
inmmos®®

Conor O’Neill and Stephen Clarke

SW-0062-3

INMOS Limited Confidential

APPROVED 19 June, 1990

occam-2 compiler specification

INMOS Limited Confidential occam-2 compiler specification

1 Change history 2
1.1 Changes since issue SW-0062-02 2
1.2 Changes since issue of January 24, 1990 2

2 Important information 2
2.1 Changed implementation of channels 2
2.2 UNDEFINED and UNIVERSAL error modes 2
2.3 #SC directive 2

3 Introduction 3
4 Host implementation details 3
5 Processor types 4
6 Error modes 4
7 Interactive debugging 4
8 Filenames 5
9 Locating Files 5
10 Command line specification 6
11 Compiler library 8
12 Diagnostics 9

12.1 List of warnings 9
13 Related Documents 10

APPROVED 19.6.90 1 SW-0062-3

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Contents

INMOS Limited Confidential occam-2 compiler specification

Added more command line options.

Added ‘Important information’ section.

Added description of UNIVERSAL error mode.

Added , , , and command line switches.

There are some major differences between this compiler and the previous occam toolset compiler
(D705B etc).

The low level behaviour of channels has changed. This will not affect programmers working entirely in
occam. However, programmers using and code, and ing channels, must be aware of
the change. It may also affect programmers using and its associated predefines.

The ‘error mode’, and the type of errors which are detected, have now been ‘de-coupled’. Thus you
can now run in HALT mode, but turn off most checks, etc, and it is possible to write code which will
execute in either HALT or STOP mode, but still correctly trap errors.

UNDEFINED error mode is no longer supported. It can be mimicked by using the new command
line switch, which turns off the insertion of any run-time error checks. Hence a program compiled in
HALT mode, but with this command line flag, will behave as if in occam UNDEFINED error mode.

UNIVERSAL error mode has changed its behaviour. It now is compiled to behave exactly like HALT
or STOP error mode, according to whether the transputer’s flag is set. It turn
off all error checks like it did in the past. To do this, you should also add the command line switch.
Thus and together now mimic the old UNIVERSAL mode.

The compiler directive is no longer supported. (See SW-0044 (“occam 2 Language Implementation
Manual”)).

APPROVED 19.6.90 2 SW-0062-3

�

�

�

�

HaltOnError does not

1.1 Changes since issue SW-0062-02

1.2 Changes since issue of January 24, 1990

2.1 Changed implementation of channels

2.2 UNDEFINED and UNIVERSAL error modes

2.3 #SC directive

1 Change history

2 Important information

L XO XM ZI

GUY ASM PLACE
KERNEL.RUN

U

U
X U

#SC

INMOS Limited Confidential occam-2 compiler specification

The occam 2 compiler is called .

The occam 2 compiler takes as input an occam 2 source file, which may refer to further source files,
and compiles it into a TCOFF format (see SW-0011), or LFF format (see SW-0010), binary object file.
Which format is determined when the compiler is built: it is not selectable at compiler runtime (TCOFF
is the preferred).

Command line options control the target transputer and error mode.

A target processor should be specified for each compilation. The compiler supports IMS T212, T222,
T225, M212, T400, T414, T425, T800, T801 and T805 processors, together with the TA, TB and TC
processor classes. (See SW-0032 (“User Interface Specification”)). The compiler default is to produce
code for the T414.

A target error mode should be specified for each compilation. The compiler supports HALT, STOP and
UNIVERSAL error modes. The compiler default is to produce code for HALT mode.

The compiler can compile in a mode which supports interactive debugging with the INMOS debug-
ger. Alternatively it can compile using inline sequences of transputer instructions for input and output,
resulting in faster code execution.

The occam 2 source is checked for conformancy to the occam 2 language definition (see SW-0044
(“occam 2 Language Implementation Manual”)). Some extensions to the language definition in the
“occam 2 Reference Manual” published by Prentice-Hall are defined. In particular, directives to include
source code from other files, to reference separately compiled files and libraries, and to select compiler
options.

Assembly language code inserts are also allowed by means of a language extension. They are only
permissible if selected by a compiler option.

If the source does not conform to the occam 2 language definition, then the compiler will issue diag-
nostics, in the form of error messages, during the compilation process, and no object module file will
be produced.

occam 2 source files can contain references to object code libraries, occam source to be included in the
compilation, separately compiled occam code, and code produced by compilers for other languages.

Libraries and separately compiled units must be already compiled before any file which references them
can itself be compiled. It is the programmer’s responsibility to ensure all components of a program are
compiled in the correct order and that object code is kept up to date with changes in the source. This
may be assisted by using a MAKE program in conjunction with the tool. The compiler inserts
directives into the object file to enable the linker to check that the correct modules are linked together.

The occam 2 compiler is written in a subset of ANSI standard X3.159 C, using a subset of the X3.159
run-time library, such that it may be compiled with the following compilers: under VAX-VMS,

under SunOS version 4 (both on Sun-3 and Sun-4), and (the Inmos C compiler). The occam 2
compiler is to run on SunOS, VMS and MS-DOS (?) systems, as well as 32-bit transputers attached
to a host and communicating using iserver protocol (see SW-0070).

APPROVED 19.6.90 3 SW-0062-3

VAX-C
gcc icc

3 Introduction

4 Host implementation details

oc

imakef

INMOS Limited Confidential occam-2 compiler specification

The input files must be in the host’s native C system text file format; ie. sequences of ASCII characters
separated by newline characters on SunOS, sequences of ASCII characters separated by carriage-
return/linefeed pairs on MS-DOS, and sequences of records containing ASCII characters in stream
format with a linefeed record separator and implied carrriage-return on VAX-VMS.

The occam 2 compiler follows the occam toolset rule for combining processor types (see SW-0032
(“User Interface Specification”)):

Code may be called provided it is compiled for the same type or class, or it is compiled
for a class which is a superset of the calling code.

The occam 2 compiler follows the occam toolset rule for combining error modes (see SW-0032 (“User
Interface Specification”)):

Code compiled in HALT mode may call code compiled in HALT or UNIVERSAL
modes.
Code compiled in STOP mode may call code compiled in STOP or UNIVERSAL
modes.
Code compiled in UNIVERSAL mode may call code compiled in UNIVERSAL mode.

Code compiled in UNIVERSAL mode behaves as HALT or STOP mode, according to the state of the
transputer’s flag.

The compiler supports the UNDEFINED (or REDUCED) error mode by use of the command line
switch, which prevents the compiler from inserting any explicit code for run time checks where it
couldn’t check the validity at compile time. This enables it to be used as a ‘go faster’ option, for cases
where the code is known to be error free. Note that some checks are still performed; some transputer
instructions implicitly check for erroneous conditions. For example, arithmetic overflow doesn’t need
any explicit checking, but is checked by the normal instructions.

The occam 2 compiler supports interactive debugging by default. When enabled, the compiler will gen-
erate calls to library routines to perform input and output, rather than using the transputer’s instructions.
It may be disabled by using the command line switch, which forces the compiler to use sequences
of transputer instructions for input and output. When interactive debugging is selected, the compiler
assumes the existence of a library called . See SW-0063 (“occam 2 Compiler Library
Specification”).

Interactive debugging must be enabled in order to use the interactive features of the debugger.

Code which has interactive debugging disabled may call code which has interactive debugging enabled,
but not vice-versa.

APPROVED 19.6.90 4 SW-0062-3

HaltOnError

5 Processor types

6 Error modes

7 Interactive debugging

U

Y

virtual.lib

INMOS Limited Confidential occam-2 compiler specification

occam source files can be given any filename which is legal for the given host system. The use of the
extension for occam source, and the extension for files containing declarations of constants

and protocols, is recommended. If a source filename extension is not specified on the command line,
then will be assumed.

Output files are specified using the ‘ ’ option. If an output filename is not specified, the input filename
is used and a extension is added in place of any existing extension.

The compiler uses the extension of the output file as a default filename extension in a directive.

If the Makefile generator tool is used to assist with version control, the following extensions,
dependant upon the target error mode and processor type be used for the object file (see SW-0060
(“Makefile generator specification”)).

T212 T225 T414 T425 T800 T801 TA TB TC
T222 T400 T805

Error Mode M212
HALT .t2h .t3h .t4h .t5h .t8h .t9h .tah .tbh .tch
STOP .t2s .t3s .t4s .t5s .t8s .t9s .tas .tbs .tcs
UNIVERSAL .t2x .t3x .t4x .t5x .t8x .t9x .tax .tbx .tcx

The occam 2 compiler locates files by searching a specified on the host system. The path
is specified under MS-DOS and SunOS by the environment variable , and under VAX-VMS,
by the logical name . The name may be overridden by a command line option. For
the syntax of , see SW-0032 (“User Interface Specification”).

The search rules are:

1 If the filename contains a directory specification then the filename is used as given. Relative
directory names are treated as relative to the directory in which the compiler is invoked.

2 If no directory is specified, the directory in which the compiler is invoked is assumed.

3 If the file is not present in the current directory, the path specified by the environment variable
(or logical name) is searched. If there are several files of the same name on this
path, the first occurrence is used.

4 If the file is not found using the above rules, then the file is assumed to be absent, and an
error is reported.

If no search path has been set up then only rules 1 and 2 apply.

APPROVED 19.6.90 5 SW-0062-3

must

directory path

8 Filenames

9 Locating Files

.occ .inc

.occ

O
.tco

#USE

imakef

ISEARCH
ISEARCH ISEARCH

ISEARCH

ISEARCH

INMOS Limited Confidential occam-2 compiler specification

The command line takes the form

is the name of the file containing the source code. If no file extension is specified, the extension
is assumed. The file is searched along the path; see section 9. If the filename is

omitted the compiler displays brief help information.

is a list, in any order, of one or more of the options given in the following table. Each option
must be preceded by ’ ’ for MS-DOS and VMS based toolsets, or ’ ’ for all others. Options must be
separated by spaces. Options are not case sensitive.

Prevents the compiler from performing alias checking. The default is to per-
form alias checking. This option also disables usage checking. Note that when
enabled, the compiler may insert run-time alias checks. Details of alias and us-
age checking rules are given in SW-0044 (“occam 2 Language Implementation
Manual”).

Displays messages in brief (single line) format.

Disables the generation of object code. The compiler performs syntax, semantic,
alias and usage checking only.

Generates minimal debugging information. The default is to produce debug-
ging data. Debugging data is required by the debugger and by the transputer
simulator.
Disables the use of the compiler’s libraries. This prevents the compilation of
some programs which require ‘complicated’ arithmetic such as real arithmetic on
a processor which does not have a floating point unit.

Enables the compiler to recognise the restricted range of transputer instructions,
via the and constructs. See SW-0044 (“occam 2 Language Implemen-
tation Manual”) for the list of permitted instructions.

Produces code in HALT error mode. This is the default compilation mode and
may be omitted for HALT error mode programs.

Displays additional information as the compiler runs. This information includes
target and error mode, and information about directives as they are processed.
The default is not to display this information.

Disables run-time range checking. The default is to insert run-time range check-
ing.

Simply load the compiler, and do nothing. Used when loading the compiler onto
a transputer system.

Disables usage checking. The default is to perform usage checking. Usage
checking is also disabled by option ‘ ’. Details of usage checking rules are given
in SW-0044 (“occam 2 Language Implementation Manual”).

Do not warn if parameters are not used.

Do not warn if variables or routines are not used.
Specifies the name of the output file. If no output file is specified the compiler
uses the input filename and adds the file extension .

Redirects error and information messages to a file.

APPROVED 19.6.90 6 SW-0062-3

� �filename options

filename

options

outputfile

filename

Option Description

10 Command line specification

oc

.occ ISEARCH

/ -

A

B

C

D

E

G
GUY ASM

H

I

K

L

N
A

NWP

NWU

O
.tco

R

INMOS Limited Confidential occam-2 compiler specification

Produces code in STOP error mode.
Disables the insertion of all extra run-time error checking. The default is to insert
run-time error checks. This is a ‘stronger’ option than , and can be used to
implement the occam UNDEFINED error mode. See section 6.

Prevents the compiler from producing code which has a separate vector space
requirement. The default is to produce code which uses separate vector space.
See SW-0044 (“occam 2 Language Implementation Manual”) for details of vec-
torspace usage.

Enables the compiler to recognise the full range of transputer instructions, via
the and constructs. See SW-0044 (“occam 2 Language Implementation
Manual”) for the complete list of instructions.

Provide a warning whenever a name is descoped.

Provide a warning whenever a run-time alias check is generated (Overlap
checks).

Produces code in UNIVERSAL error mode.
Compile a single program only. Used when the compiler is loaded onto a trans-
puter system.

Compile many programs. The compiler will loop, accepting multiple command
lines from the server. Used when the compiler is loaded onto a transputer
system.

Disables interactive debugging with . See section 7.

Compile for transputer class TA .

Compile for transputer class TB .

Compile for transputer class TC .

Compile for a T212 processor.

Compile for a T222 processor. Same as .

Compile for a M212 processor. Same as .

Same as .
Compile for a T225 processor.

Same as .
Compile for a T400 processor. Same as .

Compile for T414 processor.
This is the default processor type and may be omitted when compiling
for a T414 processor.

Same as .
Compile for a T425 processor.

Same as .
Compile for a T800 processor.

Same as .
Compile for a T801 processor. Same as .

Compile for a T805 processor.

Same as .
N.B. These options are mutually exclusive. If mutually exclusive options are given an error is
reported.

APPROVED 19.6.90 7 SW-0062-3

Option Description

Option Description

S

U
K

V

W
GUY ASM

WD

WO

X

XO

XM

Y idebug

TA

TB

TC

T212

T222 T212

M212 T212

T2 T212

T225

T3 T225

T400 T425

T414

T4 T414

T425

T5 T425

T800

T8 T800

T801 T805

T805

T9 T805

INMOS Limited Confidential occam-2 compiler specification

Compiler diagnostic options

Print out a help page including these diagnostic options.

Print out code generator diagnostics and assembly code.

Print out assembly code.

Run compiler as far as semantic checker only (no usage checking or code gen-
eration).

Print out disassembled code (after code expansion).

Use visible compiler names rather than hiding them by appending a percent sign.

Mark the object file as ‘occam harness’ rather than ‘occam’, for use by the C
style configurer.

Use this instead of for locating files. See section 9.

Print out lexical analyser diagnostics.

Disable all the predefined routines.

Print out interspersed source and assembly code.

Run compiler as far as parser only (no checking or code generation).

Do not insert origin checks for imported references.

Disable generation of origin checks for exported references.

Allocate workspace by name scope, not name usage.

Print out the intermediate applicative expression tree.

Run compiler as far as usage checker only (no code generation).

Perform channel i/o by instructions, not by routine calls. Used in conjunction
with option.

Do not implement arrays of channels as arrays of pointers to channels. This
forces compatibility with the previous () toolset occam compiler.

Force 8 byte library patch size.

Force the code to be given priority when linked. Equivalent to the LINKAGE
pragma. See SW-0044 (“occam 2 Language Implementation Manual”).

Compile PRI PAR using a special ALT construct.

When compiling code which contains extended type operations or conversions, or certain compiler
predefined routines, the compiler makes reference to routines which are assumed to exist in a compiler
library.

SW-0063 (“occam 2 Compiler Library Specification”) describes the required contents of the compiler
library, and the conditions under which each routine will be called.

APPROVED 19.6.90 8 SW-0062-3

pathname pathname

Option Description

11 Compiler library

Z

ZA

ZB

ZC

ZD

ZE

ZH

ZI ISEARCH

ZL

ZN

ZO

ZP

ZQ

ZR

ZS

ZT

ZU

ZV
Y

ZW
D705B

ZX

ZY

ZZ

INMOS Limited Confidential occam-2 compiler specification

Compiler diagnostics take the form of warning, error and fatal error messages written to the standard
error stream under VAX-VMS and SunOS, and the standard output stream under MS-DOS. These
streams normally default to the user’s terminal.

The compiler error messages are of the format:

Warning messages are generated whenever legal, but unorthodox, programming styles are detected.
They do not prevent generation of an object file.

Recoverable errors are generated whenever the compiler detects a programming error which it can
repair itself. No object file is produced; the compiler will continue, but at termination it will return an
error code; this allows correct termination of or batch files.

Fatal errors terminate compilation immediately. No object file is produced. The compiler will return an
error code.

The pragma directive does not conform to the required syntax.

The named variable is never used. This warning may be disabled by means of the command line
switch.

This name descopes another name which has already been declared. This warning is only enabled by
means of the command line switch.

The named library contains no routines which may be called from this error mode and/or processor
type.

The named parameter is never used. This warning may be disabled by means of the command
line switch.

The named variable is placed on one of the transputer links. This may interfere with the INMOS
interactive debugging system.

The calculation of the machine address for this variable has overflowed; the truncated address is used.

APPROVED 19.6.90 9 SW-0062-3

filename linenumber message

filename linenumber message

filename linenumber message

name

name

name

name

name

name

name

name

12.1 List of warnings

12 Diagnostics

Warning-oc- ()-

Error-oc- ()-

make

Fatal-oc- ()-

Badly formed #PRAGMA directive

is not used
NWU

Name descopes a previous declaration

WD

No compatible entrypoints found in

Parameter is not used
NWP

Placement expression for clashes with interactive debugger

Placement expression for wraps around memory

Routine imported by multiple #USEs

INMOS Limited Confidential occam-2 compiler specification

The named routine exists in two different libraries; an implementation restriction means that this is not
permitted.

The named routine is never called. This warning may be disabled by means of the command line
switch.

The compiler has inserted run-time checks to ensure that variables are not aliased (ie that they don’t
overlap). This warning is only enabled by means of the command line switch.

The specified string for a TRANSLATE pragma may not contain a NULL (zero) byte.

You may not specifiy multiple translation strings for the same name.

You may not specify multiple names to be translated to the same string.

The TRANSLATE pragma must precede any #USE of a library containing that string.

The pragma name is ignored.

A variable has been PLACED AT WORKSPACE , and this clashes either with another placed
variable, or with the compiler’s workspace allocation requirements.

SW-0044 (“occam 2 Language Implementation Manual”) describes the source language accepted by
the compiler, and the implementation restrictions imposed by the compiler, and the standard libraries
provided with the occam 2 system.

SW-0064 (“occam 2 Run time model”) describes the run-time environment of an occam program,
including memory allocation.

SW-0063 (“occam 2 Compiler Library Specification”) describes the library routines required by the
compiler.

SW-0031 (“Toolset architecture and overview”).

SW-0032 (“User Interface Specification”).

APPROVED 19.6.90 10 SW-0062-3

name

number

name

name

name

name

number
number

13 Related Documents

Routine is not used
NWU

Run-time disjointness check inserted
run-time disjointness checks inserted

WO

TRANSLATE ignored: String contains NULL character

TRANSLATE ignored: Name has already been used

TRANSLATE ignored: String has already been used

TRANSLATE ignored: Module containing has already been loaded

Unknown #PRAGMA name:

Workspace clashes with variable PLACED AT WORKSPACE

	Contents
	1 Change history
	1.1 Changes since issue SW-0062-02
	1.2 Changes since issue of January 24, 1990

	2 Important information
	2.1 Changed implementation of channels
	2.2 UNDEFINED and UNIVERSAL error modes
	2.3 #SC directive

	3 Introduction
	4 Host implementation details
	5 Processor types
	6 Error modes
	7 Interactive debugging
	8 Filenames
	9 Locating Files
	10 Command line specification
	11 Compiler library
	12 Diagnostics
	12.1 List of warnings

	13 Related Documents

