booted, the child variable must be set to TRUE
and the link recorded.

When all of the processor's links have been tested and the available children
booted, the worm should consolidate the information from each of the parallel pro
cesses so it can easily pass information to its children. The worm readily accom
plishes this consolidation by testing chi ld to see which links have children, copy
ing the link numbers down into a consecutive list, and counting the number ofchil
dren booted.

At this point the worm is finished and the program that follows the worm can
begin executing. As with the sequential worm, we use as an example of an appli
cation program a simple procedure for counting the number of nodes in the net
work. Each processor checks its children and inputs the number of descendants
each child has. These are then summed and passed to the parent. The code to do
this is identical to that of the sequential worm (with the added definition of the in
teger variables sum and data) and is shown in Fig. 7-13.

The root node control program which runs the parallel worm is even simpler
than that for the sequential WOnD. All that is necessary is for the controller to boot
the frrst processor and wait. At the end of the program, the count of the number of
processors can be read in. The control code is shown in Fig. 7-20.

The structure developed by a parallel worm is interesting to examine. Figure
7-21 shows the tree constructed by the parallel worm on a 20-node toroidal network
with the root connected to the top link of the upper right node. Although the tree

Parallel Programs for the Transputer 197



Worms Chapter 7

PAR link=O FOR Number.of.Links --test all links
BOOL Aborted:
CHAN OF ANY Link. under. Test IS link. out [link] :
child.link IS child.link[link]:
child.exist IS child[link]:
IF

link=parent.link --skip parent link
SKIP

TRUE --test this link
TIMER timer:
INT time:
SEQ

timer? time
OutputOrFail.t(Link.under.Test,boot.code,timer,

(time PLUS LinkTimeOut),Aborted)

--no answer

--answer so boot

--make a list of children

boot.data
worm. code
(BYTE 0)

IF
Aborted

SKIP
TRUE

SEQ
Link.under.Test!
Link.under.Test!
Link.under.Test!
child. link :=link
child.exist:=TRUE

FOR Number.of.LinksSEQ link=O
IF

child[link]
SEQ

child.link[Number.of.Children] :=child. link [link]
Number.of.Children:=Number.of.Children+l

TRUE
SKIP

Figure 7-19
Test and boot code for the parallel worm

INT count:
SEQ

out! T8.bootstrap --start first one
out! [code. length,entry.offset,work. space. sizel
out! binary; (BYTE 0)
in? count --wait for reply

Figure 7-20
Root node control code for the parallel wonn

198 Parallel Programs/or the Transputer



Chapter 7

Figure 7-21
Tree constructed by the parallel worm

Worms

is not identical with that created by a breadth-frrst search, it is roughly similar and
no deeper. The same tree is constructed every time the wonn is executed.

The parallel worm that has been described in this section is very small and
very fast. The total code and work space requirement is 715 bytes. On a 120-node
system, this worm finishes exploring in less than 0.04 seconds using a link time-out
value of 32 msecs.

A Robust, Exploratory Worm

A common use for worms is exploring and testing unknown networks of un
known reliability. In this case, it is imperative that the wonn be able to recover
from hardware faults and that a report be passed to the root node describing the net
work and any failures found. This requirement makes the worm much more com
plicated and the exploration strategy more involved. An exploratory worm in an
unknown network of unknown reliability must also make a complete report of all
the interconnections in the network, not just those ofparent and child as in our two
previous examples.

This exploratory worm is sequential and can search a network in any way the
root node desires. Since every node tested requires a separate command, the order
ing of node tests is arbitrary. For this example, the root node will do a breadth-fIrst
search, and after every test, a complete report of the fmdings of the node tested will
be returned to the worm controller on the root node. If for some reason a commu
nication should fail, a failure can be reported as well.

A truly robust worm, one which can recover from any error whatsoever, is
difficult to construct. After all, in the worst case, the power could fail for the entire

Parallel Programs for the Transputer 199



Worms Chapter 7

system, leaving the user with a blank screen. Less drastic errors, however, do oc
cur; one of the most difficult to detect is that of intennittent failures on a link or
processor. Special efforts must be made by the worm to recover from and report
such failures. The exploratory worm described here allows the user to repeatedly
test.a single node in the hope of being able to discover such intermittent failures.

In Fig. 7-22 the high-level structure of the exploratory worm is listed. The
exploratory worm uses the same routines for booting that the simple sequential and
parallel worms did. The parameters are passed in by the bootstrap at the beginning
and the channels and variables defined together with two input and two output rou
tines. Of these routines, two are used for testing and the others for passing integer
messages up and down the network tree created by the worm. The poke routines
write to the link, and the peek routines read from the link.

The diagram shown in Fig. 7-23 to illustrate the exploratory worm program
is slightly different from the earlier diagrams. This time the active node is connect
ed to another child and has only two children of its own on the bottom layer. The
links are ordered as shown rather than from left to right as before. In this diagram,
the top processor has booted both of its children, one of which is now active and
investigating its own links and is waiting for something to happen on any link. At
the moment depicted in the diagram, the active node has just sent a test message to
the node on the left and is receiving a reply from it.

After the initial procedure definitions, the exploratory worm begins execut
ing. Its fIrst actions are to clear the pertinent variables and find its parent. Once
these have been done, the worm enters a WHILE loop in which it remains until in
structed by a kill command to exit. The WHILE loop consists of an ALT input on

PROC wonm([lO]INT link.data, []BYTE worm.code)
Channels and Variables
Proc Poke.int (channel,int)
Proc Poke.link(channel)
Proc Peek.link(channel)
Proc Peek.int (channel,int)

SEQ
... clear values
... find parent and read data
WHILE (status <> kill)

ALT link=O FOR Number.of.Links
link.in[link]? status

IF
message from parent
message from child
message from unknown

Figure 7-22
High-level code for the exploratory worm

Fig. 7-24
Fig. 7-25
Fig. 7-25
Fig. 7-25
Fig. 7-25

Fig. 7-26
Fig . 7-26

Fig. 7-28
Fig. 7-27
Fig. 7-27

200 Parallel Programs for the Transputer



Chapter 7

7-27,10

?

Unconnected

?

7-22,12

Worms

Figure 7-23
A portion of a network under investigation by the exploratory wonn

every link:, followed by the appropriate action. If the input is from the parent pro
cessor, the worm must respond, usually with a test and boot procedure. If the input
is from a child, the worm simply passes the data back up the tree to the parent. If
the input is from an unknown processor, the worm assumes it is being tested and
responds appropriately.

The basic action of the worm, then, is to respond to link inputs. Inputs from
parents are commands to be acted upon; inputs from children are not acted upon
and are simply passed along; other link inputs are assumed to be other processors
trying to test the link. These tests are replied to and recorded, but no action is taken
by the worm.

Figure 7-24 lists the constants, and the channel, variable, and library defi
nitions for the exploratory worm; most of them are the same as those of the two
previous worms. A few additional constants and variables are added: the variable
me uniquely identifies each processor; a list ofprocessors (proc. list) connect
ed to each link is maintained with an extra boolean for link input; the action of the
worm is controlled by the status variable; and the address and data values
are much as before. A list of constants representing the various failure modes of
the processors or the responses to the link tests is also defined.

Parallel Programs for the Transputer 201



Worms

fUSE reinit
fUSE "bootstrap_lib.tsr"
VAL boot. code IS T8.bootstrap:
VAL INT start IS 180000000:
VAL INT Number.of.Links IS 4:
VAL INT LinkTimeOut IS 500:

[Number.of.Links]CHAN OF ANY link.in,link.out:
PLACE link. in AT Number. of ~-Links:
PLACE link.out AT 0:

Chapter 7

boot.data IS [link. data FROM 0 FOR 3]:
INT Parent.Link IS link.data[3]:
INT Number.of.Children IS link.data[4]:
[Number.of.Links]INT child.link IS [link.data FROM 5 FOR

Number. of. Links] :
INT me IS link.data[5+Number.of.Links]:

[Number.of.Links]BOOL child:
[Number.of.Links]INT proc.list:
BOOL Aborted,In.Aborted:
TIMER timer:
INT address, data, status:

·VAL INT TimedOut
VAL INT NotTried
VAL INT Kill
VAL INT NewProcessor
VAL INT BadProcessor
VAL INT NoProcessor
VAL INT LiveProcessor
VAL INT MemoryError
VAL INT LinkError
VAL INT SelfConnected

IS -1:
IS -1:
IS -1:
IS -2:
IS -3:
IS -4:
IS -5:
IS -6:
IS -7:
IS -8:

Figure 7-24
Variables and parameters for the exploratory worm

PRoe peek.link(CHAN OF ANY link)
INT time:
[10]BYTE s:
SEQ

timer? time
InputOrFail.t(link,s,timer, (time PLUS

LinkTimeOut),In.Aborted)

Figure 7-25
Link input/output routines for the exploratory worm

202 Parallel Programs for the Transputer



Chapter 7 Worms

PROC peek.int(CHAN OF ANY link,INT result)
INT time:
[4]BYTE s RETYPES result:
SEQ

timer? time
InputOrFail.t(link,s,timer, (time PLUS LinkTimeOut),Aborted)

PROC poke.int(CHAN OF ANY link,VAL INT value)
INT time:
VAL [4]BYTE s RETYPES value:
SEQ

timer? time
OutputOrFail.t(link,s,timer,

(time PLUS LinkTimeOut),Aborted)

PROC poke.link(CHAN OF ANY link)
INT time:
VAL [4]BYTE byte. address RETYPES address:
VAL [4]BYTE byte.data RETYPES data:
[14]BYTE s:
SEQ

s[O] :=(BYTE 0)
[8 FROM 1 FOR 4] :=byte.address
[8 FROM 5 FOR 4] :=byte.data
s[9] :=(BYTE 1)
[8 FROM 10 FOR 4] :=byte.address

timer? time
OutputOrFail.t(link,s,timer,

(time PLUS LinkTimeOut),Aborted)

Figure 7-25 (cont.)
Link input/output routines for the exploratory wann

SEQ i=O FOR Number.of.Links
SEQ

proc.list[i]:=NotTried
child[i] :=FALSE

Number.of.Children:=O
status :=0
ALT i=O FOR Number.of.Links

link.in[i]? meiproc.list[i]
Parent.Link:=i

Figure 7-26
Variable initialization for the exploratory wann

Parallel Programs for the Transputer 203



Worms Chapter 7

The exploratory worm uses four link input and output routines (Fig. 7-25).
These routines are all similar. The frrst process, peek .link, tries to read in a 10
byte string, using InputorFail. t. If it fails to input the string, a boolean,
In. Aborted, is set. The second process, peek. int, tries to read an integer
and, upon failure, sets the boolean Aborted to TRUE. The third process,
poke. int, attempts to output an integer down a link using the Outputor
Fa i 1 . t process. The integer passed must be retyped into a byte string. If the out
put fails, Aborted is set to TRUE; otherwise it is set to FALSE. The fourth pro
cess, poke .link, does the same thing, but with a test string instead of a simple
integer. The string is a write-then-read memory test with a beginning byte of zero,
an address, and a data value, followed by a read address command. All of these are
compacted into a 14-byte string. Once again, if the string cannot be output,
Aborted is set to TRUE.

Notice that these peek and poke routines are complementary. Process
poke .link is the complement of peek. int followed by peek .link;
poke .link outputs 14 bytes; and peek. int followed by peek .link inputs
14 bytes. Thus the peek routines can be used to "swallow" tests from other proces
sors. The two peek and poke integer routines are useful for passing integer mes
sages from one processor to another.

Following the definition of the variables and procedures, the exploratory
worm can begin executing (Fig. 7-26). Its fIrst action clears the variables which
record the processor list and the record of children booted in child. The child
count and the status parameter are set to zero as well. Once these preliminaries
are out of the way, the worm can search for its parent. This search is done in the
usual way, with an ALT waiting on all of the link inputs. The parent processor that
booted this worm must pass a value to the child wonn to enable it to find the parent
link. The frrst value read in from the parent, however, is not just a dummy as it was
for the simple sequential and parallel worms, but the value me, which is the node's
particular identification number. A second value, the parent processor's identifica
tion number, follows and is stored in the list of processors.

Following this initial interaction, the worm is ready to begin active duty. It
enters a WHILE loop controlled with the status value (Fig. 7-22). The program
simply waits in a loop for an integer input on any link. If the link providing the
input is the parent link, the worm considers the input to be a command; if the input
is from a child link, the data is passed to the parent; and if the input is from any
other link, the processor concludes that it is being tested by another processor. Af
ter each input has been handled, and unless the kill command was sent, the worm
returns to waiting for another input.

The responses to the last two possibilities (input from any nonparent link)
will be described frrst and are shown in Fig. 7-27 together with a repetition of the
IF statement and the parent link comparison. If the link on which the input was re
ceived is neither a parent link nor a child link, no response to the parent is expected.
However, if a child is passing the data (child [link] is TRUE), the data must

204 Parallel Programs for the Transputer



Chapter 7

IF
link=Parent.Link

... message from parent

child[link]
link.out[Parent.Link]! status

TRUE
SEQ

peek.link(link.in[link])
link.out[link]! me
link.in[link]? proc.list[link]

Worms

--parent
Fig. 7-28

--child

--unknown

--read remainder
--reply

Figure 7-27
Response to child or unknown input for the exploratory worm

link=Parent.Link
IF

status=me --message for me
INT node:
SEQ

link.in[link]? node --node count
SEQ

SEQ link. under. test = 0 FOR Number.of.Links
CHAN OF ANY Test.Link IS link.out[link.under.test]:
IF

proc.list[link.under.test]=NotTried --test
INT input.status,word:
SEQ

PAR
output link test
input link response

act on test results
TRUE

SKIP
link.out[Parent.Link]! nodeiproc.list

Fig. 7-29
Fig. 7-30
Fig. 7-31

--don't test

--return data
TRUE

SEQ test=O FOR Number.of.Children --message for children
poke.int(link.out[child.link[test]],status)

Figure 7-28
Response to command from root node for the exploratory worm

Parallel Programs for the Transputer 205



Worms Chapter 7

in turn be passed on to the parent by an output on the parent link. Since the sta
t us variable is being used to store the initial link input, the data must not be equiv
alent to a kill command (which causes the worm to stop). If the input is not from a
child or a parent, it is assumed to be from some other processor, and the only thing
this other processor could be doing is testing one of its links. To avoid hanging up
the link, the program must read in the entire test string (14 bytes). The frrst 4 bytes
have already been read in with the ALT input to status and the remaining 10
bytes can be read in with peek .link. Once the test string has been read, the test
ing processor will expect a reply because the test string includes a four-byte read
after the write. The worm responds with the value me, infonning the remote worm
of the identity of its new neighbor. The remote worm, discovering that its test sub
ject is already alive (because the me response is different from the data value it tried
to write over the link), replies in turn with its identity, which is stored away in the
processor list.

The most involved work for the worm comes with a command from its par
ent. Commands received on the parent link have been passed down the tree from
the control node. The code the worm uses for responding to a command from the
controller is shown in Fig. 7-28. This command may be either for the processor
itself or for one of its descendants, with the two cases distinguished by the s tatus
value read in. If status equals the processor's identity value, me, the message is
for the processor. If it is not, the command message is for one of the processor's
children, and the worm program passes the message on to all its children with
poke. int calls. Notice that this procedure amounts to a broadcast from the con
trolling root node to every node in the tree except for the descendants of the node
for whom the message is intended. This communication time is wasted for all the
processors for whom the message is not intended, but this is unimportant since
these other processors are simply waiting for an interaction anyway.

If the command is intended for the local processor, the worm reads a second
value and stores it in the variable node. This variable is the count of the number
of processors booted so far in the exploration. Since the processors are numbered
in the order in which they are booted, node also represents the number of the next
processor to be booted. (The frrst node booted is zero.) Since node is not equal
to any booted node's identification number, processors above the local one will
pass it on just as they did status earlier.

After receiving the node value, the worm progresses into its test state. In
this state, each of the links is examined in order. The link being tested is abbrevi
ated and, if this link has not been used before, the test proceeds. The parent link
and any neighbors who have tested a link earlier will already have data in pro
c .list and will therefore be skipped. The link test proceeds in two stages: fIrst
a memory read/write is sent down the link, and at the same time, listened to on all
other links; and then the message returned is analyzed and acted on.

There are basically four things that can happen on a good network at this
point: the link being tested may be unconnected, connected to an unbooted proces-

206 Parallel Programs for the Transputer



Chapter 7

SEQ
address:=start
data:=NewProcessor
poke.link(Test.Link)

Figure 7-29
Link test output for the exploratory worm

Worms

--send test

INT time:
SEQ

timer? time
ALT --wait for reply or time-out

ALT link.returned=O FOR Number.of.Links
CHAN OF ANY Return.Link IS link.in[link.returned]:
Return.Link? word --reply

IF
link. returned<>link. under. test --me

SEQ
peek.link(Return.Link) --read test
proc.list[link.returnedl :=me
input.status:=SelfConnected

word=NewProcessor --new proc
input.status:=NewProcessor

TRUE --booted proc
input.status:=LiveProcessor

timer? AFTER time PLUS LinkTimeOut --time-out
input.status:=TimedOut

Figure 7-30
Link test input for the exploratory worm

Parallel Programs/or the Transputer 207



Worms Chapter 7

sor, connected to a booted processor, or connected to the same processor as is doing
the test (connected to itself). In the last case, the link input must execute in parallel
with the output to successfully respond. For this, a PAR structure is used, with the
output on one side and the input on the other side.

The output code for the exploratory worm's link test is very simple and is
shown in Fig. 7-29. The address of the memory test is set, the variable data is set
to NewProcessor (a number which cannot be a node identification number), and
the link is tested with poke . link. The input code in the second half of the PAR
is found in Fig. 7-30. An ALT listens on every channel, with a time-out. Variable
input. status is used to record the result. If no input occurs, the input times
out and input. status is set accordingly. If an input is received, but not on the
same channel which output the test, then the processor must have a link connected
to itself. This fact and the link connections are then recorded. If an input is re
ceived on the same channel, then the worm concludes that there is another proces
sor on the other end. If the value of the input received is the same as that sent
(NewProcessor), the worm assumes that the processor has not been booted be
fore. If the value of the input received is different than the one sent, the worm as
sumes that another living processor has responded with its own identity, and sets
the input. status accordingly.

Once the test results have been obtained, the worm acts on those results as
shown in Fig. 7-31. First, if the output and the input timed out, the worm assumes
that there is no processor on the other end of the link. But if the output timed out
and the input did not, something strange happened, and proc. state records the
situation as a bad processor. Likewise, if the output was all right but the input was
not, a bad processor is again recorded. This second problem could also indicate an
intermittent link.

If the status indicates a living processor, the worm program must return its
identity to the remote processor and store the remote processor's identity in
proc. state. This exchange corresponds with the message-from-unknown link
response found for the initial ALT input as shown in Fig. 7-27. The unknown pro
cessor's input of a test string, response output, and subsequent input corresponds
with the worm's test output, response input, and identity output.

If input. status indicates that a new processor has been found, the new
processor is booted. The link down which the new processor is booted is recorded
by the worm, and the count of children is incremented. The worm then passes the
new node value and its own identification number to the new child. The new node
value becomes that child's identification number. This identification number out
put corresponds with the original ALT input immediately following the clear code
at the start-up of a worm (Fig. 7-26). The new proc~ssor connection is recorded in
proc. state, child is marked TRUE, and the node count is incremented.

It is also possible, after the initial link test is completed and a new processor
has been found, to do a more intensive memory test of the new processor rather than
just booting it. Using the read/write commands on the link, the worm can test the

208 Parallel Programs for the Transputer



Chapter 7 Worms

INT proc.state IS proc.list[link.under.testl:
IF

Aborted --no output
IF

input. status = TimedOut --no output no reply
proc.state:=NoProcessor

TRUE --no output, reply
proc.state:=BadProcessor

TRUE --output
IF

input. status TimedOut --no reply
proc.state:= BadProcessor

input. status = NewProcessor --boot
SEQ

Test.Link! boot. code
Test.Link! boot.data
Test.Link! worm. code
child.link[Number.of.Children]:= link.under.test
Number.of.Children:=Number.of.Children+l
Test.Link! nodeime
proc.state:= node
child[link.under.testl :=TRUE
node:=node+l

input.status = LiveProcessor --node
SEQ

Test.Link! me
proc.state:=word

TRUE --self-conected
proc.state:=me

Figure 7-31
Action on link test results for the exploratory worm

Parallel Programs for the Transputer 209



Worms Chapter 7

--test until none left

--send test
--reply, number & data

--next node
--done

entire memory space of the processor to discover its size and whether any bad
memory locations exist in the new processor's memory. These tests can conve
niently be done just before the boot procedure. If a memory error is found, the pro
cessor state can be set to MemoryError and the link ignored. The memory-test
code is not included in this worm program.

After all of the links have been checked, the wonn returns to the code shown
in Fig. 7-28. The link: information and node count acquired are passed to the parent
processor, and the worm goes back to waiting for a new input or command as
shown in Fig. 7-26. Note that a second test command to the worm will invoke the
same reply; the data acquired in the frrst set of tests will simply be returned.

If a kill command is sent by the controller, the command will be broadcast to
every processor in the network since the command is different from any processor
identification number. When a kill command is received, the worm will take no
further action, but will simply escape the WHILE loop and return to the bootstrap.

The root node control code for this robust exploratory worm is somewhat
more complex than that of the previous two examples, but is still fairly simple. Fig
ure 7-32 shows the listing for the root node control code in the exploratory worm.
After the frrst processor is booted, the node count is set to one and the current node
under investigation is set to zero. The new worm's identity (zero) and the root
node's own identity (here set arbitrarily to -33) are exchanged to complete the ini
tial handshake. The controller then continues into a WHILE loop in which it will
remain until every processor has been instructed to test itself. Once the controller
is in the WHILE loop, the test command for the current node and the node count

VAL Number.of.Links IS 4:
VAL Max.Procs IS 512:
VAL Kill IS -3:
[Max.Procs] [Number.of.Links]INT list:
INT node, node. count:
SEQ

out! T8.bootstrap --boot first node
out! [code.length,entry.offset,work.space.size];binary
node:=O
node.count:=l
out! node; (-33)
WHILE node. count <> node

SEQ
out! node;node.count
in? node.count;list[node]
node:=node+1

out! Kill

Figure 7-32
Root node control code for the explomtory worm

210 Parallel Programs/or the Transputer



Chapter 7 Worms

are sent out. The WOnD does its test and responds with the current node count and
a list of its connections. The next processor is then instructed to test itself by pass
ing its identity and the latest count of processors. This process continues until the
number of processors tested equals the number loaded; all testing is then complete
and the controller passes a kill command to the WOnD.

The robust exploratory WOnD, although much more complex than the simple
sequential one, is also much faster since it does not time-out when communicating
with nonparent or nonchild neighbors. It searches a 120-node network in less than
0.22 seconds. The WOnD itself occupies 1269 bytes of code and work space.

The very simple control routine described here does not make any attempt to
deal with networks which do not behave properly. Improper behavior usually man
ifests itself to the controller by a complete lack of response to the controller's test
commands. This situation can be dealt with by a time-out ALT on the data input.
If such a time-out does occur, the controller can then find out where the error oc
curred by tracing back down the tree to the processor which was supposed to be
tested. The root node traces the tree by retesting each processor in the path to the
original processor under test. The first processor which does not respond is the one
at fault.

It is not possible, with the worm as programmed here, to determine with com
plete certainty which link failed. Ifa link failure occurred as a command was being
passed down the tree, the parent processor will time-out and resume duty. The par
ent processor can then be polled correctly and the error determined to be either the
child processor or the link between the parent and child. If the failure occurs as a
response is being propagated up the tree, the child processor will again fail to re
spond when a second inquiry is made. In this case, the parent processor could also
be at fault.

An important concern with worm programs is their code size. An exploring
WOnD that can run on any transputer network, regardless of the memory at each
node, is especially useful. To have this capability, the worm code itself must be I

able to fit into the on-chip memory in the transputer. All three of the examples de
scribed in this chapter require less than 2048 bytes of memory and will run on any
transputer with at least that much on-chip memory. A memory-testing routine fol
lowing the worm can then effectively test all the off-chip memory (if any), provid
ing a more complete system test.

In Summary

WOnD programs are one of the most interesting kinds of programs which can
be executed on a network of parallel processors. These programs can run on net
works of arbitrary size and interconnection and are completely portable between
networks of different structure. Worm routines are most useful for loading pro
grams on arbitrary networks and for testing and debugging networks of unknown
reliability and composition.

Parallel Programs for the Transputer 211



Worms Chapter 7

Worms programs can search networks in either breadth-first or depth-frrst or
der. A breadth-fIrst search is slightly more complex than a depth-fIrst search, but
results in a wider and shorter network with a smaller interprocessor communication
distance between the controller and the bottom of the tree.

Three worm programs are presented, two which are useful for loading appli
cation programs, and one which is capable ofexploring unknown networks. Of the
fIrst two wonns, the simple worm is slower but its search is completely controlla
ble, while the parallel worm is very small and fast, but can create unpredictable net
works. The exploratory worm is the largest and is capable of testing networks with
faulty processors and interconnections.

212 Parallel Programs/or the Transputer



Chapter 8

Real-Time Processing

Real-time processing is a natural application for small networks of parallel
processors. A real-time processor is one which must respond to external events in
the outside world within a fixed period of time, often before the next external event
occurs. These events can occur at either a random or a fixed rate. Transputer sys
tems are an excellent computing tool for real-time processing because they can be
readily structured to meet the computing demands of an application which must in
teract with the outside world. Doing real-time processing often requires irregular
computing structures, and the ability to easily structure and program a computer to
meet the needs of a peculiar task provides an inherent advantage for transputer
based parallel computers.

Because of their multitasking capabilities, transputer systems offer additional
advantages for the implementation of real-time systems. Real-time processing re
quires that an event in the real world be communicated to a computing system, a
response be determined by the computer, and an action taken. Frequently, addi
tional tasks in real-time systems execute at low priority when no external events in
terrupt the computer. When interrupts do occur, they are handled at a high priority
so that the system responds as quickly as possible to events in the real world. The
creation of and communication between tasks running in parallel are thus features
of real-time systems. This communication between processes and the external
world is very naturally modeled by occam processes and channels, and very natu
rally implemented by transputer microprocessors.

Minimizing hardware size and complexity is also an important goal in the de
sign of real-time systems. Because transputer links provide an integrated solution
to communication requirements within a computer, parallel computers based on
transputers can provide a very simple and compact solution to real-time processing
needs.

Not only is it important that real-time systems execute programs efficiently,
but also that they allow for the immediate input of external events. If the system is
busy processing previous events, it is difficult for it to input events without delay.
Ifevents occur, on average, more frequently than the time required to process them,
a real-time system will fall behind and be unable to respond to new events imme
diately.

Whether events occur at fixed intervals or randomly, a real-time system must
be able to process the events faster than the average rate at which the events occur,
and do so without delaying the input of any of the interrupting events. In a real-

Parallel Programs for the Transputer 213



Real-Time Processing Chapter 8

time system responding to randomly occurring external events, the system will oc
casionally have to deal with sudden flurries of events which occur faster than the
system can process them.

In this chapter are presented five programs which receive external interrupts
and compute responses. The effectiveness of each program is found by measuring
the average amount of time during which the program is unable to accept external
events. An effective interrupt handler will respond to every event with minimal de
lay, while a less effective program will often experience delays between the time
an event occurs and the time it is input.

Interrupt Handlers

A Simple Handler

The simplest possible interrupt handler is diagrammed in Fig. 8-1a and listed
in Fig. 8-1b. This program is used as the baseline program against which any im
proved program is compared. In the routine, an external event sends a signal to the
interrupt handler, which simply inputs the signal and computes the response. In
Fig. 8-1b, the signal is input on channel in and stored in value data, and the re
sponse is computed with process handler. The response computation is applica
tion-specific; thus no example is listed here. The most important thing to note
about this simple handler is that while it is computing a result it is completely un
available to input a second signal. Any external event which attempts to signal·the
interrupt handler will either have to wait or abandon the attempt.

External ......
event -----4~-..

Input

&

compute

Figure 8-1a
A very simple interrupt handler

INT data:
WHILE TRUE

SEQ
in? data
handler (data)

Figure 8-1b
Code listing for a very simple interrupt handler

- ....input
--work

214 Parallel Programs/or the Transputer



Chapter 8 Real-Time Processing

;:~~--_.....~I__I_np_ut__1work ~ Compuw

Figure 8-18
A parallel interrupt handler

CHAN OF INT work:
PRI PAR

INT data:
WHILE TRUE

SEQ
in? data
work! data

INT data:
WHILE TRUE

SEQ
work? data
handler (data)

Figure 8-2b
Code listing for a parallel interrupt handler

--input

--work

A ButTered Handler

By adding a second parallel process to the interrupt handler, we can vastly
improve it. The frrst process can perfonn the actual input while the second process
computes the response (Fig. 8-2a). If the input process is run at a higher priority
than the computing process, an external event can signal the handler even if the
handler is computing a response from a previous signal. Thus the parallel handler
essentially creates a high-priority buffer of size one in which to store interrupt
events. The code for this interrupt handler is listed in Fig. 8-2b.

Although the parallel interrupt handler will be much more responsive than
the simple input handler to external events, it will still fail if several events occur
in a time shorter than the time needed to process them. The frrst event will be
passed by the channel work to the computing process. Since the input process is
running at a high priority, it can immediately respond to a second external event.
However, the second event cannot be immediately passed along to the computing
process, since the computing process is still busy with the frrst event. If a third
event occurs, the input process will then be unable to respond.

Obviously, if the interrupt handler must respond to events occurring in quick
succession, it needs additional buffering of some sort in which to store events oc-

Parallel Programs/or the Transputer 215



Real-Time Processing Chapter 8

External
event

.... Input
buffer...

Buffer
work

Compute...... ,

Figure 8-3a
A simple buffered interrupt handler

curring too rapidly to be processed as they occur. Since this buffer must be of finite
size, in the worst case a sufficiently large number of events occurring in a short
enough interval will always cause the handler to either delay the event inputs or
lose the events entirely. The size of the buffer needed will depend on the relative
frequency and distribution of the external events and the processing time needed to
compute a response.

A buffered interrupt handler is diagrammed in Fig. 8-3a. Three processes are
now needed: one for the input, a second for the buffer, and a third to compute the
responses. Both the input and buffer processes must run at high priority, so that the
input can pass its data to the buffer as quickly as possible and thus be available to
input external events as much of the time as possible. The code for a simple buff
ered interrupt handler is listed in Fig. 8-3b. This handler uses a simple intermediate

CHAN OF INT work, buffer:
PRI PAR

PAR
INT data:
WHILE TRUE

SEQ
in? data
buffer! data

INT data:
WHILE TRUE

SEQ
buffer? data
work! data

INT data:
WHILE TRUE

SEQ
work? data
handler (data)

Figure 8-3b
Code for a simple buffered interrupt handler

--input

--buffer

--work

216 Parallel Programs for the Transputer



Chapter 8

[buffer.size]CHAN OF INT buffer:
PRI PAR

PAR
INT data:
WHILE TRUE

SEQ
in? data
buffer[O]! data

PAR j=O FOR buffer. size-l
INT data:
WHILE TRUE

SEQ
buffer[j]? data
buffer[j+l]! data

INT data:
WHILE TRUE

SEQ
buffer[buffer.size-l]? data
handler (data)

Figure 8-3c
Code for a parallel buffered interrupt handler

Real-Time Processing

--input

--buffer chain

--work

buffer which can store only one value. This approach can easily be extended to
larger buffers. Figure 8-3c lists another interrupt handler with a replicated PAR,
each of whose processes can buffer another value. By adjusting the value of
buffer. size, we can make the buffer as long as we wish.

This routine buffers data effectively because each individual buffer process
will move its data whenever possible, ensuring that the work process will always
be able to get work when it needs it. At the same time, the frrst process in the chain
can accept data from the input whenever data arrives. This structure is really a very
simple trrst-in, fIrst-out buffer. However, the approach does have two significant
drawbacks: frrst, every time a data element moves from one process to another, it
is physically moved in the processor's memory; and second, significant context
switching overhead is involved in the execution of the many independent process
es needed for the buffer.

A FIFO Handler
A more efficient solution than the linear array of parallel processes is a frrst

in, fIrst out (FIFO) buffer queue, which can be made as large as necessary but does
not require that data elements be copied from memory location to memory location
as they move through the FIFO. Such a buffer will still provide storage for incom
ing signals from the input handler while passing the earliest signal to the computing

Parallel Programs for the Transputer 217



Real-Time Processing Chapter 8

218

process; however, it is much more complicated to program than the linear array of
parallel processes.

The FIFO buffer must be able to satisfy two demands at once. First, it must
be prepared to accept data from the input process at any time, and second, if there
is data in the buffer, the buffer process must be able to pass the data to the compute
process whenever the compute process is ready.

An elegant way to meet these requirements is described briefly in a paper by
C. A. R. Hoare.t The program described creates a circular buffer which is input
driven both at the input of the buffer and at the output. Thus the work process must
request data from the buffer rather than simply reading it in. A FIFO buffer pro
gram which implements this approach is listed in Fig. 8-4. In this program, the in
put routine is identical to the one listed earlier in Fig. 8-3b, while the output routine
is almost the same. Rather than simply reading in data from the buffer, however,
the output process in the FIFO program requests data via an additional channel
called request. The processes and their channels are diagrammed in Fig. 8-5.

The FIFO routine begins with a declaration of three pointers, head, tail,
and stop. These three pointers keep track of the data's position within the buffer:
head points to the next element of the buffer to receive an input, tail points to
the next element of the buffer to do an output, and stop points to the element in
the buffer directly behind tail. A buffer using these pointers is illustrated in Fig.
8-6. The buffer itselfcan be thought ofas a circular buffer in which t ail is always
chasing head. When data is read in from the input process, head advances; when
data is passed to the computing process, tai1 advances. Ifhead advances all of
the way to stop, the buffer is full and no more data can be read in until a value is
output and tail advances by one element. If tail catches up with head, the
buffer is empty and no data can be output until a value is read in and head advanc
es by one element. In this diagram, data element five is the most recent input, while
data element zero is the next to be output.

Following the pointer declarations are the buffer array itself, fifo, defined
to be of size buffer. size, and a useful constant, max, which is one less than
buffer. size. Once these variables are initialized, the routine enters an infmite
loop containing a PRI ALT.

This PRI ALT has two input sections, both guarded. The fIrst ALT clause
has priority and is for the input, which can proceed as long as there is room in
fifo. This will be the case as long as the head pointer is not equal to stop. If
an input does take place, the head pointer is incremented. Because fifo is a cir
cular buffer, the increment operation is done modulo the buffer size, and for effi
ciency, performed by a comparison with max. The second ALT clause will only
receive the request for an output if head is not equal to tail, indicating that
fifo is empty. Any input is received on channel request. Once a request is

t. C. A. R. Hoare, "Communicating Sequential Processes," Communications ofthe ACM,
vol. 21, 8 (August, 1978), p. 673.

Parallel Programs for the Transputer



Chapter 8

CHAN OF INT work,buffer,request:
PRI PAR

PAR
INT data:
WHILE TRUE

SEQ
in? data
buffer! data

FIFO buffer begins here
INT head,tail,stop:
[buffer.size]INT fifo:

VAL INT max IS buffer. size-I:
SEQ

head:=O
tail:=O
stop:=buffer.size-l
WHILE TRUE

PRI ALT
(head<>stop) & buffer? fifo[head]

IF
head=max

head:=O
TRUE

head:=head+l
INT junk:
(head<>tail) & request? junk

SEQ
work! fifo[tail]
stop:=tail
IF

tail=max
tail:=O

TRUE
tail:=tail+l

------------- FIFO buffer ends here

INT data:
SEQ

WHILE TRUE
SEQ

request! 0
work? data
handler (data)

Real-Time Processing

--input

--initialize

--loop forever

--get input
--increment head

--send work

--output data
--increment stop
--increment tail

--work

Figure 8-4
Code for an interrupt handler with a request-driven circular FIFO buffer

Parallel Programs for the Transputer 219



Real-Time Processing Chapter 8

External
event

220

work
buffer

......... Input Buffer

.......
Compute...... .-.

.......
request

Figure 8-5
A FIFO buffered interrupt handler with data requests

Figure 8-6
A circular buffer with the head pointer chasing the tail pointer

Parallel Programs/or the Transputer



Chapter 8 Real-Time Processing

received, the data element that t ail points to is output, and both s tap and t ail
are incremented.

It may be inconvenient for some applications to request data from a buffer.
A program that more closely models the parallel buffer discussed earlier does not
require the output to request data, but instead simply reads it in just as is shown in
Fig. 8-3a. If this is to happen, the input of new data must run in parallel with the
output ofold data, since ALT structures cannot use outputs. A circular FIFO buffer
with this structure is diagrammed in Fig. 8-7 and listed in Fig. 8-8. The work and
input processes for this FIFO buffer are identical to those used for the parallel buff
er and are not repeated.

Three parts make up the FIFO buffer: a setup section followed by two par
allel processes, one handling input from the input process and the other passing data
to the computing process. Thick gray lines illustrate the control flow in Fig. 8-7,
while the channels which communicate with each process are drawn with thin, dark
lines.

The second FIFO buffer routine begins with the same declarations as those
found in the fIrst routine, with the addition of a boolean variable cant inue, and
an interprocessor channel ready. First, the channel ready is declared, followed
by a group of variables, and then the buffer (fifo) itself. The buffer size is again
buffer. size, while max is one smaller. As before, the variable head always
points to the element of the FIFO array in which any input data will be stored, while
t ail always points to the element of the FIFO array which must be output to the
computing process. If head and tail point to the same element, the FIFO is

....,.
Input

a..

~ ~
~

j

buffer
Setup a.. ready,.

V'

~ ~ ...... Output
work

,.

Figure 8-7
FIFO buffer process control flow and structure

Parallel Programs/or the Transputer 221



Real-Time Processing

CHAN OF BOOL ready:
BOOL continue:
INT head, tail, output.value, stop:
[buffer.size]INT fifo:
VAL INT max IS buffer.size-l:
SEQ

head:=O
tail:=O
stop:=buffer.size-l
WHILE TRUE

SEQ
continue:=TRUE
IF

head=tail
buffer? output. value

TRUE
SEQ

output.value:=fifo[tail]
stop:=tail
IF

tail=max
tail:=O

TRUE
tail:=tail+l

Chapter 8

--set up

--empty buffer

--buffer with data

--assign output
--increment

--do output and input in PAR
--input

PAR
WHILE continue

PRI ALT
(head<>stop) & buffer? fifo [head]

SEQ
IF

head=max
head:=O

TRUE
head:=head+l

ready? continue
SKIP

SEQ
work! output.value
ready! FALSE

Figure 8-8
Code for a FIFO buffer process without an output request

--increment

--quit PAR

--output

--quit PAR

222 Parallel Programs for the Transputer



Chapter 8 Real-Time Processing

empty. Initially, of course, the buffer is empty, and so head and tail are initial
ized to the same value, zero. The value stop points to the element just before
tail, the last element in which new data can be stored before data already in the
buffer will be overwritten.

After the variable initialization is complete, the buffer process enters an infi
nite loop. In this loop, the variable continue is first set to TRUE. The process
then detennines whether fifo is empty by comparing the values of head and
tail. If head and tail are equal, the buffer is empty and the routine simply
inputs the output. value from the buffer channel. If the buffer is not empty,
output. value is assigned to the data element that tail points to, which is the
next data element to be passed to the compute process. Stop is then updated, fol
lowed by tail. Since fifo is a circular buffer, tail cannot simply be incre
mented, but must be tested first to see if it is equal to max, and, if it is equal, set to
point to the buffer element zero.

After output. value is assigned, the FIFO routine enters two parallel pro
cesses. The output process simply attempts to send output. value on the work
channel, and, when it is successful, passes a signal to the input process on channel
ready. The input process takes care of any data passed from channel buffer.
This process waits in a loop controlled by continue, repeatedly waiting for an
input from either buffer or ready. The buffer input is guarded so that no in
put can proceed if the FIFO is full (head <> stop is FALSE). Whenever data
arrives on buffer, the value is stored in the fifo element pointed to by head,
and then head is updated. As long as head is not equal to stop, the input process
awaits another input on either buffer or ready. If the FIFO is full, the input
process waits for a signal from the output process on channel ready indicating
that the output process is also finished. When the ready signal arrives, cont in
ue becomes FALSE and both the input and output processes are fmished.

When both the input and output processes are finished, the FIFO routine re
turns to setup mode and assigns or waits for a new output. value. The pro
gram's control flow is thus regulated by the output of data to the compute process.

Performance Comparisons

The perfonnance of the interrupt handlers discussed above has been tested
and the results are graphed in Figs. 8-9 and 8-10. For this series of tests, 1000 ex
ternal events attempted to signal each interrupt handler at uniformly distributed
random intervals of less than 20 milliseconds, and at an average rate of 10 millisec
onds per event. For each test, the total time each handler delayed the input of in
terrupts was measured. The interrupting process executed on one processor and at
tempted to interrupt a second processor on which the input, buffer, and work rou
tines were running. The processing time required for each interrupt was varied
from 0 to 10 milliseconds. This processing time cannot be larger than the average
event period, or the handler will never be able to keep pace with the external events.
Note that this test examines only one criterion by which the performance of a han-

Parallel Programs/or the Transputer 223



Real-Time Processing Chapter 8

dler might be measured. Other criteria could be used. For example, we might mea
sure the average time between the input of an interrupt and the processing of that
interrupt, that is, the time the event stays in the buffer. Our objective here, howev
er, is to compare pr~gramming techniques rather than to examine queueing theory.

As we might expect, Fig. 8-9 shows that the simplest program performs very
poorly, even when the time needed for processing is small compared to the average
period of the external events. Simply placing the input in parallel with the comput
ing improves the performance substantially. In the parallel case, the handler is
available nearly all of the time, as long as the processing time is less than about half
the period of the external events. The handler using a single buffer storing one
event does better yet, providing good performance for computing times less than
about 70% of the event period.

When FIFO buffers are used, the system performance improves dramatically.
It is interesting to note in reference to Fig. 8-10 that the performance of both the
FIFO routine using a linear chain ofprocesses and the FIFO routine using a circular
buffer without data requests is identical. (The scale of Fig. 8-10 is different from
that of Fig., 8-9.)

The smallest possible circular FIFO buffer size is two, and the results show
that, even, though both of the FIFO routines are more complex than the single buffer
routine, a FIFO of length two provides significantly better performance than the
single buffer of length one. As the buffer length increases, the performance of both
handlers continues to increase. When the buffer length is five and the processing
time less t~an 80% of the event period, all of the events are processed with no delay.
A buffer length of 10 can handle processing times up to 90% of the event period,
while a IS-element buffer is not likely to delay any events for processing times up
to 95% of the external event period.

For buffers with a length of 15 elements or less, the performance of the lin
ear and circular (with no output request) FIFO routines is virtually identical. But
as the buffer size increases, additional tests of the two routines with larger buffer
lengths show that the circular buffer approach is more efficient. If the two routines
are tested with a buffer length of 25, the circular buffer approach is nearly three
times as fast as the buffer composed of a linear array of parallel processes. This
effect is easily explained when we remember that the circular buffer does not move
the data elements in memory as the data moves through the buffer. Also, the linear
buffer has the overhead of many parallel processes to support. Only when the size
of the buffer is larger than 15 do these effects become significant. So for small
buffers, the much simpler program using a linear array ofparallel processes is very
suitable. (We should remember, however, that the buffer routines are only storing
four-byte values. If larger amounts of data are stored, the overhead of physically
moving data in memory will become more significant.)

It is also interesting to compare the performance of the two circular FIFO
buffers. Although the buffer technique using data requests from the work process
is shorter and more elegant, tests with a variety of buffer sizes and amounts of work

224 Parallel Programs/or the Transputer



Chapter 8 Real-Time Processing

5

Average Time 4
Events are
Delayed
(msecs) 3

2

o
o 2 34567

Processing Time (msecs)
8 9 10

Figure 8-9
Total time for which various interrupt handlers delay input of events

2.0

1.0

1.5
Average Time
Events are
Delayed
(msecs)

0.5

0.0
o 2

Both circular and linear buffer
routines give same result

3 4 5 6 7 8
Processing Time (msecs)

Length=2

Length=5

Length=10

Length=15

9 10

Figure 8-10
Total time the buffered interrupt handler with FIFOs of various sizes delays input of events

Parallel Programs for the Transputer 225



Real-Time Processing Chapter 8

show that, when there is a significant amount of interrupt delay, the routine using
data requests is 10% to 15% slower.

There is yet another point regarding interrupt handler performance which
maybe significant in some applications. It is obvious that the FIFO buffers could
just as easily input directly from the interrupting process as from the input process.
The input process really only provides an initial buffer, which could be included in
the FIFO if we make the FIFO buffer one element larger. This input process is a
very small, efficient loop, but using it does result in the overhead of an additional
process. A test comparing each of the FIFO buffer routines shows that using the
small, fast buffer at the front end does in fact improve the perfonnance, but only
very Islightly. Programs including the input process typically execute slightly less
than 0.5% faster than those which do not include the input process.

In Summary

Real-time processing can be done very effectively with transputer-based par
allel systems. The effective use of real-time systems requires an efficient interrupt
handler capable of receiving events from the real world with a minimum of delay.
A variety of interrupt handlers ranging from the very simple to a parallel, buffered
handler with three processes can be used.

Test results comparing the perfonnance of these interrupt handlers show
clearly that a simple, three-process interrupt handler can provide very good perfor
mance if it includes a simple FIFO buffer, even quite a small one. If only small
buffer lengths are required, a simple linear array of buffer processes is adequate. If
buffers larger than 15 are needed, circular buffers without data request channels
should be used. For applications which require a relatively short processing time,
a simple parallel handler, with or without a buffer, gives quite respectable perfor
mance. For applications which require a relatively long processing time, handlers
with a FIFO buffer clearly provide much better perfonnance.

226 Parallel Programs for the Transputer



Bibliography

The best sources of information about occam and transputer-based computer
systems are the proceedings of the various user groups concerned with the applica
tion and investigation of occam and transputers. Both the European occam User's
Group (OUG) and the North American Transputer Users Group (NATUG) have
published proceedings. The conference proceedings listed below are in the order
in which the conferences were held.

Muntean, Traian, ed., Parallel Programming ofTransputer Based Machines,
OUG-7, Proceedings of the 7th occam User Group Technical Meeting, 14-16 Sep
tember, 1987, Grenoble, France (Amsterdam, The Netherlands: lOS, 1988).

Kerridge, Jon, ed., Proceedings of the 8th Technical Meeting of the Occam
User Group, Sheffield City Polytechnic, U.K., March, 1988.

Askew, Charlie, ed., Occam and the Transputer-Research and Applications,
OUG-9, Proceedings of the 9th occam User Group Technical Meeting, 19-21 Sep
tember, 1988, Southampton, U.K. (Amsterdam, The Netherlands: lOS, 1988).

Bakkers, Andre, ed., Applying Transputer Based Parallel Machines, OUG
10, Proceedings of the 10th occam User Group Technical Meeting, 3-5 April,
1989, Enschede, Netherlands (Amsterdam, The Netherlands: lOS, 1989).

Wexler, J., ed., Developing Transputer Applications, aUG-II, Proceedings
of the 11th occam User Group Technical Meeting, 25-26 September, 1989, Edin
burgh, U.K. (Amsterdam, The Netherlands: lOS, 1989).

Turner, Stephen J., ed., Tools and Techniques for Transputer Applications,
OUG-12, Proceedings of the 12th occam User Group Technical Meeting, 2-4 April,
1990, Exeter, U.K. (Amsterdam, The Netherlands: lOS, 1990). Includes an in
depth processor fann analysis, p. 179, R.W.S. Tregidgo and A.C. Downton.

Stiles, G. S., ed., NATUG 1, Proceedings of the First Conference of the North
American Transputer Users Group, Salt Lake City, Utah, April 5-6, 1989.

Board, John A., ed., NATUG 2, Proceedings of the Second Conference of the
North American Transputer Users Group, Durham, North Carolina, Oct 18-19,
1989. Includes an in-depth discussion of dead~ock-freepacket networks, p. 139,
Martin Shumway.

Parallel Programs for the Transputer 227



Bibliography

Wagner, Alan S., 00., Transputer Research and Applications 3, NATUG-3,
Proceedings of the Third Conference of the North American Transputer Users
Group, April 26-27, 1990, Sunnyvale, California, (Amsterdam, The Netherlands:
lOS, 1990).

Freeman, Len and Chris Phillips, eds., Applications of Transputers 1, Pro
ceedings of the frrst Applications of Transputer conference, August 23-25, 1989,
Liverpool, U.K. (Amsterdam, The Netherlands: lOS, 1989).

A second excellent source of infonnation is the documentation and applica
tion notes published by INMOS.

INMOS Limited, Communicating Process Architecture, Prentice Hall Inter
national Series in Computer Science, Hemel Hempstead, U.K.: Prentice Hall Inter
national, 1988.

INMOS Limited, occam Programming Manual, Prentice Hall International
Series in Computer Science, Englewood Cliffs NJ: Prentice Hall International,
1984.

INMOS Limited, occam 2 Reference Manual, Prentice Hall International Se
ries in Computer Science, Hemel Hempstead, U.K.: Prentice Hall International
(U.K.) Ltd., 1988.

INMOS Limited, The Transputer DataBook, Berkeley, CA: Consolidated
Printers, 2nd ed., 1989.

INMOS Limited, Transputer Development System, Hemel Hempstead, U.K.:
Prentice Hall International (U.K.) Ltd., 1988.'

INMOS Limited, Transputer Instruction Set, Hemel Hempstead, U. K.:
Prentice Hall International (U.K.) Ltd., 1988.

INMOS Limited, Transputer Reference Manual, Hemel Hempstead, U.K.:
Prentice Hall International (U.K.) Ltd., 1988.

INMOS Limited, Transputer Technical Notes, Hemel Hempstead, U.K.:
Prentice Hall International (U.K.) Ltd., 1988.

A third source of information is the general literature dealing with parallel
processing, especially distributed-memory computing systems, transputers, and oc
cam.

228 Parallel Programs for the Transputer



Bibliography

Axford, T., Concurrent Programming: Fundamental Techniques for Real
Time and Parallel Software Design, New York NY: John Wiley and Sons, Inc.,
1989.

Ben-Ari, M., Principles of Concurrent and Distributed Programming, En
glewood Cliffs, NJ: Prentice Hall, 1989.

Bertsekas, D. P., and J. N. Tsitsiklis, Parallel and Distributed Computation,
Englewood Cliffs, NJ: Prentice Hall, 1989.

Burns, A., Programming in occam 2, London, U.K.: Addison Wesley Pub
lishing Company, 1988.

Carling, A., Parallel Processing - The Transputer and occam, New York,
NY: John Wiley and Sons, Inc., 1988.

Crichlow, J., An Introduction to Distributed and Parallel Computing, Engle
wood Cliffs, NJ: Prentice Hall, 1988.

Desrochers, George R., Principles of Parallel and Multiprocessing, New
York, NY: McGraw Hill Book Co., 1987.

Hoare, C. A. R., Communicating Sequential Processes, Hemel Hempstead,
U.K.: Prentice Hall International, 1985.

Hockney, R. W. and C. R. Jesshope, Parallel Computers 2: Architecture,
Programming and Algorithms, Bristol U.K.: lOP Publishing Ltd., 1988.

Hwang, Kai, and Faye A. Briggs, Computer Architecture and Parallel Pro
cessing, New York, NY: McGraw Hill Book Co., 1984.

Jones, G. and M. Goldsmith, Programming in occam 2, Hemel Hempstead,
U.K.: Prentice Hall International, 1988.

Pountain, Dick and David May, A Tutorial Introduction to occam Program
ming, Blackwell Scientific Publications Professional Books, London U.K., 1987.

Wexler, John, Concurrent Programming in occam 2, Ellis Horwood Series
in Computers & Their Applications. Chichester, U.K.: Ellis Horwood Limited,
1989.

Parallel Programs for the Transputer 229





Index

! 14

? 14

A

Abbreviations 13

Activity diagram
double buffering 100
loading

bidirectional all the way 124
bidirectional halfway 124
fast pipeline 121
simple 121
small buffers 123

pipeline 91
single buffering 98
triple buffering 101

AFfER16

Algorithm
routing 147, 149

dynamic 147

Algorithmic limitations 31

Algorithmic parallelism 89

ALT 14,15
guard 15
PRI 15
replication 16

AND 17

Arbitrary network 175, 178, 193
program 175

Architecture 1
classes 23
data parallelism 113

Parallel Programs/or the Transputer

equivalence 32
history 23
irregular 35
limitations 31
processor farm 57
regular 35
scaling 35
special-purpose 32

Array 11
channels 14

Assignment 11, 12

B

Background task 213

Bandwidth 24, 28
shared memory 26

Bidirectional loading 124

BOOL17

Booting a transputer 183
arguments 184
extra-copy method 183
from link 39, 183, 184, 190
from memory 39
parallel worm 195
self-copy method 183

Bootstrap program 183

Breadth-first search 176, 181, 185, 199
toroid 181

Buffer
circular 218, 223, 224

performance comparison 224
double 99

231



Index

activity diagram 100
code 99
efficiency 105
loading 121

performance 127
matrix multiplication 109
performance 105

efficiency 105
frrst-in, fIrst-out 217
interrupt handler 216
multidimensional 111
performance 103
single 98

activity diagram 98
code 98
performance 105

size for loading 123
test 103
triple 101

activity diagram 101
code 101
efficiency 106
performance 105

when to use 105

Bus 26

C20

c
CASE 18

CHAN 14

CHAN OF ANY 14

Channel
ALT15
array 14
communication 14
configuration 36
definition 14
independence 156
input 14, 15
multiplexer 150, 154

bidirectional 160, 163

232

OF ANY 14
output 14
point-to-point 28
processor farm 57
TIMER 14
tree 76
type 14
undefined type 14
virtual 149, 156, 158

one-way 150
two-way 160

Child
processor farm 64
worm 176

exploratory 204
parallel 193, 197
sequential 187, 190, 192

Circular buffer 218, 223, 224
petformance comparison 224

Comment
folds 11
program 11

Communicating data sets 137
efficiency 142
memory requirements 144

Communication
bandwidth 24
bottleneck 23, 24
channel size 24
concurrency 6
cost of 31
efficiency 130

simple load 121
expanding data sets 130
handler 152, 154

code 153
diagram 152

in parallel with computation 105
interprocessor 146
limiting petformance 106
loading 119
multiple channels 24, 25

Parallel Programs for the Transputer



overhead 4, 6, 31, 91
pipeline 94, 96

parallel processes 13
pipeline 90, 91, 96
point-to-point 28
priority 13, 66
processor farm 57, 70
routing 147
shared memory 26
shell 146
single-instruction, single-data 26
speed of light 24

Configuration
channel 36
description 36
hypercube 47
irregular network 39
links 37
PLACE 37
PLACED PAR 37
processor farm 72
real-time 30
ring 42
single-processor 37
toroid 44
tree 51
two-processor 38

Context switching 8

Control structures 16

Controller, farm 59

Convolution 4, 130, 131, 137, 142
efficiency 6

example 4
performance 6

D

Data distribution 91, 115
code 116
example 115
pipeline 90
ring 114, 118

Parallel Programs for the Transputer

Index

Dataflow 89

Data parallelism 89, 113, 145
architecture 113
communicating data sets 137
convolution 130
data distribution 115
efficiency 115, 142
expanding data sets 130, 133

perfonnance 135
flexibility 114
frequency transfonns 114
loading 119
overhead 114
program distribution 113
sampling 128
scalability 114
shifting 137
trade-off 114

David xii

Deadlock 19, 147

Deadlock-free network 150

Debugger 20, 175

Debugging 19, 20
deadlock 19
livelock 19

Depth-first search 176
toroid 181

Distributed memory 28
architectural equivalence 32
interconnections 30
switching 30

Distribution of program 89, 91

E

Editor 11

Efficiency 2-8, 106
architecture 32
buffer 105
communication 4, 130
comparison, shift vs. expand 142

233



Index

convolution 4
data distribution 115
definition 2
double buffer 105
expanding data sets 135
granularity 63
hardware 8
load balancing 61
loading 128

bidirectional 124
fast pipeline 121, 123

maximum pipeline 94
overhead 6
parallel computer 4
pipeline 91, 93, 94, 96, 105, 115
pipeline buffering 103
processor farm 69, 83, 85
relative 2, 4
shifting 141
simple processor fann 60
speedup 3
superlinear 3
task distribution 60, 61
task variability 61
theoretical limit 93

ELSE 18

Expanding data sets 130
efficiency 135, 142
memory requirements 136, 144
one-dimensional 131

code 131
performance 135
two-dimensional 131

code 133

Exploratory worm 199
child 204
code 200
code size 211
input & output routines 204
ki11206
link failure 211
parent 200, 204

234

performance 211
root node 210
test state 206

F

FALSE 17

Farna,processor57

FIFO see first-in, first-out buffer 217

Fine grain 63

First-in, first-out buffer 163, 217
diagram 221
performance 224

Folds 11
comments 11

Font for code listings 11

FORTRAN 20

Frequency transforms 114

FUNCTION 19

Functions 19

G

Geometric parallelism 113

Grammarian xii

Granularity 63, 83, 85, 86, 113
efficiency 63
fine grain 63
large grain 63
medium grain 63
transputer 63

Guard 15, 17, 18,223

H

Hypercube 47, 113
configuration 47
diagram 47
interprocessor distance 51
network 47
scaling 50

Parallel Programs for the Transputer



toroid as subset 51

I

IF 17
guard 17

Indentation 11, 12

Input 14, 15
AFfER16
guard 18

INT 11

Interprocessor communication 146

Interprocessor distance
hypercube 51
ring 43
toroid 46
tree 55

Interrupt
fixed interval 213
random interval 213

Interrupt handler 214
buffer 216

code 216
diagram 216

delay 213
fIrst-in, first-out buffer

diagram 221
parallel 215

code 215
diagram 215

performance comparisons 223
processing rate 213
simple 214

code 214
diagram 214

Irregular architecture 35

Irregular network 35, 39
configuration 39
diagram 39
message-passing 145
real-time processing 213

Parallel Programs for the Transputer

L

Large grain 63

Large processor farm 63

Latency 101
pipeline 93, 99

Library 19

Limit of efficiency
pipeline 93

Linear array 89

Link 13, 36
address assignment 37
bandwidth 8
bidirectional pipe 106
booting 39, 184, 190
diagram 37
efficiency

fast pipeline load 121
simple load 121

failure 211
hardware 8, 36
interconnections 13
multiplex 152
network construction 36
peek and poke 200
real-time processing 213
switching 36
testing 188, 197, 200
transputer 8
virtual channels 149

Livelock 19

Load balancing 61, 113

Loading 119
bidirectional 124

code 124
efficiency 124
perfonnance 128

bidirectional all the way
activity diagram 124

bidirectional halfway
activity diagram 124

Index

235



Index

advantage 127
buffer size 123
double buffer perfonnance 127
fast pipeline 121

activity diagram 121
code 121
efficiency 121, 123
performance 128

memory organization 127
perfonnance 127
programs 175
simple 119

activity diagram 121
code 119
efficiency 121
perfonnance 127

small buffers
activity diagram 123

Logical variables 17

M

~andelbrotset70

calculation 72
efficiency 83

function 70

~atrix multiplication 108
code 108
double buffering 109

~edium grain 63
transputer 63

~emory requirements
data parallelism 144

~emory testing 188

~essage passing 28, 145
delivery 146
portability 146
processor farm 145
structure 146
traffic 147
unpredictability 146

236

~ultidimensional pipeline 106

~ultiple-instruction, multiple-data 26,
28,35,57,113

architectural equivalence 32
complexity 28
hardware 29
scalability 29

~ultiple-instruction, single-data 26

~ultiplex channel 154, 158
bidirectional 160, 163

~ultiplex channels 150

~ultiplex link 152

N

Network 39
arbitrary 175, 178, 193
construction 36
deadlock 148
deadlock-free 150
emphasis in book 1
failures 199
grid 108
hypercube 47
interconnections 13
irregular 35, 39

message-passing 145
real-time processing 213
used for 36

limitations 31
loading programs 175
number of links 36
overhead 31
processor farm 57
programming examples 8
regul~ 35, 175, 176

advantages 35
used for 36

ring 8, 42, 89
root node 39
scaling 35
searching strategy 176

Parallel Programs for the Transputer



shared memory 12
single-processor 37
switched 1, 30,64
test 175
testing 199
toroid 8, 44, 178, 181
tree 51, 176
two-processor 38
unknown 199
unswitched 1

Node controller
processor farm

code 81
diagram 80

NOT 17

o
occam 11-19

! 14
? 14
abbreviations 13
AFfER16
ALT 14
AND 17
array 11
assignment 12
BOOL 17
CASE 18
CHAN 14
channel 14
comments 11
control 16
ELSE 18
FALSE 17
folds 11
font 11
FUNCfION 19
functions 19
guard 18
IF 17
indentation 11, 12
input 14

Parallel Programs for the Transputer

Index

guard 18
library 19
logical variables 17
NOT 17
OR 17
output 14
PAR 12
PLACED PAR 13
PRIALT15
PRI PAR 13, 15
PROC 18
procedures 18
process 11
real-time 13
real-time processing 213
replication 16
SEQ 12
shared memory 12
TIMER 14,15
TRUE 17
variables 11
WHILE 16

Occam, William of 2

Operating systems, parallel 21, 146

OR 17

Output 14

p

PAR 12
replication 16

Parallel processing
limits 63

Parallel processors
algorithmic limitations 31
complexity 28
distributed memory 28
limitations 31
multiple-instruction, multiple-data

26,28
multiple-instruction, single-data 26
scalability 29

237



Index

shared memory 26
single-instruction, multiple-data 25
single-instruction, single-data 25

Parallel programs
overhead 4

Parallel search 181

Parallel wonn 193
booting 195
child 193, 197
code 193
parent 193, 195
performance 199
root node 197
tree 197

Parent
processor fann 64
worm 176

exploratory 200, 204
parallel 193, 195
sequential 187, 192

Pascal 20

Perfonnance
buffer 105
circular buffers 224
communication limited 106
expanding data sets 135
frrst-in, frrst-out buffer 224
interrupt handler 223
limit 4
loading 127

double buffer 127
simple 127

measurements 10, 14
pipeline 94, 103

theoretical limit 96
pipeline buffering 103
processor fann 83
router 172

four-way 173
one-way 172
two-way

238

performance 172
shifting 141
wonn

exploratory 211
parallel 199
sequential 193

Pipe 89

Pipeline
activity diagram 91
advantages 89
buffer

double 99, 105
single 98, 105
test 103
triple 101, 105
when to use 105

communication 90, 91, 96
limited 106
overhead 94, 96

data distribution 90, 91
definition 89
disadvantages 89
efficiency 91, 93, 94, 96, 103, 115
empty 93
example 94
fill 93
flexibility 113
latency 93, 99, 101
limit of efficiency 93, 94
loading 121
matrix multiplication 108
maximum efficiency 94
multidimensional 106
overhead 91
packet size 91, 93, 94, 96
parallelism 145
performance 94, 96, 103, 105
processing

real-time 106
total time 93

program 89
distribution 113

Parallel Programs/or the Transputer



flexibility 89
program distribution 91
ring 89
scalability 90
two-dimensional 109

PLACE 37

PLACED PAR 13, 37

Portable programs 35

PRIALT15

PRI PAR 13, 15

PROC 18

Procedures 18

Process 11

Processor fann 57, 193
architecture 57
child 64,76
communication overhead 70
configuration 72
control 57
controller 59, 80

code 81
definition 57
diagram 64
efficiency 69, 83, 85
example 70
granularity 83, 85, 86
interprocessor distance 64
large 63
~andelbrotset70

message passing 145
parallel processes 66
parent 64
performance 83
root node 59
simple 59

efficiency 60
size calculation 69
storage 69
structure 57
task queue 70

Parallel Programs/or the Transputer

tree 72,76
workers 59
wonn 175

Program 1
arbitrary networks 175
comments 11
distribution 89, 91, 93, 114
examples 1
folds 11
font listed in 11
indentation 11
pipeline 89
portability 146
portable 35
scalable 35

Program editor 11

Q
Queue

processor farm 70
real-time 217

R

Random events 213

Real-time processing 13, 213
definition 213
occam 213
pipeline 106
timing 14

Regular architecture 35
advantages 35

Replication 16
worm 176

Ring 42,113
bidirectional loading 124

performance 128
configuration 42
data distribution 114, 118
diagram 42
expanding data sets 131

Index

239



Index

interprocessor distance 43
loading performance 127
network 8, 42
pipeline 89
program tasks 114
router 149

one-way 156
performance 172

two-way 163
performance 172

scaling 43
subset of toroid 47

Root node 39
exploratory worm 199,210
parallel wonn 197
processor farm 59, 80
sequential worm 193

Router 145
algorithm 147, 149
bidirectional 160
channel independence 156
deadlock 147, 148
deadlock-free 150
dynamic 147
fIrst-in, fIrst-out 163
four-way 165, 168

performance 173
message distribution 172
one-way 150, 156

performance 172
performance 172
ring 149, 163
simple

code 157
toroid 165
two-way 163

performance 172

s
Sampling 128

code 128

Scalability

240

multiple-instruction, multiple-data
29

parallel processors 29
shared memory 26
single-instruction, multiple-data 29
switched networks 30

Scaling
architectures 35
data parallelism 114
hypercube 50
pipeline 90
programs 35
ring network 43
toroid 47
tree 55

Scope of variables 11

Searching strategy 176
breadth-first 176, 185, 199

search 181
depth-frrst 176
exploring 199
parallel 181
sequential 181

SEQ 12
replication 16

Sequential search 181

Sequential worm 185
child 187, 190, 192
code 185
parent 187, 192
performance 193
root node 193

Shared memory 12,26
architectural equivalence 32
bandwidth 26, 28
bus 26
common memory 28
communication channel 26
control flow 27
flexibility 29
message passing 28

Parallel Programsfor the Transputer



processor interaction 28
programs 27
scalability 26
single-instruction, single-data 28

Shifting 137
code 137
efficiency 141, 142
memory requirements 144
perfonnance 141

Simple processor farm 59
efficiency 60

Single-instruction, multiple-data 25,
63,113

communication 26
control flow 27
cpu 25
scalability 29

Single-instruction, single-data 25
architectural equivalence 32
shared memory 28
supercomputers 26

Single processor
configuration 37
network 37

Speedup 3
superlinear 3

Storage
processor farm 69

Sueanne xii

Supercomputer 26

Superlinear speedup 3
purported examples 3

Switched network 64

Switched networks 30
expansibility 30

Switching 64
links 36

Parallel Programs for the Transputer

Index

T

T8008

Task distribution 60, 61, 89

Task granularity 63

Task queue 70

Task variability 61

Tester 175

Testing
link 188, 197
memory 188
networks 199
processor 190

Text editor 11

TIMER 10, 14, 15

Timing perfonnance 10

Toroid 44, 113, 130, 137, 178, 181
advantages 46
breadth-fIrst 181
configuration 44
depth-first search 181
diagram 44
interprocessor distance 46
network 8, 44
ring as subset 47
router 165

performance 173
scaling 47
subset of hypercube 51

Transputer 1, 8-10
architectures 1
booting

link 39
memory 39

context switching 8
diagram 8
efficiency 8
hardware 8
link 8, 36
medium grain 63

241



Index

multiple-instruction, multiple-data
28

network construction 36
network for examples 8
processor farm 57
program 1
programming language 11
real-time processing 213
T8008
variety of techniques 1

Tree 51, 185
as a subset 55
child 176, 187, 192
configuration 51
descendant 190
diagram 51
interprocessor distance 55
network 51, 176
parallel wonn 193, 197
parent 176, 187
processor farm 72, 76
scaling 55

triple buffer 106

TRUE 17

Two processor
configuration 38
diagram 38
network 38

v
Variables

array 11
logical 17
occam 1,1
scope 11

Vector computer 26

Virtual channel 149, 156, 158
one-way 150
two-way 160

von Neumann bottleneck 23, 25

242

w
WHILE 16

William of Occam 2

Workers
processor farm 59

Wonn 175
bootstrap 183, 185
child 176
definition 175
descendant 190
exploratory 199
parallel 193
parent 176
performance 193, 199, 211
processor farm 175
replication 176
searching strategy 176
sequential 185

Parallel Programs/or the Transputer


	Contents
	Preface
	Chapter 0 - Introduction
	Parallel Computer Efficiency
	Transputers
	occam
	SEQ
	PAR
	CHAN
	ALT
	Replicated Structures
	Control Structures

	Debugging
	Miscellaneous
	In Summary

	Chapter 1 - SISD, SIMD, MIMD, and All That
	Multiple Data Paths
	Multiple Instruction Paths
	Shared Memory
	Distributed Memory

	Architectural Issues
	In Summary

	Chapter 2 - Architectures
	Configuration Descriptions
	Networks
	Irregular Networks
	Rings
	Toroids
	Hypercubes
	Ternary Trees

	In Summary

	Chapter 3 - Processor Farms
	A Simple Processor Farm
	Efficiency Concerns
	Large Processor Farms
	Storage and Communication Issues
	A Real-World Example
	Efficiency Measurements
	In Summary

	Chapter 4 - Pipeline Processing
	Program Issues
	Pipeline Efficiency
	A Pipeline Example
	Communication Methods
	Single Buffering
	Double Buffering
	Triple Buffering

	A Buffered Pipeline Test
	Multidimensional Pipelines
	In Summary

	Chapter 5 - Data Parallelism
	Program Issues
	Data Distribution
	Loading Data
	A Simple Load Routine
	A Fast Load Routine
	Bidirectional Loading
	Performance Measures

	Sampling
	Expanding Data Sets
	One-Dimensional Expansion
	Two-Dimensional Expansion
	Performance Issues

	Communicating Data Sets
	Shifting
	Performance Issues

	An Efficiency Comparison
	In Summary

	Chapter 6 - Deadlock-Free Routing
	Program Issues
	One-Way Virtual Channels
	A One-Way Ring Router
	Two-Way Virtual Channels
	A Two-Way Ring Router
	A Four-Way Toroidal Router
	Performance Comparisons
	In Summary

	Chapter 7 - Worms
	Searching Strategies
	Bootstrapping a Processor
	A Simple, Sequential Worm
	A Simple, Parallel Worm
	A Robust, Exploratory Worm
	In Summary

	Chapter 8 - Real-Time Processing
	Interrupt Handlers
	A Simple Handler
	A Buffered Handler
	A FIFO Handler

	Performance Comparisons
	In Summary

	Bibliography
	Index

