
DOll11OS'H' Reference Manual

iee·
IMS 0703
DSP
Development
System

72 TDS 105 00 March 1987

Contents

1 IMS 0703 System Overview

1.1 Introduction
1.2 Scope
1.3 Conventions
1.4 Relevant Documents
1.5 System Description
1.6 Overview of execution flow

1.6.1 Startup
1.6.2 Command Decode
1.6.3 Reads and Writes
1.6.4 Application Execution

2 User Applications

2.1
2.2
2.3
2.4

2.5

2.6

2.7

Introduction
The "Standard Harness"
How to Recompile the IMS 0703 Binaries
Standard Services
2.4.1 execute keyboard command
2.4.2 bootstrap IMS T212
2.4.3 stop application
2.4.4 perform initialisation with controller
2.4.5 get current status
2.4.6 display string
2.4.7 display integer
2.4.8 display real
2.4.9 enquire string
2.4.10 enquire integer
2.4.11 enquire real
2.4.12 enquire key
2.4.13 plot textual

-2.4.14 plot graphics
Filer Services
2.5.1 open file for read
2.5.2 open file for write
2.5.3 write byte to file
2.5.4 block write bytes to file
2.5.5 read byte from file
2.5.6 block read bytes from file
2.5.7 close file
Specific services for IMS A100 models
2.6.1 read model
2.6.2 write model
2.6.3 set cascade size
Specific services for IMS 8009 emulator/hardware
2.7.1 Protocols and constants
2.7.2 Channel usage with IMS 8009 hardware
2.7.3 Read A100s via link
2.7.4 Write A100s via link
2.7.5 Write DIRs via link
2.7.6 Read data.buffer via link
2.7.7 Write data.buffer via link
2.7.8 Write DIRs from data.buffer

Contents

2.7.9
2.7.10
2.7.11
2.7.12
2.7.13
2.7.14
2.7.15

Process data with A100s using 16·bit output
Process data with A100s using 24·bit output
Read address.mapper via link
Write address.mapper via link
Enquire system status
Get driver descriptor
Modify current status

3 The System Controller

3.1
3.2
3.3

3.4

3.5
3.6

3.7
3.8
3.9
3.10
3.11,
3.12

Introduction
ASCII and Binary Commands
Command Sources, Parsing, and Decoding
3.3.1 ASCII commands
3.3.2 Binary commands
Binary Command Descriptions
3.4.1 B - Bootstrap the IMS T212
3.4.2 D - display string and typed argument
3.4.3 E - enquiry displaying string, return typed argument
3.4.4 F - perform file I/O
3.4.5 G - get current status
3.4.6 P - plot data in command window
3.4.7 R - send read request to address.decoder
3.4.8 S - stop execution of application commands
3.4.9 T - Turboplot data in plot windows (ie. high resolution Turbo Graphics)
3.4.10 W - send write request to address decoder
Displaying messages on the screen - message multiplexer
Communications with MS-DOS Front End - the transceiver
3.6.1 ProtacoIs
Communications with IMS A100 models and IMS B009 hardware
Communications with Applications
Other communications
Parameters and Constants
Useful Procedures
3.11.1 Character and String I/O
3.11.2 Graphics I/O
3.11.3 File I/O
3.11.4 Boofs~t-ra-p-p-::-in-g----::th:-e---:-=IM"":"":S=-=T~2~12~a-t-ru-n---t":""""im-e--------------
Adding new commands

4 The Address Decoder

4.1 Introduction
4.2 Principles of Operation
4.3 Address mode 0: IMS A100 Model
4.4 Address mode 1: IMS B009 Emulator "
4.5 Address mode 2: IMS B009 Hardware
4.6 Communications with other processes
4.7 Parameters and Constants
4.8 Special Link Services
4.9 Adding new address decoding modes

Contents

i_
5 The IMS A100 Model

5.1 Introduction
5.2 Principles of operation
5.3 Asynchronous process

5.3.1 Initialisation
5.3.2 Main execution loop

5.4 Synchronous functions
5.5 Parameters and Constants

6 The IMS B009 Driver

6.1 Introduction
6.2 Principles of Operation
6.3 Operational modes of the IMS 8009

6.3.1 DIRDOLmode- 6.3.2 DIRmode
6.3.3 MAPmode
6.3.4 LOADmode

6.4 Driver Commands
6.4.1 Read A100 to link
6.4.2 Write A100 from link
6.4.3 Write DIR from link
6.4.4 Read buffer to link
6.4.5 Write buffer from link
6.4.6 Write DIR from buffer
6.4.7 Process buffer data out (16 bit mode)
6.4.8 Process buffer data out (24 bit mode)
6.4.9 Read mapper to link
6.4.10 Write mapper from link
6.4.11 Enquiry
6.4.12 Status modifier

6.5 Adding new commands
6.6 The B009 Emulator

- 6.7 Optimising the driver

A Example Programs for controlling IMS 8009 from the IBM PC

B Modifications to Turbo Graphix Toolbox

1 IMS 0703 System Overview

1.1 Introduction

The IMS 0703 DSP Development System provides a comprehensive environment for the development and
analysis of IMS A100-based systems. It comprises an interactive simulator, example implementations of
common algorithms, and support software for the IMS B009 Evaluation Board.

This manual describes in detail the internal operations of the occam 2 software written for the IMS D703
DSP Development System, and how to customise it for specific user requirements.

For descriptions of how to use the IMS 0703 as supplied, please refer to the IMS 0703 OSP Development
System IBM PC User Manual.

1.2 Scope

The IMS D703 is distributed in both source code and executable forms. This manual concentrates on describ­
ing the internal structure of the occam 2 source code, to the extent that users can modify the existing code
to meet specific requirements. Using the procedures and processes included in the IMS D703 source code,
users can produce customised programs for modelling proposed IMS A100 based systems or for controlling
dedicated IMS B009 based applications.

Throughout this manual, it is assumed that the reader is thoroughly familiar with the occam 2 language, the
transputer, and the Transputer Development System (TDS). Users not familiar with these topics should first
read the appropriate Reference Manuals as listed below.

Many of the advanced features of the IMS B009 Evaluation Board are also described. For those users wishing
to produce optimised code for IMS B009 based applications, they should be familiar with the facilities offered
by the IMS B009, which are described in the IMS B009 Reference Manual. The applications themselves are
described in the IMS D703 User Manual. .

Users intending to develop applications based on modification of the IMS 0703 must realise that the source
code is provided for information only, and is not supported in any way by INMOS. The purpose of the
source code is to provide experienced programmers with sufficient tested code to enable new applications to
be rapidly and reliably written.

1.3 Conventions

Throughout this manual, the following conventions have been adopted:

bold are names of occam processes, ego controller. This name will be character for character
identical with the actual process name in the source code.

variab1e are names of variables, constants or channels, ego repeat. command. These will be
character for character identical with the variable names used within the source code.
Where a choice of variables or constants is possible, the options will be expressed as
opti.onll option2 lopti.on3... Only one of the options can be used at any time.

name represents a value which is determined during execution.

Ikeynamel indicates a single key which is labelled as shown, or whose function is that given.

For example:

"Within address.decoder, after the address translation takes place, address contains translated address
once Iretuml has been pressed..."

means that the variable address is loaded with the value of the translated address currently being calculated
within the occam process address.decoder, once the key marked "Return" has been pressed.

1 IMS 0703 System Overview

1.4 Relevant Documents

1.4 Relevant Documents

The following documents are relevant to the devices and systems described in this manual. If you do not have
any of the items listed below, and you wish to obtain a copy, please contact your 10callNMOS representative.

IMS A100 Data Sheet

IMS A100 Product Overview

IMS A100 Application Notes

IMS 0703/D704 Product Overview

IMS B009 Product Overview

IMS 0703 Users Manual

IMS 0703 Reference Manual

IMS B009 Users Manual

IMS B009 Reference Manual

IMS 0700 Transputer Development System User and Reference Manuals

Transputer Reference Manual

Occam Language Refere~ce Manual

Transputer Technical Notes

Occam Technical Notes

Occam Tutorial

2

I:

,

1 IMS 0703 System Overview

1.5 System Description

1.5 System Description

The IMS 8009 provides a complete environment for the development of IMS A100 based DSP applications. By
providing both software emulations and access to physical hardware, the development process can proceed
from initial feasibility to advanced system simulation, and for some applications right through to final hardware
and software development of production systems.

Figure 1: IMS 0703 Structural Overview

One goal of the IMS 0703 is to provide tools for all stages of the development process, so that once simulation
is complete, the production software development can be greatly accelerated by reusing parts of the IMS D703
source code itself to produce reliable tested software. In order to make this as straightforward as possible,
the source code has been written in such a way that it can be optimised and modified in a highly structured
manner. Whilst this will clearly be the case for many IMS B009 applications, the approach taken in the
construction of the IMS T212 driver and it's interaction with the host controller can also form a useful starting
point for non-transputer based solutions.

3

1 IMS 0703 System Overview

1.6 Overview of execution flow

The communications structure within the IMS 0703 is fundamental to its ease of use and extendability. The
extensive use of well defined protocols and controlled dictionaries is a useful model for constructing a wide
range of occam applic~tions, and as such provides a working example of how large parallel programs can be
constructed. Also, the use of parallelism within the main program demonstrates how sensible localisation of
processing and variables makes the program amenable to later distribution across a network of transputers.

The code for the IMS A100 model process is intended to illustrate how to define the boundaries between sys­
tem and lower levels of simulation. By exploiting the synchronisation inherent in occam channels, localisation
of state variables to reflect accessibility within~ the hardware, and using the overall synchronisation model of
occam to eliminate the need for explicit clocks throughout the system, a powerful system simulator can be
constructed which models both synchronous and asynchronous behaviour.

The occam processes of the IMS D703 interact with the host environment via an MS-DOS application task.
This program is written in Turbo Pascal, and uses the "Turbo Pascal Graphix Toolbox" libraries to provide
a simple window environment (Turbo Pascal and Turbo Pascal Graphix Toolbox are trademarks of Borland
Internationl). The source code of the front end is provided, but users will need to obtain licenses for Turbo
Pascal and Turbo Pascal Graphix Toolbox in order to modify this program. The server is provided simply
as an example of how this function can be written; it is not described in detail here. However, from the
descriptions of the communication protocols between the occam and pascal programs, the experienced user A
should have little difficulty in undertstanding the pascal program, and modifying it to suit specific needs. w\

1.6 Overview of execution flow

The overall function of each of the main processes of the IMS -D703 is contained in the IMS 0703 IBM PC
Users Manual. To gain a basic understanding of what happens inside the IMS D703, the following is a
summary of execution flow during normal startup, simple command decoding, execution of an application,
and termination.

1.6.1 Startup

Each process performs its own initialisation of variables, control loops, etc. However, command.interpreter
performs the major system initialisation sequence, which comprises:

1 Initialise all command intrepreter booleans, strings, and miscellaneous counters, including text graphics
parameters

2 Create the two "plot" windows and single text-only "command" window on the IBM PC, by defining their
size and initial text headings, and making requests of the server to create the actual windows in memory
and draw them

3 Send a banner to the command window showing the IMS D703 is alive, and what the current version of
the code is (this text is also shown in the command window header)

4 See if the IMS T212 link responds to being "peeked" - if so, assume an IMS B009 is present, and bootstrap
it with the default driver contained in the file specified in b009. boot:st:rap

5 Request the descriptors of all the application processes, and store them for later use

6 Commence the main command input and decode loop

After initialisation, all processes are stalled, pending channel communications, as follows:

• The A100.models are waiting for an input on their Standard Microprocessor Interface (SMI) from
address.decoder, or from their Data Input (DIN) channel (not normally used in the IMS D703 as supplied)

• The address.decoder is waiting for a memory access or command from the controller or B009.emulator

• The controller is waiting for a command from the keyboard, which arrives via the transceiver

• The transceiver is waiting for either data for the screen or graphics windows, or file I/O (from controller),
or keyboard input from the MS-DOS front end e,

4

,

1 IMS 0703 System Overview

1.6 Overview of execution flow

• The applications are waiting for the controller to accept their first display messages (this is important to
understand, and is described later)

• The B009.emulator and B009.driver (if loaded) are waiting for commands from any application (note
above)

Other simple processes are normally waiting for communications (eg. the message multiplex processes), but
these are inherent to most occam programs, and are not discussed further here.

1.6.2 Command Decode

The command.interpreter expects its first command from the keyboard. Subsequent commands can arrive
from the keyboard, application processes, or the previous command made available for edit if the ''Last''
command was entered. Commands from a keystroke file arrive via the from. fi1e channel from the front
end, where they are redirected by the read.string procedure so that the controller sees them arrive as if
they came from the from. keyboard channel. If commands are being received from an application, they
can be interrupted at the command line level (ie. not within a command line) by any keyboard activity due to
a PRl: ALT within this part of the command.interpreter.

The command is split into command and argument text strings by a common parser, then passed to the
decoder. The decoder then decodes the first keyword of the command line, and invokes the appropriate
command. This sequence comprises the main command decode loop.

During operation, applications can request to send a binary command, rather than an ascii command as
described above. If so, the rest of the normal command decoding is bypassed, and control immediately passed
to the binary decoder, which processes all arguments in a condensed binary form. Note the decode loop is
such that binary and ascii commands are freely mixed, to simplify decoding, and allow binary sequences to
be interrupted by keyboard activity. Binary and ascii commands are discussed further below.

1.6.3 Reads and Writes

When a user requests a read or write operation, the address and data are first validated to ensure they are
16-bit values·by the decoder. These are then converted into INT16 values, and sent to address.decoder.
The address.decoder analyses the address according to the currently selected addressing regime, and if
valid translates the address into the final address to be sent. If The IMS B009 hardware is used, no check
is made; the address (and data if a write) are sent directly to the B009 driver. If the A100.model is active,
the address is translated to one suitable for an individual device (ie. 0 ~ address < 128), and this is sent
(with data, if a write) to the appropriate A100.model directly via the selected model's channel. Note the
B009.emulator sends requests to the A100.model in the same way.

If a read is requested, the result is returned as a 16-bit value via the address decoder in each case.

1.6.4 Application Execution

When the user requests an application to start, the decoder simply sets externa1. data . active to
TRUE, and commences to process commands from the application. These will usually be a mix of interactive
commands (ie. commands normally available from the keyboard, known as ascii commands) and non­
interactive commands (ie. those involving non-keyboard commands such as high speed read/write, plot, file
I/O, etc, known as· binary commands).

An application process starts by sending its text descriptor to~ the controller, and performing any initialisation
required. It then enters a loop, which sends text strings via the controller to the screen describing what the
application does, gets parameters from the user, and performs the operation using either the A100.model
(With binary readlwrite commands to the controller), the B009.emulator (with driver commands directly
to the emulator itself), or the B009.driver if present (via a direct hardware channel).

The application completes by sending a "stop" command to the controller, which tells the decoder to resume
accepting commands from the keyboard, rather than from the application. The application then simply
restarts the execution loop, stalling on the first channel interaction with the controller.

5

1 User Applications

1.1 Introduction

Most users wishing to modify the source code of the IMS D703 will commence by writing new applications.
The source code has been structured to make this procedure as simple as possible. Users are encouraged
to produce new applications, as this is the fastest way to exploit the full potential of the IMS D703 and
IMS 0704 systems. Having become familiar with producing new applications, users can then progress to
writing application-specific optimised IMS T212 drivers, to obtain maximum performance from their system.
Finally, experienced users may wish to extract useful procedures from the source code of the IMS D703 to
create their own system models or application-specific versions of the IMS 0703 environment.

Details of the B009.driver, and suggestions on how to optimise it, are described later in this manual. This
section concentrates on how to write a new user application, and how to create the new binaries required to
execute it.

1.2 The "Standard Harness"

User applications all function as described in the "System Overview". Their operation is intended to be
as straightforward as possible so that users with little programming experience can successfully write new •
applications and execute them. In order to speed up this operation, a model of a typical application is •
provided, which includes all the necessary libraries, call formats, execution flows, and standard operations.
This is known as the standard.harness, and is provided with the system in a COMMENT fold above the
example applications. For details of what a COMMENT fold is, please refer to the TDS Reference Manual.

The standard.harness appears at the top level as shown in Figure 2.

PROC standard.harness(CBAN to.contro11er, from.contro11er,
to.b009.emu1ator, from.b009.emu1ator)

STANDARD services

APPLXCATXON SPECXFIC variab1es and PROCs

VAL descriptor XS "Standard Harness V01.OO (lS-mar-87)."

SEQ·

STANDARD initia1isation

WH:ILE TRUE
SEQ

... describe app1ication and input required parameters

... execute required tasks
stop ()

Figure 2: Standard Harness top level

The sections labelled STANDARD contain code which should not be modified. The STANDARD services
provide all the procedure calls required to perform most operations. The STANDARD initialisation performs
the appropriate startup communications with the controller during IMS 0703 startup.

The APPLICATION_SPECIFIC fold is reserved for adding user defined constants, variables, procedures, etc.
By localising these to a single fold, users can be sure of which areas are defined by themselves and which
by INMOS.

The contents of the main execution loop are entirely up to the user, except that the stop () call must appear
as the last statement in the loop. The standard.harness includes framework code which is similar to that
used by all of the example applications, so that users can quickly produce applications which are consistent

6

2

!~

1 User Applications

1.3 How to Recompile the IMS 0703 Binaries

with those supplied with the IMS D703 system.

Applications are written by using procedure calls from the STANDARD services, and combining them with
standard occam code. These services are described below. Users planning a new application are advised
to first look at some of the example applications, then refer to the following sections to understand the usage
of the standard calls.

1.3 How to Recompile the IMS 0703 Binaries

Once the necessary modifications have been made within the TDS, or a new application created, the following
steps will generate a new binary image ready for execution:

1 Compile the SC fold containing the new application

Create an instantiation of the new process in the USER_DEFINED instantiations fold, by taking a
copy of one of the other instantiations and modifying it (make sure the channels numbers are unique).
Ensure that if you have added any additional channels (eg. peripheral specific I/O channel), they
are declared here

3 Compile, configure, and extract the new code for the complete system, with the T4 compiler (or TB
if you are using an IMS T800), with USAGE CHECKING OFF

4 Generate a bootable binary with the "makeboot" utility, calling it a suitable name newfilename. T4
(ie. NOT IMS D703.T4!). The "makeboot" utility is a separate user application supplied with the
TDS. To use it, IGeij the utility (it is a user process), then position the cursor on the CODE fold of
the extracted code. Press IRunl, and enter the name of the file you wish to be created - this is the
name of the final binary image. When it is complete, it will ask you to type~ to return to the
TDS. Having done this, you can now leave the TDS.

5 execute the new code using runsim newfilename. '1'4

Note that this procedure also applies to creating a new IMS 8009 driver program, except that the T2 compiler
should be used, with EXTENDED TYPES OFF.

The IMS D703 binaries comprise one file for the code executing on the IMS T41~, and one executing on
the IMS T212 of the IMS 8009. Thus, each can be regarded as a totally separate program. To see how to
execute alternative drivers within an application, refer to the section on "booting the T2" below.

Note that if several new user applications are created, you may run out of space. To verify this, use the
"Config Info" compiler function of the TDS, and check the total size of the extracted code. If it exceeds
#100000 (hex), you are in trouble for an IMS 8009-2, and must remove something to reduce the code size.
Remember that since the TDS cannot know what amount of memory you will be executing with, it will not
flag if you exceed the size of available memory on the IMS T414.

1.4 Standard Services

The most important fold of the standard.harness is the STANDARD services.These provide access to the
full services of the controller, plus access to the A100.models, B009.emulator, and the IMS 8009 itself,
either with the standard B009.driver or a user written driver.

The protocols used for communication between the applications and the controller are described in the
"Controller" section of this manual. However, most users will not need to worry about this, since the procedures
described below provide the services in the form of standard calls.

Within the services fold are three main sections: services for all applications, services specific to address
mode 0, and services specific to address modes· 1 & 2. Within each fold are the necessary constants and
variables required for all services, so the user need not declare them again. Indeed, users are advised to use
the existing variables wherever appropriate to minimise code size. In particular, variables such as str. arq,
byte .. arq and reaJ.. arq are useful for temporary variabres holding the results of an enquiry call.

7

1 User Applications
1.4 Standard Services

The following sections describe the procedure calls provided by the STANDARD services.

1.4.1'" execute keyboard command

Command: command (VAL [] BYTE string)

Description: Send string to the command.interpreter to execute as if it were entered from the keyboard.
All ascii commands are exeGuted from an application using this procedure.

) Example: command ("Set Address 1")

Use the interactive "set" command to set the address decoder to mode 1, ie. use the
B009.emulator.

1.4.2 bootstrap IMS T212

Command: boot. t2 (VAL [] BYTE string, BOOL error.flag)

Description: Reset the IMS T212, and boot it with the contents of string. If the file cannot be found, or the A.I,i

IMS T212 is not present, error.flag will be TRUE. •

Example: boot.t2("OPTPNT.T2", error.f1aq)

Example:

bootstrap the IMS T212 with the binary image contained in the file "OPTPNT.T2" (which was
created with the "makeboot" utility - see above).

1.4.3 stop application

Command: stop ()

Description: Tell the command.interpreter to resume getting commands from the keyboard. This is always
the last statement in the main execution loop of an application. After executing this call, the
application itself continues to execute until it reaches a point where it needs to communicate
with the controller, at which point it waits until the controller is requested to execute the
application again.

stop ()

1.4.4 perform initialisation with controller

Command: initia1isation.with.contro11er()

Description: This call passes the descriptor to the controller when requested during startup of the
IMS 0703. It is always the first statement executed in any application, and is contained in
the STANDARD initialisation/fold.

Example: initia1isation.with.contro11er()

1.4.5 get current status

Command: qet.current.status(rNT current.no.of.Al00s,
INT decoder.mode, BOOL b009.avai.1ab1e,
[]BYTE t2.driver.id)

Description: Gets the current status of the IMS D703 from the controller. Note that the call uses
all standard variables, which are predefined in the STANDARD services fold. Users are
advised to use the call in this manner, to ensure consistent behaviour is maintained. The
variables b009.avail.abl.e, no.of.Al00s, and decoder.mode are used in some
calls to determine the appropriate action. In particular, the services for address modes
1 & 2 use decoder. mode to determine whether to use the B009.emulator or the hardware
B009.driver.

8

1 User Applications
1.4 Standard Services

Example: get.current.status(current.no.of.A100s, decoder.mode,
b009.avai1ab1e, t2.driver.id

1.4.6 display string

Command: disp1~y.str (VAL [] BYTE string)

Description: Displays string in the command window. Note that end of line characters must be explicitly
specified - this enables lines composed of several strings to be constructed.

)

Example: disp1ay.str(nThis is a message.*c*nn)

displays the message in the command window, and leaves the cursor at the beginning of the
next line.

1.4.7 display integer

Command: disp1ay.int (VAL []BYTE string, VAL INT integer)

Description: Displays string, followed by the INT variable integer, after conversion to text format, in the
command window..

Example: disp1ay.int(nThe number of A100s is: 91,
current.no.of.Al00s)

displays on the screen the following text (if the value of current. no. of .A100s is 5):

The number of A100s is: 5

Note the cursor is left immediately following the "5".

1.4.8 display real

Command: disp1ay. rea1 (VAL [] BYTE string, VAL REAL64 rea/64)

Description: Displays string, followed by the REAL64 variable rea/64, after conversion to text format, in
the command window.

Example: disp1ay.rea1(lfThe size of x is: If, rea164.arq)

displays on the screen the following text (if the value of rea164. arq is 5.00E03):

The size of x is: 5.00E03

Note the cursor is left immediately following the "5.00E03".

1.4.9 enquire string

Command: enquire. str (VAL [] BYTE string, [] BYTE str.arg)

Description: Displays string in the command window, then waits for the user to enter a response at the
keyboard, terminated by Ireturnl. The string is r·eturned in str.arg.

- Example: enquire. str ("What is your name? 91, str. arq)

displays the text "What is your name? " in the command window. The response entered by
the user is returned in str. arq.

1.4.10 enquire integer

(,(,"1.
\~ \

Command: enquire. int (VAL [] BYTE string, INT int.arg)

9

1 User Applications
1.4 Standard Services

Description: Displays string in the command window, then waits for the users to enter an integer value at
the keyboard. The number entered will be converted into internal :INT format, and returned in
int.arg. Note that the first non-valid character entered by the user will be taken as the delimiter
for the end of the number, however the routine will always wait until Ireturnl is typed, to allow
the user to edit the entered number prior to "sending" it to the application.

Example: enquire.int("How many A100s? ", int.arg)

Example:

Example:

Example:

~

displays the text "How many A100s? " in the command window. The value of the number
entered is returned in INT format in int. arg.

1.4.11 enquire real

Command: enquire. real. (VAL [] BYTE string, REAL64 real64.arg)

Description: Displays string in the command window, then waits for the users to enter a real number at the
keyboard. The number entered will be converted into internal REAL64 format, and returned
in reaI64.arg. Note that the first non-valid character entered by the user will be taken as the
delimiter for the end of the number, however the routine will always wait until Ireturd is typed, a I

to allow the user to edit the entered number prior to "sending" it to the applicatio~. •

enquire.rea~("Maxi.mum val.ue? ", real..arg)

displays the text "Maximum value? "in the command window. The value of the number
entered is returned in REAL64 format in real.. arg.

1.4.12 enquire key

Command: enquire. key (VAL [] BYTE string, ByTE key.arg)

Description: Displays string in the command window, then waits for the user to enter a single character.
This character is immediately returned in key.arg. This is useful for interactive applications

_where either any character is used to continue the application, or characters may be used to
manipulate cursors etc. in more advanced programs.

enquire.~eY("Bit any key to continue ... *c*n", key.arg)

displays the text "Hit any key to continue.. ." in the command window, leaves the cursor at the
beginning of the next line. When the user types any key, the value of that key is returned in
key. arg and the application can continue.

1.4.13 plot textual

Command: pl.ot . text (VAL INT data.column0, data.column1)

Description: Display the data items as a single line of text, plotted according to the current text plot
parameters, with data.columnO plotted in column 0, and data.column1 plotted in column 1.
See "set graphics" command in the IMS D703 Users Manual for further details of the
text plotting facility.

SEQ i = 0 FOR number.of.data.points
pl.ot.text(input[i] I output[i])

plots the contents of [] INT vectors input and output in the command window in textual
form, one line per data pair.

10

1 User Applications

1.4 Standard Services

1.4.14 plot graphics

Command: p~ot . graphics (VAL INT window.id;
VAL [] BYTE title.string;
VAL BOOL clear. window;
VAL INT plot.type;
VAL INT line.style;
VAL REAL32 x.start, REAL32 x.finish;
VAL [] REAL32 y.args)

where:

window.id

title.string

clear. window

plot. type

line.style

x.start

is 2 for the upper plot window, 3 for the lower plot window

is the text to be displayed in the banner at the top of the selected window

is TRUE if the window is to be cleared prior to displaying the plot

is 1 for polygon with linestyle line.style
is 2 for histogram
otherwise polygon with vertical lines from x-axis

is 0 for *************
is 1 for * * * *
is 2 for ***** *****
is 3 for *** * *** *
is 4 for *** *** *** ***
otherwise bit pattern of lowest 8 bits.

is the lowest value of data on the x-axis

x.finish

y.args

is the highest value of data on the x-axis

is the array of y values to be plotted against the y-axis. Note their
corresponding x-axis value is computed by equal increments between x.start
and x.finish

Description: Plot the real data contained in [] REAL32 y. args in the selected plot window, according
to the above parameters. For further information on the plot facility, refer to the Turbo Pascal
Graphics Manual.

Example: p~ot.graphics(2, "The P~ot Tit~e", TRUE,
1, 4, 0.0, 1.0, [y.data FROM 0 FOR 256])

plots the first 256 data points in y. data in the upper plot window. The title "The Plot Title"
is displayed in the banner above the window, and the window is cleared before the plot is
drawn. The plot will be drawn as a polygon with a line style of the form "*** *** ***"

11

Example:

Example:

Example:

The following procedures provide a very simple filing system for applications. Note that using the "block.read"
and "block.write" procedures. will be faster than their corresponding single byte calls, however neither is
particularly fast since single character 1/0 is used at the Pascal level throughout. This enables users to mix
single character and block 1/0.

1.5.1 open file for read

Command: open. read. fi1e ([] BYTE filename, BYTE file.id, BOOL error.flag)

Description: Open the MS-DOS filename read only. The call returns an identifier file.idwhich must be used
in all future calls referring to this file. The filename follows MS-DOS conventions, and thus
any pathname can be specified. If no pathname is given, the system assumes the file is in
the current working directory. If error.flag is TRUE, the open was not successful.

open.read.fi1e("C:\FIRDATA\COEFFTS.DAT",
coefft.fi1e.id, error.f1ag)

opens the MS-DOS file "c:\firdata\coeffts.dat" for read. The identifier of this file is returned
in coefft . fi1e . id.

1.5.2 open file for write

Command: open. write. fi1e ([] BYTE filename, BYTE file. id, BOOL error.flag)

Description: Open the MS-DOS filename for write. The call returns an identifier file.id which must be used
in all future calls referring to this file. The filename follows MS-DOS conventions, and thus
any pathname can be specified. If no pathname is given, the system assumes the file is in
the current working directory. If error.flag is TRUE, the open was not successful. Note that if
the file already exists, it will be overwritten.

open.write.fi1e("C:\FIRDATA\COEFFTS.DAT",
coefft.fi1e.id, error.f1ag)

opens the MS-DOS file "c:\firdata\coeffts.dat" for write. The identifier of this file is returned
in coefft . fi1e . id.

1.5.3 write byte to file

Command: write. byte. to. fi1e (BYTE byte, VAL BYTE file.id)

Description: Writes a single byte byte to the file pointed to by file.id.

write.byte.to.fi1e(char, coefft.fi1e.id

writes char to the file referred to by coefft . fil.e . id.

1.5.4 block write bytes to file

Command: fi1e.b1ock.write([]BYTE data, BYTE file.id,
BOOL error.flag)

Description: Writes a block of bytes data to the file pointed to by file. id. If any error occurs, error. flag will
be TRUE. The number of bytes sent is determined by the SIZE of the data vector.

Example: fi1e.b1ock.write([data FROM 0 FOR 128], text.fi1e.id,
error.f1aq)

writes the first 128 bytes in [] BYTE data to the file pointed to by text. fil.e . id. If any
errors occur, error. f1aq will be TRUE.

12

1 User Applications

1.5 Filer Services

1.5.5 read byte from file

Command: read.byte. from. fi.l.e (BYTlt byte, VAL BYTE file.id, BOOL error.flag)

Description: Reads a single byte byte from the file pointed to by file.id. If the file.id is invalid, or the end of
file h~s been reached, error. flag will be TRUE.

Example: read.byte.from.fi1e(char, coefft.fi1e.id, error.f1ag)

Example:

reads a byte from the file referred to by coefft . file. id into char. If error. flag is
TRUE, the value of char is not defined.

1.5.6 block read bytes from file

Command: file .bl.ock. read ([] BYTE data, VAL BYTE file. id, VAL BYTE file. id, BYTE
byte.count, BOOL error.flag)

Description: Reads a block of bytes data from the file pointed to by file.id. If the file.id is invalid, or the
end of file has been reached, error.flag will be TRUE. The value byte.count is returned, and
contains the number of bytes actually read. Note that the data vector should be <=255 bytes
long. .

file.block.read(text, text.file.id, byte.count, error. flag)

reads a block of bytes from the file referred to by t.ext.. file. id into t.ext. If
error. fl.ag is TRUE, the operation is invalid, or end of file was reached.

1.5.7 close file

Command: c1ose. file (VAL BYTE file.id)

Description: Close the file pointed to by file.id.

Example: close.file(coefft..fil.e.id)

closes the MS-DOS file referred to by coefft . fil.e . id.

13

1 User Applications -
1.6 Specific services for IMS A100 models

1.6 Specific services for IMS A100 models

These calls are only relevant when using address mode 0, ie. the IMS A100 model cascade. The model
cascade uses a simple linear addressing scheme, whereby each IMS A100 in the cascade uses 128 consec­
utive addresses. The device closest to the final output, usually known as the "last" device in the cascade,
is referred to as device 0, and uses addresses 0-127. Likewise device 1 uses addresses 128-255, etc. The
address map for each device is that defined in the IMS A100 data sheet. An additional "magic" address, -1,
is defined to enable users to write to DIRs of all devices in the cascade.

The size of the model cascade is programmable using the set cascade command (see the IMS 0703 User
Manual). To make this possible, a "phantom" register, the Model Control Register (MCR) was added to the
IMS A100 model to allow control of the cascade size. When MCR bit 0 is set to one, the cascade input of
that model is ignored, and the model itself sees only zeros coming through the cascade shift regisetr. This
enables us to describe a configurable cascade.

A special constant model. • common. c:U.r is defined, which is the address used to write to all devices' DIR
register at the same time.

1.6.1 read model

Example:

Example:

Command: model. • read. a10 0 (VAL INT16 address, INT16 data) .

Description: Reads the location address of the model cascade, and returns the contents in data.

model..read.alOO(INT16 74, last.DOL)

reads the contents of the DOL register of device 0 in the cascade, and returns the contents
in l.ast •DOL.

1.6.2 write model

Command: model..write.alOO (VAL INT16 address, VAL INT16 data)

Description: Loads the location address with the value data.

model..write.alOO(INT16 model..common.c:U.r, o(INT16))

writes the value 0(INT16) to the DIRs of all devices in the model cascade.

1.6.3 set cascade size

Command: set. cascade. size (VAL INT size)

Description: Sets the size of the model cascade to size. This command is a more convenient way of using
the "set cascade" ascii command.

Example: set.cascade.size(size.entered)

sets the model cascade size to the number of devices specified in size. entered.

14

Example:

·(t

It

1 User Applications

1.7 Specific services for IMS 8009 emulator/hardwar~

1.7 Specific services for IMS 8009 emulator/hardware

These calls are only relevant when using address modes 1 or 2, ie. the IMS B009 emulator or hardware.
These calls all use the value decoder. mode to decide whether the command is sent to the hardware
driver or the emulator. By using common calls, users can write applications which execute either using the
simulator, or the hardware itself. This is very useful during debugging, as the simulator can log all commands
to the driver, and all memory accesses if necessary, whilst this is not possible when using the hardware itself.

1.7.1 Protocols and constants

A copy of the driver protocol is kept in the STANDARD services, for use by the procedures described below.
The MASTER of this protocol is kept in the B009.driver.

1.7.2 Channel usage with IMS 8009 hardware

Each application includes a pair of channels which are connected directly to the 8009.emulator. This enables
them to avoid the controller, which gives a considerable speed up when executing simulations using the
A1OO.models.

To access the IMS B009 hardware, all applications PLACE a pair of channels to.b009.hardware and
from. bO 0 9 . hardware at the same link addresses. This is done to avoid the performance degradation of
using a link multiplex process to connect all applications to the driver. Users must therefore ensure that two
applications cannot execute at the same time, otherwise data corruption will clearly occur. The controller
ensures this for all applications executing under the standard IMS D703.

Wherever arrays of data are declared below, it is assumed that all elements of the array are passed. If the
SIZE parameter is less than the actual SIZE of the array, only the first SIZE elements of that array will be
used.

1.7.3 Read A100s via link

Command: b009.read.al00.to.1i.nk(INT16 base.address, SI:ZE data (I:NT16), []INT16
data, BOOL error.flag)

Description: Reads size locations from the al00. space into data, starting at an offset base.address to
al00 .base. address. If the parameters are invalid, error.flag will be TRUE.

b009.read.al00.to.1ink(ucr.O, 128(INT16), ucr.va1ues,
error.f1aq)

reads the contents of the UCRs of all four IMS A1DOs (ie. 128 coefficients) into ucr . values.

1.7.4 Write A100s via link

Command: b009. write. al00. from.1ink (INT16 base.address,
SIZE data (INT16) , [] INT16 data, BOOL error.flag)

Description: Loads size locations of the a100. space with data, starting at offset base.addre~ to
al00 .base. address. If the parameters are invalid, error. f1aq will be TRUE.

Example: b009.write.alOO.from.1ink(ucr.O, 128(INT16), ucr.va1ues,
error.flaq) ~

loads the contents of the UCRs of all four IMS A1DOs (ie. 128 coefficients) with the data stored
in [128] INT16 ucr. va1ues.

1.7.5 Write DIRs via link

Command: b009.write.DIR.from.link(INT16 size,
[] INT16 data, BOOL error. flag)

15

Example:

Example:

Example:

Example:

1 User Applications
1.7 Specific services for IMS 8009 emulator/hardware

Description: .Writes the first size values in the array data to the DIR of all devices. If the parameters are
invalid, error. fJ.aq will be TRUE.

b009.write.DIR.from.J.ink(128(INT16), first.data, error.fJ.aq)

writes the first 128 values in first . data to the DIR registers of all four IMS A100s.

1.7.6 Read data.buffer via link

Command: b009.read.buffer.to.J.ink(INT16 base.address, INT16 size, []INT16 data,
BOOL error.flag)

Description: Reads size locations from buffer. space in the driver into data, starting at offset
base.address to data .buffer .base. address. The address mapper can be used to
reorder data if required during this operation.

b009.read.buffer.to.J.ink(O(INT16), 1024(INT16), buffer. data,
error.fJ.ag)

reads the first 1024 locations of buffer. space into buffer. data.

1.7.7 Write data.buffer via link

Command: b009.write.buffer.from.J.ink(INT16 base.address, SIZE data (INT16),
[] INT16 data, BOOL error.flag)

Description: Loads buffer. space with the contents of the array data, starting at offset base.address
to data.buffer .base. address. If the parameters are invalid, error. fJ.aq is TRUE.
The address mapper can be used to reorder data during this o.peration.

b009.write.buffer.from.J.ink(2048(INT16), 128(INT16),
buffer.data, error.fJ.aq)

loads locations 2048-2175 of buffer. space with buffer. data.

1.7.8 Write DIRs from data.buffer

Command: b009.write.DIR.from.buffer(:INT16 base.address, :INT16 size,
BOOL error.flag) ,

Description: Writes size locations in buffer. space starting at offset base.address into DIR. If the _
parameters are invalid, error. f1aq is TRUE. The address mapper can be used to reworder •
data during this operation.

b009.write.DIR.from.buffer(2048(INT16), 128(INT16),
error.f1ag)

sequentially writes the contents of locations 2048-2175 of buffer. space into all DIRs.

1.7.9 Process data with A100s using 16·bit output

Command: b009 .process .b~ffer.data. out16 (INT16 base.address.source,
INT16 base.address.destination, INT16 size, BOOL error.flag)

16

Example:

Example:

1 User Applications
1.7 Specific services for IMS 8009 emulator/hardware

Description: This command uses DIRDOLmode of the IMS 8009 for maximum speed, and as such
achieves the highest performance for processing data (see the section on "The IMS B009
Driver, DIRDOLmode" later in this manual). Since DIRDOLmode is used, the input
data must appear in every even location starting at offset base. address. source to
data. buffer. base. address. The output will appear in every odd location starting at
offset base. address. destination to data.buffer .base. address. The input
data as defined above is written to the DIR of all devices, after which the DOL of the last
device is read and stored as defined above. If the parameters are invalid, error.f1ag will be
TRUE.

In order to avoid thOe data pre/post ordering problems with DIRDOLmode, the address mapper
should be used with this function such that input and output data can be stored as contiguous
arrays. See example 1 in Appendix A of the IMS D703 User Manual for further detail of how
to achieve this.

b009.process.buffer.data.out16(0(INT16), 2048(INT16),
1024(INT16), error.f1aq)

write locations 0-1023 of buffer. space into the common DIR; after each write, read
1ast . DOL and store the results in locations 2048-3071 of buffer. space. In other words,
pass 1024 data samples through the IMS A100 cascade and store the 16-bit results. This
assumes the input and output data is as described above, and the address mapper is not '
enabled.

1.7.10 Process data with A100s using 24·bit output

Command: b009 .process .buffer .data. out24 (INT16 base.address.source,
INT16 base.address.destination, INT16 size, BOOL error.flag)

Description: With the address mapper disabled, write size locations in buffer. space, starting at relative
address base.address.source into the common DI R of the IMS A1OOs. After each write, read
both the DOL and DOH registers of device 0 (ie. the last device in the cascade) and store
the result in buffer. space starting at relative address base.address.destination. If the
parameters are invalid, error. flag will be TRUE.

Note that since both DOL and DOH are read, the maximum performance of the IMS A100
cascade cannot be achieved with this command. However the address mapper can be used
to minimise data ordering overheads before and after processing.

b009.process.buffer.data.out24(0(INT16), 2048(INT16),
1024(INT16), error.f1aq)

write locations 0-1023 of buffer. space into the common DIR; after each write, read
1ast . DOL and store the results in locations 2048-3071 of buffer. space. In other words,
pass 1024 data samples through the IMS A100 cascade and store the full 24-bit results. Note
that to read the results, use the b009. read.buffer. to .l-ink command, and RETYPE
the resulting data as an [] INT32. If for example 1000 data points were processed, read
2000 locations from buffer. space, and RETYPE them into [1000] INT32. The full
results can then be directly used as INT32s.

1.7.11 Read address.mapper via link

Command: b009. read.mapper. to .1ink (INT16 base.address, INT16 size,
[] INT16 data, BOOL error. flag)

Description: Read size locations of the mapper. space into data, starting at offset base.address to
mapper .base. address. If any parameters are invalid, error. f1aq will be TRUE.

Example: b009.read.mapper.to.1ink(0(INT16), 1024(INT16), map. data,
error.f1aq)

read the contents of the first 1024 locations in the address mapper into map. data.

17

Example:

Example:

Example:

1 User Applications
1.7 Specific servic~s for IMS 8009 emulator/hardware

1.7.12 Write address.mapper via link

Command: b009. write . mapper . from. link (INT16 base.address, SIZE data (INT16) ,
[] INT16 data, BOOL error. flag)

Description: Load the mapper. space with
data, starting at offset base.address to mapper. base. address. If any parameters are
invalid, error. flag will be -:t:,ROE.

b009.write.mapper.from.link(0(INT16), 1024(INT16), map. data,
error. flag)

load the contents of the first 1024 locations in the address mapper with map . data.

1.7.13 Enquire system status

Command: b009. enquiry (INT16 register.name, INT16 contents, BOOL error.flag)

where

register.name is: b009. stat:us. address' I
b009. error. address I
b009.ext:.event:.address

Description: Read register register.name of the IMS B009 and return its contents into contents. For further
descriptions of the registers and their bit allocations, refer to the source code of the B009.driver
or the IMS 8009 Reference Manual. If the register is invalid, error.flag will be TRUE.

bOO 9. enquiry (status. address, .status. reg, error. flag)

reads the status register of the IMS 8009 and returns its current contents into status. reg.

1.7.14 Get driver descriptor

Command: b009.driver.id([]BYTE string)

Description: Returns the descriptor of the currently loaded device driver in the IMS B009. If the emulator
is enabled, it's identifier is returned.

b009.driver.id(t2.driver.id)

gets the descriptor of the current driver (hardware or emulator depending on the current _
address decoder setting), and returns the string in '~2 •driver. id.

1.7.15 Modify current status

Command:]:)009. status .modifier (INT16 required.state, BOOL error.flag)

where

required.state is: MAP . disable
MAP.enable

Disable the address mapper
Invoke the address mapper

PROTECT. disable Disable PROTECT mode
PROTECT. enable Invoke PROTECT mode

EXT. clock. disable Disable the external clock
EXT . clock. enable Use the external clock

disable. all. modes Disable all above modes

18

1 User Applications

1.7 Specific services for IMS 8009 emulator/hardware

Description: Set the appropriate operating mode for the IMS B009. These commands are used to switch
the address mapper in and out, and for using the PROTECT mode if required. The clock from
the external connector is enabled or disabled here, which determines if the IMS A1 DOs are
clocked using the internal sources or external. If the nominated mode is invalid, error. flag will
be TRUE.

Example: b009.status.modifier(MAP.enab1e, error.fl.aq)

invokes the address mapper so that all addresses in positive address space pass through the
address translation mechanism.

19

3 The System Controller

3.1 Introduction

This section describes in detail the operation of the controller process. This process handles all keyboard
commands, commands from applications, and performs most primary command decoding functions. It can
interact directly with A100.model processes via address.decoder, however commands for B009.emulator
and B009.driver are directly generated by applications.

3.2 ASCII and Binary Commands

The command.interpreter understands two forms of command: ascii and binary. These will be subsequently
denoted by binary command or ascii command.

An ascii command is any command normally entered from the keyboard, which are documented in the
IMS 0703 Users Manual. These commands are:

• Application
• Continue
• Dump
• Execute
• Help
• Keep
• Last
• Quit
• Read
• Set
• Write

They will be denoted throughout the rest of this manual in the form "command string", ego "Read ad­
dress'. For information regarding their function and arguments, please refer to the IMS 0703 Users Manual.

A binary command is a command used only within the IMS 0703 software environment, and can be
regarded as an "internal" command. They are used by application processes, and comprise:

• Bootstrap T2
• Display (INT/REAUstring)
• Enquire (INT/REAUstring/char)
• File 1/0 (Open/Close/ReadlWrite)
• Get status (of controller)
• Plot (textual)
• Read A100
• Stop (application)
• TPlot (Turbo Plot - high resolution)
• Write A100 .

They will be denoted throughout the rest of this manual as [binary command args] , ego [Displ.ay
Inteqer string integer]. Note that for all commands, only the first letter of each keyword of commands and
qualifiers to commands is sent by the application. For example, the above command sequence will actually
be sent as:

[] BYTE "DI"; SIZE string; [] BYTE string; INT integer

3.3 Command Sources, Parsing, and Decoding

At the start of the command interpreter loop, command.interpreter clears out all the argument buffers, and
if the next comand is ascii from the keyboard, displays the Command: prompt. The decision of whether
the following command is ascii or binary is determined by command. type, which is set once the start

20

3 The System Controller

3.3 Command Sources, Parsing, and Decoding

of the command line is received. The command can come from one of two channels:

from. keyboard (handled via the read.string procedure), or

from.app1ication.process[].

The decision as to which is determined by the value of externa1. data. active, which is FALSE for
keyboard commands, and TRUE for commands from an application. If the command comes from an ap­
plication, the interpreter will first receive a command. type. int16, which determines if it is an ascii
or binary command. Note that if a character is typed at the keyboard, the interpreter should take this in
preference to an input from from. appJ.ication .process [] , thus allowing the user to halt execution of
commands from an application, and return to entering commands from the keyboard. Note, however that if
the application is executing commands via the B009.driver or B009.emulator, the only point at which these
can be interrupted is when they request a new command from the controller.

3.3.1 ASCII commands

All ascii commands take the form:

Command arg1 arg2 arg3 arg4 ...

The command string will initially appear in this. instruction, and ascii. cmd will be TRUE. The
command.interpreter accepts a text string in this form, and using one or more spaces as delimiters, splits
up the command string. It places the characters of the first word of the command line into [] BYTE com­
mand, and the characters for all subsequent arguments into a two dimensional array [arg.numper] [] BYTE
argument. The value of command is then used by decode to invoke the appropriate command.

Note that before parsing commences, the parser first skips over leading spaces in the command line, in order
to find the start of the actual command. If the first character is "_", it ignores the rest of the command as a
comment line. Comments are very useful in keystroke files, most importantly for annotating what is happening
at the command level, and for removing potentially troublesome commands within the file. Keystroke file
processing is discussed below.

If the command is not "J.ast", or a Ireturij (ie. no command entered), this. instrUction is copied into
1ast. instruction prior to parsing. This is so that if the command is required many times (eg. "write
-1 128", the user can then execute it with the "1ast" command, rather than reenter it each time.

If repeat. command is TRUE, the contents of J.ast . instruction are displayed, and the cursor placed
at the end of the line for simple editing by adding characters or using Ideletet.

3.3.2 Binary commands

Binary commands are received by the controller through the from. appJ.ication. process [] channels
from an application. They consist of one or more single BYTEs specifying the command, followed by
arguments in the appropriate internal format, usually INTs or REALs. They are decoded in binary.command,
which receives the first BYTE of the command, and receives the rest of the command directly within the
command decoder itself. Note this is in contrast to ascii commands, where the string is received and
decoded prior to processing byascii.command.

The response to binary commands is sent to the application via the to . app1ication .process []
channel.

The format and function of these commands is described below.

21

Function:

3 The System Controller

3.4 Binary Command Descriptions

3.4 Binary Command Descriptions

The purpose of this section is to illustrate how the protocols are used to interact with the controller, and
thus how to extend these services if additional controller functions are required. For most users, these
commands are normally accessed via the STANDARD Services procedures defined for User Applications.
Please refer to the "User Applications" chapter for details of the relevant calls and their usage. Where a
constant is predefined in STANDARD services, it will be shown as constant. val.ue, to indicate that this
is the actual name of the constant to be used In this command.

Throughout the descriptions below, the "command" is sent by the application to the controller via the
from. app1ication [] channels, and the "response" sent by the controller to the applications via the
to . app1ication [] channels.

3.4.1 B • Bootstrap the IMS T212

Format: Command: BYTE 'B'; SIZE filename; []BYTE filename

Response: BOOL error

Open the file filename, reset the IMS T212, and boot it with the contents of the file specified. If
the IMS T212 is not available, or the file cannot be opened, an error is generated. The controller
always returns error as a success/fail argument to the requesting application.

3.4.2 D • display string and typed argument

Format: Command: BYTE '0'; BYTE arg.type; SI:ZE string; []BYTE string; INTlREAL64 arg

where:

arg.type is 'I' for INT (integer)
is 'R' for REAL64 (64-bit real number)
any other character - only string is displayed.

arg is IN'!' or REAL64 as specified; not present if arg.type is not 'I' or 'R'.

Function: Display string in the command window, followed by the value of the argument arg, converted to
text form.

3.4.3 E • enquiry displaying string. return typed argument

Format: Command: BYTE 'E'; BYTE arg.type; SI:ZE string; [] BYTE string

Response: INT IBYTE IREAL64 I [] BYTE arg

where:

arg.type is 'I' for IN'!' (integer)
is 'K' for BYTE (single character)
is 'R' for REAL64 (64-bit real number)
is '5' for [] BYTE (string)

arg is INT or BYTE or REAL64 or [] BYTE as specified

Function: Display string in the command window, then wait for the user to enter a valid value of the type
specified by arg.type. This value is converted to the appropriate internal format and returned to
the application.

22

3 The System Controller

3.4 Binary Command Descriptions

3.4.4 F • perform file I/O

Format: Command: BYTE 'F'; BYTE open. read. tag; SIZE filename (BYTE); [] BYTE filename

Response: BYTE file.id

Notes: file.id = 255(BYTE) means bad file open

Command: BYTE 'F'; BYTE open. write. tag; SIZE filename (BYTE); [] BYTE filename

Response: BYTE file.id

Notes: file.id =255(BYTE) means bad file open

Command: BYTE 'F'; BYTE read.byte. tag ; BYTE file.id

Response: BYTE success. flag [; BYTE byte]

where success.flag will be:

fil.ing. error. tag means an error has occurred; second byte is not sent, or
- fil.e •data. input. tag; byte means valid data has been received

Command: BYTE 'F'; BYTE read.bl.ock.tag; BYTE file. id; SIZE max.data(BYTE)

Response: SIZE data (BYTE); [] BYTE data]

Note: if SIZE data (BYTE) = 0, an error has occurred. Also, the size returned may not equal
the size sent - max.data is the maximum size of data block to be read. If less, this probably
means that end of file has been reached, and this is all the available remaining data.

Command: BYTE 'F'; BYTE write •byte •tag; BYTE file.id; BYTE byte

Response: BYTE success.flag

where success.flag will be:

fil.ing. error. tag means an error has occurred, or
fil.e •dat.a. input. •tag; byte, which means that a valid byte is being received.

Command: BYTE 'F'; BYTE write.bl.ock.tag ; BYTE file.id; SIZE data (BYTE) ;
[]BYTE data

Response: BYTE success. flag

where success.flag will be:

fil.ing •error. tag means an error has occurred, or
fil.e . dat.a. input. tag; data was written s~ccessfully

Command: BYTE 'F'; BYTE cl.ose. fil.e. t,ag ; BYTE file.id

Function: Perform the appropriate operation as defined by the command tag given. These tags are
included in the standard protocols section of the application. After opening the file, the file.id
is used to identify which file is being addressed. Up to ten files can be open at anyone time in
the system as supplied.

23

3 The System Controller

3.4 Binary Command Descriptions

3.4.5 G • get current status

Format: Command: BYTE 'G'

Response: LNT number.of.A100s; LNT active.state;BOOL b009.avai1ab1e;
SI:ZE hardware.id.string; [] BYTE hardware.id.string

Function: Return to the application the current status of the controller, where number. of. A100s is the
current number of A100.models 'active in the model cascade, active. state is the current
address.decoder decode mode, b009. avai1ab1e indicates whether the IMS B009 hardware
is available or not, and hardware.id.string is the descriptor of the IMS B009 driver, if it has 'been
loaded.

3.4.6 P • plot data in command window

Format: Command: BYTE 'P'; I:NT arg.O; I:NT arg.1

Function: Plot the integers arg.O and arg.1 using the text plotting function in the command window. The
parameters controlling this plot function are set using the "set graphics" command.

3.4.7 R • send read request to address.decoder •• 1'

Format: Command: BYTE 'R'; I:NT16 address

Format:

Response: INT16 data

Function: Read the location address in A100 . space by sending it to the address.decoder. The value
data returned depends on the current mode of the decoder, set with the "set decoder"
command.

3.4.8 S • stop execution of application commands

Format: Command: BYTE '5'

Function: A message is displayed informing the user that the current application has now terminated, and
the command.interpreter proceeds to accept new commands from the keyboard.

3.4.9 T • Turboplot data in plot windows (ie. high resolution Turbo Graphics)

Format:

Command: BYTE 'T'; INT window. id; SIZE title.string;
[] BYTE title.string; BOOL clear.window, INT plot.type;
INT line.style; REAL32 x.start; REAL32 x.finish;
SIZE y.args; [] REAL32 y.args

Function: Display the REAL32 data in a plot window according to the parameters specified
using "Turbo Graphix". For details of the parameters, refer to the "User Application"
section of this manual, under the procedure p10t . graphics.

3.4.10 W· send write request to address decoder

Command: BYTE 'W'; LNT16 address; INT16 data

Response: INT16 success.flag

Function: Load the location address with data by sending both to the address.decoder. The
location loaded depends on the current mode of the decoder, set with the "set
decoder" command. If success.flag <> 0, an error has occurred.

24

IBM PC

transputer

3 The System Controller
3.5 Displaying messages on the screen • message multiplexer

3.5 Displaying messages on the screen • message multiplexer

Throughout the IMS D703, a hierarchy of message multiplexers are placed so that messages from any part
of the system can be displayed on the screen in a controllable manner, ie. they don't scramble each other,
wherever possible. Since messages can be generated by several processes at the same time, the message
multiplexers must route messages by packets rather than byte by byte. Thus, all messages are sent in the
form of strings, so that once the size of the string is detected, the rest of the string is read by a bfock move.
The message is then forwarded up the tree by a similar block move. The tree structure is as shown in
Figure 2.

Fi1inq Screen Keyboard Printer (Matrox)
System 1 1 I I

1 1 1 1 1

I
MS-DOS Front End

1
v

(Link Adaptor)~~~
Aa

I
transceiver

1
1

message.processor
I
I1---------- ~I----------I

command.inte~reter from.proc.messaqes ~OO.error.hand1er

1 / \ \ I
I / \ \ I

app1ications B009.emu1ator address.decoder Al00.mode1s

Figure 2: Message channel hierarchy in the IMS 0703

The message.processor multiplexes all messages from the three processes below it, and forwards them to
the transceiver for display in the command window. The command.interpreter generates all its messages
this way, and likewise all messages from the applications pass via the command.interpreter, usually using
binary commands.

The
o
from.proc.messages multiplexer collects messages from many processes concerned with the simulator,

ie. all A100.models, the address.decoder, and the B009.emulator. In order to identify these processes'
messages uniquely in the command window, the message.multiplexer automatically appends an appropriate
identifier of the message, if the first character of that message is a "%". For example, if one oof the
A1OO.models is generating the message, the identifier ''%%A1OOx-" is appended to the front of the message.
In this case, x represents which device in the model cascade is generating the message, and is generated
by adding ASCII "a" to the device number. Thus, if A100.model number 3 sent the message:

"%E-AsyncWr: Invalid write address·c*n"
...

to message.multiplexer the message would be displayed in the command window as:

"%%A1OOd-E-AsyncWr: Invalid write address"

The A100.error.handler receives all errors generated by all A100.models, and also consumes the output
of the final A100.model. It's output can be enabled if required with the "set message 22 on" or "set
message 23 on" commands (see the IMS 0703 User Manual).

25

3 The System Controller
3.6 Communications with MS-DOS Front End - the transceiver

3.6 Communications with MS-DOS Front End • the transceiver

All communications between the occam processes and MS-DOS pass via the transceiver. This process
multiplexes several logical channels from the controller:

• to. screen,
• to. graphic,
• to. fi.1e,
• to.matrox,

from. keyboard
from. graphic
from.fi1e
from.matrox

Note: The matrox channels are included to show how the system can be extended to interface to user­
specific peripherals. In this case, these channels were used during internal development of the IMS D704
system for high speed transfer of data to and from a frame grabber board resident in the IBM PC. These
channels have been left, together with their associated calling procedures, in both the controller and front
end as an illustration of how to provide peripheral I/O to the IMS 0703. However, the services provided in
the matrox interface are not described further in this manual.

The to •screen and from. keyboard channels are the conventional ones used by most occam programs
interfacing to a screen and keyboard. The protocol is very simple, with the to. screen channel regarding the ti
output as a dumb scrolling alphanumeric terminal, and the from. keyboard channel receiving characters
directly, ie. untagged.

The to. qraphic and from. graphic channels provide a logically separate interface to the Turbo
Graphics routines. The command protocol supports communication with potentially all services of this library,
although only a subset of them have been enabled by the front end. Due to the wide range of parameters
passed to the various routines, a general purpose protocol is used to enable bidirectional communication
of a wide range of parameters of different types, so that any procedure in the front end can be potentially
invoked by the occam program. This approach is particularly interesting to users wishing to interface to their
own MS-DOS procedures, as it provides the basis for communications between occam programs and any
procedure call in the language of the MS-DOS server.

The to. fiJ.e and from. fiJ.e channels provide the interface to the MS-DOS filing system, providing for
up to ten files to be open at anyone time. Both single byte and simple block I/O are supported.

3.6.1 Protocols

The following protocols are used in the communications described above. They are defined in the transceiver
process. The communications described below are as seen by the controller. Note the protocols between
the transceiver and the front end are not described here, however the information given here should be
sufficient for the interested user to study the source code of these two processes to see exactly what happens. t
The general purpose protocol used in the graphics channels is described as a method for constructing
general purpose host-transputer interfaces.

File I/O

to.fi1e open. read. tag; SIZE filename (BYTE); [] BYTE filename

from.fi1e ? fi1e.open.return.taq;BYTEme.~

to. fi1e ! open. write. tag; SIZE filename (BYTE); [] BYTE filename

from.fi1e ? fiJ.e.open.return.tag;BYTEme.~

to.fi1e

to.fi1e

cJ.ose • fi1e •tag; BYTE file.id

read. byte. taq; BYTE file.id

from.fi1e ? fi1e.data.input.tag;BYTEb~eOrfi1ing.error.tag .

to. fi1e ! write .byte . tag; BYTE file. id; BYTE b~e

26

3 The System Controller
3.6 Communications with MS-DOS Front End • the transceiver

to . fil.e ! read. bl.ock . tag; BYTE file.id; BYTE block.size

from. fil.e ? fil.e .bl.ock. transfer. tag; SIZE byte.array (BYTE) ; [] BYTE byte.array or
filing. error. tag

to. fil.e ! write .bl.ock. tag; BYTE file.id; SIZE byte.array(BYTE); [] BYTE byte.array

from.fil.e ? filing. error. tag

Screen Output

to . screen ! SIZE string; [] BYTE string

Note: string[O] = shutdown. command. tag - terminates execution of the IMS D703.

Keyboard Input

from. keyboard ? BYTE byte

Graphics I/O

to.graphics ! graphics. command. tag;
BYTE parameter. type. tag; [] BYTE· RETYPES parameter,
[BYTE parameter. type. tag; [] BYTE RETYPES parameter,
BYTE parameter. type. tag; [] BYTE RETYPES parameter,]

from. graphics ? function. reply. tag; BYTE graphics.command.tag;
[BYTE parameter.type.tag; [] BYTE RETYPES parameter,
BYTE parameter.type.tag; [] BYTE RETYPES parameter,
BYTE parameter.type.tag; [] BYTE RETYPES parameter,]

Notes on Graphics I/O protocol

When calling any of the graphics routines, the general sequence is to first send the relevant command tag
graphi.cs. command. tag, followed by one or more parameters. Each parameter is sent by first sending
its type tag parameter. type. tag, followed by the parameter itself, RETYPEd into a string of bytes.
For all character and integer 1/0, this is fine; however the Turbo Pascal used in the server supplied with the
IMS D703 does not use standard IEEE P754 floating point representations. The appropriate conversions must
therefore be made to reconstruct these numbers in the appropriate format. Other language implementations
should not give this sort of problem; however users must always take care of byte ordering when using such
techniques.

When the graphics. command. tag is received by the front end, it uses this as a vector into a case
statement which then expects the appropriate number of parameters, of the correct type, to be sent. Thus,
an immediate check is made to ensure that all arguments are sent, of the right type. Clearly there are many
methods of validation at this stage. Once all arguments are received, they are used to call the appropriate
procedure.

Once the command completes, it may wish to send some results back to the occam program. This is
accomplished by a similar protocol. The procedure first sends it's command tag as verification, then sends
the results back using the same format as for supplying the arguments to the call. When all the results are
sent, an end. tag is sent to indicate no more results will be sent. The occam program can then validate the
quality of the returned data.

For example, if the pascal procedure to be called has the form:

procedure user. cmd (byte. arg: char,
number.arg:integer,

27

3 The System Controller
3.7 Communications with IMS A100 models and IMS 8009 hardware

str.arq:[0 .. 40] of byte)

which accepts byte. arC] and number. arq as inputs, and returns str. arC] as the result, the command
sequence to call this from occam would be:

to. user. io ! user. cmd. tag; byte. tag; BYTE 'byte.arg'; int . tag; INT number.arg

from.user.io ? user.cmd.taq; str~nq.taq;SIZE str.arg(BYTE); []BYTE str.arg

This provides a general purpose method of calling any form of procedure executing on the IBM PC host from
any occam program executing via a user server program.

Note, however, that the argument return part of the protocol is not used on any of the communications
between the controller and the front end of the IMS 0703 as supplied.

Note that for the purposes of the IMS 0703, several modifications were made to the Turbo Graphics libraries.
These co'mprised:

1 rewriting the screen dump routines to provide a better aspect ratio, at higher speed

2 modification of the draw axis procedure to enable it to label axes that are not very tall

3 increasing the size of the plot array vector

3.7 Communications with IMS·A100 models and IMS B009 hardware

All communications between the controller and either the software model or hardware IMS A1OOs is done via
the to. decoder and from. decoder channels and the address.decoder. Since the protocol across this
channel directly reflects the actual transactions on the IMS A1 OD's SMI, and should emulate the behaviour of
the IMS T212 memory interface for some modes of operation, a strict protocol is imposed:

to.decoder ! INT16 memory.read;INT16add~ss

from. decoder ? INT16 data

to.decoder ! INT16 memory.write; INT16 address; INT16 data

This protocol is observed throughout the IMS 0703 whenever a memory access is being performed.
Thus, when the B009.emulator wishes to read a location, it sends the request in the above form to the
address.decoder. The address.decoder translates the address, and if valid sends the translated memory et
request, in the same protocol form, to the appropriate A100.model. The data resulting from the read request ~

will be sent back via the address.decoder to the B009.emulator observing the last part of the read protocol.

By adhering to this rule, many advantages are gained. For example, a system using a single A100.model
can dispense with the address.decoder altogether, if required, by simply joining the to. decoder and
from. decoder channels of the controller directly to the appropriate SMI channels of the A1OO.model.
Conversely, several levels of address decoding could be used if required, with the same protocol linking
each. Also, memory requests to the IMS B009 can be relayed directly to the B009.driver without translation.
Most importantly, the protocol directly models the memory interface of a 16-bit microprocessor, so that the
move from software to hardware is trivial. Indeed, if suitable procedure calls are used, the code which sends
such commmunications down channels could equally read or write the specified locations directly, by simply
replacing the procedure. .

In addition to the memory accesses, the controller needs to be able to control operation of address.decoder.
These commands are communicated over the same channels as the memory access, but with different
command tags. These are:

to.decoder ! t2.b009.qetID
from. decoder ? SIZE string; [] BYTE string

&1'•
28

3 The System Controller
3.8 Communications with Applications

t
Requests the current descriptor from the device driver. The hardware driver or emulator descriptor is returned,
depending on the current decoder mode.

to.decoder ! decoder.contro1;enquiry.modes
from. decoder ? I:NT16 active.state; INT16 cascade.size;
SIZE B009.emulator.id; [] BYTE B009.emulator.id;
SIZE B009.hardware.id; [] BYTE B009.hardware.id

Requests the current status of the address.decoder. Returns the current active decode mode active.state, the
current size of the model cascade cascade.size, and the descriptors of the B009.emulator and B009.driver
if available.

to. decoder ! decoder. control.; set. cascade. size; INT16 cascade.size
from.decoder ? INT16e"or

Sets the size of the model cascade to cascade.size. If the size is invalid, bad. size is returned, otherwise
size. ok is sent.

t to.decoder! decoder.contro~;set.address.mode; INT16 address.mode

Sets the address mode to address.mode, which can take the following values: A100 •model. •active,
B009.emu~ator.active,orB009.hardware.active.

to.decoder ! t2.b009.check
from. decoder ? BOOL error

This is used prior to bootstrap to see if the IMS T212 exists at the end of the channel to •bO 09 •hardware.
If it does, error is FALSE, otherwise TRUE indicates that no IMS B009 is available.

to . decoder ! t2 .b009. send.byte; BYTE byte

This is used during bootstrap of the IMS T212, and passes the byte raw down the bootstrap channel
to.b009.hardware.

3.8 Communications with Applications

The communications between the controller and the applications can be considered to be an extension to
the normal keyboard input to the command.interpreter. This is because the application can supply ascii
commands as if they were coming from the keyboard, or binary commands, which are only sensibly
executed from within a program.

When the command.interpreter is ready to accept a new command, the source of that command
is determined by the boolean app~ication. active. This boolean is FALSE for keyboard
input, however the command "appl.ication n" sets the current. appl.ication to n and sets
appl.ication.active = TRUE.

When appl.ication. active is TRUE, the command.interpreter reads the next byte from the channel
from. app~ication[current. appl.ication]. This byte determines if the command is ascii or
binary. Depending on the result, the rest of the input from that channel is directed to the appropriate
decoder. Commands continue to be read from that channel until either the application sends a [stop]
command, or the user used the keyboard interrupt to force the command.interpreter to switch back to taking
commands from the keyboard.

The protocols used for the binary commands are as defined above. For ascii commands, the protocol
is simply that of passing the string normally entered at the keyboard, as defined in the IMS 0703 Users
Manual.

29

3 The System Controller .

3.9 Other communications

3.9 Other communications

All data communications with the A100.models apart from those involving the SMI use :INT64 throughout.
This is explained below in the "A100 Model" section. The from. A100. error channels send a dummy
:INT16 value, since they only signify the fact that an event has occurred.

3.10 Parameters and Constants

The "Constants" declaration area in the controller comprises the definitions of protocols of controller ­
address.decoder, and controller - transceiver. Note that the protocol fold header shows if the declarations
are the MASTER set or a COpy of a protocol which is MASTERed elsewhere. The location of the MASTER
declarations is identified in brackets after the description. It is worthwhile following this convention, until your
TDS implementation-supports librariesl

Note that a COpy of the device specifics for the IMS A100B is included here, as some of the commands
need to know such parameters for decoding, etc. The default file names for the 'be1p" facility and the initial
bootstrap binary image are also held here. The characters used for text plotting are defined here, so that the
user can alter the characters used for high, low, or centre of the column where the data point lies, the zero -
axis, delimiter between hexadecimal data and plot, etc. t,!
3.11 Useful Procedures

A wide range of standard procedures are used within the controller for string and numeric I/O, graphics,
files, and communications. These are described below.

3.11.1 Character and String 1/0

The following routines are provided:

read.byte (BYTE ch)

Reads a single byte from from. keyboard, or from. fi1e if demo. running. f1ag is TRUE. This
routine also handles a-variety of services, including escape sequences, window resizing, printer logging, and
file handling for keystroke files. If kepp. f1ag is TRUE, all input is saved to file.

write .byte (CBAN messages, VAL BYTE ch)

Sends a single byte on the channel messages. Normally used by write. string.

write.string(CBAN messages, VAL [IBYTE string)

Sends the string on the channel messages, preceded by its S:IZE. Normally used to display messages on
the command window.

read.string(rNT 1ength, []BYTE string, CHAN messages)

Reads string terminated by Iretuml, using read. byte. The length of the string read is returned in 1ength,
and the characters are echoed using write .byte to channel messages. Note that Ideletel is supported.

edit.string(INT 1ength, []BYTE string, CHAN messages)

Assumes string has already been displayed with the cursor left after the last character, and 1ength is
set to the length of string. Allows the user to edit a string already displayed, and returns the edited
version. Used in the command.interpreter within the "1ast" command.

A wide range of numeric conversion routines are also provided, for converting strings to hexadecimal or

30

3 The System Controller

3.11 Useful Procedures

decimal numbers, both :INT and REAL. Their usage is clear from the procedure call itself:

string.to.:INT([]BYTE string, :INT number)
string.to.:INT32([]BYTE string, :INT32 number

:INTread(CHAN messages, :INT number)
REAL64read(CHAN messages, REAL64 number

:INT16 . to. dec . string (VAL INT16 number, [6] BYTE resu~ t)
INT16 . to ..hex . string (VAL INT16 number, [4] BYTE resu~ t)
:INT16.disp1ay.dec(CHAN messages, VAL :INT16 number, VAL INT size
:INT16.disp1ay.hex(CHAN messages, VAL INT16 number)

INT16.disp1ay.dec.and.hex(CHAN messages, VAL INT16 number, VAL INT size)
-- used in "read" and "write" commands

:INT32.to.dec.string(VAL INT32 number, [6]BYTE resu1t)
INT32.to.hex.string(VAL INT32 number, [4]BYTE resu1t)
INT32.disp1ay.dec(CHAN messages, VAL INT32 number, VAL INT size
:INT32.disp~ay.hex(CaAN messages, VAL INT32 number)

INT32.disp1ay.dec.and.hex(CHAN messages, VAL.INT32 number, VAL INT size)

REAL64.to.string(VAL REAL64 number, INT before.point,
INT after.point, []BYTE string)

3.11.2 Graphics I/O

In order to easily generate the main graphics commands, a number of procedures are provided. These simply
implement the Turbo Pascal Graphics Functions, and are thus documented in the manual supplied with that
software. Users wishing to use the graphics facilities to recreate new versions of RUNSIM must procure a
copy of Turbo Graphixs-Toolbox, together with Turbo Pascal. .

3.11.3 File I/O

The following procedures are provided for file I/O with the standard MS-DOS filing system. These procedures
are invoked by the binary command described above. Note that these procedures are similar to those
used in the applications, but communicate directly with the transceiver. They use the same protocols as
the applications filer calls, so that the fiie commands from applications are simply relayed by the controller
directly to the transceiver.

open.read.fi1e([]BYTE fi1ename, BYTE fi~e.id, BOOL error)

Opens the file fi~ename for read if possible; error indicates if it was successful or not. The procedure
returns fi1e. id, which must be used in all future references to that file until it is closed. Up to ten files can
be open at anyone time.

open.write.fi1e([]BYTE fi1ename, BYTE fi1e.id, BOOL error)

- Opens the file fi1ename for write if possible; error indicates if it was successful or not. The procedure
returns fi1e . id, which must be used in all future references to that file until it is closed.

fi1e.read(BYTE char, BYTE fi1e.id, BOOL error)

Read a byte from the file pointed to by fi1e. id into char. If an error occurs (eg. end of file), error =
TRUE.

fi1e.wri1:e(BYTE char, BYTE fi1e.id, BOOL error.f1aq)

31

Adding commands to the IMS 0703 command.interpreter is straightforward, once the parsing operation is
understood. For simple ascii commands, it is a matter of finding the ascii. command () procedure,
which is located in the decode () procedure within command.interpreter. The safest method is to copy
an existing command fold, and modify it to your own needs. Take care that the new command is unique, or
that similar commands' decode expressions are extended to ensure unambiguous decoding.

3 The System Controller
3.12 Adding new commands

t
Write a byte char to the file pointed to by fi1e . id.

fi1e.b1ock.read([]BYTE b1ock.of.char, VAL BYTE fi1e.id,
BYTE b1ock.size, BOOL error)

Read a block of SIZE block.of.charbytes of data from the file pointed to by fi1e. id into b1ock. of . char.
If end of file is reached before the block is full, error is TRUE, and b1ock. size contains the number of
bytes returned in b1ock. char.

fi1e . b10ck . write (VAL [] BYTE b1ock. char, VAL BYTE fi1e. id, BOOL
error.f1ag)

Write b1ock. char to the file pointed to by fi1e . id.

c1ose.fi1e(VAL BYTE fi1e.id

Close the file pointed to by fi1e. id.

3.11.4 Bootstrapping the IMS T212 at runtime

This facility enables users to reboot the driver executing on the IMS T212 if required. This is normally
accessed via the [BOOT filename] command from an application. The bootstrap routine is defined within
command.interpreter, and is the same routine as that used during startup.

boot. t2 ([] BYTE filename, BOOL error)

resets the subsystem connected to the host transputer, checks to ensure that a transputer is connected to
the to.b009.hardware channel, and if so boots it with the contents of filename. Note that this routine
expects the driver to be able to respond to a request for its descriptor, so writers of new drivers should ensure
this facility is available.

3.12 Adding new commands

t!
Adding binary commands is similar, except they reside in binary. command (). Note that binary
commands are available:-ro all applications, so if new ones are added, the following procedure is recommended
to remain consistent with the conventions adopted during development of the IMS 0703.

When adding these commands to the appropriate decoder procedure, ensure they are uniquely identified by
adding the prefix SITE-SPECIFIC to a fold containing all your own additions. Then, create a suitable set of
PROCs for calling your new binary commands, and keep these in a separate fold called SITE-SPECIFIC
Services. Place this fold in the "standard harness" area, then copy that fold into all applications requiring the
new service. This enables you to keep track of exactly which routines you added. This will prove important
if future releases of the IMS 0703 are made, since you will probably want to integrate your new commands
with the new releases, and this ensure you can quickly identify your own extensions.

,
32

(1(1

4 The Address Decoder

4.1 Introduction

The address.decoder provides the same service as it's hardware equivalent: it translates logical addresses
into physical addresses, and routes them, together with the data, to the correct destination. In the IMS 0703,
we are using occam to model the complete interface between host and IMS A1005. This is demonstrated in
the IMS D703 by modelling two addressing regimes:

1 A simple linear address model, where each IMS A100 occupies 128 contiguous 16-bit
word locations, starting at location 0

2 A complex address decoder, which emulates the IMS B009 address decoder

4.2 Principles of Operation

An INT16 command word is received, which determines if the next words are for a memory read, memory
write, or a command local to the address.decoder itself. The next INT16 word contains the address to
be translated. This address is validated, and translated as required. A decision is also made as to which
channel the output should be sent.

If the command was for a read, a memory. read word is sent to the output channel, followed by the
translated address. The :INT16 data reply is passed back to the process requesting the operation. For a
write, the data is passed after the translated address to the decoded destination.

The decoder has a message channel which enables it to display every transaction it performs, if the
appropriate "set" command has been performed.

The address.decoder can respond to requests from both the controller and the B009.emulator, and these
two decoders execute in PARallel. Since the B009.emulator is normally only accessed by applications '
directly, in normal operation only one of the two sources of addresses will be active at any time. However,
users should note that if applications are interrupted which are executing with the B009.emulator, there is
the possibility of conflict between the two sources of requests.

Note also that the address.decoder is connected to the B009.emulator as another application. This
enables the controller to interrogate the B009.emulator in exactly the same way as it can interact with
the B009.driver, for example when requesting descriptors.

The address.decoder has in effect three addressing regimes, which are referred to as addressing modes.
These are:

4.3 Address mode 0: IMS A100 Model

The memory map is simply allocated so that the normal IMS A100 device memory map is seen by the user,
translated by n128, where n is the number of the d"evice in the model cascade. For example, the OIR for
device 0 is 72, for device 1 is 200, for device 2 is 328, etc.

A special address, -1, is also provided. If a "write -1 data" command is made in this mode, all OIRs are
loaded with the same data at the same time.

4.4 Address mode 1: IMS B009 Emulator

This memory map accurately represents the decoding of the IMS A1OOs in the memory map of the IMS B009,
such that the addresses received by the decoder are identical to those received by the IMS B009 decoder
from the IMS T212 during normal' operation. Note that these addresses are after the address mapper, which
is modelled in the B009.emulator itself.

For further details of the IMS 8009 address map, please refer to Table 1, and the IMS 8009 Reference
Manual.

33

4 The Address Decoder I

4.5 Address mode 2: IMS B009 Hardware

4.5 Address mode 2: IMS B009 Hardware

This mode enables the user to read and write the IMS A100 devices on the IMS B009 itself. Note that the
IMS T212 memory itself is not accessible. nor are the contents of the address mapper. This is because
the B009.driver deliberately isolates access to these from accesses to the IMS A1OOs. However. if users
wish to gain access via this mechanism to the complete IMS B009 memory map. the extension is fairly
straightforward.

..
The main use of this mode is to enable users to "peek" and "poke" the actual IMS A100 hardware, and
validate that the hardware does what is expected. This can be useful during early debugging. if the user is
not convinced that an application has set up the IMS A1-00s correctly.

It is also useful for setting up a static configuration for use with external data. A keystroke file can be used
to directly set up and load the IMS A100 devices, and start operation.

4.6 Communications with other processes

Most communications between the address.decoder and processes connected to it is via the standard .,
"memory access" protocol described above. This includes communications from the controller, and the ..
B009.emulator, to the A100.models. Note that "from" means the decoder receives the memory requests;
"to" .means that the decoder issues the memory requests.

An additional channel is provided to the controller, for communicating messages for display via the
message channel. Channels are also provided to the B009.driver and the B009.emulator, which use the
protocol defined for communication with those drivers. In the case of the B009.emulator, the channels
to.b009.emu1ator and from.b009.emu1ator are used for memory requests from the emulator to
the decoder; the channels to. bO 09 . emu1ator . com and from 0 bO 09 . emu1ator . com are used by
the decoder to send driver commands to the emulator.

4.7 Parameters and Constants

A COpy of the protocol for driver communications is contained in the decoder, together with a COpy of
the controller - decoder protocol. The device parameters for the IMS A100 are also held here as they are
required in order to generate the correct decode for the devices.

4.8 Special Link Services

The decoder performs t~e actual task of determining whether the IMS T212 is present or not. If the link is not
connected, a normal link communication would resblt in the process "hanging" forever. To avoid this, a special
link function OutputOrFai1 is used within the t2 .b009. check command in the contro11er decoder.
This procedure will time out after the nominated period if the link does not receive an "acknowledge" to its
transmission. For further details of this and related special link functions, please refer to INMOS Technical
Note 1: Extraordinary use of Links".

4.9 Adding new address decoding modes

Adding new decoding modes involves two stages:

1 Defining the new address translation process

2 Est~blishing the new decoder mode in both the address.decoder and the controller

Since only two commands are possible for any decoding process, ie. memory. read or memory. write,
the decoder combines the decision with that of which mode is required. Thus, the decoder is not nested, the
decode expression being simply:

34

:.(6\,w

4 The Address Decoder
4.9 Adding new address decoding modes

(address.mode = new.mode) AND (command = memory. read)
(address.mode = new.mode) AND (command = memory.write)

If this is TRUE, the address (and data if a write) is received from the appropriate channel, decoded as
required, and the result sent out channel to .A100. SMI [device.number] .

In order to add a new mode, the protocol must first be updated to define the new mode, after the three already
present. The number must be the next available INT, ie. 3 for the IMS 0703 as supplied. This is updated
in both the controller and address.decoder. The value of number. of . address. modes must also be
incremented.

Next, the set. cascade .mode command in the decoder must be updated to accept the new mode. Finally,
the set. command procedure within the ascii . command decoder must be updated, including the enquiry
mode.

35

5 The IMS A100 Model

,
5.1 Introduction

The occam model of the IMS A1 00 contained in the IMS D703 is a complete system level model of the device.
It has been specifically developed to emulate all modes of operation, with the exception of certain test modes,
and as such forms a concise specification of the device. However, by using occam channels for modelling
the communication of all data flow through the IMS A100 data ports, the A1OO.model process also provides
an excellent starting point for constructing models of complete systems. To demonstrate this capability, the
IMS D703 provides an emulation of the IMS B009 evaluation board, including address mapper, optimised
address decoder, and status registers. By understanding the relationship between the occam model and the
actual hardware, systems involving complex synchronous behaviour (eg. interleaved devices, recirculating
buffers, etc) can be reliably modelled with the tools provided in the source code of the IMS D703. For those
interested in Systems Description Languages (SDLs), the IMS D703 demonstrates one way in which both
synchronous and asynchronous communication can be described using a simple unbuffered handshaken
model of communication.

Figure 4 shows the users model of the IMS A100, as used by hardware designers. Figure 5 shows how
the main occam processes within A100.model are structured, and the communications between processes.
Note that in Figure 5, the thick lines represent channels which model data ports of the IMS A100 device,
whilst the thin lines are channels internal to the model. The message.processor provides a means of the a
model displaying messages via the controller to the command window. Note that the model can warn users •
of situations the device itself cannot - these are explained below.

5.2 Principles of operation

The model is divided into two key processes: asynchronous.functions and synchronous.functions. These
processes emulate the split of functions of the actual device, where the former contains all the coefficient
and status registers, and provides the SMI interface to the controlling processor, whilst the latter performs the
actual 'calculations, including selection, cascading, rounding, etc. The channels providing data to the model
connect to the appropriate part of the model. For example, data supplied on the DIN pins of the device is fed
to the synchronous.functions process on the to. AlOO. externa1. data channel, whilst data for DIR
is input via the to .A100. SM! channel to the asynchronous.functions process.

Comparison of Figures 4 and 5 will reveal that several pins are missing from the model: GO, RESET,
OUTRDY, BUSY, and CLOCK. This is because their functions are to provide synchronisation between the
IMS A100 and hardware connected to it. For example, when data is valid on the DIN pins, the GO signal
is taken high, and sampled by the CLOCK. The DIN pins are sampled on the next rising clock edge and
the result latched. The functionality of this process is modelled by the synchronisation behaviour of occam
channels, whereby the act of sending the data on the to .A100. externa1. data channel implies that
the sending hardware is synchronised to the IMS A100 receiving that data. Likewise, when data output is _
valid, for hardware the OUTRDY signal synchronises external hardware to the valid data on the DOUT pins. •
In the occam model, the act of sending the result out on the from.AlOO. externa1. data achieves the
same goal by synchronising the transfer to the receiving process. Thus, the action of sending and receiving
data via occam channels can be considered to model a synchronous transfer, since both sender and receiver
must be synchronised. Therefore, we don't need a clock. The clock is also not required for internal operation,
since this is a system level model, so we use the multiplication instructions of the transputer directly rather
than try to emulate the precise behaviour of the IMS A100 itself at the bit level.

The SMI, however, is an asynchronous interface. Here, we model the communication as a master - slave
operation, ie. whenever we request a read of a location, the device will return the valid data when it is
ready to do so. This is equivalent to qualifying the output data with the OUTRDY pin of the IMS A100. It is
important to understand that the model of the SMI is a strict subset of the behaviour of the real hardware,
since in reality the hardware supplying data to the SMI does not attempt to synchronise to the IMS A100 in
any way. Therefore, certain operations will occur correctly with the model which may not in the hardware, if
for example the hold times are wrong for read requests. We could build an elaborate model to attempt to
model this behaviour, however it would be far too detailed for what this model tries to achieve.

36

5 The IMS A100 Model

5.2 Principles of operation

Figure 4: IMS A100 user model of physical device

(")

0 eT 0 ...
~

(I) e:0
== ~Cl. e Q. CD

t ~
CD DJ o ... ai0 S' CD 0
0 Ciit: '0

en CD '0
co

to.A100.
cascade.data

Figure 5: A100.model occam process structure

37

~---04~Busy

.....-----t~ Go

.....----Clock

.....---- Reset
t+-----t. Error

==d1r---p OutRdy

5 The IMS A100 Model

5.3 Asynchronous process

The overriding assumption made by the model is that all data transfers, both asynchronous and synchronous,
are correctly implemented in hardware. Thus, when the processor issues a read request to the IMS A100,
the timing is correct, so that the address will be set up in time, and the data will be latched when valid. If this
is the case, the model will then show exactly what result will appear at the output. It will NOT tell you when it
will appear, nor will it be able to accurately model the pipeline effect of the back end of the IMS A100 device
- these are again hardware design issues.

Once these issues are understood, the power of the model can be appreciated. By making all communications
via channels, we can simply join a collection of parallel A1OO.model processes via their channels to emulate
a cascade. We can then supply data to that cascade either via the to.A100. external. . data channel,
or via the SMI with a write request. We can observe any errors that would normally be generated by
the device by watching the from. A100 . error channel, and see if anything strange is happening by
observing the from.mode1.messaqes channel. We can model any decoded system by modifying the
address.decoder, and can even model systems using FIFOs, external adders, multiprocessors, or other
external devices by writing high level models for those devices, and observing the above constraints of the
communication model. Indeed, we can also model interleaved devices, or any other configuration, by virtue
of the synchronisation inherent in the occam model.

5.3 Asynchronous process

The asynchronous functions include storage of coefficients, control via the SCR, ACR, and TeR, and data I/O
via DIR and DOUDOH. Note that the main processing area of the IMS A100, ie. the multiplier accumulator
array, is often referred to as the "core". The cascade adder, field selector, and output multiplexer are known
together as the "backend".

5.3.1 Initialisation

The initialisation phase consists of setting the SCR, ACR, and TC,R to their normal power-on default values,
and setting several booleans. Note in this version of the model the partial products in the multiplier accumulator
array, the coefficients and the cascade shift register are all set to zero. This simplifies matters for users who
forget to flush the core, as it avoids transient errors. However, it is important for users to realise that the real
device could have anything in these locations.

5.3.2 Main execution loop

The main control loop of the asynchronous.functions is an ALT between the SMI, requests for coefficients
from the core, errors from the backend, and data from the backend. The normal operation would be that
data would be written to DIR via the SMI, which is passed to the core. The core will immediately request the
Current Coefficient Registers (CCRs) prior to performing the calculation for that cycle. Data is passed from _
the core to the backend, forming a simple pipeline. If any errors occur in the backend, they will then appear, •
causing an update of ACR. Finally, the data appears from the back end, which is loaded into DOL and DOH.

Note that an interlock has been included, DIR. serviced. Since the synchronous.functions model not
only the arithmetic, but also pipeline behaviour of the IMS A100, it is possible to deadlock the processes
surrounding the model if too many writes to OIR occur at once. To avoid this, the model "holds off" any SMI
requests once a major cycle has commenced with a guard on the ALT, until the results for that major cycle
are received. This does not compromise the model's accuracy in functional terms, since we are deliberately
working in a timing regime which is only accurate to the nearest major cycle of the IMS A100, so speed of the
SMI cannot be accounted for. Users of the IMS A100 concerned with overrunning the device with excessive
OIR writes should use the GO and OUTROY pins, which indicate when the DIR is sampled, and when the
result is stable in DOUDOH. Thus, by using this to generate wait states if required, the danger is eliminated,
although this does compromise maximum throughput with the SMI. The IMS B009 includes a "PROTECT"
mode, which enables users to ensure major cycles complete before reading DOUDOH. The IMS B009 also
uses GO to ensure that at no time can too many writes to DIR be made, which is important when using the
DIRmode of the IMS B009.

All Communication on the SMI is via the to. Al 0 0 . SMI and from. A10 0 . SMI channels, and follows the
protocol defined above for memory accesses. A simple decoder is used to emulate the internal memory map
of the IMS A100. Note however that undefined memory locations have not been implemented - in the real

38

5 The IMS A100 Model

5.4 Synchronous functions

device some of the undefined locations in fact decode to the registers several times. If the SeR is updated,
this information is relayed to the core via the to. core. contro1 channel. This traffic can be observed by
enabling the A100.model message channel. Bank swaps are implemented by a pointer switch, and errors
received generate an I:NT16 token to be sent on the from.AlOO.error channel.

If data is written to DIR, that data is only loaded into the core if the appropriate bit in the SCR is set. The
data is sent via the to . core. DIR. data channel.

A Model Control Register (MCR) is included which is unique to the software model. It is used to switch the
cascade input to always supply zero data if required. It is only used by the "set cascade" command
to allow a programmable cascade size without having intermediate "switch" processes between each
A100.model in the cascade. Users should take care when using the MCR in system models, since it does
not exist on the actual device.

When the core requests the coefficients via the from. core. coefft. request channel, all of the CCRs
are sent down to. core. coefft . data. During this operation, each coefficient is checked to ensure all
significant bits are used. If not, a warning message is generated, and the model uses only those bits that are
specified by the SCR. For example, if the user loads the value #0011 (hex) into a coefficient, and the SCR
is set to only use 4-bit coefficients, the core will receive the value #0001 (hex), and a warning message will
be generated. This gets complex when negative numbers are

5.4 Synchronous functions

The synchronous.functions receive input data, perform the mUltiply-accumulate function, apply the field
selector, add this with the appropriate cascade data, and output the result to the asynchronous.functions
and to the outside world via the from.A100.external..data channel.

The main calculation is performed in core.evaluation, and is fully accurate. Input data is accepted from
to . core. input. data, which contains either data from DIR or the DIN port, depending on the setting
of the SCR. The async.sync.interface sorts out which data stream is used. Note that input data on
to .A100. externa1. data is INT64, and that all communications and calculations except those using
the SMI are performed with INT64 data. This is to guarantee full accuracy, and allow for users trying to
use the model with larger width data than the device itself accepts (see "parameterising the model"). Once
calculated, the results are output via a channel to the "backend", so that the core is ready to accept another
data sample.

The backend.and.cascade receives the core output and applies the field selector, then the cascade adder.
The selector will generate errors for overflow or underflow, and will indicate which with an error message.
The selector also behaves like the silicon in selecting the correct bits for the output, even if an error occurs,
as does the back end adder. Both also set the appropriate bits in the ACR when errors occur. Once these
have been performed; the result is passed as an INT64 via from.A100. externaJ.. data to the outside
world, and to DOUDOH via from.backend.data.

5.5 Parameters and Constants

The IMS A100 model is parameterised to allow knowledgable users to explore the potential for variants
of IMS A100 silicon designs. These parameters are MASTERed in the A1OO.model, and comprise the
memory map, bit decodes of control registers, and major silicon implementation parameters such as
number. of . stages, input. data. width, and output. data. width. These enable users to
explore, for example, the benefits of a 64-stage A100, or one with 32-bit outputs, or perhaps a-bit inputs.
These constants are used by the model to constrain its behaviour to the current silicon implementation. For
this reason, the A1OO.model is referred to as a "generic" IMS A100 model, since we can model any basic
variant of the device by simply altering these parameters.

39

6 The IMS B009 Driver

6.1 Introduction

The B009.driver is a stand-alone occam program which is bootstrapped into the IMS T212 of an IMS 8009
during startup of the IMS 0703. It provides access to all the facilities of the IMS 8009, without having to
learn the intricacies of the block move, address mapper, or protection modes of the board. The driver has a

'straightforward set of commands which are defined below, which enable users to use thelMS 8009 with very
little development effort. For users wishing to develop optimised drivers, the B009.driver supplied provides
an excellent framework, since all of the modes of operation of the board, together with all special memory
locations, are already defined and their use demonstrated. The basic structure of the IMS B009-2 is shown
in Figure 6.

IBM PC
Bus

Data
Input

IBM PC­
Interface

IMS T414
1Mbyte DRAM

INMOS
Serial
Links

IMS T212
64Kbyte SRAM

Address
decoder &
generator

IMS A100 IMS A100 IMS A100

Data
Output

IMSA100~

Clock &
Sync

Figure 6: Overview of the IMS 8009·2

The buffers within the driver enable the user to perform true concurrent processing with an IMS B009-2 or
an IMS 8009-1 with another transputer supplying data. A task can load data into the buffer, and with a
single command request the driver to pass up to 16k words of data through the IMS A100 cascade without
intervention from the host transputer.

Since the protocol for communicating with the driver is defined below, and a link adaptor interface to the
IBM PC is provided on the IMS B009, users can bootstrap the IMS T212 with this driver and communicate
with it via any MS-DOS application. This means that an application written in C, Pascal, etc on the IBM PC
can use the IMS B009 with very simple code. To assist users in developing suitable procedures for talking
to the link adaptor, examples are prOVided in Appendix A written in Pascal.

6.2 Principles of Operation

The driver is based on a simple command decoder, which accepts a command token, and passes control to
the appropriate procedure which receives the remaining parameters and performs the appropriate function.
All communication uses INT16 throughout, except when the descriptor is returned as a [] BYTE array.
Note that the driver is a purely sequential program, ie. no PARs are present in the code. This is because

40

6 The IMS 8009 Driver

6.3 Operational modes of the IMS 8009

during most operations the full memory bandwidth of the IMS T212 is required, and any interruption to a data
transfer would corrupt some modes of operation. Ambitious users may, however, be able to use PRI PAR
if a parallel implementation appears suitable.

During initialisation, the driver performs an ALT to determine which link is to be used for communication.
This link is then assigned a pointer (with an abbreviation), and that link used for all future communications.
This is a useful means of avoiding the problems of different link configurations, since any of the IMS T212's
links can be used to boot and talk to the driver. Note that after booting, the controller expects the driver
to respond to a request for a descriptor. Thus, if users are creating their own drivers, this facility must be
allowed for, or the relevant code in the controller modified.

The memory map of the driver is shown in Figure 7. A full description of the facilities of the IMS B009 is given
in the IMS 8009 Reference Manual, however a brief review of the main operational modes is given below.
Examples of the uses of this driver are given in the examples contained in Appendix A of the IMS 0703 User
Manual.

6.3 Operational modes of the IMS 8009

In normal operation, the memory map of the IMS B009 behaves as a conventional memory-mapped machine,
as shown in Figure 6. However, the key to toe IMS B009's performance depends on making best use of the
full bandwidth of the External Memory Interface (EMI). To do this, several special modes of operation are
provided in hardware, and are selected by bits in the B009 Status Register (B9SR). Note that all special modes
apply only to positive address space, ie. all physical addresses from #0000 to #7FFE. These correspond
to logical addresses #4000 to #7FFF (as used in occam PLACE statements to ensure consistency across
different wordlength machines).

When passing data through the cascade of IMS A1OOs, all input data must be written to a single memory
location, and all output is read from a single memory location. In order to move data at maximum speed, a
block move must be performed with the IMS T21,2, otherwiseSEQ loop code is executed which degrades the
effective data rate substantially. However, a block move generates a sequence of incremented addresses
for both source and destination, which is not consistent with what is required for passing data through the
IMS A100 cascade. Therefore, the special modes all perform some form of address modification, so that the
functiof'1al needs are met at full IMS T212 EMI speed.

41

6 The IMS 8009 Driver

6.3 Operational modes of the IMS 8009

Addresses
Physical OCcam

#7FFE #7FFF Top of Memory Address Space

buffer.space
Q)
o
~a.
en
~
Q)
~

"0

~
Q)
>
~

"w #2000 #1 000o. Cl.

., , #0000 #4000

Block Move
and Address
Mapper act on
these addresses
if modes are
active

Address ~~

Mapper
(LOAD mode)" ~~

e\

#FF06 #3F83

#FF04 #3F82

#FFOO #3F80

#Feoo #3EOO

#8800 #0400

#8024 #0012

#8012 #0009

External Event Register

A100 Error Flag Register

B009 Status Register

A100.space

External RAM

T212 Internal RAM

T212 Processor Internal Registers

~~ #8000 #0000 Links and Eventln

Bottom of Memory Address Space

Figure 7: Memory Map of the 8009 Driver

42

6 The IMS 8009 Driver

6.3 Operatipnal modes of the IMS 8009

Relative Address Contents Comments

0-31 UCR[O..31] Device 0 Organised so that a single
32-63 UCR[O..31] Device 1 Block Move can load all 128
64-95 UCR[O..31] Device 2 coefficients
96-127 UCR[O..31] Device 3

128-159 CCR[O..31] Device 0
160-191 CCR[O..31] Device 1
192-223 CCR[0..31] Device 2
224-255 CCR[0..31] Device 3

256 SCA Device 0 For many applications, can
257 SCA Device 1 predefine all these registers'
258 SCA Device 2 contents, and thus initialise
259 SCR Device 3 the complete cascade with a

single Block Move.

'e
260 ACA Device 0
261 ACA Device 1
262 ACA Device 2
263 ACA Device 3

264 TCR Device 0
265 TCR Device 1
266 TCR Device 2
267 TCR Device 3

268 DIR Device 0
269 DIR Device 1
270 DIR Device 2
271 DIR Device 3

272 DOL Device 0 DOUDOH pairs so they can be read
273 DOH Device 0 by an IMS T212 as an INT32
274 DOL Device 1
275 DOH Device 1
276 DOL Device 2
277 DOH Device 2
278 DOL Device 3
279 DOH Device 3

320 DIR Devices 0-3 Common DIR for all devices

384 bOO9.status.register Controls the main addressing modes
of the IMS B009

386 al00.error.register Shows if an IMS A100 error has
occurred

387 ext.event.register Shows if external event has occurred
from the IMS T212 EMI connector.

Base address is: AlOO.base.address.

Memory vector is A100. space. Device 0 is closest to the final output of the cascade.

Table 1: IMS A100 Address Space on the IMS 8009.

le
43

6 The IMS B009 Driver

6.3 Operational modes of the IMS· B009

-
Register Bit Number Read/Write Description

EXT.event.reqister 0 Read Only If set, a memory request has been made
on the IMS T212 EMI connector. This is
used to distinguish between an event
generated by the external event signal
on the top edge connector, and an
error from one of the IMS A1OOs, when
an Eventln occurs on the IMS T212.

al00.error.reqister 0 Read Only If set, an error has been generated by
one of the IMS A100s. This is
used to distinguish between an event
generated by the EMI, and an
error from one of the IMS A1OOs, when
an Eventln occurs on the IMS T212.

bOO9.status.reqister ° ReadlWrite Spare
bOO9.status.reqister 1 ReadlWrite Spare
bOO9.status.reqister 2 ReadlWrite EXT. c1ock: If 1, use clock from the

external g6-way connector.
If 0, use the clock source selected by
the switch SW3-1.

bOO9.status.reqister 3 ReadlWrite PROTECT .mode: If 1, hold off reads
until data is guaranteed valid in
DOUDOH registers.
If 0, reads can occur immediately
following a write to DIR.

bOO9.status.reqister 4 ReadlWrite LOAD. mode: If 1, the address mapper
is available in positive address space.
If 0, normal RAM is available.

bOO9.status.reqister 5 ReadlWrite MAP .mode: If 1, the address mapper
is used to translate all positive
addresses.
If 0, addresses are used without
translation. ebOO9.status.reqister 6 ReadlWrite D:IR.mode: If 1, all writes in
positive address space are translated
into writes to the common DIR.
If 0, addresses are used unmodified.

bOO9.status.reqister 7 ReadlWrite BLOCK.mode: If 1, addresses in
.positive address space are decoded so
as to provide high speed I/O through
the IMS A1OOs during calculations.
See DIRmode and DIRDOLmode on the
next page.

Table 2: Bit D~finitions for the IMS B009 control registers

44

6 The IMS 8009 .Driver

6.3 Operational modes of the IMS 8009

6.3.1 DIRDOLmode

In this mode, one major cycle of the IMS A100 cascade is achieved for every two readlwrite operations
(ie. four memory cycles). This means that for the IMS 8009-1 and IMS 8009-2 as supplied, the maximum
continuous data rate using data through the SMI is 600ns.per sample, or 1.66Msamples/s. (The 600ns EMI
cycle is due to delays through the address decoder, the speed of the SRAMs used, and the requirement
to provide the address mapper "on the fly", thus necessitating one wait state. Faster SRAMs and decoder
would enable the wait state to be removed, thus providing a 2.5Msample/s maximum data rate.)

This mode operates by decoding the addresses as follows:

Cycle Address Description

Read Even (A1=O) Normal Read cycle

Write Even (A1=O) External RAM is disabled.
Data is written to DIR
of all four IMS A1OOs- Read Odd (A1=1) External RAM is disabled.
Data is read from DOL
of the last device of the
cascade, ie. device 0

Write Odd (A1=1) Normal Write cycle

The normal use of the DIRDOLmode is to commence the block move of data from an even word address
to an even word address. The input data is expected to have been stored in every alternate location, ie.
source, source+2, source+4, etc. The result will be written into dest+l., dest+3, dest+S, etc.
Thus, once the data is loaded in the correct manner into the buffer, a single block move of the form:

[dest FROM 0 FOR size] := [source FROM 0 FOR size]

will pass all the data through the IMS A1OOs, and collect the results. To avoid the problems associated
with preordering the data, the address mapper can be used (MAPmode) in conjunction with DIRDOLmode to
ensure data stored in a contiguous array can be fed directly into the IMS A100s, and the outpu data is stored
in a contiguous array. see example 1 in Appendix A of the IMS D703 User Manual for further details.

e 6.3.2 DIRmode

When performing the first n major cycles of the IMS A100 cascade, where n is the nunlber of stages of
the cascade, many situations do not require the program to gather the first n outputs, since they are partial
products that are meaningless. In this situation, a simpler decode is provided:

Cycle Address Description

Read All Normal Read cycle

Write All Write data to DIR of
alllMS A100s

This mode is useful for performing functions such as flushing the cascade. Note, however, that in this mode
the IMS T212 can supply data faster than the IMS A1OOs can accept it; however the IMS 8009 uses the GO
pin to ensure that this does not occur.

6.3.3 MAPmode

For some DSP algorithms, the data must be reordered before and/or after processing. This normally requires

45

6 The IMS B009 Driver

6.4 Driver Commands-

the host processor to perform this operation explicitly, which is very expensive computationally. To avoid this
problem, a 4k word lookup table is provided, which can be used to convert a block of sequential addresses
to any arbitrary sequence, with no processing overhead. The address mapper takes as input address pins
A1-A12, and uses these as the address into the lookup table. The output is then used as the address to be
decoded. Note this only occurs for positive addresses, ie. A15 is O. A13 and A14 are passed unmodified.

For descriptions of examples of using the address mapper for algorithms, refer to the IMS 0703 User Manual
Appendix A. Note that this facility is very useful when combined with the DIRDOLmode to avoid data pre/post
organisation.

With DIRDOLmode as described above, data input could not be simply loaded as a vector with a block
move, since every other location was ignored by the hardware. Thus, the data would need to be reorganised
by the IMS T212 to ensure consecutive data items are read correctly. This is a very expensive operation
computationally. If the address mapper is used, it can convert the addresses in such a manner that the input
data can be passed from the host to the IMS T212 via a block move to the data. buffer, and the results
stored in consecutive locations ready for block move transfer up the link to the host. For a description of this,
refer to the IMS 0703 User Manual Appendix A.

6.3.4 LOADmode

The address mapper needs to be loaded with data, yet the IMS T212 address space is already occupied with
external RAM. To avoid wasting 4k words of address space, a special load mode provided, which replaces
the normal RAM in positive address space with the address mapper RAM. Since the address mapper is only
4k words, it replicates across the entire positive address space. Note that the hardware ensures that the
external RAM cannot corrupt the address mapper RAM, and vice versa, in any of the addressing modes.

6.4 ~ Driver Commands

The following sections describe the commands of the driver, including the protocol required. Since this
protocol is that seen from the link by the IMS T212, the commands can be sent by any host via a link
adaptor, or by any transputer. The data.buffer occupies almost all of the positive address space, with
the exception of the top few locations. This is to avoid possible address calculation overflows that have been
observed in some compilers.

All arguments in all commands are INT16, except for the descriptor which is returned as [] BYTEs. When
the arguments are read, they are validated, and if correct the success.flag will be TRUE. If any data is to be
returned, the success.flag will be followed by the data to be returned. If data is being supplied to the driver,
it will only accept it if the arguments defining the destination of the data are valid. Therefore. these protocols ..
include the return of a success. flag prior to accepting the input data. •

If success.flag is FALSE, it will always be followed by a reason code. These are:

tag Reason

bad. address The address is out of range

bad. size The address + size will generate at least one address out of range

bad. command The comand tag could not be decoded

Note 'that the verification performed on commands by the driver clearly makes it less than optimal for
performance. Some suggestions are given later as to ways in which the driver can be optimised for specific
needs.

Users should also be careful that if the address mapper is used, the start addresses will be prior to mapping.
Therefore, the specific calls must take into account any address translation scheme currently active.

46

6 The IMS 8009 Driver

6.4 Driver Commands

6.4.1 Read A100 to link

from.app1ication ? read.A100.to.1ink;sm~address;s~e

to. app1ication ! success. flag;

to.app1ication

to.appJ.ication

size; [data FROM (A100 .base. address+start.address) FOR size] , or

failure. code

Reads size locations from the IMS A100s, starting at start.address relative to the base address of the A100
address space.

6.4.2 Write A100 from link

from.appJ.ication ? write.A100.from.link;sm~address;s~e

to . application ! success. flag;

from. application ! [data FROM (A100 .base. address+start.address) FOR size], or

to . application ! failure. code

Writes size locations in the IMS A1OOs, starting at start.address relative to the base address of the A100
address space.

6.4.3 Write DIR from link

from. application ? write. DIR . from . link; size
to . appJ.ication ! success. flag;

from. app1ication ! [data FROM (A100 .base. address+start.address) FOR size], or

to . appJ.ication ! failure.code

Writes size data samples into all the IMS A100s' DIR registers. For this operation, DIRmode is used.

6.4.4 Read buffer to link

from.app1ication ? read.buffer.to.1ink;sm~address;sae

to . appJ.ication ! success. flag;

to.appJ.ication

to.appJ.ication

size; [data FROM (data. buffer. base+start.address) FOR size] , or

failure. code

Reads size locations from data.buffer, starting at start.address relative to the base address of the data
buffer.

6.4.5 Write buffer from link

from.app1ication ? write.buffer.from.J.ink;sae
to. appJ.ication ! success. flag;

from. app1ication ! [data FROM (data. buffer .base+start.address) FOR size], or

to- . app1ication ! failure. code

Writes size data samples into data .buffer, starting at start.address relative to the base address of the
data buffer.

47

6 The IMS 8009 Driver

6.4 Driver Commands

6.4.6 Write DIR from buffer

from.app1ication ? write.DIR.from.buffer;smnaddress;s~e

to. app1ication ! success.flag; then if error,

to . appl.ication ! failure. code

Writes size data samples from data .buffer into all the IMS A1 OOs' DIR registers, starting at start.address
relative to the base address of the data buffer. For this operation, DIRmode is used.

6.4.7 Process buffer data out (16 bit mode)

from. app1ication ? process .buffer. data. out16; source.start.address; dest.start.address;
size
to . appl.ication success.flag; then if error,

to.appl.ication failure. code

Write data from data. buffer into DIR, and read the DOL of the last device, size times. For this operation, &
DIRDOLmode is used. .,

6.4.8 Process buffer data out (24 bit mode)

from. appl.ication ? process .buffer . data. out24; source.start.address; dest.start.address;
size
to . app1ication success. flag; then if error,

to.app1ication failure. code

Write data from data.buffer into DIR, and read both the DOL and DOH of the last device, size times.
Since two reads are required for every write operation, block move cannot be used; this operation is thus
comparatively slow compared with process .buffer. data. out16.

6.4.9 Read mapper to link

from.appl.ication ? read.mapper.to.l.ink;sm~address;s~e

to . appl.ication ! success.flag;

1:o.app1ica1:ion

to.app1ication

size; [data FROM (address . mapper .base+start.address) FOR size], or

failure.code

Reads size locations from address .mapper, starting at start.address relative to the base address of the
address.mapper. For this operation, LOADmode is used.

6.4.10 Write mapper from link

from.app1ication ? write.mapper.from.1ink;s~e

to . appl.ication ! success. flag;

from. app1ication ! [data FROM (address . mapper .base+start.address) FOR size], or

to . appl.ication ! failure. code

Writes size data samples into address .mapper, starting at start.address relative to the base address of
the address mapper. For this operation, LOADmode is used.

6.4.11 Enquiry

from.app1ication enquiry; identity

48

6 The IMS 8009 Driver

6.5 Adding new commands

where:

identity is driver. id

status.register

descriptor of the driver;
returns: SIZE id; [] BYTE id

Contents of status register;
returns: status.register

error.register Contents of A100 error register;
returns: error.register

ext. event. register Contents of external event register;
returns: ext.event.register

6.4.12 Status modifier

~ from.app~ication

where:

from.app1ication

where:

status.modifier;qualifier

enquiry; identity

qualifier is MAP . mode. enab1e '- Enable address mapper

MAP .mode. disab1e Disable address mapper

PROTECT. mode. disab1e Enable protected DOUDOH access

PROTECT. mode. disab1e Disable protected DOUDOH access

EXT. c10ck . enab1e Use clock from edge connector for A1OOs

EXT. c10ck . disab1e Use on-board 20MHz clock for A1OOs

disab1e.a11.modes Disable all above modes ~

6.5 Adding new commands

Adding new commands to the driver is very straightforward. To add the command itself, the easiest way is to
copy an existing command, and modify it. The main area to be careful of is that the driver protocol is defined
in all user applications, therefore it is wise to update the protocols in the "standard harness" as well as all the
applications.

49

6 The IMS 8009 Driver

6.6 The 8009 Emulator

~.

6.6 The 8009 Emulator

For those users who do not have an IMS B009, or who wish to debug applications written using the
b009.driver, the b009.emulator is also provided. This provides exactly the same facilities as the driver
described above, but uses the occam A100.models rather than the hardware. Thus, it provides an accurate
emulation of the complete facilities of the IMS B009 as seen by the B009.driver.

Additional facilities have been provided to mpke the emulator a useful debugging tool Most useful is the
command "set message 21 on", which displays the parameters passed to the driver for each call made
to it. If these messages do not reveal the problem, "set messages 20" can be used to display every
memory access, thus showing possible illegal access, or invalid data.

The provision of the B009.emulator enables users of the IMS 0703 to develop applications using any
transputer development system with an IMS T414 or IMS T800, and at least 1Mbyte of RAM. If the standard
procedures provided are used, this software will be able to execute on the IMS B009 (if present) unmodified.

6.7 Optimising the driver

The driver checks all operands, and tells the user if the parameters are correct before data transfer
takes place, to avoid unnecessary block moves. Unfortunately, this incurs an overhead in both the driver
and the applications, due to the generation, communication, and checking of the success. fJ.aq and
faiJ.ure. fJ.ags. Thus an immediate improvement can be made by removing the "safety" of these checks.

The I/O bandwidth between the host and the IMS T212 can be increased by the use of multiple links in
parallel. the transputer link DMA engines operate concurrently, so that two links will deliver almost twice the
throughput of a single link. This could be useful, for example, when transferring complex data, using one link
for real data, and another for imaginary data. More application-specific drivers can consider doing more of
the application taskS local to the IMS T212. For example, by storing more of the data in the available RAM of
the IMS T212, and providing instructions for shuffling data between temporary buffers in positive and negative
address space, link traffic can be minimised. This also applies to multiple address maps, which could again
be stored local to the IMS T212.

The address mapper offers a wide range of possibilities, particularly if multiple maps are stored in the mapper,
and different base addresses are used to switch between different translations. This may be useful if both
straight DIRDOLmode style data ordering and scrambling of the form used in the Prime Number Transform
is required, ego correlating a OFT result.

Finally, fine tuning of an application can be achieved with the IMS 8009-2 or similar configuration by careful
balancing of the processing of both the IMS T414/1MS T800 host, and the IMS T212. A simple example e
of this is given in the convolution example. Other examples of optimising transputer occam programs are
described in a separate transputer application note from INMOS.

50

A Example Programs for controlling IMS "B009 from the IBM PC

{Setups for the qlobals used}

const addrOffset = $150
timeOut = 1000

{Port offset for link adaptor}
{No. of tries sending data}

writeA100FromLink=1; {Write into the IMS A100s memory map}

enquiry=lO; {Protocol to enquire T2 driver's ID }
driverId=lOO;

successfulCommand = -1;

var errorFlag : boolean;

type WrkString = string[eO] ;
coeffArray= array[0 .. 63] of integer;

{ Procedure that resets the IBM's subsystem,
resetting T4,T2 and link adaptor}

procedure ResetLink;
begin

port[addrOffset+16]:=1;
port[addrOffset+17]:=0;
delay(100);
port[addrOffset+16]:=0;
del.ay(100);

end;

{analyse}

{Function giving the state of the ZBM's subsystem,
TRUE if OK, FALSE if error set}

{Check transputer error flag}
function transputerOK:boolean;
begi.n

if (port [addrOffset+16] and 1)=0 then transputerOK:=fa1se e1se
transputerOK:=true;

end;

{Send a byte to transputer, waiting 10ms between trys,
trying timeOut times}

procedure Send(data:byte);
var counter :inteqer;
begin

counter: =0;
whi1e «(port[addrOffset+3] and 1)=0) and (counter<timeOut»

and not (errorFl.ag)
b~gin

counter:=succ(counter);
if not(transputerOK) then
beqin

writeln('%%FRNT-F-ErrFlgSet: Transputer error flag set');
errorFlag: =true;

end;
Del.ay(10);

end;
if counter<timeOut then port[addrOffset+1]:=data

51

A Example Programs for controlling IMS B009 from the IBM PC

e1se write1n('%%FRNT-E-TimeOut: Time out when sending byte');
end;

{Get byte from the transputer, checking error f1ag}

function Receive: byte;
var gotByte : byte
begin

if not errorF1ag then
begin

repeat
if not (transputerOK) then
begin

write1n('%%FRNT-F-ErrF1gSet: Transputer error f1ag set');
errorF1ag:=true;

end;
unti1 «port[addrOffset+2] and 1)=1) or errorF1ag;
gotByte:=port[addrOffset];

end;
Receive:=qotByte;

end;

procedure BootNetwork(fi1ename:WrkString);

fi1e of byt.e;
: byte;

var bootFi1e
data

begin
ResetLink; { Reset the transputers
assign(bootFi1e,fi1ename);
reset(bootFi1e);
whi1e not(EOF(bootFi1e» do
begin

read(bootFi1e,data);
Send (data) ;

end;
c1ose(bootFi1e);

end;

{ Send INT16 to 1ink }

procedure Send16(data:int.eger);

in question ready for booting }

begin
Send(dat.a and $FF);
Send(data shr 8);

end;

{Least significant byt.e}
{Most significant byte}

{ Receive INT16 from 1ink }

function Receive16 integer;

var data:byte;

begin
data:=Receive;
Receive16:=(Receive*256)+data;

end;

{ get. , disp1ay the driver's ID }

52

A Example Programs for controlling IMS -8009 from the IBM PC

procedure disp1ayID;
var i,status:integer;..
begin

Send16 (enquiry) ;
Send16(driverld);
status:=Receive16;
if status<>successfu1Command then
write~n ('Enquiry fai~ed! Error code produced was ',Receive16)

e~se I

begin
for i:=O to Receive16 do

write(chr(Receive»;
write~n;

end;
end;

procedure 1oadCoeff(data: coeffArray);
var i,status:integer;

begin
Send16(writeAl00FromLink);
Send16(O); {Start address}
Send16(64); {Length}
status:=Receive16;
if status<>successfu~Commandthen
write~n ('Loading fai~ed - error code was ',Receive16)

e~se

begin
for i:=O to 63 do

Send16(data[i]);
end;

end;

var data
i

coeffArray;
integer;

begin
BootNetwork('~sd703.t2');

Sehd(2SS); { The driver used requires a byte sent to find
which 1ink the IMS~T212 uses for communications}

disp1ayJ:D;
for i:=O to 63 do

data [i] : =i;
l.oadCoeff (data) ;

end.

53

B Modifications to Turbo Graphix Toolbox

The following files in the Turbo Graphix Toolbox library require modification to function as used in the IMS D703
front end:

typedef.sys
kernel.sys
newaxis.hgh

The modifications are as follows:

typedef.sys The constant MaxP1otG1b should be changed to 2200. The front end will
not produce graphs successfully without this modification

kernel.sys the screen dump procedure should be replaced by the one listed below, to give
correct aspect ratios and reasonable speed. Note this is not fundamental to
the operation of the front end

newaxis.hgh the statement (at line 167 in our version):

if (abs (YkO - Ykl) >= 35) and
(abs (Xk2 - Xkl) >= 150) then

should be changed to

if true then

to allow axis numbering on the graphs produced by the package.

The headers in runsim.pas should then be modified to point to the new
versions of these files.

54

_I

B Modifications to Turbo Graphix Toolbox

procedure HardCopy(Inverse boo1ean; Mode byte); { For Epson MX }

var
I, J, Top : integer;
Co1orLoc, PrintByte : byte;

procedure DoLine(Top:integer);

function ConstructByte(J, I : integer) : byte;
const

Bits: array[O .. 7] of byte = (128,64,32,16,8,4,2,1);
var

CByte, K : byte;
begin

I := I sh1 2;
CByte := 0;
for K := 0 to Top do

if PD(J, I + (It div 2» then
CByte := CByte or Bits[K];

ConstructByte : = CByte;
end; { ConstructByte }

begin { DoLine }
Write(Lst,Chr(27),'L',Chr(Lo(2*(XScreenMaxG1b+1»),

Chr(Bi(2*(XScreenMaxG1b+1»»;
for J := 0 to XScreenMaxG1b do
begin

PrintByte := ConstructByte(J, I);
if Inverse then

PrintByte := not PrintByte;
Write (Lst, Chr(PrintByte»;
Write (Lst, Chr(PrintByte»;

end;
Write1n(Lst);

end; { DoLine }

begin { BardCopy }
Top := 7;
Co1orLoc := Co1orG1b;
CoJ.orG1b := 255;
WriteJ.n(Lst);
Write(Lst,chr(27),chr(65),chr(8»;
for I := 0 to «YMaxG1b + 1) shr 2) - 1 do

DoLine(7);
I : = «YMaxG1b + 1) shr 2);
if (YMaxG1b + 1) and 7 <> 0 then

DoLine «YMaxGJ.b + 1) and 7);
WriteLn(Lst,chr(27),chr(SO»;
Co1orG1b := CoJ.orLoc;

end; { BardCopy }

55

•
INMOS Limited
.1000 Aztec West
Almondsbury
Bristol BS12 4SQ
UK
Telephone (0454) 616616
Telex 444723

INMOS Corporation
PO Box16000
Colorado Springs
CO 80935
USA
Telephone (303) 630 4000
TWX 910 920 4904

INMOSGmbH
Danziger Strasse 2
8057 Eching
Munich
West Germany
Telephone (089) 3191028
Telex 522645

INMOS SARL
Immeuble Monaco
7 rue Le Corbusier
SILIC 219
94518 Rungis Cedex
France
Telephone (1) 46.87.22.01
Telex 201222

INMOS International
Room 308 Kowa NO.16 Annex
9-20 Akasaka 1-chome
Minato-ku
Tokyo 107
Japan
Telephone 03-505-2840
TelexJ29507TEI JPN

INMOS reserves the right to make changes in speci'lcations at any time and without notice. The in'ormation 'urnished by INMOS in this publication is believed to be accurate; however, no
responsibility is assumed 'or its use, nor 'or any in'ringements o' patents or other rights of third parties resulting from its use No licence is granted under any patents, trade marks. or other
rights of INMOS.

_, ,Inmoe, 'MS, and occam are trade mari(s 01 the INMOS Group 01 Companies

March 1987

72 TDS 105 00

	Contents
	1 IMS D703 System Overview
	1.1 Introduction
	1.2 Scope
	1.3 Conventions
	1.4 Relevant Documents
	1.5 System Description
	1.6 Overview of execution flow
	1.6.1 Startup
	1.6.2 Command Decode
	1.6.3 Reads and Writes
	1.6.4 Application Execution

	2 User Applications
	2.1 Introduction
	2.2 The "Standard Harness"
	2.3 How to Recompile the IMS D703 Binaries
	2.4 Standard Services
	2.4.1 execute keyboard command
	2.4.2 bootstrap IMS T212
	2.4.3 stop application
	2.4.4 perform initialisation with controller
	2.4.5 get current status
	2.4.6 display string
	2.4.7 display integer
	2.4.8 display real
	2.4.9 enquire string
	2.4.10 enquire integer
	2.4.11 enquire real
	2.4.12 enquire key
	2.4.13 plot textual
	2.4.14 plot graphics

	2.5 Filer Services
	2.5.1 open file for read
	2.5.2 open file for write
	2.5.3 write byte to file
	2.5.4 block write bytes to file
	2.5.5 read byte from file
	2.5.6 block read bytes from file
	2.5.7 close file

	2.6 Specific services for IMS A100 models
	2.6.1 read model
	2.6.2 write model
	2.6.3 set cascade size

	2.7 Specific services for IMS B009 emulator/hardware
	2.7.1 Protocols and constants
	2.7.2 Channel usage with IMS B009 hardware
	2.7.3 Read A100s via link
	2.7.4 Write A100s via link
	2.7.5 Write DIRs via link
	2.7.6 Read data.buffer via link
	2.7.7 Write data.buffer via link
	2.7.8 Write DIRs from data.buffer
	2.7.9 Process data with A100s using 16-bit output
	2.7.10 Process data with A100s using 24-bit output
	2.7.11 Read address.mapper via link
	2.7.12 Write address.mapper via link
	2.7.13 Enquire system status
	2.7.14 Get driver descriptor
	2.7.15 Modify current status

	3 The System Controller
	3.1 Introduction
	3.2 ASCII and Binary Commands
	3.3 Command Sources, Parsing, and Decoding
	3.3.1 ASCII commands
	3.3.2 Binary commands

	3.4 Binary Command Descriptions
	3.4.1 B - Bootstrap the IMS T212
	3.4.2 D - display string and typed argument
	3.4.3 E - enquiry displaying string, return typed argument
	3.4.4 F - perform file I/O
	3.4.5 G - get current status
	3.4.6 P - plot data in command window
	3.4.7 R - send read request to address.decoder
	3.4.8 S - stop execution of application commands
	3.4.9 T - Turboplot data in plot windows (ie. high resolution Turbo Graphics)
	3.4.10 W - send write request to address decoder

	3.5 Displaying messages on the screen - message multiplexer
	3.6 Communications with MS-DOS Front End - the transceiver
	3.6.1 Protocols

	3.7 Communications with IMS A100 models and IMS B009 hardware
	3.8 Communications with Applications
	3.9 Other communications
	3.10 Parameters and Constants
	3.11 Useful Procedures
	3.11.1 Character and String I/O
	3.11.2 Graphics I/O
	3.11.3 File I/O
	3.11.4 Bootstrapping the IMS T212 at runtime

	3.12 Adding new commands

	4 The Address Decoder
	4.1 Introduction
	4.2 Principles of Operation
	4.3 Address mode 0: IMS A100 Model
	4.4 Address mode 1: IMS B009 Emulator
	4.5 Address mode 2: IMS B009 Hardware
	4.6 Communications with other processes
	4.7 Parameters and Constants
	4.8 Special Link Services
	4.9 Adding new address decoding modes

	5 The IMS A100 Model
	5.1 Introduction
	5.2 Principles of operation
	5.3 Asynchronous process
	5.3.1 Initialisation
	5.3.2 Main execution loop

	5.4 Synchronous functions
	5.5 Parameters and Constants

	6 The IMS B009 Driver
	6.1 Introduction
	6.2 Principles of Operation
	6.3 Operational modes of the IMS B009
	6.3.1 DIRDOLmode
	6.3.2 DIRmode
	6.3.3 MAPmode
	6.3.4 LOADmode

	6.4 Driver Commands
	6.4.1 Read A100 to link
	6.4.2 Write A100 from link
	6.4.3 Write DIR from link
	6.4.4 Read buffer to link
	6.4.5 Write buffer from link
	6.4.6 Write DIR from buffer
	6.4.7 Process buffer data out (16 bit mode)
	6.4.8 Process buffer data out (24 bit mode)
	6.4.9 Read mapper to link
	6.4.10 Write mapper from link
	6.4.11 Enquiry
	6.4.12 Status modifier

	6.5 Adding new commands
	6.6 The B009 Emulator
	6.7 Optimising the driver

	A Example Programs for controlling IMS B009 from the IBM PC
	B Modifications to Turbo Graphix Toolbox

