
inmmos®®

Conor O’Neill

SW-0239-2

INMOS Limited Confidential

DRAFT 20 February, 1991

occam compiler internal implementation manual
(Haynes Manual)

INMOS Limited Confidential occam compiler internal implementation manual

1 Introduction 3
2 Compiler overview 3
3 Building the compiler 3

3.1 Source overview 3
3.2 Directory structure 3
3.3 Makefiles 3
3.4 External dependencies 4
3.5 Conditional compilation switches 5
3.6 Compiler diagnostics 6

4 Compiler structure 6
4.1 Compiler frontend structure 6
4.2 Compiler backend structure 8

5 Compilation strategy and method 8
5.1 Lexer 8
5.2 Parser 9
5.3 Type checker 9
5.4 Usage and alias checker 9
5.5 Tree transformer 10
5.6 Mapper 10
5.7 Debug information 11
5.8 Code generation 11
5.9 Code crunching 11
5.10 Tree interface routines 11

6 Tree structure 13
6.1 actionnode 13
6.2 altnode 13
6.3 arraynode 14
6.4 arraysubnode 14
6.5 channode 15
6.6 cnode 15
6.7 condnode 15
6.8 confignode 16
6.9 constexpnode 16
6.10 consttablenode 17
6.11 declnode 17
6.12 dopnode 18
6.13 hiddenparamnode 19
6.14 instancenode 19
6.15 leafnode 20
6.16 listnode 20
6.17 litnode 21
6.18 mopnode 21
6.19 namenode 22
6.20 processornode 22
6.21 replcnode 22
6.22 segmentnode 23
6.23 spacenode 23
6.24 valofnode 24
6.25 variantnode 24
6.26 wordnode 24

7 Name table 24
8 Symbol table 26

8.1 Generic symbol table fields 26
8.2 Variables 27

DRAFT 20.2.91 1 SW-0239-2

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Contents

INMOS Limited Confidential occam compiler internal implementation manual

8.3 Protocol tags 29
8.4 Procedure and Function symbols 29

DRAFT 20.2.91 2 SW-0239-2

� �

� �

INMOS Limited Confidential occam compiler internal implementation manual

This document describes the internal workings of the occam compiler which is supplied as part of the
D4205, D5205, D6205, and D7205 occam 2 toolsets. It is intended to be read by programmers in order
to be able to understand and maintain or extend the compiler. Therefore it assumes a fair knowledge
of how compilers work in general, and of the occam language.

The occam compiler is a multi-pass, hand-coded, compiler, written in ANSI C, targetted at the complete
range of INMOS transputers, both 16-bit and 32-bit. It is designed to generate good code, to take fullest
advantage of the transputer architecture. It does not perform local (basic block), global (procedural),
or interprocedural optimisation.

This section describes how to turn the sources into an executable compiler.

The occam compiler is written in ANSI C. It consists of approximately 70,000 lines of source code,
totalling 2.3 Megabytes, split over approximately 100 files. It is self-contained except for a library
which performs calculations for constant folding; this library is shared with other programs. This library
consists of about 5000 lines of source code, or 150 Kilobytes.

The occam compiler and occam configurer share the majority of their code. This document will not
deal with the configurer-specific details. The two variants are generated by compiling with different
command line switches, which control the C pre-processor. Makefiles are provided which automate
the build system; different makefiles generate the compiler and configurer, though, again, the makefiles
share common components.

The sources are held in two subdirectories, named ‘frontend’ and ‘backend’, which obviously correspond
(more-or-less) to the divisions of the compiler. Most source files have an associated ‘ ’ header file
in the same directory. The makefiles are held in the top level directory. Another subdirectory named
‘info’ holds miscellaneous information as ASCII text files.

In the top-level directory there are a collection of makefiles:

DRAFT 20.2.91 3 SW-0239-2

.h

3.1 Source overview

3.2 Directory structure

3.3 Makefiles

1 Introduction

2 Compiler overview

3 Building the compiler

INMOS Limited Confidential occam compiler internal implementation manual

makefile target
Sun 3 compiler executable () compiled with .
Sun 4 compiler executable () compiled with .
Transputer compiler bootable () compiled with .

The equivalent makefiles, with ending character ‘ ’ rather than ‘ ’, create the configurers.

These share many common sub-files, all called , which are accessed by from
the top-level makefiles.

Note that to create a Sun 3 compiler you must build on a Sun 3, similarly for a Sun 4. The transputer
bootable can be built by either; all you need is the INMOS cross compiler.

The compiler uses various external header files which define its interfaces, plus some standard INMOS
header files.

This is a header file containing definitions for standard sized types, (eg.), for each
compilation environment.

This is a header file defining miscellaneous stuff like , , etc, for each compi-
lation environment.

This is a header file which contains the non-portable bits and omissions for each compilation
environment to make it look more like an ANSI system. (Eg. SUNOS has instead
of).

This is a header file containing the values used to describe TCOFF object files.

This is a header file containing the values used in the TCOFF debug information.

This is a header file listing the entrypoints of the library, which is the library used
for constant folding. The library file used is when building UNIX executables, or

for transputer or VMS executables.

The configurer uses extra external headers, which are used to interface to the common configurer
backend. These are listed here for completeness, though they will not be described fully.

They are: , , and .

The configurer is linked with multiple extra files which also form part of the ‘C style’ configurer; these
are not described here. These routines also require a library to be linked.

DRAFT 20.2.91 4 SW-0239-2

�

�

�

�

�

�

makefile.s3c oc gcc

makefile.s4c oc gcc

makefile.tpc oc.btl icc

v c

makefile.* includes

icc

imstype.h
BIT32

imsmisc.h
PUBLIC PRIVATE

imsstd.h

unlink()
remove()

tcoff.h

debughdr.h

extlib.h
extlib

extlib.a
extlib.lib

tagdefs.h protos.h typedef.h

misclib

3.4 External dependencies

INMOS Limited Confidential occam compiler internal implementation manual

There are a number of names which are designed to be specified on the command line in order to
enable various facilities. Some of these are only of historical relevance.

Indicates that the configurer is to be built rather than the compiler.

Indicates that the compiler is being built under DEC’s VMS operating system. Not fully sup-
ported (ie not tested).

Indicates that the compiler is being built to run under UNIX, using the compiler.

Indicates that the compiler is being built to run under HELIOS. Not fully supported.

Indicates that just the syntax checker is to be built. No longer fully supported.

Indicates that the compiler is being built to run on a transputer, supported by , using
the INMOS C toolset (D4214 etc).

Indicates that the compiler is being built to run on a transputer, supported by , using
the old INMOS/3L C compiler (D414 etc). Not fully supported.

Indicates that the compiler is being built using Microsoft C to run under MS-DOS on a PC.
Not supported due to memory limitations.

Indicates that the compiler is to be built, not the configurer.

Indicates that the compiler is being built to run under SUNOS, using the SUN compiler.

Indicates that the compiler should read and produce TCOFF format object files (as against the
3L format (LFF) which was used with the D705 etc). This switch must always be specified.

Indicates that the compiler should be built to be capable of inserting library calls for input and
output operations. Since even if this is enabled, the library calls may be disabled by means
of a command line switch when invoking the occam compiler, should always
be specified.

Exactly one of , , , , , , or , must be defined.

Exactly one of , , or , must be defined.

DRAFT 20.2.91 5 SW-0239-2

�

�

�

�

�

�

�

�

�

�

�

�

CONFIG

DEC

GNU
gcc

HELIOS

ICHECK

IMS
iserver

LLL
afserver

MSC

OC

SUN
cc

TCOFF

VIRTUALCHANS

VIRTUALCHANS

DEC GNU HELIOS IMS LLL MSC SUN

CONFIG ICHECK OC

3.5 Conditional compilation switches

INMOS Limited Confidential occam compiler internal implementation manual

There are a number of ‘hidden’ command line options available for the developer to examine the state
of the compiler. These are useful when maintaining the compiler. To see a complete list, run the
compiler with command line option only. The most useful options for program maintenance are
described below:

Option Description
Display backend diagnostics (workspace allocation, etc) and assembly output.
If is also specified, will display trees before and after mapping.
No object file is produced.
Display assembly output. No object file is produced.
Display code just as it would be written to the object file.
No object file is produced.
Display the output of the lexer.
Do not display assembly ; rely on the symbolic info.
Intersperse source and assembly output. Not fully supported.
Allocate workspace by scope rather than variable usage.
Stop after the type checker.
Stop after workspace mapping.
Stop after parsing.
Stop after tree transformation phase.
Print the tree.
Stop after Usage checking; also enables usage checking diagnostics.

The front end consists mainly of: A hand-written lexer, which tokenises the input source. A hand-
written recursive-descent parser, which builds an abstract syntax tree. A type checker, which traverses
the tree, resolves name scoping, and performs occam type checking, and checking of other language
rules. A usage and alias checker, which is optionally invoked, to check that names are not aliased,
and to check that variables and channels are used correctly in parallel constructs.

The back end consists mainly of: A tree transformation phase, which walks the tree and performs
some simplifying transformations. It also performs INLINE expansion, and a few back-end specific
transformations for the code generator. A mapping phase, which takes each procedure in turn, and
inserts temporaries whenever they are required. It then allocates variables to workspace locations,
based on their estimated dynamic frequency of use. A debug phase, which writes the symbolic debug
information to the object file. A code generation phase generates code directly into a buffer (not to an
assembly file). A code-crunching phase resolves branches, and creates optimal prefix sequences for
the jumps, then writes the object file. This also writes the debug information specifying the relationship
between code addresses and source lines.

The files which comprise the compiler frontend are grouped according to the phase of the compiler,
ie. lexer, parser, checker, and usage checker. Each file has a corresponding file. This
contains declarations which are visible to other files in the same group, (eg, all the files), but
which should not be visible to other parts of the compiler. Each group also supplies header files which
are visible to the whole compiler. The names for these are not particularly consistent. (Note: These

DRAFT 20.2.91 6 SW-0239-2

operands

z

ZA

ZT

ZB

ZD

ZL

ZNO

ZO

ZS

ZSC

ZSM

ZSP

ZST

ZT

ZU

*.c *def.h
chk*.c

3.6 Compiler diagnostics

4.1 Compiler frontend structure

4 Compiler structure

INMOS Limited Confidential occam compiler internal implementation manual

‘rules’ are broken more often than they are kept).

The frontend files are currently as follows:

Files Phase Description
Type checker Type checking routines.
Type checker Headers for above.
Type checker External interface to type checker.
Type checker Error codes for type checker.
Configurer Configuration routines.
Configurer Headers for above.
Configurer External interface for configurer.
Configurer Miscellaneous internal data for configurer.

Object file reading/writing routines.
Headers for above.
External interface for object files.
Error reporting routines.
External interface for error reporting routines.
Generic include file which simply s many others.
Routines for inserts and disassembly.
External interface for , and disassembly.
Instruction encodings.

Lexer Lexer routines, and nametable.
Lexer Headers for above.
Lexer Miscellaneous lexing constants.
Lexer External interface for lexer.
Lexer Error codes for lexer.
Lexer Tree tag values.

List manipulation routines.
Miscellaneous support for portability problems.
Definition of symbol table access functions.
Miscellaneous host-specific checks - used by .
Opening files using path searching.
Definitions for occam predefines.

Parser Parsing routines.
Parser Headers for above.
Parser External interface for parser.
Parser Error codes for parser.

Definition of tree structure.
Usage checker Usage and alias checking routines.
Usage checker Headers for above.
Usage checker External interface for usage and alias checker.
Usage checker Error codes for usage and alias checking.
Usage checker Common structures, etc, for usage checker.

Memory allocation and Tree manipulation routines.
Abstract interface to tree structures,
and external interface for tree manipulation routines.
Error codes for tree manipulation routines.

DRAFT 20.2.91 7 SW-0239-2

chk*.c

chk*def.h

chkdef.h

chkerror.h

conf*.c

conf*def.h

confdef.h

confhdr.h

desc*.c

desc*def.h

deschdr.h

err*.c

errhdr.h

includes.h #include

inst.c ASM

instdef.h ASM

instruct.h

lex*.c

lex*def.h

lexconst.h

lexdef.h

lexerror.h

lexhdr.h

list*.*

misc*.*

nameshdr.h

ochdr.h includes.h

popen*.*

predefhd.h

syn*.c

syn*def.h

syndef.h

synerror.h

treedef.h

use*.c

use*def.h

usedef.h

useerror.h

usehdr.h

vti*.c

vti.h

vtierror.h

INMOS Limited Confidential occam compiler internal implementation manual

The files which comprise the backend are not so well partitioned. Because much of the same work
must be performed in the mapping and code generation phases, they are generally combined into the
same files.

The backend files are currently as follows:

File Phase Description
Mapper Top level process mapping routines.
Mapper Top level expression mapping routines.
Mapper Workspace allocation.
Code cruncher Code crunching and object file generation.

Debug information generation.
Mapper and Code generator General routines.
Mapper and Code generator Backend error codes.
Mapper and Code generator Common structures, etc.

Details of command line option flags, etc.
Startup harness and command line parser.
Support for command line option.

Tree transformation General routines.
Compiler version string.

This section describes briefly what each phase does, in terms of its inputs and outputs, and its effects
on other structures like the tree. Because of the complexity of the compiler, this description is not
exhaustive!

The lexer is called from the parser, via a function . This sets a global variable to
the ‘value’ of the next token. These values are the same tokens as are used by the tree tags later on,
all denoted by (but note that not all tokens require a tree node), or for identifiers.

The lexer deals with line buffering, expanding tabs, etc. Indentation is dealt with by setting global
variables to the current line’s indentation, etc. These are interrogated by the parser when required. This
approach was taken rather than using ‘indent’ and ‘outdent’ tokens because ‘inline’ s complicate
the latter method. The lexer does expand directives transparently; these are noticed by
the parser, which then tells the lexer to intepret the new file. Similarly for , directives,
etc.

At startup, the lexer pumps a specially encoded set of strings into the parser, which represent the
predefined routine headers. This makes it easy to add predefines when required.

The lexer contains a ‘name table’. This is used to turn all names and strings into pointers, so that string
equality can be tested by comparing pointers for equality. This name table has no notion of scoping,
so multiple variables called , say, will all map to the same name table entry.

DRAFT 20.2.91 8 SW-0239-2

not

bind1*.*

bind2*.*

bind3*.*

code*.*

debug*.*

gen*.*

generror.h

genhdr.h

harndef.h

harness.h

srcout*.* ZO

tran*.*

version.c

nextsymb() symb

S S NAME

VALOF
#INCLUDE

#USE #PRAGMA

x

4.2 Compiler backend structure

5.1 Lexer

5 Compilation strategy and method

INMOS Limited Confidential occam compiler internal implementation manual

The parser is simply a recursive descent parser. The top level view of an occam program is a list of
occam declarations, but with no process at the end. Eg. it looks something like this:

The parser initially parses a list of declarations, allowing any style of declarations. This is then checked
to ensure that no variables are declared at this outermost level.

The parser consists of many routines which parse portions of the language. These correspond (more-
or-less) to the syntactic categories of occam, complicated by some of the more difficult aspects of
occam, such as the ablility to encounter a declaration followed by a inside an expression.

Each routine for parsing a production normally creates and returns a sub-tree, or returns NULL if there
was an error. These sub-trees are combined by the higher level routines to create a full parse tree. This
contains all the original program information, (ie you can re-create the original source code), except
that comments have been stripped out.

Every construct which declares a name also creates a , which is essentially the symbol
table entry. These refer back to the name table for the name. The declaration contains a pointer to the

, and vice-versa. Variable names, etc., appearing elsewhere in the tree (eg. in expressions)
are indicated by a pointer to their name table entry. The format of the name table entry is sufficiently
like a normal tree node that later phases can distinguish them by examining their tag.

The type checker’s first role is to resolve name scoping. It walks the tree ‘top-down’, and at every
name declaration, it finds the corresponding symbol table entry () from one of the fields of
the declaration node. The symbol table entries are pushed onto a scope stack. When a name table
entry is encountered later in the tree walk, it must be resolved to the correctly scoped symbol. This
is done by searching through the scope stack to find the first symbol with the same name. The name
table entry in the tree is then replaced by the symbol table entry. (This actually occurs by overwriting a
pointer). As symbols go out of scope, the s are popped off the scope stack (but they remain
in existence, now being only accessable via the tree).

After resolving names, on the ‘bottom-up’ pass the type checker uses the symbol table information
for each name to resolve the types of sub-expressions and to check the types where required. If
sub-expressions are constant, they are folded on this bottom-up pass. Type information is inserted
into operator nodes. Many other occam rules are checked here, such as requiring constants in certain
places, disallowing s inside functions, etc.

This phase begins by walking the tree and attaching a list of free variables to each procedure and
function. This list indicates whether each name is read from, written to, input on, or output on. This
information is used by both the alias and usage checkers. There are also a couple of checks performed

DRAFT 20.2.91 9 SW-0239-2

PROC p ()
... body of procedure

:
PROC q ()

... body of procedure
:

VALOF

namenode

namenode

namenode

namenode

ALT

5.2 Parser

5.3 Type checker

5.4 Usage and alias checker

INMOS Limited Confidential occam compiler internal implementation manual

here (eg, that channel parameters and free channels may only be used in a single direction.) This
section is not optional.

The alias and usage checkers are optional. The alias checking is performed first; if this is successful
usage checking can be applied.

Alias checking walks the tree and looks at abbreviations, and parameter lists, to check that they follow
the occam rules that any item of data may only be referred to by a single name in any particular scope.
Where this cannot be checked at compile time, a special node type is added to the
tree containing the information which is needed to create the run-time check.

Usage checking involves detecting whether variables and channels are correctly used in parallel con-
structs. (This includes multiple assignment). Each procedure is checked separately, using free variable
information to check procedure instances.

This section again walks the tree. It expands procedures and functions which were marked as
by the programmer. After each function expansion, it again constant folds the expression.

This phase also inserts subscript checks into those array accesses which cannot be checked at compile
time. (This includes array segments too). It also expands the s inserted by the alias
checker into an expression which performs the check when evaluated.

Finally, each array access or segment access is processed to make it easier to code generate from.
Constant subscripts are folded, so that the resulting array access is given by an array base, plus a
constant offset, plus a variable expression.

The mapper performs two main roles. Its major role is to map variables to workspace locations (this
is directly analogous to register allocation). To do this, it has to know which temporaries are required.
Hence it needs to perform most of the code generation, to work out when temporaries are required. It
also turns un-implemented arithmetic operations into library calls, and turns i/o into library calls where
required.

For each procedure in turn, in a bottom up order, the mapper walks the code for that routine. When it
encounter a variable declaration (or abbreviation, etc), it adds that variable to the list to be allocated.
As it walks the tree, it keeps a usage count for each variable, based on an estimated loop count, etc.
This approximates the dynamic usage count of each variable.

Where expressions are too complicated to fit into the transputer’s register stack, the mapper introduces
temporary variables. It also reserves workspace locations which are required for procedure and function
calls, as well as augmenting their parameter lists with hidden parameters for static links, vectorspace
pointers, and hidden array dimensions. Temporaries are introduced and killed explicitly by the mapper;
hence they do not need to follow occam scoping rules (for example, they can exist for ‘half’ of an
expression). Temporaries which are no longer live may be re-used, to reduce the number of different
variables.

As it completes each procedure body, it allocates workspace slots. The variables are sorted into order
according to their estimated usage. The ‘reserved’ locations are marked first, then the variables are
taken in turn and mapped onto the lowest workspace location which does not clash with any other
variables which are in scope at the same time. (This is the only form of liveness analysis which is

DRAFT 20.2.91 10 SW-0239-2

overlapcheck

INLINE

overlapcheck

5.5 Tree transformer

5.6 Mapper

INMOS Limited Confidential occam compiler internal implementation manual

performed). After the first 16 workspace locations have been mapped, the remaining variables are
re-sorted into scope order, since this is more space efficient, and the most used variables will by now
have been allocated to all the offsets which require no prefixing. The total required workspace size is
recorded as part of the symbol table entry for that routine.

Sub-processes of and replicated are mapped separately, and the mapper introduces a new
node into the tree, (a), which records the space requirements for later. Replicated s
are considered to be a new lexical level, and all their non-local accesses are performed via a static
link.

Having mapped all variables, the symbolic information is now known. The debug phase walks the tree
again, top-down, and writes to the object file what is, in effect, a copy of the interesting parts of the
code. This includes all variable’s details, plus workspace requirements for routines and bodies.
Note that the mapping of code addresses to source lines cannot be performed yet; this is done after
code crunching.

The code generator phase walks the tree in a bottom up order, and generates code for each routine
in the same order that their definitions are completed. It also outputs constant arrays which are
encountered, again in the same order. Since all workspace offsets have been chosen, it can generate
directly to transputer instructions, including operands for primary instructions. It marks labels and jumps
to be resolved by the code cruncher. It also inserts markers to indicate the relationship between code
address and source code offsets for the debug information.

It does not go through a textual assembly phase.

The code cruncher resolves jumps for a single procedure at a time, adjusting the prefixing instructions
to optimise code size. (This also resolves the debug information). Because of the order in which the
routines are generated, at the end of each routine there can be no unresolved references. Therefore
the code is then packed up into the code buffer.

When all routines have been generated, these packed routines are written out to the code file, in
reverse order. This ensures that all procedure calls are , and therefore do not need to use
nfix instructions. Thus the code in the object file contains routines in the reverse order in which their
definitions are completed.

The tree interface routines provide a mechanism for abstracting away from the actual tree implemen-
tation. The tree structure fields are never manipulated directly. A set of macros are provided which
provide a cleaner interface to the tree, both for setting and reading tree fields.

There are also a number of routines which exist for tree manipulation. There are constructor functions
for each node type, but no destructor functions because the memory is never recovered. There are
tree walking routines which apply a function to every node of the tree. There are variants of these

DRAFT 20.2.91 11 SW-0239-2

forward

PAR PAR
spacenode PAR

PAR

5.7 Debug information

5.8 Code generation

5.9 Code crunching

5.10 Tree interface routines

INMOS Limited Confidential occam compiler internal implementation manual

which do not walk inside expressions. There is also a routine which prints out a tree; this is useful for
debugging (see also the command line switches).

DRAFT 20.2.91 12 SW-0239-2

INMOS Limited Confidential occam compiler internal implementation manual

Each node of the tree contains a tag, denoting the exact type of node, plus location information,
indicating which file and line this node was generated by. Tree tags all begin with .

The tags do not each have a different node struture; they are grouped into various node types according
to structure and use. For example, tags and are both s. The
routine can be used to determine node type given a tag; the
macro can be used to determine a treenode’s tag.

The tree is manipulated directly; instead macros are used which provide a ‘virtual tree interface’.
These macros are found in . For each node type there are a set of macros to access the fields.
Each macro which reads a field has a name ending in ; for example is a macro which will
return the tag of any node. The macros for setting fields all begin with , for example .
There are also macros which return the address of a field, which are formed by replacing the
with .

Macros valid on all treenodes are:

Macro Description
Tag value
File and line number information

s denote simple actions with ‘two parts’ such as: Assignment (both simple and multiple),
statements (second part is the list of selections), (ditto), Delayed input, input,

output.

The possible tag values for an are:

Tag name Description
Simple or Multiple Assignment

statement
input

timer input time
channel or timer input
channel output

Macros valid on an are:

Macro Description
‘Left hand side’ of process
‘Right hand side’ of process

s denote branches of an . They include the boolean guard expression, together with the
input to be performed, and the process to execute. Specifications which precede the input are moved
(by the mapper), to precede the process rather than the input, if they are not required for the input
itself.

DRAFT 20.2.91 13 SW-0239-2

never

S

S ASSIGN S CASE INPUT actionode
int nodetypeoftag (int tag)
int TagOf(treenode *tptr)

vti.h
...Of TagOf

Set... SetTag
...Of

...Addr

int TagOf

SOURCEPOSN LocnOf

actionnode
CASE CASE input

actionnode

S ASS

S CASE CASE

S CASE INPUT CASE

S DELAYED INPUT AFTER

S INPUT

S OUTPUT

actionnode

treenode *LHSOf

treenode *RHSOf

altnode ALT

6.1 actionnode

6.2 altnode

6 Tree structure

INMOS Limited Confidential occam compiler internal implementation manual

The only possible tag value for an is .

Macros valid on an are:

Macro Description
Boolean expression for guard
Input process
Body of the alternative
Copy of the channel expression from the input
Label number; used in backend

s are used to denote an array type. They hold a size expression, and a sub type. If the size
is constant, the value is constant folded into another field; this is -1 if unknown (eg formal parameters
of open array type). Multiple dimensioned arrays are formed as arrays of arrays.

The only possible tag value for an is .

Macros valid on an are:

Macro Description
Expression for this dimension’s size
Sub-type of the array
Constant folded dimension size

s are used to denote an array subscription. They hold fields indicating the base, and
the subscript. They are processed in the tree transformation phase to combine ‘nested’ subscriptions,
and to constant fold multiple constant subscripts.

The possible tag values for an are:

Tag name Description
Subscription after processing for the backend
Subscription
Configurer - subfield (attribute of a)

Macros valid on an are:

Macro Description
Base of the subscription
Index expression

only: variable expression
only: length expression, if not constant
only: constant folded offset

When the tag is , the field will always consist of a with tag .

DRAFT 20.2.91 14 SW-0239-2

altnode S ALTERNATIVE

altnode

treenode *AltGuardOf

treenode *AltInputOf

treenode *AltBodyOf

treenode *AltChanExpOf

int AltLabelOf

arraynode

arraynode S ARRAY

arraynode

treenode *ARDimLengthOf

treenode *ARTypeOf

int ARDimOf

arraysubnode

arraysubnode

S ARRAYITEM

S ARRAYSUB

S RECORDSUB NODE

arraysubnode

treenode *ASBaseOf

treenode *ASIndexOf

treenode *ASExpOf S ARRAYITEM

treenode *ASLengthOf S ARRAYITEM

int ASExpOf S ARRAYITEM

S RECORDSUB ASIndex namenode N FIELD

6.3 arraynode

6.4 arraysubnode

INMOS Limited Confidential occam compiler internal implementation manual

s are used to denote or types. They simply hold the protocol for that type.

The only possible tag values for a are and .

Macros valid on a are:

Macro Description
Protocol of the channel or port

s are ‘constructor’ processes, such as etc. They simply contain a list of sub-processes.

The possible tag values for a are:

Tag name Description
construct
construct (assembler insert)

construct (configurer)
construct (obsolete assembler insert)

construct
construct

construct (configurer)
construct
construct

construct

Macros valid on a are:

Macro Description
List of sub-processes
Used by backend for s

s are conditional nodes, and are used for the guards of an . Since they hold a (boolean)
expression, together with a process, they are also used for statements, and the selections of a

statement (where the expression is not necessarily boolean).

The possible tag values for a are:

Tag name Description
guard of an construct
selection of a construct

construct

Macros valid on a are:

DRAFT 20.2.91 15 SW-0239-2

channode CHAN PORT

channode S CHAN S PORT

channode

treenode *ProtocolOf

cnode ALT

cnode

S ALT ALT

S ASM ASM

S DO DO

S GUY GUY

S IF IF

S PAR PAR

S PLACEDPAR PLACED PAR

S PRIALT PRI ALT

S PRIPAR PRI PAR

S SEQ SEQ

cnode

treenode *CBodyOf

treenode *CTempOf ALT

condnode IF
WHILE

CASE

condnode

S CHOICE IF

S SELECTION CASE

S WHILE WHILE

condnode

6.5 channode

6.6 cnode

6.7 condnode

INMOS Limited Confidential occam compiler internal implementation manual

Macro Description
(Boolean) guard expression
Body process

When the tag is , is either a list of constants, or an node.

s are only used by the configurer. They hold details of configuration hardware and map-
ping properties.

The possible tag values for a are:

Tag name Description
set type of a
connect links
map logical name onto physical name

Macros valid on a are:

Macro When valid Description
name

List of attribute names
List of attribute values
Edge of connection
Edge of connection
Arc of connection
Logical name
Physical name
Priority (s only)

s are used for scalar constants. They hold the value (up to 64 bits) plus a representation
of how the constant was generated, so that the original constant could be re-generated.

The only possible tag value for a is .

Macros valid on a are:

Macro Description
Original expression tree
Upper 32 bits of value
Lower 32 bits of value
Used by backend for constant tables
Used by backend for constant tables

DRAFT 20.2.91 16 SW-0239-2

treenode *CondGuardOf

treenode *CondBodyOf

S SELECTION CondGuardOf S ELSE

confignode

confignode

S SET NODE

S CONNECT

S MAP

confignode

treenode *STDevOf S SET NODE

treenode *STAttrNameOf S SET

treenode *STAttrExpOf S SET

treenode *ConnectFromEdgeOf S CONNECT

treenode *ConnectToEdgeOf S CONNECT

treenode *ConnectArcOf S CONNECT

treenode *MapSourceOf S MAP

treenode *MapDestOf S MAP

treenode *MapPriOf S MAP NODE

constexpnode

constexpnode S CONSTEXP

constexpnode

treenode *CExpOf

BIT32 HiValOf

BIT32 LoValOf

treenode *CENextOf

INT32 CEOffsetOf

6.8 confignode

6.9 constexpnode

INMOS Limited Confidential occam compiler internal implementation manual

s are used for array constants. They hold a pointer to a name table entry which
holds the data, plus a representation of the original expression. Strings are also represented using

s.

The only possible tag values for a are and .

Macros valid on a are:

Macro Description
Name table entry containing byte string
Original expression tree
Used by backend for constant tables
Used by backend for constant tables

s denote any occam declaration. These include variable declarations, abbreviations, proce-
dure declarations, etc. (In fact, anything which ends in a colon). The fields of the node contain the
name, (actually held as a pointer to the symbol table entry ()), (or a list of names in the case
of a multiple variable declaration), the ‘value’ of the name (eg the right hand side of an abbreviation,
or a procedure body), and the trailing process (ie the process which follows the colon). By a quirk of
history, the trailing process is denoted as the ‘body’, which can cause confusion! The ‘type’ of the name
being declared is held in the symbol table entry. This includes formal parameter lists for procedures
and functions.

The possible tag values for a are:

Tag name Description
[specifier] name element
Configurer construct
Variable declaration
Assembler label declaration
‘Long’ (multi-line) declaration
Configurer construct
Configurer construct

name expression
Configurer namelist physical

declaration
specifier name element
‘Short’ (single-line) declaration
Sequential declaration
Tagged declaration

[specifier] name element
specifier name element

name
name

or name expression

Macros valid on a are:

DRAFT 20.2.91 17 SW-0239-2

consttablenode

consttablenode

consttablenode S CONSTCONSTRUCTOR S STRING

consttablenode

wordnode *CTValOf

treenode *CTExpOf

treenode *CTNextOf

int CTLabelOf

declnode

namenode

declnode

S ABBR IS :

S CONFIG CONFIG

S DECL

S LABELDEF

S LFUNCDEF FUNCTION

S NETWORK NETWORK

S MAPPING MAPPING

S PLACE PLACE AT :

S PLACEON PLACE ON :

S PROCDEF PROC

S RETYPE RETYPES :

S SFUNCDEF FUNCTION

S SPROTDEF PROTOCOL

S TPROTDEF PROTOCOL

S VALABBR VAL IS :

S VALRETYPE VAL RETYPES :

S VSPLACE PLACE IN VECSPACE :

S WSPLACE PLACE IN WORKSPACE :

PLACE AT WORKSPACE :

declnode

6.10 consttablenode

6.11 declnode

INMOS Limited Confidential occam compiler internal implementation manual

Macro Description
of declared name

‘Value’ of name; eg. body, or rhs of abbreviation
Process which is the scope of the declaration

nodes may declare a list of names. This can only occur where multiple are declared
in a single declaration; there is no other way to declare multiple symbols in a single declaration. In
this case, the field contains a list of s. Note that these s will share a
common type tree.

s denote any dyadic operator. They are also used for counted array protocols, because they
have two parts, also for statements! They hold two expression fields, plus another denoting the
type of the operator.

The possible tag values for a are:

Tag name occam Compiler Description

Inserted for ‘Check count from 1’ (range checks)
Used for counted array protocols
Inserted for ‘Check subscript from 0’ (range checks)

Eval lhs then rhs; used for overlapchecks
; used for overlapchecks

Assembler instruction
Assembler instruction with microcode stepping

Overlapcheck node

Macros valid on a are:

DRAFT 20.2.91 18 SW-0239-2

variables

treenode *DNameOf namenode

treenode *DValOf PROC

treenode *DBodyOf

S DECL

DNameOf namenode namenode
NTypeOf

dopnode
ASM

dopnode

S ADD +

S AFTER AFTER

S AND AND

S BITAND /\

S BITOR \/

S CCNT1

S COLON2 ::

S CSUB0

S DIV /

S EQ =

S EVAL

S FOR FROM x FOR y

S GE >=

S GR >

S GUYCODE

S GUYSTEP

S LE <=

S LS <

S LSHIFT <<

S MINUS MINUS

S MULT *

S NE <>

S OR OR

S OVERLAPCHECK

S PLUS PLUS

S REM \

S RSHIFT >>

S SUBTRACT -

S TIMES TIMES

S XOR ><

dopnode

6.12 dopnode

INMOS Limited Confidential occam compiler internal implementation manual

Macro Description
Left operand tree
Right operand tree
Type of operand (note that all are scalar operations)

If the node is a or , then the ‘left’ operand is the name table entry containing
the instruction string, and the ‘right’ operand is the instruction operand. The ‘type’ field is initialised by
the type checker to the instruction opcode.

s are used to denote extra parameters which are inserted into a or
parameter list by the compiler. These include the results of s which do not fit onto the integer
stack, and parameters passed to ‘fill in’ open array dimensions. They are all inserted in the backend
of the compiler.

The possible tag values for a are:

Tag name Description
Actual result parameter passed by reference
Formal result parameter passed by reference
Open array dimension
Hidden parameter for procedure vectorspace pointer

Macros valid on a are:

Macro Description
Expression or type to which it applies
Dimension which hidden param represents
or Vectorspace offset for an actual parameter

Both and nodes break the tree structure;
ie their field is actually a pointer to another part of the tree. Care must be taken here!

s are used to denote procedure or function instances. They include a list of actual
parameters. The list is augmented by the mapper to include hidden parameters if necessary.

The only possible tag values for an are and .

Macros valid on a are:

Macro Description
of instanced routine

Actual parameter list
Used by backend

DRAFT 20.2.91 19 SW-0239-2

Important note:

treenode *LeftOpOf

treenode *RightOpOf

int DOpTypeOf

S GUYCODE S GUYSTEP

hiddenparamnode PROC FUNCTION
FUNCTION

hiddenparamnode

S FNACTUALRESULT

S FNFORMALRESULT

S HIDDEN PARAM

S PARAM VSP

hiddenparamnode

treenode *HExpOf

BIT32 DimensionOf

S PARAM VSP

S FNACTUALRESULT S FNFORMALRESULT
HExpOf

instancenode

instancenode S FINSTANCE S PINSTANCE

instancenode

treenode *INameOf namenode

treenode *IParamListOf

int ILoadSeqOf

6.13 hiddenparamnode

6.14 instancenode

INMOS Limited Confidential occam compiler internal implementation manual

s are used to denote any construct which needs to hold no extra information; examples are
the types , , etc, also the processes , .

The possible tag values for a are:

Tag name Description
Protocol for
Configurer

Dummy expression for compiler-generated
Configurer
Marker for end of outermost list of declarations

Configurer

Type of an assembler label
Hidden parameter for procedure static link

Used while type checking in case of errors

There are no other access macros for a .

Currently all dummy expressions are simply pointers to a globally used
. Hence they break the tree structure.

s are used for a generic list structure. They consist of a field, and a
field. They are also used for a special case: the type of a function has two lists; one containing a list of
return types, the other containing a list of formal parameters. The two lists are separated by a special
listnode.

The only possible tag values for a are and .

Macros valid on a are:

DRAFT 20.2.91 20 SW-0239-2

Important note:

leafnode
INT INT16 SKIP STOP

leafnode

S ANY CHAN OF ANY

S ARC ARC

S BOOL

S BYTE

S DUMMYEXP S CONSTEXP

S EDGE EDGE

S END

S ELSE

S FALSE

S NODE NODE

S INT

S INT16

S INT32

S INT64

S LABEL

S PARAM STATICLINK

S REAL32

S REAL64

S SKIP

S STOP

S TIMER

S TRUE

S UNDECLARED

leafnode

S DUMMYEXP
leafnode

listnode ThisItem NextItem

listnode S LIST S FNTYPE

listnode

6.15 leafnode

6.16 listnode

INMOS Limited Confidential occam compiler internal implementation manual

Macro Description
This item on the list
Next item on the list

return type list
formal parameter list

The macro can be used to determine when a list is empty.

s are used to denote constant literals from the source code. They simply hold an entry in the
name table which contains the string denoting that literal.

The possible tag values for a are:

Tag name Example Note

converted to
converted to
converted to

Macros valid on a are:

Macro Description
Name table entry containing literal string

These nodes are all constant folded into nodes by the type checking phase.

s are used to denote monadic operators. They have a field describing the expression, and
another denoting the type of the operator. Table constructors are also denoted by a , where
the expression is actually a list of expressions.

The possible tag values for a are:

DRAFT 20.2.91 21 SW-0239-2

treenode *ThisItem

treenode *NextItem

treenode *FnTypeListOf FUNCTION

treenode *FnParamsOf FUNCTION

int EmptyList(treenode *)

litnode

litnode

S BYTELIT 27(BYTE)

S INTLIT 27(INT)

S INT16LIT 27(INT16)

S INT32LIT 27(INT32)

S INT64LIT 27(INT64)

S REAL32LIT 27.0(REAL32)

S REAL64LIT 27.0(REAL64)

S UBYTELIT ’a’ S BYTELIT

S UINTLIT 27 S INTLIT

S UREALLIT 27.0 S REALnnLIT

litnode

wordnode *StringPtrOf

S CONSTEXP

mopnode
mopnode

mopnode

6.17 litnode

6.18 mopnode

INMOS Limited Confidential occam compiler internal implementation manual

Tag name occam Compiler Description
Used in Assembler, and by backend
Bitwise negation
Eg.
Equvalent to , inserted by backend

type conversion Eg.
, etc
, etc

Unary negation
Boolean negation

type conversion Eg.
Start of segment, inserted by backend

type conversion Eg.
Unary

Macros valid on a are:

Macro Description
Expression tree
Type of operand (note that all are scalar operations)

Both and nodes break the tree structure; ie their field
is actually a pointer to another part of the tree. Care must be taken here!

s constitute the symbol table and are described in another section.

s are only used by the configurer.

The only possible tag value for a is .

Macros valid on a are:

Macro Description

s are used to denote replicated constructors, such as etc. They have fields
to denote the symbol table entry of the replicator variable, and the start and length expressions, plus
the body of the replicator.

DRAFT 20.2.91 22 SW-0239-2

Important note:

S ADDRESSOF

S BITNOT ~

S CONSTRUCTOR [x + y, z, 27]

S ELSIZE SIZE

S EXACT INT16 int

S MOSTPOS MOSTPOS MOSTPOS INT

S MOSTNEG MOSTNEG MOSTNEG INT

S NEG -

S NOT NOT

S ROUND REAL32 ROUND int

S SEGSTART

S SIZE SIZE

S TRUNC REAL32 TRUNC int

S UMINUS MINUS MINUS

mopnode

treenode *OpOf

int MOpTypeOf

S ELSIZE S SEGSTART OpOf

namenode

processornode

processornode S PROCESSOR

processornode

treenode *ProcessorExpOf

treenode *ProcessorTypeOf

treenode *ProcessorBodyOf

treenode *ProcessorScopeOf

replcnode PAR i = ...

6.19 namenode

6.20 processornode

6.21 replcnode

INMOS Limited Confidential occam compiler internal implementation manual

The possible tag values for a are:

Tag name Description
(configurer)

(configurer)

Macros valid on a are:

Macro Description
of replicator variable

Start expression tree
Length expression tree
Replicated process body
Used by backend for

s are used to denote segments of arrays. They hold the base of the segment, plus a
start and length expression. In the tree transformation phase these are manipulated in a similar way
to s.

The only possible tag values for a are and . The latter
indicates that the node has been processed by the tree transformation phase.

Macros valid on a are:

Macro Description
Expression denoting base of segment
Start expression tree
Length expression tree

only: range checking
only: variable expression
only: length expression, if not constant
only: constant folded offset

s are inserted by the mapper into and replicated constructs. They hold details of
the workspace requirements for each branch of the .

The only possible tag value for a is .

Macros valid on a are:

DRAFT 20.2.91 23 SW-0239-2

replcnode

S PLACEDREPLPAR PLACED PAR i = ...

S PRIREPLALT PRI ALT i = ...

S PRIREPLPAR PRI PAR i = ...

S REPLALT ALT i = ...

S REPLDO DO i = ...

S REPLIF IF i = ...

S REPLPAR PAR i = ...

S REPLSEQ SEQ i = ...

replcnode

treenode *ReplCNameOf namenode

treenode *ReplCStartExpOf

treenode *ReplCLengthExpOf

treenode *ReplCBodyOf

treenode *ReplCTempOf ALT

segmentnode

arraysubnode

segmentnode S SEGMENT S SEGMENTITEM

segmentnode

treenode *SNameOf

treenode *SStartExpOf

treenode *SLengthExpOf

treenode *SCheckExpOf S SEGMENTITEM

treenode *SSubscriptExpOf S SEGMENTITEM

treenode *SLengthOf S SEGMENTITEM

int SOffsetOf S SEGMENTITEM

spacenode PAR PAR
PAR

spacenode S SPACENODE

spacenode

6.22 segmentnode

6.23 spacenode

INMOS Limited Confidential occam compiler internal implementation manual

Macro Description
Body of
‘Above workspace’ space required
Total space including ‘below workspace’
Vectorspace requirements
Vectorspace requirements for nested calls
Constant table offset in replicated
Names declared in body (?)

s are used to denote a , which has a process and a result list. The body of a function
will always be a .

The only possible tag value for a is .

Macros valid on a are:

Macro Description
Body of process

list

s are used to denote a variant of a case input process. They hold a list of input items
(beginning with a protocol tag), and a process to be performed.

The only possible tag value for a is .

Macros valid on a are:

Macro Description
Body of variant
List of input expressions

See another section about the name table.

The name table is a data structure used for storing names, keywords, and various other strings, without
duplication. When adding a name to the name table, if it is already there, a pointer to the original is
returned. If not, a new name table entry is created, and its pointer is returned. This means that pointers
may be tested for equality to determine string equality.

Each name in the table also has a tag attributed with it. Keywords are initialised so that their strings
have the correct tag associated. This is used by the lexer as a quick way of looking up keywords. Any

DRAFT 20.2.91 24 SW-0239-2

treenode *SpBodyOf PAR

INT32 SpMaxwspOf

INT32 SpDatasizeOf

INT32 SpVSUsageOf

INT32 SpNestedVSOf

BIT32 SpCPOffsetOf PAR

treenode *SpNamechainOf

valofnode VALOF
valofnode

valofnode S VALOF

valofnode

treenode *VLBodyOf VALOF

treenode *VLResultListOf RESULT

variantnode

variantnode S VARIANT

variantnode

treenode *VRBodyOf

treenode *VRTaggedListOf

6.24 valofnode

6.25 variantnode

6.26 wordnode

7 Name table

INMOS Limited Confidential occam compiler internal implementation manual

new names are given the tag . Miscellaneous strings are also stored in the name table; in this
case the associated tag is ignored.

Name table entries are represented as s. The have the same tag layout as tree nodes so
that they can be distinguished by using . s do not have ‘location’ information, as
they are not associated with a particular filename and line number. s are not found after the
type checking phase.

The only possible tag values for a (when found in the tree) are and .
The latter is used by specific names which are only permitted inside constructs.

Macros valid on a are:

Macro Description
Tag (can also use
Pointer to character string
Length of character string
Used internally by name table

DRAFT 20.2.91 25 SW-0239-2

S NAME

wordnode
TagOf() wordnode

wordnode

wordnode S NAME S ASMNAME
ASM

wordnode

int WTagOf TagOf()

char *WNameOf

int WLengthOf

wordnode *WNextOf

INMOS Limited Confidential occam compiler internal implementation manual

The symbol table never exists in its own right, but is distributed into lots of s which hang
off the tree. Each (declaration node) of the tree holds a pointer to the of the
corresponding declaration. These s all have tags beginning , but otherwise are of the
same form as other tree nodes. Temporaries are also s. Their tags begin with .

The possible tag values for a are:

Tag name Description
Abbreviation
Configurer - named construct
Variable declaration
Configurer - field (attribute) of a record

or label
‘Long’
Library
Library
Configurer - named construct
Configurer - named construct
Formal parameter
Predefined
Predefined
Procedure
Replicator variable

(obsolete)
(obsolete)

‘Short’
Sequential
‘Standard library’
‘Standard library’

tag
Tagged

abbreviation
formal parameter

Temporary which has already been evaluated
Register temporary - used for results
Reserved low workspace - used for and param slots
Temporary

All symbols have the following subsidiary fields, with differing levels of relevance to different types
of symbols: Note that each of these macros actually takes a ; but since all node types
are merged into a union , the ‘prototypes’ indicate this. These access macros are held in

.

DRAFT 20.2.91 26 SW-0239-2

namenode
declnode namenode

namenode N
namenode T

namenode

N ABBR

N CONFIG CONFIG

N DECL

N FIELD

N INLINEFUNCDEF INLINE FUNCTION

N INLINEPROCDEF INLINE PROC

N LABELDEF ASM GUY

N LFUNCDEF FUNCTION

N LIBFUNCDEF FUNCTION

N LIBPROCDEF PROC

N MAPPING MAPPING

N NETWORK NETWORK

N PARAM

N PREDEFFUNCTION FUNCTION

N PREDEFPROC PROC

N PROCDEF

N REPL

N RETYPE RETYPE

N SCFUNCDEF SC FUNCTION

N SCPROCDEF SC PROC

N SFUNCDEF FUNCTION

N SPROTDEF PROTOCOL

N STDLIBFUNCDEF FUNCTION

N STDLIBPROCDEF PROC

N TAGDEF PROTOCOL

N TPROTDEF PROTOCOL

N VALABBR VAL

N VALPARAM VAL

N VALRETYPE VAL RETYPE

T PREEVALTEMP

T REGTEMP FUNCTION

T RESERVEDWS ALT

T TEMP

wordnode
treenode

nameshdr.h

8.1 Generic symbol table fields

8 Symbol table

INMOS Limited Confidential occam compiler internal implementation manual

This returns a name table entry for this symbol.

This returns the ‘type tree’ for the symbol. For simple variables this might simply be a
containing etc. If an array, it would be an node. For proce-

dures, this will be a list of symbols corresponding to the formal parameters. For functions, this
will be a node which holds two fields: which is a list of return
types, and which is the formal parameter list.

Procedure and function formal parameter lists can be accessed by the routines
and

. These determine whether the routine is a function or procedure, and access the for-
mal parameter list, either via the node, or directly.

This returns a pointer back to the in the tree which defines this symbol. This allows
you to determine the ‘value’ of the symbol given the .

This returns the lexical level of the symbol’s definition. Symbols defined at the outermost
compilation level have lexical level 0. Each nested procedure and function body, and each
replicated , introduces a new lexical level.

This is set to if the procedure contains a . Used in the type checker.

This is set to if the symbol is used. This is used to warn about unused variables in the
type checker.

This returns an integer indicating how many other names were on the scope stack when the
symbol was declared. Thus any symbol nested inside a symbol will have

.

This is a ‘spare’ field which is used by the alias and usage checker.

Data items such as variables, channels, etc, hold other more specific data:

This returns the workspace location of this variable. This is initialised by the mapper.

This returns a value indicating the ‘memory access’ type. The possible values are:

DRAFT 20.2.91 27 SW-0239-2

�

�

�

�

�

�

�

�

�

�

wordnode *NNameOf(treenode *)

treenode *NTypeOf(treenode *)

leafnode S INT S ARRAY

S FNTYPE FnTypeListOf()
FnParamsOf()

treenode
*NParamListOf(treenode *nptr) void SetNParamList(treenode *nptr, treenode
*list)

S FNTYPE

treenode *NDeclOf(treenode *)
declnode

namenode

int NLexLevelOf(treenode *)

PAR

int NNestedPriParOf(treenode *)
TRUE PRI PAR

int NUsedOf(treenode *)
TRUE

int NScopeOf(treenode *)

x y NScopeOf(x)
> NScopeOf(y)

treenode *NChecker(treenode *)

BIT32 NVOffsetOf(treenode *)

int NModeOf(treenode *)

8.2 Variables

INMOS Limited Confidential occam compiler internal implementation manual

Mode Description
Not yet decided.
Item is placed in current stack frame.
Current stack frame contains a pointer to vectorspace.

at an absolute address.
Accessed via a pointer (eg. formal param or abbreviation).

at a specific workspace address.

The ‘memo’ function can be applied to a variable’s .
If the mode is still , it will decide and convert it to either or

.

Variables are placed into vectorspace if vectorspace is enabled and 1) They are an array; and
2) either they use more than 8 bytes, or they are of a type which is smaller than a word.

This is used to associate many variables together; for example if we have the abbreviation
, then and are chained together and will be allocated the same workspace slot.

This is used by the mapper to give temporaries an identifying number. Not used for other
symbols (?).

This is used by the mapper to chain temporaries together (while they’re not live?). Not used
for other symbols (?).

This is used by the mapper to chain together a list of all variables which have already been
allocated; these are then checked for clashes with each successive variable.

Only applies to simple variables (ie. those with tag). This returns the vectorspace
offset for this variable if it is mapped into vectorspace.

This returns the estimated dynamic usage count for this variable. Calculated by the mapper.

Only applies to replicator variables (ie. those with tag). This is used by the Usage
checker when expanding out replicator variables. If this is , then is
valid; see below. This field is not available in the backend.

Only applies to replicator variables (ie. those with tag). This is used by the Usage
checker when expanding out replicator variables. If is , then this is
valid; see above. Returns the ‘current’ value of the replicator. This field is not available in the
backend.

This field only applies to scalar channels (). If this returns
, then the channel is used from assembler, and certain optimisations may not be per-

formed. Initialised by the mapper.

This field only applies when . This returns the number of words

DRAFT 20.2.91 28 SW-0239-2

�

�

�

�

�

�

�

�

�

�

NM DEFAULT

NM WORKSPACE

NM VECSPACE

NM PLACED PLACED

NM POINTER

NM WSPLACED PLACED

int isinvectorspace() namenode
NM DEFAULT NM WORKSPACE

NM VECSPACE

treenode *NVNextOf(treenode *)
x

IS y : x y

BIT32 NVVarNumOf(treenode *)

treenode *NVNextTemp(treenode *)

treenode *NVAllocNextOf(treenode *)

BIT32 NVVSOffsetOf(treenode *)
N DECL

BIT32 NVUseCountOf(treenode *)

int NReplKnownOf(treenode *)
N REPL

TRUE NReplValueOf()

BIT32 NReplValueOf(treenode *)
N REPL

NReplKnownOf() TRUE

int NChanMarkOf(treenode *)
TagOf(NTypeOf(n)) == S CHAN

TRUE

BIT32 NVRSizeOf(treenode *)
TagOf(n) == T RESERVEDWS

INMOS Limited Confidential occam compiler internal implementation manual

which are reserved.

This returns the value of that protocol tag.

Procedures and Functions hold other more specific data:

This returns the label number of the entrypiont of the routine. It is initialised as the code for
that routine is generated (which will be before any references).

This returns the maximum workspace requirement for this routine (in words).

This returns the ‘below workspace’ requirements for that routine; ie. the number of workspace
slots which must be reserved for nested procedures and descheduling, etc.

This returns the number of vectorspace words required for this routine. If it is zero, no vec-
torspace pointer parameter is used.

This returns the number of parameters required by this routine.

This returns the highest (lowest?) lexical level of non-local variables which are used by this
routine.

‘Normal’ routines, (tag values , , or), ie. those actually being
compiled, also hold the following:

This returns a pointer to a list of s and s which are accessed
by this routine. It is used to generate the constant table.

This returns the workspace offset of the constant table pointer; this is initialised by the mapper.

Separately compiled routines, (tag values , , , ,
,), which have been d from a library, also hold the follow-

ing:

This returns a pointer to another structure, which is used within to access data about
the origin file, etc.

This is used to chain together all the external routines which are actually used in this compi-
lation.

DRAFT 20.2.91 29 SW-0239-2

�

�

�

�

�

�

�

�

�

�

�

BIT32 NTValueOf(treenode *)

int NPLabelOf(treenode *)

BIT32 NPMaxwspOf(treenode *)

BIT32 NPDatasizeOf(treenode *)

BIT32 NPVSUsageOf(treenode *)

NPParamsOf(treenode *)

NPSLUsageOf(treenode *)

N PROCDEF N LFUNCDEF N SFUNCDEF

treenode *NPConstTablesOf(treenode *)
constexpnode consttablenode

BIT32 NPCPOffsetOf(treenode *)

N LIBPROCDEF N LIBFUNCDEF N SCPROCDEF N SCFUNCDEF
N STDLIBPROCDEF N STDLIBFUNCDEF #USE

void *NLExternalOf(treenode *)
desc1.c

NLEntryNextOf(treenode *)

8.3 Protocol tags

8.4 Procedure and Function symbols

INMOS Limited Confidential occam compiler internal implementation manual

This returns the address of the code area for the linker to patch with the real call to the routine.

Predefined routines, (tag values or), also hold the following:

This returns a number indicating which predefined routine. These values are found in .

DRAFT 20.2.91 30 SW-0239-2

�

�

NLEntryOffsetOf(treenode *)

N PREDEFPROC N PREDEFFUNCTON

int NModeOf(treenode *)
predefhd.h

	Contents
	1 Introduction
	2 Compiler overview
	3 Building the compiler
	3.1 Source overview
	3.2 Directory structure
	3.3 Makefiles
	3.4 External dependencies
	3.5 Conditional compilation switches
	3.6 Compiler diagnostics

	4 Compiler structure
	4.1 Compiler frontend structure
	4.2 Compiler backend structure

	5 Compilation strategy and method
	5.1 Lexer
	5.2 Parser
	5.3 Type checker
	5.4 Usage and alias checker
	5.5 Tree transformer
	5.6 Mapper
	5.7 Debug information
	5.8 Code generation
	5.9 Code crunching
	5.10 Tree interface routines

	6 Tree structure
	6.1 actionnode
	6.2 altnode
	6.3 arraynode
	6.4 arraysubnode
	6.5 channode
	6.6 cnode
	6.7 condnode
	6.8 confignode
	6.9 constexpnode
	6.10 consttablenode
	6.11 declnode
	6.12 dopnode
	6.13 hiddenparamnode
	6.14 instancenode
	6.15 leafnode
	6.16 listnode
	6.17 litnode
	6.18 mopnode
	6.19 namenode
	6.20 processornode
	6.21 replcnode
	6.22 segmentnode
	6.23 spacenode
	6.24 valofnode
	6.25 variantnode
	6.26 wordnode

	7 Name table
	8 Symbol table
	8.1 Generic symbol table fields
	8.2 Variables
	8.3 Protocol tags
	8.4 Procedure and Function symbols

