
- ------ -
~ -

Tvetenveien 152, P.B. 102
- Tveita, 0617 Oslo 6, Norwayas Telex 78955

Teletax (02) 26 83 05
TIt.. (02~55 -

.~. _{ 1 (' /.~)

Programming ·manual

occa~TM

.1-

Programming manual

Occam

INMOS reserves the right to make changes to this manual and the products described therein at any
time and without notice.

Copyright 19831NMOS Limited. All rights reserved.

This document may not be copied. in whole or part, without the prior written consent of INMOS.

• and occam are trade marks of the INMOS Group of Companies.

OPS-002 000 7/83

Proto occam

Occam

Occam is a new programming language. It is designed to support concurrent
applications in which many parts of asystem operate separately and interact.
Occam is relevant to many present day applications, particularly those involving
microprocessors and real time. Occam will be essential for future applications
involving the interaction of many thousands of computing components.

The novelty of occam is in its treatment of concurrency Occam enables the
programmer to express a program in terms of concurrent processes which
communicate by sending messages through communication channels. This
has two important consequences. Firstly, it gives the program a clear and simple
structure as the individual processes operate largely independently Secondly, it
allows the program to exploit the performance of many computing components,
as each concurrent process may be executed by an individual processor

Occam can capture the hierarchical structure of a system by allowing an
interconnected set of processes to be regarded from the outside as a single
process. At any level of detail, the programmer is only concerned with a small
and manageable set of processes.

This manual describes the initial version of the programming language, proto
occam. Proto occam is intended to allow programmers and designers to
experiment with the use of concurrency in programming and system design. To
avoid obscuring the treatment of concurrency, proto occam has been kept small
and contains a minimum of additional features.

This manual contains an introduction to the principles of the language, a tutorial
'introduction to the central features of the language, and a programmer's
reference manual, providing full details of the language, complete with
examples.

1

2

3

Contents
Introduction

Tutorial introduction to occam

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Programmer's reference manual

3.1
3.2
3.3

3.4

Building blocks
Sequential processes
Repetitive processes
Parallel processes
Input and output revisited
Naming processes
Alternative processes
Arrays of processes
Conclusion

Purpose, use and organisation
Syntactic notation
Primitive processes
3.3.1 Assignment processes (:=)
3.3.2 Input processes (?)

3.3.3 Output processes (I)
3.3.4 Wait processes (WAIT)
3.3.5 Skip processes (SKIP)
Constructs

3.5

3.4.1
3.4.2

3.4.3
3.4.4
3.4.5
3.4.6
Declarations

Sequential processes (SEQ)
Parallel processes (PAR)
Alternative processes (ALT)
Conditional processes (IF)
Repetitive processes (WHILE)
Replicators (FOR)

3.6

3.5.1 Variable declarations (VAR)

3.5.2 Channel declarations (CHAN)
3.5.3 Vectors of variables
3.5.4 Vectors of channels

3.5.5 Constant definitions (DEF)

Named processes and substitution

3.7

3.8

3.9

3.10

3.11

3.12

Expressions and constant expressions
3.7.1 Arithmetic operators
3.7.2 Comparison operators
3.7.3 Logical operators
3.7.4 Boolean operators
3.7.5 Shift operators
3.7.6 Clock comparison operator (AFTER)
Elements
3.8.1 Elements
3.8.2 Numbers
3.8.3 Local clock (NOW)
3.8.4 Character constants
3.8.5 Vector constants (TABLE)
3.8.6 Character strings
Lexical and character representations
3.9.1 Identifiers and reserved words
3.9.2 Character set
Syntax
3.10.1 Program format
3.10.2 Syntax summary
Vector operations
3.11.1 Slices
3.11.2 Slice assignment
3.11.3 Slice communication
Configuration

4 Index

3.12.1

3.12.2

3.12.3

3.12.4

Prioritised alternative processes
(PRI ALT)
Single processor execution and
priority (PRI PAR)
Multi-processor execution
(PLACED PAR)
Physical resource allocation
(ALLOCATE)

1 Introduction

A process performs a sequence of actions, and terminates. Each action may be
an assignment, an input or an output. An assignment changes the value of a
variable, an input receives avalue from a channel, and an output sends avalue
to a channel.

At any time between its start and termination, a process may be ready and
waiting to communicate on one or more of its channels. Communication is
synchronous. When both an input process and an output process are ready to
communicate on the same channel, the value to be output is copied from the
output process to the input process. The input and ouput processes then
continue.

Each channel provides aone-way connection between two concurrent
processes; one of the processes may output to the channel, and the other may
input from it.

A process may be ready and waiting to input from anyone of a number of
channels. In this case, the input is taken from the first channel which is used for
output by another process.

Occam may be used to program a network of computers. Each computer with
local store executes a process with local variables, and each connection
between two computers implements a channel between two processes.

Occam may be used to program an individual computer The computer shares
its time between the concurrent processes, and the channels are implemented
by values in store. Indeed, a program designed for a network of connected
computers may also be executed unchanged by a single computer

2 Tutorial introduction to occam

This section introduces the main features of occam, and shows how to build
simple occam programs. It assumes that the reader has had some experience
of programming

2.1 Building blocks

There are three primitive processes from which all other processes are
constructed

An input process. The? symbol denotes input.

channel? variable

An input process inputs avalue from the channel into the variable.

An output process. The ! symbol denotes output.

channel ! expression

An ouput process outputs the value of the expression to the channel.

An assignment process. The :== symbol denotes assignment.

variable :== expression

An assignment process transfers the value of its expression to the named
variable.

These three primitive processes can be combined sequentially or concurrently
to create more complex processes, and thus they form the building blocks for
programs.

2.2 Sequential processes

In many applications it is necessary to do a number of steps one after the other

Assume that we require a process to input asingle value via an input channel
named chan1, then to output the square oftt.le value via an output channel
named chan2

Chan11 x x*x rChan2

This is asequential process, as the output cannot take place before the input has
finished.

This process will normally be part of a larger design. Forthetime being, we will
assume that the channels used to connect this process to the rest of the system
have already been declared

We will need a local variable, say x, which is to hold the input value. In occam, a
declaration immediately preceeds the process to which it applies, and so we first
need to declare the variable x, which is done as follows

VARx:

Every declaration in occam is introduced by a keyword (such as VAR), followed
by an identifier, or a list of identifiers. The declaration is attached to a process and
this is signified by the colon. Next we state that the process is sequential

VARx:
SEQ

The word SEQ must line up underneath the word VAR.

The first event in the sequence will be the arrival of avalue via the channel chan1
to be stored in x. To indicate this we write

VARx:
SEQ

chan1 ? x

We indent the input process to indicate that it is acomponent of the sequential
process.

2.2 Sequential processes

Continued

The next process has to output the value of x*x via another channel named
chan2

VARx:
SEQ

chan1 ? x
chan2 ! x*x

Chan11 x x*x rChan2

Note that the output process is again indented to indicate it is a component of the
sequential process.

SEQ ensures that each component process terminates before the following
component process is executed, and the entire process will only terminate when
the final component process has finished Thus once the output of x*x has taken
place, the sequential process itself has finished

SEQ is an example of an occam 'constructor' It builds a 'construct' (comprising
the SEQ and its component processes), which, taken as awhole, can be
regarded as asingle process. Occam has a number of constructors, all of which
are used in asimilar way

2.3 Repetitive processes

If we wish to square more than one value of x, we need to repeat the process that
we have just written. To do this we use the repetitive process

WHILE x >== a
This evaluates the expression accompanying it. If this expression is TRUE the
component process will be executed When the component process has
finished, the expression will be evaluated again, and so on. As soon as the
expression is FALSE, the repetitive construct terminates.

Thus for the example where we wish to square any number of successive values
of x, we need the expression always to be TRUE. We can state this using

WHILE TRUE

Since the sequential process is now a component of the repetitive process, we
must indent it

WHILE TRUE
VARx:
SEQ

chan1 ? x
chan2 ! x*x

Because the WHILE expression is always TRUE the process never terminates.
If we wish the process to square positive values of x, terminating when a
negative value is input, we have to use the condition x> == O.

To be able to do this, we have to arrange for x to be input before the WHILE is
executed This requires, therefore, another SEQ construct

SEQ
chan1 ? x
WHILE x >== a

In the example above, x is declared within the repetitive process. Obviously x
has to be valid for this particular sequence, so we have to move the declaration

VARx:
SEQ

chan1 ? x
WHILE x >== a

2.3 Repetitive processes

Continued

We have already input a value into x, so now all that is left to do is to output the
value of x*x, and to input the next value ready to be tested next time.

VARx:
SEQ

chan1 ? x
WHILE x >== 0

SEQ
chan2 ! x*x
chan1 ? x

2.4 Parallel processes

If we require many processes to be running as a concurrent system, we can
construct a parallel process. Here we shall take two processes which do not
communicate with each other and run them in parallel, and then indicate a
method bywhich parallel processes can communicate. A parallel process is not
just limited to two components, of course.

Let us take the simple process described in section 2.3 which takes an input
value from one channel, and outputs its square to another channel The program
is

WHILE TRUE
VARx:
SEQ

chan1 ? x
chan2 ! x*x

We can take a similar process which inputs avalue y via a channel named
chan3 and outputs y*y via a channel named chan4

WHILE TRUE
VARy:
SEQ

chan3 ? y
chan4 ! y*y

We would like to execute these processes in parallel We state this using the
parallel constructor, remembering to indent the two component processes

PAR
WHILE TRUE

VARx:
SEQ

chan1 ?\.x
chan2 rx*x

WHILE TRUE
VARy:
SEQ

chan3 ? y
chan4 ! y*y

2.4 Parallel processes
Continued

The parallel process causes the two component processes to execute
simultaneously and terminates when its component processes have finished
The parallel process looks like

Chan11 x x*x rChan2

Chan31 y y*y r chan4

Notice that the order of the component processes in a parallel construct does not
matter

The above component processes do not communicate with each other To
illustrate how two concurrent processes can communicate with each other, we
build a process which outputs x4

. This process looks like

Chan11 x x*x h
I I comms >1 y y*y r chan2

For the parallel process we must first declare the linking channel, in this case
named comms. This is done using

CHAN comms:

We next declare that the process is parallel and include its component
processes properly indented

CHAN comms:
PAR

WHILE TRUE
VARx:
SEQ

chan1 ? x
comms ! x*x

WHILE TRUE
VARy:
SEQ

comms? y
chan2 ! y*y

This completes the parallel process. If we require two-way communication
between the concurrent processes we would need to use two channels. Notice
that x and yare declared in the respective component processes.

2.5 Input and output revisited

Two concurrent processes communicate by using input and ouput. One
executes an output to a channel, the other executes an input from the same
channel Input and output are synchronised An input will not complete
execution until an output on the same channel is executed, and equally an output
will not complete execution until an input on the same channel is executed

It is worth pausing to consider a little further what actually happens in the
example given above. 80th components of the parallel construct start executing
in parallel After a short time, the first one will reach its input process. A value is
supplied via chan1, and the next thing that happens is that the first process
reaches the output to the connecting channel comms.

Now consider the second process. There are two possibilities. Either the second
process has not yet reached its input, in which case the first process waits until
the second process does reach its input from comms, or the second process
already has reached its input, and so is waiting for avalue to arrive.

Eventually, the communication takes place, and both processes go on their
separate ways. The output to chan2 and next input from chan1 can take place
in parallel The two processes will synchronise again to communicate the next
intermediate result.

2.6 Nami~g processes

In the example of the parallel process above we had to write the text of both
squaring processes. However, a name can be given to any process, allowing
that process to be used by name when it is required.

If we are going to use a process several times, connected to the rest of the
program in a different way each time, it is clear that the channels that are used on
each occasion will be different. So let's rewrite the process, using non-commital
names for the channels

WHILE TRUE
VARx:
SEQ

source? x
sink! x*x

The process declaration allows us to give the process a name, for example,
square. Parameters are added to indicate the non-commital names (often these
are called 'formal parameters'). The process declaration is used in the following
way to provide a squaring process

PROC square (CHAN source, sink) =
WHILE TRUE

VARx:
SEQ

source? x
sink! x*x:

Note that the squaring process itself is indented.

We can use this process simply as follows

CHAN comms:
PAR

square (chan1, comms)
square (comms, chan2)

2.6 Naming processes

Continued

Thus we can rewrite the entire program by combining this with the declaration of
the squaring process

PROC square (CHAN source, sink) ==
WHILE TRUE

VARx:
SEQ

source? x
sink! x*x:

CHAN comms:
PAR

square (chan1, comms)
square (comms, chan2)

Notice how in each use of the process square we specify which channels it is
actually going to use (this specification is often called 'passing parameters'). For
example, in the first use of the squaring process the channel named source now
has the name chan1,and the channel named sink has the name comms.

2.7 Alternative processes

Sometimes a process has a number of channels associated with it and needs to
perform one of a number of actions depending on which channel first sends it a
message. This is achieved using the alternative process l which chooses just one
of its inputs for execution. .

As an example, a high-tech digital radio replaces an analog volume control with
two buttons, one marked 'louder', the other marked 'softer' These are connected
to two channels, louder and softer respectively, and whenever either button is
pressed it causes a message to be sent along the corresponding channel.

We need to design avolume controller process which will accept messages
from these channels and transmit a message to the amplifier controller to
indicate how loud the volume should be.

Let's look at the process which makes the volume increase. If the 'louder' button
is pressed we wish the volume to increase, say by one unit. The volume is then
transmitted to the amplifier Name the channel to the amplifier amplifier. Thus
the process is

SEQ
volume :== volume + 1
amplifier! volume

Similarly, if we want the volume to decrease by one unit then the corresponding
process is

SEQ
volume :== volume - 1
amplifier! volume

When a button is pressed one of the channels is able to input. We are not
interested here in communicating values along these channels, merely
synchronising signals. The identifier ANY allows the values to be disregarded
and a process to input if any signal is ready to be transmitted The processes are
inputs from the channels louder and softer

louder? ANY
softer? ANY

The controller needs to recognise which button has been pressed We achieve
this by combining these processes within an alternative process

ALT
louder? ANY
softer? ANY

2.7 Alternative processes

Continued

Note that the two component input processes are indented We noW need to add
the processes which are to be executed if either of the alternative inputs is ready
These are again indented

VAR volume:
SEQ

volume :== 0
WHILE TRUE

ALT
louder? ANY

SEQ
volume :== volume + 1
amplifier! volume

softer? ANY
SEQ

volume :== volume - 1
amplifier! volume

This completes the volume controller process. The WHILE TRUE makes the
process execute repeatedly for ever

What if both buttons are pressed together? The alternative process guarantees
that just one of its component processes will be chosen If the buttons are
pressed so close together that it is not possible to distinguish the times of
pressing, one of the two processes will be chosen arbitrarily The other one will
be chosen on a later execution of the alternative process.

The inputs that are used for selection within an alternative process are called
'guards' An input in a guard can be preceded with a condition, and then the
guard is TRUE only if both the condition is TRUE and the input is possible

condition & chan1 ? x

Our simple example can be extended to include maximum and minimum
volume. Thus if the radio is already at maximum volume and the louder button is
pressed, we obviously do not want to increase the volume further By using a
guard expression, the process which increases the volume can be prevented
from executing The guard expressions are therefore.

volume < maximum
volume> minimum

for louder
for softer

2.7 Alternative processes

Continued

We can use DEF to give a constant value to the identifiers maximum and
minimum

DEF maximum == 10, minimum == 2:

Thus a possible program would be

DEF maximum '== 10, minimum == 2:
VAR volume:
SEQ

volume :== minimum
WHILE TRUE

ALT
(volume < maximum) & louder? ANY

SEQ
volume :== volume + 1
amplifier! volume

(volume> minimum) & softer? ANY
SEQ

volume :== volume - 1
amplifier! volume

2.8 Arrays of processes

We have shown how to build simple processes in occam, and now consider
other methods of connecting processes. It is useful to be able to describe a
collection of processes as an array of processes, which can be done in occam
using a replicator

A simple example is a process which takes avalue and estimates its square root,
using the Newton-Raphson approximation technique. The process needs the
value (which we will call x) and an initial guess at the square root, for example
half the value. Aformula is applied to this initial guess to produce a better
estimate. The same formula is reapplied to the new estimate to improve upon it. If
the formula is applied enough times, the final estimate will be sufficiently close to
the real square root. In this example, we will apply the formula a fixed number of
times, and treat each application as a separate process, which we will call a
Newton-Raphson step, NRstep.

We can consider this as a simple one dimensional array of processes with data
flowing from the input to the output, sometimes called a pipeline. It looks like

~
xJ2 Ix,est x,est

NRstep ~ ••
o

L--__----'

x,est root
------:7

Having established the overall structure, consider the individual process. Each
step looks like

Va1UeS[i11NR~tep rVaIUeS[i+11

The value of x and the value of the estimate from the previous step are input by
NRstep i from channel values[i] The values of x and the new estimate formed
by NRstep i are output to the channel values[i + 1], which will be connected to
the next process of the pipeline, NRstep i+ 1 The value of x is transmitted first,
followed by the value of the estimate. To describe the process NRstep i in
occam we first need to look at the Newton-Raphson approximation step. It
provides the following formula for a new estimate, based on an existing estimate
and the original value

(Estimate + (x/Estimate))/2

Each Newton-Raphson step NRstep i therefore outputs this value to the next
step

values[i+ 1] ! (Estimate + (x/Estimate))/2

2.8 Arrays of processes
Continued

We now describe the process NRstep i in occam. We first need to declare the
variables x, and Estimate

VAR x, Estimate:

The process needs to input x and the estimate from the previous step, and then
to output x and a new estimate to the next step. It can be written in occam as

VAR x, Estimate:
SEQ

values[i] ? x
values[i] ? Estimate
values[i+1] ! x
values[i+ 1] ! (Estimate+(xlEstimate))/2

We can now use this process to construct the pipeline. The pipeline for the n-step
Newton-Raphson approximation needs n+1channels. Assuming that a
constant n has been declared, we can declare the channels values[O] to
values[n] using

CHAN values[n+1]:

We can form the pipeline consisting of n identical processes using PAR with a
replicator A replicator has the following form

i == [0 FOR n]

which means replicate n times starting from i==O, increasing i by 1 We can
combine the channel declaration and the replicated PAR

CHAN values[n+1]:
PAR i == [0 FOR n]

WHILE TRUE
VAR x, Estimate:
SEQ

values[i] ? x
values[i] ? Estimate
values[i+1] ! x
values[i+ 1] ! (Estimate+(x/Estimate))/2

We ensure repeated execution of each step of the pipel ine with a WHILE TRUE
construct.

2.8 Arrays of processes
-Continued

Finally, we need two processes to connect this pipeline to the rest of the system.
One inputs from the channel Sq.root a sequence of initial values, forms the first
estimate and presents it to the pipeline:

WHILE TRUE
VARx:
SEQ

Sq.root ? x
values[O] ! x
values[O] ! x/2

-- input initial value

-- form initial estimate

-- receive final estimate

The other outputs thefinal estimate to a channel called Sq.root.result:

WHILE TRUE
VAR root:
SEQ

values[n] ? ANY
val'ues[n] ? root
Sq.root.result ! root

The entire process can be written as

CHAN values[n+1]:
PAR

PAR i = [0 FOR n]
WHILE TRUE

I VAR x, Estimate:
. SEQ

values[i] ? x
values[i] ? Estimate

: values[i+1] ! x
I values[i+1] ! (Estimate+(x/Estimate))/2
WHILE TRUE

VARx:
SEQ

Sq. root ? x -- input initial value
values[O] ! x
values[O] ! x/2 -- form initial estimate

WHILE TRUE
VAR root:
SEQ

values[n] ? ANY
values[n] ? root -- receive final estimate
Sq.root.result ! root

2.8 Arrays of processes
Continued

In a conventional sequential programming language, the sequence of steps
would be performed by a loop. For comparison, here is such a program

WHILE TRUE
VAR x, Estimate:
SEQ

Sq. root ? x -- input initial value
Estimate :== x/2 -- form initial estimate
SEQ i == [0 FOR n]

Estimate: == (Estimate+ (x/Estimate))/2
Sq.root.result ! Estimate

This inputs avalue of x, and after the n steps of the loop have been performed,
the final estimate of the square root is obtained Another value for x is then input
and the entire loop executed again.

By contrast, the pipeline inputs the next value for x and calculates the early
estimates for its square root before the final estimate for the first value has been
obtained. Let's look at the first two stages

x,x/2

values[O]

x,est

values[1]

x,est

values[2]

The processes operate in parallel. When the values of x and x/2 are input on
values[O] the process NRstep 0 is executed

When NRstep 0 has output the new estimate via values[1], NRstep 1 is
executed However at this stage NRstep 0 is ready to receive another value for
x, and can be executed in parallel to NRstep 1 This does not affect the flow of
the first value through the pipeline because it has already been output to
NRstep 1

Although the amount of calculation required for each individual result takes just
as long with pipelining as it does with a conventional loop, the inherent
parallelism permits the throughput of many values to be very much greater

2.9 Conclusion

This section has introduced the main features of occam. The remainder of the
manual gives full details of the whole language.

3 Programmer's reference manual

3.1 Purpose, use and organisation

This section provides the syntax and semantics of occam. It is intended primarily
for reference, with each section on a separate page. Information is repeated
where this can reduce the need for cross-reference.

The ordering of the sections is intended to provide a useful sequence to the
knowledgeable programmer The manual starts by defining the primitive
processes and then details the different ways in which these primitive processes
can be combined to create more elaborate processes. The next section
describes declarations, and is followed by asection on the mechanisms for
naming processes and substitution. This is followed by sections on expressions,
elements, and the lexical and character representations. The final section
provides a syntax summary

Each section starts with astatement of purpose, together with small examples
which are informally discussed. This is followed by the formal syntax of the
language item and an informal explanation of its semantics.

3.2 Syntactic notation

assoc.op
operator
element
expression

The syntax of occam is described in a modified Backus-Naur Form printed in
blue. Actual language symbols and keywords are printed in black.

The == symbol is used to define a syntactic category The name of the category is
given on the left of the symbol, and the valid syntactic forms on the right. Where
there are several valid forms of one category, they are separated by the symbol

An item in curly brackets

{item}

indicates that it may be repeated zero or more times.

An item in square brackets

[item]

indicates that the item is optional

As an example, the following are simplified definitions of operators and
expressions

+l*
+ 1-1*1/
number I identifier I (expression)
element {assoc.op element}
element [operator element]

The following are therefore all legal expressions

2
x
x+y+z
(x y) *z

Note that the rules forthe format of occam programs are indicated informally in
the syntax descriptions for each construct in the main part of the manual, but are
not given in the syntax summary (section 3.1 0.2).

Alternative definitions for some syntactic categories are given in.different
sections of the manual, so that only the syntactic forms which are relevant to the
construct being described are given in anyone section.

3.3

3.3.1

Primitive processes

-Assignment processes (: ==)

An assignment process transfers the
value of its expression to the named
variable.

m :== 1

assigns the value 1to the variable m.

card[BYTE i] :== ch

assigns the current value of ch to the i 'th element of the vector card, addressed
using byte subscription.

variable identifier [subscript]
assignment == variable :== expression
primitive == assignment

The expression is evaluated, and the variable set to the resulting value. The
assignment process then terminates.

The variable may be asimple variable, or an element of avector of variables
selected using either byte orword subscription.

See also 3.3.2
3.3.3
3.8.1

Input processes
Output processes
Elements

3.3.2

An input process transfers a value from c1? x
a channel to a variable.

Input processes (?)

inputs avalue from the channel named c1 to the variable x.

sync.chan ? ANY

inputs avalue which is not preserved. It has the effect of synchronising the input
with a concurrent process, which outputs a synchronising signal on the same
channel

link? index; x

performs two inputs fromthe channel called link, placing first value in index, the
second in x.

variable
channel
input
input
primitive

identifier [subscript]
identifier [subscript]
channel? variable { ; variable}
channel? ANY
input

An input sets the value of avariable to a value input from a channel The input
waits until an output using the same channel is executed in parallel with the input.

An input may also be used in a guard in an alternative construct.

A multiple input is equivalent to a sequence of separate input processes for each
variable in turn, in left to right order Each input is separately synchronised with an
output process being executed in parallel, Each variable may be a simple
variable, or aword or byte subscripted element of a vector of variables.

A channel may be a simple channel, or an element of a vector of channels.

If ANY is used instead of avariable, then the input value is discarded This
provides a mechanism for receiving synchronisation signals.

Only one of the components of a parallel construct may contain input processes
for any given channel

See also 3.3.3
3.4.3
3.4.2

Output processes
Alternative processes
Parallel processes

3.3.3 Output processes (!)

An output process transmits a value to
a channel.

c[i]! x

outputs the value of x to the channel indexed by the current value of i belonging
to the vector of channels c.

letters ! alphabet[BYTE i]

outputs the i 'th byte of the vector alphabet to the channel letters.

sync.chan ! ANY

outputs an arbitrary value to the channel sync.chan. This would be used for
synchronisation purposes.

channel
output
output
primitive

identifier [[expression]]
channel !expression { ;expression}
channel ! ANY
output

The channel may be a simple channel, or an element of avector of channels.

An output waits until an input using the same channel is executed It then outputs
the value of the expression to the channel and terminates.

A multiple output is equivalent to a sequence of outputs, and outputs the value of
each expression in turn, in left to right order Each output is separately
synchronised with an input process executed in parallel

ANY may be output in place of an expression, in which case an arbitrary value is
output. This may be used as a synchronising signal

Only one of the components of a parallel construct may contain output
processes for any given channel

See also 3.3.2
3.4.2
3.4.3

Input processes
Parallel processes
Alternative processes

3.3.4 Wait processes (WAIT)

WAIT is used to delay execution until a
period of time has passed.

WAIT NOW AFTER alarm. time

continues execution when the time provided by the local clock is after the time
stored in the variable alarm.time. .

DEF timeout = 100 :
VAR clock, x :
SEQ

clock:= NOW
ALT

c1 ? x
c2 ! ok.message; x

WAIT NOW AFTER clock + timeout
c2 ! timeout.message

waits until either a message is received on channel c1, in which case it is output
to c2, preceded by acontrol value representing ok, or until the timeout occurs, in
which case an appropriate control value is transmitted to c2.

wait
primitive

= WAIT expression
= wait

A wait process is defined to be ready to execute if the expression evaluates to
TRUE. The expression must be a clock comparison.

If await process is used as a primitive process, it delays until ready, and then
terminates.

A wait process may also be used as a guard in an alternative process.

See also 3.4.3
3.7.6
3.8.3

Alternative processes
Clock comparison operator
Local clock

3.3.5 Skip processes (SKIP)

SKIP terminates with no effect. IF
(char>='O') AND (char<='9')

SKIP
TRUE

char := 'x'

converts all characters which are not digits to character 'x'.

primitive = SKIP

SKIP is always ready to execute, and its only effect is to terminate.

A skip process may be used as a guard in an alternative process.

See also 3.4.3 Alternative processes

A sequential process executes its
component processes one after
another.

3.4

3.4.1

VARx:
SEQ

c1 ? x
c2 ! x*x

Constructs

Sequential processes (SEQ)

inputs a single value from channel c1 and then outputs the square of that value
to the channel c2.

construct == SEQ
{process}

A sequential process takes the form of the keyword SEQ followed by the
component processes, each on a new line, all at an extra level of indentation.

The component processes are executed in turn. The sequential process
terminates when the last component process has terminated.

If there are no component processes, the construct terminates.

See also 3.4.6 Replicators

3.4.2 Parallel processes (PAR)

A parallel process causes its
component processes to be executed
together.

CHAN comms:
PAR

WHILE TRUE
VARx:
SEQ

c1 ? x
comms! x

WHILE TRUE
VARx:
SEQ

comms? x
c2! x

c1--G-commsflc2

construct

The process constructed by PAR in this example combines two buffer
processes which execute concurrently Each of the buffer processes can hold a
single value, so the effect of combining them is to repeatedly copy values from
channel c1 to channel c2, buffering up to two values at a time.

== PAR
{process}

The keyword PAR is followed by a number of component processes, each
starting on a new line and indented The effect is to execute.all of the component
processes together, and the construct terminates when all the component
processes have terminated If there are no component processes, the construct
terminates immediately

Two comRonent processes of a parallel construct may communicate by sending
values using a channel One contains outputs to the channel, and the other
contains inputs from the channel The two processes are said to be connected
by the channel No other component processes of the parallel construct may use
the same channel If two processes are connected by a channel,
communication occurs when both the input and the output are ready, and the
effect is to set the value of the variable specified by the input process to the value
of the expression in the output process.

Variables are not used for communication between the component processes of
a parallel construct. However, avariable may be used in two or more component
processes, provided that no component process changes its value by input or
assignment.

The rules governing the use of variables and channels cannot always be
checked, particularly when using subscript operations.

See also 3.4.6 Replicators

An alternative process is used
to accept the first message available
from a number of channels.

3.4.3

WHILE TRUE
VARx:
ALT

c1 ? x
c3! x

c2? x
c3 ! x

Alternative processes (ALT)

C1Bx c3
c2

guard

construct

This process merges data from channels c1 and c2 onto channel c3.

[expression &] input
[expression &] wait
[expression &] SKIP

guarded process = guard
process

ALT
{guarded process}

ALT
{guarded process}

An alternative process waits until at least one guarded process is ready to
execute. One of the ready guarded processes is then selected and executed.
The construct then terminates.

A guarded process starting with an input from achannel is ready if an output
process is waiting to output to the channel. If the guarded process is selected,
the input is performed, and then the component process is executed.

A guarded process starting with await is ready if the wait is ready If the guarded
process is selected, the component process is executed.

A guarded process starting with SKIP is always ready. If the guarded process is
selected, the component process is executed.

If a guard contains an expression followed by an input or wait, the guarded
process is ready only if both the value of the expression is TRUE and the input or
wait is ready.

If a guard contains an expression followed by a skip, the guarded process is
ready only if the value of the expression is TRUE.

3.4.3 Alternative processes (ALT)
Continued

If a guarded process is itself an alternative construct, then it is ready if one or
more of the component guarded processes of the alternative is ready.

A guard containing a multiple input is ready if an output process using the same
channel as the input is waiting The guarded process is executed by performing
all of the inputs of the multiple input in sequence, and then executing the
component process.

If more than one guarded process is ready when the alternative process is
executed, an arbitrary one is selected.

If more than one guarded process becomes ready at the same time, an arbitrary
one is selected. This may occur if they contain inputs on the same channel.

See also 3.4.6 Replicators

A conditional process executes the first
component process for which the
expression is TRUE.

3.4.4

IF
i == 1

Qut1 ! x
i == 2

Qut2 ! x

Conditional processes (IF)

If the value of i is 1,then the value of x is output to the channel Qut1, if the value
of i is 2 then x is output to Qut2. If i has any other value, the conditional process
has no effect.

conditional expression
process

IF
{conditional}

construct IF
{conditional}

A conditional taking the form of an expression followed by a process is able to
execute if the expression evaluates to TRUE. A conditional taking the form of IF
followed by component conditionals is able to execute if one of its component
conditionals is able to execute.

The conditional process executes the first component (textually) which is able to
execute, and then terminates. If there is no component able to execute, then the
construct terminates with no other effect. At most one component is executed

If there are no components, the construct terminates immediately

Seea 0 3.4.6 Replicators

3.4.5 Repetitive processes (WHILE)

A repetitive process executes the
component process each time the
expression evaluates to TRUE.

VARx:
SEQ

x :== 0
WHILE x >== 0

SEQ
c1 ? x
c2! x

C1DC2

This process provides a single buffer It repeatedly copies values from the
channel c1 to the channel c2, buffering each value and terminating after
copying a negative value.

construct == WHILE expression
process

The repetitive construct takes the form of the keyword WHILE followed by an
expression, followed by a single component process indented on the next line.

The component process is executed repeatedly until the expression evaluates to
FALSE, and the construct terminates. If the expression is initially FALSE, the
process is not executed and the construct terminates immediately

3.4.6 Replicators (FOR)

A replicator is used with a constructor
to replicate the component process a
number of times.

A replicator can be used with PAR to
construct an array of concurrent processes.

CHAN c[n+1]:
PAR i == [0 FOR n]

WHILE TRUE
VARx:
SEQ

c[i] ? x
c[i+1] ! x

e[O]@ e[1]. • · e[n-1] @ e[n]

This process provides an n stage FI FO buffer It repeatedly transfers values from
channel c[O] to channel c[n], buffering a maximum of n values.

A replicator can be used with ALT for
inputting from an array of channels.

WHILE TRUE
VARx:
ALT i == [1 FOR n]

c[i] ? x
c!x

C[1]D
c[2] c
c[n]

A replicator can be used with SEQ to provide
a conventional loop.

This process merges data from a vector of channels c[1] through c[n] onto a
single channel named c.

DEF alphabet == "abcdefghijklmnopqrstuvwxyz".
SEQ i == [1 FOR alphabet[BYTE 0]]

letters ! alphabet[BYTE i]

Gletters

This process outputs the alphabetic characters in alphabetical order via the
channel named letters.

3.4.6 Replicators (FOR)
Continued

replicator
base
count
construct

construct

construct

construct

guarded process =

conditional

identifier = [base FOR count]
expression
expression
SEQ replicator

process
PAR replicator

process
ALT replicator

guarded.process
IF replicator

conditional
ALT replicator

guarded.process
IF replicator

conditional

The replicator declares an identifier to be the replicator index, giving its base
value and a count of the number of replications required

Its effect is to form a sequential, parallel, alternative, or conditional construct
containing count components by replicating the component process,
substituting successive integer values forthe replicator index (starting at base).
The substituted value for the replicator index in the last component will be
(base + count) 1

The replicator index can be used in expressions (but not constant expressions)
in the component process. It may not be changed by assignment or input.

An implementation may restrict the values of base and count to be constants,
particularly when a replicator is used to form a parallel construct.

If count evaluates to less than zero or equal to zero, then an empty construct is
generated. This has the effect of termination for sequential, parallel and
conditional processes, and the effect of never being ready to execute for
alternative processes.

Where textual order is significant, the component with the value base substituted
for the replicator index is considered to be textually first, followed by the
component with (base + 1), etc.

See also 3.4.1
3.4.2
3.4.3
3.4.4

Sequential processes
Parallel processes
Alternative processes
Conditional processes

3.5 Declarations

A declaration in occam is used to
introduce an identifier.

A declaration introduces a new identifier for use in the process that follows it. It
defines the meaning that the identifier will have within the process. If the new
identifier is the same as an identifier which is already in use, all occurrences of
the identifier in the following process refer to the meaning associated with the
new declaration.

process == declaration:
process

Declarations introduced byVAR, CHAN, DEF and PROC are linked to the
following process by a colon (:) at the end of the last line of the declaration. The
process follows on the next line, at the same level of indentation as the keyword
of the declaration.

An identifier may be declared as a formal parameter of a named process, and is
used with the given meaning in the named process.

An identifier may be declared as a replicator index. It can be used in expressions
(but not constant expressions) in the component process. It cannot be changed
by assignment or input.

Depending on the implementation, variables, channels and vectors may require
locations in store to be allocated Such locations are allocated before the
process following the declaration is executed, and deallocated when it
terminates.

See also 3.4.6
3.6

Replicators
Named processes and substitution

3.5.1 Variable declarations (VAR)

input --1 x x*x routput

var
declaration
process

Avariable declaration introduces an
identifier to be used as a variable.

VARx:
SEQ

input? x
output! x*x

In this example, VAR x: introduces the identifier x, which is used to hold avalue
within the SEQ process. Note that the variable named x cannot be accessed
outside of this process.

identifier
VAR var {, var}
declaration:
process

A variable declaration introduces an identifier for use as a variable. The variable
is not initialised, and therefore its value is not determined at the start of execution
of the following process; it may well be different each time the following process
is executed

A list of variable identifiers may be declared This is the same as a series of single
variable declarations.

See also 3.3.1
3.5.3
3.8.1

Assignment processes
Vectors of variables
Elements

A channel declaration introduces a new
identifier to be used as a channel.
Channels are used to communicate
between concurrent processes.

3.5.2

CHAN c:
PAR

buffer (c1 , c)
buffer (c, c2)

Channel declarations (CHAN)

C10C0C2

In this example, the channel c is declared as an internal channel of the PAR
process. It cannot be used outside this process. Note that channels c1 and c2
will be external to this process, and will be declared in an outer level declaration.

chan
declaration
process

identifier
CHAN chan {, chan}
declaration:
process

A channel declaration introduces an identifier for use as a channel

A list of channel identifiers may be declared This is the same as a series of single
channel declarations.

See also 3.5.4 Vectors of channels

3.5.3 Vectors of variables

subscript
count
var
declaration
process

Avariable vector declaration
introduces an identifier to be used as a
vector of variables.

VAR list [16]:

declares avector of 16 variables. They are indexed as Iist[O] .. . list[15].

VAR line [BYTE 80]:

allocates avector named line with enough variables to hold 80 bytes.

[[BYTE] count]
expression
identifier subscript
VAR var {, var}
declaration:
process

A variable vector is a set of variables. The value of count, which must be a
constant expression, gives the number of variables in the vector The variables
are numbered from 0 up to (count - 1). If count is preceded by BYTE, the value
of count gives the number of bytes in the vector; the vector contains enough
variables to hold all the bytes.

The identifier introduced by avariable vector declaration, may be used as an
actual parameter to pass the vector to a substitution, or may be subscripted to
access an individual variable in the vector Subscription is described fully under
Elements (section 3.8.1)

A list of variable vector identifiers may be declared This is the same as a series of
single variable vector declarations. Each vector is individually sized

See also 3.5.1
3.6
3.7
3.8.1

Variable declarations
Named processes and substitution
Expressions and constant expressions
,Elements

3.5.4 Vectors of channels

A channel vector declaration
introduces a new identifier to be used
as a vector of channels. Channels are
used to communicate between
concurrent processes.

CHAN c[n 1]:
PAR

buffer (c1 , c[OD
PAR i == [0 FOR n 2]

buffer (c[i], c[i + 1D
buffer (c[n 2], c2)

C1flC[Oloooc[n - 21flc2.

chan
declaration
process

This example declares avector of channels to provide the internal structure of a
FIFO buffer of depth n. The value of n (a constant expression) and the channels
c1 and c2 will be external to this process, and will be declared in outer level
declarations.

identifier [count]
CHAN chan {, chan}
declaration:
process

A channel vector is a set of channels. The value of count, which must be a
constant expression, gives the number of channels in the vector The channels
are numbered from 0 up to (count - 1).

A channel vector declaration introduces an identifier for use as avector of
channels. The identifier may be used as an actual parameter to pass the vector
to a substitution, or may be subscripted to access an individual channel in the
vector

A list of channel vector identifiers may be declared This is the same as a series of
single channel vector declarations. Each vector is individually sized.

See also 3.5.2
3.6
3.7

Channel declarations
Named processes and substitution
Expressions and constant expressions

3.5.5 Constant definitions (DEF)

DEF associates a name with a constant DEF close.purge == 1, close.keep == 2:
value, or with a table of constant values.

This example associates the constant values with the identifiers close.purge
and close.keep. Use of these identifiers within the subsequent process will yield
the associated values.

DEF crctable == TABLE [#0000, #CC01, #D801, #1400,
#F001, #3COO, #2800, #E401,
#A001, #6COO, #7800, #B401,
#5000, #9C01, #8801, #4400

]

This example provides a definition of an identifier to represent avector constant.
Individual values may be obtained by subscripting the identifier crctable.

DEF alphabet == "abcdefghijklmnopqrstuvwxyz"·

This example defines the vector constant alphabet to be associated with a
string Individual letters of the alphabet may be obtained by using byte
subscription

const.def

declaration

identifier == expression
identifier vector.constant
DEF const.def { const.def}

DEF declares an identifier, and defines it to be associated with a constant value.
Each occurrence of the identifier in the subsequent process is replaced by the
constant value.

Constants come in two classes: simple constants and vector constants. Both are
introduced by the constant declaration.

Simple constants are defined by a constant expression (one which only involves
operators, numbers, character constants, TRUE, FALSE and simple
constants) A simple constant evaluates to a single value.

A vector constant associates an identifier with a table or string It may be
subscripted to produce a single value, or passed as avalue vector parameter in
a substitution

See also 3.7
3.8.1
3.8.5
3.8.6

Expressions and constant expressions
Elements
Vector constants
Character strings

3.6 Named processes and substitution

A name can be given to the text of a
process. The text will be substituted for
all occurrences of the name in the
subsequent process. Channels,
variables etc. may be used as
parameters when textual substitution
takes place.

PROC buffer (CHAN in, out) = in~ out
WHILE TRUE ~

VARx:
SEQ

in? x
out! x:

CHANe: e1~e~e2
PAR ~~~

buffer (e1 , e)
buffer (e, e2)

A single buffer process is declared The text for this is then substituted in the two
components of a parallel construct to give a process which copies from channel
e1 to channel e2, buffering up to two values at atime.

The line starting PROC gives the name buffer to the process, and identifies two
formal parameters, the channels in and out. The remaining lines give the text of
the named process. This is written in terms of the local variable x, and the formal
parameters in and out. The formal parameters will be substituted by the actual
parameters when the named process is substituted in the subsequent process.

form.parm

form.parms
declaration

process

process

VAR identifier [[]] { , identifier [[]]}
CHAN identifier [[]] { , identifier [[]] }
VALUEidentifier [[]] {, identifier [[]] }
(form.parm {,form.parm})
PROCidentifier [form.parms] =

process
declaration:
process
identifier [(expression { ,expression})]

The PROC declaration introduces an identifier to name the process which
follows, indented, on the succeeding lines. This process is referred to as the
named process. This, in turn, is followed by the process in which the identifier will
be used (the prefixed process). The named process will be substituted for all
occurrences of the identifier in the prefixed process-.

The named process may have parameters. The parameters that are declared
with the declaration of the named process are called formal parameters. Those
supplied as part of the substitution are called actual parameters

3.6 Named processes and substitution
Continued

The following are the formal parameter specifiers

VAR identifier
CHAN identifier
VALUE identifier
VAR identifier []
CHAN identifier []
VALUE identifier[]

variable
channel
value
vector of variables
vector of channels
vector of values

The size of the vector is not specified in the formal parameter Different sized
vectors may be used as actual parameters on different substitutions.
The identifier of the formal parameter may be written within the text of the named
process wherever a corresponding variable, channel, vector or value would be
valid A value vector parameter may be used as a constant vector in the named
process. Value parameters and value vector parameters may not be changed
by assignment or input.

The keyword VAR, CHAN or VALUE need not be repeated in successive items
in the parameter list.

A substitution with parameters consists of the identifier of the named process
followed by the actual parameters in brackets. A substitution without parameters
consists of the identifier of the named process.

The effect of a substitution is to make a copy of the process named by the
identifier, and to execute it in place of the substitution

If the named process has formal parameters, then they are replaced by the
actual parameters of the substitution, before the named process is executed
The actual parameters must correspond to formal parameters as follows

Formal

variable
channel
value
vector of variables
vector of channels
vector of values

Actual

variable or element of vector of variables
channel or element of vector of channels
value of an expression
vector of variables
vector of channels
vector of variables or vector constant

All value parameters are evaluated, and all elements of vectors are selected
before the actual parameters are substituted.

No recursion is allowed.

3.6 Named processes and substitution

Continued

The named process may contain an identifier which is the same as an identifer
substituted as an actual parameter In this case, the actual parameter refers to
the identifier in use at the point in the program where the substitution takes place.

An identifier which is used in, but not declared in, a named process is called a
free identifier of the named process. A free identifier may be the same as an
identifier in use at the point in the program where the substitution takes place. In
this case, the free identifier is the identifier in use at the point in the program
where the named process is declared.

A formal variable parameter cannot be substituted by avector element
accessed using byte indexing

3.7 Expressions and constant expressions

An expression is evaluated to produce
a single value.

expression == monadic.op element

An expression can take the form of an element preceded by one of the two
monadic operators - or NOT

expression == element [operator element]

An expression can take the form of a single element, or two elements separated
by an operator

expression == element {assoc.op element}

An expression may take the form of a sequence of operands separated by the
same associative operator The associative operators are

+
*/\
\/
><
AND
OR

addition
multiplication
bitwise and
bitwise or
bitwise exclusive or
Boolean and
Boolean or

A constant expression is one which only involves operators, numbers, character
constants, TRUE, FALSE and identifiers defined as simple constants. A
constant expression may not involve variables or replicator indices. A constant
expression evaluates to a single value and can be computed by a compiler

3.7.1 Arithmetic operators

Arithmetic operators provide two's
complement integer arithmetic.

addition +
subtraction
multiplication *
division /
remainder \

The arithmetic operators treat their operands as two's complement integers. An
arithmetic operator combines two single word values to produce a single word
result.

Minus may be used with only one operand, and is evaluated by subtracting the
operand from zero. The effect of minus applied to the the most negative integer is
implementation dependent.

Division rounds towards zero, the sign of the result being positive if both dividend
(left hand operand) and divisor (right hand operand) have the same sign, and
negative if they are of opposite sign.

The remainder operator evaluates to the remainder when the left hand operand
is divided by.the right hand operand. The sign of remainder is the same as the
sign of the dividend The remainder is such that

x == ((y* (xly)) + (x\y))

is always TRUE, regardless of the sign of x and y

The effect of division and remainder by zero is implementation dependent, as is
the division of the most negative integer by -1

3.7.2 Comparison operators

less than
greater than
less than or equal to
greater than or equal to
equal to
not equal to

<
>
<==
>==

<>

The result of a comparison operator is a truth value, TRUE or FALSE. The equal
and not equal operators compare corresponding bits of their operands. The
other comparison operators treat their operands as two's complement integers.

3.7.3 Logical operators

Logical operators provide facilities for
bit manipulation and truth value
manipulation.

i :== ere /\ #F

produces avalue in the variable i of between 0 and 15, by masking the variable
ere with the hexadecimal constant #F

The logical operators are

and /\
or \/
exclusive or ><
not NOT

The logical operators operate on corresponding bits of their operands,
producing bits of the result according to the following table

first second and or exclusive
operand operand or

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The logical operator NOT takes one operand. It is evaluated by inverting each
bit of its operand.

3.7.4 Boolean operators

Boolean operators provide left to right
evaluation of conditions. Evaluation
ceases as soon as the result can be
determined.

IF (i >== 0) AND (i <== tab.size) AND (tab[i] == 0)

In this example, checks are made on the value of i before it is used as an index
for the table tab. This will ensure that no attempt will be made to use i as the
index if it is out of range.

The boolean operators are

AND
OR

The result of evaluating an operand of a boolean operator should be either
TRUE or FALSE. The result of the AND operator is FALSE if its first operand is
FALSE, otherwise the result is the same as the second operand The result of
the OR operator is TRUE if its first operand is TRUE, otherwise the result is the
same as the second operand

3.7.5 Shift operators

The shift operators are

upshift «
down shift > >

The result of a shift operator is its first operand shifted by the number of bit
positions given by its second operand The up shift operator shifts towards the
most significant end of the word, the down shift operator towards the least
significant end In both cases, vacated bits are filled with zero.

Shifting by more than the word length results in zero. It is an error to attempt to
shift by a negative number of places. Note that this will only be detected if the
second operand is a constant.

3.7.6 Clock comparison operator (AFTER)

AFTER is used for comparing two time
values derived from a cyclic clock.

DEF interval == 60'
VAR alarm.clock:
SEQ

alarm.clock :== NOW + interval
WHILE TRUE

SEQ
WAIT NOW AFTER alarm.clock
ring! alarm.clock
alarm.clock '== alarm.clock + interval

causes the time to be output to the channel ring every 60 units of time. Note that it
has been constructed to avoid any slippage of time resulting from the time taken
to execute the WH ILE process.

expression == element1 AFTER element2

The value of the expression is TRUE if (element1 element2) > O. It is used in
WAIT processes to compare the value of element2 with the value of a free
running clock, accessed as element1 Note that AFTER gives the desired result
irrespective of the sign of element1 and element2 Note also that the maximum
interval of time for which AFTER can be used is the interval which can be
represented as a positive integer in a single word Half the full cycle of values is
regarded as 'after', and the other half as 'before'

See also 3.3.4
3.8.3

Wait processes
Local clock

3.8

3.8.1

Elements

Elements

An element is used to provide avalue in The following examples of elements yield the values indicated
an expression.

x
v[BYTE i]
TRUE
'a'
(x/y)

the value of the variable x
the value of the i 'th byte of vector v
the value represented by q.111 's
the ASCII code of the character a
the value produced by dividing x by y

variable identifier [subscript]
vector.constant = table Istring
item variable Ivector.constant subscript
element number I item I TRUE I FALSE I NOW

char.const I (expression)

An element produces aword value, represented as a pattern of bits. Aword can
hold an implementation dependent number of 8-bit bytes.

The value of the element TRUE is the bit pattern consisting entirely of one bits.
The value of the element FALSE is the bit pattern consisting entirely of zero bits.

The value of a parenthesised expression is the value of the expression.
Parentheses are used to indicate precedence.

The value of an element which is avariable is the current value of the variable.

The value of an element which is a replicator index is the value of the base
expression given in the replicator constructor, plus the number of the replication
(counting from zero).

3.8.1 Elements

Continued

The value of an element which is avector, followed by a subscript in square
brackets, is obtained by evaluating the expression forming the subscript, and
then using it to index the vector to obtain avalue. If 5 is the value of the subscript,
then the 5'th word (counting from zero) is accessed to produce aword value,
unless the expression is immediately preceded by the keyword BYTE, in which
case the 5'th byte is accessed, producing avalue which is non-zero in the least
significant byte only The effect of avalue for 5 which does not define aword or
byte within the vector is implementation dependent. Byte zero is the least
significant byte of word zero of the vector

The value of an element which is aconstant is the bit pattern representing that
constant.

It is not permitted to use an identifier declared as a channel or vector of channels
as an element in an expression.

See also 3.8.2
3.8.3
3.8.4
3.8.5

Numbers
Local clock
Character constants
Vector constants

3.8.2 Numbers

o
941
#FF the hexadecimal constantwhich is all ones for the least

significant 8 bits

A number is written as a sequence of decimal digits and represents the
corresponding value radix ten. Numbers are stored using two's complement.
The number range which may be stored is implementation dependent.

A number may be written as the symbol # followed by hexadecimal digits, and
represents the corresponding value radix sixteen (right justified). Either upper or
lower case hexadecimal digits may be used

3.8.3 Local clock (NOW)

NOW provides the value of the local
clock.

alarm.clock :== NOW + interval

assigns to alarm.clock avalue which represents a short time after the
assignment is executed.

element == NOW

NOW is aword-sized integer representing the time. At regular, but
implementation dependent, intervals of time it is incremented

No relationship may be assumed between the values produced by NOW in
different components of a parallel construct. Occam neither requires nor
supports a global sense of time.

Care needs to be taken when regarding the time as an integer Properly, NOW
should be regarded as unsigned, in which case note that the time represented
by all ones increments to zero. If regarded as a two's complement integer then
the largest positive integer value is incremented to the most negative value. The
AFTER operator gives the desired results, regardless of the sign of NOW or of
the time it is being compared with.

See also 3.3.4
3.7.6

Wait processes
Clock comparison operator

Character constants yield the ASCII
representation of a character.

3.8.4

'a'
'*"
'*n'
'*#ff'

Character constants

the ASCII forthe character a
the ASCII for the quote character
the ASCII for the newline character
the ASC II for the erase character

The syntactic category char.const is informally defined as any occam character
(except *and quote marks), or a special character sequence (defined below),
placed between single quotes. It evaluates to the corresponding ASCII code,
without parity

Some codes (such as those of newline, quote marks and asterisk itself) are
written as an asterisk followed by a character as follows

*c *C
*n *N
*t . *T
*5 *8
*'
*"
**

carriage return
newline
horizontal tabulate
space
quotation mark
double quotation mark
asterisk

Any other code is written as an asterisk, followed by a two digit hexadecimal
constant (introduced by #).

Note that the character constant for single quote must be written as '*".

See also 3.9.2 Character set

Atable produces a vector of
constants

3.8.5

DEF crctable

Vector constants (TABLE)

TABLE [#0000, #CC01, #D801, #1400,
#F001, #3COO, #2800, #E401,
#A001, #6COO, #7800, #8401,
#5000, #9C01, #8801, #4400

] :

defines avector constant. Individual values may be obtained by subscripting
from the identifier crctable, and the identifier may be passed as a vector value
parameter in the substitution of a named process.

table == TABLE [[BYTE] expression {, expression}]

A table is avector constant. It may be used anywhere that avector identifier may
be used, but may not be assigned to. Each member of the table must be a
constant expression.

If the keyword BYTE is used, then each constant is truncated to byte size and a
byte vector created

See also 3.5.3
3.7
3.8.6

Vectors of variables
Expressions and constant expressions
Character strings

3.8.6 Character strings

A string produces a table of byte
constants.

"Hello World*N"

a string of 12 characters, terminated by the newline character

A string is written as a sequence of characters placed between double quote (")
marks. Each character is written using the same conventions as for character
constants. Within a string the double quote character must be written as *".

A string is represented as atable of byte constants. The first byte gives the
number of characters in the string, the remaining bytes are set to the ASCII
representations of the characters in the string A string is limited to not more than
255 characters. The null string consists of a single byte set to zero.

A string may be written anywhere that avector identifier may be used. It is not
valid to assign to a string

See also 3.5.3
3.8.4
3.8.5

Vectors of variables
Character constants
Vector constants

3.9

3.9.1

Lexical and character representations

Identifiers and reserved words

An identifier consists of a sequence of letters (a to z, A to Z), decimal digits (0
to 9) and dots (.), the first of which must be a letter Uppercase and lowercase
letters are not differentiated

Certain identifiers are reserved as keywords to identify language constructs.

AFTER
ALLOCATE
ALT
AND
ANY
BYTE
CHAN
DEF
FALSE
FOR
IF -
LOAD
NOT
NOW
OR
PAR
PLACED
PORT
PRI
PROC
SEQ
SKIP
TABLE
TRUE
VALUE
VAR
WAIT
WHILE

Other identifiers may also be associated in a given implementation with channels
and named processes which provide interfaces with the runtime environment.

3.9.2 Character set

The occam character set comprises

Alphabetic characters

ABeD E FG H IJ KLM NOPQRSTUVWXYZ
abed efg hij kl mno pq rst uvwxyz

Digits

0123456789

Other characters

!" # % &' () *+ , - ./: ;< == >? @ [\]

The space character

Note that some terminals may not support lowercase letters.

Other characters from the ASC II character set may be used in strings and
character constants where supported by the implementation.

3.10

3.10.1

Syntax

Program format

Constructs

Guarded processes

Conditional processes

Declarations

Occam uses indentation from the left hand margin to indicate program structure.
The indentation is indicated informally for each construct in the main body of the
manual, which also contains examples

Each process starts on a new line, at a level of indentation given by the following
rules

The construct keyword and an optional replicator occupy the first line. Each of
the component processes (if any) start on a new line and are indented by two
spaces more than the construct keyword

The expression and/or input or wait occupies the first line. The component
process starts on the following line, indented two more spaces.

The expression occupies the first line. The component process starts on the
following line, indented two more spaces.

Each declaration starts on a new line, at the same level of indentation as the
process it prefixes. The final line of a declaration is terminated by a colon.

Blank lines m~y be inserted anywhere and are ignored.

A construct may be broken to occupy more than one line. Line breaks may occur
after comma, semi-colon, before the second operand of an operator which takes
two operands, and after the & of a guard. The continuation must be more
indented than the first line of the construct. A string may be broken by terminating
it with a double quote mark, and then starting its continuation on the next line
(more indented than the first line of the construct) with a further double quote
mark.

3.10.1 Program format
Continued

Spaces are required to define indentation, and to separate identifiers. Spaces
may not occur within identifiers or operators. Otherwise, extra spaces may be
freely used to improve readability

Comments are introduced by double hyphen (- -), and terminate at the end of the
line. All the characters of a comment, including the double hyphen, are ignored
A comment may follow an occam construct on the same line, or may occupy a
line by itself For editing convenience, acomment occurring on a line by itself
should be started at the same or greater level of indentation as the following
construct.

3.10.2 Syntax summary

The following four syntactic categories are defined informally in the main part of
the manual

identifier (3.9.1)
number (3.8.2)
char.const (3.8.4)
string (3.8.6)

Processes

Primitive processes

program
process

assignment
input

output

wait
primitive

process
primitive
construct
identifier [(expression {, expression})]
declaration: process

variable := expression
channel? variable {; variable}
channel? ANY
channel ! expression {; expression}
channel !ANY
WAIT expression
assignmentlinputloutput!wait\SKIP

Constructors guard [expression &] input
I [expression &]wait
I [expression &]SKIP

guarded process = guard process
I ALT {guarded process}
I ALT replicator guarded process

conditional expression process
I IF {conditional}
I IF replicator conditional

replicator identifier = [expression FOR expression]
construct SEQ {process}

PAR {process}
ALT {guarded process}
IF {conditional}
SEQ replicator process
PAR replicator process
ALT replicator guarded.process
IF replicator conditional
WHILE expression process

Declarations

Expressions

3.10.2

subscript
chan
var
const.def

form.parm

form.parms
declaration

variable
channel
vector.constant
item
table
arithmetic.op
comparison.op
logical.op
boolean.op
shift.op
monadic.op
assoc.op
operator

element

expression

Syntax summary

Continued

[[BYTE] expression] ,
identifier [[expression]]
identifier [subscript]
identifier == expression
identifier == vector.constant
VAR identifier [[]] {, identifier [[]]}

I CHAN identifier [[]] {, identifier [[]]}
I VALUE identifier [[]] {, identifier [[]]}

(form.parm {, form.parm})
VAR var {, var}

I CHAN chan {, chan}
I DEF const.def {, const.def}
I PROC identifier [form.parms] == process

identifier [subscript]
identifier [[expression]]
table Istring
variable Ivector.constant subscript
TABLE [[BYTE] expression {, expression}]
+1-1*1/1\
< I> 1<== 1>== 1<> 1== IAFTER
1\ 1\/1><
AND lOR
« I»
-INOT
+ 1* Ilogical.op Iboolean.op
arithmetic.op Icomparison.op Ilogical.op
boolean.op 1shift.op
numberl item ITRUE IFALSE INOW
char.const I(expression)
element {assoc.op element}
element [operator element]
monadic.op element

Vector operations

Configuration

3.10.2

assignment
output
input
destination
source
slice
base
count

program
system

allocation

processor
port. allocation
port
singleton

construct

Syntax, summary
Continued

destination:= source
channel! slice
channel? slice
slice
slice
identifier [[BYTE] base FOR count]
expression
expression

= system
= PLACED PAR {system}

I PLACED PAR replicator system
I {declaration:} system
I allocation: singleton

= ALLOCATE processor
{PORT port allocation}
[LOAD port]
[other allocations]

expression
= port:- channel [, channel]
= expression
= {declaration:} singleton

I PRI PAR {process}
I process

= PRI ALT {guarded process}
I PRI ALT replicatorguarded process

3.11 Vector operations

Slices extend the primitive assignment, input and output processes to allow
efficient assignment and communication of parts of vectors.

These facilities may be omitted in simple implementations.

Aslice identifies part of avector.

3.11.1

slice
base
count

Slices

identifier [[BYTE] base FOR count]
expression
expression

A slice identifies a set of vector elements. The elements may be words or bytes.
The identifier must be declared as avector of variables or a constant vector. The
expression base is the subscript of the first element in the set, and the numberof
elements is given by count. A slice must have at least one element.

Slices may be used in assignment, input and output processes.

A slice of word elements may be used as an actual parameter in a substitution. A
slice of avector of variables may be substituted for avector of variables or a
vector of values. A slice of aconstant vector may only be substituted for avector
of values.

3.11.2

An assignment transfers the elements of a assignment
slice to another slice. destination

source

Slice assignment

destination:= source
slice
slice

The source and destination slices must be of the same length, and must not
overlap. Both must be word slices or both must be byte slices.

The value of each element of the destination slice is set to the value of the
corresponding element of the source slice. The assignment then terminates.

The destination may not be aslice of aconstant vector.

3.11.3 Slice communication

Slice communication transfers the values in.pack? p.buff[BYTE n FOR 16]
in a slice from an output process to an
input process. inputs a 16 byte slice from in.pack and places the received data into the vector

p.buff starting at byte number n.

output
input

= channel ! slice
= channel? slice

Slice communication is similar to communication of a single value except that a
number ofvalues are copied in a single communication. Communication occurs
when both an input process and an output process are ready, and the effect is to
set the value of each element in the input slice to the value of the corresponding
element of the output slice.

The input and output slices in any slice communication must be of equal length.
Both must be word slices or both must be byte slices. The input slice may not be
a slice of a constant vector

A slice input may be used in the guard of a guarded process.

3.12 Configuration

Configuration associates the
components of an occam program with
a set of physical resources.

Configuration is used to meet speed and response requirements by
distributing programs over separate, interconnected computers, and by
placing and prioritising processes on single computers.

Every computer has local store and a set of numbered ports. A physical
connection between two computers connects a port on one computer to a
port on the other computer. This implements up to two channels between the
computers, one in each direction.

A parallel construct may be configured for a network of computers. Each
computer executes a component process, and port allocations are used to
allocate channels to ports.

A parallel construct may be configured for an individual computer. The
computer shares its time between the component processes, and the
channels are implemented by values in store. Indeed, a parallel construct
configured for a network may be reconfigured for an individual computer.

On any individual computer, a parallel construct may be configured to
prioritise its components, and an alternative construct may be configured to
prioritise its inputs.

The allocation of processing resources to the concurrent processes in a
program does not affect the logical behaviour of the program. Simple
implementations may omit or ignore some or all of the configuration facilities.

3.11.3 Slice communication

Slice communication transfers the values in.pack? p.buff[BYTE n FOR 16]
in a slice from an output process to an
input process. inputs a 16 byte slice from in.pack and places the received data into the vector

p.buff starting at byte number n.

output
input

== channel! slice
== channel? slice

Slice communication is similar to communication of a single value except that a
number of values are copied in a single communication. Communication occurs
when both an input process and an output process are ready, and the effect is to
set the value of each element in the input slice to the value of the corresponding
element of the output slice.

The input and output slices in any slice communication must be of equal length.
Both must be word slices or both must be byte slices. The input slice may not be
a slice of a constant vector

A slice input may be used in the guard of aguarded process.

3.12 Configuration

Configuration associates the
components of an occam program with
a set of physical resources.

Configuration is used to meet speed and response requirements by
distributing programs over separate, interconnected computers, and by
placing and prioritising processes on single computers.

Every computer has local store and a set of numbered ports. A physical
connection between two computers connects a port on one computer to a
port on the other computer. This implements up to two channels between the
computers, one in each direction.

A parallel construct may be configured for a network of computers. Each
computer executes a component process, and port allocations are used to
allocate channels to ports.

A parallel construct may be configured for an individual computer. The
computer shares its time between the component processes, and the
channels are implemented by values in store. Indeed, a parallel construct
configured for a network may be reconfigured for an individual computer.

On any individual computer, a parallel construct may be configured to
prioritise its components, and an alternative construct may be configured to
prioritise its inputs.

The allocation of processing resources to the concurrent processes in a
program does not affect the logical behaviour of the program. Simple
implementations may omit or ignore some or all of the configuration facilities.

3.12.1 Prioritised alternative processes (PRI ALT)

Alternative processes may be prioritised. VAR going:
SEQ

going := TRUE
WHILE going

VARx:
PRI ALT

stop? ANY
going := FALSE

c1 ? x
c2! x

C1~C2

stop

construct

This program copies values from channel c1 to channel c2. Any input on channel
stop stops the copying action. If both channels c1 and stop are ready to input,
stop is selected.

PRI ALT
{ guarded. process}

PRI ALT replicator
guarded process

If more than one guarded process is ready when a prioritised alternative process
is executed, the first one in textual sequence is selected.

If more than one guarded process becomes ready at the same time, an arbitrary
one is selected. This may occur if they contain inputs on the same channel.

See also 3.4.3 Alternative processes

3.12.2 Single processor execution and priority (PRI PAR)

A singleton is a process executed by a
single processor.

CHAN edit.in, edit.out:
PRI PAR

terminal.io (keyboard, screen, e,dit.in, edit.out)
editor (edit.in, edit.out)

always executes the terminal input and output in preference to the editor.

singleton {declaration :}
singleton
PRIPAR

{ process}
process

A singleton is a set of declarations and processes to be executed by asingle
processor

Aprioritised parallel contruct gives each component process a different priority.
The first component has the highest priority and the last component has the
lowest priority. An implementation may restrict the number of components which
a prioritised parallel construct can have.

A prioritised parallel construct ensures that a higher priority process always
proceeds in preference to a lower priority one. The progress of a higher priority
process is not affected by any lower priority one, except by communication on
connecting channels. If several concurrent processes at the same priority are
able to proceed, each one is given an opportunity to proceed in turn.

3.12.3 Multi-processorexecution (PLACED PAR)

= PLACED PAR
{system}

I PLACED PAR replicator
system

I {declaration:}
system

I allocation:
singleton

The configuration of a system is described by a set of declarations and
parallel constructs. The declarations may not include declarations of
variables or vectors of variables.

Asystem is a parallel construct which is system
configured for a network of computers.
Each computer with local store executes a
component process.

Each computer executes a component singleton of the placed parallel
construct. Each channel between such singletons must be associated with a
port on each of the corresponding computers, and the two ports must be
physically connected together.

See also 3.12.4 Physical resource allocation

3.12.4 Physical resource allocation (ALLOCATE)

c1--D-commsDc2Allocations are used to give physical
resources to processes and channels.

CHAN comms:
PLACED PAR

ALLOCATE 0
PORT 0:- comms
PORT 1:- c1
LOAD 1:

buffer (c1, comms)
ALLOCATE 1

PORT 0:- comms
PORT 1:- c2
LOAD 0:

buffer (comms, c2)

places a buffer process on each of two processors. Ports are allocated for the
channels and for loading the programs to be executed by each processor

allocation ALLOCATE processor
{PORT port.allocation}
[LOAD port]
[other.allocations]

processor expression
port.allocation = port:- channel [, channel]
port expression

Each singleton in a system is given resources by an allocation.

The physical processors in a system are identified and distinguished by
giving each one a unique number. The processor number is the value of the
expression at the start of the allocation.

Every processor has a set of numbered ports. A physical connection between
two processors connects a port on one processor to a port on the other
processor. This implements up to two channels between the processors, one
in each direction.

A port is associated with one or two of the channels used in the singleton. If
there are two channels, the singleton must use one channel for input, the other
channel for output. The channel used in a port allocation may be a simple
channel, or an element of a vector of channels.

A channel may occur in only one port allocation within an allocation.

3.12.4 Physical resource allocation (ALLOCATE)
Continued

The LOAD allocation nominates a port from which a process will be loaded
when the system is initialised. Loading takes place from a single point, and
the load ports must be allocated so as to provide a route from this point to
each processor in the system. The load route must exist as physical
connections between the processors in the system, but need not correspond
to the connections indicated by the port allocations.

Some implementations may require further information to complete the
allocation of resources, for example the address from which code should be
loaded A description of these allocations is found in the appropriate
implementation reference manual

See also 3.12.3 Multi-processor execution

4 Index

- 2.1 3.3.1 3.10.2 3.11.2
? 2.1 3.3.2 3.10.2 3.11.3

2.1 3.3.3 3.10.2 3.11.3
3.3.2 3.3.3 3.10.2

2.2 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.6 3.10.1

3.10.2

& 2.7 3.4.3 3.10.2

2.8 3.4.6 3.5.5 3.6 3.7.2 3.10.2 3.12.4
3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.6 3.8.5 3.10.1 3.10.2

+ 3.7.1 3.10.2

3.7.1 3.10.2

3.8.4
3.8.4 3.8.6

3.10.1

* 3.7.1 3.8.4 3.10.2

/ 3.7.1 3.10.2

\ 3.7.1 3.10.2

< 3.7.2 3.10.2

> 3.7.2 3.10.2

<= 3.7.2 3.10.2

>= 3.7.2 3.10.2

<> 3.7.2 3.10.2

/\ 3.7.3 3.10.2

\/ 3.7.3 3.10.2

>< 3.7.3 3.10.2

» 3.7.5 3.10.2

« 3.7.5 3.10.2

*c 3.8.4
*N 3.8.4
*T 3.8.4
*8 3.8.4
*' 3.8.4
*" 3.8.4
** 3.8.4
3.8.2 3.8.4

[] 2.8 3.4.6 3.5.3 3.5.4 3.6 3.8.1 3.8.5 3.10.2 3.11.1
3.11.3

() 2.6 3.6 3.8.1 3.10.2

actual parameters 2.5 3.6
AFTER 3.3.4 3.7.6 3.8.3 3.9.1 3.10.2
ALLOCATE 3.10.2 3.12.4
allocation 3.10.2 3.12.3 3.12.4
allocation, store 3.5
ALT 2.7 3.3.2 3.3.3 3.3.4 3.4.3 3.4.6 3.9.1 3.10.2 3.12.1
alternative processes 2.7 3.2 3.3.2 3.3.4 3.4.3 3.12.1
and 3.7.3
AND 3.7 3.7.4 3.9.1 3.10.2
ANY 2.7 2.8 3.3.2 3.3.3 3.9.1 3.10.2
arithmetic 3.7.1 3.10.2
arrays of channels 2.8 3.4.6 3.5.4

of processes 2.8 3.4.6
of variables 3.4.6 3.5.3 3.11

ASCII 3.8.1 3.8.4 3.8.6 3.9.2
assignment processes 2.1 3.3.1 3.4.2 3.4.6 3.5 3.5.1 3.6 3.10.2 3.11.2
associative operators 3.7 3.10.2
asterisk 3.7.1 3.8.4 3.10.2
Backus-Naur form 3.2
base 3.4.6 3.8.1 3.11.1
bit manipulation 3.7.2 3.7.3 3.7.5 3.8.1 3.8.2
Boolean operators 3.7 3.7.4 3.10.2
brackets 3.2 3.6 3.8.1

curly 3.2
round 2.6 3.6 3.8.1 3.10.2
square 2.8 3.2 3.4.6 3.5.3 3.5.4 3.6 3.8.1 3.8.5 3.10.2

BYTE 3.3.1 3.3.2 3.3.3 3.4.6 3.5.3 3.5.5 3.6 3.8.1 3.8.5
3.8.6 3.9.1 3.10.2 3.11 1

carriage return 3.8.4
CHAN 2.4 2.6 2.8 3.3.2 3.3.3 3.4.2 3.4.6 3.5 3.5.2

3.5.4 3.6 3.9.1 3.10.2
channel declarations 2.4 2.6 2.8 3.5.2 3.5.4
channels 1 2.1 2.4 2.5 2.6 2.8 3.3.2 3.3.3 3.4.2

3.4.3 3.4.6 3.5 3.5.2 3.5.4 3.6 3.8.1 3.9.1 3.12
3.12.3 3.12.4

character codes 3.8.4
character constants 3.5.5 3.7 3.8.1 3.8.4 3.8.5 3.8.6 3.9 3.9.2
character set 3.9.2
character strings 3.5.5 3.8.6

clock 3.3.4 3.7.6 3.8.3
clock comparison operator 3.7.6
colon 2.2 3.5 3.10.1
comma 3.10.1
comments 3.10.1
communication 1 2.1 2.4 2.5 3.3.2 3.3.3 3.4.2 3.11 3.11.3

3.12.2
comparison operators 3.7.2 3.10.2
component processes 3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6

3.5 3.6 3.8.3 3.10.1 3.12.1 3.12.2
concurrent processes 1 2.1 2.4 2.5 2.8 3.3.2 3.3.3 3.4.2 3.4.6

3.5.2 3.5.4 3.12 3.12.2 3.12.3
conditional processes 3.4.4 3.10.1 3.10.2
conf iguration 3.12
constants 2.7 3.4.6 3.5 3.5.3 3.5.4 3.5.5 3.6 3.7 3.7.3

3.7.5 3.8.1 3.8.2 3.8.4 3.8.5 3.8.6 3.9.2 3.10.2
character 3.8.4
vector 3.8.5

constant definitions 2.7 3.5.5
constant expressions 3.5.5 3.7
constructs 2.2 3.2 3.4 3.6 3.9.1 3.10.1 3.10.2

alternative 2.7 3.4.3 3.12.1
conditional 3.4.4
parallel 2.4 3.4.2 3.12.2 3.12.3
repetitive 2.3 3.4.5
replicators 2.8 3.4.6
sequential 2.2 3.4.1

constructors 2.2 3.4.6 3.10.1
continuation lines 3.10.1
count 3.4.6 3.11.1
curly brackets 3.2
decimals 3.8.2 3.9.1
declarations 3.5 3.10.1 3.10.2 3.12.2 3.12.3

channels 2.4 3.5.2
constant definitions 2.7 3.5.5
formal parameters 2.6 3.6
named processes 2.6 3.6
replicator indices 2.8 3.4.6
variables 2.2 3.5.1

declarations vectors of channels 2.8 3.5.4
vectors of variables 3.5.3

DEF 2.7 3.3.4 3.4.6 3.5 3.5.5 3.7.6 3.8.5 3.9.1 3.10.2
definitions 2:7 3.5.5
delays 3.3.2 3.3.3 3.3.4
destination 3.10.2 3.11.2
digits 3.8.2 3.9.1
qivision 3.7.1
dots 3.9.1
down shift 3.7.5
double hyphen 3.10.1
elements 3.7 3.8 3.8.1 3.10.2
elements of vectors 3.3.1 3.3.2 3.3.3 3.5.3 3.5.4 3.6 3.8.1 3.11 1
equals 3.4.6 3.7.2
erase 3.8.4
escape 3.8.4 3.8.6
exclusive or 3.7.3
expressions 2.1 2.7 3.2 3.3.1 3.3.3 3.3.4 3.4.2 3.4.3 3.4.4

3.4.5 3.4.6 3.5 3.5.3 3.5.4 3.5.5 3.6 3.7 3.7.6
3.8.1 3.8.5 3.10.1 3.10.2

FALSE 2.3 3.4.5 3.5.5 3.7 3.7.2 3.7.4 3.8.1 3.9.1 3.10.2
FOR 2.8 3.4.6 3.9.1 3.10.2 3.11.1
formal parameters 2.6 3.5 3.6
format 3.10.1
free variables 3.6
greater than operator 3.7.2 3.10.1
guard 2.7 3.3.2 3.3.4 3.4.3 3.10.1 3.10.2
guarded processes 2.7 3.4.3 3.4.6 3.10.1 3.10.2 3.12.1
hexadecimal constant 3.7.3 3.8.2 3.8.4
identifiers 3.4.6 3.5 3.6 3.8.1 3.9.1
IF 3.4.4 3.9.1 3.10.2
indentation 2.2 2.6 3.4.1 3.4.2 3.4.5 3.5 3.10.1
input processes 1 2.1 2.5 2.8 3.3.2 3.3.3 3.4.2 3.4.3 3.4.6

3.5 3.10.1 3.10.2 3.11.3
integers 3.71 3.7.2 3.8.2
item 3.8.1 3.10.2
keywords 2.2 3.2 3.10.1
left shift 3.7.5
less than operator 3.7.2 3.10.1

lexical representations 3.9
line breaks 3.10.1
LOAD 3.10.2 3.12.4
local clock 1 3.3.4 3.7.6 3.8.3
locations of store 1 3.5
logical operators 3.7.3 3.10.2
loop 2.3 2.8 3.4.5 3.4.6
lowercase 3.9.1
masking 3.7.3
minus operator 3.7.1
monadic operators 3.7 3.10.2
multiplication 3.7.1
named processes 2.6 3.5 3.6 3.8.5 3.12.3
newline 3.4.2 3.8.4 3.8.6 3.10.1
Newton-Raphson 2.8
NOT 3.7 3.7.3 3.9.1 3.10.2
NOW 3.3.4 3.7.6 3.8.1 338.3 3.9.1 3.10.2
null string 3.8.6
null message 3.3.2 3.3.3
numbers 3.5.5 3.7 3.8.1 3.8.2 3.10.2
operators 3.5.5 3.7

arithmetic 3.7.1
Boolean 3.7.4
clock comparison 3.7.6
comparison 3.7.2
logical 3.7.3
shift 3.7.5

or 3.7.3
OR 3.7 3.7.4 3.9.1 3.10.2
output processes 1 2.1 2.5 2.8 3.3.2 3.3.3 3.4.2 3.4.3 3.10.2

3.11.3
PAR 2.4 2.8 3.3.2 3.3.3 3.4.2 3.4.6 3.5.1 3.5.2 3.5.4

3.9.1 3.10.2 3.12.2 3.12.3 3.12.4
parallel processes 1 2.1 2.4 2.5 2.8 3.3.2 3.3.3 3.4.2 3.4.6

3.5.2 3.5.4 3.12 3.12.2 3.12.3
parameters 2.6 3.5 3.5.3 3.5.4 3.5.5 3.6 3.8.5
parentheses 3.8.1
pipeline 2.8
PLACED PAR 3.10.2 3.12.3 3.12.4

plus operator 3.7.1
PORT 3.10.2 3.12.4
precedence 3.8.1
prefixed process 2.6 3.6 3.10.1
PRI ALT 3.10.2 3.12.1
primitive processes 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.10.2
PRI PAR 3.10.2 3.12.2
priority 3.12 3.12.1 3.12.2
PROC 2.6 3.5 3.6 3.9.1 3.10.2

processes alternative 2.7 3.4.3 3.12.1
assignment 2.1 3.3.1 3.11.2
component 3.4
concurrent 2.4 3.4.2 3.12.2 3.12.3

conditional 3.4.4
guarded 2.7 3.4.3
input 2.1 3.3.2 3.11.3
named 2.6 3.6
output 2.1 3.3.3 3.11.3
parallel 2.4 3.4.2 3.12.2 3.12.3

prefixed 2.6 3.6
primitive 2.1 3.3
repetitive 2.3 3.4.5
sequential 2.2 3.4.1
skip 3.3.5
wait 3.3.4

processor allocation 3.12.4
ready 1 2.7 3.3.3 3.3.4 3.4.2 3.4.3 3.4.6

recursion 3.6
remainder operator 3.7.1
repetitive processes 2.3 3.4.5
replicators 2.8 3.4.6
right shift 3.7.5
round brackets 2.6 3.6 3.8.1 3.10.2

scope 3.5
SEQ 2.2 2.3 2.8 3.4.1 3.4.3 3.4.5 3.4.6 3.5.1 3.9.1

3.10.2

sequential processes 2.2 3.4.1
shift operators 3.7.5 3.10.2

singleton 3.10.2 3.12.3 3.12.4

SKIP 3.3.5 3.4.3 3.10.2
slices 3.11 3.11.1 3.11.2 3.11.3
source 3.10.2 3.11.2
spaces 3.8.4 3.9.2 3.10.1
square brackets 2.8 3.2 3.4.6 3.5.3 3.5.4 3.6 3.8.1 3.8.5 3.10.2
store 1 3.5
strings 3.5.5 3.8.1 3.8.5 3.8.6 3.9.2 3.10.1
subscription 2.8 3.3.1 3.3.2 3.4.2 3.5.3 3.5.4 3.5.5 3.8.1 3.10.2
substitution 2.6 3.5.3 3.5.4 3.5.5 3.6 3.8.5
subtraction operator 3.7.1
synchronisation 1 2.5 3.3.2 3.3.3 3.4.3
syntax 3.2 3.10 3.10.2
syntax summary 3.10.2
system 3.10.2 3.12.3
tab character 3.7.4
TABLE 3.5.5 3.7.3 3.7.4 3.8.1 3.8.5 3.8.6 3.9.1 3.10.2
time 3.3.4 3.7.6 3.8.3
timeout 3.3.4
TRUE 2.3 2.4 2.6 2.7 2.8 3.3.4 3.4.2 3.4.3 3.4.4

3.4.5 3.4.6 3.5.5 3.6 3.7 3.7 1 3.7.2 3.7.4 3.7.6
3.8.1 3.9.1 3.10.2

up shift 3.7.5
uppercase 3.9.1
VALUE 3.6 3.9.1 3.10.2
VAR 2.2 2.3 2.4 2.6 2.7 2.8 3.3.4 3.4.1 3.4.2

3.4.3 3.4.5 3.4.6 3.5 3.5.1 3.5.3 3.6 3.7.6 3.9.1
3.10.2

variable declarations 2.2 3.5.1 3.5.3 3.6 3.10.2
vector constants 3.8.5
vectors 3.5 3.5.3 3.5.4 3.6 3.8.1 3.8.5 3.8.6 3.11
vectors of channels 2.8 3.5.4 3.12.3
vectors of variables 3.5.3
vector operations 3.11
WAIT 3.3.4 3.4.3 3.7.6 3.8.3 3.9.1 3.10.2
WHILE 2.3 2.4 2.6 2.7 2.8 3.4.5 3.9.1 3.10.2
word 3.3.1 3.3.2 3.71 3.7.5 3.7.6 3.8.1 3.8.3

Designed by HSAG Limited
Printed in England by Syon Print Limited.

61

DmJmOS
INMOS Limited
Whitefriars
Lewins Mead
Bristol BS1 2NP
England
Telephone (0272) 290861
Telex 444723

INMOS Corporation
PO Box 16000
Colorado Springs
Colorado 80935
USA
Telephone (303) 6304000
Telex 910 920 4904

D01004MH

	Contents
	1 Introduction
	2 Tutorial introduction to occam
	2.1 Building blocks
	2.2 Sequential processes
	2.3 Repetitive processes
	2.4 Parallel processes
	2.5 Input and output revisited
	2.6 Naming processes
	2.7 Alternative processes
	2.8 Arrays of processes
	2.9 Conclusion

	3 Programmer's reference manual
	3.1 Purpose, use and organisation
	3.2 Syntactic notation
	3.3 Primitive processes
	3.3.1 Assignment processes (:=)
	3.3.2 Input processes (?)
	3.3.3 Output processes (!)
	3.3.4 Wait processes (WAIT)
	3.3.5 Skip processes (SKIP)

	3.4 Constructs
	3.4.1 Sequential processes (SEQ)
	3.4.2 Parallel processes (PAR)
	3.4.3 Alternative processes (ALT)
	3.4.4 Conditional processes (IF)
	3.4.5 Repetitive processes (WHILE)
	3.4.6 Replicators (FOR)

	3.5 Declarations
	3.5.1 Variable declarations (VAR)
	3.5.2 Channel declarations (CHAN)
	3.5.3 Vectors of variables
	3.5.4 Vectors of channels
	3.5.5 Constant definitions (DEF)

	3.6 Named processes and substitution
	3.7 Expressions and constant expressions
	3.7.1 Arithmetic operators
	3.7.2 Comparison operators
	3.7.3 Logical operators
	3.7.4 Boolean operators
	3.7.5 Shift operators
	3.7.6 Clock comparison operator (AFTER)

	3.8 Elements
	3.8.1 Elements
	3.8.2 Numbers
	3.8.3 Local clock (NOW)
	3.8.4 Character constants
	3.8.5 Vector constants (TABLE)
	3.8.6 Character strings

	3.9 Lexical and character representations
	3.9.1 Identifiers and reserved words
	3.9.2 Character set

	3.10 Syntax
	3.10.1 Program format
	3.10.2 Syntax summary

	3.11 Vector operations
	3.11.1 Slices
	3.11.2 Slice assignment
	3.11.3 Slice communication

	3.12 Configuration
	3.12.1 Prioritised alternative processes (PRI ALT)
	3.12.2 Single processor execution and priority (PRI PAR)
	3.12.3 Multi-processor execution (PLACED PAR)
	3.12.4 Physical resource allocation (ALLOCATE)

	4 Index

