
•

fmlmos

-- ~~.

~ B·,
a· ~.

.t1 ~

11 !!i
III m
'I If

'8 m
• ill"'llll. ~~

occam2
toolset
user manual

INMOS Limited

72 TDS 184 00

Copyright © INMOS Limited 1989

e ,Ilrimos, IMS and occam are trademarks of the INMOS Group of Companies.

INMOS is a member of the SGS-THOMSON Microelectronics Group of Compa­
nies.

UNIX is a trademark of AT&T.

INMOS document number: 72 TDS 184 00

Contents overview

1

2

How to use the
manual

Introduction

Describes the structure of the manual and
how to use it.

Introduces the toolset and transputer pro­
gramming.

User Guide

3 Overview of the
toolset

4 Programming single
transputers

5 Programming
transputer networks

6 Loading transputer
programs

7 Debugging occam
programs

8 Access to host
services

9 Mixed language
programming

10 Low level
programming

72 TDS 18400

An overview of the toolset containing brief de­
scriptions of each tool, an introduction to the
libraries, and explanations of the toolset con­
ventions.

An introduction to programming single trans­
puters, with worked examples.

An introduction to programming and configur­
ing transputer networks, with examples.

Describes how to load programs onto trans­
puters and transputer networks, with descrip­
tions of the tools that are used.

Describes how to use the debugger and the
simulator tools to debug occam programs,
with examples.

Describes how to access host services using
the host file server and i/o libraries.

Describes how to use C, FORTRAN, and Pas­
cal in occam programs.

Describes the low level facilities of occam 2.

April 1989

ii

Reference Manual

11 iboot - bootstrap
tool

12 icheck - occam
2 checker

13 iconf - configurer

14 idebug -
debugger

15 idump - memory
dumper

16 ilibr -librarian

17 ilink -linker

18 ilist - binary
lister

19 imakef - Makefile
generator

20 iserver - host
file server

21 isim - T414
simulator

22 iskip - skip
loader

23 occam - occam 2
compiler

24 occam libraries

72 TDS 18400

Contents overview

Describes the bootstrap tool that produces
bootable code for single transputer programs.

Describes the occam 2 syntax checker.

Describes the configurer tool that produces
bootable code for multitransputer programs.

Describes the toolset debugger, with full de­
scriptions of its symbolic and assembly level
facilities.

Describes the memory dumper tool that saves
the root transputer's memory.

Describes the librarian tool that creates li­
braries of compiled code.

Describes the linker tool that links compiled
code into a single file.

Describes the binary lister tool for displaying
data from object files.

Describes the Makefile generator that creates
Makefiles for occam compilations.

Describes the host file server that loads pro­
grams onto transputers and provides run-time
communications with the host.

Describes the T414 simulator tool that can be
used to test and debug occam programs.

Describes the skip loader tool that allows pro­
grams to be loaded onto transputer networks
over the root transputer.

Describes the occam 2 compiler.

Describes library procedures and functions
supplied with the toolset.

April 1989

Contents overview

Appendices

A Names defined by Lists all names and identifiers used within the
the software toolset.

B Transputer Lists full and restricted sets of transputer in-
instructions structions supported by the occam 2 toolset.

C Constants Lists files of constants supplied with the
toolset.

D ITERM Describes the format of ITERM terminal sup-
port files.

E Executable file Describes the format of executable code files.
formats

F Host file server Describes the protocol of the host file server
protocol and lists the server functions.

G Glossary A glossary of terms.

H Bibliography Literature and documentation for further read-
ing.

The Index

iii

72 TDS 18400 April 1989

iv

72 TDS 18400

Contents overview

April 1989

1

2

3

Contents
Preface

How to use the manual
1.1 About the manual

1.1.1 Readership
1.2 User guide

1.2.1 Getting started
1.3 Reference manual
1.4 . Conventions used In the manual

Introduction
2.1 Overview
2.2 Transputers
2.3 Transputers and occam

2.3.1 The occam programming model
2.3.2 Multitransputer programming
2.3.3 Reliability
2.3.4 Real time programming

2.4 Program development using the toolset
2.4.1 System design
2.4.2 Programming and code generation
2.4.3 Debugging

User guide

Overview of the toolset
3.1 Introduction
3.2 Program development
3.3 The toolset

3.3.1 iboot - the bootstrap tool
3.3.2 icheck - the occam 2 syntax checker
3.3.3 iconf - the configurer
3.3.4 idebug - the debugger
3.3.5 idump - the memory dumper
3.3.6 ilibr - the librarian
3.3.7 ilink - the linker
3.3.8 ilist - the binary lister
3.3.9 imakef - the Makefile generator
3.3.10 iserver - the host file server

xix

2
2
3
3

5
5
5
7
7
8
8
9
9

10
10
10

11

13
13
13
15
15
15
15
15
16
16
16
16
16
16

72 TDS 18400 April 1989

vi Contents

3.3.11 isim - the T414 simulator 17
3.3.12 iskip - the skip loader tool 17
3.3.13 occam - the occam 2 compiler 17

3.4 The occam libraries 17
3.4.1 Constants 18
3.4.2 Compiler libraries 18
3.4.3 Maths libraries 19
3.4.4 1/0 libraries 19

Hostio library 19
Streamio library 19

3.4.5 Other libraries 20
String handling library 20
Type conversion library 20
Extraordinary link handling library 20
Block CRC library 20
Process library 20

3.5 Implementation differences 21
3.5.1 Host dependencies 21

Command line syntax 21
Libraries 21
Directories and files 21

3.6 Host environment variables 22
3.7 Toolset conventions 22

3.7.1 Command line conventions 23
Syntax 23
Common options 23

3.7.2 Fllename conventions 23
Filenames 24
File extensions 24

3.7.3 Locating files 24
3.7.4 Search paths 27
3.7.5 Error handling and message format 27

Message formats 27

4 Programming single transputers 29
4.1 Program examples 29
4.2 occam programs 29

4.2.1 Checking programs 30
4.2.2 Compiling programs 30

Compilation Information 31
4.2.3 Linking programs 31
4.2.4 Viewing code 31

72 TDS 18400 April 1989

Contents vii

4.2.5 Making bootable programs 32
4.2.6 Loading and running programs 32
4.2.7 Interrupting programs 32

4.3 Compiling a simple example program 33
4.3.1 Checking the example program 35
4.3.2 Compiling the example program 35
4.3.3 Linking the example program 36
4.3.4 Running the example program 36

4.4 Compiler parameters 37
4.4.1 Compilation for different transputers 37

Transputer classes 38
4.4.2 Mixing code for different transputers 39
4.4.3 Error modes of compilation 40
4.4.4 Mixing code with different error modes 40
4.4.5 Alias and usage checking 41
4.4.6 Using separate vector space 42

4.5 Sharing source between files 44
4.6 Separate compilation 44

4.6.1 Sharing protocols and constants 45
4.6.2 Compiling and linking large programs 46

4.7 Change control 46
4.8 Libraries 47

4.8.1 Selective loading 47
4.8.2 Building libraries 48

4.9 The pipeline sorter program 49
4.9.1 Overview of the program 49
4.9.2 The protocol 51
4.9.3 The sorting element 52
4.9.4 The Input/output process 53
4.9.5 The calling program 54
4.9.6 Building the program 55
4.9.7 Automated program bUilding 57

5 Programming transputer networks 59
5.1 Introduction 59
5.2 Configuration 59
5.3 Preparing for configuration 60
5.4 Configuring a program 61
5.5 Loading a network 61
5.6 Example: A pipeline sorter on four transputers 62

5.6.1 The configuration description 63
Planning the configuration description 64

72 TDS 18400 April 1989

viii

5.6.2 Building the program
5.6.3 Running the program
5.6.4 Automated program building

5.7 Summary of configuration steps

Contents

66
69
69
69

6 Loading transputer programs 71
6.1 Introduction 71
6.2 Tools for loading programs 71

6.2.1 The loading mechanism 72
6.3 Boards and sub-networks 72

6.3.1 Boot from ROM boards 72
6.3.2 SUbsystem wiring 73
6.3.3 Controlling sub-networks 73

6.4 Debugging programs on transputer boards 74
6.4.1 Program mode 74
6.4.2 Board types 74
6.4.3 Programs which use the root transputer 75
6.4.4 Programs which do not use the root transputer 75
6.4.5 Analyse and Reset 75

6.5 Example of using iskip 75

7 Debugging occam programs 77
7.1 Introduction 77

7.1.1 Compiling programs for debugging 77
7.1.2 Programs that can be debugged 78

7.2 Debugger facilities 78
7.2.1 Symbolic debugging 79
7.2.2 Debugging non-OCCam programs 80
7.2.3 Assembly level debugging 81

7.3 A debugging example 81
7.3.1 The example program 82
7.3.2 Building a loadable program 85
7.3.3 Host environment variables 86
7.3.4 Running the example program 86
7.3.5 Creating a memory dump file 86
7.3.6 Running the debugger 86

7.4 Hints for debugging occam programs 91
Examining and disassembling memory 91
Debugging IF and CASE statements 91
Analysing deadlock 91

7.5 Debugging using embedded messages 93
7.5.1 Reading the message buffers 94

72 TDS 184 00 April 1989

Contents ix

7.6 Notes on using the debugger 94
Invalid pointers 94
Locating within the ALT construct 94
occam scope rules 94

7.7 Debugging with the T414 simulator 95
7.7.1 Using the simulator 96
7.7.2 Standard debugging 96

Symbolic facilities 96
Low level facilities 97

7.7.3 Program execution monitoring 97
Break points 97
Single step execution 97
Changing registers 98

7.8 Simulator example 98
7.8.1 Running the simulation 98

Setting break points 99
7.8.2 Starting the program 99
7.8.3 Single step execution 100
7.8.4 Setting break poi"nts in source 100

8 Access to host services 101
8.1 Introduction 101
8.2 Communicating with the host 101

8.2.1 The host file server 101
8.2.2 Library support 102
8.2.3 File streams 102

Protocols 103
8.3 Host implementation differences 103
8.4 Accessing the host from a program 104

8.4.1 Using the simulator 104
8.5 Multiplexing processes to the host 104

8.5.1 Buffering processes to the host 105
8.5.2 Pipelining 106

9 Mixed language programming 107
9.1 Introduction 107
9.2 The equivalent occam process 108

9.2.1 occam interface code 108
9.2.2 Reserved channels 111
9.2.3 Error modes 111
9.2.4 Stack and heap requirements 111

Stack overflow 112

72 TDS 18400 April 1989

x Contents

9.3 Type 1 interface 112
9.3.1 Type 1 procedural Interface 113
9.3.2 Building a type 1 process 114

9.4 Type 2 Interface definition 115
9.4.1 Type 2 procedural interface 115
9.4.2 Building a type 2 process 116
9.4.3 Example type 2 wrappings 118

9.5 Type 3 interface definition 119
9.5.1 Type 3 procedural interfaces 120
9.5.2 Building a type 3 process 121
9.5.3 Example type 3 wrapping 124

9.6 Channel communication 125
9.6.1 Communication libraries 126
9.6.2 C channel communication 127
9.6.3 FORTRAN channel communication 127
9.6.4 Pascal channel communication 128
9.6.5 Implementing other occam protocols 128
9.6.6 Guidelines and rules 129

Simple protocols 129
Sequential protocols 129
Variant protocols 130

9.7 Calling occam from other languages 131
9.7.1 Examples 133

10 Low level programming 135
10.1 Allocation 135
10.2 Code insertion 138

10.2.1 Using the code insertion mechanism 139
10.2.2 Labels and jumps 140

10.3 Dynamic code loading 141
10.3.1 Calling code 142
10.3.2 Loading parameters 143
10.3.3 Examples 144

10.4 Extraordinary use of links 148
10.4.1 Clarification of requirements 148
10.4.2 Programming concerns 149
10.4.3 Input and output procedures 149
10.4.4 Recovery from failure 150
10.4.5 Example: a development system 150

10.5 Setting the error flag 152

Reference manual 153

72 TDS 184 00 April 1989

Contents xi

11 iboot - bootstrap tool 155
11.1 Introduction 155

11.1.1 Programs that can be made bootable 155
11.1.2 Transputer targets 156

11.2 Running the bootstrap tool 156
11.2.1 Bootstrap code 156
11.2.2 Producing code for dynamic loading 156
11.2.3 External loaders 157

11.3 Bootstrap loaders 158
11.3.1 Secondary loader interface 158
11.3.2 Program Interface 159
11.3.3 Memory allocation 159

11.4 External bootstrap loaders 160
11.4.1 Creating external loaders 161

11.5 Error messages 161

12 icheck - occam 2 checker 165
12.1 Introduction 165
12.2 Running the checker 165

12.2.1 Checker messages 167
12.3 Alias and usage checking 168

12.3.1 Usage checking 168
12.3.2 Alias checking 168

Scalar variables 168
Arrays 169

12.4 Error messages 170

13 iconf - configurer 173
13.1 Introduction 173
13.2 Running the configurer 174

13.2.1 Source compilation mode - options H S U 174
13.2.2 Generating a configuration map - option M 174

13.3 Configuration description 176
13.3.1 Separately compiled code 176
13.3.2 Source code 176
13.3.3 Configuration language 176

Allocating code to processors 177
Placing channels on links 177

13.4 Summary of configuration description 178
13.5 Error messages 179

72 TDS 18400 April 1989

xii Contents

14 idebug - debugger 183
14.1 Introduction 183

14.1.1 Debugged code 183
14.2 The root transputer 183

14.2.1 T-mode programs 184
14.2.2 Debugging R-mode programs 185
14.2.3 Debugging from a network dump file 185
14.2.4 Debugging a dummy network 186

14.3 Running the debugger 186
14.3.1 Debugging programs on B004-type boards and

TRAMs 186
14.4 Debugger symbolic facilities 188

14.4.1 Scrolling the display 189
14.4.2 Compiling modules for symbolic debugging 189
14.4.3 Non-OCCam programs 189
14.4.4 Symbolic functions 190

14.5 Monitor page 195
14.5.1 Monitor page commands 196
14.5.2 occam run time errors 210

14.6 Implementation notes 211
14.6.1 Debugging information generated by the com-

piler 211
14.6.2 Accessing the network 212
14.6.3 Backtracing 213
14.6.4 Accessing variables and channels 213

14.7 Error messages 214

15 idump - memory dumper 221
15.1 Introduction 221
15.2 Running the memory dumper 221
15.3 Error messages 222

16 ilibr - librarian 223
16.1 Introduction 223
16.2 Running the librarian 223

16.2.1 Library indirect files 224
16.2.2 Exploding libraries into constituent files 224
16.2.3 Removing debug data 225

16.3 Library modules 226
16.3.1 Selective loading 226

16.4 Library usage files 226

72 TDS 184 00 April 1989

Contents xiii

16.5 Building libraries 227
16.5.1 Rules for constructing libraries 227
16.5.2 Hints for building libraries 227

16.6 Error messages 228

17 ilink - linker 231
17.1 Introduction 231
17.2 Running the linker 231

17.2.1 Ordering of input files 233
17.2.2 Renaming entry points 233
17.2.3 Using imakef to simplify linking 234
17.2.4 Input files referenced by #se 234
17.2.5 Linker output 234
17.2.6 Linker indirect files 235

17.3 Features of the linker 235
17.3.1 Selective linking of libraries 235
17.3.2 Prelinking of program components 235
17.3.3 Command line prelinking 236

17.4 Linker options 236
17.4.1 Extending linker capacity - option E 236
17.4.2 Permit unresolved references - option 0 237
17.4.3 Disabling the link map - option M 237
17.4.4 Symbol table - option S 237
17.4.5 Changing buffer sizes - option B 237

Buffer sizes 239
Calculating memory requirements 239

17.4.6 Optimlse symbols - option Q 240
17.5 Error messages 241

18 ilist - binary lister 247
18.1 Introduction 247
18.2 Data displays 247
18.3 Running the binary lister 248
18.4 Procedural interface data - option P 248
18.5 Entry point data - option E 250
18.6 External reference data - option X 251
18.7 Module data - option M 252
18.8 Tag data 253
18.9 Debugging data - option D 253
18.10 Code dump data - option C 254
18.11 Global data - option V 255
18.12 Error messages 255

72 TDS 184 00 April 1989

xiv Contents

19 imakef - Makefile generator 259
19.1 Introduction 259
19.2 What Is Make? 260

19.2.1 Makefiles 260
19.3 Running the Makefile generator 260

19.3.1 Code targets for imakef 261
19.4 Format of Makefiles 262

19.4.1 Macro definitions 262
19.4.2 Rules 263

Action Strings 263
19.4.3 Editing the Makefile 264

Adding options 264
Adding rules for C, FORTRAN and Pascal 264

19.5 Library usage files 265
19.6 Error Messages 265

20 iserver - host file server 269
20.1 Introduction 269
20.2 Running the server 269

20.2.1 Supplying parameters to the program 269
20.2.2 Loading programs 269
20.2.3 Terminating the server 271
20.2.4 Specifying a link address - option SL 271
20.2.5 Terminating on error - option SE 271

20.3 Server functions 271
File system commands 272
Host environment commands 272
Server control commands 273

20.4 Error messages 273

21 isim - T414 simulator 277
21.1 Introduction 277
21.2 Running the simulator 277

21.2.1 The ITERM file 278
21.2.2 Loading and running a program 278

21.3 Simulator interfaces 278
21.3.1 Numerical parameters 278

21.4 The Monitor page 279
21.4.1 Monitor page commands 280

21.5 Symbolic facilities 284
21.5.1 Symbolic debugging commands 284

72 TDS 184 00 April 1989

Contents

Locating and backtracing
21.5.2 Execution monitoring commands

21.6 Error messages

xv

285
286
287

22 iskip - skip loader 289
22.1 Introduction 289

22.1.1 Uses of the skip tool 289
22.2 Running the skip tool 290

22.2.1 Monitoring the error flag 290
22.2.2 Loading a program 291

22.3 Error messages 291

23 occam - occam 2 compiler 293
23.1 Introduction 293
23.2 Running the compiler 294

23.2.1 Filenames 294
23.3 Transputer targets 295

23.3.1 Transputer classes 295
23.4 Compilation error modes 298

23.4.1 UNIVERSAL mode 298
23.5 Separately compiled units and libraries 299
23.6 Compiler directives 299

23.6.1 Syntax 300
23.6.2 #INCLUDE directive 300
23.6.3 fUSE directive 301
23.6.4 #IMPORT directive 301
23.6.5 #COMMENT directive 302
23.6.6 #OPTION directive 303
23.6.7 #SC directive 304

23.7 Implementation of usage checking 305
23.7.1 Usage rules of occam 2 305
23.7.2 Checking of non-array elements 305
23.7.3 Checking of arrays of variables and channels 305
23.7.4 Arrays as procedure parameters 306
23.7.5 Abbreviating variables and channels 307

Problems with replicators 308
23.8 Memory allocation by the compiler 309

23.8.1 Procedure code 309
23.8.2 Code referenced by #SC 309
23.8.3 Workspace 309

23.9 The transputer implementation of occam 310
23.9.1 Data representation 310

72 TDS 18400 April 1989

xvi

23.9.2 Hardware dependencies
23.9.3 Language and configuration

23.10 Error messages

Contents

311
311
312

24 occam libraries
24.1 Introduction

24.1.1 Using the occam libraries
Linking libraries

24.1.2 Listing library contents
24.1.3 Toolset constants

24.2 Compiler libraries
24.2.1 User functions

Maths functions
20 block moves
Bit manipulation functions

24.3 Maths libraries
24.3.1 Function definitions

24.4 Host file server library
24.4.1 Errors and the C run time library
24.4.2 Inputting real numbers
24.4.3 Procedure descriptions
24.4.4 File access routines

Procedure definitions
24.4.5 General host access

Procedure definitions
24.4.6 Keyboard input

Procedure definitions
24.4.7 Screen output

Procedure definitions
24.4.8 File output

Procedure definitions
24.4.9 Miscellaneous commands

Time processing
Buffers and multiplexors
Protocol converter

24.5 Streamio library
24.5.1 Naming conventions
24.5.2 Stream processes

Procedure definitions
24.5.3 Stream input

Procedure definitions
24.5.4 Stream output

317
317
317
318
318
318
319
319
320
322
323
325
327
330
330
330
331
331
333
340
341
346
347
350
350
352
354
356
357
359
360
362
362
363
364
367
368
369

72 TDS 18400 April 1989

Contents

Procedure definitions
24.6 String handling library

24.6.1 Character Identification
24.6.2 String comparison
24.6.3 String searching
24.6.4 String editing
24.6.5 Line parsing

24.7 Type conversion library
24.7.1 Procedure definitions

24.8 Block CRC library
24.8.1 Function definitions

24.9 Extraordinary link handling library
24.9.1 Procedure definitions

24.10 Process library
24.10.1 Procedure definitions

Appendices

xvii

370
375
377
378
379
379
383
384
386
390
390
391
391
393
393

395

A

B

C

D

Names defined by the software

Transputer instruction support
B.1 Direct functions
B.2 Short Indirect functions
B.3 Long Indirect functions
B.4 Additional Instructions for IMS T425, T800 and TC
B.5 Additional instructions for IMS T800

Constants
C.1 Hostio constants
C.2 Streamio constants
C.3 Maths constants
C.4 Transputer link addresses

ITERM
D.1 Introduction
D.2 The structure of an ITERM file
D.3 The host definitions

D.3.1 ITERM version
D.3.2 Screen size

D.4 The screen definitions
D.4.1 Goto X V processing

D.5 The keyboard definitions

397

411
411
412
412
413
414

417
417
420
421
422

423
423
423
424
424
424
424
425
425

72 TDS 184 00 April 1989

xviii

0.6 Setting up the ITERM environment variable
0.7 An example ITERM

Contents

426
427

E

F

G

H

Executable file format
E.1 Bootable flies
E.2 Non-bootable files

Host file server protocol
F.1 The host file server iserver
F.2 The server protocol

F.2.1 Packet size
F.2.2 Protocol operation

F.3 The server libraries
F.4 Porting the server
F.5 Defined protocol

F.5.1 Reserved values
F.5.2 File commands
F.5.3 Host commands
F.5.4 Server commands

Glossary

Bibliography
H.1 INMOS publications
H.2 INMOS technical notes

Index

429
429
431

433
433
433
433
434
434
435
435
436
436
442
444

449

455
455
455

459

72 TDS 184 00 April 1989

Preface
This manual is a combined user and reference guide to the occam 2 toolset.

The occam 2 toolset is a set of software tools for developing transputer pro­
grams on host systems. Used with the occam libraries, it provides a complete
environment for developing programs on transputers and transputer networks.

The toolset allows occam programs to be written using any convenient text
editor. Programs are then compiled and linked using programs resident on the
host or running on the transputer board. Self-booting code for single transputers
and multitransputer networks is produced using separate tools, and loaded from
the host system down the transputer link.

Tools that assist program development include a syntax checker, a librarian tool
for building code libraries, a network debugger for analysing halted programs,
and a transputer simulator that allows programs to be tested without transputer
hardware. A Makefile generator is provided to assist with program version con­
trol, and a binary Iister tool allows object files to be decoded and displayed in a
readable form.

Transputer programs are normally written in occam to make full use of trans­
puter parallel processing. Programs can also be written in e, FORTRAN, and
Pascal and included in occam programs as separately compiled procedures.

The occam 2 toolset is intended for developing programs on transputers and
transputer boards that are loaded from the host via a transputer link. Boards that
boot from on-board ROM require special software. For details of the products
available to support EPROM programming, contact INMOS.

72 TDS 18400 April 1989

xx

72 TDS 184 00

Preface

April 1989

1 How to use the manual
1.1 About the manual

This manual is in two parts: a User Guide showing how the tools are used to
develop programs on single transputers and transputer networks; and a Refer­
ence Manual containing details about the individual tools. Reference material for
programmers such as predefined names and constants, transputer instructions,
and technical information about the software can be found in the appendices at
the back of the book. A glossary of terms and a short bibliography of referenced
material is included.

This manual does not contain details of how to install the software, which is to
be found in the Delivery Manual that accompanies the shipment.

Examples are used throughout the book to illustrate how the tools are used
during program development. All examples are coded in occam 2.

The manual is intended to cover all host versions of the toolset; where there are
differences between the various host implementations, they are highlighted and
explained.

1.1.1 Readership

This manual is intended for programmers and system designers who wish to
develop transputer programs on host systems. Readers of the manual should
already be familiar with programming in a high level language, the software de­
velopment process, and the general ideas of occam and parallel processing.
Familiarity with the syntax of occam will also be an advantage, because oc­
cam programs and code fragments are used throughout the book to illustrate
concepts and procedures. For information about the occam language, refer
to the loccam 2 Reference Manual', which accompanies this release. For an
introduction to occam programming, read 'A tutorial introduction to occam
programming'.

The reader should also be familiar with the hardware and operation of the trans­
puter evaluation board on which the programs will be developed. Information
about INMOS transputer evaluation boards is available in the form of product
datasheets.

72 TDS 184 00 April 1989

2

- 1.2 User guide

1 How to use the manual

The User Guide contains information to show programmers how to use the tools
to develop traosp_uter programs. It describes how to design and build programs
for transputers and transputer networks.

The Guide begins with an introduction to transputers and occam programming
and an overview of the toolset. It goes on to describe how to build programs for
single and multiple transputers, shows how to debug them using the debugger
and simulator tools, and- outlines how to access host services such as the file
system. Further chapters in the User Guide describe how to use C, FORTRAN,
and Pascal in transputer programs and explain some low level programming
features of occam such as the placement of variables and the insertion of
instruction code.

Example programs supplied with the toolset are used extensively throughout the
User Guide to illustrate program design and development.

1.2.1 Getting started

For those who do not wish to read the entire Guide or wish to get started quickly,
some recommendations follow.

If you have not used the toolset before then you should first read chapter 3,
which contains an overview of the toolset.

Before attempting to write any programs of your own you should read chapter
4 and chapter 8, which show how to compile simple programs that use host
terminal i/o. If you are new to occam you should begin by writing a program
which runs on a single processor before attempting to write multiprocessor code.

Chapter 7 explains how to debug programs running on transputer boards, and
describes how to use the T414 simulator to test programs before loading them
onto hardware. Reading this chapter thoroughly and working studiously through
the examples will help to familiarise you with the operation of the debugger and
simulator tools.

Chapter 9 gives details of how to develop mixed language programs. It shows
how programs written in C, FORTRAN, and Pascal can be inserted into trans­
puter programs using an occam wrapping and special interface code. Read
and digest the information in this chapter carefully before attempting to write
mixed language programs.

72 TDS 18400 April 1989

1.3 Reference manual

1.3 Reference manual

3

The Reference Manual contains reference information for all tools in the toolset,
plus details of the occam libraries. Each tool is described in a separate chapter.

The Reference Manual is not intended to be read in chapter order. Chapters
should be consulted as required to obtain information about how to use specific
tools.

1.4 Conventions used in the manual

Convention Description

Italics Used in command line syntax to denote parameters for which
values must be supplied. Also used for book titles and for
emphasis.

Bold Used for new terms, pin signals, and the text of error mes­
sages.

Teletype Used for listings of program examples and to denote user
input and terminal output.

IKEYI Used to denote function keys for the debugger and simulator
tools. Keyboard layouts for specific terminals can be found in
the Delivery Manual that accompanies the shipment.

Braces Used to denote lists of items in command line syntax.

{ }

Brackets

[]

Used to denote optional items in command line syntax.

Option prefix Examples of command line input are duplicated to show both
option prefix characters. Use the line containing the '-' char­
acter if you have a UNIX based toolset and the line containing
the 'f' character if you have a non-UNIX based toolset.

72 TDS 18400 April 1989

4

72 TDS 184 00

1 How to use the manual

April 1989

2 Introduction
This chapter gives a gentle introduction to transputers and how transputers are
programmed. It introduces the occam model for programming single and multi­
ple transputers, and briefly describes some of its advantages. The chapter also
outlines the development process for building and debugging programs, and
explains how the tools form an integrated development environment.

2.1 Overview

The occam 2 toolset is a software development system for building and debug­
ging programs on networks of transputers. The occam 2 toolset supports the
full range of INMOS transputers and mixed networks of transputers. Used with
the INMOS C, FORTRAN and Pascal compilers the occam 2 toolset can be
used to build and debug mixed language software systems.

Multi-processing is now widely accepted as the only way to substantially increase
system performance. Transputers and the occam 2 toolset make building high
performance parallel systems as simple as sequential programming with con­
ventional microprocessors.

2.2 Transputers

Transputers are high performance microprocessors that support parallel process­
ing through on-chip hardware. They can be connected together in any configu­
ration, and form a building block for complex parallel processing systems.

The transputer is a complete microcomputer on a single chip. It has a very
fast (single cycle) on-chip memory, on-chip inter-processor links, and a pro­
grammable memory interface that allows external memory to be added with the
minimum of supporting logic.

Figure 2.1 shows the architecture of the transputer.

Multi-transputer systems can be built very simply. Each transputer has four high
speed communication links operating at 10 to 20 Mbits per second that allow
transputers to be connected to each other in any configuration. The circuitry
to drive these links is all on the transputer chip, and it takes just two wires to
connect two transputers together. Figure 2.2 shows four transputers connected
using their communication links, and the communication paths between them.

In addition to providing a communication link between processors, transputer
links allow memory to be examined without loading a program, and permit pro-

72 TDS 18400 April 1989

6

System
services

On-chip
RAM

Input
Output

Figure 2.1 Transputer architecture

2 Introduction

grams to be loaded and executed. This allows whole networks of transputers to
be loaded down a single transputer link.

Transputer

Transputer Transputer

Transputer

Figure 2.2 A node of four transputers

Each single transputer supports parallel processing through a system of internal
channels implemented as words in memory. Each transputer has a highly effi-

72 TDS 18400 April 1989

2.3 Transputers and occam 7

cient built-in run-time scheduler; processes waiting for input or output, or waiting
on a timer consume no CPU resources, and process context switching time on
an IMS T800-25 is less than one microsecond. The communication links operate
concurrently with the processing unit and can transfer data on all links without
affecting the performance of the CPU.

There is a complete family of transputer devices, including: 32 and 16 bit pro­
cessors; a peripheral control processor; a link switch; and a parallel link adaptor.

A wide range of transputer programming boards is supplied by INMOS and other
suppliers for a variety of hosts. These boards can be used for:

• Developing and debugging transputer software

• Running transputer programs (as accelerator boards)

• Loading software to transputer networks from the host.

2.3 Transputers and occam

occam 2 has been designed to reflect the architecture of the transputer, and
for maximum coding efficiency the whole system can be programmed in oc­
cam 2. The inherent security and code efficiency of occam and the ability to
use the special features of the transputer make occam 2 a powerful -tool for
programming concurrent systems.

Transputers can also be programmed in C, FORTRAN, and Pascal and their
optimised design ensures efficient code. Where programs need to exploit con­
currency but still need to use languages other than occam 2, special occam
code can be used to link modules together.

2.3.1 The occam programming model

The occam programming model consists of parallel processes communicating
through channels. Channels connect pairs of processes and allow data to be
exchanged between them. Each process can be built from a number of parallel
processes, so that an entire software system can be described as a hierarchy
of intercommunicating parallel processes. This model is consistent with many
modern software design methods. \

Communication between processes is synchronized. When a message is passed
between two processes the output process does not proceed until the input
process is ready. Buffered communication can be achieved by explicitly inserting
a buffer process between the two processes.

72 TDS 18400 April 1989

8 2 Introduction

The occam programming model also provides an excellent basis for building
mixed language systems. Components written in languages other than occam
can be defined as processes inputting and outputting messages on channels.
The C, FORTRAN and Pascal compilers supplied by INMOS are compatible with
occam and can be used to build equivalent occam processes in any of these
languages. Library functions are provided in each language for the input and
output of messages on channels.

2.3.2 Multitransputer programming

In the occam 2 programming language parallelism can be expressed directly.
Each occam process is an independently executable process. A configuration
language extension to occam 2 is used to distribute processes over networks
of transputers, and can be used to program multi-processor systems.

Figure 2.3 shows how three discrete processes, programmed in occam or in
a compatible language, can be executed on a single processor or on three
processors connected in series.

Three processes on
one transputer

The same processes distributed
over three transputers

Figure 2.3 Mapping processes onto one or several transputers

2.3.3 Reliability

Because it has a formal mathematical framework, the occam 2 language can
be extensively checked at compile time, and many programming errors can be
detected before the program is run. This significantly improves the reliability of
programs, and makes building correct programs faster and easier.

72 TDS 18400 April 1989

2.4 Program development using the toolset 9

Each construct in the language has a precise meaning. This makes programs
easier to write and understand, and supports the formal mathematical manipu­
lation of programs required for program proving and advanced program optimi­
sation techniques.

For details of occam 2, see the loccam 2 Reference Manual', which con­
tains definitive information about the language. For those with no knowledge
of occam but who are already familiar with a high level language, lA tutorial
introduction to occam programming' provides a good introduction to occam.

2.3.4 Real time programming

occam 2 provides specific support for real time programming. The key features
of the transputer that support real time programming are listed below.

• Direct and efficient implementation of parallel processes in hardware

• Prioritisation of parallel processes

• Implementation of software interrupts as messages on occam channels,
so that interrupt routines can be written as high priority processes

• Easy programming of software timers, allowing delays and non-busy
polling

• Placement of variables at specific addresses in memory, so that memory
mapped devices can be accessed.

Detailed discussions of the some of technical issues involved in transputer pro­
gramming can be found in the INMOS Technical Notes listed in the bibliography
to the rear of this manual.

2.4 Program development using the toolset

The occam 2 toolset is a complete set of cross-development tools. The tools run
under standard host operating systems, either on the host itself or on a transputer
attached to the host, and use standard ASCII source files. All the tools can be
used in conjunction with existing software for text editing and source control and
with compilation utilities such as Make programs. For this reason, no editor or
Make program is provided with the toolset. For embedded systems, programs
can be loaded onto the target hardware from the host via a transputer link.

72 TDS 184 00 April 1989

10

2.4.1 System design

2 Introduction

The designer can use the occam programming model to design software sys­
tems at the application level, by identifying the separate components of the sys­
tem in terms of processes and collections of related functions and procedures.
The design can be directly expressed in occam and then checked by the com­
piler before transferring it to hardware.

2.4.2 Programming and code generation

To implement components of the design the programmer creates occam source
texts, then compiles and links them together to produce executable code. Vali­
dated source can be created easily with the toolset syntax checker, and binary
code files can be collected together either for code sharing or for convenience
when creating code libraries.

Code for single transputers is linked using the toolset linker. For multi-transputer
systems software processes are allocated to transputers, and channels are al­
located to links, in a configuration description. This description, plus the code
for each transputer, is processed by the toolset configurer to create a multi­
transputer program. This program can then be distributed across a transputer
network down transputer links.

2.4.3 Debugging

occam programs can be executed and tested without transputer hardware us­
ing the T414 simulator tool which provides full symbolic debugging functions.
This method is appropriate for debugging individual parts of a large transputer
program.

Programs for multi-processor systems can be configured to run on a transputer
evaluation board, and then loaded and debugged using the symbolic network
debugger that allows a halted program to be analysed in terms of its source
code.

72 TDS 184 00 April 1989

User guide

72 TDS 184 00 April 1989

12

72 TDS 18400

User guide

April 1989

3 Overview of the toolset
This chapter introduces the toolset and briefly describes each of the tools in turn.
It also introduces the occam libraries, describes host system dependencies,
and explains the conventions used within the toolset.

3.1 Introduction

The occam 2 toolset is a set of tools and supporting software that help with
the development of transputer programs. It allows programs developed on host
machines to be loaded onto transputers and transputer networks via transputer
evaluation boards such as the IMS B004 and B008 boards. All of the tools
operate with files in standard host format. This enables you to use the editor
with which you are familiar, and allows different types of version control systems
to be used.

A list of the tools in the toolset is given in table 3.1.

There are a number of different implementations of the toolset, running on dif­
ferent host computers. Versions are available for the IBM PC/AT and PC/XT
(and compatibles) running DOS, DEC VAX systems running VMS, and the Sun
Microsystems Sun-3 workstation running SunOS.

This manual covers all host versions of the toolset. Where differences exist
between implementations they are highlighted and explained.

3.2 Program development

Stages in the program development process are outlined below and the tools to
use at each stage are listed.

1. Coding: Program modules are written, and then checked for correct syntax
before compilation using the occam 2 syntax checker icheck.

2. Compilation: Individual components and modules are compiled using the
occam 2 compiler occam. Libraries of compiled code can be created
using the librarian tool ilibr.

3. Linking: Components of a program, such as processes running on indi­
vidual processors, are linked together with libraries and other separately
compiled units using the linker tool ilink.

72 TDS 184 00 April 1989

14

Program Description

3 Overview of the toolset

iboot The bootstrap tool. Produces bootable code for single transput­
ers.

icheck The occam 2 syntax checker.

iconf The configurer. Builds bootable code for multitransputer pro­
grams.

idebug The toolset debugger. Provides symbolic and assembly level
debugging.

idump The memory dumper for storing the contents of the root trans­
puter. Used when debugging programs running on the root
transputer.

ilibr The librarian. Builds libraries of compiled code.

ilink The Iinker. Resolves external references and links compiled
code into a single file.

ilist The binary Iister. Displays source level information from object
code.

imakef The Makefile generator. Generates M~kefiles for building object
and bootable code. Also creates library usage files.

iserver The host file server. Loads programs onto transputer boards
and provides run-time communications with the host.

isim The T414 transputer simulator.

iskip The skip loader tool. Prepares transputer networks to run pro­
grams without using the root transputer.

occam The occam compiler. Compiles source for IMS T212, M212,
T222, T414, T425 and T800 transputers.

Table 3.1 The occam 2 toolset

4. Creating executable code: For single processor programs code that can be
directly loaded onto the transputer and run (bootable code) is produced
by adding bootstrap information to the linked code, using the bootstrap
tool iboot. For multitransputer programs bootable code is generated
from a configuration description file using the configurer tool iconf. This
produces bootable code for a specific arrangement of transputers.

5. Loading and running: Programs are loaded onto transputers or transputer
networks using the hos file server tool iserver. The iskip tool can
be used to load programs onto external networks over the root transputer.

72 TDS 184 00 April 1989

3.3 The toolset 15

The server tool provides run time support for interfacing with the host.

6. Debugging: If a program does not work correctly it may be debugged using
the debugger idebuq or the T414 simulator isim. Both tools leave the
object code unmodified. The binary listing tool ilist can be used to
display information about object code.

7. Recompilation: The code is modified after debugging, recompiled and
retested. The Makefile generator imakef can assist in regenerating
code during program development.

3.3 The toolset

This section provides a brief introduction to each of the tools in turn.

3.3.1 iboot - the bootstrap tool

The bootstrap tool adds bootstrap code to linked programs for single processors.
Bootstrap code is required for programs in order to initialise the processor (when
booting via a link), and to load the program.

3.3.2 icheck - the occam 2 syntax checker

The checker performs a comprehensive check of occam 2 syntax including de­
clared but unused variables. Using the regular structure of occam the checker
is able to recover from syntax errors and detect multiple errors in the occam
source. It produces more informative messages than the compiler and can be
used to filter out syntax errors prior to compilation.

3.3.3 iconf - the configurer

The configurer generates executable code for multitransputer networks from oc­
cam program units. Using an occam configuration description file that de­
scribes the placement of code modules on a transputer network, it produces a
file containing bootable code and network loading data. The file can then be
directly loaded and run on a transputer network.

3.3.4 idebug - the debugger

The debugger provides post mortem debugging of occam programs. It permits
complete analysis of occam code and transputer hardware following a run-time
error, using symbolic and low level facilities. The debugger provides limited

72 TDS 18400 April 1989

16

support for e, FORTRAN and Pascal programs.

3.3.5 idump - the memory dumper

3 Overview of the toolset

The idump tool writes the contents of the root transputer's memory to a disk
file that can be read by the debugger. This tool is used when debugging pro­
grams that use the root transputer, because the debugger overwrites the root
transputer's memory.

3.3.6 ilibr - the librarian

The librarian collects compiled code files into libraries. Each separately compiled
file becomes a library module that can be selectively linked.

3.3.7 ilink - the linker

The linker links together separately compiled units into a single file, resolving all
external references.

3.3.8 ilist - the binary lister

The binary lister tool displays in a readable form the contents of object code
files. Options control the type of information to be displayed.

3.3.9 imakef - the Makefile generator

The Makefile generator creates Makefiles for input to MAKE programs. Given the
name of a program or library to be built, it traces references to other code and
library files and compiles a list of file dependencies and compilation commands
for input to the Make utility. The e source of the imakef program is supplied
and can be modified to suit any MAKE program.

The Makefile generator is also used to create library usage files.

3.3.10 iserver - the host file server

The server tool has two functions. Firstly, it loads bootable programs onto trans­
puters or transputer networks. Secondly, it provides the run-time environment
that enables application programs to communicate with the host.

72 TDS 18400 April 1989

3.4 The occam libraries

3.3.11 isim - the T414 simulator

17

The T414 simulator simulates the operation of the T414 transputer, enabling
programs to be tested and debugged in the absence of hardware. It provides
debugging features such as the inspection of variables, registers, and queues,
disassembly of memory, break points, and single step execution.

3.3.12 iskip - the skip loader tool

The skip tool sets up the environment that allows programs to be loaded and run
on networks that do not incorporate the root transputer. The tool is used to assist
with the loading of programs onto external networks through a root transputer and
to allow the debugger to run on the root transputer without overwriting program
code.

3.3.13 occam - the occam 2 compiler

The occam compiler takes as input occam source code contained within stan­
dard host format text files. Any text editor that produces standard ASCII files
can be used to create the occam source.

The compiler produces code for T212, T222, M212, T414, T425 and T800 trans­
puters in four program execution error modes. Command line options allow you
to specify the transputer type, error mode, and other information required by the
compiler. .

The compiler supports a number of source code directives which enable different
types of source files to be compiled together. The main directives are:

• # INCLUDE - includes other source files

• #USE - uses separately compiled code and libraries

• #IMPORT - imports code modules written in C, FORTRAN, and Pascal.
The module must be compiled using an INMOS or INMOS-compatible
compiler.

The compiler also supports the directives # COMMENT, #OPTION, and #SC.

3.4 The occam libraries

A comprehensive set of libraries and include files are provided with the toolset.
Some form part of the standard support for the occam language (the compiler

72 TDS 18400 April 1989

18 3 Overview of the toolset

libraries), others are user-level libraries to support standard programming tasks
such as terminal ilo and file access.

Some libraries are supplied as object code, others as both object and source
code. Table 3.4 lists the libraries that are supplied with the toolset and specifies
how they are supplied. Details of all the libraries can be found in chapter 24.

Library Description Format

occamxx.lib Compiler libraries object

hostio.lib general purpose ilo library both

streamio.lib Stream ilo support both

snglmath.lib single length maths functions both

dblmath.lib double length maths functions both

tbmaths.lib T414fT425 optimised maths functions both

string. lib String handling routines both

xlink.lib Extraordinary link handling routines object

convert.lib Type conversion routines both

ere. lib CRC coding object

process.lib Board and process support both

3.4.1 Constants

Files containing definitions of constants and protocols are also provided for use
with the occam libraries. These are listed in table 3.2.

File Description

hostio.inc Host file server constants

streamio.inc Stream ilo constants

mathvals.inc Mathematical constants

linkaddr.inc Transputer link addresses

Table 3.2 Library constants

3.4.2 Compiler libraries

The compiler libraries are used internally by code generated by the compiler.
With a number of exceptions which are outlined in section 24.2.1, they are not
intended for direct use by the programmer. The compiler references them auto­
matically by searching the directories specified by the ISEARCH host environ-

72 TDS 18400 April 1989

The occam libraries

ment variable.

19

The compiler automatically loads the library required for a specific combination
of compiler options. The libraries can be disabled by giving the compiler 'E'
option, and must be disabled for transputer classes TA or TC and UNIVERSAL
mode. For details of transputer classes see section 4.4.1.

3.4.3 Maths libraries

The maths libraries provide trigonometric and logarithmic functions for all trans­
puter types supported by the toolset. Single and double length routines are
supplied in the libraries snqlmath .lib and dblmath . lib respectively, and
versions of the same routines optimised for the T414 and T425 processors are
provided in the library tbmaths . lib. Constants for the maths libraries can be
found in the include file mathvals . inc.

3.4.4 I/o libraries

Two libraries containing routines to assist with i/o are provided with the toolset.
Constants for the two libraries are provided in separate files.

Hostio library

The hostio library contains routines that provide access to the file system and
other host services via the host file server. The routines communicate with the
server via the SP protocol either directly or through a buffer or multiplexor routine
which itself uses the SP protocol. The SP protocol is defined in the include file
hostio. inc.

The hostio library is used for:

• File handling

• Host access

• Terminal i/o

Other routines provide facilities such as time and date processing, process buffer­
ing and multiplexing, and protocol conversion.

Streamio library

The streamio library contains routines which provide i/o at a higher level than
the hostio routines. The protocol is based on a stream model. The streamio

72 TDS 18400 April 1989

20 3 Overview of the toolset

library is used for general character-based i/o using stream protocols, and for
controlling the screen display. Protocols for the streamio library are defined in
the include file streamio. inc.

The streamio routines perform the same function as those used in the IMS D700D
Transputer Development System (TDS), and enable programs to be ported be­
tween the toolset and the TDS.

Many of the streamio routines cannot communicate directly with the server and
must be passed to another process for forwarding to the server. Procedures for
converting screen and keyboard stream protocols to the host file server protocol
SP are provided for this purpose.

3.4.5 Other libraries

String handling library

The string handling library provides string handling functions and procedures, for
example, string comparison, string search, string editing, and line parsing.

Type conversion library

The type conversion library converts occam data types to ASCII strings and
vice versa.

Extraordinary link handling library

The extraordinary link handling library provides facilities for handling link errors
on a channel.

Block CRC library

The block CRC library provides functions for generating CRC codes from char­
acter strings.

Process library

The process library provides two routines: a serial port driver for INMOS trans­
puter evaluation boards; and a debug timer to assist with debugging deadlocked
programs.

72 TDS 18400 April 1989

3.5 Implementation differences

3.5 Implementation differences

21

The toolset is available for three different host machines and operating systems:

• IBM PC running DOS

• DEC VAX running VMS

• Sun Microsystems Sun-3 running SunOS (UNIX)

Source and binary code generated by the toolset is portable across these three
systems.

Host operating system dependencies such as differences in file handling and
command line syntax are described below.

3.5.1 Host dependencies

Operating system dependencies are as far as possible transparent to the toolset
user. The few differences are summarised below.

Command line syntax

The major difference between different host implementations is the option prefix
character. For UNIX based toolsets the prefix character is the hyphen '-'; for
the IBM PC and VAX toolsets it is the forward slash character' I'.

Libraries

Most library routines supplied with the toolset are host independent, but a few
specific procedures may be provided for some operating systems. For details of
host dependent routines see the Delivery Manual.

If you wish to write programs that will be fully portable across different systems,
use only the host independent routines, which are described in chapter 24.

Directories and files

A directory path searching mechanism is implemented within the toolset, and full
pathnames need not be given. For details of the mechanism, see section 3.7.4.

Directory paths are treated in a host dependent manner, whereas filenames are
independent of the host, with certain restrictions. As long as the pathnames are
legal for the host operating system, they can also be treated as host independent.

72 TDS 184 00 April 1989

22

3.6 Host environment variables

3 Overview of the toolset

The toolset assumes four environment variables on the host system. These are
listed below.

Variable Meaning

ISEARCB The list of directories on which the toolset will search for files
if the full pathname is not specified.

I TERM The file containing terminal keyboard and screen codes.

IBOARDSIZE The memory size of the transputer board.

TRANSPOTER The address at which the transputer board is connected to
the host if not at the default address.

The mechanism used to define these variables varies from host to host. For
example, on the IBM PC running DOS they are defined as environment variables
using the set command and on VAX systems running VMS they can be set up
as logical names or VMS symbols. For details of how to define host environment
variables on your system, see the Delivery Manual that accompanies the release.

3.7 Toolset conventions

All tools in the toolset, and all implementations of the toolset, use a common set
of conventions and defaults.

The toolset uses conventions in the following areas:

• Command line syntax

• Command line options

• File naming

• File location

• Error handling and error message format.

72 TDS 18400 April 1989

3.7 Toolset conventions

3.7.1 Command line conventions

Syntax

All tools in the toolset conform to the following command line conventions:

• Case is ignored, except for command names on UNIX systems.

23

• Options must be prefixed by the option prefix character ('-' for UNIX
based toolsets, '/' for VAX-VMS and IBM PC-DOS based toolsets).

• If an option takes more than one parameter the parameters must be
enclosed in parentheses (), and separated by commas.

• Options can occur in any order after the filename.

• Spaces between options and the case of letters in parameters are not
significant.

Common options

Where options are common to more than one tool in the toolset, the following
conventions apply:

• All tools provide help information if invoked with no options.

• The 'I' option, where supported, displays progress information as the
tool runs.

• The 'F' option, where supported, specifies an indirect input file. If no
name is given then input may be taken either from host standard input
(normally the keyboard) or the command line.

• The 'L' option, where supported, loads the tool onto a transputer board
without loading the program. It can be used to test for the existence of
a particular tool on the system.

• The '0' option, where supported, is used to specify an output filename.
If no filename is given then ASCII output is sent to host standard output
(normally the screen), or to a file whose name is derived from an input
file.

3.7.2 Filename conventions

Filename conventions are used for three reasons. Firstly, they enable filenames
to be used in a host independent manner. Secondly, they allow file extensions

72 TDS 18400 April 1989

24 3 Overview of the toolset

to be omitted in many commands, because defaults can be assumed. Lastly,
they enable the debugger and Makefile generator tools to trace source files for
a program.

Fllenames

Filenames must not contain the characters: dot ., colon :, semi-colon; , square
brackets [], round brackets (), forward slash /, backslash \, exclamation mark
! , or the equals sign =.

Where the host operating system allows logical names to be used in place of
filenames, such as with VMS, the toolset allows logical names to be used, but
the name must be followed by a dot (.). This prevents the tool from adding an
extension, which would generate a host file system error.

File extensions

The toolset uses standard file extensions to specify types of files. Where possible
the tools assume these conventions unless otherwise directed. Use of these
conventions is recommended, and is required if the Makefile generator imakef
is used to assist with version control. For example, the occam compiler occam
assumes the extension .occ on the input file, and the configurer tool iconf
assumes a .pgm extension. Other tools such as ilink which cannot make
assumptions about the input file to use require the extension to be explicitly
stated. Filenames and extensions created by the toolset are always generated
in lower case.

File extensions used by the occam toolset and the tools to which they relate
are given in table 3.3.

Where the final two characters in the file extension are not fixed, for example
. bxx, they reflect the compiler options that were used when the program was
compiled, and indicate the transputer type and error mode of the object code.
Characters and their meanings are given in table 3.4.

A complete map of the toolset file extensions and their relationships to the main
tools is shown in figure 3.1.

3.7.3 Locating files

The tools locate files by searching a specified directory path on the host sys­
tem. The path is specified using the host environment variable I SEARCH. For
details of path searching mechanisms on specific hosts, see section 3.7.4 and
the Delivery Manual that accompanies the shipment.

72 TDS 18400 April 1989

3.7 Toolset conventions 25

Extension Tool File Type Description

.btl iconf Output Loadable code for boot from link
boards.

.btr iconf Output Loadable code minus bootstrap infor-
mation. Used for EPROM support.

.bxx iboot Output Bootable code for single transputer.

.cxx ilink Output Linked code.

.dsc iconf Output Configurer code descriptor file. ASCII
format.

.dmp idump Output Memory dump file. Read by the de-
bugger.

.dxx iboot Output Bootable code descriptor file. ASCII
format.

.inc occam Input Predefined constants and protocols.

.lbb ilibr Input Library indirect file.

.liu imakef Input Library usage file.

.lib ilibr Output Library file. Compiled code.

.lxx ilink Input Linker indirect file.

. map iconf Output Configuration map. ASCII format.

.mxx ilink Output Module map. Binary format.

. occ occam Input occam source.

.pgm iconf Input Configuration description source file.

.rxx iboot Output Single transputer code with no boot-
strap.

.sxx ilink Output Linker symbol table. ASCII format.

. txx occam Output Compiled code.

N.B. for extensions . bXx, . CXX, etc., the value of xx depends on
the transputer type (2, 4, 5, 8, a, b, c)
and the error mode (h, s, u, x).

Table 3.3 Toolset file extensions

The tools conform to the following search rules:

If the filename contains a directory specification then the filename is used
as given. Relative directory names are treated as relative to the directory
in which the tool is invoked.

2 If no directory is specified the directory in which the tool is invoked is

72 TDS 184 00 April 1989

26

2nd character
2 T212, T222, M212
4 T414
5 T425
8 T800
a T800, T425, T414
b T425, T414
c T800, T425

3 Overview of the toolset

3rd character
h Halt mode
s Stop mode
u Undefined mode
x Universal mode

--.. user input/tool output
~ runtime input

Table 3.4 File extension characters

Figure 3.1 Relationships between tools and file extensions

assumed.

3 If the file is not present in the current directory, the path specified by the
environment variable (or logical name) ISEARCH is searched. If there
are several files of the same name on this path, the first occurrence is
used.

4 If the file is not found using the above rules, then the file is assumed to
be absent, and an error is reported.

If no search path has been set up then only rules 1 and 2 -apply.

72 TDS 184 00 April 1989

3.7 Toolset conventions

All files are written to the current directory.

3.7.4 Search paths

27

Directories to be searched are specified as a list of search paths. On the IBM
PC and Sun-3 systems search paths are specified using the ISEARCH host
environment variable; on VAX systems paths are specified using the logical name
I SEARCH. Directories are searched in the order that they appear in the list.

Directory paths must be terminated by the appropriate directory separator char­
acter for the system you are using ('\' for non-UNIX based toolsetsand 'I' for
UNIX-based toolsets), and entries in the list must be separated by a space or a
semi-colon.

For more details about how to set up search paths see the Delivery Manual.

3.7.5 Error handling and message format

All tools in the toolset use a common system of error handling and a common
format for error messages. This has the following advantages:

• The tool generating the error can be identified even when the tool is run
in a 'background' mode, that is, out of contact with the terminal.

• Some editors can provide automatic location of the error if the error mes­
sages are in a fixed format.

• Host programs or operating system utilities can be used to detect errors.

The tools can generate two types of messages: Error and Warning.

Errors are faults from which recovery is not possible, and the tool aborts without
performing the specified action. Error messages are prefixed with Error: .

Warnings identify inconsistencies, or warn of impending errors; the tool continues
and does not abort. Warning messages are prefixed with Warning: .

Message formats

Errors generated by most tools in the toolset are displayed in the following for­
mats:

Error-toolname-filename (linenumbet}-message

72 TDS 18400 April 1989

28 3 Overview of the toolset

Warninq-toolname--filename (linenumbery-message

filename and Iinenumber are optionally displayed where they are meaningful for
the error, for example, where the format of a file is incorrect or the file has been
corrupted.

Two tools generate messages in special formats. These are:

• The debugger idebuq

• The simulator isim.

The formats will become familiar with use.

72 TDS 18400 April 1989

4 Programming single
transputers

This chapter provides an introduction to occam programming using the toolset,
using example programs for single processors. For information on programming
multitransputer networks see chapter 5.

Before reading this chapter you should already be familiar with the concepts and
syntax of the occam programming language. For detailed information about
the language see the 'occam 2 Reference Manual' and for an introduction to
occam see 'A tutorial introduction to occam programming'.

4.1 Program examples

Section 4.3 contains a simple programming example to get you started. A more
complex example, illustrating separate compilation, can be found in section 4.9.

All the example programs are designed for boot from link boards. If you have a
board that boots from ROM you should set it to boot from link or run the example
programs using the T414 simulator tool isim.

4.2 occam programs

Within the toolset a single processor program is an occam procedure with fixed
formal parameters, as illustrated below.

#INCLUDE "hostio.inc"
PROC occam.program (CHAN OF SP fs, ts,

[lINT memory)
body of program

The procedure can have any legal occam name. You must always supply the
procedure with the formal parameters shown above, to enable communication
with the host.

All occam procedures are terminated by a colon (:), at the same indentation
as the corresponding PROC keyword. Do not forget the colon at the end of a
program.

Program input and output is supported by the host file server, which is resident
on the host computer. Access to the host file server is via the i/o libraries, which

72 TDS 18400 April 1989

30 4 Programming single transputers

are described in chapter 24. Whenever routines from these libraries are used the
channels fs and ts must be passed to the routine so that it can communicate
with the host file server.

Channel fa comes from the host file server and ts goes to the host file server.
Both use protocol SP, which is defined in the include file hostio. inc. Fig­
ure 4.1 shows how these channels are connected.

The vector memory contains the free memory remaining on the transputer eval­
uation board after the program code has been loaded and the workspace allo­
cated. It is calculated by subtracting the area occupied by the program code
and workspace from the value specified in the IBOARDSIZE host environment
variable. The memory vector is passed to the program as a vector of type INT,
where it can be used. By allowing programs to be run on boards with different
memory sizes, this vector aids program portability between different boards.

host computer

fs

ts

transputer board

Figure 4.1 Program input/output

4.2.1 Checking programs

The o.ccam syntax checker, icheck, can be used to check the syntax of
occam programs. When a program is compiled the syntax is checked auto­
matically; however, it is often faster to use the checker to eliminate syntax errors
before running the compiler. The checker does a more comprehensive syntax
check than the compiler, and reports every error. The checker can be applied
to any file containing occam source.

4.2.2 Compiling programs

The compiler is capable of compiling code for anyone of a range of transputers
(the IMS T212, M212, T222, T414, T425 and T800) in four error modes. The
three standard error modes are HALT system, STOP process, and UNDEFINED.
A special fourth mode, UNIVERSAL, is provided to allow mixing of code. The
target processor and error mode must be specified for each compilation, using
options on the command line. By default the compiler compiles for an IMS T414

72 TDS 18400 April 1989

Compiling occam programs 31

in HALT mode, and when compiling for this transputer type and error mode you
may omit the options. In all other cases the options must be supplied.

Other operating features of the compiler may be changed by options. See sec­
tion 23.2 for a full description of these options.

If the compiler detects an error, the file name and line number of the error are
displayed along with a message explaining the error. If an error is found the
compilation is aborted.

If the compilation succeeds, the compiler creates a new code file. The filename
for the new file is derived from the name of the source file with the appropriate
extension added. The filename can also be specified on the command line.

Compilation information

It is sometimes necessary to check how much code has been generated by a
compilation, and how much workspace (data space) will be required to run the
code. This information is stored in the code produced by the compiler, Iinker
and librarian. To display the information use the binary lister tool ilist. For
details see chapter 18.

4.2.3 Linking programs

When all the component parts of a program have been compiled they must be
linked together to form a whole program. Component parts include the main
program, any separately compiled units, and any libraries used by the program,
including the compiler libraries.

The compiler libraries are automatically loaded by the compiler unless specifically
disabled with the compiler 'E' option. If you are unsure whether your program
uses the compiler libraries it is best to always link in the appropriate library. The
correct library for your program depends on its transputer type and error mode.
Separate libraries are provided for the T212, T414fT425, and T800 in HALT,
STOP, and UNDEFINED error modes. For a list of the compiler libraries see
section 24.2.

4.2.4 Viewing code

Object code files produced by compiling or linking programs can be examined
using the binary lister tool ilist. Information that can be displayed includes
procedure definitions, entry point data, external references within the code, and
debugging data. For more details see chapter 18.

72 TDS 184 00 April 1989

32

4.2.5 Making bootable programs

4 Programming single transputers

Code that has been linked to form a program cannot be loaded directly onto a
transputer evaluation board, for two reasons. Firstly, object code produced by
the Iinker and compiler tools contains information required by some tools. This
information must be removed before the program can be loaded. Secondly, code
to be run on a board which boots from link, such as the IMS B004, require the
addition of bootstrap information to load the program and start it running.

Extraneous data is removed, and the bootstrap code added, by the bootstrap
tool iboot. In addition the bootstrap tool checks that the program parameters
are correct, as described in section 4.2.

4.2.6 Loading and running programs

Bootable programs can be loaded onto the transputer evaluation board using
the host file server iserver (see chapter 20).

The server must be given a number of parameters when it loads a program. All
server options are two characters long, with's' as the first character. Server
parameters are removed from the command line by the server, so you should
avoid using the same options for your own program (it is best to avoid giving
programs two letter options beginning with the letter'S').

To load a program use the 'SB' option and specify the file to be loaded. This
has the same effect as using options 'SR', 'SS', 'SI', and 'SC' together, that is,
it resets the board, provides access to host facilities such as file access and
terminal i/o, and loads the program. The 'SI' option directs the tool to display
progress information as it loads the file. To terminate when the transputer error
flag is set, thereby enabling the program to be debugged, use the server 'SE'
option.

Programs can also be loaded onto transputer networks, without running code
on the root transputer, by first using the iskip tool to set up a skip process
and then loading the program in the normal way using iserver. This can be
useful when loading programs onto external networks via a transputer evaluation
board, and for debugging programs that use the root transputer to run all or part
of a program. For details of skip loading see section 6.5.

4.2.7 Interrupting programs

To interrupt a program while it is still running, press the host system break key
to interrupt the server. When the break key is pressed the following prompt is
displayed:

72 TDS 184 00 April 1989

4.3 Compiling a simple example program

(x) exit, (s)hall, or (c)ontinue?

33

To abort the program type 'x' or press IRETURNI. This terminates the host file
server.

To suspend the program so that you can resume it later, type's'.

To abort the interrupt and continue running the program, type 'c'.

4.3 Compiling a simple example program

This section contains a tutorial that shows you how to compile, link, and run a
simple example program. The tutorial assumes that you have a boot from link
board containing aiMS T414, T425, or T800 processor. If you have a board
fitted with any other transputer you must compile the program for that transputer
type and use the correct file extension in the subsequent command lines.

If you do not have a transputer board use the T414 simulator tool isim from
this point onwards.

The example program simple. occ reads a name from the keyboard and dis­
plays a greeting on the screen. The source of the program can be found in the
toolset 'examples' directory. The program uses the library hostio .lib and
incorporates the include file hostio. inc.

The program is illustrated below.

72 TDS 18400 April 1989

34 4 Programming single transputers

'INCLUDE "hostio.inc" -- contains SP protocol

PROC simple (CBAN OF SP fs, ts, []INT memory)

'OSE "hostio.lib" iserver libraries

[]BYTE buffer RETYPES memory:

BYTE result:
INT lenqth:
SEQ

so. write. string

so.read.echo.line

so.write.nl
so.write.string
so.write.string.nl

so.exit

(fs, ts,
"Please type your name :")

(fs, ts, lenqth, buffer,
result)

(fs, ts)
(fs, ts, "Hello ")
(fs, ts,
[buffer FROM 0 FOR lenqth])

(fs, ts, sps.success)

The first line in the program loads the file hostio . inc. This file contains the
definition of protocol SP, used to communicate with the host file server, and a
number of constants that are used in conjunction with the host i/o library.

The procedure simple is then declared. All the working code is contained
within this procedure.

The server library hostio .lib is referenced by the fUSE directive. This library
contains all the procedures used by the program. See chapter 24 for descriptions
of the routines.

Before the body of the procedure a number of variables are declared. First, the
memory array is retyped as a BYTE array. This enables the program to use the
free memory on thE: board as a character buffer.

The variables length and result are then declared for use by the program.
The variable length refers to the number of characters in the name read from
the keyboard, and result is used by the library routine to indicate whether
or not the read was successful. The result is ignored by this example for the
sake of simplicity; it is assumed that screen writes and keyboard reads always
succeed.

The working code is contained within a SEQ, indicating that the statements which
follow are to be executed sequentially. All of the statements are calls to library

72. TDS 184 00 April 1989

4.3 Compiling a simple example program 35

routines in hostio . lib. The code prompts for a name, reads the name from
the keyboard, and types a greeting on the screen.

The last statement calls a library procedure which terminates the server, returning
control to the host operating system. Without this statement the program would
finish and appear to hang, and the server would have to be terminated explicitly
by interrupting the program.

4.3.1 Checking the example program

The program should be checked before being compiled. To check the program
type:

icheck simple

You need use no options as you are going to run the program on an IMS T414
transputer in HALT system mode, which is the default. Although the checker
does not produce code it must know the processor type in order to check the
library references. Options always follow the filename and must be preceded by
the option prefix character ('-' for UNIX, '/' for other toolsets).

Because the file has the de'fault extension of •occ you can omit it when invoking
the checker.

If any errors are found the checker displays an error message for each error it
finds. The error message indicates the nature of the error, the line, and position
on the line where it was .detected.lf no. errOrs are found the checker terminates
and returns you to the operating system.

4.3.2 Compiling the example program

Having checked the program syntax and found it correct the program can be
compiled. To compile the program type:

occam simple

If you used any options with the checker you must use the same options again
with the compiler. The compiler will create a file called simple. t4h, containing
the code produced by the compilation.

72 TDS 18400 April 1989

36 4 Programming single transputers

4.3.3 Linking the example program

To use the result of your compilation it must be linked with the libraries that it
uses.

To link the program type:

ilink simple.t4h hostio.lib

The linked program will be written to the file simple. c4h.

Note: In more complex programs libraries may be dependent on other files
and libraries. To ensure all necessary libraries are linked into a program, use
imakef and a suitable MAKE program. For more details about imakef see
chapter 19.

4.3.4 Running the example program

Before the program can be run it must be made 'bootable'. To do this use the
bootstrap tool iboot. Type:

iboot simple.c4h

The bootable program will be written to the file simple .b4h. Chapter 11 gives
more information on the bootstrap tool.

To run the program it must be loaded onto a transputer board using the host file
server tool iserver. To load the program use one of the following commands:

iserver Isb simple.b4h

iserver -sb simple.b4h

The 'sb' option specifies the file to be booted and loads the program onto the
transputer board. It has the effect of resetting the board, opening communication
with the host, and loading the program onto the network. For more details about
the server options see chapter 20.

If you are using the simulator to run the example program type:

isim simple.b4h

When the simulator enters the 'Monitor page', use the 'x' command to generate
bootable code and then use the 'G' command to start the program.

For more details about how to use the simulator see chapter 21.

72 TDS 184 00 April 1989

4.4 Compiler parameters

4.4 Compiler parameters

37

This section explains the meaning of the compiler parameters and how they are
used during compilation.

The toolset occam compiler produces code for anyone of a range of transputer
processors and in anyone of a number of error modes. The transputer type and
error mode must always be supplied unless the compilation is for an IMS T414
in HALT mode, as these are the defaults.

There are a number of other compiler functions that may be controlled by com­
piler options, such as preventing the use of the compiler libraries.

The main compiler options are listed in Table 4.1. For further details see sec­
tion 23.2. By invoking the compiler with no filename or options you can obtain a
brief summary of the options.

Option(s) Description
T212 T2 T212
M212 T2 M212 (same as T212)
T222 T2 T222 (same as T212)

T414 T4 T414
T425 T5 T425

TBOO TB T800

TA T414, T425, T800
TB T414, T425
TC T425, T800
H HALT mode
S STOP mode
U UNDEFINED mode
x UNIVERSAL mode
N No usage checking
A No alias checking
E Disable the compiler libraries
v No separate vector space

Table 4.1 Compiler options

4.4.1 Compilation for different transputers

The compiler produces code targetted at a particular transputer type. All compi­
lations for a single processor must be for the same or a compatible transputer

72 TDS 18400 April 1989

38

type.

Tran.c;puter classes

4 Programming single transputers

The compiler can produce code that will run on different transputers by taking
advantage of commonality in their instruction sets. Provided that no code is
written which compiles into instructions which are not shared between different
processors, the code will run normally.

The commonalities that exist between different processors are as follows:

• T414 and T425 transputers share the same instruction set except for
CRC and 20 block move operations.

• T425 and T800 transputers share the same set except for floating point
operations.

• T414, T425, and T800 transputers share the same set except for CRC,
20 block move, and floating point operations.

These groupings form the basis of transputer classes. The three classes and
the target code with which they are compatible are listed below.

Class Compatible code
TA T800, T425, T414
TB T425, T414
TC T800, T425

All 16-bit transputers (IMS T212, T222, M212) share the same instruction set
and there is no overlap with 32-bit transputers.

Code compiled for a transputer class must be able to run on any member of that
class. If the source code compiles into transputer code that is not common for
all members of the class then an error is reported.

For example, code compiled for class TC cannot contain floating point and ex':
tended arithmetic because operations on REAL numbers are implemented dif­
ferently on the two machines. On the T425 the implementation is in software
whereas on the T800 it uses the on-chip floating point processor. Similarly,
code compiled for class TB can contain no CRC or 20 block move operations
because the respective transputer instructions are not implemented on the T414.
Code compiled for class TA can contain no floating-point, CRC, or 20 block move
operations.

The restrictions on floating point arithmetic apply only to operations on the vari­
ables, or the returning of a REAL result from a function, because these cause

72 TOS 184 00 April 1989

4.4 Compiler parameters 39

dissimilar instructions to be used. The declaration of REAL variables and the
passing of REAL parameters into procedures or functions is not prohibited.

4.4.2 Mixing code for different transputers

By using transputer classes for compilations it is possible to produce code that
may be mixed with code for other transputer types and classes. It should be
noted that this not possible for all compilations, but only where instruction sets
overlap.

The rule for mixing code is as follows:

Code may be called provided it is compiled for a class which is the same
or is a superset of the calling code.

The code that can be run on different processor types is listed below.

Processor Compatible code
T2 series T212
T800 T800, TC, TA
T425 T425, TC, TB, TA
T414 T414, TB, TA
TC TC, TA
TB TB, TA
TA TA

TA

T414 T800

I
Direction of
permitted

calls

When compiling for a transputer class the compiler will report an error if the
source is such that it cannot be compiled for that class. This will often take the
form of an undeclared procedure or function from the compiler libraries.

If you compile for any transputer class other than TB, you must disable the
compiler libraries with the compiler 'E' option.

72 TDS 18400 April 1989

40

4.4.3 Error modes of compilation

4 Programming single transputers

For systems that require maximum security and reliability, the error behaviour is
of great concern. occam 2 specifies that run-time errors are to be handled in
one of three ways, each suitable for different programs. The error mode to be
used is supplied as a parameter to the occam 2 compiler.

The first mode, called HALT system mode, causes all run-time errors to bring the
whole system to a halt promptly, ensuring that any errant part of the system is
prevented from corrupting any other part of the system. This mode is extremely
useful for program debugging and is suitable for any system where an error is
to be handled externally. HALT system mode is the default for the compiler, and
you should use this mode when you may want to use the debugger.

The second mode, called STOP mode, allows more control and containment of
errors than HALT mode. This maps all errant processes into the process STOP,
again ensuring that no errant process corrupts any other part of the system. This
has the effect of gradually propagating the STOP process throughout the system.
This makes it possible for parts of the system to detect that another part has
failed, for example, by the use of 'watchdog' timers. It allows multiply-redundant,
or gracefully degrading systems, to be constructed.

The third mode, called UNDEFINED mode, is to ignore all run-time errors. This
is potentially dangerous, but there are occasions when it is useful to avoid the
run-time overhead of error checking, for example, where a program has already
been proven correct. A second example is where results are being checked
elsewhere.

The toolset compiler implements all three error modes, specified by command
line options. The default is HALT system mode. All separately compiled units
for a single processor must be compiled with the same error mode. Where a
library is used the module of the appropriate error mode will be selected.

On the IMS T414, HALT mode does not work for processes running at high
priority, as HaltOnError is cleared when going to high priority.

4.4.4 Mixing code with different error modes

In some circumstances it may be desirable to omit the run time error checking
in one part of a program for example, in a time-critical section of code, while
retaining error checks in other parts of a program, for debugging purposes. The
compiler allows the mixing of unchecked code (UNDEFINED) with code of other
error modes, in a restricted manner.

To prevent accidental mixing of UNDEFINED code, an extra mode has been

72 TDS 18400 April 1989

4.4 Compiler parameters 41

added, called UNIVERSAL, specified by the compiler 'x' option. UNIVERSAL
code is the same as UNDEFINED, but has the property that it may be called
from any other error mode. Code compiled in UNIVERSAL mode can only call
code which is also in UNIVERSAL mode.

Note: UNIVERSAL mode is not intended as a general purpose facility and should
be used with great caution, because it disables the security associated with error
checking. It should only be used when error checking is not required and would
be undesirable, such as with time critical code that is already proven.

Although the code produced in UNIVERSAL mode is the same as UNDEFINED
mode it is important to distinguish between them. The behaviour of a system
when an error occurs is not necessarily the same for both modes. This is be­
cause UNIVERSAL mode may be mixed with other modes, so an error occurring
in UNIVERSAL code could halt the processor if it is mixed with HALT code. How­
ever, for the same code in UNDEFINED mode the behaviour at an error is not
predictable.

Because the compiler libraries are only available in the HALT, STOP and UNDE­
FINED error modes you cannot use UNIVERSAL mode for any occam which
requires the compiler libraries. When you compile any source in UNIVERSAL
mode you should always disable the compiler libraries with the compiler 'E' op­
tion.

4.4.5 Alias and usage checking

The compiler and syntax checker implement the alias and usage checking rules
described in the 'occam 2 Reference Manua!'. Alias checking ensures that
elements are not referred to by more than one name within a section of code.
Usage checking ensures that channels are used correctly for unidirectional point­
to-point communication, and that variables are not altered while being shared
between parallel processes. For a further discussion of the rationale behind
these rules, see 'INMOS technical note 32: Security aspects of occam 2'.

Alias and usage checking during compilation may be disabled by means of com­
piler options. It is also possible to carry out alias checking without usage check­
ing. However, it is not possible to perform usage checking without alias checking,
as the usage checker relies on lack of aliasing in the program. If you switch off
alias checking, usage checking is automatically disabled.

Alias checking can impose some code penalties, for example, extra code is
inserted if array accesses are made which cannot be checked until runtime.
However, alias checking can also improve the quality of code produced, since
the compiler can optimise the code if names in the program are known not to be
aliased.

72 TDS 184 00 April 1989

42 4 Programming single transputers

The compiler usage check detects illegal usage of variables and channels, for
example, attempting to assign to the same variable in parallel. The compiler
performs most of its checks correctly, but with certain limitations. Normally, if
it is unable to implement a check exactly, it will perform a stricter check. For
example, if an array element is assigned to, and its subscript cannot be evalu­
ated at compile time, then the compiler assumes that all elements of the array
are assigned to. No illegal programs, other than certain programs which use
subscripted arrays with replicated PARs, are accepted by the compiler. If a cor­
rect program is rejected because the compiler is imposing too strict a rule, it is
possible to switch off the usage checker.

The syntax checker icheck provides better usage and alias checking than the
compiler. If the checker passes a program that the compiler rejects then the
checker can be assumed to be correct. In this case you can disable alias and/or
usage checking in the compiler.

4.4.6 Using separate vector space

The compiler normally produces code which uses separate vector space. This
means that the vectors declared within a compilation unit are allocated into a
separate 'vector space' area of memory, rather than into workspace. This de­
creases the amount of stack required, which has two benefits: firstly, the offsets
of variables are smaller, access to them is faster; secondly, the total amount of
stack used is smaller, allowing better use to be made of on-chip RAM. A com­
piler option disables the use of a separate vector space, in which case vectors
are place9 in the workspace.

When a program is loaded onto a transputer in a network, memory is allocated
contiguously, as shown in figure 4.2.

This allows the workspace (and possibly some of the code) to be given priority
use of the on-Chip RAM. Generally, the best performance will be obtained with
the separate vector space enabled.

The default allocation of a vector can be overridden by an allocation immediately
after the declaration of an vector. This allocation has one of the forms:

PLACE name IN VECSPACE :

or PLACE name IN WORKSPACE :

For example, in a program which is normally using the separate vector space,
it may be advantageous to put an important buffer into internal RAM. The pro­
gram would be compiled with separate vector space enabled, but would include

72 TDS 18400 April 1989

4.4 Compiler parameters 43

#8000000

Unallocated memory
(passed as parameter

to program)

occam vector space

occam code

occam scalar space

... Reserved by transputer
\J

MOSTNEG INT
+ IBOARDSIZE

MemStart

MOSTNEG INT

Figure 4.2 Memory allocation on a 32-bit transputer

something like:

[buff.size]BYTE crucial.buffer :
PLACE crucial.buffer IN WORKSPACE

For a program where it is required to put all of the data apart from one large
array into the workspace, the program would be compiled with separate vector
space disabled, and the array allocated to vector space by a place statement
such as PLACE large. array IN VECSPACE.

Within a program it is possible to mix code compiled with separate vector space
on and code compiled with separate vector space off. The parts of the program
which have been compiled with separate vector space enabled will be given use
of the vector space.

72 TDS 184 00 April 1989

44 4 Programming single transputers

4.5 Sharing source between files

You can split the source~of the program over any number of files by using the
'INCLUDE directive. This directive allows you to specify a file which contains
occam source. The contents of this file are included in the source at the same
point and with the same indentation as the 'INCLUDE directive. Include files
may be nested to a maximum depth of ten. Files are treated according to the
rules described in section 3.7.3. You may use any file name permitted by the
rules in section 3.7.2. You should use • inc file extension for occam constant
and protocol definitions. An example of using the 'INCLUDE directive is given
below:

'INCLUDE "infile.inc" -- source in infile.inc

The name of the file to be included is placed in quotes. All of the line following
the closing quote may be used as for comments. Directives must occupy a single
line.

4.6 Separate compilation

Separate compilation reflects the hierarchical structure of occam, and the oc­
cam compiler compiles occam procedures and/or functions (PROCS and
FUNCTIONS). Any number of procedures and/or functions may be compiled at
any time, provided the only external references they make are via their parameter
lists.

A group of procedures and/or functions that are compiled together are known as
a compilation unit. Each procedure and/or function in such a group may be called
internally by other procedures declared later in that group, or externally by any
occam in the scope of the directive which references that separate compilation
unit. Constant declarations and protocols are also permitted inside a compilation
unit, for the use of the procedures and functions within it. The scope of a separate
compilation unit is the same as any normal occam procedure or function.

Separately compiled units are referenced from occam source as object code
files, using the 'USE directive. The object code file may have any name per­
mitted by the rules in section 3.7.2. If you omit the extension the compiler
assumes an extension in keeping with the current compilation, as described in
section 3.7.2. Files are treated according to the rules described in section 3.7.3.

An example of how to reference a separately compiled unit is shown below.

'USE "scunit.t4h" -- code in file scunit.t4h

The filename must be enclosed in double quotes. All of the line following the

72 TDS 184 00 April 1989

4.6 Separate compilation 45

closing quote can be used as comment. The directive must occupy a single line.

Separate compilation units may be nested to any depth and may contain
#INCLUDE dir~ctives. They may also use libraries, as described in section 4.8.

A separate compilation unit must be compiled before the source which references
it can be compiled or checked.

4.6.1 Sharing protocols and constants

occam constants and protocols may be declared and used within a compilation
unit according to the rules of the language. Where a constant and/or protocol is
to be used across separate compilation boundaries, it should always be placed
in a separate file; the file should be referenced in any compilation unit where
it is needed by using the #INCLUDE directive. Protocols will also need to be
referenced in any enclosing compilation unit (because the channels will either be
declared there or passed through). For example, suppose we have a protocol P
defined in a file myprot . inc. We might then use it as follows:

PROC main ()
#INCLUDE "myprot.inc"
#USE "mysc.t4u"

CHAN OF P actual.channel
PAR

do.it(actual.channel)

The separately compiled procedure do . it, in the file mysc. occ, would look
like this:

#INCLUDE "myprot.inc" -- declares protocol P
PROC do.it (CHAN OF Pin)

SEQ
body of procedure

Since the protocol name P occurs in the parameter list of the separately compiled
procedure do. it, the compilation unit must include a #INCLUDE directive,
preceding the declaration of do. it, to introduce the name P.

72 TDS 18400 April 1989

46 4 Programming single transputers

4.6.2 Compiling and linking large programs

Building a program which includes separate compilation units and library ref­
erences is straightforward. Separate compilation units in the program can be
compiled individually by applying the compiler to them. Nested compilation units
must be compiled in a bottom-up order and then the top level of the program is
compiled; finally the whole program is linked together.

Separate compilation units must be compiled before the unit which references
them can be compiled or checked. This is because the object code contains all
the information about a unit (names, formal parameters, workspace and code
size, etc.) which is needed to check correctness across compilation boundaries.
This information may be viewed using the ilist tool.

When a program is linked the code for all the separate compilation units in the
program is copied into a single file. In addition, code for any libraries used is
included in the file. Where libraries contain more than one module, only those
modules containing routines actually required in a program are linked into the
final code. This helps to minimise the size of the linked code.

4.7 Change control

When a change is made to part of a compiled program it is necessary to recom­
pile the program to create a new code file reflecting the change. The purpose
of the separate compilation system is to split up a program so that only those
parts of the program which have changed need to be recompiled, rather than
needing to recompile the whole program. However, it would be tedious to have
to remember which portions of a program had been edited in an editing ses­
sion. For this reason a Makefile generator imakef is supplied with the toolset.
This tool, when applied to a program (or part of a program), compiles a list
of dependencies of compilation units and uses this list to produce a Makefile.
The Makefile can be used with a suitable MAKE program to recompile only the
changed parts of a program. This ensures that compilation units will always be
recompiled where a change has made this necessary.

To use the Makefile generator you must tell it the name of the file you wish to
build. The tool can produce a Makefile for any type of file that can be built with
the toolset tools. In order to do this it uses the file name rules described in
sections 3.7.2 and 3.7.3.

See chapter 19 for details of the imakef tool and how to use it.

72 TDS 18400 April 1989

4.8 Libraries

4.8 Libraries

47

A library is a collection of compiled procedures and/or functions. Any number
of separately cpmpiled units may be made into a library by using the librarian.
Separately compiled units and libraries can be added to existing libraries. Each
compilation unit is treated as a separately loadable module within a library. When
checking, compiling or linking, only modules which are used by a program are
loaded. The rules for selective loading are described in the following section.

Libraries are referenced from occam source by the fUSE directive. For exam­
ple:

fUSE "hostio.lib" -- host server library

The filename is enclosed in quotes. The rest of the line, following the closing
quote, may be used for comments. Directives must occupy a single line.

Libraries should always use a .lib file extension, and this must always be
supplied in a fUSE directive. The file name of the library may be any name in
accordance with the rules described in section 3.7.2. Files are treated by the
rules in section 3.7.3.

4.8.1 Selective loading

Each module (separately compiled unit) in a library is selectively loadable by the
linker; Le. parts of a library not used or unusable by a program are ignored.
The unit of selectivity is the library module; Le. if one procedure or function of a
library module is used then all the code for that module is loaded.

The checker and compiler are selective when a library is referenced. Only mod­
ules of a library that are of the same, or compatible, transputer type and error
modes are read (see sections 4.4.2 and 4.4.4).

Selective loading is based on the following rules:

1 The transputer type of a library module must be the same as, or com­
patible with, the code which could use it.

2 The error mode of the library module must be the same as, or compatible
with, the code which could use it.

3 At least one routine (entry point) in a module is called by the code.

Rules 1 and 2 apply to the compiler and checker. All the rules are used by
the linker. The compiler and checker only select on transputer type and error

72 TDS 18400 April 1989

48 4 Programming single transputers

mode. It is not until the linking stage that unused modules are rejected. For
details on mixing processor classes and error modes see sections 4.4.2 and 4.4.4
respectively.

4.8.2 Building libraries

Libraries are built using the librarian tool ilibr. The librarian takes any number
of separately compiled units (. txx), linked units (. cxx files), or libraries (.lib
files) and combines them into a single library file. Each separately compiled unit
forms a single module in the library.

When forming a library the librarian ensures that there are no multiply defined
routines (entry points). In other words, for each combination of transputer type
and error mode there may only be one routine with a particular name. In doing so
the librarian treats a routine compiled for a transputer class as being equivalent
to one copy foreach member of that class. Routines compiled in universal error
mode are treated as if there is one copy for each of the three error modes. These
rules are described in more detail in chapter 16.

As an example consider building a library called mylib . lib. The source of
this library is contained in a file called mylib. occ and has been written to
be compilable for both 16 and 32 bit transputers. We want the library to be
available for T212 and T800 processors in halt on error mode only. Having
compiled the source for the two processors we will have two files, mylib. t2h
and mylib. t8h. To form a library from these compilation units type:

ilibr mylib.t2h mylib.t8h

The librarian uses the first file in the list to make up the output file name, so in
this case it will write the library to the file mylib . lib.

The librarian can also take an indirect file containing a list of the files to be built
into the library. Such files should have the same name as the library, but with a
.lbb file extension. So, still using the above example, if the files to make up
the library were put in a file called mylib .lbb, we could then build the library
using one of the following commands:

ilibr If mylib.lbb

ilibr -f mylib.lbb

When using the librarian you can specify the name of the library to be created
using the '0' option. For details of this and other options see chapter 16.

72 TDS 18400 April 1989

4.9 The pipeline sorter program

4.9 The pipeline sorter program

49

This section introduces a more substantial example which serves to show how
a larger program might be structured, in terms of separate compilation units,
libraries, and a shared protocol.

4.9.1 Overview of the program

The program sorts a series of characters into the order of their ASCII code
values.

Figure 4.3 Basic structure of sorter program

Figure 4.3 shows the basic structure of this program. There are three processes:
the input process, the output process and the sorter process. We can decom­
pose the sorter process by using a pipeline structure. This uses the algorithm
described in 'A tutorial introduction to occam programming'. If we design the
pipeline carefully we can ensure that each element of the pipeline is identical to
all the other elements. The pipeline is served by an input process, which reads
characters from the keyboard, and an output process which writes the sorted
characters to the screen. Figure 4.4 shows the structure of the program using a
pipeline.

Figure 4.4 Pipeline of n elements

An obvious implementation would be to write an occam process for each pro­
cess in figure 4.4, using a replicated process for the pipeline. Communication
between the processes is via occam channels and to aid program correctness
we should use an occam PROTOCOL for these channels. This protocol must
be shared by all the processes. As the occam compiler compiles processes
(PROCs) and as each of the processes is independent we can implement each
one as a separately compiled unit. The processes share a common protocol
and the best way to ensure consistency is to place 'the protocol in a separate file

72 TDS 184 00 April 1989

50 4 Programming single transputers

and use the 'INCLUDE mechanism to access it. These processes can then be
called in parallel by an enclosing program which can access the code of each
process by the 'USE mechanism.

There is a problem with this implementation because two processes require
access to the host file server. The host file server is accessed via a pair of
occam channels and occam does not allow the sharing of channels between
processes. There are a number of ways around this problem. One solution is to
use a multiplexor process for the server channels, as described in section 8.5.
Another solution is to merge the two processes into a single process. This
solution is used because the program accesses the server in a sequential manner
(read a line then display sorted line, read a line etc.). Figure 4.5 gives the final
process diagram for the program.

Figure 4.5 Program with combined input/output process

The implementation can be split into four files:

element.occ the pipeline sorting element
inout .occ the input/output process
sorter.occ the enclosing program
sorthdr. inc the common protocol definition

Figure 4.6 shows the way these files are connected together to form a program.

#INCLUDE

Figure 4.6 File structure of program

72 TDS 18400 April 1989

4.9 The pipeline sorter program 51

The source of the program is given below and is supplied in the ·examples'
directory. You can either copy these files to a working directory or you can
type in the source as given below. For details of the toolset directories see the
Delivery Manual that accompanies the shipment.

Two other files are required to complete the program. These are the host file
server library hostio .lib and the corresponding • inc file containing the host
file server constants.

4.9.2 The protocol

Declarations of constants and channel protocols are contained in the include file
sorthdr. inc, which is listed below.

PROTOCOL LETTERS
CASE

letter; BYTE
end.of.letters
terminate

VAL no.processors IS 4:

VAL number.elements IS 100:
-- must be divisible by no.processors

VAL elements.per.processor IS
number.elements / no.processors:

This declares a protocol called LETTERS, which permits three different types of
message to be communicated:

letter - followed by the character to be sorted.
end. of . letters - marks the end of the sequence to be sorted.
terminate - signals the end of the program.

The constant number. elements is also declared. This defines both the num­
ber of sorting elements in the pipeline and the maximum length of the sequence
of characters that can be sorted.

The constants no . processors and elements. per. processor are not
used by this version of the program, but are included for use by the multiproces­
sor version, d~scribed in section 5.6.

72 TDS 184 00 April 1989

52

4.9.3 The sorting element

4 Programming single transputers

The sorting element element. occ is listed below:

#INCLUDE "sorthdr.inc"

PROC sort.element (CHAN OF LETTERS input, output)

BYTE highest:
BOOL going:

SEQ
going := TRUE
WHILE going

input ? CASE
terminate

going := FALSE
letter; highest

BYTE next:
BOOL inline:
SEQ

inline := TRUE
WHILE inline

input ? CASE
letter; next

IF
next > highest

SEQ
output ! letter; highest
highest := next

TRUE
output ! letter; next

end.of.letters
SEQ

inline := FALSE
output ! letter; highest

output ! end.of.letters
output ! terminate

This program consists of two loops, one nested inside the other. The outer
loop accepts either a termination signal or a character for sorting. If it receives
a character it enters the inner loop. The inner loop reads characters until it
receives an 'end of letters' signal, signifying the end of the string of characters to
be sorted. The sort is performed by storing the highest (ASCII) value character
it receives and passing any lesser (or equal) characters on to the next process.

72 TDS 184 00 April 1989

4.9 The pipeline sorter program 53

The 'end of letters' tag causes the stored value to be passed on and the inner
loop terminates.

The maximum number of characters which can be sorted is determined by the
number of sorter processes. One character is sorted per process. -

4.9.4 The Input/output process

This process consists of a loop which reads a line from ,he keyboard, then
sends the line to the sorter and, in parallel, reads the sorted line back. It then
displays the sorted line. If the line read from the keyboard is empty the loop is
terminated. At the end of the process the host file server is terminated with the
success constant sps . success, which is defined in the file hostio. inc.

If any ito errors occur the program will stop, allowing it to be examined by the
debugger.

The input/output process inout .occ is listed below.

#INCLUDE "sorthdr.inc"
#INCLUDE "hostio.inc"

PROC inout (CHAN OF SP fs, ts,
CHAN OF LETTERS to.pipe, from. pipe)

#USE "hostio.lib"

[number.elements - l]BYTE line, sorted. line:
INT line. length, sorted. length:
BYTE result:
BOOL going:

SEQ
going := TRUE
WHILE going

SEQ
so.read.echo.line(fs, ts, line. length,

line, result)
IF

result <> spr.ok
STOP stop if an error occurs

TRUE
SKIP

72 TDS 18400 April 1989

54 4 Programming single transputers

PAR
SEQ

IF
(line. length = 0) no more input

to.pipe ! terminate
TRUE

SEQ
SEQ i = 0 FOR line. length

to.pipe ! letter; line[i]
to.pipe ! end.of.letters

SOOL end.of.line:
SEQ

end.of.line := FALSE
sorted. length := 0
WHILE NOT end.of.line

from. pipe ? CASE
terminate

SEQ
end.of.line := TRUE
going := FALSE

letter; sorted. line [sorted. length]
sorted. length .- sorted. length + 1

end.of.letters
SEQ

so.write.string.nl(fs, ts,
[sorted. line FROM 0
FOR sorted.length])

end.of.line := TRUE
so.exit(fs, ts, sps.success) -- terminate server

4.9.5 The calling program

This process calls the input output process in parallel with the sorter elements,
in a pipeline. The memory parameter must be declared, but the program does
not use it.

The calling program sorter. occ is listed below.

72 TDS 184 00 April 1989

4.9 The pipeline sorter program

#INCLUDE "hostio.inc"

PROC sorter (CHAN OF SP fs, ts, []INT memory)

fUSE "hostio.lib" host i/o library
#INCLUDE "sorthdr.inc"

55

fUSE "inout"
fUSE "element"

-- separately compiled units

[number.elements + l]CHAN OF LETTERS pipe:
PAR -- run pipe between i/o processes

inout (fs, ts, pipe[O], pipe[number.elements])
PAR i = 0 FOR number.elements

sort.element(pipe[i], pipe[i + 1])

4.9.6 Building the program

To build the program, first check and compile each component of the program
separately, link them together, and add bootstrap code to the main compilation
unit.

The program's components must be compiled in a bottom up fashion, that is,
element. occ and inout . occ first (in either sequence), followed by the main
program sorter. occ.

First check the sorting element element. occ by typing:

icheck element

The file extension can be omitted on the command line because the source file
has the conventional extension .occ.

Next, compile the sorting element using one of the following commands:

occam element le

occam element -e

The 'e' option disables the compiler libraries and speeds up the compilation.
The compiler libraries are not required because the program does not use any
extended or floating point data types. When specifying options for any of the tools
remember to use the correct prefix character for your version of the toolset ('-' for
UNIX implementations, and' I' for the IBM PC and VAXNMS implementations).

72 TDS 184 00 April 1989

56 4 Programming single transputers

The compiler produces a file called element. t4h.

Check the input/output process by typing:

icheck inout

Then compile the input/output process using one of the following commands:

occam inout /e

occam inout -e

The compiler will produce a file called inout . t4h.

Having checked and compiled the separate compilation units that make up the
program you can now check the main body of the program. Type:

icheck sorter

Then compile the main body using one of the following commands:

occam sorter /e

occam sorter -e

The compiler will produce a file called sorter. t4h.

Having compiled all the components of the program you can now link them
together to form a whole program. To do this type:

ilink sorter.t4h inout.t4h element.t4h hostio.lib

The file sorter. t4h'must be the first file name on the Iinker's command line,
because it is the main body, or entrypoint, of the program. The Iinker assumes
that the first file in the input list contains the main entry point for the program
and uses the transputer type and error mode of the first file to determine which
libraries to select. The order of the remaining files is unimportant.

Any libraries used by the program must also be specified on the Iinker command
line. The library hostio . lib is the server library used by this program.

The Iinker will create the files sorter. c4h and and sorter. m4h. The •c4h
file contains the linked code, and the .m4h file contains a code map. The code
map is used by the debugger and simulator tools.

72 TDS 184 00 April 1989

4.9 The pipeline sorter program 57

Before you can run the program you must add bootstrap code. To do this use
the bootstrap tool iboot, as follows:

iboot sorter.c4h

The bootstrap tool will create the files sorter. b4h and sorter. d4h. These
. b4h file contains the bootable program code, and the •d4h file is a descriptor
file for use by the debugger and simulator.

To run the program on a transputer board use one of the following commands:

iserver Ise Isb sorter.b4h

iserver -se -sb sorter.b4h

The program reads characters from the keyboard, sorts the line and redisplays
it. The program will run until until input is terminated by typing RETURN on an
empty line. The 'se' option directs the server to terminate if the program sets
the error flag.

To run the program using the simulator type:

isim sorter.b4h

When the simulator 'Monitor page' is displayed, type 'x' followed by 'G' to run
the program.

4.9.7 Automated program building

It will be obvious from the previous section that there are many steps to go
through when building a program of any size. Some of these steps must be
performed in a specific order. If part of the program were changed then all
affected parts must be recompiled, relinked and so on. To help manage these
problems various software tools are available.

MAKE is a common tool for building programs. It uses information about when
files were last updated, and performs all the necessary operations to keep object
and bootable files up to date with changes in any part of the source. Makefiles
are the standard method of providing the MAKE program with the information it
needs.

The occam toolset is designed in such a way that it is possible for a tool to
construct Makefiles to build occam programs. The Makefile generator imakef
produces Makefiles in a format acceptable to most MAKE programs.

72 TDS 18400 April 1989

58 4 Programming single transputers

In order for the Makefile generator to deduce compilation parameters and which
tools to use you must give it the full name of the file you wish to build, including
the correct file extension.

To generate a Makefile for the example program type:

imakef sorter.b4h

The Makefile generator will produce a Makefile for the program called sorter.

The Makefile generator has built-in knowledge of the file name rules of the
toolset. In this example, it knows by examining the file name that the program
to be built is for a single T414 processor in HALT mode, and that the source
of the main body of the program is in the file sorter. occ. It reads the file
sorter.occ and discovers that it uses a library called hostio . lib, the two
compilation units inout and element, and two include files, sorthdr. inc
and hostio . inc. It then reads the sources of the include files and compilation
units and finds no more file dependencies. Because no extensions are given for
the two compilation units imakef knows they are to be compiled for a T414 in
HALT mode.

In order to compile the 'library file the Makefile generator searches for a library
build file (. lbb extension) from which to deduce source file names and com­
pilation details. As there is no such file for hostio .lib it assumes that the
library is complete and cannot be rebuilt.

With this information about source file and their dependencies, it builds a Makefile
contain~ng full instructions on how to build the program.

To build the program run the MAKE program on the file sorter. The entire
program will be automatically compiled, linked and made bootable, ready for
loading onto the transputer.

For more details about the imakef tool, MAKE programs, and the format of
Makefiles, see chapter 19.

72 TDS 18400 April 1989

5 Programming
transputer networks

This chapter describes how to build programs that run on networks of transput­
ers. It describes the steps in configuring a program and loading it on transputer
network, and illustrates the procedures with an example program for four trans­
puters. The chapter ends with a summary of program configuration.

5.1 Introduction

In order to build programs for multitransputer networks a program is split into a
number of self contained components, and each of these is implemented as an
occam process. Each process runs on its own transputer and may communi­
cate with other processes on other transputers via links.

Programs consisting of occam processes can be run on single or multiple trans­
puters, in any combination. Performance requirements can be met by adapting
the application to run on differing numbers of transputers, and by using differing
network topologies. The mapping of processes to processors on a transputer
network is known as configuration.

Figure 2.3 illustrates how occam processes can be run on a single transputer
or configured on several transputers connected in a network.

To illustrate the use of the configurer, section 5.6 shows how the pipeline sorter
program introduced in chapter 4 can be modified to run on a network of four
transputers.

5.2 Configuration

Configuration is the mechanism by which processes to run on individual trans­
puters in a network are collated with bootstrap code into a form which can be
loaded onto a multitransputer network, and set running from the host computer.

The mapping of processes to transputers, channels to links and, implicitly, the
interconnections between transputers are defined in the configuration description.
Process placement and transputer connections are defined using special occam
configuration statements. These are described in section 13.4.

Each processor in the network runs one or more separately compiled procedures.
These separately compiled procedures may be considered as complete occam
programs in their own right. The same separately compiled procedure can be

72 TDS 18400 April 1989

60 5 Programming transputer networks

run on any number of processors; one copy exists in the configured code, and
the code is loaded onto each transputer where the procedure runs.

The code for an individual processor is specified from within the configuration
description using a #USE directive. Processes to run on individual transputers
must be previously compiled and linked, and procedures to be used at configu­
ration level may not be taken from a library.

5.3 Preparing for configuration

Before you can configure your network program you must first build the pro­
cess(es) for each processor in the network. To do this you must compile all the
components that will run on one processor and link them together to form one
object file. This file must have the same name as that of the source of the out­
ermost separate compilation procedure (. occ file), but with a •cxx extension.
All the code on one processor must be compiled for the same (or a compatible)
transputer type and in the same (or a compatible) error mode, according to the
rules described in sections 4.4.2 and 4.4.4.

As an example, suppose you have the source of a separate compilation proce­
dure that you want to run on a T414 transputer in halt on error mode, in the
file node. occ. It uses two separate compilation units, contained in the files
scl.occ and sc2 .occ, and a library in the file libs .lib. Having compiled
all the components link them together like this:

ilink node.t4h scl.t4h sc2.t4h libs.lib

This links all the code which forms the processor's program and writes it in to
the file node. c4h.

You should build the code for each transputer in a similar way.

Before using the configurer you must write a configuration description. This is
done using the configuration statements of occam. The configuration descrip­
tion defines the arrangement of processors in the network and the allocation of
code to each processor.

There must be at least one path from the host to all processors on the network
so that the configurer can determine a load path for each processor. The load
path is important because only one processor is connected directly to the host
computer.

The code for each processor is referenced by a #USE directive. For example:

#USE "node.c4h" -- code is in the file node.c4h

72 TDS 184 00 April 1989

5.4 Configuring a program 61

In the configuration description you must explicitly declare the type of transputer
that the code is to run on. This may specify a separate compilation procedure
compiled for any compatible transputer type or class. For example if you have
code to run on both a T414 and a T800 transputer you could compile it for the
TA transputer class. You can then run that procedure on both the T414 and
T800 transputers without the need to make separate copies of the procedure.

5.4 Configuring a program

The command iconf runs the configurer.

For example:

iconf program

As the default file extension for configuration descriptions is •pgm, the source
of the description in this example would be in the file program. pgm.

When configuration is complete a new file, containing a bootable version of the
code for the whole network, will have been created. This file has the same
name as the description source, but with a •btl extension. In the above exam­
ple it would be program. btl. A configuration description file with the •dsc
extension is also created for the debugger.

See chapter 13 for details of the iconf tool and how to use it.

If you run the configurer with the CM' (configuration map) option, then it produces
a readable configuration map file in place of a bootable network program. The
configuration map shows details of processor interconnections and code alloca­
tion.

5.5 Loading a network

To load a network use the host file server in the same way as for single processor
programs. For example:

iserver Isb program.btl

iserver -sb program.btl

A communication protocol exists between the root transputer and a target trans­
puter network to direct the loading of code to the desired place in each transputer.
The communication consists of bootstrap packets, routing information, address
information, load information, code packets and execute items. For more infor-

72 TDS 184 00 April 1989

62 5 Programming transputer networks

mation on loading transputer networks see ·INMOS technical note 34: Loading
transputer networks'.

5.6 Example: A pipeline sorter on four transputers

This section describes how the pipeline sorter program, described in section 4.9,
may be distributed over four T414 transputers.

An example of how to design and write a configuration description is given,
followed by detailed instructions about how to compile, configure and run the
program.

In the configuration description it is assumed that there is a transputer network
of four T414 transputers connected as shown in figure 5.1. It does not matter if
you don't have such a network - you should read through this example and then
try modifying it for your network.

transputer 0

IMS
o T414

3

IMS
T414 0

transputer 3

transputer 1

IMS
o T414

o
IMS

T414

transputer 2

Figure 5.1 Network of four transputers

The occam source and configuration description developed in this example is
supplied with the toolset and you should copy these files to a working directory
in order to build the program. Alternatively you can type in the source of the
program, as it is given below and in section 4.9.

The files are:

72 TDS 184 00 April 1989

5.6 Example: A pipeline sorter on four transputers

sorthdr. inc the common protocol definition.

element.occ the sorting element.

inout .occ the interface to the host file server.

tsort .occ part of the pipeline split to run on one transputer.

sorter. pqm the configuration description for the network.

63

The contents of the files sorthdr . inc, element. occ and inout . occ are
described in section 4.9. The contents of the other files used in the program are
described below.

Three files are required to complete the program. These are the host file server
library hostio . lib, the hostio include file hostio . inc, and the link address
file linkaddr. inc. These files can be found in the toolset library directory.

5.6.1 The configuration description

This section describes how to build a configuration description, using the pipeline
sorter program as an example.

First we must decide how the program will be mapped onto the transputers in
the network. For the pipeline sorter we can distribute the processes as shown
in figure 5.2.

For simplicity we can group together all the sorting elements that run on a single
processor into one process called tsort. occ, which calls a sub-pipeline of
sorter elements. We only need one copy of this process, even though it will run
on more than one transputer. A copy of the code will be sent to each processor
when the program is loaded.

#INCLUDE "sorthdr.inc"
PROC tsort (CHAN OF LETTERS pipe.in, pipe.out)

#USE "element" -- sorter element

[elements.per.processor - l]CHAN OF LETTERS pipe:

PAR
sort.element(pipe.in, pipe[O])
PAR i = 0 FOR elements.per.processor - 2

sort.element(pipe[i], pipe[i +_1])
sort.element(pipe[elements.per.processor - 2],

pipe.out)

72 TDS 184 00 April 1989

64 5 Programming transputer networks

transputer 0

transputer 3

Figure 5.2 Pipeline sorter processes

Planning the configuration description

First draw a diagram of the network, label each link connecting processors, and
allocate processes to each transputer in the network, as shown in figure 5.3. Use
this diagram to draw up a table of process-to-transputer allocation like table 5.1.

Next, using figures 5.3 and 5.1, draw up another table show the mapping of
channels to links, as in table 5.2. It can make the configuration description more
concise and easier to write if you use an array of channels for channels that are
to connect transputers together.

Now, using the tables, write a configuration description for the program. First
reference any separately compiled units with the #USE directive and any con-

72 TDS 18400 April 1989

5.6 Example: A pipeline sorter on four transputers

ts pipe[O]
tsort

fs

pipe [3] pipe[l]

tsort
pipe[2]

tsort

Figure 5.3 Allocation of processes on transputers

Process Transputer Type
inout and tsort 0 T414

tsort 1 T414
tsort 2 T414
tsort 3 T414

Table 5.1 Process - transputer allocation

source destination
Channel transputer link transputer link

fs host - 0 0
ts 0 0 host -

pipe[O] 1 0 0 1
pipe[1] 2 0 1 1
pipe[2] 3 0 2 1
pipe[3] 0 3 3 1

Table 5.2 Channel - link allocation

65

stant and protocol declarations with the #INCLUDE directive. Next declare the
channels that are needed for inter-transputer communication. In this example the
channels fs, ts and pipe need to be declared. Note that channels sourced on
a transputer must be mapped to output links; destination channels are mapped
to input links.

72 TDS 184 00 April 1989

66 5 Programming transputer networks

Next compile the input/output process using one of the following commands:

occam inout le

occam inout -e

For each transputer in the network you must:

(creates file inout . t4h)

• Place the necessary channels on links (from table 5.2).

• Call the process(es) to run on that transputer (from table 5.1).

To assign channels to links use the PLACE construct. Link numbers can be taken
from table 5.2. Link addresses are defined in the include file linkaddr. inc
supplied with the toolset.

To allocate code to processors in the configuration description, use the PLACED
PAR construct. Processor numbers and types can be taken from table 5.1.

The basic configuration description is shown in figure 5.4.

To simplify the configuration description we can use a replicated PLACED PAR to
place channels and allocate the tsort process to each of the four transputers.
The final configuration description, which includes this refinement, can be found
in the file sorter. pgm on the toolset examples directory. A listing of the
program can be found in figure 5.5.

Note the use of the constant no .processors to make the description inde­
pendent of the number of processors in the network.

We are now in a position to use the configurer. The next section describes the
steps required to build the example program.

5.6.2 Building the program

The components of the program must be compiled in a bottom up fashion. First
compile the sorting element using one of the following commands:

occam element le

occam element -e

Because the file has a •occ file extension you can omit the extension from the
filename. The compiler option 'e' is used because the compiler libraries are not
required. The compiler will produce a file called element. t4h. •
72 TDS 18400 April 1989

5.6 Example: A pipeline sorter on four transputers 67

fUSE "inout.c4h"
fUSE "tsort.c4h"

linked inout process
linked sub-pipe process

#INCLUDE "hostio.inc"
#INCLUDE "sorthdr.inc"
#INCLUDE "linkaddr.inc"

-- host i/o constants
sorter constants
link address constants

-- External channels to be mapped to links
CHAN OF SP fs, ts:
[4]CHAN OF LETTERS pipe:

PLACED PAR
PROCESSOR 0 T414

PLACE ts AT linkO.out:
PLACE fs AT linkO.in:
PLACE pipe[O] AT linkl.out:
PLACE pipe[3] AT link3.in:
CHAN OF LETTERS to. start:
-- For internal use on this processor
PAR

inout(fs, ts, to.start, pipe[3])
tsort(to.start, pipe[O])

PROCESSOR 1 T414
PLACE pipe[O] AT linkO.in:
PLACE pipe[l] AT linkl.out:
tsort(pipe[O] , pipe[l])

PROCESSOR 2 T414
PLACE pipe[l] AT linkO.in:
PLACE pipe[2] AT linkl.out:
tsort(pipe[l] , pipe[2])

PROCESSOR 3 T414
PLACE pipe[2] AT linkO.in:
PLACE pipe[3] AT linkl.out:

~ tsort(pipe[2] , pipe[3])

Figure 5.4 Example configuration

Now link it by typing:

ilink inout.t4h hostio.lib

72 TDS 184 00

(creates file inout . c4h)

April 1989

68

'USE "inout.c4h"
'USE "tsort.c4h"

5 Programming transputer networks

linked inout process
linked sub-pipe process

'INCLUDE "hostio.inc"
'INCLUDE "sorthdr.inc"
'INCLUDE "linkaddr.inc"

host i/o constants
sorter constants
link address constants

-- External channels to be mapped to links
CHAN OF SP fs, ts:
[no.processors]CHAN OF LETTERS pipe:

PLACED PAR
PROCESSOR 0 T414

PLACE ts AT linkO.out:
PLACE fs AT linkO.in:
PLACE pipe[O] AT link1.out:
PLACE pipe[no.processors - 1] AT link3.in:
CHAN OF LETTERS to. start:
-- For internal use on this processor
PAR

inout(fs, ts, to.start, pipe[no.processors - 1])
tsort(to.start, pipe[O])

PAR i = 1 FOR no.processors - 1
PROCESSOR i T414

PLACE pipe[i - 1] AT linkO.in:
PLACE pipe[i] AT link1.out:
tsort(pipe[i - 1], pipe[i])

Figure 5.5 Final configuration

Now compile the sub-pipeline process using one of the following commands:

occam tsort le

occam tsort -e

Link it by typing:

ilink tsort.t4h element.t4h

(creates file tsort . t4h)

(creates file tsort . c4h)

To make the program runnable you must add bootstrap code. To do this for
multitransputer programs use the configurer iconf.

72 TDS 18400 April 1989

5.7 Summary of configuration steps

To configure the program type:

iconf sorter

69

The •pgm extension can be omitted because it is automatically assumed. The
configurer will create the file sorter.btl and the configuration description file
sorter. dsc for use by the debugger.

5.6.3 Running the program

To run the program on the transputer network use one of the following com­
mands:

iserver Ise Isb sorter.btl

iserver -se -sb sorter.btl

The program will run until you type 'RETURN' on its own. The 'se' option directs
the server to terminate if the program sets the error flag.

5.6.4 Automated program building

As with the single processor version of this program it is possible to automate
the building of this program with the Makefile generator tool and a suitable MAKE
program.

To produce a Makefile for the entire program type:

imakef sorter.btl

The Makefile generator will produce a file called sorter containing a MAKE
description for the program.

To build the program run the MAKE program on the file sorter and all the
necessary compiling, linking and configuration will be done automatically. For
more information about MAKE programs see chapter 19.

5.7 Summary of configuration steps

To summarise, the steps involved in building a program that runs on a network
of transputers are as follows:

72 TDS 184 00 April 1989

70 5 Programming transputer networks

Decide how your program will be distributed over the transputers in your
network.

2 Write a configuration description for your program by:

(a) Allocating processes to transputers.

(b) Allocating channels to links connecting processes on different
transputers.

3 Compile all the separate compilation procedures that form the code for
each transputer in a bottom up fashion.

4 Link each configuration procedure with its component parts into a file
with the same name as the toplevel source file. The file is given a . cxx
extension.

5 Run the configurer on the configuration description file.

6 Load the program into the network using the host file server.

Steps 3 to 5 can be automated by using imakef and a suitable MAKE program.

72 TDS 184 00 April 1989

6 Loading transputer
programs

This chapter explains how to load programs onto single transputers and trans­
puter networks. It briefly describes the format of loadable programs and explains
how to use the program loading tools iserver and iskip. The chapter also
discusses some aspects of debugging programs on transputer boards, describes
how to load and debug programs that use the root transputer, and shows how
to load a program onto a target network using the iskip tool.

6.1 Introduction

Programs to be run on transputers and transputer networks must consist of
beetable code, that is, code to which bootstrap information has been added to
make the program self-starting when it is loaded into the transputer's memory.

Bootable code is generated by iboot for single transputer programs and by
iconf for multitransputer programs. The iboot tool generates a single bootable
process to run on a single transputer, w~ereas iconf generates a bootable
process for each transputer in the network. Bootable single transputer programs
have the file extension . bXx, and bootable multitransputer programs have either
the extension .btl (boot from link programs) or •btr (programs that will be
booted from ROM or dynamically loaded).

6.2 Tools for loading programs

Two tools are provided to assist with loading programs onto transputers and
transputer networks:

• iserver - the loader tool and host file server. This tool loads the
bootable code onto the transputer or transputer network and provides
the runtime communications with the host system.

• iskip - the skip tool that allows a program to be loaded through the
root transputer onto an external network. This tool starts up a special
skip process on the root transputer that forces the root transputer to be
skipped when iserver is invoked to load the program. The process
consists of a software data link that transfers data byte by byte between
the program and the host.

Skip loading is useful for debugging programs that are configured to use
the first transputer on a network. The root transputer in the network is

72 TDS 184 00 April 1989

72 6 Loading transputer programs

skipped and the program is loaded onto the first processor afterthe root
transputer, leaving it free to run the debugger. This avoids having to
use idwnp to save the root transputer's memory before invoking the
debugger.

Programs loaded using iskip always require an extra processor. For
example, a program written for a single transputer can only be loaded
using iskip if there are at least two processors on the network, one to
act as the root transputer and one to run the program.

6.2.1 The loading mechanism

In single transputer programs code is loaded onto the first processor on the
network and the program code is then loaded down the host link byte by byte.
If iskip has been used the program is loaded onto the second processor on
the physical network. In multitransputer programs the process is repeated for all
processors on the network until all the code is loaded.

When the code is copied into the transputer's memory the process boots auto­
matically and the program continues to run until an error occurs or the server
is terminated by pressing the system interrupt key, usually CTRL-C or CTRL­
BREAK.

6.3 Boards and sub-networks

,There are two basic types of INMOS transputer evaluation boards: those that
boot from link and those that boot from ROM.

Boot from link boards are loaded down the link that connects the root transputer
to the host using the iserver tool. Programs intended to run on boot from link
boards must consist of bootable code that is self-starting when it is loaded into
the transputer's memory.

Boot from link boards form the majority of boards in general use. Examples of
boot from link boards supplied by INMOS are the IMS B014 VME motherboard,
and the IMS B008 PC motherboard.

6.3.1 Boot from ROM boards

Boot from ROM boards are intended for applications such as embedded systems.
Examples of boot from ROM boards are the IMS B002 single transputer board,
and the IMS B006 multitransputer Double Eurocard. Boot from ROM boards can
be set to boot from link by setting a single switch on the board.

72 TDS 18400 April 1989

6.3 Boards and sub-networks 73

Programs intended to run on boot from ROM boards contain no bootstrap code
and are loaded down RS232 lines using special software. For details about the
products available for installing transputer programs in ROM, including tools for
programming' EPROMS, contact INMOS.

All the example programs described in this manual must be loaded and run on
boot from link boards or on boot from ROM boards that have been set to boot
from link.

6.3.2 SUbsystem wiring

Subsystem wiring is the way in which boards are connected together, and de­
termines the manner in which transputer sub-networks are controlled.

Three signals are used to control transputers mounted in a system, namely Re­
set, Analyse, and Error. Together these are known as the System Services. All
INMOS transputer boards use a common scheme for propagating these signals
to other sub-networks.

Each transputer board has three 'ports' for communicating system services from
one board to another. These are Up, Down, and Subsystem. Up is the input
port, used by an external system to control the board. Down and Subsystem are
output ports, used to propagate the Up signal out of the board in two different
ways.

Down simply copies the Up signal, providing a way of propagating the signal
unchanged throughout the network. Multiple boards can be chained together
by connecting successive Up and Down ports and the whole network can be
controlled by a single signal propagated from the root processor. Subsystem
transfers control to the board, allowing sub-networks downstream of the board
to be independently reset, analysed, and their error flags read, under the control
of the root transputer.

6.3.3 Controlling sub-networks

Multiple transputer systems can either be controlled together by the host com­
puter, or by a master transputer, itself controlled by the host computer.

In a typical system, the root transputer's Up port is connected to the host com­
puter so that it can control the loading of programs and monitor for errors. The
first processor in the sub-network is connected to either Down or Subsystem,
depending on the application, and other processors on the network are chained
together via their Up and Down ports.

72 TDS 184 00 April 1989

74 6 Loading transputer programs

In a simple application requiring multiple transputers, the sub-network would
normally be connected to Down on the root transputer. This would allow the
host computer to reset the whole network with one operation and to monitor the
error signal on any transputer in the network.

A more complicated application may require several programs to be loaded onto
the sub-network under the control of the root transputer. Here the sub-network
would be connected to Subsystem so that the root transputer could repeatedly
reset and re-load the sub-network. Any errors in the sub-network would be
detected by the root transputer through its Subsystem port, and the error would
not be propagated through the Up port to the host computer. Reset and Analyse
signals are always propagated through to the Subsystem port, but the error signal
is not relayed back.

6.4 Debugging programs on transputer boards

When debugging transputer networks the debugger options that must be used
vary with the board connections (subsystem wiring), whether or not the program
uses the root transputer, and to some extent the board type.

6.4.1 Program mode

The debugger must execute on the root transputer of a network. This means
that parts of the program that run on the root transputer must be debugged from
a memory dump file. The file must be created by idump before the debugger
is invoked, and the debugger must be invoked using a special option that allows
it to read the dump file.

To avoid the need for a memory dump file, programs can be loaded onto the
network over the root transputer by first invoking the skip tool iskip. This
sets up a process on the root transputer that allows the rest of the network to
communicate with the host as though the root transputer were absent. Since
the root transputer runs no part of the program it can then be used to run the
debugger without fear of overwriting the program.

For more details about loading and debugging programs that use the root trans­
puter see section 6.4.3.

6.4.2 Board types

Some early boards such as the IMS 8004, unlike later TRAM-based boards, do
not propagate Reset through to the Subsystem port. On these boards the debug­
ger must be invoked with different command line options than for the later boards.

72 TDS 18400 April 1989

6.5 Example of using iskip

Commands to use for specific board types are described in section 14.3.1.

6.4.3 Programs which use the root transputer

75

Programs that use the root processor to run part (or all) of the program can be
loaded for debugging using iserver with or without iskip. If iskip is used
an extra processor is required to act as the root transputer on the network.

If iserver is used the contents of the root transputer's memory must be
dumped to disk using the idump tool, and the debugger invoked with the 'R'
option to read the memory dump file. The rest of the network· can be debugged
directly down the transputer links. If you only have a single processor this method
must be used.

If iskip is used, the program can be debugged down the transputer link in the
normal way. The skip tool allows the program to be loaded into the sub-network
over the top of the root processor, leaving it free to run the debugger. Communi­
cation with the host is supported by a special route-through mechanism running
on the root transputer that transfers data transparently between the program and
the host computer.

6.4.4 Programs which do not use the· root transputer

To load a program for debugging that does not use the root transputer, first
ensure that the program is configured for the correct sub-network so that it does
not include the root processor, invoke iskip to set up the skip process on the
root transputer, and load the program in the normal way using iserver. To
debug the program invoke the debugger with the 'T' option 'and specify the root
transputer link to which the network is connected.

6.4.5 Analyse and Reset

Care must be taken that Analyse or Reset are only asserted once on a network
that is to be debugged, or incorrect data will be obtained. To prevent this the
debugger should be invoked using the command sequences given in table 14.2.

6.5 Example of using iskip

This example shows how to use the iskip tool to load a program over the root
transputer. The program to be loaded is configured for a two interconnected T800
transputers mounted on a B008 motherboard. This forms the target network. A
T414 processor in slot zero acts as the root transputer, and the target network

72 TDS 18400 April 1989

76 6 Loading transputer programs

is connected to link 1 on the root transputer via one of the links on· processor 1.

The target network and its connections to the host computer are shown schemat­
ically below.

target network
host computer root transputer , ,

host host link
Ski~

link 1 processor processor
file roe ss 1 2

server

The file twinprog.btl contains the bootable program.

To prepare the board for running the program on the two-processor T800 net­
work, invoke iskip using one of the following commands:

iskip 1 Ir le

iskip 1 -r -e

This sets up the system to direct the program to the target network and activates
the data transfer program on the root transputer. Options 'r'and 'e' respectively
reset the target network and direct the host file server to monitor the halt-on-error
flag.

The program can then be loaded using one of the following commands:

iserver Iss Ise Isc twinprog.btl

iserver -ss -se -se twinprog.btl

72 TDS 18400 April 1989

7 Debugging occam
programs

This chapter describes how to debug occam programs. It begins with an intro­
duction to the toolset debugger, describes symbolic and assembly level debug­
ging, and illustrates the facilities available with a tutorial example. The chapter
also describes the simulator tool that allows you to debug programs without
hardware, and contains some hints for debugging occam programs.

7.1 Introduction

The debugger tool idebug provides an interactive environment for the post­
mortem debugging of occam programs. It allows processes running on each
transputer on a network to be examined at source code and assembly code level.
It supports the inspection of source level symbols such as variables, channels,
and timers, and the disassembly and inspection of memory, for any process
running on any transputer in the network.

The toolset debugger allows limited symbolic debugging of other languages.
Details of these facilities can be found in section 7.2.2.

7.1.1 Compiling programs for debugging

Programs to be debugged must be compiled with debugging data enabled. This
is the compiler default and can only be disabled by specifying the compiler '0'
option. When debugging is enabled, the compiler makes no change to the object
code, but rather inserts extra information into the object file for the debugger to
use.

Programs to be debugged should also be compiled in HALT mode. In HALT
mode any error during program execution halts the transputer immediately. In
STOP and UNDEFINED modes, errors do not halt the program, and programs
compiled in these modes can only be debugged if they are halted explicitly.
HALT mode is the compiler default.

A running occam program may halt for a number of reasons. Examples of
these are:

• A STOP process, or a process which behaves like STOP (such as an IF
with no TRUE guards) has been executed.

• An array index is out of range.

72 TDS 184 00 April 1989

78 Debugging occam programs

• An arithmetic error, such as overflow or divide-by-zero has occurred.

• An array element is being aliased at runtime, that is, being referred to
by more than one name within a given scope. Alias checking is normally
performed by the compiler, but can be disabled.

For a full list of possible causes of run time errors, see section 14.5.2.

When a run time error occurs, the debugger can be used to pinpoint the line of
occam causing the error, and to investigate the state of that process and other
processes in the system.

Note: The debugger may not find all current processes; for example, it cannot
find processes which have deadlocked waiting for communication. Deadlocks
are discussed in more detail in section 7.4.

7.1.2 Programs that can be debugged

The debugger can analyse programs running on transputers that are either di­
rectly attached to a host through a server program, or connected to the host via
a root transputer. The debugger runs on the root transputer and networks to be
debugged must incorporate a 32-bit transputer at the root.

For programs that use the root transputer in a network, the contents of the
transputer's memory must be dumped into a special memory dump file for the
debugger to read. This is because the debugger itself runs on the root transputer
and overwrites its memory.

For programs that do not use the root transputer, it is not necessary to dump
the root transputer's memory. The root transputer does not run any part of the
program and can be used to run the debugger.

Programs that do not use the root transputer can be loaded onto the network
using the skip loader program iskip that loads over the root transputer and
leaves it free to run the debugger. The debugger accesses all other transputers
on the network through the transputer links. For more information about. skip
loading see chapter 6.

7.2 Debugger facilities

The debugger facilities divide into two groups; those that operate at the level
of the high level language, (symbolic facilities), those that operate at assembly
code level (Monitor page facilities).

72 TDS 18400 April 1989

7.2 Debugger facilities 79

Symbolic facilities allow programs to be debugged from source code. Source
code can be scanned, variables inspected, and procedure calls back traced.
Symbolic functions can also be used to debug non-OCCam programs, with some
restrictions.

Symbolic functions are invoked using function keys. For details of specific key­
board layouts see the Delivery Manual.

The Monitor page facilities view the transputer network from the assembly code
level, and do not use the debugging information produced by the compiler. They
give information about the transputer's state, such as the status of process and
timer queues. Either set of facilities may be used on any transputer in the
network.

7.2.1 Symbolic debugging

Symbolic debugging operates with the symbols that are defined in the high-level
language source code. The debugger symbolic interface allows you to locate
specific source code, inspect variables and channels, and trace procedure calls.

Symbolic facilities for non-OCCam languages are more limited; for details see
section 7.2.2.

Locating to source code

Given any transputer instruction address, the debugger can locate the corre­
sponding occam line in the source file and display it. This is known as locating
to the code.

The debugger can display the occam source line corresponding to any of the
following:

• The last transputer instruction executed.

• A process running in parallel.

• A process waiting for a timer.

• A process waiting for communication on a tr~nsputer link.

A process waiting for communication on an internal channel can be found by
inspecting the contents of that channel, as described later in this section.

The ability to locate to any source line requires the source to be available. Where
the source is not available, for example for the toolset compiler libraries, the

72 TDS 184 00 April 1989

80 Debugging occam programs

debugger can only locate to the call to the routine, rather than the source line
itself.

When a source line has been located, other debugger functions can be used
to examine the code and inspect program parameters. These functions are
accessed through special function keys. For a full list of these functions, see
chapter 14.

Examining code and inspecting parameters

Once a source line has been located, parameters that are in scope at that line
can be examined using the !lNSPECTI function, and procedure calls can be lo­
cated using the ISACKTRACEI function. Values of constants, variables, parame­
ters, abbreviations, array elements, and channels, can be all be inspected, and
non-local variables and channels can also be inspected. They can be displayed
in hexadecimal, or in any other valid occam representation for their type.

From any location it is possible to backtrace from a procedure or function call to
the point from which the enclosing procedure is called. This works even if the
source is not present, as may be the case with libraries supplied from external
sources. The process can be repeated for each nested procedure or function
call, to build up a complete stack trace of procedure calls from a particular
location. Variables and other parameters can be inspected at any stage.

UsinglcHANNEL! it is possible to determine the instruction and workspace pointers
of any process waiting for communication, jump to the waiting process, and
continue debugging at that point.

Other functions that are available during symbolic debugging are the examination
of specific symbols, and the determination of address and workspace require­
ments for procedures and functions.

7.2.2 Debugging non-OCCam programs

The debugger can analyse non-OCCam programs using information supplied by
the compilers. This may be limited and can restrict the ability of idebug to de­
bug non-OCCam code. For C, FORTRAN, and Pascal programs the ISACKTRACEI
function can be used to discover the context of procedure and function calls, but
the UNSPECTI and ICHANNEL! functions are inoperative. However, other types of
debugging operations, such as locating waiting processes, can still be performed.

Note: Non-OCcam languages can in some circumstances set the error flag even
during correct execution and as a result of this non-OCCam programs compiled
in HALT mode may produce spurious errors.

72 TDS 18400 April 1989

7.3 A debugging example

7.2.3 Assembly level debugging

81

The debugger can also debug programs at the level of assembly code and trans­
puter state, usjng the Monitor page facility. To enter the Monitor page debugging
environment, invoke the IMONITORI function from the symbolic debugging envi­
ronment.

From the Monitor page environment you can inspect the instruction pointer (pro­
gram counter), the workspace descriptor, the process queues, the processor
flags and the transputer memory contents.

Using information from the process and timer queues, the debugger can display

• Instruction and workspace pointers of queued processes

• Processes waiting for communication on transputer links

• Processes waiting for a signal on the Event pin.

Memory can be displayed in ASCII, hexadecimal, as any occam type, or by
disassembly into transputer instructions. The disassembly translates memory
contents directly into transputer instructions; it does not insert labels, nor provide
symbolic operands. Assembly level debugging can also provide a memory map
showing the positions of code and workspace for each transputer in the network.

7.3 A debugging example

This section describes a debugging session for an example program. It shows
you how to debug source code using the symbolic functions, and how to examine
object code using the Monitor page commands.

For details of the debugger and descriptions of its options, see chapter 14. Chap­
ter 14 also describes debugger functions that are not described here, such as
the inspection of arrays and multiprocessor debugging.

The source of the example program is provided in the file debugex. occ which
can be found in the toolset 'examples' directory.

The example can be run on any transputer board with at least 2 Mbytes of
memory.

72 TDS 18400 April 1989

82 Debugging occam programs

7.3.1 The example program

The example program calculates the sum of the squares of the first n factorials,
using a rather inefficient algorithm. It has been structured this way for clarity in
process structure ahd to demonstrate some debugging methods.

The program uses five processes, each coded as a separate procedure. The
five processes in turn input n, calculate factorials, square the factorials, sum the
squares, and output the result.

The example program is listed below.

'INCLUDE "hostio.inc"
'USE "hostio.lib"

PROC debug. example (CHAN OF SP fs, ts,
[lINT free.memory)

~ stop.real IS -1.0(REAL64)
VAL stop. integer IS -1 :

REAL64 FUNCTION factorial (VAL INT n)
REAL64 result
VALOF

SEQ
result := 1.0"(REAL64)
SEQ i = 1 FOR n

result := result * (REAL64 ROUND i)
RESULT result

PROC feed (CHAN OF INT in, out)
INT n :
SEQ

in ? n

SEQ i
out

o FOR n
i

72 TDS 184 00

out! stop. integer

April 1989

7.3 A debugging example

PROC facs (CBAN OF INT in, CHAN OF REAL64 out)
INT x:
REAL64 fac
SEQ

in ? x
WHILE x <> stop. integer

SEQ
fac .- factorial (x)
out ! fac
in ? x

out! stop. real

PROC square (CHAN OF REAL64 in, out)
REAL64 x, sq :
SEQ

in ? x
WHILE x <> stop. real

SEQ
sq := x * x
out ! sq
in ? x

out! stop. real

PROC sum (CHAN OF REAL64 in, out)
REAL64 total, x
SEQ

total := O.O(REAL64)
in ? x
WHILE x <> stop. real

SEQ
total := total + x
in ? x

out ! total

83

72 TDS 184 00 April 1989

84 Debugging occam programs

It)

of factorials")

n.out
result. in
so.newline
so.write.string
so.writ.e.reaI64

(fs, ts,
"Please type n : It)

so.read.echo.int (fs, ts, n, error)
so.wrlte.nl (fs, ts)

so.write.string (fs, ts,
"Calculating factorials ... It)

n
? value

(fs, ts)
(fs, ts,"The result was
(fs, ts, value, 0, 0)

-- free format

REAL64
INT
BOOL
SEQ

so.write.string.nl (fs, ts,
"Sum of the first n squares
error := TRUE
WHILE error

SEQ
so.wrlte.string

PROC control (CHAN OF SP fs, ts,
CHAN OF REAL64 result. in,
CHAN OF INT n.out)

value
n :
error

so.write.nl (fs, ts)
so.exit (fs, ts, sps.success)

control.to.feed

feed.to.facs)
facs.to.square)
square. to. sum)
sum. to. control)

control.to.feed)

(control.to.feed,
(feed. to. facs,
(facs.to.square,
(square. to . sum,
(fs, ts,
sum.to.control,

CHAN OF REAL64 facs.to.square, square.to.sum,
sum. to. control
feed.to.facs,CHAN OF INT

PAR
feed
facs
square
sum
control

72 TDS 18400 April 1989

7.3 A debugging example

7.3.2 Building a loadable program

To compile the program use the following sequence of commands:

occam debugex

85

ilink debugex.t4h hostio.lib convert. lib occambh.lib

iboot debugex.c4h

This sequence compiles the program in HALT mode for a T414 transputer (by
default), links in the libraries that are used in the program, and adds bootstrap
code. If you are using a T425 or T800 transputer, remember to specify the
transputer type when you run the compiler, (T5 or T425 for the T425, T8 or
T800 for the T800). For the T800 processor you must use the appropriate file
extensions and link in the correct compiler library. For a list of the compiler
libraries see section 24.2.

The end product of the compilation, linking and booting operations is the bootable
file debugex .b4h (or equivalent for T425 and T800 transputers) that can be
loaded onto a single transputer.

The program can also be built using imakef and a suitable MAKE program.
First create a Makefile by running the imakef tool as follows:

imakef debuqex.b4h.

This creates a Makefile called debuqex which contains details of how to build
the program to run on an IMS T414 in HALT error mode.

If you are using an IMS T425 or IMS T800 transputer, use the appropriate com­
mand:

imakef debuqex.b5h

imakef debuqex.b8h

You can then produce an executable code file by running MAKE on the resulting
Makefile, as in the following examples:

make -f debuqex

For more details about using the imakef tool see chapter 19.

72 TDS 18400 April 1989

86 Debugging occam programs

7.3.3 Host environment variables

Before running the program check that the host environment variables I TERM,
IBOARDSIZE, and TRANSPOTER are set up on the system. For more infor­
mation about setting up environment variables on your system see the Delivery
Manual.

7.3.4 Running the example program

When you have built an executable code file you can run the program by typing
one of the following commands:

iserver Ise Isb debugex.b4h

iserver -se -sb debugex.b4h

The program immediately prompts you for a value. For correct execution the
number must be less than 100.

To create an error for the purpose of this tutorial, give the value 101 and press
IRETURNI. The program will fail with the message:

Error-iserver- transputer error flag has been set.

7.3.5 Creating a memory dump file

"To create a memory dump file for the debugger to read, type:

idump debugex 10000

This creates a file called debugex. dmp containing the transputer's register
contents and the first 10000 bytes of memory. You are then returned to the
operating system prompt.

7.3.6 Running the debugger

To debug the example program, use one of the following commands:

idebug debugex.b4h Ir debugex

idebug debuqex.b4h -r debuqex

The 'r' option identifies the program as one that was executed on the root trans­
puter and specifies the memory dump file to be read.

72 TDS 184 00 April 1989

7.3 A debugging example 87

The debugger first displays its version number, then some processing informa­
tion, and eventually locates to the source line from which the error was generated:

sq := x * x

You can now begin to debug the program. You can use the symbolic facilities to
browse the source, locate to specific lines and areas of code, inspect variables
and channels, and trace procedure calls, and you can inspect and disassemble
memory using the Monitor page commands.

The following sections illustrate some of the debugging operations you can per­
form on the example program. For further details about any of the debugging
functions described in these sections, see chapter 14.

Inspecting variables

When the debugger is displaying source code, you may inspect any variable by
placing the cursor on the variable and pressing IINSPECTI.

For example, to display the value of x, place the cursor over x in the source code
and press !lNSPECTI. x is displayed in both decimal and hexadecimal forms, and
its address in memory is given in hexadecimal. For example:

REAL64 'x' has value ...
9.3326215443944096E+155 (#605166C698CF1838) (at
#80000360)

In the same way you can inspect the values of sq, square, stop. integer,
stop. real, and any other variable that is in scope. Use the cursor keys to
scroll through the code. To return to the source of the original error, use the
IRELOCATEI function.

You can also use the !lNSPECTI function to examine procedures and functions. If
you place the cursor on a procedure or function name and press UNSPECTI, the
debugger displays its address and workspace requirements.

You can also examine any symbol in the source by specifying its name. To do
this, move the cursor to a blank area and press !lNSPECTI. The debugger then
prompts for the symbol name.

Inspecting channels

The debugger can also examine processes on channels within the scope of
the original error. If you place the cursor on channel out and press UNSPECTI,
information about the channel is displayed. For example:

CHAN 'out' has Iptr:#80000611 and Wdesc:#80000285

72 TDS 18400 April 1989

88

(Lo) (at #800004BO)

Debugging occam programs

This indicates that there is a process waiting for communication on channel out,
and that it is a low priority process. To find out which occam process is waiting,
press ICHANNELI. The cursor will be placed on the line corresponding to the other
process, which in this example is inside the procedure sum, on the following line:

in? x

Within procedure sum, you can examine any symbol using UNSPECTI.

Within the sum procedure you can inspect the channel out and use ICHANNELI

to jump to the waiting process, which is the procedure control that is waiting
for the final result. Again you can use UNSPECTI to examine any symbol.

Retracing and Backtracing

So far the debugger has located three of the five processes that compose the
program. What about the others?

First use the IRETRACEI key to retrace your steps to the procedure sum, and
thence to the procedure square. While in procedure square, inspect channel
in, which is connected to the facs procedure. It is empty, which means that
no process is waiting to communicate.

Next try ISACKTRACEI. This function backtraces down nested procedure calls.
Each time the function is invoked the cursor is placed on the line in the enclosing
code from which the procedure was called.

In this example, ISACKTRACEI moves the cursor to the line where procedure
square is called. Again, you can inspect any symbol which is in scope at
this line. For example, you can inspect the channels feed. to. facs and
facs . to . square. Both should be empty, which means that the remaining
processes were actively executing, rather than waiting to communicate, when
the program halted.

To find the active processes, you need to examine the transputer's process
queues using the Monitor page facilities, as described below.

Displaying process queues

To display the process queues, first enter the debugger Monitor page from the
symbolic environment by pressing the IMONITORI key. Low level information is
displayed for the current processor, along with a list of Monitor page commands.

To display the processor's active process queues, use the Monitor page 'R'

72 TDS 184 00 April 1989

7.3 A debugging example 89

command. This displays two active processes, identified by their respective
Iptr and Wdesc. When you have identified the processes to examine, you
can use the Monitor page 'G' command to jump to those processes and inspect
the code.

Other commands to try from the Monitor page are 'T', which displays the pro­
cesses waiting on the transputer's timers; and 'L', which displays processes
waiting for communication on the transputer's links.

Goto process

When you press 'G', the following message is displayed:

[CURSOR] then [RETURN], or 0 to F, (I)ptr, (L)o,
or (Q)uit

To jump to a specific process and display the source code associated with that
process, place the cursor on an Iptr and press IRETURNI.

Commands 'I' and 'L', allow you to jump to the main process or low priority
process respectively, and commands '0' - 'F' allow you to display specific lines
on the right hand side of the display.

To display the first active process, type '0' (zero). The cursor will be placed on
the following source line (in procedure 'feed'):

out! i

Because this process is on the queue and not waiting, it must have already per­
formed the communication and is about to resume executing. You can examine
variables within the procedure as before.

To display the last remaining process in the program, press IMONITORI again, and
type 'G' followed by '1' to locate to the second process in the queue.

This process will either be executing code within the compiler libraries or within
the replicated SEQ. If it is executing code within a library, the debugger displays
the call to the library routine rather than the source itself, because the source is
not supplied. For example:

result := result * (REAL64 ROUND i)

Again, you may inspect variables within the process. For example, by inspecting
the variable 'i', you can determine how many times the loop has been executed.
Or you can use ISACKTRACEI to determine where the function was called from.

72 TDS 184 00 April 1989

90

Other symbolic functions

Debugging occam programs

ISEARCHI

IGET ADDREssl

Other symbolic functions that you may like to try while you are in the debugger
are listed below.

Returns to the error location, or last location selected
by Monitor page 'G' command.

Displays Iptr, Wdesc, and priority, of the last posi­
tion located to, together with the processor type and
number.

Allows you to search forward through the file for a
specific string.

Displays a list of links to other transputers. Useful
when debugging multitransputer programs.

Displays a summary of debugger function keys.

Displays the memory address of the transputer code
corresponding to the current source line.

ICHANGE FILEI Allows you to examine another source file.

IENTER FILEI Allows you to open and examine included files.

IEXIT FILEI Allows you to close included files.

IGOTO L1NEI Moves to a particular line of the file.

ITOP OF FILEI Moves to the first line of the file.

leOTTOM OF FILEI Moves to the last line in the file.

72 TDS 18400 April 1989

7.4 Hints for debugging occam programs

7.4 Hints for debugging occam programs

Examining and disassembling memory

91

Within the Monitor page environment, the debugger keeps a record of two mem­
ory addresses; the start address of the last disassembly, used as the default by
the '0' command, and the address of the· last part of memory to be displayed,
used by the 'A', 'H', and 'I' commands.

This allows you to switch easily between code disassembly and memory display.
You can, for example, disassemble a portion of memory using the '0' command,
examine its workspace in hex using the 'H' command, and then return to the
original address by invoking the '0' command once again.

Debugging IF and CASE statements

IF constructs with no TRUE guards, and CASE constructs where no selections
are matched, stop the program as though' a STOP statement had been encoun­
tered in the program. This avoids the need to create a default case each time
the statements are used.

However, it can be useful for the purpose of debugging these statements, to use
a default case. If a default is specified, the debugger can locate directly to the
STOP statement within the construct, which indicates exactly where the error
occurred. If a default case is not given, the debugger can only locate to the line
following the construct.

Analysing deadlock

Deadlocks that occur in multitransputer networks can be debugged by using
the Monitor page 'L' command to examine processes on the transputer links.
Deadlocks in single transputer programs are more difficult to debug because
there is no way to enter the program; there, are no active processes from which
to inspect channels, and no links to other transputers to provide an alternative
entry point.

In practice, it is often obvious to the programmer which channel or channels
are causing deadlock, and a dummy process can be added to the program to
provide an entry point for the debugger.

72 TDS 18400 April 1989

92

Consider the following procedure:

PROC deadlock ()
CHAN OF INT c :
PAR

SEQ
c 99
c 101

INT x
c ? x

Debugging occam programs

The program can be debugged by adding a process that will remain idle while
the program is debugged. An example of the type of code that is required is
illustrated below.

PROC deadlock. debug ()
CHAN OF INT c :
CHAN OF INT stopper :
PAR

VAL one.second IS 15625: -- Low priority
VAL secs.per.day IS (60 * 60) * 24 :
VAL one.day IS one.second * secs.per.day :
TIMER time
INT now :
SEQ

time ? now
ALT

time ? AFTER now PLUS
one.day will locate to here

SKIP
stopper ? now

SKIP

SEQ
PAR

SEQ
c
c

99
101 -- will jump to here

INT x
c ? x

stopper 0

The new process uses a TIMER within an ALT statement. Similar code is sup-

72 TDS 18400 April 1989

7.5 Debugging using embedded messages

plied in the process library as the procedure debug. timer.

93

In the modified program, a deadlock still forms in the procedure, but there is now
a way to entef the program.

To enter the program, first invoke the Monitor page environment, and use the
Monitor page 'T' command to inspect the transputer's timer queue, on which
there will be a process waiting. Use the 'G' command to go to that waiting
process, and the debugger will locate to the ALT statement.

You can then use UNSPECTI to examine the channel c where the program has
deadlocked, and which will therefore contain the process that is waiting for com­
munication. Finally you can use ICHANNELI to jump to the deadlocked process.

The compiler does not insert this kind of debugging code automatically, for sev­
eral reasons. Firstly, it is the philosophy of the toolset not to alter the run time
code in any way. Secondly, most programs use many channels, and the execu­
tion overheads and code size could become unacceptably large. Again for the
above example code this would be unimportant because the process consumes
no CPU time, but this may not be true for many programs. Lastly, it could be
difficult to distinguish the true deadlocked process from the many idle debug
processes waiting on the timer queue~.

7.5 Debugging using embedded messages

Transputer programs can also be debugged using messages inserted at strategic
points in the program. These messages are output when the program runs and
help to determine changes in the program's activity such as the assignment of
variables and the calling of procedures.

This method is easily applied to programs running on single transputers and
connected directly to the host, but is less easy to use with programs running
on transputer networks. In transputer networks only the root transputer commu­
nicates directly with the host, and messages from distant processes must be
passed back to the root transputer through the intervening network.

A programming solution to the problem in occam is to pass the messages to
a process that stores them for later retrieval. The process can be run on each
transputer in the network that is to be debugged and could use a circular buffer
to optimise storage and record only the recent activity of the program.

The program could be coded as two processes; one that stores messages com­
ing from each transputer (the 'buffer manager' process), and another that formats
messages for presentation to the debugger. The 'buffer manager' process would
run on each transputer running a debuggable process, whereas the message

72 TDS 184 00 April 1989

94 Debugging occam programs

formatter would run centrally and service all transputers in the network.

7.5.1 Reading the message buffers

For programs that fail and set the error flag the debugger can read the message
buffers by locating to the code that produced the error. For programs that ter­
minate normally, the buffers can be located using the debugger Monitor page
command 'L' to locate to a process pending on the host link. The buffer manager
process can then be brought into scope, the message buffer located in memory
and dumped to a file for reading.

7.6 Notes on using the debugger

Invalid pointers

The debugger checks instruction pointers and workspace descriptors for the
correct code and data limits. Invalid pointers are flagged by an asterisk ('*') on
the debugger screen display.

Invalid pointers indicate a major problem with the program. They are also caused
by specifying the wrong dump file.

Locating within the ALT construct

The debugger is unable to locate to specific alternatives within ALT constructs.
If a channel is waiting within an ALT, the debugger can only locate to the first
alternative in the list, no matter which channel or timer is requested.

occam scope rules

The debugger can only display the values of variables that are in scope. For
example, division by zero in the following procedure r would cause an error,

72 TDS 18400 April 1989

7.7 Debugging with the T414 simulator

and the debugger would locate to that source line.

PROC P ()
INT a :
PROC q (VAL INT b)

INT c :
SEQ

c := b + a

PROC r (VAL INT d)
INT e :
SEQ

e := 0
e := d / e

The debugger will locate to here
after the error

95

INT x :
SEQ

x, a := 99, 57
INT Y :
SEQ

y := 42
q (y)

r (x) -- And backtrace to here

At the line that contains the division by zero, variables e, d, and a are in scope
and may be inspected, but variables x, y, c, and b are out of scope and cannot
be inspected. "

If the debugger noY[located to the call of r, the only variables in scope and
accessible for inspection would be a and x.

7.7 Debugging with the T414 simulator

The T414 simulator provides an interactive simulation of a single IMS T414 trans~

puter, running on a 2 Mbyte boot from link transput~r board, and connected to
a host computer through the host file server iserver. The simulator allows
any single processor program compiled for the T414 to be run using exactly the
same code as would be loaded onto a transputer evaluation board.

All the component parts of a program to be simulated, including its libraries,
must be linked together using ilink, and made bootable using iboot. The
file extension of a program being simulated must therefore be of the . b4x type.

72 TDS 184 00 April 1989

96 Debugging occam programs

Like the debugger, the simulator has two command interfaces. The first is the
Monitor page which allows low level features of the transputer and the program
to be accessed. The second is the symbolic interface, which allows programs
to be debugged in terms of occam source code.

Both interfaces provide the same features as are provided by the debugger, with
the addition of execution monitoring commands ISET BREAKI, ISINGLE STEPI and
IWALKI on the symbolic interface.

For details of the isim command and its options see chapter 21.

Note: The T414 simulator can only be used to run single transputer programs.

7.7.1 Using the simulator

The simulator can be used in two ways:

• To debug programs by inspection of the transputer and memory, in the
same way as with the debugger. Registers and memory can be examined
directly at the Monitor page, and source code can be examined using the
symbolic interface.

• To monitor the execution of programs using single step execution and the
setting of break points within source code or at specific memory locations.
At the Monitor page level code can be executed instruction by instruction,
and at the symbolic level code can be executed line by line.

7.7.2 Standard debugging

The simulator provides all the symbolic and low level debugging facilties of the
toolset debugger. The facilities are only described briefly here. For more details
see chapters 14 and 21 .

Symbolic facilities

The simulator symbolic interface allows the source of any occam program to
be examined. The values of constants, variables, parameters, abbreviations and
arrays can be inspected using special function keys.

To use the simulator symbolic features, the program must be compiled with
debugging data enabled, that is, without the compiler 'D' option. When compiling
a program for debugging it is best to compile it in HALT mode.

72 TDS 18400 April 1989

7.7 Debugging with the T414 simulator

Low level facilities

97

Using the Monitor page facilities, the simulator can display the simulated trans­
puter's internal state, showing the instruction pointer (Iptr), the workspace de­
scriptor (Wdesc), the status of process timer queues, the contents of registers,
and the values of status flags.

Memory can be displayed in ASCII, hexadecimal or any other occam type, or
disassembled into transputer instructions.

7.7.3 Program execution monitoring

The simulator provides a number of functions that can be used interactively to
monitor and control the behaviour of a program. These are:

• Break points

• Single step execution of a program

• Single step execution of a single process (walking)

• Modifying registers and memory locations

Break points

Break points can be set at the occam source level by moving the cursor to the
source line and pressing ISET BREAKI. The break point is set at the beginning
of that line. When a break point is encountered while the program is running,
execution is halted and the line containing the break point is displayed. At this
point the line has not been executed.

Break points can also be used at the Monitor page. They can be set, displayed,
and cancelled using the 'B' command to display the Breakpoint Options Page.

Single step execution

There are two types of single stepping at the source level; ISINGLE STEPI which
skips to the next process if the process deschedules, and IWALKI which remains
in the process even if an error occurs.

Both ISINGLE STEPI and IWALKI execute a single line of code.

At the Monitor page a program can be stepped a single instruction at a time
using the'S' command.

72 TDS 184 00 April 1989

98

Changing registers

Debugging occam programs

When a program halts the value of any register can be changed. However,
the effect on the program of changing registers may be unpredictable and the
practice is not recommended.

7.8 Simulator example

This section shows how to use the simulator to debug programs by interactively
monitoring execution of the program. The program used to demonstrate this use
of the simulator is the example program used earlier in this chapter.

7.8.1 Running the simulation

Before starting the simulation you must create a bootable version of the pro­
gram. The simulator requires a bootable file compiled in HALT mode for a T414
processor.

Start the simulation by typing:

isim debuqex.b4h

A Monitor page display appears on the screen. To obtain more information about
the Monitor page commands, press I?'.

Like the debugger, the simulator uses two pointers to identify the code to be
examined: the instruction pointer Iptr and the workspace descriptor Wdesc.
When the simulator starts Iptr points to the start of the bootstrap code for the
program. To start the program running under the simulator, press 'X'. This loads
and boots the program and leaves the pointers at the start of the program.

First use the 'Q' command to examine the occam source. Press 'Q' to invoke the
command, and then press IRETURNI twice to accept the current pointer values.
The simulator then displays the first line of the program. Press IMONITORI to
return to the Monitor page.

The program can be run either from the source level by pressing [QQj, or at
the Monitor page by pressing 'G'. If the program fails symbolic or Monitor page
facilities can be used to trace the fault.

72 TDS 184 00 April 1989

7.8 Simulator example

Setting break points

99

Break points can be set at any point in the program. For example, suppose you
suspect that procedure square contains an error. To examine its behaviour
you can set a break point at the procedure and execute it line by line.

Before break points can be set the debug information for the module must be
loaded, using the Monitor page 'e' command. When you invoke the command,
you are prompted for the module name, which in this case is debugex (the
name of the file containing the program). When the debug data is loaded, you
can use the 'p' command to display procedure and function names.

To set a break point use the 'B' command. This displays an options menu called
the Breakpoint Options Page. Choose option 2 - Set break point at
procedure - and type the name square followed by IRETURNI. To confirm
that the break point has been set correctly, return to the Breakpoint Options
Page and invoke option 3 - Display breakpoints.

To cancel the break point use option 4 or option 5 on the Breakpoint Options
Page.

Break points can also be set and cancelled within occam source. The proce­
dure is described in section 7.8.4.

7.8.2 Starting the program

Start the program executing using the Monitor page command 'G'. The simulator
immediately prompts for a break point address, to which you can respond by
typing IRETURNI. This facility of interactive break point setting differs from the
normal method in that the break point is cancelled once it is reached. For the
purpose of this tutorial you can ignore this facility.

The program runs until it encounters the break point in the procedure, and then
returns to the Monitor page display. The line:

Sum of the first n squares of factorials

is displayed at the bottom of the screen. To remove the line from the screen
display, press IREFRESHI. On the Monitor page Iptr and Wdesc now displays
new values.

To examine the occam source, use the '0' command and press IRETURNI twice to
accept the current program pointers. The cursor moves to the start of procedure
square, and you can either use symbolic debugging to examine the source, or
single step the code as described in the following section.

72 TDS 18400 April 1989

100 Debugging occam programs

7.8.3 Single step execution

To examine the behaviour of procedure square you can execute the code line
by line. At any point in the code you can use symbolic functions such as UNSPECTI
to examine variables.

Having located to procedure square, press ISTEPI. This moves the cursor to
the first executable line in the procedure, namely:

in? x

Examine the channel by placing the cursor on the word in, and press UNSPECTI.
The channel is empty, indicating that nothing is being sent on the channel, and
the input procedure cannot proceed until the other process is ready to communi­
cate. Now press /STEPI again and the cursor moves to the line containing the call
to procedure facs, which is the next process waiting on the queue. Because
of the delay in the previous process, this process has started to communicate
on the channel.

Press /STEPI again to move the cursor to the first line in procedure facs. Press
/STEPI once more to move the first executable line in the process, position the
cursor over the channel in, and press !lNSPECTI. This channel too will be empty.

To examine procedure facs further and avoid jumping to another process, use
IWALKI in place of ISTEPI. This steps a single line of occam source but does not
jump to other processes as they become scheduled.

Press IWALKI successively to to step through the facs process. When a prompt
appears, type a response as normal and use IREFRESHI to clear the display.
As you step though the code of the procedure, you will enter the function
factorial, returning eventually to the body of facs.

7.8.4 Setting break points in source

To return to the procedure square while single stepping the program set a
break point in the occam source. Move the cursor to the line:

sq := x * x

and press /SET BREAKI. This sets a break point at that line.

Press [QQ] to start the program running. The program runs until the new break
point is reached. You can now use symbolic debugging to inspect values within
procedure square, or continue to single step or walk the program starting at
the break point.

72 TDS 184 00 April 1989

8 Access to host.
services

This chapter describes how programs communicate with the host computer via
the host file server and the ito libraries. It briefly describes the protocols used,
outlines how to place host channels on a transputer board, and discusses how
processes can be multiplexed to a single host.

8.1 Introduction'

occam, like most high level programming languages, is independent of the
host operating system. At the programming level, communication with the host
is achieved via a set of ito libraries that are provided with the toolset. The libraries
in turn use the services provided by the host file server.

The host file server and the functions it provides are transparent to the program­
mer. The server functions are activated whenever a program is loaded using
the iserver tool. Programs that use the ito libraries should always be loaded
using iserver.

For an example of a program that communicates in a simple way with the host
computer, including details of how it is compiled, linked and loaded, see chap­
ter 4.

8.2 Communicating with the host

Programs communicate with the host through ito library routines that in turn use
functions provided by the host file server.

8.2.1 The host file server

The host file server provides the runtime environment that enables application
programs to communicate with the host. It contains functions for:

• Opening and closing files

• Reading and writing to files and the terminal

• Deleting and renaming files

72 TDS 18400 April 1989

102 8 Access to host services

• Returning information from the host environment, such as the date and
time of day

• Returning information specific to the server, such as a version number

• Starting and stopping the server.

Details of the server functions can be found in appendix F.

8.2.2 Library support

Two i/o libraries are provided for accessing the file system and other host ser­
vices. The libraries are summarised below.

hostio .lib File and terminal i/o; host access

streamio. lib Stream-based terminal and file i/o

All routines in these libraries are independent of the host operating system.

The hostio library contains basic routines for accessing files and controlling the
file system. It also contains routines for general interaction with the host. Use
the hostio library for basic file operations, and for accessing host services.

The str~amio library contains routines for creating and outputting streams. It also
provides primitives for reading and writing text and numbers, and for controlling

'the screen. Use the streamio library for inputting and outputting character and
data streams.

Definitions of constants and protocols used within the libraries are provided in
the include files hostio. inc and streamio. inc. These files should be
included in all programs where the respective libraries are used.

Details of all i/o procedures and functions can be found in chapter 24.

8.2.3 File streams

The host file server supports a stream model of file and terminal "access. When a
file is opened a 32-bit integer stream id is returned to the program. This identifier
must be quoted by the program whenever the file is accessed, and is valid until
the file is closed.

Streams and files must be explicitly closed by the programs that use them, and
the server must be explicitly terminated when the program finishes and host

72 TDS 184 00 April 1989

8.3 Host implementation differences

services are no longer required.

Three streams are predefined:

o standard input

1 standard output

2 standard error

103

These streams can be closed by the programmer, but cannot be reopened. Take
care not to close the standard streams if you are using hostio routines that read
or write to them. The streams can only be closed by specifying the streamid
explicitly and cannot be closed inadvertently using the hostio routines.

Standard input and output are normally connected to the keyboard and screen
respectively, but may be redirected by the operating system.

Streams and files other than the three standard streams described above must
be explicitly closed by the program. When the program finishes and host services
are no longer required the server should be terminated by pressing the system
interrupt key.

Protocols

occam programs communicate with the host file server through a pair of occam
channels. Requests for service are sent to the host on one channel and replies
are received on the other. Both channels use the SP protocol, which is defined
in the include file hostio . inc.

8.3 Host implementation differences

The IBM PC version of the host file server supports a number of DOS specific
commands. For details of the routines provided for this implementation see the
Delivery Manual that accompanies the release. The VAX VMS and Sun-3 UNIX
implementations have no host specific commands.

If you wish to write programs that are portable between all implementations of
the toolset you are recommended to use only host independent routines. All pro­
cedures and functions in the hostio and streamio libraries are host independent.

72 TDS 18400 April 1989

104 8 Access to host services

8.4 Accessing the host from a program

For programs to be run on transputer boards the host is accessed through the
channels fs and ts, both defined as CHAN OF SP. Protocol SP is defined in
the include file hostio. inc.

For single transputer programs the channels are defined within the program, and
for multiprocessor programs the channels are placed on the link that is connected
to the host. The normal location for the connection to the host is link zero on
the root processor.

The following code places the host channels correctly on the root processor:

'INCLUDE "linkaddr.inc"
'INCLUDE "hostio.inc"
CHAN OF SP fs, ts :
PLACE fs AT linkO.in :
PLACE ts AT linkO.out :

In this example hostio . inc contains the SP protocol definition, and
linkaddr. inc contains the transputer link addresses. Both files are provided
with the toolset.

8.4.1 Using the simulator

The simulator tool isim provides access to the host file server in the same way
as a single processor program running on a board, with the following channel
placements: fs at linkO . in; ts at linkO . out.

8.5 Multiplexing processes to the host

The host file server is a single resource, connected to a process running on the
root transputer via a pair of occam channels. This is illustrated in figure 8.1.

host transputer

Figure 8.1 Program input/output

If more than one process requires access to the host then the server must be

72 TDS 18400 April 1989

8.5 Multiplexing processes to the host 105

shared between a number of processes, ensuring that all processes are served
in turn. The simplest solution where a resource is used by more than one process
is to provide a multiplexor.

A multiplexor is a process which takes many inputs and connects them to a single
shared resource and ensures that communications from different processes do
not conflict.

Two routines that allow multiple processes to communicate with the host via the
host file server channels are provided in the hostio library. The routines are
called so.multiplexor and so.overlapped.multiplexor. Details of
the routines can be found in section 24.4.9.

An example of a multiplexed system is shown in figure 8.2 and occam code
that would implement the system is listed in figure 8.3.

host

Figure 8.2 Multiplexing the host file server

Multiplexor processes can be chained together to produce any degree of multi­
plexing to the host. However, the host is a single, finite resource and unrestrained
multiplexing of processes should be avoided if possible.

8.5.1 Buffering processes to the host

It may sometimes be useful to pass data invisibly through another process, for
example when passing data to the server through intervening processes. The
hostio library routine so. buffer takes a pair of input and output channels and
passes data through unchanged.

72 TDS 18400 April 1989

106

#INCLUDE "hostio.inc"

8 Access to host services

SP protocol declaration

PROC mux.example (CBAN OF SP fs, ts,
[]INT free.memory)

#USE "hostio.lib" host i/o libraries

#USE "processO" user processes
#USE "processl"
#USE "process2"

SEQ
[3]CHAN OF SP from.process, to.process:
PAR

so.multiplexor(fs, ts, -- server channels
from.process, to.process,

multiplexed channels
stop) -- termination channel

SEQ
PAR -- run user processes in parallel

-- sharing the iserver
processO(to.process[O] , from.process[O])
processl(to.process[l] , from.process[l])
process2(to.process[2] , from.process[2])

stop ! FALSE -- terminate multiplexor

so.exit(fs, ts, sps.success)

Figure 8.3 Multiplexing example

8.5.2 Pipelining

If data has to pass through many processes before reaching the server efficiency
may be improved by allowing a data transfer to begin before the previous one
has completed its journey down the line of processes. This allows several data
transfers to be in progress simultaneously and is known as pipelining.

The routine so. overlapped. buffer can pipeline several buffers up to a
user-defined limit. A pipelined version of the multiplexor process called
so . overlapped. multiplexor performs the same function for multiplexed
processes.

72 TDS 18400 April 1989

9 Mixed language.
programming

This chapter describes how to build programs in a mixture of programming lan­
guages. It describes how to use the occam toolset and the C, FORTRAN and
Pascal compilers supplied by INMOS to compile mixed language programs, and
run them on networks of transputers.

The chapter is structured as follows:

Section 9.1 introduces mixed language programming for transputers, and de­
scribes the C, FORTRAN and Pascal code interfaces to occam.

Section 9.2 describes the equivalent occam process and some aspects of its
use. It explains how routines and programs written in other languages are in­
tegrated into occam code by making them appear like separately compiled
occam code.

Sections 9.3, 9.4, and 9.5 describe the three interfaces throug~ which other
language processes are called from occam and also describe the language­
specific routines that implement channel communication.

Section 9.6 describes the communication library routines for the three languages.

Section 9.7 explains how to call occam from C, FORTRAN and Pascal.

9.1 Introduction

For many applications it is appropriate to write the software using more than
one programming language. For example, a particular algorithm may be better
expressed in a specific language or applications software may already exist in
particular languages. In either case a well defined mechanism for mixing lan­
guages within a system is desirable.

The occam programming model provides a clean and simple basis for mixing
languages. The model consists of independent processes, communicating via
channels, which can be distributed in any way to a network of transputers.

Programs written in C, FORTRAN, and Pascal are treated as independent pro­
cesses and like occam processes can be run on any transputer in the network.
Interfaces between occam and C, FORTRAN, and Pascal programs are clear
and well-defined, making it easy to use the languages in parallel programs.
Programs written in these languages must conform to one of several formal

72 TDS 18400 April 1989

108

procedure definitions.

9 Mixed language programming

INMOS supplies toolset-compatible compilers for C, FORTRAN, and Pascal.
Special library routines to support channel input and output are supplied with
the compilers.

Mixed language programs can be debugged using the toolset debugger idebuq,
with some restrictions. For more information see section 14.4.3.

It is also possible to call separately compiled occam procedures from C, FOR­
TRAN and Pascal. Since occam code requires no elaborate run time environ­
ment, and separately compiled procedures are re-entrant, the code for these
procedures can be shared by different processes running on the same trans­
puter.

9.2 The equivalent occam process

The occam programming model consists of independent processes running in
parallel with other proc~sses and communicating via channels. In accordance
with this model, programs written in C, FORTRAN and Pascal are viewed as
single, separately compiled processes that can be run in parallel with each other,
and with other occam processes.

To form an equivalent occam process for a C, FORTRAN or Pascal program,
the object modules that make up the program (including run time libraries if used)
are linked with special occam interface code using ilink. This produces a

, .cxxfile.

9.2.1 occam interface code

occam interface code provides a fixed interface between occam and C, FOR­
TRAN or Pascal programs. There are three types of interface code, known as
types 1, 2, and 3. Descriptions and process diagrams for the three interfaces
follow.

Type 1 : This interface is used when the program runs on a single transputer
and communicates only with the host file server. It can be used for C, FORTRAN
and Pascal programs.

72 TDS 184 00 April 1989

The equivalent occam process

Type 1

fs

MAIN.ENTRY
ts

109

C, FORTRAN and Pascal

Type 2 : This interface is used when the program communicates with other
processes as well as the host file server. This interface can be used with C,
FORTRAN, and Pascal programs and is used with the full versions of the re­
spective run time libraries.

Type 2

fs

ts

C, FORTRAN and Pascal

Type 3 : This interface is similar to the type 2 interface except that there is no
access to the host file server. The interface is used with the reduced version of
the run time library, which contains only startup, maths, string and channel i/o
routines and does not include the routines to access the host i/o services (for
example, access to files and the console). The type 3 interface exists in several
forms for use with C, FORTRAN, and Pascal programs, as illustrated below.

72 TDS 18400 April 1989

110

Type 3

9 Mixed language programming

C FORTRAN

....
.... out []

... in []

Pascal

.#'

.... ~ut []

in []

C, FORTRAN and Pascal

........ .#'

.... out []

in []

Type 2 and 3 interfaces are called from the enclosing occam code and may be
a part of a network of occam processes.

To use an equivalent occam process in occam source, first declare the process
within the occam program, using the #IMPORT directive. For example, to use
the equivalent occam process defined in the file procl . c8u (which will be
the output of the Iinker after a C, FORTRAN or Pascal program has been linked
with appropriate occam interface code), include the following line in the occam
source:

#IMPORT "procl.c8u" -- contains C program cprocl

See section 23.6.4 for a detailed description of the # IMPORT directive.

The #IMPORT directive for equivalent occam processes has an identical effect
to the fUSE directive; in both cases the compiler reads the file and extracts
the necessary information to make the call to the equivalent occam process.
#IMPORT is used rather than fUSE to reference equivalent occam processes
in order that the Makefile generator tool imakef can distinguish them from
separately compiled occam processes.

Equivalent occam processes can be collated into a single library file using the
librarian tool ilibr.

72 TDS 18400 April 1989

The equivalent occam process

9.2.2 Reserved channels

111

All equivalent 9ccam processes have four reserved channels, namely in [0],
in [1], out [0] and out [1]. No process which uses host services through
the full run time library should use these channels.

The first two elements of both vectors of channel pointers are reserved as follows:

out[O]

in [0]

out[l]

in [1]

Reserved for diagnostic output.

Reserved for diagnostic input, but not currently used.

Commands and data from the run time library to the host file
server.

Responses from the host file server to the run time library.

9.2.3 Error modes

When linked with occam, C, FORTRAN and Pascal programs take the same
compilation error mode as the occam interface code used in linking the program.
The . txx and •cxx extensions of the interface code files indicate the transputer
type and error mode of the code, according to the rules described in section 3.7.2.

Note: If the network includes any processes written in C then you are recom­
mended to use only UNDEFINED or UNIVERSAL error modes throughout the
system. For Pascal and FORTRAN you can use HALT, UNDEFINED or UNI­
VERSAL mode.

9.2.4 Stack and heap requirements

Data storage (work space) requirements for C, FORTRAN, and Pascal programs
are set according to the values of flag, ws1, and ws2. Work space is allocated
by the language compiler and run time libraries.

Stack, static data and heap requirements vary from program to program, and
between languages. The work space vectors passed to the program must be
large enough to accommodate:

• The stack the program needs when it runs.

• All the static data required by the program.

• The heap used by the program and the run time libraries.

Stack overflow may lead to unpredictable behaviour by the program. For these
reasons it is best to run a program, at first, with a large combined stack and heap.

72 TDS 184 00 April 1989

112 9 Mixed language programming

Later, when you have run the program and determined stack and heap usage,
you may use a separate stack and heap, tailored to your application. Separate
work spaces allow you to ensure that the stack is resident in the transputer's
internal memory, and enables the program to run faster. Procedures and meth­
ods you can use to optimise stacks are described in 'INMOS technical note 17:
Performance maximisation' and INMOS technical note 55: Using the occam
toolsets with non-OCCam applications.

A minimum stack size of 512 words is recommended.

Sta'ck overflow

Failure or unpredictable behaviour of programs may be due to stack overflow; to
test for this in a program, use the procedure outlined below.

Initialise the bottom few words of the stack (a falling stack is used) to
some pattern of values.

2 Run the program and, after it crashes, use the debugger to examine the
values in the stack. If the values you initialised have been changed then
stack overflow is likely.

3 Increase the stack size and try again.

The same method can be used to determine static data and heap requirements,
except that these use a rising stack.

The following occam fragment gives an example of initialising the bottom of the
stack:

SEQ i = 0 FOR words.to.initialise
wsl[i] := i

9.3 Type 1 interface

The type 1 interface is used when making a program to run on a single transputer,
which does not communicate with any other process apart from the host file
server.

C, FORTRAN or Pascal programs that run on a single transputer do not need to
use occam. Compile the program as usual and then link in the type 1 occam
interface code, using ilink. This builds the equivalent occam process for
the program. It makes the program appear like occam and enables you to add
normal bootstrap code.

72 TDS 18400 April 1989

9.3 Type 1 interface 113

The code for the type 1 process is essentially the same as for any occam
process for a single transputer, except that an extra parameter is required for
the C, FORTRAN, or Pascal program's run time stack. This only applies if a
separate non-OCcam stack was requested when iboot was invoked. The size
of the stack is determined by the parameter supplied with the iboot 's' option.

9.3.1 Type 1 procedural interface

The type 1 occam interface is defined as follows:

PROC MAIN.ENTRY (CHAN OF SP fs, ts,
[lINT free.memory,
[lINT stack.memory)

Parameters are described in the following list.

fs Channel going from the host file server to the program
('from server').

ts Channel going from the program to the host file server
('to server').

free. memory Used by the program for its workspace. If the
size of the stack. memory vector is zero then the
free. memory vector is used for the program's run time
stack as well as its static and heap data area, otherwise
the vector is only used by the program for its static and
heap data.

This vector represents the amount of free memory
left after the program has been loaded. The size of
this vector is determined from the environment variable
IBOARDSIZE which specifies the amount of memory
available on the transputer board (in bytes). The value
of IBOARDSIZE is read at run time by the bootstrap
loader before the program is started (see section 11.3.2).

stack. memory Used by the program for its run time stack if the size of
the vector is non-zero.

The size of this vector is determined when the linked pro­
gram is made bootable using iboot, by the parameter
supplied with the'S' option.

72 TDS 18400 April 1989

114 9 Mixed language programming

File name Transputer Error mode

mainent.c4h T414 HALT

mainent.c4s T414 STOP

mainent.c4u T414 UNDEFINED

mainent.c4x T414 UNIVERSAL

mainent.c8h T800 HALT

mainent.c8s T800 STOP

mainent.c8u T800 UNDEFINED

mainent.c8x T800 UNIVERSAL

Table 9.1 Type 1 occam interface code files

9.3.2 Building a type 1 process

The type 1 occam interface code is supplied in the files mainent. c4x (for
T414 transputers), and mainent. c8x (for T800 transputers). The full names
of these files, along with the transputer types and error modes that they support,
can be found in table 9.1.

For example, consider a C program that consists of the fol.lowing object and
library files:

main.bin
funcs.bin
crtl.lib

The program is to run on a T414 transputer in UNDEFINED mode. The files that
make up the program are listed in the linker indirect file proq. 14u.

The program can be linked using one of the following commands:

ilink mainent.c4u /f prog.14u /0 cprog.c4u

ilink mainent.c4u -f prog.14u -0 cproq.c4u

When using the linker, the occam interface code file (mainent. c4u in the
above example) should always be first file in the list, and an output file should
be specified using the linker '0' option. If you do not specify an output file, the
linker uses the first filename in the list and adds a cxx extension. In the above
example the default output file would be mainent . c4u, thereby overwriting the
occam interface code.

72 TDS 18400 April 1989

9.4 Type 2 interface definition 115

When the program has been linked, you can use the bootstrap tool iboot to
produce a bootable program, using the'S' option to specify the amount of run
time stack required. For the above example, using a stack size of 512 words,
the command line would be one of the following:

iboot cprog.c4u /s 512

iboot cprog.c4u -s 512

9.4 Type 2 interface definition

The type 2 interface is used when building a program that will communicate
with other processes as well as with the host file server. These processes can
be running on the same processor or on other processors in the network and
communicate with the program through channels.

The type 2 interface is used with e, FORTRAN or Pascal programs that have
been linked with the full version of the respective run time library.

9.4.1 Type 2 procedural interface

The type 2 occam interface is defined as follows:

PROC PROC.ENTRY (CHAN OF SP fs, ts,
VAL INT flag,
[lINT ws1, ws2,
[lINT in, out)

Parameters are described in the following list.

72 TDS 18400 April 1989

116 9 Mixed language programming

fs Channel going from the host file server to the program.

ts Channel going from the program to the host file server.

flag Indicates the requirement for one or two work spaces. If the value of
flag is set to zero then the program will run with two work space
areas, one for static and heap data, the other for the run time stack.
If the value of flag is set to one then the program will run with a
single combined work space.

ws 1 Used by the program for its workspace. If flag is zero then it is used
only for the run time stack; if flag is one (1) then it is used as the
program's combined workspace.

ws2 Used by the program as its static/heap workspace when flag is set
to zero. Otherwise unused.

in A vector of pointers to occam channels going to the process.

out A vector of pointers to occam channels going from the process.

Note: The first'two elements in the channel pointer vectors in and out are
reserved for use by the C, FORTRAN or Pascal program's run time system and
cannot be used by the program. See section 9.2.2 for more details on how these
channel pointers are used.

9.4.2 Building a type 2 process

To build a type 2 equivalent occam process for a network program, link the
compiled units together with type 2 interface code using ilink.

The type 2 occam interface code is supplied in the files procent. c4x (for
T414 transputers), and procent. c8x (for T800 transputers). The full names
of these files, along with the transputer types and error modes that they support,
can be found in table 9.2.

To link the program use the Iinker 'newname=' option to name the program. To
call the program subsequently from the occam source, you must use this name.
The names of all equivalent occam processes in an occam program must be
unique.

For example, consider a C program made up of the following object and library
files:

main.bin
funcs.bin
crtl.lib

72 TDS 18400 April 1989

9.4 Type 2 interface definition

File name Transputer Error mode

procent.c4h T414 HALT

procent.c4s T414 STOP

procent.c4u T414 UNDEFINED

procent.c4x T414 UNIVERSAL

procent.c8h T800 HALT

procent.c8s T800 STOP

procent.c8u T800 UNDEFINED

procent.c8x T800 UNIVERSAL

Table 9.2 Type 2 occam interface code files

117

This program is for a T800 transputer, running in UNDEFINED error mode, and
the files that make up the program are listed in the linker indirect file prog .18u.

The program can be linked using one of the following commands:

i1ink cprocl=procent.c8u If prog.18u /0 cprocl.c8u

i1ink cprocl=procent.c8u -f prog.18u -0 cprocl.c8u

The 'eproel=' part of the command line gives the name eproel to the equiv­
alent occam process produced. This is the name that the program will be
called from the occam source and must be a legal occam name. The occam
interface code file (proeent. e8u) should always be the first file in the list.

The linker '0' option is used to specify the output file name for the equivalent oc­
cam process. If you do not specify an output file name, the linker uses the first
file name in the list, and appends a . exx suffix. If no output file had been speci­
fied in the above example, then the linker would have written to proeent . e8u.

Having built an equivalent occam process you can then call it from occam
source using the #IMPORT directive. It is recommended that processes written
in C, FORTRAN and Pascal are wrapped in a small occam procedure with a
clean channel interface (rather than arrays of channel addresses directly). The
following section contains two examples to illustrate how this can be achieved.

72 TDS 18400 April 1989

118

9.4.3 Example type 2 wrappings

9 Mixed language programming

This section contains examples of how to call a type 2 equivalent occam process
from occam source, and how to set up the parameters required.

Example 1: simple C call

The following example is of the occam procedure 'call.progl', within which
a C program is called. The C program has already been made into an equivalent
occam process in the object file 'cprocl . c8u'. The call name is cprocl.

The source of this procedure is supplied with the toolset examples in the file
ctype2a .occ.

PROC call.progl (CHAN OF SP fs, ts)

#INCLUDE "hostio.inc"
#IMPORT "cprocl.c8u"

VAL flag IS 1 :

[lOOOOO]INT wsl
[l]INT ws2
[2]INT in, out:

C program cprocl()

combined heap and stack

stack and heap for program
dummy workspace for program
channel pointers

-- call program
cprocl(fs, ts, flag, wsl, ws2, in, out)

After the occam wrapping has been compiled it can then be linked with the C
process in the following way to generate the output file ctype2a. c8u:

ilink ctype2a.t8u cprocl.c8u

The resulting linked code could then be called, like any other separately compiled
unit, by the #USE directive.

Example 2: C call setting up user channels

The following example is of the occam procedure 'call. prog2', within which
a C program is called. The C program has already been made into an equivalent
occam process in the file 'cproc2 . cBu'. The call name is cproc2.

The source of this procedure is supplied with the toolset examples in the file
ctype2b.occ.

72 TDS 184 00 April 1989

9.5 Type 3 interface definition

#INCLUDE "hostio.inc"
PROC call.prog2 (CHAN OF SP fs, ts,

CHAN OF COMM to.process,
CHAN OF COMM from.process)

119

#IMPORT "cproc2.c8u"

VAL flag IS 0

[lOOO]INT wsl
[40000]INT ws2
[3]INT in, out:

SEQ

C program cproc2()

separate heap and stack

stack for program
heap for progr~m

pointers to inputs/outputs

set up user output channel
LOAD.OUTPUT.CHANNEL(out[2] , from. process)

-- set up user input channel
LOAD. INPUT. CHANNEL (in [2] , to.process)

-- call program
cproc2(fs, ts, flag, wsl, ws2, in, out)

Two channels are declared of type COMM, the first being an input channel to the
process, the second an output channel from the process. The declaration of
protocol type COMM is assumed.

The first statement sets up a pointer to the output channel, using
LOAD. OUTPUT. CHANNEL. The second statement sets up a pointer to the input
channel, using LOAD. INPUT. CHANNEL.

9.5 Type 3 interface definition

The type 3 interfaces, like the type 2 interface, are used to run programs which
communicate with other processes on the same processor or in a network of pro­
cesses, but which do not require access to host services. Processes built using
the type 3 interfaces can communicate with other processes through channels
in the same way as for type 2 processes.

Four type 3 interfaces are provided, one each for C, FORTRAN and Pascal
programs, and one that can be used with all three of the languages.

72 TDS 18400 April 1989

120 9 Mixed language programming

The three specific interfaces are used with programs linked with reduced versions'
of their respective run time libraries. The fourth or stub version of the interface
can only be used with the full run time libraries.

9.5.1 Type 3 procedural interfaces

The four interfaces for type 3 equivalent occam processes are defined below.

For C programs:

PROC PROC.ENTRY.RC (VAL INT flag,
[lINT wsl, ws2,
[lINT in, out)

For FORTRAN programs:

PROC PROC.ENTRY.RF (VAL INT flag,
[lINT wsl, ws2,
[lINT in, out)

For Pascal programs:

PROC PROC.ENTRY.RP (VAL INT flag,
[lINT wsl, ws2,
[lINT in, out)

, For C, FORTRAN or Pascal programs linked in with their full run time libraries:

PROC PROC.ENTRY.STUB (VAL INT flag,
[lINT wsl, ws2,
[lINT in, out)

Parameters are described in !he following list.

72 TDS 18400 April 1989

9.5 Type 3 interface definition 121

flag Indicates the requirement one or two work spaces. If the value of
flag is set to zero then the program will run with two work space
areas, one for static and heap data, the other for the run time stack.
If the value of flag is set to one then the program will run with a
single combined work space.

ws 1 Used by the program for its workspace. If flag is zero then it is
used only for the run time stack; if flag is one then it is used as the
program's combined workspace.

ws2 Used by the program as its static/heap workspace when flag is set
to zero. Otherwise it is unused.

in A vector of pointers to occam channels going to the process.

out A vector of pointers to occam channels coming from the process.

Note: The first two elements in the channel pointer vectors in and out are
reserved for use by the C, FORTRAN or Pascal program's run time system and
cannot be used by the program. See section 9.2.2 for more details on how these
pointers are used.

9.5.2 Building a type 3 process

To build a type 3 equivalent occam process for a network program, link the
compiled units together with the appropriate interface code using the toolset
linker, ilink.

The type 3 occam interface code is supplied in the files procent/. c4x (for
T414 transputers) and procent/. c8x (for T800 transputers), where 1 is the
language version (c for C, f for FORTRAN, p for Pascal, and s for universal).
The full names of these files, along with the transputer types and error modes
that they support, can be found in tables 9.3, 9.4, 9.5 and 9.6.

To link the program use the Iinker 'newname=' option to name the program. To
call the program subsequently from the occam source, you must use this name.
The names of all equivalent occam processes in an occam program must be
unique.

For example, consider a C program made up of the following object and library
files:

main.bin
funcs.bin
sacrtl.lib

These files are listed in the Iinker indirect file prog .18u.

72 TDS 184 00 April 1989

122 9 Mixed language programming

C specific versions

File name Transputer Error mode

procentc.t4h T414 HALT

procentc.t4s T414 STOP

procentc.t4u T414 UNDEFINED

procentc.t4x T414 UNIVERSAL

procentc.tBh TBOO HALT

procentc.tBs TBOO STOP

procentc.tBu TBOO UNDEFINED

procentc.tBx TBOO UNIVERSAL

Table 9.3 Type 3 C occam interface code files

FORTRAN specific versions

File name Transputer Error mode

procentf.t4h T414 HALT

procentf.t4s T414 STOP

procentf.t4u T414 UNDEFINED

procentf.t4x T414 UNIVERSAL

procentf.tBh TBOO HALT

procentf.tBs TBOO STOP

procentf.tBu TBOO UNDEFINED

procentf.tBx TBOO UNIVERSAL

Table 9.4 Type 3 FORTRAN occam interface code files

72 TDS 1B4 00 April 19B9

9.5 Type 3 interface definition

Pascal specific versions

File name Transputer Error mode

procentp.t4h T414 HALT

procentp.t4s T414 STOP

procentp.t4u T414 UNDEFINED

procentp.t4x T414 UNIVERSAL

procentp.t8h T800 HALT

procentp.t8s T800 STOP

procentp.t8u T800 UNDEFINED

procentp.t8x T800 UNIVERSAL

Table 9.5 Type 3 Pascal occam interface code files

C, FORTRAN and Pascal versions

File name Transputer Error mode

procents.c4h T414 HALT

procents.c4s T414 STOP

procents.c4u T414 UNDEFINED

procents.c4x T414 UNIVERSAL

procents.c8h T800 HALT

procents.c8s T800 STOP

procents.c8u T800 UNDEFINED

procents.c8x T800 UNIVERSAL

123

Table 9.6 Type 3 C, FORTRAN, and Pascal occam interface code files

72 TDS 184 00 April 1989

124 9 Mixed language programming

The program can be linked using one of the following commands:

ilink cprocl=procentc.t8u If prog.18u /0 cprocl.c8u

ilink cprocl=procentc.t8u -f prog.18u -0 cprocl.c8u

The 'eproel=' part of the command line gives the name eproel to the equiv­
alent occam process produced. This is the name that the program will be
called from the occam source and must be a legal occam name. You must
always specify a name in this way, and each name must be unique. The occam
interface code file proeente. t8u should always be the first file in the list.

The Iinker '0' option is used to specify the output file name for the equivalent
occam process. If you do not specify an output file name, the linker uses the first
file name in the list, and appends a .cxxsuffix. If no output file had been specified
in the above example, then the linker would have written to proeente . e8u.

Having built an equivalent occam process you can then call it from occam
source using the #IMPORT directive. It is recommended that processes written
in C, FORTRAN and Pascal are wrapped in a small occam procedure with a
clean channel interface (rather than arrays of channel addresses directly). The
following section gives an example of how this can be achieved.

9.5.3 Example type 3 wrapping

This section shows how to call an equivalent occam process from occam
source, 'and how to set up the parameters required.

The following example is of the occam procedure 'eall.proq', within which
a C program is called. The C program has already been made into an equivalent
occam process, and given the name 'eproel . e8u'.

The source of this procedure is supplied with the toolset examples in the file
etype3 .oee. The procedure is listed below.

72 TDS 18400 April 1989

9.6 Channel communication

PROC call.prog (CHAN OF COMM to.process,
CHAN OF COMM from. process)

125

#IMPORT "cprocl.c8u"

VAL flag IS 0

[lOOO]INT wsl
[40000]INT ws2
[3]INT in, out:

SEQ

C program cprocl()

separate heap and stack

stack for program
heap for program
pointers to inputs/outputs

set up user output channel
LOAD.OUTPUT.CHANNEL(out[2], from.process)

-- set up user input channel
LOAD. INPUT. CHANNEL (in [2] , to.process)

-- call program
cprocl(flag, wsl, ws2, in, out)

Two channels are declared of type COMM, the first being an input channel to the
process, the second an output channel from the process. The declaration of
protocol type COMM is assumed.

The first statement sets up a pointer to the output channel, using the routine
LOAD. OUTPUT. CHANNEL. The second statement sets up a pointer to the input
channel, using the routine LOAD. INPUT. CHANNEL.

See section 4.4.4 for information on mixing error modes.

9.6 Channel communication

Communication between an equivalent occam process and any other process
is via occam channels. This section contains some guidelines for implementing
channel communication in non-OCCam languages, and introduces some of the
features used in the INMOS implementations of C, FORTRAN and Pascal for
the transputer.

72 TDS 184 00 April 1989

126

9.6.1 Communication libraries

9 Mixed language programming

Routines to assist with implementing OCCam-like protocols in C, FORTRAN and
Pascal are provided in channel ito packages that are supplied as part of the run
time libraries for INMOS-compatible compilers for the languages. The packages
provide routines equivalent to the occam message passing primitives ! and?
Routines that implement other protocols may also be available and for details of
these consult the compiler documentation.

The following list contains functional definitions of the routines provided in the
non-OCCam run time libraries for implementing primitive occam protocols. The
routines are defined using a functional description in a simple meta-Ianguage
form. Mnemonic names are used to express the functions of the routines and
their parameters and each definition is followed by its occam equivalent.

The list of functional definitions is followed by details of the routines provided in
the run time libraries for INMOS-approved C, FORTRAN and Pascal.

outbyte (byteva/, channelid)

Send a byte value down a specified channel. occam equivalent:

channel! BYTE byteval

outword (wordva/, channelid)

Send a 32-bit integer value down a specified channel. occam equivalent:

channel! INT32 wordval

outmess (channelid, bytevec, vec/en)

Send a byte array down a specified channel. occam equivalent:

channel! [bytevec FROM 0 FOR veclen]

inmess (channe/icJ, bytevec, vec/en)

Receive a byte array from a specified channel. occam equivalent:

channel? [bytevec FROM 0 FOR veclen]

These four routines correspond directly to the channel ito instructions supported
on the transputer and to the channel input and output statements in occam.
Other protocols can be implemented by using these routines in a particular way.
For example, to provide channel input routines to correspond with outbyte and

72 TDS 184 00 April 1989

9.6 Channel communication

outword, the function inmess can be used in the following way:

Data type Function call

BYTE inmess (channelid, byteval, 1)

INT32 inmess (channelid, wordval, 4)

9.6.2 C channel communication

127

In C, occam channels are identified by pointers to variables or array elements
and are passed through arguments to the main function. It may be convenient
to define a channel type consisting of an array of pointers.

The primitive channel communication functions provided in the C run time library
are given below. Other routines for channel communication may be provided
with the compiler you are using. For details of these routines and for further
information about channel communication in C see the user documentation that
is provided for the compiler.

_outbyte(byte, chanpointer)

_outword(word, chanpointer)

_outmess(chanpointer, buffer, nbytes)

_inmess(chanpointer, buffer, nbytes)

9.6.3 FORTRAN channel communication

FORTRAN accesses channels by index values which correspond to those of the
occam vectors in and out in the equivalent occam process definition.

The primitive channel communication functions provided for FORTRAN are given
below. Other routines for channel communication may be provided with the
compiler you are using. For details of these routines and for further information
about channel communication in FORTRAN see the compiler documentation.

SUBROUTINE CHANOUTBYTE (VALUE, ICHANNEL)

This is functionally equivalent to:

CHANOUTMESSAGE(ICHANNEL, BUFFER, 1)

72 TDS 184 00 April 1989

128 9 Mixed language programming

SUBROUTiNE CBANOUTWORD (VALUE, ICHANNEL)

This is functionally equivalent to:

CBANOUTMESSAGE (ICBANNEL, BUFFER, 4)

SUBROUTiNE CBANOUTMESSAGE (ICHANNEL, BUFFER, NBYTES)

SUBROUTiNE CHANINMESSAGE (ICHANNEL, BUFFER, NBYTES)

9.6.4 Pascal channel communication

Pascal programs access channels by index values that correspond to those of
the occam vectors in and out in the equivalent occam process definition.

You may also need to include the run time library at the head of the program and
use special compiler options. For details of any special procedures you should
use consult the compiler documentation.

The channel communicat!on functions provided in the Pascal run time library are
given below.

PROCEDURE outbyte (byte: CHAR; channel: INTEGER);

PROCEDURE outword (word, channel: INTEGER);

PROCEDURE outmess (channel: INTEGER;
VAR bufp: UNIV CHAR;
nbytes: INTEGER);

PROCEDURE inmess (channel: INTEGER;
VAR bufp: UNIV CHAR;
nbytes: INTEGER);

9.6.5 Implementing other occam protocols

Wherever possible you should use standard occam protocols with channels
implemented in other languages. These protocols are not checked by normal
language compilers and it is the programmer's responsibility to ensure that the
protocols are adhered to.

You are recommended to write your own routines for protocol communication,
using the low level channel routines provided by the run time libraries, rather
than use the low level routines directly.

72 TDS 18400 April 1989

9.6 Channel communication

9.6.6 Guidelines and rules

129

When implementing channel protocols in other languages the occam rules of
channel communication must be strictly adhered to because other languages do
not provide a check on the way that channels are used. In particular, the length
of a message transmitted from one process must match the length expected by
the receiving process. If not, unpredictable results may occur.

Briefly, the rules for implementing occam protocols are as follows:

• All inputs must have a matched output and vice versa.

• Channels provide unbuffered, unidirectional point-to-point communication
between two concurrent processes. The same channel must not be used
for input and output.

The C, FORTRAN and Pascal primitive channel communication routines supplied
in the run time libraries behave in the same way as occam input (?) and output
(!), that is, communication does not proceed until the corresponding input or
output is performed in the process at the other end of the channel.

The following sections show how to implement the three types of occam pro­
tocol, using the generalised routines that are described in section 9.6.1. For
details of standard occam protocols, see the 'occam 2 Reference Manual'.

Simple protocols

Simple protocols for communicating standard occam data types can be im­
plemented directly using the primitive channel communication routines that are
provided in the run time libraries. Table 9.7 and table 9.8 show how these rou­
tines can be called to implement standard occam protocols.

Arrays are input and output using routines inmess and outmess, respectively.
Remember to adjust the length of word arrays by multiplying by the number of
bytes per word.

Counted arrays should be preceded immediately by the length, using the appro­
priate output routine, as shown in table 9.7.

Sequential protocols

Sequential protocols are made up of a sequence of simple protocols. To imple­
ment a sequential protocol use a series of simple protocols in sequence. It is
particularly important that the correct order is maintained, and you are strongly
recommended to write routines for each type of sequential protocol that you wish

72 TDS 18400 April 1989

130

to implement.

9 Mixed language programming

Data type Routine

BYTE outbyte(byteval, channelid)

BOOL outbyte(byteval, channelid)

INT outword(wordval, channelid)

outmess(channeli~ byteve~ 4)

INT16 outmess(channeli~byteve~ 2)

INT32 outword(wordval, channelid)

outmess(channeli~ byteve~ 4)

INT64 outmess(channeli~byteve~ 8)

REAL32 outword(wordval, channelid)

outmess(channelid, bytevec, 4)

REAL64 outmess(cha;nnelid, bytevec, 8)

Table 9.7 Outputting simple protocols

Data type Routine

BYTE inmess(channelid, bytevec, 1)

BOOL inmess(channelid, bytevec, 1)

INT inmess(channelid, bytevec, 4)

INT16 inmess(channelid, bytevec, 2)

INT32 inmess(channelid, bytevec, 4)

INT64 inmess(channelid, bytevec, 8)

REAL32 inmess(channelid, bytevec, 4)

REAL64 inmess(channelid, bytevec, 8)

Table 9.8 Inputting simple protocols

Variant protocols

A variant protocol specifies a number of possible formats for communication on
a single channel. Each format has an identifying tag. which may be followed by

72 TDS 184 00 April 1989

9.7 Calling occam from other languages

a simple or sequential protocol. For example:

PROTOCOL LINES
CASE

line; BYTE:: []BYTE
error; INT16
terminate

131

This defines a protocol called LINES which has three tags: line which is
always followed by a byte counted array; error which is always followed by an
INT16; and terminate which is not followed by any further data.

Variant protocol tags are byte values and are always numbered from zero. Thus
in the above example the tag line would have the value 0, error would have
the value 1, and terminate would have the value 2.

Each communication format in a variant protocol may be considered as a se­
quential protocol which always has a byte value as the first item sent. The value
of this byte can be tested and the appropriate action taken.

For example, the following sequence would implement the line format commu­
nication from the LINES protocol:

outbyte(O, channelid)
outbyte(length, channelid)
outmess(channelid, line, length)

The following sequence would implement the error format communication from
the LINES protocol:

outbyte(1, channelid)
outmess(channelid, number, 2)

The following sequence would implement the terminate format communica­
tion from the LINES protocol:

outbyte(2, channelid)

9.7 Calling occam from other languages

occam procedures can be called from e, FORTRAN and Pascal if the following
rules are observed.

72 TDS 184 00 April 1989

132 9 Mixed language programming

1 The occam procedure to be called should be a separately compiled unit.

2 occam FUNCTIONs cannot be called.

3 A parameter of type INT should be declared as the first formal parameter
for the occam procedure. The parameter is not used in the occam
procedure, but is used by C, FORTRAN and Pascal as the static link.

4 Formal parameters for the occam procedure must be scalars or arrays
and must not be VAL parameters. Array bounds must be declared within
the occam procedure. Dynamically sized arrays can be passed into
occam by oversizing the formal array parameter in occam, specifying
an additional formal parameter to define the actual size, and setting up
an abbreviation in the occam procedure to define the bounds, thereby
enabling subscript checking.

5 Actual parameters should be passed from the calling program as pointer
values. In C this can be a pointer to an integer or the address of an
integer, and in Pascal a pointer variable. In FORTRAN all parameters
are implicit pointers.

6 Interaction with the calling program must be via channel parameters.
Channel parameters are passed from C programs as pointer values.
Standard FORTRAN and Pascal have no way of passing channel equiv­
alents, and so interaction ofOCCam with a calling FORTRAN or Pascal
program is not possible without special extensions. Extensions to create
channel pointers may be available with some versions of parallel FOR­
TRAN compilers. For further details consult the compiler documentation.

7 The occam procedure must not use its vector space. If arrays are used
they should be explicitly placed within the workspace.

8 It is the programmer's responsibility to ensure that there is enough workspace
on the stack of the calling program.

As occam is a static language without global variables (unlike C, FORTRAN and
Pascal) it is possible that any common occam routines can be shared between
the C, FORTRAN and Pascal programs that use them and that also run on the
same processor.

This can be achieved by first linking the C, FORTRAN or Pascal programs with­
out the occam routines that they have in common using the linker 'u' option
(allowing unresolved references). The linked C, FORTRAN or Pascal programs,
the common occam routines that are to be shared and the occam wrapping
that calls the C, FORTRAN or Pascal programs, can then be linked together to
produce the entire program.

72 TDS 18400 April 1989

Calling occam from other languages

9.7.1 Examples

133

The following examples show how C, FORTRAN and Pascal programs can call
a occam routine which has integer and byte variables as part of its formal
parameter specification.

The formal parameter specification for such an occam routine is shown below:

PROC occaml (INT dummy, INT word, BYTE byte)

Calling sequences for C, FORTRAN, and Pascal are illustrated below.

C:

int word;
char byte;

extern void occaml();

occaml(&word, &byte);

FORTRAN:

INTEGER WORD
CHARACTER BYTE

EXTERNAL OCCAMl

CALL OCCAMl (WORD, BYTE)

Pascal:

VAR
word
byte

INTEGER;
CHAR;

IMPORT PROCEDURE occaml ALIAS 'occaml'
(VAR word INTEGER;
VAR byte : CHAR);

BEGIN
occaml(word, byte);

END.

The following examples show how C, FORTRAN and Pascal programs can call
an occam routine which has integer and byte vector variables as part of its
formal parameter specification.

72 TDS 184 00 April 1989

134 9 Mixed language programming

ARRAY [0 .. 9] OF INTEGER;
PACKED ARRAY [0 .. 19] OF CHAR;

The formal parameter specification for such an ocoam routine is as follows:

PROC occam2 (INT dummy,
[10]INT words,
[20]BYTE bytes)

Calling sequences for C, FORTRAN, and Pascal are illustrated below.

c:
int words[10];
char bytes[20];

extern void occam2();

occam2(words, bytes);

FORTRAN:

INTEGER WORDS
CHARACTER BYTES

DIMENSION WORDS (10) , BYTES (20)

EXTERNAL OCCAM2

CALL OCCAM2 (WORDS, BYTES)

Pascal:

TYPE
wordvector
bytevector =

VAR
words
bytes

wordvector;
bytevector;

IMPORT PROCEDURE occam2 ALIAS 'occam2'
(VAR words wordvector;
VAR bytes: bytevector);

BEGIN
occam2(words, bytes);

END.

72 TDS 18400 April 1989

10 Low level .
programming

This chapter describes a number of features of the toolset occam 2 compiler
which support low-level programming of transputers. These are as follows:

Allocation This allows a channel, a variable, an array or a port to be placed at
an absolute location in memory.

Code insertion This allows sections of transputer machine code to belnserted
into occam programs.

Dynamic code loading A set of library procedures is provided that allows an
occam program to read in a section of compiled code (from a file, for
examplefand execute it.

---------Extraordinary use of links A set of library procedures is provided which allow
link communications which have not completed to be handled by timeout,
or be aborted by another part of the program.

Setting the transputer error flag The transputer error flag can be explicitly set
using the predefined routine CAUSEERROR.

10.1 Allocation

Allocation is performed using the occam PLACE statement, which is defined
formally as follows:

allocation = PLACE name AT expression:

The PLACE statement in occam allows a channel, a variable, an array, or
a input/output channel for a memory mapped device (port), to be placed at an
absolute location in memory. This feature may be used for a number of purposes,
for example:

• To map occam channels onto specific transputer links from within an
occam program. Channels mapped onto links in this way are known as
'hard' channels.

• To map arrays onto particular hardware such as video RAM.

• To access devices (such as UARTs or latches) mapped into the trans­
puter's address space.

72 TDS 18400 April 1989

136 10 Low level programming

The PLACE statement should not be used to force critical arrays or variables into
on-chip RAM. The occam compiler allocates memory according to the scheme
outlined in chapter 11, and cannot allow data to be placed arbitrarily in memory.
To make the best use of on-chip RAM use separate vector space as described
in section 4.4.6.

The address of a placed object is derived by treating the value of the expression
as a word offset into memory. In occam addresses start at zero, while physical
machine addresses start at MOSTNEG INT (#80000000 on 32-bit transputers
and #8000 on 16-bit transputers). An occam address can be considered as a
subscript to an INT vector mapped onto memory. Thus the following statement
would cause n to be allocated address #80000004 on a 32-bit transputer:

PLACE n AT 1:

Addresses are calculated in this way so that the transputer links can be accessed
using code that is independent of the word length. The links are mapped to
addresses 0, 1,2...7.

Translation from a machine address to the equivalent occam address ([] INT
subscript value) can be achieved by the following declaration:

VAL occam.addr IS
(machine.addr>«MOSTNEG INT» » w.adjust:

where: ·w. adjust is 1 for a 16-bit transputer and 2 for a 32-bit transputer.

The following two code fragments illustrates the placement of channels on links.

CHAN OF ANY
CHAN OF ANY
CHAN OF ANY
CHAN OF ANY
CHAN OF ANY

in.linkO, out.linkO
in.linkl, out.linkl
in.link2, out.link2
in.link3, out.link3
in. event :

PLACE out.linkO AT linkO.out:
PLACE in.linkO AT linkO.in:

PLACE out.linkl AT linkl.out:
PLACE in.linkl AT linkl.in:

PLACE out.link2 AT link2.out:
PLACE in.link2 AT link2.in:

PLACE out.link3 AT link3.out:
PLACE in.link3 AT link3.in:

PLACE in.event AT event.in:

72 TDS 18400 April 1989

10.1 Allocation

or:

[4]CHAN OF ANY out. links, in. links

137

PLACE
PLACE

out. links AT 0:
in. links AT 4:

Link addresses are defined in the include file linkaddr. inc that is supplied
with the toolse1.

Although shown here as CHAN OF ANY channels you should use specific oc­
cam channel protocols wherever possible to ensure that channels are properly
checked at compile time.

All placed objects must be word aligned. If it is necessary to access a BYTE
object on an arbitrary boundary, or an INT16 object on an arbitrary 16-bit bound­
ary, the object must be an element of an array which is placed on a word ad­
dress below the required address. For example, to access a BYTE port called
io. register located at physical address #40000001 on a T414 the follow­
ing must be used:

[4]PORT OF BYTE io.regs.vec :
PLACE io.regs.vec AT #30000000
io.register IS io.regs.vec[l] :

Placement may be used on transputer boards to access board control functions
mapped into the transputer's address space. For example, on the IMS 8004,
the subsystem control functions (Error, Reset and Analyse) are mapped into
the address space and can be accessed from occam as placed ports. The

72 TDS 18400 April 1989

138 10 Low level programming

-- hold reset high

address 0
address 0
address 4

following code will reset the subsystem on an IMS 8004:

PROC reset.b004.subsystem()
~ subsys.reset IS #20000000:
VAL subsys.error IS #20000000:
~ subsys.analyse IS #20000001:
PORT OF BYTE reset, analyse, error:
PLACE reset AT subsys.reset:
PLACE analyse AT subsys.analyse:
PLACE error AT subsys.error:
~ delay IS 78: -- 5 msec delay
TIMER clock:
INT time:
SEQ

-- set reset and analyse low
analyse ! 0 (BYTE)
reset ! 0 (BYTE)
reset ! 1 (BYTE)
clock ? time
clock ? AFTER time PLUS delay
reset 0 (BYTE) reset subsystem

The error and analyse functions can be controlled from occam in a similar way.

10.2 Code insertion

This section describes the facilities provided by the occam 2 compiler code
insertion mechanism.

The code insertion mechanism enables the user to access the instruction set of
the transputer directly within the framework of an occam program. Symbolic
access to occam variable names is supported, as is automatic jump sizing.
More details on the instruction set may be found in I The transputer instruction
set: a compiler writer's guide'.

Code insertion may be employed to perform tasks which are not possible in
occam, or for particularly time-critical sections of a program. There are two
reasons, however, why code insertion should be avoided as a solution to prob­
lems which may, with some thought, be solved using occam.

The first and most important reason is that the validity of a system consisting
entirely of occam can be checked by the compiler. The compiler can check
usage of channels, access to variables, communication protocols and range
violations, and a single code insert prevents the compiler from performing these
checks adequately. A second reason is that the transputer instruction set is

72 TDS 184 00 April 1989

10.2 Code insertion 139

optimised for high level languages, particularly occam, and algorithms which
are simple to code and easy to debug in occam may become difficult and
obscure when coded in the transputer instruction set directly.

10.2.1 Using the code insertion mec~anism

An occam 2 code insertion is introduced by the construct GUY. The context
of the GUY construct is determined, as with all occam constructs, by the text
indentation. The transputer instructions which follow the GOY must be indented
and there can only be one instruction per line. Lines may be terminated by
a comment, which is introduced by a double dash ('--') as in occam. The
transputer instructions are upper case versions of the standard mnemonics listed
in 'The transputer instruction set: a compiler writer's guide'.

Compiler options determine which instructions may be used within sections of
code insertions, in the unit being compiled. The default is to disallow all code
inserts. If the 'G' option is used, then the instructions allowed are a restricted set
of instructions which are sufficient for time-critical sections of sequential code.
If the 'w' option is used, then all transputer instructions are allowed. Since the
inclusion of some instructions may have an unexpected effect on the occam
program (for example, instructions which move the workspace pointer), instruc­
tions outside of the restricted set must be used with great care. Transputer
instructions in the restricted set are listed in appendix B.

For example, to perform a 1's complement addition we can write the following
occam:

INT carry, temp:
SEQ

carry, temp := LONGSUM (a, b, 0)
c := carry PLUS temp

However, if this occurs in a time-critical section of the program we might replace
it with:

GUY
LDe 0
LDL a
LDL b
LSUM
SUM
STL c

which would avoid the storing and reloading of carry and temp.

Values in the range MOSTNEG INT - MOSTPOS INT may be used as

72 TDS 18400 April 1989

140 10 Low level programming

operands to all of the direct functions without explicit use of prefix and negative
prefix instructions. Access to non-local occam symbols is provided without
explicit indirection. This means that a single line of code such as LDL a might
be translated by the compiler into a sequence of transputer instructions.

A more complex example, which sets error if a value read from a channel is not
in a particular range, takes advantage of both these facilities:

(CHAN OF INT c)

push value of free variable
onto stack

push 512 onto stack
if NOT (0 < a <= 512)

then set error

a

512LDC
CCNT1

INT a :
other code

PROC get.and.check.index
SEQ

c ? a
GUY

LDL

push value in a onto stack
pop value from stack into b

If there is a requirement for the code insertion to use some work space, then the
work space may be declared before the GUY construct, in which case, the work
space locations are accessed like any other occam symbol.

INT a
SEQ

INT b , c
GUY

LDL a
STL b

more code

10.2.2 Labels and jumps

To insert a label into the sequence of instructions, put the name of the label,
preceded by a colon, on a line of its own. Then when the label is used in an
instruction, precede the name with a full stop. For example:

GUY
some instructions

:FRED
some more instructions

CJ .FRED

The same label name may not be defined more than once within an occam
procedure.

72 TDS 184 00 April 1989

10.3 Dynamic code loading

10.3 Dynamic code loading

141

The toolset compiler permits the dynamic loading and execution of code using
the procedures described in this section.

The dynamic code loading procedures are provided automatically by the com­
piler and are not referenced by a #USE directive. The procedures allow you to
write an occam program that reads in a compiled occam procedure, and then
calls it. The called procedure may be compiled and linked separately from the
calling program and read in from a file. It is possible to pass parameters to the
procedure.

The procedures are outlined in the table below, and described in the following
sections, with examples.

Procedure Parameter Specifiers

KERNEL. RUN VAL [] BYTE code,
VAL INT entry.offset,
[]INT workspace,

VAL INT
no.of.parameters

LOAD.INPOT.CHANNEL INT here,
CHAN OF ANY in

LOAD.INPOT.CHANNEL.VECTOR INT here,
[]CHAN OF ANY in.vec

LOAD.OUTPUT.CHANNEL INT here,
CHAN OF ANY out

LOAD.OUTPUT.CHANNEL.VECTOR INT here,
[]CHAN OF ANY out.vec

LOAD.BYTE.VECTOR INT here,
[]BYTE b.vec

The bootstrap tool iboot described in chapter 11, can produce code in a format
suitable for dynamic loading. The file format is described in appendix E.

72 TDS 184 00 April 1989

142

10.3.1 Calling code

10 Low level programming

The occam 2 compiler recognises a procedure KERNEL. RUN with the following
parameters:

PROC KERNEL. RUN (VAL [] BYTE code,
VAL INT entry.offset,
[]INT workspace,
VAL INT no.of.parameters)

The effect of this procedure is to call the procedure loaded in the code buffer,
starting execution at the location code [entry. offset].

The code to be loaded must begin at a word-aligned address. To ensure proper
alignment either start the array at zero or realign the code on a word boundary
before passing it into the procedure.

The workspace buffer is used to hold the local data of the called procedure.
For details of the contents of the workspace buffer see figure 10.1.

The parameters passed to the called procedure should be placed at the top of
the workspace buffer by the calling procedure before the call of KERNEL. RUN.
The call to KERNEL. RUN returns when the called procedure terminates. If the
called procedure requires a separate vector space, then another buffer of the
required size must be declared, and its address placed at the end of the param­
eter list in workspace. This pointer is treated like an extra parameter and so
no . of . parameters must be increased by one.

The value of the integer no. of •parameters should be increased by one if
separate vector space is used.

The workspace passed to KERNEL. RUN must be at least:

[ws.requirement + no.of.parameters + 3]INT

or if the program does not require separate vector space:

[ws.requirement + no.of.parameters + 2]INT

The parameters must be loaded before the call of KERNEL. RUN. The parameter
corresponding to the first formal parameter of the procedure should be in the
word immediately above the saved Iptr word, and the last parameter should
be in the word immediately below the saved Wptr word.

72 TDS 18400 April 1989

10.3 Dynamic code loading

workspace[size.of.workspace - 1]

143

last parameter

1st parameter

workspace[O]

INT
saved wptr

INT
address of vector space

[no.of.parameters]INT

parameters

INT
saved iptr

[ws.requirement]INT

local workspace

saved by KERNEL. RUN

(only if separate vector space
required by procedure)

loaded by caller

saved by KERNEL. RUN

Figure 10.1 Workspace buffer

10.3.2 Loading parameters

There are a number of library procedures to set up parameters before the call.
These are:

LOAD.INPUT.CHANNEL (INT here, CHAN OF ANY in)

The variable here is assigned the address of the input channel in.

LOAD.INPUT.CHANNEL.VECTOR (INT here,
[]CHAN OF ANY in.vec)

The variable here is assigned the address of the input channel vector
in.vec.

LOAD.OUTPUT.CHANNEL (INT here, CHAN OF ANY out)

The variable here is assigned the address of the output channel out.

LOAD.OUTPUT.CHANNEL.VECTOR (INT here,
[] CHAN OF ANY out. vec)

The variable here is assigned the address of the output channel vector
out.vec.

72 TDS 18400 April 1989

144 10 Low level programming

LOAD.BYTE.VECTOR (INT here, []BYTE b.vec)

The variable here is assigned the address of the byte vector b . vec.

Note that when passing vector parameters, if the formal parameter of the PROC
called is unsized then the vector address must be followed by the number of
elements in the vector, for example:

LOAD.BYTE.VECTOR(param[O], buffer)
param[l] := SIZE buffer

Thus an unsized vector parameter requires 2 parameter slots. The size must be
in the units of the array (not in bytes, unless it is a byte vector, as above). For
multi-dimensional arrays, one parameter is needed for each unsized dimension,
in the order that the dimensions are declared.

All variables and arrays should be retyped to byte vectors before using
LOAD. BYTE. VECTOR to obtain their addresses, using a retype of the form:

[]BYTE b.vector RETYPES variable:

LOAD. BYTE. VECTOR should also be used to set up the address of the separate
vector space.

10.3.3 Examples

This section gives two examples of dynamic loading. The first is a simple exam­
ple showing how parameterless code can be input on a channel and loaded. The
second is a more complex example showing how to set up and pass parameters
into a dynamically loaded program.

Example 1: load from link and run

This is a simple procedure to load a (parameterless) code packet from a link and
run it. The type of the packet is given by the protocol:

PROTOCOL CODE.MESSAGE IS INT:: []BYTE; INT; INT

The code is sent first, as a counted array, followed by the entry offset and

72 TDS 18400 April 1989

10.3 Dynamic code loading

workspace size.

145

PROC run. code (CHAN OF CODE.MESSAGE input,
[]INT run.vector, []BYTE code.buffer)

VAL no.parameters IS 3: -- smallest allowed
INT code. length, entry. offset, work. space. size:
INT total.work.space.size:
SEQ

input? code.length::code.buffer;
entry. offset; work. space. size

total.work.space.size :=
(work. space. size + no.parameters) + 2

[]INT work.space IS [run.vector FROM 0 FOR
total.work. space. size]

KERNEL.RUN (code.buffer, entry. offset,
work. space, no.parameters)

Example 2: system loader

This example shows how to set up parameters prior to running code loaded from
a file. It is assumed that the code requires use of a separate vector space.

Consider a process with an entry of the form:

PROC process (CHAN OF ANY fs, ts, [lINT buffer,
VAL BOOL debugging, INT result)

The two channel parameters fs and ts handle input to and output from the file
server; the INT vector acts as a buffer. The two channels and the buffer are the
same parameters as are provided by the bootstrap code added by the bootstrap
tool iboot (chapter 11), and the example takes advantage of this. The fourth
parameter is a value parameter that will not be changed by the process, so
only the value needs to be passed. The final parameter is an INT that will be
changed by the process, and its address must be passed into the procedure.

The calling program is shown below. The program reserves 256 bytes for the
code that is to be read in; if you use this program make sure you modify this
value to suit the size of your own code.

PROC call.program (CHAN OF ANY fs, ts, []INT free.memory)

-- Variables for holding code and entry and workspace
-- data read from file
[256]BYTE code:
INT code.length, entry. offset, work.space.size:
INT vector. space. size:
INT result: -- Variable used by process

72 TDS 18400 April 1989

146 10 Low level programming

~ debugging IS TRUE: -- Value param for process
~ no.params IS 6: No. of parameter slots

Need 1 slot per parameter + 1 for the size of the
-- array parameter

SEQ
Read in code and data about code

-- S1ice up memory vector for use by process
[]INT ws IS [free.memory FROM 0 FOR

(work. space. size PLUS 3) PLUS no.params]:
-- Reserve work space requirement for process
[]INT parameter IS [ws FROM work. space. size PLUS

1 FOR no.params]:
-- Reserve slot in ws for parameters
[]INT vs IS [free.memory FROM SIZE ws FOR

vector. space. size] :
-- Reserve vector space requirement for process
[]BYTE b.vs RETYPES vs:
-- Retype as a byte vector
-- A1l vectors must be loaded as byte vectors.
[]INT buffer I~ [free.memory FROM (SIZE ws) PLUS

(SIZE vs) FOR
(SIZE memory) MINUS «SIZE ws)
PLUS (SIZE vs»]:

-- Reserve remainder of memory for use
-- as process parameter buffer
[]BYTE b.buffer RETYPES buffer:
-- .Retype as a byte vector
[]BYTE b.result RETYPES result:
-- A1l variables must be retyped as a byte vector
SEQ

LOAD.INPUT.CHANNEL(parameter[O], fs)
LOAD.OUTPUT.CHANNEL(parameter[l], ts)
LOAD.BYTE.VECTOR(parameter[2], b.buffer)
parameter [3] := SIZE buffer
parameter [4] := INT debugging
-- Store value parameter
LOAD.BYTE.VECTOR(parameter[S], b.result)
-- Load address of INT parameter
LOAD.BYTE.VECTOR(parameter[6], b.vs)
-- set pointer to vector space
KERNEL.RUN([code FROM 0 FOR code.length],

entry. offset, ws, no.params)
-- Run the process

This example first declares the variables and constants required for the pro­
cess. The vector code should be of a size large enough to hold the code for

72 TDS 184 00 April 1989

10.3 Dynamic code loading 147

the process. The values of the variables code .lenqth, entry. offset,
work. space. size and vector. space. size are determined from the
data in the code file.

Next the vector free. memory is partitioned for use as the process's work
space, vector space and as the variable vector used by the process. All vectors
and variables used by the process must be retyped as byte vectors so that their
address can be determined by the predefined routine LOAD. BYTE. VECTOR.

The parameters for the process are then set up. The unsized vector buffer is
passed as an address followed the size of the vector, in integers. Note that the
size of buffer, not b.buffer, is used.

The partitioning of the free memory buffer is illustrated in figure 10.2.

buffer

ws

vector space

wsWDtr
vector soace address

parameters
I-otr

workspace

Top of free memory

+ vs

Start of free memory

72 TDS 184 00

Figure 10.2 Partitioning of free memory

April 1989

148

10.4 Extraordinary use of links

Introduction

10 Low level programming

The transputer link architecture provides ease of use and compatibility across
the range of transputer products. It provides synchronised communication at the
message level which matches the occam model of communication.

In certain circumstances, such as communication between a development sys­
tem and a target system, it is desirable to use a transputer link even though the
synchronised message passing of occam is not exactly what is required. Such
extraordinary use of transputer links is possible but requires careful programming
and the use of some special occam procedures.

The use of these procedures is described in this chapter. To use them in a
compilation unit, the directive #USE "xlink .lib" should be inserted at the
top of the source for that unit. For details of the procedures see section 24.9.

10.4.1 Clarification of requirements

As an example, consider a development system connected via a link to a target
system. The development system compiles and loads programs onto the target
and also provides the program executing in the target with access to facilities
such as a file store. Suppose the target halts (because of a bug) whilst it is
engaged in communication with the development system. The development
system then has to analyse the target system.

A problem will arise if the development system is written in 'pure' occam. It
is possible that when the target system halts, the development system is in the
middle of communicating on a link. As a result, the input or output process will not
terminate and the development system will be unable to continue. This problem
can occur even where an input occurs in an alternative construct together with a
timeout (as illustrated below). When the first byte of a message is received the
process performing the alternative is committed to input; the timer guard cannot
subsequently be selected. Hence, if insufficient data is transmitted the input will
not terminate.

ALT
TIME ? AFTER timeout

from.other.system ? message

It is important to note that the problem arises from the need to recover from the
communication failure. It is perfectly straightforward to detect the failure within
'pure' occam and this is quite sufficient for implementing resilient systems with

72 TDS 18400 April 1989

10.4 Extraordinary use of links

multiple redundancy.

10.4.2 Programming concerns

149

The first concern of a designer is to understand how to recognise the occurrence
of a failure. This will depend on the system; for example, in some cases a timeout
may be appropriate, in others the failure may need to be signalled to another
process on a channel.

The second concern is to ensure that even if a communication fails, all input
processes and output processes will terminate. As this cannot be achieved
directly in occam, there are a number of library procedures which perform the
required function. These are described below.

The final concern is to be able to recover from the failure and to re-establish
communication on the link. This involves reinitialising the link hardware; again
there is a suitable library procedure to allow this to be performed.

10.4.3 Input and output procedures

There are four library procedures which implement input and output processes
which can be made to terminate even when there is a communication failure.
They will terminate either as the result of the communication completing, or as
the result of the failure of the communication being recognised. Two proce­
dures provide input and output where communication failure can be detected by
a simple timeout, the other two procedures provide input and output where the
failure of the communication is signalled to the procedure via a channel. The
procedures have a boolean variable as a parameter which is set TRUE if the pro­
cedure terminated as a result of communication failure being detected, and is set
FALSE otherwise. If the procedure does terminate as a result of communication
failure then the link channel can be reset.

All four library procedures take as parameters a link channel c (on which the
communication is to take place), a byte vector mess (which is the object of the
communication) and the boolean variable aborted. The choice of a byte vector
as the parameter to these procedures allows an object of any type to be passed
along the channel provided it is retyped first.

The two procedures for communication where failure is detected by a timeout
take a timer parameter TIME, and an absolute time t. The procedures treat the
communication as having failed when the time as measured by the timer TIME is
AFTER the specified time t. The names and the parameters of the procedures

72 TDS 18400 April 1989

150

are as follows:

10 Low level programming

InputOrFail.t(CHAN OF ANY c, []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

OutputOrFail.t(CHAN OF ANY c, VAL []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

The other two procedures provide communication where failure cannot be de­
tected by a simple timeout. In this case failure must be signalled to the inputting
or outputting procedure via a message on the channel kill. The message is
of type INT. The names and parameters to the procedures are as follows:

InputOrFail.c(CHAN OF ANY c, []BYTE mess,
CHAN OF INT kill, BOOL aborted)

OutputOrFail.c(CHAN OF ANY c, VAL []BYTE mess,
CHAN OF INT kill, BOOL aborted)

10.4.4 Recovery from· failure

To reuse a link after a communication failure has occurred it is necessary to
reinitialise the link hardware. This involves reinitialising both ends of both chan­
nels implemented by the link. Furthermore, the reinitialisation must be done after
all processes have stopped trying to communicate on the link. So, although the
InputOrFail and OutputOrFail procedures reset the link automatically
when they abort a transfer, it is necessary to' use the fifth library procedure
'Reinitialise (CHAN OF ANY c) after it is known that all activity on the
link has ceased.

The Reinitialise procedure must only be used to reinitialise a link channel
after communication has finished. If the procedure is applied to a link channel
which is being used for communication the transputer's error flag will be set and
subsequent behaviour is undefined.

10.4.5 Example: a development system

For our example consider the development system described in section 10.4.1,
illustrated in figure 10.3.

The first step in the solution is to recognise that the development system knows
when a failure might occur, and hence knows when it might be necessary to
abort a communication.

72 TDS 184 00 April 1989

10.4 Extraordinary use of links

Development Target
System Link System

Figure 10.3 Development system

151

When the development system decides to reset the target it can send a message
to the interface process directing it to abort any transfers in progress. It can then
reset the target system (which resets the target end of the link) and reinitialise
the link.

The example program below could be that part of the development system which
runs when the target system starts executing and continues until the target is
reset and the link is reinitialised.

SEQ
CHAN OF ANY terminate.input, terminate.output
PAR

interface process
monitor process

reset target system
Reinitialise(link.in)
Reinitialise(link.out)

The monitor process will output on both terminate. input and
terminate. output when it detects an error in the target system.

The interface process consists of two processes running in parallel; one process
outputs to the link, and the other inputs from the link. As the structures of the
two processes are similar only the output process is illustrated here.

If there were no need to consider the possibility of communication failure the
process might be:

WHILE active
SEQ

ALT
terminate.output ? any

active := FALSE
from.dev.system ? message

link. out ! message

This process will loop, forwarding input from from. dav . system to

72 TDS 184 00 April 1989

152 10 Low level programming

link. out, until it receives a message on terminate. output. However,
if the target system halts without inputting after this process has attempted to
forward a message, the interface process will fail to terminate.

The following program overcomes this problem:

WHILE active
BOOL aborted
SEQ

ALT
terminate.output ? any

active := FALSE
from.dev.system ? word

SEQ
outputOrFail.c (link. out, message,

terminate.output, aborted)
active := NOT aborted

This program is always prepared to input from terminate. output, and is
always terminated by an input from terminate. output. There are two pos­
sible cases. The first is where a message is received by the input which then
sets active to FALSE. The second is where the output is aborted. In this case
the whole process is terminated because the variable aborted would then be
true.

10.5 Setting the error flag

The transputer error flag can be set using the predefined procedure
CAUSEERROR (). This procedure is recognised automatically by the compiler
and does not need to be referenced by the #USE directive.

CAUSEERROR always halts the program, whatever the mode of the compilation.
This is distinct from the occam primitive process STOP, which only halts the
program if the compilation is in HALT mode.

If the program was loaded using the iserver 'SE' option, the server terminates
when the error flag is set.

72 TDS 18400 April 1989

Reference manual

72 TDS 184 00 April 1989

154

72 TDS 18400

Reference manual

April 1989

11 iboot - bootstrap
tool

This chapter describes the bootstrap tool that produces executable code for
single transputers. It shows how to invoke the tool, describes the function and
format of the bootstrap loader program and explains how it allocates memory.
The chapter also describes how to create new bootstrap loader programs and
ends with a list of error messages.

11.1 Introduction

The bootstrap tool generates an object file that can be loaded onto a single
transputer and run. This file is known as a bootable file. It can also generate
a file suitable for loading by a program at run time (dynamic loading). The input
file can be a compiled (. txx) or linked (. cxx) object file.

The bootstrap tool can be considered a simple configuration program for single
transputers. It converts a linked program image into a bootable code file that will
run on a single transputer, by adding bootstrap code to the program.

The bootstrap tool can also be used to create new bootstrap loader programs
for special uses.

The operation of the bootstrap tool in terms of file extensions is illustrated below.

11.1.1 Programs that can be made bootable

Programs to be made into bootable code must have a procedural interface as
defined in section 11.3.2, and the program must run on a single transputer.

The following files cannot be made into bootabl"e programs:

72 TDS 18400 April 1989

156 11 iboot - bootstrap tool

• Object files created by the librarian

• Object files containing unresolved references to other compilation units

• Object files that contain more than one entry point.

11.1.2 Transputer targets

The bootstrap tool produces code for the IMS T212, T222, M212, T414, T425,
and T800 transputers. If the target transputer is of any other type an error is
reported.

11.2 Running the bootstrap tool

The syntax of the bootstrap tool is as follows:

iboot filename {options}

where: filename is the name of the input file. The file extension must be given.

options is a list, in any order, of one or more of the options listed in
Table 11.2.

11.2.1 Bootstrap code

The exact code added by the bootstrap tool depends on the transputer target
and error mode of the input object file. The same loader is used for all three
32-bit processors (T414, T425, and T800), but different code is used for the IMS
212. The function of both loaders is identical.

If the input object file is compiled in HALT system mode then the halt-on-error
flag is set in the bootstrap loader code; if the file is compiled in any other mode
then the halt-on-error flag is not set. Option 'E' can be used to disable the setting
of the halt-an-error flag in HALT mode programs, and to enable the setting of
the halt-an-error flag in other modes.

11.2.2 Producing code for dynamic loading

To produce code that can be loaded dynamically at run time, use the 'R' option to
prevent the addition of normal bootstrap code. The resulting file is non-bootable
and contains all the information required for the call to the program, plus the
required code (in binary format). The file is given the •rxx extension. The
format of non-bootable files is described in appendix E.

72 TDS 184 00 April 1989

11.2 Running the bootstrap tool 157

Option Description

C Produces bootable code for input to the configurer programs
for C, FORTRAN and Pascal code. For details of the specific
configurer programs, see the documentation for the language
compiler.

E Disables the setting of the halt-on-error flag for programs com-
piled in HALT mode and enables it for other modes.

I Displays brief progress information as the tool runs.

M Disables production of a code map file.

p Creates a new bootstrap loader program.

R Disables the addition of bootstrap loader code to program
code. Used to generate code for dynamic loading and for
booting from ROM.

o outputfile Specifies an output filename. If no filename is specified the
input filename is used and the .bxx extension is added.

B filename Specifies an external bootstrap loader.

S size Specifies the size of the run time stack for C, FORTRAN, and
Pascal programs. size must be specified in words not bytes.
The default is to use a combined stack.

Options must be preceded by '-' for UNIX based toolsets.

Options must be preceded by If' for non-UNIX based toolsets.

Spaces between the options and the case of letters in parameters are not
significant.

Options may be specified in any order.

Table 11.1 Command line options

For more information about dynamic loading see section 10.3.

11.2.3 External loaders

External bootstrap loaders can be used in place of the default bootstrap code
by specifying the 'B' option. The file produced is of the same format as a non­
bootable file generated using the 'R' option, except that the external bootstrap
code is added to the file.

Note: Programs that contain external loader code cannot be debugged with the
toolset debugger idebuq unless they use the same loading scheme as the
default loader, described in section 11.3.2.

72 TDS 18400 April 1989

158 11 iboot - bootstrap tool

New bootstrap loaders can be created using the 'p' option. For more details see
section 11 .4.

11.3 Bootstrap loaders

The function of the bootstrap loader is to initialise the transputer, set up loader
and program workspaces, and load the program. The loader consists of two
parts: the primary loader, and the secondary loader.

The primary loader initialises the transputer and passes control to the secondary
loader, which loads the program. The same primary loader is used on all 16-bit
and 32-bit transputers.

The secondary loader sets up workspaces and code areas for the program, loads
the code, and calls the program. The exact object code used varies between
32-bit and 16-bit transputers.

The interfaces between the primary loader and the secondary loader are de­
scribed below.

11.3.1 Secondary loader interface

The secondary loader program must conform to the following procedure defini­
tion:

PROC procname (CHAN OF ANY from. link,
CBAN OF ANY to.link,
VAL INT bytes.per.word,
VAL INT word.mem.start,
VAL INT word.free.mem.offset)

where: from .link and to .link are the input and output channels respec­
tively of the transputer link down which the transputer was booted.

bytes. per. word is the number of bytes per word on which the pro­
cess is to run (4 for the T414, T425 and T80D and 2 for the T212, T222
and M212).

word.mem. start is the word offset of MemStart from MOSTNEG
INT (18 for the T414, T212 and T222, 28 for the T425 and T8DD).

word.free.mem.offset is the word offset from MOSTNEG INT of
the start of free memory, that is, memory unused by the primary and
secondary loader code and workspaces.

72 TDS 184 00 April 1989

11.3 Bootstrap loaders

The third and fourth parameters are determined by the transputer type.

11.3.2 Program interface

The program must conform to one of the following procedure declarations:

PROC proqram (CHAN OF ANY from. link, to.link,
[lINT user.buffer)

PROC proqram (CHAN OF ANY from. link, to.link,
[lINT user.buffer, stack. buffer)

159

where: from .link and to . link are the input and output channels respec­
tively of the transputer link down which the transputer was booted.

user. buffer is the free memory buffer.

stack. buffer is the stack buffer for non-OCCam code. The stack
buffer is only used if space is reserved for a separate non-OCCam stack
using the'S' option. The stack is allocated at the base of memory.
If the'S' option is not specified when iboot is invoked a combined
run-time stack and static and heap workspace is used (allocated from
user. buffer).

The last parameter passed to the program is a vector that represents the-amount
of free memory that is still available on the board for use by the program, that
is, memory not already used by the program for its code and workspace.

To calculate the actual memory available, the loader first reads the total memory
size from the host environment variable IBOARDSIZE. This communication with
the host is performed after the program has been loaded onto the transputer
board and before the program is started. The size of the free memory vector
passed to the program is given by IBOARDSIZE minus the combined program
code and workspace allocation.

11.3.3 Memory allocation

The default bootstrap loader attempts to optimise placement of the program's,
and its own, code and workspace. The rules it uses are as follows:

1 Program code is placed as low as possible in memory, taking into account
the scalar work space requirement of the program and the requirements
of the separate C, FORTRAN and Pascal stack if the iboot 's' option
has been selected.

72 TDS 18400 April 1989

160 11 iboot - bootstrap tool

2 Program code is placed above the memory required for the program's
scalar work space and the C, FORTRAN and Pascal stack if specified.
The memory reserved by the loader for the program's code and scalar
workspace will overlap the loader's own work and code space.

3 If the program uses a separate vector workspace the loader reserves a
portion of the program's memory as vector workspace. From the size of
this workspace, the size of the program code, and the size of its scalar
workspace, the loader determines the offset, from the start of memory
of free (unused) memory. This offset is used in conjunction with the
environment variable IBOARDSIZE to determine the amount of memory
available to the program, which is then passed as a vector parameter for
the program to use.

4 If the program uses a separate stack for C, FORTRAN or Pascal code,
the stack is placed at the base of memory, beginning at MemStart.

Figure 11.1 shows the memory map of the loaded code as created by the default
bootstrap loader.

-

Free memory

Vector WOrk~ace
(only if nee ed)

Code

Scalar workspace

Non-OCCam workspace
(if requested)

Top of memory

Base of memory (MemStart)

Figure 11.1 Memory map

11.4 External bootstrap loaders

External bootstrap loaders can be created for special purposes, for example
when programs are to be run on non-standard transputer boards, or when pro-

72 TDS 184 00 April 1989

11.5 Error messages 161

grams require special code and workspace allocation. External loader programs
are specified to the bootstrap tool using the 'B' option.

Programs that-will be booted with external loaders must conform to the interface
required by that loader program. A description of the interface used by the
primary loader can be found in section 11.3.1.

Note: When external bootstrap loaders are used no check is made on the formal
parameter specification of the main entry point.

11.4.1 Creating external loaders

External bootstrap loaders are created, like bootable programs, using the iboot
tool. To create a new loader program, invoke iboot and specify the loader
program file using the lp' option. A new bootstrap loader is created from the file
by adding the fixed primary loader code, and the result is written to an output file.
This file can then be used in place of the default loader program by specifying
the 'B' option.

When creating new loader programs, all the normal bootstrap options are avail­
able. For example, the 'E' option can be used to set or clear the transputer error
flag (depending on the error mode of the program) when the program encounters
an error.

11.5 Error messages

Other messages not in this list may be generated by corrupt files and by files
not created by the toolset.

Bootstrap file name too long (value)

Command line error. value is the number of characters read. The maxi­
mum length for bootstrap file names is 255 characters.

Cannot allocate stack space (value)

The 'c' and'S' options hav been used together. These two options are
mutually exclusive. value is the size of the stack space required.

Cannot allocate vector space (value)

The input object file requires a separate vector space and the 'c' option
has been specified. value is the size of the vector space required.

72 TDS 184 00 April 1989

162

Code not contiguous, address

11 iboot - bootstrap tool

The transputer code contained in the input object file is not contiguous,
that is, the code is stored randomly in memory. This error is generated
if unlinked C, FORTRAN or Pascal code is specified as input.

Illegal formal parameter specification

The list of parameters for the main entry point of the program does not
match that required by the bootstrap loader.

Illegal link data tag, tagtype

An illegal data tag was found in the input object file. This can occur if
the file has not been completely linked, or if the file is a library file.

tagtype can be: STATIC, WORD, LONG, LONGADJ, INSTRUCTION,
COMMON, DATASYMB, or LIBRARY.

Illegal option (char)

An unknown option was specified. char is the illegal option character.

Illegal processor type, type

The input object file defined an illegal target processor type (TA, TB or
TC). The bootstrap tool accepts the processor types T212, T414, T425
and T800.

Input file name too long (value)

Command line error. value is the number of characters read. The maxi­
mum length for input file names is 255 characters.

Multiple' bootstrap files specified

More than one bootstrap loader file was specified when using the 'B'
option.

Multiple definition, ENTRY

More than one ENTRY data tag was found in the input object file. This
can occur if the file has more than one main entry point.

72 TDS 18400 April 1989

11.5 Error messages

Multiple input files specified

More than one input file was specified.

Multiple output files specified

More than one output file was specified when using the '0' option.

Multiple stack sizes specified

More than one value for stack size was specified with the'S' option.

Output file name too long (value)

163

Command line error. value is the number of characters read. The maxi­
mum length for output file names is 255 characters.

No bootstrap file specified

No file was specified after the 'B' option.

No input file specified

No input file was specified.

No output file specified

No output file was specified after the '0' option.

No stack size specified

No stack size was specified after the'S' option, or the size was set to
zero.

Unable to close (value)

A file on the host system could not be closed. This error can arise if the
file is corrupted, the file is write protected, or the file system is full. value
is the error result returned by the host.

Unable to open (value)

A file on the host system could not be opened. This error can arise if
the file does not exist, if the file system is corrupted, if the file is write
protected, or if the file system is full. value is the error result returned by
the host.

72 TDS 18400 April 1989

164

Unable to read (value)

11 iboot - bootstrap tool

A file on the host system could not be read. This error can arise if the
file system is corrupted or if the file system is full. value is the error result
returned by the host.

Unable to write (value)

A file on the host system could not be written. This error can arise if
the file system is corrupted, or if the file system is full. value is the error
result returned by the host.

72 TDS 184 00 April 1989

12 icheck - occam
2 checker

This chapter describes the occam 2 checker tool icheck that enables you to
check programs for correct syntax before submitting them for compilation. In ad­
dition to the checks performed by the compiler, icheck performs an exhaustive
check on the usage of variables and channels according to the rules of occam
2.

12.1 Introduction

The occam 2 checker performs a syntax check of the full occam 2 product
language, as described in the 'occam 2 Reference Manual', but produces no
object code.

The syntax checking performed by the checker is similar to that of the compiler,
but it generates more data and displays more information about the errors. By
taking advantage of the regular structure of occam programs icheck can
recover from errors that cause the compiler to abort, and thereby perform a
more comprehensive check.

The checker recognises and checks the compiler directives # INCLUDE, fUSE,
IMPORT, #SC, #OPTION, and # COMMENT. Directives are described in more
detail in chapter 23.

Libraries and separately compiled units that are used within a program must
already be compiled before the checker is used.

12.2 Running the checker

The checker takes as input an occam source file and performs syntax, alias
and usage checks on the contents. Errors in the source text are displayed along
with the file in which the error occurred, the line number, and a description of
the error.

For each compilation the target processor type and the compilation error mode
should be specified so that the checker can select the correct libraries. The
checker assumes a compilation for the T414 in HALT mode. For this compilation
the transputer target and error mode options can be omitted.

The checker recognises all of the compiler options, but ignores any that are not
relevant to syntax checking.

72 TDS 184 00 April 1989

166 icheck - occam 2 checker

To invoke the checker use the following command line:

icheck filename {options}

where: filename is the name of the file containing the source code. If no exten­
sion is given, the .occ extension is assumed.

options is a list, in any order, of any of the compiler options given in
Tables 12.1 and 12.2.

Option Description

TA Check for transputer class TA (T414, T425, T800).

TB Check for transputer class TB (T414, T425).

TC Check for transputer class TC (T425, T800).

T2 Check for a T212 processor.

T212 Same as T2.

T222 Same as T2.

M212 Same as T2.

T4 Check for T414 processor. This is the default processor type and
may be omitted when compiling for a T414 processor.

T414 Same as T4 (default).

T5 Check for a T425 processor.

T425 Same as T5.

Ta Check for a T800 processor.

TaOO Same as TB.

B Checks code in HALT mode. This is the default mode and may be
omitted for HALT mode programs.

S Checks code in STOP mode.

u Checks code in UNDEFINED mode.

x Checks code in UNIVERSAL mode.

A Disables alias checking. The default is to perform alias checking.
This option also disables usage checking, which is dependent on
alias checking. Details of alias and usage checking rules are given
in the 'occam 2 Reference Manual' and section 12.3 in this chap-
ter.

B Displays messages in brief (single line) format.

Table 12.1 occam 2 checker options

72 TDS 18400 April 1989

12.2 Running the checker 167

Option Description

C Disables code generation. A compiler option that is ignored
by the checker.

D Disables the production of debugging data. A compiler option
that is ignored by the checker.

E Disables the loading of the extended arithmetic libraries. A
compiler option that is ignored by the checker.

G Enables the checker to recognise the restricted range of
transputer instructions, via the GUY construct. See ap-
pendix B for the list of permitted instructions.

I Directs the checker to display additional run time information.
The information includes version data and information about
directives as they are processed. The default is not to display
this information.

L Loads the checker onto a board and terminates.

N Disables usage checking. The default is to perform usage
checking. Details of usage checking rules are given in the
'occam 2 Reference Manua!'.

o outputfile Specifies the output file. A compiler option that is ignored by
the checker.

R filename Redirects error messages to a file.

v Disables separate vector space. A compiler option that is
ignored by the checker.

w Enables the checker to recognise the full range of transputer
instructions, via the GUY construct. See appendix B for a list
of transputer instructions.

Options must be preceded by '-' for UNIX based toolsets.

Options must be preceded by '/' for non-UNIX based toolsets.

Spaces between the options and the case of letters in parameters are not
significant.

Options may be specified in any order.

Table 12.2 occam 2 checker options (contd)

12.2.1 Checker messages

Syntax errors are" reported in the standard toolset format. For details of the
format see section 3.7.5.

72 TDS 18400 April 1989

168 icheck - occam 2 checker

12.3 Alias and usage checking

The checks on variable and channel usage and on abbreviations performed by
the checker conform closely to the rules of occam 2. Details of the rules can
be found in the 'occam 2 Reference Manua/'.

The alias and usage checks performed by icheck are superior to those of the
compiler. If the checker accepts code that the compiler rejects you can disable
alias and usage checking in the compiler in order to get the program compiled.
However, you should be aware that this also disables some useful run-time usage
checks which are inserted by the compiler.

12.3.1 Usage checking

The checker implements the checking non-array and array elements in the same
way as the compiler but with fewer restrictions. For example, the checker han­
dles replicators correctly. For details of usage checking in the compiler see
section 23.7.

12.3.2 Alias checking

In the following Rules 'assigned to' means 'assigned to by assignment or input'.

Scalar variables

(Rule 1) If a scalar variable appears in the abbreviated expression of a VAL
abbreviation, for example:

x in VAL a IS x + 2 :

then that variable may not be assigned to or abbreviated by a non-VAL abbrevi­
ation anywhere within the scope of the VAL abbreviation.

(Rule 2) If a scalar variable is abbreviated in a non-VAL abbreviation, for exam­
ple:

x in a IS x :

then that variable may not be referenced anywhere within the scope of the ab­
breviation.

72 TDS 18400 April 1989

12.3 Alias and usage checking

Arrays

169

The rules for arrays attempt to treat each element of the array as an individual
scalar variable. They allow the maximum freedom possible without introducing
run time checking code except at points of abbreviation.

In the following text the word constant means any expression that can be eval­
uated at compile time.

If an array is referenced in the expression of a VAL abbreviation, for example:

x in VAL a IS x[i] :

then the following rules apply to the use of the array within the scope of the
abbreviation:

(Rule 3) If the subscript is constant then elements of the array may be assigned
to as long as they are only subscripted by constant values different from the
abbreviated subscript. Any element of the array may also appear anywhere in
the expression of a VAL abbreviation. Any other elements of the array may be
non-VAL abbreviated, and run time checkir:'g code is generated if subscripts used
in the abbreviation are not constant.

(Rule 4) If the subscript is not constant then no element of the array may be
assigned to unless it is first non-VAL abbreviated. The non-VAL abbreviation
will have to generate run time code to check that it does not overlap the VAL
abbreviation. The array may be used in the expression of a VAL abbreviation.

Elements of the array may be accessed anywhere within the scope of the ab­
breviation except where restricted by further abbreviations.

If an array is abbreviated in a non-VAL abbreviation, for example:

x in a IS x[i] :

then the following rules apply to the use of the array within the scope of the
abbreviation:

(Rule 5) If the subscript is constant then elements of the array may be read and
assigned to as long as they are accessed by constant subscripts different from
the abbreviated subscript. Other elements of the array may be abbreviated in
further VAL and non-VAL abbreviations, and run time checking code is generated
if subscripts used in the abbreviation are not constants.

(Rule 6) If the subscript is not constant then the array may not be referenced
at all except in abbreviations where run time checking code is needed to check

72 TDS 184 00 April 1989

170

that the abbreviations do not overlap.

icheck - occam 2 checker

(Rule 7) Variables used in subscripts of the array being abbreviated act as if
they have been VAL abbreviated. In the above example 'i' acts as if it has
been VAL abbreviated and cannot be altered in the scope of the abbreviation.
Where elements of the array being abbreviated are used in the subscript of the
array then the abbreviation is checked as if the subscript expression was VAL
abbreviated just before the non-VAL abbreviation. For example:

a IS x[x[2]] :

is checked as if it was written:

VAL subscript IS x[2] :
a IS x[subscript] :

which (by Rule (6) above) will generate run time checking code.

12.4 Error messages

This section lists error messages that can occur when the checker is invoked. It
does not include the syntax error messages that are displayed by the checker in
normal operation.

Cannot open file "filename"

The file filename does not exist or could not be opened.

Cannot open "filename" • too many nested SCs

Separately compiled units are nested too deeply.

Object code compiled in incompatible error mode (errormode)

The compilation error mode is incompatible with the main program. er­
rormode is the mode for which the code was compiled.

Object code compiled for incompatible target (processortype)

The target transputer type is incompatible with the main program com­
ponent. processortype is the type for which the code was compiled.

72 TDS 18400 April 1989

12.4 Error messages

Object code not compatible with current version (fi/ename)

171

The file referenced by a IUSE or I se directive was in a format incom­
patible with the checker. Check the version in use or recreate the file in
the correct format.

72 TDS 184 00 April 1989

172

72 TDS 184 00

icheck - occam 2 checker

April 1989

13 iconf - configurer
This chapter describes the configurer tool iconf that allocates occam pro­
cesses to processors and assigns channels to links on transputer networks. It
explains how to invoke the configurer tool and describes the configuration de­
scription and language. The chapter ends with a summary of the configuration
description and a list of error messages.

13.1 Introduction

The configurer takes a configuration description and produces either an object
code file ready for booting into a network of transputers, or a configuration map
describing the allocation of code and placement of channels.

A configuration description describes how code is to be run on a network of
transputers. It consists of OCCam-like configuration language statements that
allocate code to processors and assign channels to transputer links.

Code to be run on separate processors can be declared as separately compiled
units, or included as occam source. Separately compiled units that are to be run
on the same transputer must be compiled for the same or a compatible transputer
type, and in the same or a compatible error mode. Separately compiled code
can be allocated to any number of transputers on the network.

The network can consist of any number of transputers, of any type, connected in
any configuration. Each network contains a root processor, connected between
the host and the transputer network, through which programs are loaded onto
the network. There must be a route, via transputer links, from the root processor
to all other processors on the network, to allow the program to be loaded.

The operation of the configurer tool in terms of toolset file extensions is illustrated
below.

72 TDS 184 00 April 1989

174

13.2 Running the configurer

13 iconf - configurer

The configurer takes as input a configuration description file consisting of configu­
ration language statements and declarations, and produces object code allocated
to specific processors.

To run the configurer use the following command line:

iconf filename {options}

where: filename is the file containing the configuration code. If no file extension
is given .pgm is assumed.

options is a list of one or more options from table 13.1.

If no file name is specified brief help information is displayed.

13.2.1 Source compilation mode - options H S 0

All source code in a configuration description is compiled in the same error mode.

The mode is determined by options on the command line. Options 'H', 'S', and
'0' are used to ensure that all occam source in the configuration description
is compiled in HALT, STOP or UNDEFINED mode respectively. The default is
HALT mode.

Note: UNIVERSAL mode is not supported by the configurer.

See section 23.4 for more information on compilation error modes.

13.2.2 Generating a configuration map - option M

Option 'N' directs the configurer to produce a configuration map file in place of a
bootable code file. The file takes the same name as the configuration description
file, but is given the . map extension.

The configuration map is a text file that contains information about the configu­
ration description. It shows:

1 The memory layout for each processor.

2 The order in which the processors will be booted when the network is
loaded.

3 The link connections between processors.

72 TDS 18400 April 1989

13.2 Running the configurer 175

Option Description

A .Disables alias checking when compiling occam source in
the configuration description. Details of the alias checking
performed by iconf are given in chapter 23.

G Enables the configurer to compile code containing transputer
instructions from the restricted set, inserted via the GUY con-
struct. See appendix 8 for the list of permitted instructions.

H Compiles occam source in HALT mode. HALT mode is also
the default.

I Displays progress information as the configurer runs.

L Loads the configurer and terminates.

M Generates a configuration map file showing code allocation
on specific processors, in place of the normal output file. The
file is given the. map extension.

N Disables usage checking on occam source in the configura-
tion description. Details of the usage checking performed by
iconf are given in chapter 23.

o filename Specifies an output filename. If you do not specify this option
the input filename is used and the .btl or .btr extension
is added.

R Produces configuration code for loading ontJ ROM. If no out-
put file is given and no extension specified the . btr exten-
sion is added. The default is to produce .btl code for boot
from link boards.

S Compiles occam source in STOP mode.

U Compiles occam source in UNDEFINED mode.

v Disables separate vector space.

w Enables the configurer to compile code containing transputer
instructions from the full set, inserted via the GUY construct.
See the Transputer instruction set: a compiler writer's guide
for a list of instructions.

X Compiles occam source in UNIVERSAL mode.

Options must be preceded by 1_' for UNIX based toolsets.

Options must be preceded by 1/' for non-UNIX based toolsets.

Spaces between options, and the case of letters in parameters, are not sig-
nificant.

Options may be specified in any order.

Table 13.1 Configurer options

72 TDS 184 00 April 1989

176

13.3 Configuration description

13 iconf - configurer

A configuration description consists of declarations and configuration language
statements. It must declare the code to be run, allocate it to specific processors
on the network, and assign channels to transputer links. The allocation of code
and the mapping of channels to links enables the configurer to identify the code
destined for a specific processor and to check the logical integrity of the whole
network.

For an example of a configuration description see section 5.6.

13.3.1 Separately compiled code

Separately compiled code used in a configuration description must be referenced
by the 'USE directive. Where other compilation units or libraries are referenced
within the separately compiled code, the code must also be linked using the
ilink tool to produce a •cxx object file. Where no libraries or nested com­
pilation units are used within the code, a •txx file can be used. If code is
present that requires linking the configurer reports an error and the configuration
is aborted.

Libraries may neither be directly referenced nor called in a configuration descrip­
tion. They should only be referred to in the compilation units in which they are
used.

13.3.2 Source code

The configuration description can contain any occam source, but only within a
PROCESSOR statement, as described in section 13.3.3. Outside a PROCESSOR
statement only constants and protocol declarations are permitted. The configurer
automatically compiles any source encountered in the configuration description
before configuring the code on the network.

occam source files can also be included in a configuration description with the
'INCLUDE directive. Outside a PROCESSOR statement 'INCLUDE can only
be used to refer to files containing constants and protocol declarations.

13.3.3 Configuration language

This section describes the configuration language statements that assign pro­
cesses to processors, and map occam channels to transputer links. For more
information about the configuration language statements, see the 'occam 2
Reference Manual'.

72 TDS 18400 April 1989

13.3, Configuration description

Allocating code to processors

177

The allocation of code to processors is achieved using two configuration lan­
guage statements:

PLACED PAR

PROCESSOR number transputertype

where: number identifies the processor on the network. numbercan be an inte­
ger or integer expression.

transputertype is the transputer type for which the code has been com­
piled. Valid transputer types are T212, T414, T425, T800, T2, T4, and
T8. Transputer classes TA, TB and TC are not permitted. T212 should
be used for IMS T222 and IMS M212 processors.

PROCESSOR statements contain the code for a single processor. The code can
include any number of separately compiled units, or any legal occam source.
Separately compiled code which has been compiled for a transputer class may
be placed on any processor in the class.

Any legal occam source is permitted inside a PROCESSOR statement provided
that no library routines are used and no libraries are referenced. The configurer
compiles the occam source using the options specified on the command line,
and adds it to the object code for that processor. If the source contains transputer
instructions, option 'G' or 'w' should be specified.

Placing channels on links

Channels between processes are tied to specific transputer links using the
PLACE statement. Absolute addresses of links are defined in the include file
linkaddr. inc.

The syntax of the PLACE statement is as follows:

PLACE name AT address:

where: name is the name of a variable, channel, timer or array.

address is the address of a memory location.

Channels that support data exchange in both directions must be placed at an
input link address on one processor and at an output link address on another
processor, and must be declared outside the processor statements. Channels
declared inside a PROCESSOR statement can still be placed at link addresses

72 TDS 18400 April 1989

178 13 iconf - configurer

but are not considered part of the wiring of the network. 'Dangling' links, that is,
links on which only a single input or output channel has been placed produce a
warning message but are not prohibited by the configurer.

13.4 Summary of configuration description

A configuration description has the form:

Configuration-level declarations
PLACED PAR
PROCESSOR statements
process code

Permitted configuration level declarations are as follows:

• VAL declarations

• PROTOCOL declarations

• CHAN declarations for channels that will be placed on transputer links
('hard' channels)

• fUSE directives referring to separately compiled units (•txx or •cxx files
but NOT libraries)

• #INCLUDE directives referring to files containing constant and protocol
declarations only.

Process code can include:

• PLACE statements that place channels at link addresses.

• Any other occam source except calls to libraries. These can include:

- Declarations of constants and protocols used in the source

- Placement of variables

- Abbreviations and retypes of variables

- Declarations of soft channels, that is, channels between pro-
cesses on the same transputer

- fUSE Directives referencing any separately compiled units, ex­
cept those referencing libraries

72 TDS 184 00 April 1989

13.5 Error messages

- #INCLUDE directives referencing any legal occam source

- Calls to separately compiled procedures and/or functions

13.5 Error messages

.179

All errors cause the configurer to abort with an error message. Messages are in
the standard toolset format, which is described in section 3.7.5.

Where the configuration description contains source code to be compiled, com­
piler error messages may be generated. For details of these messages see
section 23.10.

Messages not in this list may be generated by corrupt files and by files not
created by the toolset.

Closing code file (fi/ename)

File system error. The code file fi/ename could not be closed.

Closing map file (fi/ename)

File system error. The map file fi/ename could not be closed.

Code is not contiguous

The code being referenced was not produced by the toolset compiler, or
has not been correctly linked.

Code size calculation overflow for processor

The code size limit of 2 Gbytes has been exceeded.

Configuration code is not linked correctly

The code being referenced has not been correctly linked. The most likely
causes of this error are that the code has not been linked at all or has
been linked with the 'u' option.

Directive not permitted for configuration

Only #USE and #INCLUDE directives are permitted in a configuration
description.

Libraries cannot be used by the configurer

72 TDS 184 00 April 1989

180 13 iconf - configurer

You may neither use nor reference libraries directly within a configuration
description.

Load address calculation for processor

The program workspace has exceeded the internal buffer limit. The limit
is set at around 2 Gbytes.

Load path maximum exceeded

The buffer that holds data about the load path has been exceeded. Linear
networks consume more buffer space than branched networks, and it
may be possible to avoid buffer overflow by reconfiguring the network in
a more linear way.

Main code too long for buffer

The main program code has exceeded the internal buffer limit. Use fewer
processors in the configuration or reduce the size of the main code.

Opening code file (filename)

File system error. The code file filename could not be opened.

Opening map file (filename)

File system error. The map file filename could not be opened.

Opening object code file for extraction

File system error. An object file could not be opened.

Processor number out of range

There are too many transputer the configuration. If the statements are
of the same form you may be able to use a replicated PLACED PAR
instead. If not, you may need to reconfigure the program on a transputer
evaluation board with a larger memory.

72 TDS 18400 April 1989

13.5 Error messages

Saved code buffer overflow

181

A configurer software limit has been exceeded by the presence of too
many processes with small work spaces. Increase the workspace re­
quirements of the processes, or reconfigure the program on a transputer
evaluation board with a larger memory.

Stack overflow

The stack holding data about the load path has overflowed. Reconfigure
the program on a transputer evaluation board with a larger memory or
rearrange the network in a more linear way.

Stack underflow

A configurer software limit has been exceeded. Reconfigure the program
on a transputer evaluation board with a larger memory.

Too many PROCESSORs

There are too many processors in the configuration. Use a replicated
PLACED PAR or reconfigure the program on a board with more memory.

Unable to open code file (fi/ename)

File system error. A code file could not be opened.

Writing code file (fi/ename)

File system error. The code file fi/ename could not be written.

Writing map file (fi/ename)

File system error. The map file fi/ename could not be written.

72 TDS 18400 April 1989

182

72 TDS 18400

13 iconf - configurer

April 1989

14 idebug - debugger
This chapter describes the toolset debugger idebuq. It begins by introducing
the types of programs that can be debugged and explains how to invoke the
tool from the operating system. It goes on to describe the symbolic debugging
facilities that support source code to be examined, and the Monitor page facilities
that support debugging of transputer code. Finally, the chapter outlines how
some features of the debugger are implemented. The chapter ends with a list of
error messages.

14.1 Introduction

The toolset debugger provides an integrated environment for debugging occam
programs. Using the symbolic facilities errors can be located in source code,
parameters can be examined, channels and processes can be analysed, and
procedures can be traced. Using the Monitor page facilities process and timer
queues can be analysed, memory contents displayed and compared, and specific
portions of memory disassembled into transputer instructions. Within the Monitor
page environment, symbolic facilities can be recalled to inspect variables and
processes.

The debugger can be used to analyse programs running on large networks
of transputers. Programs can be examined processor by processor, individual
memories inspected and disassembled, and networks analysed.

14.1.1 Debugged code

An important feature of the debugger is that the compiled code is unaffected, that
is, a program compiled for debugging is the same as the program compiled with
debugging information disabled. Disabling debugging at compile time speeds up
compilation and reduces file space requirements, but does not alter the object
code that is produced.

14.2 The root transputer

The debugger can be used to debug all types of single and multitransputer
programs. The technique and commands to use when invoking the debugger
differ slightly depending on whether or not the program (or a process forming
part of the program) runs on the root transputer.

The root transputer is the name given to the processor that is directly connected
to the host computer. In a transputer network that is connected to the host it

72 TDS 184 00 April 1989

184 14 idebuq - debugger

forms the root of the network. The debugger always runs on the root transputer.

The relationship of the root transputer to the host computer and the rest of the
network is illustrated below.

host computer

fs

ts

root transputer

link
rest of

network

There are two main ways of debugging programs, depending on whether or not
the application is configured to use the root transputer. Command line options
are used to select the two debugging modes. Programs configured to use the
root transputer are referred to in this chapter as R-mode programs, and pro­
grams that do not use the root transputer are referred to as T-mode programs.
R-mode programs must. be debugged by first invoking the memory dump tool
idump to save the contents of the root transputer's memory.

Before any program can be debugged the Analyse signal must be asserted once
on the transputer or transputer network. Because different procedures must be
adopted when debugging the two program modes, the aebugger cannot assert
the signal automatically.

,In T-mode programs the iserver 'SA' option must added to the debugger
command line in order to assert the signal. In R-mode programs the idump tool
itself asserts the signal and a second assertion would cause data in the memory
to become corrupted. For R-mode programs therefore the 'SA' is not required
and should not be supplied. If idump is not invoked then the debugger cannot
load onto the root transputer and a booting error is reported by iserver.

Further details about the procedures and commands to use when debugging
programs can be found below. A summary of the commands to use for the two
program modes can be found in Table 14.2.

14.2.1 T-mode programs

The most common way to use the debugger is to debug a complete network
down a transputer link. The link is specified by the debugger 'T' option and the
iserver 'SA' option is added to the command line to direct the server to assert
Analyse.

72 TDS 18400 April 1989

14.2 The root transputer 185

If the 'SA' option is not given, the debugger will not be booted onto the root
transputer and the server will abort with an error message. If the server is
inputting data at the time some corruption of the data may occur. The debugger
should then be reinvoked with the correct options.

T-mode programs are loaded by using the skip tool iskip in conjunction with
iserver. The skip tool allows the program to be loaded onto the network over
the root processor. It activates a special route-through mechanism on the root
transputer that allows the program running on sub-network to communicate with
the host as though the root transputer were absent. With this mode of loading
the root processor runs no program code, allowing the debugger to run on the
root transputer without corrupting the program.

For details of the iskip tool and how to use it see chapter 22 and section 6.5.

14.2.2 Debugging -R-mode programs

Code running on the root transputer is debugged from a memory dump file that
is created using the idump tool. The file must be created before the debugger
is invoked to debug the program. The debugger is then invoked on the root
transputer's memory using the 'R' option. Code on other transputers on the
network is debugged down the transputer link.

See chapter 15 for details of how to use the idump tool.

14.2.3 Debugging from a network dump file

The toolset debugger is a post-mortem tool, that is, it can only analyse programs
that have failed or have been externally halted. Programs cannot be re-started
once the debugger has been invoked.

To suspend a debugging session without losing the original context, the Monitor
page IN' command can be used to dump the entire state of a network into a
network dump file. The debugger can then be invoked on the file without being
connected to the network.

For details of the network dump facility, see section 14.5.1.

Note: Memory dump files and network dump files are not the same; the former
contains a single processor's memory image, while the latter contains data about
a complete network. They are also in different formats.

72 TDS 184 00 April 1989

186

14.2.4 Debugging a dummy network

14 idebug - debugger

The debugger can also be used to debug a program using dummy data. Using
the debugger option '0' which simulates the contents of memory locations and
registers, static features of a program can be examined, for example, processor
connectivity and memory mapping. The dummy facility can also be used to
explore the features of the debugger.

14.3 Running the debugger

Before running the debugger, ensure that the host environment variables ITERM
and IBOARDSIZE are defined on the system. For details of how to set up these
variables see the toolset Delivery Manual and the operating system documenta­
tion.

The example ITERM file defines a default screen size of 80 x 24 for the debugger,
and a minimum screen size of 79 x 24. For a listing of the file see appendix D.

To invoke the debugger, use the following command line:

idebug bootablefile {options}

where: bootablefile is the name of a loadable program file. The file must have
one of the extensions •bXx, •btl, or •btr.

options is a list of zero or more of the debugger options given in table 14.1.
If no options are given, brief help information is displayed.

After the command line has been read, the debugger uses the configuration
descriptor file to build a data base for the network. The complete network is then
analysed, and some data retrieved from every processor. If the 'R' or 'N' options
are selected, the information is read from the appropriate file.

The debugger then determines which processor (if any) has its error flag set, and
will continue with that processor selected as the current processor. If no flag is
set, the root processor is selected. The debugger then displays the source code
in the vicinity of the error.

14.3.1 Debugging programs on B004-type boards and TRAMs

On transputer boards the Analyse and Reset signals can be propagated from
the root transputer in two ways. Either the signals are propagated unchanged
to all transputers on the network (wired down), or the signals are connected
to the subsystem port (wired subs) from where they are controlled by the root

72 TDS 184 00 April 1989

14.3 Running the debugger

Option Description

187

T linknumber Debugs a program that does not use the root processor, on
a network that is connected to link Iinknumber. Must be ac­
companied by the iserver 'SA' option.

R filename Debugs a program that uses the root processor. filename is
the file that contains the contents of the root processor. The
file is assumed to have the extension •dmp.

N filename Debugs a network from the network dump file filename. The
file is assumed to have the extension •dmp.

A Analyse subsystem. Directs the debugger to assert Analyse
on the network.

o Debugs a dummy network. Must be accompanied by the
iserver 'SR' option.

Options must be preceded by '-' for UNIX-based toolsets.

Options must be preceded by 'I' for non-UNIX based toolsets.

Spaces between the options and the case of letters in parameters are not
significant.

Options may be specified in any order.

The iserver option 'SA' must accompany the 'T' option.

Table 14.1 Debugger options

processor.

On 8004 boards and on all boards where subsystem is wired in the same way
Analyse must be asserted on the network before transputers can be accessed by
the debugger from the root processor. However, Analyse must not be asserted
more than once, otherwise program data may be corrupted.

In addition, TRAM boards and 8004 boards differ in the way the subsystem port
is used. On TRAMs the signals are propagated to all transputers on the network,
whereas on 8004 boards the signals are not propagated at all.

All these conditions influence the commands to use when debugging T-mode
and R-mode programs. To simplify matters, Table 14.2 lists the commands to
use for different combinations of board types, subsystem wiring, and program
mode.

The type of board can be identified by the hardware addresses of the three

72 TDS 184 00 April 1989

188 14 idebuq - debugger

subsystem registers. On B004-type boards the addresses are as follows:

Signal Hardware address
Reset #00000000
Analyse #00000004
Error #00000000

An example of a B004-type board is the IMS B404 TRAM. For details of the
subsystem wiring on other boards consult the Datasheet or board specification.

Board Wiring Mode Command(s) to use

TRAM down T idebuq program -t Iinknumber -sa

R idump outputfile size
idebuq program -r filename

subs T idebuq program -t Iinknumber -sa

R idump outputfile size
idebuq program -r filename

8004 down T idebuq program -t linknumber -sa

R idump outputfile size
idebuq program -r filename

subs T idebuq program -t linknumber-a -sa

R idump outputfile size
idebuq program -r filename -a

Modes: R = program using the root transputer; T = program not using the
root transputer, and debugged down a link.

Options on the idebuq command line that are not debugger options are
passed to iserver.

For non-UNIX based tool5ets use the I I' option switch character.

Table 14.2 Commands to use when debugging 8004 and TRAM boards

14.4 Debugger symbolic facilities

If a program fails because of an error, the debugger enters symbolic mode and
displays the source corresponding to the error. If the program was still executing
correctly when Analyse was asserted, as when the program is halted externally,
the debugger displays the last source line executed. However, if a program fails
because a transputer has stopped or deadlocked, rather than halted upon finding
an error, there is no last instruction and the debugger automatically enters the
Monitor page debugging environment. For details of the Monitor page facilities,
see section 14.5.

72 TDS 18400 April 1989

14.4 Debugger symbolic facilities 189

While the source is being searched, the debugger displays the following message
at the top of the screen:

Locating ...

If the source is in a library for which the source code is unavailable, the debugger
locates instead to the line corresponding to the library call, and if necessary
will continue to backtrace through the code until some source code is found to
display. As this is done, the following message is displayed:

Backtracing ...

When the debugger has successfully located the source, it displays the name of
the library which it first tried to display, and the name of the module displayed
within that library.

If the location is in a section of normal occam source, the context of the source is
displayed on the screen, and the symbolic debugging facilities become available.

Note: In certain situations the location displayed may not correspond exactly to
the expected location. In particular, if no valid branch of an IF or CASE has
been found, the debugger will locate to the statement following the construct.
For more details see section 7.4.

14.4.1 Scrolling the display

The keyboard cursor keys can be used to scroll the screen display by a single
line. If the terminal does not support single line scrolling the display may be slow
to refresh because the debugger redraws the screen each time.

14.4.2 Compiling modules for symbolic debugging

Modules which are to be inspected symbolically should be compiled with the
debugging data enabled; this is also the compiler default. Compiling a module
with debugging enabled does not affect the code produced in any way; it merely
controls whether the debug information is produced, and therefore whether the
debugger can be used to analyse that code. No extra bugs will be introduced
(or existing bugs hidden) by recompiling with debugging disabled.

14.4.3 Non-OCCam programs

If the module to be debugged was not written in occam symbols such as vari­
ables cannot be inspected because the compilers do not provide symbolic data

72 TDS 18400 April 1989

190

for the debugger to use.

14.4.4 Symbolic functions

14 idebug - debugger

The symbolic debugging functions available with the toolset debugger are listed
in table 14.3. All functions are invoked using special function keys which vary
from terminal to terminal. Keyboard layouts for specific terminals can be found
in the rear of the Delivery Manual that accompanies the release.

Function Description

UNSPECTI Display the type and value of an occam symbol.

ICHANNELI Locate to the process waiting on a channel.

ITOpl Locate back to the error, or last occam location.

IRETRACEI Retrace the last IBACKTRACEI etc.

IRELOCATEI Locate back to the last location line.

UNFOI Display some extra information.

ISEARCHI Search for a specified string.

ILlNKSI Display the link connections.

IMONITORI Change to the 'Monitor page'.

IBAC?KTRACEI Locate to the procedure or function call.

IHELPI Display a summary of utility key uses.

IGET ADDRESS! Display location of source line in memory.

ICHANGE FILEI Display a different source file.

IENTER FILEI Change to an included file.

!EXIT FILEI Change to an enclosing file.

Go to a specific line in the file~IGOTO L1NEI

ITOP OF FILE! Go to the first line in the file.

IBOTTOM OF FILEI Go to the last line in the file.

Table 14.3 Debugger symbolic functions

IINSPECTI

Note: This function is not available for non-OCCam source files.

72 TDS 18400 April 1989

14.4 Debugger symbolic facilities 191

This function allows you to find the type and value of any occam symbol. To
inspect a symbol, use the cursor keys to position the cursor on the required
symbol and press UNSPECTI.

If the cursor is not on an occam symbol when you press UNSPECTI, you are re­
quested to specify a symbol name. Type IENTERI to abort the UNSPECTI operation,
or type a name followed by IENTERI. Spaces and the case of the letters in the
name are significant. If the symbol is an array, elements from the array can be
selected using constant integer subscripts enclosed in square brackets Cl' and
T). If no subscripts were supplied, you are prompted to supply them.

The symbol is checked that it is in scope with the line to which the debugger last
located. This may not be the same as the current cursor position. If the symbol
is not in scope at that location, or not found at all, one of the following messages
is displayed:

Name 'symbol' not in dynamic scope

Name 'symbol' not found

Information displayed

If the name is in scope, its type and value are displayed, together with its address
in memory. If it is an array, and subscripts were supplied, its type, value, and
address are displayed. If it is a short BYTE array, it is displayed in ASCII. If it
is any other type of array, its dimensions are displayed. If it is a channel, and is
not empty, the Iptr and Wdesc of the process waiting for communication, and
its priority, are displayed. If it is a PROC or FUNCTION name, its entry address,
and nested workspace and vectorspace requirements are displayed (no address
is displayed for library names). For protocol names and tags, timers, and ports,
only types are displayed.

If there is too much information to be displayed on one line, it is displayed in two
parts. The symbol's name and type is displayed first, then after a short pause,
its value and address.

Inspecting arrays

The debugger displays the size and type of the array, and prompts for subscript
values. For example:

[5] [4]INT ARRAY 'a', Subscripts?

Press IENTERI to obtain the address of the array, or enter the required subscripts,
which must be in the correct range.

72 TDS 184 00 April 1989

192 14 idebug - debugger

The subscripts should be typed either as decimal constant integer values, or as
integers separated by commas, for example ' [3] [2]', or '3, 2'. Spaces are
ignored.

To simplify access to values such as 'a [i]' you may type 'a [!] '; the'!' char­
acter is replaced by the value of the last integer displayed.

Inspecting memory

To inspect the contents of any location in memory, specify an address rather
than a symbol name. Type the address as a decimal number, a hexadecimal
number (preceded by It'), or the special short form %h...h, which assumes the
prefix #8000 •••. Any letters (A to F) in a hexadecimal number must be in
upper case. The debugger displays the contents of the word of memory at that
address, in both decimal and hexadecimal.

For more versatile displays of memory contents, use the functions available at
the 'Monitor page' (see section 14.5).

Inspecting placed channels

For channel variables that have been placed into a specific memory location the
IINSPECTI function displays the address of the location rather than its value.

Channels can be examined in detail using the ICHANNEL! function.

ICHANNEL I
Note: This function is not available for non-Occam source files.

Use this key as you would IINSPECTI, but specify the name of a channel. Instead
of displaying the Iptr and Wdesc of the process waiting for communication on
that channel, the debugger locates to the corresponding line of occam source,
from where you can continue debugging the process. This function is invalid if
the symbol specified is not a channel.

72 TDS 184 00 April 1989

14.4 Debugger symbolic facilities

Jumping to other processors

193

The ICHANNELI key also allows you to 'jump' from one processor to another along
hard channels (channels mapped onto transputer links). If a process is waiting
for communication from the processor at the other end of the specified channel,
the debugger changes to that processor. If there is no process waiting you
are informed, and if the debugger is already located at the waiting process the
following message is displayed:

A1ready located - No process is waiting at the
other end of this link

This function forces the debugger to locate back to the line containing the original
error that crashed the program, or to the line located to by the Monitor page 'G'
or '0' commands (see section 14.5.1).

IRETRACE I
This function forces the debugger to locate back to the previously displayed loca­
tion. Repeated use of IRETRACEI reverses the effect of successive ISACKTRACEI,

ICHANNELI, and ITOpl operations.

IRELOCATE I
This function relocates to the last location point. This allows you to return to the
original source line after examining a section of the source code.

This function displays the Iptr of the last location, the corresponding Wdesc,
in hex, the process priority, and the current processor's number and type. For
example:

Located to Iptr #80001564, and Wdesc #80000124,
(Hi pri) , Processor 2 (T800)

If a Wdesc has not been supplied, it is given as 'invalid'.

ISEARCHI

This function searches forwards for a particular string. Either specify the search

72 TDS 18400 April 1989

194 14 idebug - debugger

string, or press IENTERI to accept the default, which is the last string searched.

ILINKSI

This function provides a quick means of determining the connections on the
currently displayed processor. It lists each link in turn, and the processor and
link to which it is connected. For example:

Links: LO to host. Ll to P3 L2. L2 ---. L3 to P45
LO.

ICODE INFORMATION I

This function displays a brief summary of the debugger function keys.

IMONITOR I

This function transfers the user to the debugger 'Monitor page'.

IFINISHI

This function quits the debugger. The 'Q' option from the Monitor page has the
same effect.

IBACKTRACE I

This function locates to the line corresponding to the call of the currently dis­
played procedure or function. If the current location is in the program's top level
procedure, the following message is displayed:

Error : Cannot backtrac~ from here

IGET ADDRESS I
This function displays the address of the transputer code which was compiled
from the current source line.

ICHANGE FILEI

This function opens a different source file for reading.

72 TDS 184 00 April 1989

14.5 Monitor page 195

This function allows quick access to an occam #INCLUDE file. To display
the file position the cursor on the #INCLUDE directive for the file, and press
IENTER FILEI.

The IEXIT FILEI function provides the reciprocal operation to IENTER FILEI. It quits
the file and displays the line containing the #INCLUDE directive for the file.

IGOTO LINEI

This function allows you to change to a particular line. Specify a line number or
type 0 (zero) to abort the operation.

TOP OF FILE
BOTTOM OF FILE

These keys change to the top or bottom of the file respectively.

14.5 Monitor page

On entering the Monitor page environment from symbolic mode, the debugger
displays a page of information about the current processor, including its number
and type, the cause of the error, the last instruction executed, and a map of the
transputer's memory.

Information also displayed on the monitor page includes internal pointers, status
flags, and other low level data. This is summarised in table 14.5.

Iptr points to the last instruction executed. Low priority Iptr and Wdesc are
only displayed if the processor was running in high priority mode when it was
halted.

If Wdesc contains the value MOSTNEG INT, it is given as 'invalid', and
means that no process was executing on the processor when it was halted. This
can occur if the processor is deadlocked; to determine the status of processes
waiting for communication on the links, use the 'L' command.

If Wdesc contains the address of 'Memstart' it is displayed as such. This normally
means that the Analyse signal has been asserted on the network more than
once. This may be because the host transputer board (e.g. IMS 8004) has
been modified to assert its subsystem signal when it is itself analysed. If this

72 TDS 184 00 April 1989

196 14 idebuq - debugger

Label Meaning

Iptr Contents of instruction pointer (address of the last in-
struction executed)

Wdesc Contents of workspace descriptor

IptrlntSave Contents of saved low priority instruction pointer

WdesclntSave Contents of saved low priority workspace descriptor

Error Whether the error flag was set

FPU Error Whether the FPU error flag was set (if it exists)

Halt On Error Whether the halt on error flag was set

Fptrl Pointer to the front of the low priority active process
queue

Bptrl Pointer to the back of the low priority active process
queue

FptrO Pointer to the front of the high priority active process
queue

BptrO Pointer to the back of the high priority active process
queue

Tptrl Pointer to the low priority timer queue

TPtrO Pointer to the high priority timer queue

Clockl Value of the low priority clock

ClockO Value of the high priority clock

Table 14.4 Monitor page data

happens the refer to section 14.3.1 for further guidance.

An asterisk next to either Iptr or Wdesc indicates that they do not correspond
to a valid code and data pointer for the program. It may be possible to find the
source of the problem by using the 'M' command to display a memory map for
each transputer.

14.5.1 Monitor page commands

Tables 14.5 and 14.6 summarise the Monitor page commands.

/72 TDS 184 00 April 1989

14.5 Monitor page 197

Key Meaning Description

A ASCII View a portion of memory in ASCII.

C Compare Compare the code on the network with the code that
should be there, to ensure that the code has not be-
come corrupted.

D Disassemble Display the transputer instructions at a specified area
of memory.

E Next Error Switch the current display to data from the next pro-
cessor in the network which has halted with its error
flag set.

G Goto process Goto source level debugging for a particular process.

H Hex View a portion of memory in hexadecimal.

I Inspect View a portion of memory in any occam type (e.g.
REAL32).

L Links Display instruction pointers and workspace descrip-
tors for the processes currently waiting for input or
output on a transputer link, or for a signal on the Event
pin.

M Memory map Display the memory map of that transputer.

N Network dump Copy the entire state of the transputer network into a
'network dump' file, so that you can continue debug-
ging later.

0 occam Resume the occam source level symbolic features
of the debugger.

p Processor Switch the current display to data from a different pro-
cessor.

Q Quit Leave the debugger and return to the host operating
system.

R Run queue Display instruction pointers and workspace descrip-
tors of the processes on either the high or low priority
active process queue.

T Timer queue Display instruction pointers, the workspace descrip-
tors and the wake-up times of the processes on either
the high or low priority timer queue.

X Exit Return to symbolic mode.

? Help Display a help screen.

Table 14.5 Monitor page commands

72 TDS 184 00 April 1989

198 14 idebuq - debugger

Key Meaning Description

IRETRACEI As symbolic mode.

IRELOCATEI

ICURSOR upl Scroll the currently displayed memory,
disassembly, or queue.

ICURSOR DOWNI

ILlNE upl

ILlNE DOWNI

IPAGE upl

IPAGE DOWNI

ICURSORI Scroll the currently displayed processor.

ICURSOR RIGHTI

ICODE INFOI Help Display help information.

IREFRESHI Refresh Re-draw the screen.

ITOpl Locate to the last instruction executed on the
current processor.

Table·14.6 Monitor page commands (continued)

Full descriptions of the Monitor page commands follow. The commands are
listed in alphabetical order.

[K] - ASCII

This command displays transputer memory in ASCII format. Specify a start
address after the prompt:

Start address (#hhhhhhhh) ?

Either press IENTERI to accept the default (last specified) address, or enter the
desired address. The address can be entered as a decimal number, a hexadec­
imal number preceded by It', or the short form '%h ... h', which assumes the
prefix #8000 .•..

The memory is displayed as sixteen rows of 32 ASCII bytes. The bytes are
displayed in order, with a '.' replacing any unprintable characters.

The address at the start of each line is an absolute address displayed as a
hexadecimal number. The byte containing the specified start address is the top
leftmost byte of the display.

72 TDS 18400 April 1989

14.5 Monitor page 199

ICURSOR upl, ICURSOR DOWNI, ILlNE upl, ILlNE DOWNI, IPAGE upl, and IPAGE DOWNI

keys can be used to scroll the display.

@] - Compare memory

Compare memory compares the code on the network with the code that was
loaded, to check that memory has not become corrupted. The following options
are available:

Compare memory
Number of processors in network is : 'n'

A - Check whole network for discrepancies
B - Check this processor for discrepancies
C - Compare memory on screen
C - Find first error on this processor
Q - Quit

Type one of the options A, B, C, C, or Q. Option 'Q' returns you to the Monitor
page.

Checking the whole network - option A

Option 'A' checks the whole network processor by processor and displays a
summary of the discrepancies found.

The format of the display is similar to the following example:

No of processors checked so far : 'n'
Checking processor 'p' ...
Bytes to test nnn
Checking memory #hhhhhhhh to #hhhhhhhh
Checking address #hhhhhhhh
Checked processor 'p' OK
Checked processor 'p', 'e' errors

When the check is complete one the following messages is displayed:

Checked whole network OK

'n' Errors, first at #hhhhhhhh on processor 'p'

Checking a single processor - option B

Option 'B' checks just the current processor. In all other respects it is similar to
option 'A'.

72 TDS 18400 April 1989

200

Compare memory on screen - option C

14 idebuq - debugger

Option 'c' displays the actual and expected code for for each address in a block
of memory. Discrepancies are marked with an asterisk ('*').

Memory is checked in blocks of 128 bytes. At the end of each block, type either
'Q' to quit, or ISPACEI to read and display the next block.

The format of the display is similar to the following example:

#800001234
#80000123C
#800001244

#8000012AC

Network Code
0011223344556677
0011223344556677
0011223344556677

AABBCCDDEEFF0011

Correct Code
7766554433221100 *
0011223344556677
7766554433221100 *

AABBCCDDEEFF0011

Press [DOWN] to scroll memory, [SPACE] for next
error, or Q to quit :

Pressing ISPACEI automatically invokes option '0' - Find first error

Find first error - option D

Option 'D' searches the current processor's memory for the first occurrence of a
discrepancy. If a discrepancy is found the display is switched to mode 'c' and
the memory can be checked and displayed as in 'Compare memory on screen'.

[Q] - Disassemble

The Disassemble command disassembles memory into transputer instructions.
Specify an address at which to start disassembly after the prompt:

Start address (#hhhhhhhh) ?

Either press IENTERI to accept the default address, or enter the desired address.
The address can be entered as a decimal number, a hexadecimal number pre­
ceded by 'I', or the short form '%h ... h', which assumes the prefix #8000

The memory is displayed in batches of sixteen transputer instructions, starting
with the instruction at the specified address. If the specified address is within
an instruction, the disassembly begins at the start of that instruction. Where the
preceding code is data ending with a transputer 'pfix' or 'nfix' instruction,
disassembly begins at the start of the pfix or nfix code.

Each instruction is displayed on a single line preceded by the address corre-

72 TDS 184 00 April 1989

14.5 Monitor page 201

sponding to the first byte of the instruction. The disassembly is a direct transla­
tion of memory contents into instructions; it neither inserts labels, nor provides
symbolic operands.

ICURSOR upl, ICURSOR DOWNI, IPAGE upl, and IPAGE DOWNI keys scroll the display
16 bytes at a time, and ILlNE upl and ILlNE DOWNI by 8 bytes at a time.

[ID - Next Error

Next Error searches forward through the network for the next processor which
has both its error and halt-on-error flags set. Processors are searched in the
order in which the processors are stored in the debugger's internal data base,
not in the order of processor number. If a processor is found with both flags set
the display is changed to the new processor as if the 'P' option had been used.
Press ITOpl to display the occam source line which caused the error.

If there is only one processor in the network you are informed:

There is only one processor in the network

@] - Goto process

This command locates to the source code for any process which is currently
shown on the screen. The cursor is positioned next to the Iptr, and permitted
responses are listed on the screen as follows:

[CURSOR] then [RETURN], or 0 to F, (I)ptr, (L)o,
or (Q)uit

To select the desired process use the cursor keys to skip between processes
on the screen, or specify a value 0 to F. Press IRETURNI to select the process
indicated by the cursor. The saved Iptr is chosen by typing 'I', and if currently
in high priority, the interrupted low priority process is chosen by typing 'L'. The
sixteen processes shown on the right hand side of the display are chosen by
typing '0' to 'F'. Type 'Q', IFINISHI, or IREFRESHI to abort this choice.

[ill - Hex

The Hex command displays memory in hexadecimal. Specify the start address
after the prompt:

Start address (#hhhhhhhh) ?

Press IENTERI to accept the default address, or enter the desired address. The
address can be entered as a decimal number, a hexadecimal number preceded
by 'I', or the short form '%h ... h', which assumes the prefix #8000 If the

72 TDS 184 00 April 1989

202 14 idebug - debugger

specified start address is within a word, the start address is aligned to the start
of that word.

The memory is displayed as rows of words in hexadecimal format. Each row
contains four or eight words, depending on transputer word length. Words are
displayed in hexadecimal (four or eight hexadecimal digits depending on word
length), most significant byte first.

For a four byte per word processor the sequence of bytes in a single row would
be:

: 3 2 1 0 765 4 11 10 9 8 15 14 13 12

For a two byte per word processor, the ordering would be:

: 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

Words are ordered left to right in the row starting from the lowest address. The
word specified by the start address is the top leftmost word of the display.

The address at the start of each line is an absolute address displayed in hex­
adecimal format.

ICURSOR upl, ICURSOR DOWNI, ILlNE upl, ILlNE DOWNI, IPAGE upl, and IPAGE DOWNI

keys may be used to scroll the display. .

[TI - Inspect

The Inspect command can be used to inspect the contents of an entire occam
array. Specify a start address after the prompt:

Start address (#hhhhhhhh) ?

Either press IENTERI to accept the default address, or enter the desired address.
The address can be entered as a decimal number, a hexadecimal number pre­
ceded by 'I', or the short form '%h ... h', which assumes the prefix #8000

The start address of an array can be found using the symbolic function UNSPECTI.

Press /lNSPECTI while the cursor is positioned over the array name, then press
IENTERI when prompted for a subscript.

72 TDS 18400 April 1989

14.5 Monitor page

When a start address has been given, the following prompt is displayed:

Typed memory dump
o - ASCII
1 - INT
2 - BYTE
3 - BOOL
4 - INT16
5 - INT32
6 - INT64
7 - REAL32
8 - REAL64
9 - CHAN

203

Which occam type (1 - INT) ?

Give the number corresponding to the occam type you wish to display, or press
IENTERI to accept the default type.

The memory is displayed as sixteen rows of data. ASCII arrays are displayed in
the format used by the Monitor page command 'ASCII'. Other occam types are
displayed both in their normal representation and hexadecimal format.

The address at the start of each line is an absolute address displayed as a
hexadecimal number. The element specified by the start address is on the top
row of the display.

Start addresses are aligned to the nearest valid boundary for the type, that is:
BYTE and BOOL to the nearest byte; INT16 to the nearest even byte; INT,
INT32, INT64, REAL32, REAL64, and CHAN to the nearest word.

ICURSOR upl, ICURSOR DOWNI, ILlNE upl, ILlNE DOWNI, IPAGE upl, and IPAGE DOWNI

keys can be used to scroll the display.

[J- Links

The Links command displays the instruction pointer, workspace descriptor, and
priority, of the processes waiting for communication on the links, or for a signal
on the Event pin. If no process is waiting, the link is described as 'Empty'. Link
connections on the processor, and the link from which the processor was booted
are also displayed.

72 TDS 184 00 April 1989

204 14 idebug - debugger

Workspace
Configuration code
Program body
Vectorspace

The format of the display is similar to the following example:

Link 0 out Empty
Link 1 out Empty
Link 2 out Iptr: #80000256 Wdesc: #80000091 (Lo)
Link 3 out Empty
Link 0 in Empty
Link 1 in Empty
Link 2 in Iptr: #80000321 Wdesc: #80000125 (Lo)
Link 3 in Iptr: #80000554 Wdesc: #80000170 (Hi)
Event in Empty

Link 0 connected to Host
Link 1 not connected
Link 2 connected to Processor 88, Link 1
Link 3 connected to Processor 23, Link 3

Booted from link 0

~ - Memory map

The Memory map command displays a memory map of the current processor.
The display includes the address ranges of on-chip RAM, program code, config­
uration code, workspace and ve~torspace, the sizes of each component in bytes
rounded up to the nearest 1K bytes, total memory usage, and -the address of
'MemStart', the first free location after the RAM reserved for the processor's own
use.

Also displayed is the maximum number of processors that can be accommodated
by the debugger's buffer space. This will depend on the amount of memory on
the root processor, indicated to the debugger by the host environment variable
IBOARDSIZE.

The format of the display is similar to the following example:

Memory map
#80000064-#800000F3 (144)
#800000F4-#80000117 (36)
#80000118-#80012773 (74K)
#80012774-#80024643 (72K)

Total memory usage 149060 bytes (146K)

On-chip memory (2K): #80000000-#800007FF
MemStart #80000048

Debugger has enough memory for 1271 processors

72 TDS 18400 April 1989

14.5 Monitor page 205

The address of 'MemStart' is the value actually found on the transputer in the
network. If this does not correspond to·, that expected by the configuration de­
scription, for example if a T414 was found when a 1800 was expected, the
following message is displayed:

MemStart should be

ffi] - Network dump

#80000070 (T800)

The Network dump command saves the state of the transputer network for later
analysis. If you quit the debugger without creating a network dump file, debug­
ging cannot continue from the same point without re-running the program. This
is because the debugger itself overwrites parts of the memory on each transputer
in the network.

Once a network dump file has been created, debugging can continue from the
file, and the debugger does not need to be connected to the target network.

Before the dump file is created, the debugger calculates the disk space required,
and requests confirmation. The size of the file depends on how much of each
processor's memory is actually used in running the program, and is displayed
as in the following example:

Create network dump file
Number of processors 10
File size will be : 89673 bytes

Continue with network dump (Y,N) ?

To continue with the network dump, type ay' and specify a filename after the
prompt:

Filename ("network.dmp" , or "QUIT") ?

Press IENTERI to accept the default filename, enter a filename (any extension will
be replaced by , • dmp'), or type 'QUIT' (uppercase) to exit.

If the file already exists, you are warned:

File "network.dmp" already exists
Overwrite it (Y,N) ?

If you type 'N', you are reprompted for the filename.

72 TDS 18400 April 1989

206 14 idebug - debugger

While the dump file is being written, the following message is displayed at the
terminal:

Dumping network to file "network.dmp"
Processor 99 (T800)
Memory to dump: 10456 bytes ...

[Q]- occam

The occam command restores symbolic debugging, either at the same occam
line, or at another location. It can also be used to debug non-occam programs.
It can be used to locate to any source line, whether or not a process is waiting
or executing there. To ensure the debugger locates to a process, it is better to
use the 'G' command.

To return to symbolic debugging, the debugger requires values for Iptr and
Wdesc. Specify Iptr after the prompt:

Iptr (Ihhhhhhhh) ?

The default displayed in parentheses is the last line located to on this processor,
or the address of the last instruction executed.

Either press !ENTER! to accept the default address, or enter the desired address.
The address can be entered as a decimal number, a hexadecimal number pre­
ceded by 'I', or the short form '%h ... h', which assumes the prefix 18000

Useful addresses can be determined using the 'R', 'T', and 'L' commands to
display specific addresses. The same addresses can be listed by using the 'G'
command. The value of the saved low priority Iptr can also be used.

If the Iptr is not within the program body, one of the following errors is dis­
played:

Error

Error

Cannot locate to configuration level code

This address is not in a code area

After pressing any key you are returned to the Monitor page.

If the Iptr is valid, you are prompted for the Wdesc:

Wdesc (Ihhhhhhhh) ?

If a displayed Iptr was specified, its corresponding Wdesc is offered as a
default. Press IENTER! to accept the default, or specify a value in the same
format as Iptr.

72 TDS 184 00 April 1989

14.5 Monitor page 207

If no symbolic features other than a single 'locate' are required, the Wdesc is
not needed, and the default can be accepted.

If an invalid Wdesc is given, most of the symbolic features will not work, or will
display incorrect values. However, you can still determine the values of scalar
constants and some other symbols.

Any attempt to inspect variables or channels, or to backtrace, will give one of
the following messages:

Wdesc is invalid - Cannot backtrace

Wdesc is invalid - Cannot inspect variables

If the location to be displayed is in a library for which the source is not available,
the debugger cannot locate the call to that library, and the following message is
displayed:

Wdesc is invalid so cannot backtrace out of
compacted library

Once the Iptr and Wdesc have been supplied, the debugger displays the
source code at the required location, and the full range of symbolic features are
available.

~ - Processor

This command changes to a different processor in the network. Specify the
processor name after the prompt:

New processor number ?

Type a processor number (the number used to identify the processor in the
program configuration description). If the processor exists the display is changed
to provide information about the specified processor. If the new processor's word
length is different from that of the previous processor, the start address is reset
to the bottom of memory.

If the processor is not in the configuration, the following message is displayed:

Error : Processor does not exist

If there is only one processor in the network you are informed:

There is only one processor in the network

72 TDS 184 00 April 1989

208

[ID- Quit

14 idebug - debugger

This command quits the debugger and returns to the operating system. Once
quit, the debugger cannot be used to debug the same program without reloading
the program unless a 'network dump' file has been created. This is because
using the debugger overwrites much of the contents of the network.

[BJ - Run queue

This command displays Iptrs and Wdescs for processes waiting on the proces­
sor's active process queues. If both high and low priority front process queues
are empty, the following message is displayed:

Both process queues are empty

If neither queue is empty, you are required to specify the queue:

High or low priority process queue? (H,L)

Type 'B' or 'L' as required. If only one queue is empty, the debugger displays
the non-empty queue.

The screen display is paged. To view other processes scroll the display using the
ICURSOR upl, ICURSOR DOWNI, ILlNE upl, 'LINE DOWNI, 'PAGE upl, and 'PAGE DOWNI

keys.

[!] - Timer queue

This command displays Iptrs, Wdescs, and wake-up times for processes wait­
ing on the processor's timer queues. Prompts and displays are similar to those
for the Run queue command.

IRETRACE I
IRELOCATE 1- Exit

These commands return to the debugger symbolic mode. They cannot be used
if you have changed processor while in the Monitor page.

CURSOR upl
CURSOR DOWN 1

PAGE upl
PAGE DOWN 1- Scroll display

These keys are used to scroll the debugger displays. The memory dump is

72 TDS 184 00 April 1989

14.5 Monitor page 209

scrolled by eight lines (256 bytes of ASCII data, 128 bytes of hex data) the typed
memory dump by sixteen lines, and the disassembly display by sixteen bytes,
followed by an alignment to the start of that instruction. The memory display
wraps round when the highest memory address is reached. The process and
timer queues are scrolled by fourteen lines.

ILINE upl
ILINE DOWN 1- Scroll one line

These keys scroll the debugger displays by one line. The disassembly display is
scrolled by eight bytes, then aligned to the start of that instruction. The memory
display wraps round when the highest memory address is reached.

CURSOR LEFT
CURSOR RIGHT - Change processor

ICURSOR LEFTI changes to the preceding processor in the debugger's list and
displays processor information. ICURSOR RIGHTI changes to the succeeding pro­
cessor.

The sequence of processors used by the debugger may differ from the processor
numbers in the configuration code. The display always shows the processor
number given in the configuration code.

If there is only one processor in the network, you are informed:

There is only one processor in the network

1TOP 1- Display last instruction

The ITOpl key is used to display the source corresponding to the last instruction
to be executed on the current processor. The effect is the same as typing 'G',
then 'I'.

[1]
IHELP1- Help

These commands display a page of help information, which lists the commands
available at the Monitor page.

1REFRESH 1- Refresh

This command redisplays the screen.

72 TDS 184 00 April 1989

210

14.5.2 occam run time errors

14 idebug - debugger

This section lists some of the causes of run time errors in occam programs.
The behaviour of a program when an error occurs depends on the mode in which
the program was compiled, as follows:

• In HALT mode, errors halt the transputer.

• In STOP mode, errors stop the process, allowing other processes exe­
cuting on the same transputer to continue.

• In UNDEFINED mode most errors are not detected.

The compiler perform many checks that might otherwise be performed at run
time. For example, if an array is subscripted by a constant value, the compiler
performs the range check and no extra code is inserted to perform the check at
run time.

STOP In occam 2 the STOP process behaves as though an error has occurred.
The following occam statements behave like STOP:

• IF statements where no guard evaluates TRUE.

• CASE statements where no case evaluates TRUE and there no
ELSE statement.

• ALT statements where no guard evaluates TRUE.

Arithmetic errors Arithmetic errors such as overflows and divides by zero cause
an error.

Floating-point calculations cause an error if any input is infinity or 'Not-a­
Number'. This can be avoided by explicit use of the IEEE library routines.
See the 'occam 2 Reference Manual' for details.

Shifts Shifting an integer by more than the number of bits in its representation
causes an error.

Type conversions Type conversions where the value is not in the range ac­
cepted by the new type cause an error. For example, a value converted
to type BYTE must lie in the range 0-255.

Replicators Negative replicators in replicated constructs (SEQ, PAR, IF, or
ALT) cause an error. Zero replicators are permitted.

Array accesses Any access to elements outside the range of an array cause
an error. This also applies to segments of arrays.

72 TDS 184 00 April 1989

14.6 Implementation notes 211

If a segment of an array is assigned to another segment of the same
array, the two segments must not overlap.

The sizes of an array must correspond when an array is passed as a
parameter to a procedure or function, or when an array is assigned or
abbreviated. Zero length segments are allowed.

Abbreviations Abbreviating the same element of an array twice in the same
scope generates an error. The compiler 'alias checking' option 'A' dis­
ables this form of error checking.

Communications Attempting to communicate a zero length array on a channel
of type CBAN OF ANY causes an error. Zero length counted arrays are
permitted.

A CASE input process where the communicated tag dpes not match any
. of those supplied, causes an error.

Retyping Any RETYPES expression must be aligned to the correct word or byte
boundary. For example, bytes 5, 6, 7 and 8 of a BYTE array cannot be
retyped as INT32 , since INT32s must be aligned on a word boundary.

PRI PARs Execution of a PRI PAR from within a high priority process generates
an error.

14.6 Implementation notes

This section is intended for those who wish to gain some general background
on how the debugger works and some features are implemented.

14.6.1 Debugging information generated by the compiler

The compiler automatically generates information for the debugger to analyse,
unless the disable debug option 'D' is specified. Debug information in object
code can be displayed using the binary lister tool ilist.

An important aspect of the debugger is that the generation of debugging infor­
mation does not alter the compiled transputer code that is produced. A program
compiled with debugging enabled behaves in the same way as if debugging was
disabled. Disabling debugging simply speeds up compilation and reduces file
requirements.

Debug information generated by the compiler includes:

• Workspace offsets for all variables, procedure and function parameters,

72 TDS 184 00 April 1989

212 14 idebuq - debugger

abbreviations, channels, and arrays, together with their types.

• Types and values of all declared constants.

• Names of all protocols and their variant tags, together with ports and
timers.

• Workspace requirements and locations of each procedure and function.

Using this information and the configuration details of the program, the debugger
builds an internal map of the locations of all variables currently in use on any
processor in the network.

On anyone transputer, there may be many different processes executing the
same portion of code. Each process has a different workspace, where local
variables and channels are stored. The same code may also be executing on
other processors in the network.

14.6.2 Accessing the network

The debugger is capable of analysing and debugging large networks of trans­
puters of mixed type.

The technique used to analyse transputer networks is described in detail in IN­
MOB technical note 33 'Analysing transputer networks', and only aspects of it
are described here.

To debug a network program, the debugger first builds a map of the network
from the program configuration details. It then loads a special program over
the network which sets up a message routing system that allows access to any
occam processes running on any transputer in the network.

Before loading the routing program, the debugger first copies part of each trans­
puter's memory into a host buffer, to make room for it. Since the program uses
about 700 bytes per processor, a 10 processor network would require 7 Kilobytes
of buffer space, and a 10000 processor network would require 7 Megabytes. It is
not necessary to buffer the complete memory contents of the network, because
the debugger can set up communication paths to any transputer on the network.
This makes it possible for the debugger to analyse and debug large networks of
transputers.

Once the network has been analysed and the routing program loaded, the de­
bugger determines the last instruction executed and the workspace requirements
of each processor in the network. It uses the pointer to the last instruction and in­
struction pointers taken from the active process and timer queues and processes

72 TDS 184 00 April 1989

14.6 Implementation notes

waiting on the transputer links, to find occam processes to be examined.

213

occam processes are identified on the network using the transputer number,
an instruction pointer, and a workspace descriptor.

14.6.3 Backtracing

The IBACKTRACEI function, used to trace nested procedure calls, works in the
following way.

Using the workspace requirements and code layouts of all procedures
and functions in the program, and given the instruction pointer, the debug­
ger determines the process currently being executed and its workspace
requirements.

2 From the workspace descriptor, it reads the return address of the process,
and locates the procedure call.

3 The workspace is then adjusted to allow for that used by the procedure
and the procedure call, to give the workspace descriptor for the calling
statement.

4 The workspace descriptor for the calling statement is used together with
the return address, to locate to the occam line containing the procedure
or function call.

The backtrace is then complete.

14.6.4 Accessing variables and channels

The compiler produces a map for each procedure showing the workspace offset
and type of each variable, parameter, or abbreviation used within that procedure.
Given the instruction pointer that indicates which procedure is being executed,
and the workspace descriptor for that procedure, the debugger calculates the
location of the data item within the transputer's memory, and reads the variable's
contents.

Non-local variables are accessed differently, using the lexical level of the enclos­
ing procedure. (The lexical level is the nesting level of the procedure within the
occam text). This is used to backtrace along the chain of procedure calls to
the correct procedure's local data space, where the variable can be found.

Channels between processes executing on the same transputer are implemented
by a single word in memory. This word contains either the workspace descriptor
of a process waiting for communication on that channel, or a value that indicates

72 TDS 18400 April 1989

214 14 idebuq - debugger

the process is idle. The debugger can examine a channel to determine whether a
process is waiting, read the process instruction pointer and workspace descriptor,
and jump directly to that process.

14.7 Error messages

Other messages not in this list may be generated by corrupt files and by files
not created by the toolset.

Already located - No process is waiting at the other end of this link

Attempt to jump down a channel has failed because there is no process
waiting at the other end of the link.

Cannot find correct SC (offset n) In "filename"

The descriptor file and file map files are inconsistent. This may be due
to relinking part of the program.

Cannot find this line's' location

The line shown on the screen does not correspond to executable code,
so the debugger cannot display its address.

Cannot Jump - Channel points to an invalid location

The contents of this channel do not point to a known process executing
on this transputer.

Cannot locate to configuration level code

The address which you have asked to locate is in the configuration code,
which the debugger cannot display.

Cannot locate - unknown bootstrap, so unknown memory map

The format of the bootstrap loader is unknown. The debugger cannot be
used to debug programs that contain external bootstrap loaders.

Cannot open file

File could not be found.

72 TDS 184 00 April 1989

14.7 Error messages

Cannot read processor number (Txxx)

215

Processor number is inaccessible on the target network. Check the net­
work topology. This error normally occurs because the debugger has
failed to reset the network, or because the wrong core dump file has
been specified. The failure is handled internally by the extraordinary link
handling library routines.

Code file is too big: "filename"

The link map and file filename are inconsistent.

CODE file size and memory map are inconsistent

The object file being checked does not correspond to the expected mem­
ory map.

Command line error : Duplicate debugger modes: 'D' and 'T'

Mutually incompatible options on the command line.

Command line error : Invalid target file extension: "filename"

filename must be a bootable file, that is, it must have either' .btl' or a
, •bxx' extension.

Command line error: Option T must be followed by 8 link number (0 to 3)

The 'T' option requires a link number.

Command line error : No need to assert Subsystem Analyse

The 'A' option is not required when you specify options 'N' or '0'.

Command line error : This transputer link is connected to the host

The specified link is the communication link from root transputer to host,
and is not connected to a transputer on the network.

Command line error : You must specify a filename

The command line syntax requires a filename.

72 TDS 184 00 April 1989

216

Debug Info too large (reason)

14 idebug - debugger

Size error on debug data. Use a processor with more memory or reduce
the size of the code.

reason can be:

ix.tags is full
name table is full
ws.array is full

Did not expect a library "fi/ename"

The debugger did not expect a library file.

Expected a library "fi/ename"

The debugger expected a library file.

File has not been correctly linked: "filename"

File fi/ename has not been correctly linked for use with the debugger.

FILE IS TOO BIG - truncated

Debugger buffer capacity exceeded. The buffer contains as much of the
file as could be read before the capacity was exceeded.

Inconsistency : not enough code in object file

The object file being checked does not correspond to the expected mem­
ory map.

Incorrect format network dump file "fi/ename"

The network dump file is in the wrong format, or the wrong file has been
specified.

Iptr is in an alien language exception handler

The code is data, not executable code.

Iptr is not within the code portion of an alien language module

The code is data, not executable code.

72 TDS 184 00 April 1989

14.7 Error messages

"symbol' is not in dynamic scope

217

The symbol symbol exists in the module, but is not presently in scope.
To inspect the symbol locate to a new position in the code where the
symbol is in scope.

ITERM error on line linenumber, message

The debugger has detected a syntax error in the ITERM file. message
describes the kind of error.

Not on a valid #INCLUDE line

The !ENTER FILE! function only works when the cursor is on an #INCLUDE
directive.

Object file is too large

The object file being checked does not correspond to the expected mem­
ory map.

Only debugging tools and cursor keys are available

You have pressed a key which is not used.

READ ERROR - truncated

The debugger could not read all the file. The buffer contains as much of
the file as could be read.

There is no enclosing #INCLUDE

You are not within an included file and so you cannot use the IEXIT FILE!

function.

This address does not correspond to executable code

The address corresponds to data, not code.

Too many nested #INCLUDE files in "filename"

The maximum degree of nesting in #INCLUDE files is ten.

72 TDS 18400 April 1989

218 14 idebug - debugger

Too many PROCESSORs • There is only enough memory for number

The debugger requires more memory in order to operate on this many
processors. Memory size is set by the IBOARDSIZE environment vari­
able.

Unable to read environment variable "ITERM"

There is no translation for the ITERM environment variable which defines
the screen and keyboard format.

Unknown bootstrap added, so unknown memory map

The format of the boostrap loader is unknown. The debugger cannot be
used to debug programs that contain external bootstrap loaders.

Unknown core dump file format "filename"

The network dump file is in the wrong format, or the wrong file has been
specified.

WARNING : memory not found in dump file

You have tried to read memory that is not stored in the core dump file.

Wdesc is invalid - message

The Wdesc you supplied in the Monitor page environment is invalid.
Specify a correct Wdesc and retry the command.

message can be one of:

cannot backtrace
cannot inspect variables
cannot auto backtrace out of library

Wrong number of processors in network dump file "filename"

The number of processors does not correspond to the current program.
The wrong network dump file may have been specified.

You cannot backtrace from here

The procedure you are trying to trace was called by the program's boot­
strap routine, and cannot be accessed by the debugger.

72 TDS 18400 April 1989

14.7 Error messages

You have changed file, so you can't find the addressl

219

You may not request the address of a code line after you have changed
the display to show a different file. Press IRELOCATEI before retryi ng the
command.

72 TDS 184 00 April 1989

220

72 TDS 18400

14 idebug - debugger

April 1989

15 idump - memory
dumper

This chapter describes the memory dumper tool idump that dumps the contents
of the root processor's memory to disk. It is used to enable the debugging of
code running on the root transputer.)/

15.1 Introduction

The memory dumper allows programs that use the root transputer to be de­
bugged in teh normal way using the debugger tool idebug. It is required be­
cause idebug runs on the root transputer and overwrites all data and code in
the memory.

idump saves the contents of the root transputer to a disk file in a format that can
be read by the debugger. Information contained in the file allows the debugger
to analyse data in the root transputer in the same manner as other transpLiters
on the network.

When idump is invoked it calls the server with the 'SA' option so that the space
occupied by the dumper program is saved before it is loaded onto the transputer.

15.2 Running the memory dumper

To invoke the idump tool, use the following command line:

idump filename memorysize {startoffset length}

where: filename is the name of the dump file to be created.

memorysize is the number of bytes, starting at the bottom of memory, to
be written to the file.

startoffset is an offset in bytes from the start of memory.

length is the amount of memory in bytes, starting at startoffset, to be
dumped in addition to memorysize.

All parameters can be expressed in either decimal or in hexadecimal format.
Hexadecimal numbers must be preceded by the 'I' character.

72 TDS 18400 April 1989

222 15 idump - memory dumper

The mel)1ory dump file stores the contents of the transputer's registers and the
first memorysize bytes of memory. The file is given the •dmp extension. After
the dump has been performed idump remains resident on the transputer board
ready to load the debugger.

memorysize must be large enough to contain the complete program with its
workspace and vectorspace. If the program to be dumped uses the free memory
buffer, the whole of the transputer board's memory should be dumped.

Further portions of memory can be dumped by specifying the start of the segment
of memory to be dumped and the number of bytes, using pairs of startoffset
length parameters. The start address is given by startoffset and the number of
bytes by length.

The overall size of the memory dump file is given by the amount of memory
saved plus around 500 bytes for the register contents.

15.3 Error messages

Badly formed command line

Command line error. The command syntax requires a file name followed
by the number of bytes of memory to dump. Check the syntax of the
command and retry.

Cannot open file

File system error. The memory dump file could not be opened on the
host system.

Cannot write file

File system error. The memory dump file could not be written to the host
system.

You must tell the server to peek the transputer

idump has been invoked by calling the host file server with the incorrect
option. This error can only occur if the tool is not invoked with the supplied
executable file idump. exe.

72 TDS 18400 April 1989

16 ilibr - librarian
This chapter describes the librarian tool ilibr that collects compiled code files
into a single unit that can be referenced by a program. The chapter begins
by describing the command line and its options, and goes on to explain library
modules, selective loading of modules, and library usage files. The chapter
ends with some rules and hints for building libraries and a list of librarian error
messages.

16.1 Introduction

The librarian builds libraries from one or more separately compiled units supplied
as input files. The input files may be any object code file produced by the occam
compiler or by any compatible compiler such as the C, FORTRAN and Pascal
compilers supplied by INMOS, or files produced by the Iinker and librarian. In
the process it enforces certain rules about the contents of libraries. Library files
consist of separate modules, each originating from an input file, that are loaded
as required.

16.2 Running the librarian

The librarian takes a list of compiled (and possibly linked) files, or an indirect file
containing a list of such files, and integrates them into a single library file. Each
file in the input list becomes a selectively loadable module in the library. Input
files can themselves be library files.

The operation of the librarian tool in terms of file extensions is shown below.

To invoke the librarian type:

ilibr {filenames} {options}

where: filenames is a list of input files separated by spaces.

72 TDS 184 00 April 1989

224 16 ilibr - librarian

options is a list of one or more options, in any order, from table 16.1.

Option Description

D Disables the addition of full debugging data (includes back-
trace data only).

I Displays progress information as the program runs.

X Explodes a library into constituent files. Also writes a library
indirect file.

F filename Specifies a library indirect file.

o filename Specifies an output file.

Options must be preceded by '-' for UNIX based toolsets.

Options must be preceded by 'I' for non-UNIX based toolsets.

Spaces between options, and the case of letters, are not significant.

Table 16.1 Librarian options

If an output file is not specified then the library file is given the name of the first
file on the command line, but with a • lib extension.

16.2.1 Library Indirect files

Library indirect files contain a list of input files to be built into a library. To specify
a library indirect file use the 'F' option followed by the filename. Each indirect
file specified on the command line must be preceded by the 'F' option.

The format of library indirect files is as follows.

1 Filenames may be split over lines.

2 All characters typed on a line after the comment character '--' are ig­
nored.

3 Options may appear on any line.

Indirect files should have the same name as the library file to be created, but
with a • lbb extension.

16.2.2 Exploding libraries into constituent files

The explode option 'X' allows a library to be disassembled into its constituent
files. A copy of each file is written to the current directory. If the files already
exist in the directory then they are overwritten. If an error occurs whilst the

72 TDS 18400 April 1989

16.2 Running the librarian 225

disassembly is taking place, files that have already been created are not deleted.
Exploding a library does not delete or in any other way affect the library.

The explode option can be used to change the contents of a library. For exam­
ple, suppose you wish to remove a module from the library t4lib .lib which
contains the modules mod. t4h, mod. t4 s and mod. t4u compiled in HALT,
STOP and UNDEFINED modes respectively. To remove the module mod.t4u
you would proceed as follows:

Explode the library using one of the following commands:

ilibr t4lib.lib Ix

ilibr t4lib.lib -x

This recreates the three constituent files mod. t4h, mod. t4s and
mod.t4u.

2 Delete the UNDEFINED error mode file mod. t4u and type one the fol­
lowing commands:

ilibr mod.t4h mod.t4s 10 t4lib.lib

ilibr mod.t4h mod.t4s -0 t4lib.lib

This recreates the library t4lib .lib without the module mod. t4u.

The 'x' option also creates a library indirect file in the current directory. The
name of the indirect file is derived from the library name by adding the • lbb
extension.

To change the contents of a library this file can be edited and used to rebuild
the library.

16.2.3 Removing debug data

By default the occam 2 compiler inserts debugging data into object code. For
libraries this means that the debugger is able locate to errors in the library source,
just as with any other occam code, as long as the library source is present.

Debugging data can occupy large parts of the object file, and this can be un­
desirable in libraries. The compiler option '0' could be used to prevent the data
being added when the files are first compiled, but this would disable debugging
altogether. To allow the size of libraries to be reduced while still allowing debug-

72 TDS 18400 April 1989

226 16 ilibr - librarian

ging, use the librarian 'D' option. This removes some of the debugging data but
still permits programs that use the libraries to be debugged.

The 'D' option can also be used when a library is supplied in binary form to a
third party. Although the debugger cannot locate to the library source, programs
that use the library can still be debugged using the data that remains.

16.3 Library modules

Libraries are made up of one or more selectively loadable modules, each created
from a single input file specified to the librarian. Modules within a library are
numbered from zero for identification when the code is displayed with the binary
lister ilist.

A module is the smallest unit of a library that can be loaded separately.

16.3.1 Selective loading

Libraries can contain th~ same routines compiled for different transputer types
and in different error modes. The compiler and checker tools select library mod­
ules for inclusion in the program on the basis of the compilation modes of the
main program. For example, if the program is compiled for an IMS T414 in HALT
system mode, only modules compiled for this processor type or for a compatible
transputer class, and in HALT or UNIVERSAL mode, are loaded. Rules gov­
erning the compatibility of transputer types and error modes are described in
sections '23.3 and 23.4.

The Iinker, in the same way as the compiler and checker, selects library modules
for linking according to the compilation modes of the main program. The linker
links in only those library modules that are actually used by the program.

16.4 Library usage files

Library usage files describe the dependencies of a library on other separately
compiled code. They consist of a list of separately compiled units or libraries
referenced within a particular library. Library usage files must be given the • liu
extension.

Library usage files should be created for all libraries that are supplied without
source, I so that the imakef tool can generate the necessary commands for
linking.

Library usage files are created using use the imakef tool. For more details see

72 TDS 184 00 April 1989

16.5 Building libraries

section 19.5.

16.5 Building libraries

227

This section describes the rules that govern the construction of libraries and
contains some hints for building libraries.

16.5.1 Rules for constructing libraries

1 Routines of the same name in a library must be compiled for different
transputer types and error modes.

2 Libraries that contain modules compiled for a transputer class (Le. TA,
TB or TC) are treated as though they contain a copy for each member
of the class.

3 Libraries that contain modules compiled in UNIVERSAL mode are treated
as though they contain a copy for each of the three error modes.

4 Routines of the same name in a library cannot contain the same global,
static, or COMMON (FORTRAN only) variables.

5 Library source files must not contain the #se directive.

16.5.2 Hints for building libraries

Routines that are likely to be used together in a program or procedure (such as
routines for accessing the file system) can be incorporated into the same library.
At a lower level, routines that will always be used together (such as those for
opening and closing files) can be incorporated into the same module.

Try to keep separately compiled code as small as possible. This keeps the final
library modules as small as possible and helps to ensure that programs do not
include large amounts of code that is not used.

Libraries can contain the same routines compiled for different transputer types
and in different error modes. If you compile the routines for transputer classes,
or in UNIVERSAL error mode, only one copy of the code is held and the library
will be smaller.

Always compile library routines with debugging enabled. This enables you to
locate to the library source if an error occurs inside the library. If you wish to
reduce the size of a library subsequently, for example if you are supplying a

72 TDS 18400 April 1989

228 16 ilibr - librarian

library to a third party in binary format, use the librarian 'D' option to remove the
source location data.

If a library source file references compiled code (including other libraries) then
the referenced code should be included in the library. If this is not possible
then the name of the code file should be included in the library usage file (see
section 16.4). An alternative is to link the referenced code with the calling code
before building the library" or combine the libraries together using the librarian.

16.6 Error messages

Errors cause the librarian to abort with an error message. Messages are in the
standard toolset format. If an error occurs the librarian aborts and no library files
are generated.

Bad format, reason

Bad input file format. Check that the file is of the correct type for the
librarian and that the file has not been corrupted.

reason can be:

Incompatible library file
multiple IDs
not a library file
SYMBOL before TARGET

Expected file name after 0 option

Command line error. No output file was specified.

Illegal execution mode (value)

Bad input file. value represents the illegal error mode.

Illegal link data tag (value)

Bad input file. value is the illegal tag.

Illegal operand data tag (value)

Bad input file. value is the illegal tag.

72 TDS 18400 April 1989

16.6 Error messages

Illegal option (char)

Command line error. char is the invalid option character.

Illegal processor type (value)

Bad input file. value represents the illegal processor type.

Illegal string length (value)

Bad input file. value gives the illegal length.

Indirect file name too long (value)

229

Command line error. value is the number of characters read. The maxi­
mum length for library indirect files is 255 characters.

Input file name too long (value)

Command line error. value is the number of characters read. The maxi­
mum length for input files is 255 characters.

Multiple output files specified (value)

Command line error. value gives the number of files specified.

No input file specified

Command line error. At least one input file must be specified on the
command line.

Output file name too long (value)

Command line error. value is the number of characters read. The maxi­
mum length for output files is 255 characters.

Ran out of heap memory

There is not enough memory available to run the tool. This may occur if
the libraries are very large. Use a transputer board with more memory.

Symbol multiply defined, symbol (target,mode) in fjlename

More than one routine with same name (given by symbol), target proces­
sor (given by target), and compilation error mode (given by mode) was
found. fjJename gives the name of the file in which the name was first

72 TDS 18400 April 1989

230 16 ilibr - librarian

found. The file name given as part of the standard toolset error message
indicates in which file the second occurrence of the name was found.

Unable to close (value)

File system error. The file specified in the message prefix could not be
closed. value is the error value returned by the host system.

Unable to open (value)

File system error. The file specified in the message prefix could not be
opened. value is the error value returned by the host system.

Unable to read (value)

File system error. The file specified in the message prefix could not be
read. value is the error value returned by the host system.

Unable to write (value)

File system error. The file specified in the message prefix could not be
written. value is the error value returned by the host system.

Unexpected end of input

Bad input file format. Check that the file type is compatible with the
librarian and has not become corrupted.

X switch and 0 switch are incompatible

Command line error. Options 'x' and '0' cannot be used together on the
same command line.

72 TDS 18400 April 1989

17 ilink - linker
This chapter describes the Iinker tool ilink which creates single object files
from separately compiled code and libraries. The chapter begins with an intro­
duction to the tool, explains some features of its use, and describes the Iinker
command line and its options. The chapter ends with a list of Iinker error mes­
sages.

17.1 Introduction

The linker links compiled code into a single object file, resolving all external
references. Code files can be separately compiled program units or library files.
Code produced by the linker can be used as input to the compiler, the configurer,
the bootstrap tool, the librarian, and the linker.

The Iinker can be driven directly via the command line or indirectly from a Iinker
indirect file or standard input. Input from linker indirect files or standard input is
known as redirected input.

The Iinker can also produce an output file in which external references are
passed through to be resolved during a later linking operation. This enables
sub-components of a program to be prelinked before linking the main program,
and supports modular development of programs.

The operation of the linker in terms of file extensions is shown below.

17.2 Running the linker

To invoke the Iinker use the following command line:

ilink {filenames} {options}

72 TDS 184 00 April 1989

232 17 ilink - linker

where: filenames is a list of files generated by the occam 2 compiler, by INMOS­
compatible compilers, by the librarian, or by the linker. If the '0' option is
not specified the name of the first file in the list is used to generate the
output file. If the first file in the list was generated by the linker (extension
• cxx) then an output file should be specified to avoid overwriting. The
format for standard input is the same as for linker indirect files.

options is a list of any of the options given in table 17.1.

Option Description

A Displays buffer usage of Iinker during linking.

E Extends Iinker capacity (two pass operation).

I Displays brief information as the linking proceeds.

L Loads the Iinker onto a transputer board.

M Disables the link map. The default is to produce a link map.
The file map is given the name of the first input file, but with
a •mxx extension.

S Creates a symbol table with a name derived from the first
input file. The file is given the • sxx extension.

U Allows unresolved external references. Used for prelinking
program components.

v Displays detailed (verbose) information as the linking pro-
ceeds.

B (size, ...) Redefines Iinker internal buffer sizes. size is specified in
decimal.

Q (symbol, ...) Optimizes library functions by placing them low in memory.

o filename Specifies output file.

F filename Specifies a Iinker indirect file. If no filename is given input
is taken from 'standard input'.

Options must be preceded by '-' for UNIX based toolsets.

Options must be preceded by 'I' for non-UNIX based toolsets.

Spaces between the options and the case of letters in parameters are not
significant.

Options may be specified in any order.

Table 17.1 Linker options

72 TDS 18400 April 1989

17.2 Running the linker

17.2.1 Ordering of Input flies

233

occam object files can be linked in any order, but because the processor type
and error mode for the linked output file are determined from the first input file in
the list, the main body of a unit should be specified first. This sets the execution
error mode and transputer type of the linked code to that of the main unit.

If a program references separate compilation units by the #SC directive then
linking must be performed in a specific order. This is because the compiler
inserts the call directly, rather than allowing the Iinker to patch calls, and there
may be conflicting entry point names in different compilation· units.

The correct order, after the main body, is the reverse of the order in which the
#SCS appear in the program.

For example, consider the program structure illustrated below:

#SC1A
#SC1B

#SCl

~

#SC2A

I #SC2B I
#SC2C

#SC2

main

The correct linking order in this program is as follows:

main+SC1+SC1A+SC1B+SC2+SC2A+SC2B+SC2C

17.2.2 Renaming entry points

To rename the entry point name for an input object file, prefix the input object file
with 'newname='. This instructs the linker to change the first entry point name
in the associated input object file to newname.

72 TDS 184 00 April 1989

234

17.2.3 Using imakef to simplify linking

17 ilink - linker

The imakef tool may be used to simplify the linking of complex programs,
particularly those which use libraries that are nested within other libraries or
compilation units.

The imakef tool can be used to generate a linker indirect file. This can be
useful for identifying library usage within a program and to simplify the linker
command line.

17.2.4 Input files referenced by #se

If occam object files are referenced by the #se directive within an input file,
then the input file must be prefixed with the symbol '=' before being presented
to the linker. This prevents entry points defined in the file being referenced by
other input object files, and instructs the linker to link files in the order specified
on the command line. If you use th~ Makefile generator imakef, the necessary
prefixing is done for you in the linker indirect file.

Note: Most occam programs written using the toolset do not need to use the,
#se directive. You are recommended instead to use the #USE directive, which
does the same job and has none of the side-effects. For more information about
the #USE and #se directives, see section 23.6.

17.2.5 Linker output

The name of an output file can be specified using the '0' option. If no output
file is specified then the file is given the name of the first file in the list, but with
a •cxx extension. Where the first file in the list is a linker output file, that is, it
already has a • cxx extension, an output file must be explicitly specified, or the
input file may be overwritten.

The processor type and error mode for the output file are determined by the first
input file on the command line that is not a library file. If any input file in the list is
incompatible with the the mode that is set, the link fails and an error is reported.
Library modules found to be incompatible are ignored.

If an error occurs during execution of the linker, or during any prelinking opera­
tion, any output files that have already been created are deleted.

72 TDS 18400 April 1989

17.3 Features of the linker

17.2.6 Llnker Indirect flies

235

Linker indirect files can contain a list of input object files, plus Iinker options. The
format for the Iinker command script in the indirect file is the same as the normal
command line syntax, except that input file names and options can be split over
a number of lines.

Indirect files can also contain comments. The start of a comment is denoted by
a double dash ('--') and the comment ends at the end of the line.

Redirected input, such as linker indirect files, may not itself be redirected. This
means that indirect files may not refer to other indirect files or to standard input.

The Makefile generator tool imakef, described in chapter 19, ge-nerates linker
indirect files.

17.3 Features of the linker

This section describes some special features and capabilities of the toolset linker,
including selective linking of libraries and prelinking of program components.

17.3.1 Selective linking of libraries

Libraries that are compiled for processor types or error modes incompatible with
other files in the input list are ignored by the linker. This allows selective loading
of library modules based on processor type and error mode because if libraries
are available in several compilation modes, then only the required module is
used.

Libraries are also selected for linking on the basis of previous usage. Library
modules that are used by more than one input file are linked in only once.

See section 4.8.1 for more details about selective loading.

17.3.2 Prelinking of program components

Subcomponents of the program can be linked together prior to linking with the
main program. This is known as prelinking.

Prelinking of program files produces self-contained code units in which all exter­
nal references are resolved, ready for linking into a main object file. It can also
be used to link object files where there may be a conflict of names.

72 TDS 184 00 April 1989

236 17 ilink - linker

Prelinking is necessary for program modules written in C, FORTRAN, or Pascal.
These should be prelinked to form linked subunits, which can later be integrated
with the main occam program.

Note: It may not be possible to use the debugger on incompletely linked files;
the debugger must be able to trace the matching occam source.

Prelinking can also be performed implicitly on the command line by linking the
components together syntactically. This is described in the following section.

17.3.3 Command line prelinking

To force the prelinking of a group of files on the command line, enclose the list
of files in parentheses. The linker first links all the sub-components together to
form a single unit, then links all the units together to form the main program.

The syntax for prelinking on the command line is illustrated below.

ilink mainprogram (subprog1 subprog2 ...)

Entry points defined by input object files within a group of files that are prelinked
can only be referenced by files in the same unit. The exception to this is the
main entry point for the unit (defined by the first non-library file in the group),
which must be called by the main program.

If any symbolic references cannot be resolved within a group of files, an attempt is
made to resolve them using symbols defined outside the group. This is equivalent
to invoking the Iinker with the 'u' option.

17.4 Linker options

This section describes the functions provided by other linker options.

17.4.1 Extending linker capacity - option E

Normally the linker makes a single pass over the input files, processing all code
and link data in memory. This restricts the amount of code which can be linked.
The 'E' option forces two passes over the code, and allows larger pieces of code
to be linked. Two-pass linking takes longer to complete.

72 TDS 18400 April 1989

17.4 Linker options

17.4.2 Permit unresolved references - option U

237

The Iinker normally resolves all external references, and any unresolved external
references are reported as errors.

Sometimes it is desirable to allow unresolved external references, for example
when linking a sub-component of a program. The 'u' option prevents unresolved
references from generating errors, and allows linking to proceed to completion.
Warning messages are still generated.

17.4.3 Disabling the link map - option M

Option 'M' disables the production of a file containing a map of the code being
linked. This map is required by the debugger tool idebug and the simulator tool
is im. It contains information about the order of linking of input object files, and
the address range of each file's code within the overall linked code. Addresses
are displayed as byte offsets from the start of the code. The map contains
information about two categories of input file; separate compilation units, and
library modules.

17.4.4 Symbol table - option S

This option enables the production of a symbol map. The map file is given the
same name as the output file but with a •sxx extension. The default if you do
not specify this option, is not to produce a symbol map file.

The symbol map lists all the global code and data symbols that are defined within
the program, along with their relative offsets from the start of the corresponding
code and static data areas.

17.4.5 Changing buffer sizes - option B

This option modifies the sizes of the linker internal buffers. Buffer sizes can be
displayed by using the Iinker 'I' option and buffer sizes can be examined using
the linker 'A' option.

There are seven internal buffers used by the Iinker, five of which can be modified.
The modifiable buffers are LINK, DESC, SYMBOL, INIT, and REF. Two other
buffers, FILE and CODE, are fixed and cannot be modified.

New sizes for the modifiable buffers are specified in parentheses and must be
listed in the order:

72 TDS 18400 April 1989

238

LINK, DEse, SYMBOL, INIT, REF

To leave a buffer unchanged, leave the position blank.

17 ilink - linker

For example, the following commands modify the LINK and SYMBOL buffers
only, leaving others unchanged:

B (150000,,1000)
or B (150000,,1000,)
or B (150000,,1000,,)

The following command modifies all buffers that can be changed:

B (100000,60000,5000,10000,3500)

The modifiable buffers are described below.

LINK This buffer holds link information from all the object files and is
used by the Iinker to perform any linking operations specified in
these object files.

DESC This buffer holds the environment information present in the ob­
ject file that defines the main entry point of the program. The
information contains the formal parameter specification of the
main entry point, the entry point offset, and the scalar and vec­
tor work space requirements for the main entry point. Also stored ­
in this buffer are the program's processor type and error mode,
and the program's total code size.

SYMBOL This buffer stores all the code and data global symbols defined in
the program being linked, including any symbols associated with
COMMON blocks. It is used by the linker as its symbol table. The
SYMBOL buffer uses an internal SYMBOL NAME buffer to store
symbol names. The SYMBOL NAME buffer cannot be changed
by the programmer but is modified whenever the SYMBOL buffer
is changed. If a message is displayed indicating overflow of the
SYMBOL NAME buffer the size of the SYMBOL buffer should
be increased.

INIT This buffer stores information about non-occam components in
a program. This information is used to initialise static variables
and data segments at run-time.

REF This buffer stores all the external references that are made in
each object file being linked (the buffer is re-used for each object
file and library module).

Of the non-modifiable buffers, FILE contains a list of the modules specified on

72 TDS 18400 April 1989

17.4 Linker options 239

the ilink command line, and CODE is allocated last, using whatever space is
not already occupied by other buffers. FILE uses an internal FILE NAME buffer
to store file names. The FILE NAME buffer cannot be modified.

Buffer sizes

Default buffer sizes are given in the following table.

Buffer Size Type Element

LINK 20% data used for linking (bytes) 1 byte

DESC 10/0 main entry point information (bytes) 1 byte

SYMBOL 150/0 global code and data symbols 64 bytes

INIT 1% modules to be initialised 8 bytes

REF 10/0 external symbol references 4 bytes

CODE - 1 byte

Note: For each element in the SYMBOL buffer it has been assumed that the
length of each symbol name will be on average no longer than 32 characters.
This is the average length only, and individual symbol names can be any length
up to 255 characters.

If the modified sizes for these buffers exceed the total memory space available
to the linker it will then not be possible to allocate the CODE buffer and an error
will be generated. An error is also generated if a buffer size is set to zero or to
a negative value.

If a specific buffer is made very large, the sizes of other buffers should be reduced
accordingly, otherwise there may be insufficient memory space to allocate the
CODE buffer, and the linker will report an error.

Current buffer sizes can be displayed using the linker I (Information) option.

Calculating memory requirements

To determine the buffer requirements of the linker in bytes, multiply the buffer
sizes by the appropriate element size, and sum the results. For example:

LINK.SIZE = size TIMES 1

DESC.SIZE = size TIMES 1

SyMBOL.SIZE = size TIMES 64

72 TDS 18400 April 1989

240

INIT.SIZE = size TIMES 8

REF.SIZE = size TIMES 4

17 ilink - linker

where: size is either the default proportional setting or a value set by the CB'
option.

Using this scheme, the size of the CODE buffer will be given by:

CODE.SIZE = TOTAL.SIZE MINUS

(

LINK.SIZE PLUS DESC.SIZE PLUS

SYMBOL.SIZE PLUS INIT.SIZE PLUS REF.SIZE

)

Some sample buffer sizes for different values of TOTAL.SIZE which generate
usable CODE buffer sizes are shown in the following table:

TOTAL.SIZE LINK DESC SYMBOL INIT REF

1 Mbyte 200000 10000 2000 500 500

2 Mbyte 400000 10000 4000 1000 1 000

4 Mbyte 800000 10000 8000 2000 2000

8 Mbyte 1600000 10000 16000 4000 4000

17.4.6 Optimise symbols - option Q

This option optimises the placement of specific library functions. The functions
specified are placed at the front of the linked code, where they are most likely to
be placed in on-chip RAM. Where functions are too large to be placed on chip,
they are placed low in the address space, which on some transputer boards
corresponds to the fastest off-chip RAM.

The functions to be optimised are specified using the cQ' option followed by
a list of the corresponding entry point names. To specify a list of entry names,
separate each name by a comma. Entry names can contain any character except
a space or a comma and must be specified on a single line. If a specified entry
name is not used by the program then no optimisation is performed for that
function.

If no library entry names are specified, the compiler library functions REAL320P
and REAL320PERR are optimised, if they are used by the program. These

functions are used to carry out in 32 bit real addition, subtraction, multiplication

72 TDS 18400 April 1989

17.5 Error messages 241

and division on transputers without hardware support for floating point operations.

17.5 Error messages

Other messages not in this list may be generated by corrupt files and by files
not created by the toolset.

Attempted to re-redirect input

Command input has already been redirected using the 'F' option. The 'F'
option has been given more than once on the command line, for example,
by specifying it in a linker indirect file.

Code patch over legal code, INSTRUCTION (value)

A code patch specified by an INSTRUCTION record has overwritten
some valid code (code not composed of NOP transputer instructions).
This error generally only happens when using C, FORTRAN or Pas­
cal language inserts. value is the code patch offset specified by an
INSTRUCTION record that generated the error.

End module expected

Parentheses used to group together a set of object files are not correctly
paired.

End module unexpected

Parentheses used to group together a set of object files are not correctly
paired.

Error mode incompatible (value)

A module has been compiled for an error mode incompatible with the
main program. value is the incompatible error mode.

Expected end of buffer list

The closing parenthesis was omitted when using the 'B' option.

Expected end of symbol list

The closing parenthesis was omitted when using the 'Q' option.

72 TDS 184 00 April 1989

242

Expected start of buffer list

17 ilink - linker

The opening parenthesis was omitted when using the IB' option.

Expected start of symbol list

The opening parenthesis was omitted when using the IQ' option.

File name expected

This error can occur if the filename is omitted when using the 10' option,
or when prefixes 1=' and Inewname=' are used.

Illegal buffer size, buffertype (value)

A negative or zero buffer size was specified with the IB' option. buffertype
can be LINK, DESCRIPTOR, SYMBOL, INIT, or REF.

Illegal character in buffer list (chaJ)

A non-numeric character was specified in the list of buffer sizes. char is
the invalid character.

Illegal option (chaJ)

An invalid option was specified on the command line. char is the invalid
option character.

Illegal symbol offset, symboltype (offset)

A negative offset was found in the object code. This can be generated if
a procedure uses a separately compiled unit that is declared outside the
procedure body. No action is taken by the linker, which reports the error
as a warning.

symboltype can be: CODESYMB, ENTRYSYMB, NEWENTRYSYMB,
ENTRY, or NEWENTRY.

Illegal symbol offset, symboltype (symbol)

A negative offset was found in the object code. This can be generated if
a procedure uses a separately compiled unit that is declared outside the
procedure body. No action is taken by the linker, which reports the error
as a warning.

72 TDS 184 00 April 1989

17.5 Error messages 243

symbol can be: eODESYMB, ENTRYSYMB, NEWENTRYSYMB, EN­
TRY, or NEWENTRY.

symbol is the symbol name.

Internal buffer overflow, buffertype

This message is generated if one of the linker buffer overflows. buffer­
type can be LINK, DESe, REF, INIT, SYMBOL, FILE, CODE, STRING,
SYMBOL NAME or FILE NAME. Buffers LINK, DESC, REF, INIT, and
SYMBOL can be increased by using the linker 'B'· option, CODE can
be increased by adjusting the other buffers to allow for it, and SYMBOL
NAME overflow can be avoided by increasing the size of SYMBOL.

The buffers FILE, FILE NAME, and STRING cannot be modified. If these
buffers overflow, then the number of files to be linked, the length of the
file name, or the length of character strings must be reduced. STRING
has a capacity of 255 characters, and the size of the FILE buffer can be
displayed using the linker 'V' option.

Multiple entry points, symboltype unchanged

The object file referenced by the newname= prefix contains more than
one entry point, and records associated with all entry points except the
first remain unchanged. symboltype can be DESC, ENTRY, NEWEN­
TRY, eODESYMB, ENTRYSYMB, or NEWENTRYSYMB.

MUltiple MAININIT addresses, MAININIT

More than one MAININIT operand to a record was specified. This error
can occur when the run time library for non-OCCam programs has been
specified more than once.

No MAININIT address, INIT

No MAININIT operand to a record was specified. This error can occur
when e, FORTRAN or Pascal code is used and no run time library is
specified.

Output file redefined

The '0' option was specified more than once.

72 TDS 18400 April 1989

244

Processor type incompatible (value)

17 ilink - linker

A module has been compiled for a processor type incompatible with the
main program. value is the incompatible processor type.

Program entry point not found

No main program body was specified. The message is also generated if
no object file is specified.

Reference to undefined symbol, REF (symbol)

The external symbol symbol, specified by a REF record, has not been
defined in the program.

Seen se file, expected entry file

A non-library object file was specified using the '=' prefix before the main
body for the program was specified.

Selective symbol mUltiply defined, symboltype (symbol)

The symbol symbol has been defined more than once in the program.
symboltype can be CODESYMB, ENTRYSYMB, or NEWENTRYSYMB.

Start module unexpected

p'arentheses used to group together a set of object files are not correctly
paired.

Symbol multiply defined, symboltype (symbol)

The symbol symbol has been defined more than once in the program.
symboltypecan be COMMON, DATASYMB, CODESYMB, ENTRYSYMB,
or NEWENTRYSYMB.

Unable to allocate buffer, CODE (value)

The CODE buffer could not be allocated. value is the invalid size of the
buffer, or the amount of space remaining from which to allocate the buffer.
This error may occur if large buffer sizes are set using the 'B' option.

Unable to close (value)

File system error. A file on the host could not be closed. value is the
error result returned by the host file system.

72 TDS 184 00 April 1989

17.5 Error messages

Unable to open (value)

245

File system error. A file on the host could not be opened. value is the
error result returned by the host file system.

Unable to read (value)

File system error. A file on the host could not be read. value is the error
result returned by the host file system.

Unable to write (value)

File system error. A file on the host could not be written. value is the
error result returned by the host file system.

72 TDS 18400 April 1989

246

72 TDS 184 00

17 ilink - linker

April 1989

18 ilist - binary lister
This chapter describes the binary Iister tool ilist. which takes an object file
and displays information contained in the object code in a readable form.

18.1 Introduction

The binary lister tool ilist reads an object code file. decodes the information.
and displays useful data on the screen. The output may be -redirected to a file
or to some other tool such as a sort program. Command line options control the
type of data displayed.

The ilist toolcan decode and display object files produced by the compiler.
Iinker. and librarian tools. and code generated by compatible sequential language
compilers such as the INMOS C. FORTRAN and Pascal compilers.

Object code files reflect the modular structure of the original source. Each sep­
arately compiled unit in the source becomes a separate module in the object
code. Single unit compilations produce a one module file. whereas compilations
involving several independently compiled units. such as libraries. produce object
files that contain as many modules as there were separately compiled units. The
data produced by ilist reflects the module composition of object files.

18.2 Data displays

The binary Iister can display the following types of data about object code:

• Procedural data - procedural interfaces in the form of occam function
or procedure headings for all entry points in each module. showing pa­
rameters. data types and channel usage. This information can only be
provided for code produced by the toolset occam compiler.

• Entry point data - entry point names in each module. along with the target
processor. compilation mode and workspace requirements of each entry
point. Information is displayed in tabular form.

• External references - names of all external routines used by each mod­
ule. Information is displayed in tabular form.

• Module data - data for each module including compiler version. target
processor. compilation mode. and the code size.

• Tag data - all data contained in the object file.

72 TDS 184 00 April 1989

248 18 ilist - binary lister

• Debugging data - full debug data as generated by the occam compiler
for use with the debugger and simulator.

• Code dump data - addresses and code contained in each module, in
hexadecimal format.

• Global data - global variables and COMMON data produced by C, FOR­
TRAN and Pascal compilers. Data is displayed in tabular form.

In all displays the '*' character at the end of a name indicates that the name has
been truncated.

18.3 Running the binary lister

To invoke the binary Iister tool use the following command line:

ilist filename {options}

where: filename is the <;>bject file to be displayed.

options is a list of one or more of the options given in table 18.1.

The ilist tool may be used to display any object code file produced by the
occam 2 or any compatible compiler (•txx files), the linker (•cxx files), or the
librarian (. lib files).

If the file name is omitted and no options are supplied, ilist provides brief help
information. If only a file name is supplied, ilist returns procedural interface
data only.

Any or all of the options may be used, in any order. The data for each option
is output in turn (the data are not mixed). The order of displays is same as the
order in table 18.1.

The ilist tool sends its output to the host standard output stream, normally the
terminal screen. Facilities available on the host system may allow you to redirect
the output to a file, or send it to another process, such as a sort program.

Options and their displays are described in the following sections.

18.4 Procedural interface data - option p

This output takes the form of mock occam procedure or function declarations
listing the parameters for each entry point in the object code, along with the

72 TDS 18400 April 1989

18.4 Procedural interface data - option P 249

Option Description
p Displays procedural interface data. This is the default and may

be omitted when only this data is required.

E Displays entry point data.

x Displays external reference data.

M Displays module data.

T Displays file tokens (tag data).

D Displays debugging data.

C Dumps code in hexadecimal.

v Displays global data.

I Displays progress information as the tool runs.

S (n1,n2 ...) Selects modules to be displayed. A maximum of twenty mod-
ules may be specified.

o filename Specifies an output file.

Options must be preceded by '-' for UNIX based toolsets.

Options must be preceded by If' for non-UNIX based toolsets.

Spaces between the options and the case of letters in parameters are not
significant.

Options may be specified in any order.

The S option restricts output of modules to those which are specified. If non-
existent modules are specified they are ignored. Modules are numbered from
zero.

Table 18.1 Binary lister options

names and direction of channels used within the procedure.

An entry point corresponds to a procedure or function call available within that
module, via a #USE or #se directive. Each module is identified by its name and
number and entry points can be related directly to their corresponding modules.

The module is the smallest unit of code that can be separately loaded. If only
one entry point in a module is required, the code for all entry points in that
module are loaded.

A channel marked with an ? is an input channel to the code of that entry point,
and a channel marked with ! is an output channel.

Procedural interface data can only be displayed for code produced by the oc­
cam compiler supplied with the toolset.

72 TDS 18400 April 1989

250 18 ilist - binary lister

An example of the display of procedural interface data from a library is shown
below.

Library module 65 : wint 64. tbu

PROC ao.fwrite.int64(CBAH or SP fa,CBAN or SP ta,VAL INT32 atream1d,
VAL INT64 n, VAL INT width,BYTE reault)

SBQ
~a?

ta!

PROC ao.write.int64(CBAH OF SP fa,CBAN OF SP t.,VAL INT64 n,VAL INT width)
SBQ

~.?

ta!

18.5 Entry point data - option E

This output is displayed in tabular form. It consists of a list of entry points with
their corresponding modules, along with the transputer type, compilation mode
and workspace data for each entry point. The data is displayed in columns.

ASCII sort programs can' be used on this output to sort the entry points into
alphabetical order.

The data displayed is described below.

Entry point

Module name

No
TT

EM

Offset

Wspace

Vspace

Name of entry point

Name of module in which entry point is found

Number of module in which entry point is found

Transputer type for which code is compiled

Compilation error mode

Offset in bytes of entry point from start of module

Work space requirement for entry point in machine words

Vector space requirement for entry point in machine words

The first twenty characters of entry point names and module names are dis­
played. If a name is truncated in the display it is marked by an asterisk '*'.

The transputer type TT is indicated by the model number of the transputer (for
example 800 for the IMS T800 transputer). The compilation mode is indicated
by a single character: H for HALT system mode, S for STOP on error mode, x
for UNIVERSAL mode, and U for UNDEFINED mode. If either the transputer
type or compilation mode is unknown an asterisk is displayed in the appropriate
column.

72 TDS 18400 April 1989

18.6 External reference data - option X 251

Some implementations do not support separate vector space or workspace, in
which case the Vspace and Wspace columns are left blank.

An example of the display of entry point data from a library is shown below.

Bntry Point Modu1. Ham. No TT BM Off••t .space V.pace
.0. fwri t •• int64 wint64.tbu 65 B tJ 20 25 134
.0.writ•. int64 wint64.tbu 65 B tJ 121 35 134
.0. fwri te . int64 wint64.t8h 66 800 B 20 25 134
.0.write. int64 wint64.t8h 66 800 B 12g 35 134

18.6 External reference data - option X

This output is in a tabular form. It consists of a list of modules and their external
references. External references are references to separately compiled units.

The data displayed is summarised below.

No Number of module in which entry point exists

Module name Name of module in which entry point exists

External references Names of separately compiled units

All modules in the file are listed in the display. If a module uses no external units
the external references field is left blank. External references are displayed in
two columns.

The first twenty characters of module names and the first thirty characters of
external reference names are displayed. If a name is truncated in the display it
is marked by an asterisk '*'.

An example of the display of external reference data from a library is shown
below.

No Module Name Bxternal Referenc••

65 wint64. tbu
66 wint64.t8h

72 TDS 18400

INT64TOSTRING
INT64TOSTRING

sp.writ.
sp.write

April 1989

252

18.7 Module data - option M

18 ilist - binary lister

This output displays data for individual modules in the object file. Data displayed
includes:

• The compiler version

• The transputer type and error mode

• Comments inserted by the #COMMENT compiler directive

• The size of the code

• The size of any nested code

• The size of any debug data.

The code size data allows you to determine how much code would be loaded
when a specific module is referenced. If any part of a module is required, the
code for all of that module must be linked.

Data is displayed in separate blocks for each module. Some of the data is also
used by other tools in the toolse1.

The format of the display for each module is as follows:

The display is headed' by the module name and number. This enables you to
identify specific entry points.

The first one or two lines of the data display contain compiler version information,
which can be used by some tools in the toolset for compatibility testing.

The next line gives the transputer type and error mode. If either of these is
unknown an asterisk is displayed. Any comments introduced into the code by
the #COMMENT directive are displayed after the transputer type and error mode.

The next line of the display gives the total code size for the module in bytes,
and the size of any nested code, also in bytes. Nested code refers to separate
compilation units that are referenced by the #SC directive.

The final line of the display gives the size in bytes of debug data in the module.

An example of the display of module data from a library is shown below.

72 TDS 18400 April 1989

18.8 Tag data

Library module 65 : wint 64. tbu

occam 2 product compiler (19th September 1988)
Toolset transputer compiler/confiqurer Vl. 42, 7 November 1988
Tarqet proces.or : TB Compilation mode : undefined
Occam toolset i/o library, VO.OO, 24 Oct 88
(C) Copyriqht INMOS Ltd, 1988
Code for this module : 144 bYtes, Nested code : 0 bytes
Debuq data for this module : 664 bytes

Library module 66 : wint64.t8h

occam 2 product compiler (19th September 1988)
Toolset transputer compiler/confiqurer Vl.42, 7 November 1988
Tarqet processor : 1'800 Compilation mode : halt on error
Occam tool.et i/o library, VO.OO, 24 Oct 88
(C) Copyriqht INMOS Ltd, 1988
Code for thi. module : 152 bYte., Ne.ted code : 0 byte.
Debuq data for thi. module : 664 byte.

18.8 Tag data

253

This output lists all data found in the object code file. This includes all the data
described in the other output displays.

Tag data is not displayed in a tabular form but is output in the sequence in
which it is found in the object code. Debugging and code data are not displayed
directly, but their position in the code is indicated.

The tag display is intended for diagnostic support and analysis: large amounts
of data are produced which may require skilled interpretation.

Four parameters are displayed for each tag. The display sequence display is as
follows:

address tag type data

where: address is the address of the tag relative to the start of the file

tag is the name of the tag

type is the tag type

data is the data associated with the tag.

18.9 Debugging data - option D

This output displays all debugging data in the code, generated by the occam
compiler. If the compiler was invoked with the '0' option, no debugging data will

72 TDS 184 00 April 1989

254

be present in the code.

18 ilist - binary lister

For library code, the amount of debugging data added to the code when the
library is built can be reduced by invoking the librarian with the 'D' option.

Debugging data is output in the order that it is found in the code. Each piece
of data is preceded by an index giving the correct order of the debugging data.
To put the data into the correct order, run a sort program using this index as the
sort tag. Only one module at a time can be sorted in this way.

Object code can contain a great deal of debugging data, much of which may
require skilled interpretation.

18.10 Code dump data - option c

This output gives an ASCII dump, in hexadecimal format, of the code for each
module. It can be used on any object code.

When used to display object code produced by the occam compiler, the code
for each module is displayed as a contiguous block of lines, where each line has
the format:

address ASCII hex ASCII characters

where: address is the address of the first byte on the line, expres·sed as an offset
from the start of the module.

ASCII hex is the hex representation of the code

ASCII characters are the ASCII characters corresponding to the hex code

In all cases code is read from left to right. If a value is not printable it is replaced
by a dot (.).

Code produced by C, FORTRAN and Pascal compilers may not be stored con­
tiguously, or in the correct order. For non-Occam code the same format is
adopted, but addresses may not be displayed in the correct order and blocks of
code may be broken up.

To order the code correctly, run a sort program using the address as the sort
tag. Only one module at a time can be sorted in this way.

An example of the code dump output is shown below.

72 TDS 18400 April 1989

18.11 Global data - option V

Library module 0 : OCCAM LIBRARY fliba. ooe

00000000 60BF40DO 107241J!'7 70C4AS73 72441'702 ' • @•• rA. p .. arD ..
00000010 21FSB122 F060BF72 44FE7273 FFB122FO ! .. ". '. rD. ra .. ".

18.11 Global data - option V

255

This option displays a list of global variables and FORTRAN COMMON data for
specific modules, in tabular form. Data displayed include the transputer type,
error mode, type of data (Global or COMMON), and offset or size of the code.

Global variables are variables that are shared between modules. COMMON data
is data defined by the FORTRAN COMMON statement. Module names can be
sorted into alphabetical order using ASCII sort programs.

The data displayed and their meanings are summarized below.

Variable

Module name

No

TT

EM

Type

Offset/Size

Name of the global variable or COMMON data.

Name of module where the data is found.

Number of module where the data is found.

Transputer type for which the code is compiled.

Error mode for which the code is compiled.

Either GLOBAL for a global variable or COMMON for
COMMON data.

Offset of the global variable from the start of the mod­
ule's static data area, or the size of COMMON data.

Only the first 20 characters of variable and module names are displayed. Where
a name has been truncated this is indicated by a '*' character.

An example of the global data output is shown below.

Variable
f67890
biqheat index
debuq_v;raion

Module NaIMI
teat.bin
display. bin
diaplay. bin

No TT EM
o 414 *
1 414 *
1 414 *

Type
COMMON
GLOBAL

GLOBAL

Offaet/Size
1000

2
3

18.12 Error messages

Bad format object file text

Bad object file format. The file may not be an object file, or may have

72 TDS 18400 April 1989

256 18 ilist - binary lister

been truncated. text gives further technical information about the error.

Bad module parameter ch,

Command line error. An invalid parameter was supplied with the'S'
option. The invalid parameter is given by ch,.

Bad parameter option ch,

Command line error. An unknown option ch, was supplied on the com­
mand line.

Cannot open file for reading

File system error. The file could not be opened for reading. Check that
the file exists.

Cannot open file for writing

File system error. The file could not be opened for writing. Check that
the file exists.

Module specifier is not a number ch,

Command line error. When using the'S' option modules must be speci­
fied using the module number.

No file name provided

Command line error. No object file was specified.

No opening bracket In module specifier

Command line error. When using the'S' option the list of module num­
bers must be in parentheses.

Only one output file may be specified

Command line error. The '0' option can be used only once on the com­
mand line.

Selected modules already specified

Command line error. The modules have been specified more than once
on the command line.

72 TDS 18400 April 1989

18.12 Error messages

Too many modules

257

Command line error. A maximum of 20 modules can be specified after
the'S' option.

Too many parameters

Command line error. The command line can have a maximum of 512
characters.

While moving to start of file

A file system error occurred while the lister was trying to locate the start
of the file.

Writing file

File system error on the host when writing the file.

72 TDS 184 00 April 1989

258

72 TDS 18400

18 ilist - binary lister

April 1989

19 imakef - Makefile
generator

This chapter describes the Makefile generator imakef that builds Makefiles
for program version control. It outlines the purpose of MAKE programs and
Makefiles, and explains how to invoke the imakef tool and its options. The
chapter ends with a description of the format of Makefiles created by the imakef
tool and a list of error messages.

The chapter also describes how imakef is used to create library usage files.

19.1 Introduction

The occam 2 toolset allows you to build complex programs using many source,
header and object files, and each time any part of the program is changed the
whole program must be rebuilt. For programs of any size the effort required can
be considerable.

MAKE programs automate the process by determining which parts of the pro­
gram have changed since the last compilation and rebuilding them using in­
formation provided in a Makefile. Makefiles contain textual descriptions of the
dependencies of files on other files, along with the command strings needed to
rebuild the program or program component.

The imakef tool assists with the process by creating Makefiles for code gen­
erated using the occam 2 toolset. It uses the structured design of toolset
compilation to reconstruct the operations required to generate all types of object
and bootable files that can be generated by the toolset.

Makefiles produced by imakef are compatible with the following Make pro­
grams:

• Borland MAKE.

• Unix MAKE.

• GNU MAKE.

Many other MAKE programs can also be used with imakef. However, Microsoft
MAKE is not compatible.

MAKE programs are freely available as public domain software and are not pro­
vided with the toolset. A MAKE program suitable for use with the toolset can be

72 TDS 18400 April 1989

260 19 imakef - Makeflle generator

obtained free of charge from INMOS distributors.

The source of the imakef tool is supplied so that it can be modified for specific
systems and MAKE utilities.

19.2 What is Make?

MAKE programs provide a way of automating the recompilation process during
program development. Using dependency information supplied in a Makefile in
conjunction with the modification time of files MAKE is able to determine where
changes have occurred and take the action necessary to rebuild a program.

19.2.1 Makefiles

Makefiles are the input files for MAKE programs. They contain information about
file dependencies along with'commands needed to rebuild modules or programs.

The following example shows a single Makefile entry generated by imakef.
Examples are shown for 'UNIX based and non-UNIX based toolsets.

fi1er.t4h : fi1er.occ fi1er.inc userio.1ib
. $ (OCCAM) fi1er -t4 -h $(OCCOPT) -0 fi1er.t4h

~i1er.t4h : fi1er.occ ~i1er.inc userio.1ib
$ (OCCAM) fi1er /t4 /h $(OCCOPT) /0 fi1er.t4h

The first line identifies the files on which fi1er. t4h depends, namely the
source file fi1er. occ, a file of constants called fi1er. inc, and the library
file userio .1ib. The second line represents the command that will recompile
the object file fi1er. t4h. This is achieved using calls to macros defined
earlier in the file. In this example the macros are: OCCAM, which represents the
command that invokes the compiler; and OCCOPT, which is a list of compiler
options. Macros can be redefined by editing the Makefile.

Any of the files on which fi1er. t4h depends may also depend on other files.
For each of these files the Makefile will contain a set of file dependencies along
with the commands needed to recreate the file.

19.3 Running the Makefile generator

The imakef program takes as input a list of files generated by tools in the
occam toolset, and generates a Makefile for each of the input files. Each

72 TDS 184 00 April 1989

19.3 Running the Makefile generator 261

Makefile is given the name of the first part of the object file name (no extension
is added), unless an output file is specified on the command line. If a linking
operation is required as part of the build, a Iinker indirect file is also created
containing the necessary Iinker command script.

The syntax of the imakef command is as follows:

imakef {filenames} {options}

where: filenames is a list of files for which Makefiles are to be generated. If the
file to be created is a library usage file, only one file is accepted.

options is a list, in any order, of one or more options from the following
table.

Option Description

I Displays progress information as the tools runs.

o filename Specifies output filename. The default is to use the name of
the object file. No extension is added.

Options must be preceded by '-' for UNIX based toolsets.

Options must be preceded by If' for non-UNIX based toolsets.

Spaces between the options and the case of letters in parameters ~re not
significant.

Options may be specified in any order.

For example, the following command would create a Makefile to produce a load­
able program for a transputer network:

imakef network.btl

In this example a Makefile is generated for the object file network. btl, which
will be created from the configuration description file network. pgm. The Make­
file is given the name network (no extension is added). When the MAKE pro­
gram is run on the file network, source files that have been updated since the
last compilation of the main program are recompiled, linked files are relinked,
and the bootable file network. btl is produced incorporating all the changes.

19.3.1 Code targets for imakef

The type of file generated when MAKE is run on a Makefile depends on the file
extension specified to imakef when the file is created. Target code files for
which imakef generates Makefiles are given in the following table.

72 TDS 18400 April 1989

262 19 imakef - Makefile generator

Extension Code produced
.btl Bootable code for multitransputer programs to be run on boot

from link boards.
.btr Loadable code without bootstrap information. For dynamic load-

ing and EPROM programming.
.bxx Bootable code for single transputer programs.
. rxx Non-bootable single transputer code.
. cxx Linked code.
. txx Compiled code.
. lib Library code.

The Makefile generator can also be used to create library usage files. If the
file specified to imakef is a . liu file, a library usage file is created for the
corresponding • lib file.

19.4 Format of Makefiles

The general content of Makefiles has already been described. This section
describes in detail the structure of the Makefile generated by imakef.

A Makefile consists of two main parts:

• A list of macro definitions for commands and command options.

• A list of file dependencies in the form of Rules.

19.4.1 Macro definitions

Macros represent the commands that invoke the tools on the system and sets
of command line options.

The following macros are inserted into all Makefiles generated by imakef:

LIBRARIAN=ilibr
OCCAM=occam
LINK=ilink
CONFIG=iconf
ADDBOOT=iboot
LIBOPT=
OCCOPT=
LINKOPT=
CONFOPT=
BOOTOPT=

72 TDS 18400 April 1989

19.4 Format of Makefiles 263

Macros are provided in order that commands and sets of options can be changed
to suit the names used at a particular instalation. Existing macros can be modi­
fied by editing the Makefile. New macros can also be added to the list.

19.4.2 Rules

Rules define the dependencies of source files on other files, and specify action
strings that invoke commands to build object files. For example, the following
rule defines the target program eonfiq. btl as being dependent on the con­
figuration source file eonfiq .pgm, the separately compiled file se1. e4h, and
the file of declarations header. ine.

eonfiq.btl: eonfiq.pgm se1.e4h header.ine
$ (CONFIG) eonfiq -r $(CONFOPT)

The first rule in a Makefile is for the main target. Succeeding rules define sub­
components of the main target, and are listed in a hierarchical manner.

Action Strings

Action strings represent the complete command line needed to rereate a specific
target file. The format is similar for all tools and consists of a call to the tool via
a command macro, a fixed set of parameters, a list of command line options
represented by a macro, and the name of an output file. The output file is
specified in order that the rebuilt file is always written to the directory that contains
the source.

The imakef tool can generate calls to the compiler, the configurer, the Iinker,
the librarian, and the bootstrap tool. For the compiler the call is always of the
form:

$ (OCCAM) filename -tx -m $ (OCCOPT) -0 outputfile

where: filename is the name of the file to be acted upon. The .oee extension
is added by the compiler.

x is the processor type.

m is the error mode that the program is to be compiled for.

outputfl1e is the name of the output file to be written.

For programs configured for boot from link boards, calls to the configurer are of

72 TDS 184 00 April 1989

264

the form:

19 imakef - Makefile generator

$ (CONFIG) filename $ (CONFOPT)

The formats for calls to the Iinker, librarian, and bootstrap tools are as follows.
Examples are shown for UNIX based and non-UNIX based toolsets:

$ (LINK) -f filename $ (LINKOPT) -0 outputfile
$ (LINK) If filename $ (LINKOPT) 10 outputfile

$ (LIBRARIAN) -f filename $ (LIBOPT) -0 outputfile
$ (LIBRARIAN) If filename $ (LIBOPT) looutputfile

$ (ADDBOOT) filename $ (BOOTOPT) -0 outputfile
$ (ADDBOOT) filename $ (BOOTOPT) 10 outputfile

19.4.3 Editing the Makefile

Makefiles created by the imakef tool can be edited for specific requirements.
For example, new macros can be added and new rules defined for compiling
and linking non-OCCam code.

Adding options

The imakef program generates action strings which have the minimum of op­
tions for .each tool. In most cases additional options are unnecessary; for com­
piler calls options can be added using the #OPTION compiler directive. To use
the same set of options for all calls to a particular tool simply alter the macro
that defines the set of options for that tool.

For example, if debugging data is to be disabled for all occam compilations
then OCCOPT could be redefined to include the compiler '0' option.

When linking a file with unusual buffer sizes it is necessary to add the required
options to the existing option macro. Remember to add these options to the
Makefile each time imakef is used.

Adding rules for e, FORTRAN and Pascal

The imakef program does not generate entries for C, FORTRAN and Pas­
cal routines that are incorporated into occam programs using the #IMPORT
directive. It does, however, generate dependency entries for language inserts
within occam programs and files. To allow MAKE to incorporate code written in
other languages, the Makefile can be edited by hand. Alternatively, the source

72 TDS 184 00 April 1989

19.5 Library usage files

of imakef can be modified to work with the language system being used.

265

The C source of imakef is supplied on the toolset 'source' subdirectory. For
more details see the Delivery Manual.

19.5 Library usage files

Library usage files describe the dependencies of a library on other separately
compiled units and libraries. They contain a list of files to which the library must
be linked before it can be run, and ensure that the correct Ihiker commands are
generated. Library usage files are only required when the source of the library
is not available.

Library usage files are given the same name as the library to which they relate,
but with a .liu extension.

Library usage files are created using the imakef tool. To create a library usage
file, specify the library name and add the .liu extension. For example, the
following command creates a library usage file for the library mylib. lib:

imakef mylib.liu

When imakef is used to create a library usage file no Makefile is generated.

19.6 Error Messages

Error messages produced by the imakef program are displayed in the standard
toolset format. They may be prefixed by Warning: or Error: .

A library usage file is only valid by itself

Only a single .liu file can be specified on the command line.

Cannot have a makefile

The file specified on the command line is not one for which imakef can
generate a Makefile. imakef can only create Makefiles for object files
and bootable files.

Cannot make library usage file for a library with no source

The source code for a library must be present in order to create a library
usage file.

72 TDS 184 00 April 1989

266

Cannot open "fi/ename" :reason

19 imakef - Makeflle generator

The file specified as the output file cannot be opened for writing by the
program, for the reason given.

Cannot write library usage file

The library usage file cannot be opened for writing by the program.

Cannot write linker command file

The linker command file cannot be opened for writing by the program.

Command line is invalid

An incorrect command line was supplied to the program. Check the
syntax of the command and try again.

Error whilst reading

A file system error has occurred whilst reading the source.

#IMPORT references are Illegal In configuration text

At the given line number in the file there is a reference to the #IMPORT
directive, which is illegal for configuration source.

#INCLUDE may not reference a library

The #INCLUDE directive is being used to reference a file with the .lib
extension.

#INCLUDE may not reference binary files

The # INCLUDE directive is being used to reference a file containing
compiled code.

Incomplete compiler directive

At the given line number in the file there is an invalid compiler directive.

Library on PATH "pathname" also exists In the current directory

A library with the specified name has been found on the current search
path and in the current directory.

72 TDS 184 00 April 1989

19.6 Error Messages

Library without a build or usage file does not exist

267

A library has been referenced which does not exist on the path, has no
library build file (no source), and no library usage file.

Malloc failed

The program has failed while trying to dynamically allocate memory for
its own use. Try using a transputer board with more memory. If the
program is being run on the host it may be possible to increase the
memory available using host commands.

Options are incorrectly deliminated

The terminating bracket which determines the options in a library build
file, is missing at the given line number.

#SC references are Illegal In configuration text

At the given line number in the file there is a #se directive, which is illegal
in configuration source code.

#SC, #USE may not reference source files

The directives #se and lOSE cannot be used to reference occam
source code.

Source file does not exist

The referenced source file does not exist on the system.

Target is not a derivable file

The specified file cannot be generated by the toolset.

Tree checking failed • no output performed

The tree of files has been found to be invalid and unusable for gener­
ating Makefile. This message always follows a message indicating what
is wrong with the tree. The most common reason for this error is the
presence of cyclic references in the source.

72 TDS 18400 April 1989

268 19 imakef - Makefile generator

"filename" unknown/Illegal file reference

A compiler directive is attempting to reference the wrong type of file, for
example, a library usage file, or a file of an unknown file type. Files with
any extension can be referenced using the #IMPORT compiler directive.

Writing file

An host system error occurred whilst the file was being written.

72 TDS 18400 April 1989

20 iserver - host file
server

This chapter describes the host file server iserver, which loads programs
onto transputers and transputer networks and provides the run-time environment
through which programs communicate with the host.

20.1 Introduction

The host file server iserver provides two functions:

• Loading programs and controlling transputer networks

• Runtime access to host services for application programs.

At the application program level, all communications with the host file server are
through the libraries hostio .lib and streamio . lib. These are described
in chapter 24.

20.2 Running the server

To run the host file server use the following command line:

iserver {options}

where: options is a list of one or more options from table 20.1.

20.2.1 Supplying parameters to the program

Any text on the command line that is not a server option is passed as parameters
to the program. Valid option strings will always be interpreted as server options
and must not be used as program parameters.

If iserver is invoked with no options, brief help information is displayed.

20.2.2 Loading programs

Before a program can be loaded onto a transputer network it must be compiled,
linked and made bootable using either the bootstrap tool iboot (for single
transputer programs), or the configurer iconf (for multitransputer programs).

72 TDS 18400 April 1989

270

Option
SA
SB filename
se filename
SE

SI
SL name
SR

SS

20 iserver - host file server

Description
Analyses the root transputer and peeks 8K of its memory.
Boots the program contained in the named file.
Copies the named file to the root transputer Iink.
Terminates the server if the transputer error flag is set.
Displays progress information as the program is loaded.
Specifies link address or device name.
Resets the root transputer and subsystem on the link.
Serves the link, that is, provides host system support to pro­
grams communicating on the host link.

Options must be preceded by '-' for UNIX based toolsets.
Options must be preceded by 'I' for non-UNIX based toolsets.
Spaces between options and the case of letters in the parameters are not
significant.
Options may be in any order.
Option SB filename is equivalent to SR SS SI se filename.

Table 20.1 Host file server options

The file to be loaded will have a •btl or a .bxx file extension.

The name of the file containing the program to be loaded is specified using the
'SB' option. If the file cannot be found an error is reported. This resets the board
prior to loading the program. When the program has been loaded the server then
provides host services to the program.

Note: Using the 'SB' option is equivalent to using the SR, SS, SI and se options
together.

To load a program onto a board without resetting the root transputer, use the
'se' option. This should only be done if the transputer has already been reset,
or has a resident program that can interpret the file. To reset the transputer
subsystem use the 'SR' option.

To terminate the server immediately after loading the program use the 'SR' and
'se' options together. This combination of options resets the transputer, loads
the program onto the board, and terminates.

To load a board in analyse mode, for example when you wish to use the debugger
to examine the program's execution, use the 'SA' option to dump the first 8 Kbytes
of the transputer's memory (starting from MOSTNEG INT). The data is stored
in an internal buffer which is read by the idump tool when programs are to be
debugged that use the root transputer.

72 TDS 18400 April 1989

20.3 Server functions

20.2.3 Terminating the server

271

To terminate the server press the host system break key. When the key is
pressed the following prompt is displayed:

(x) exit, (s)hell, or (e)ontinue?

To terminate the server type 'x' or press IRETURNI.

To suspend the server and resume the program later, type's'. On DOS-based
systems this option may require a host environment variable. For further infor­
mation see the Delivery Manual that accompanies the release.

To abort the interrupt and continue running the program, type le'.

20.2.4 Specifying a link address - option SL

The server contains a default address or device name for communicating with
boot from link boards. The address or name can be changed by specifying the
'SL' option followed by the new value. Addresses can be given in decimal format,
or in hexadecimal format by prefixing the number with 'I'.

The default address is overridden by the value of host environment variable
TRANSPUTER, if this variable has been set. This variable is itself overridden by
the address or name specified by the 'SL' option.

20.2.5 Terminating on error - option SE

When debugging programs it is useful to force the server to terminate when the
subsystem's error flag is set. To do this use the 'SE' option. This option should
only be used for programs written entirely in occam and compiled in HALT
system mode. If the program is not written entirely in occam then the error flag
may be set even though no error has occurred.

20.3 Server functions

This section describes the basic set of server functions. All versions of the
iserver will support these functions, enabling programs to be used with any
version of the toolset.

These functions are not intended for application programmers. They are briefly
described here for those who wish to implement a server on a new host, or to
add new facilities to the existing server.

72 TDS 18400 April 1989

272 20 iserver - host file server

The functions are divided into three groups:

1 File system commands

2 Host environment commands

3 Server control commands

Commands in each group are summarised below. Formal definitions can be
found in appendix F.

File system commands

Command Description

Fopen Opens a file, and returns a stream identifier.

Fclose Closes a file.

Fread Reads a data block, in bytes.

Fwrite Writes a data block, in bytes.

Fgets Reads a line from an open stream.

Fputs Writes a line to an open stream.

Fflush Flushes an open stream to the destination device.

Fseek Resets the file position.

Ftell Returns the current file position.

Feof Tests for end-of-file.

Ferror Returns error status of a given stream.

Remove Deletes a file.

Rename Renames a file.

Host environment commands

Command Description

Getkey Reads a character from the keyboard.

Pollkey Polls the keyboard.

Getenv Retrieves a host environment variable.

Time Returns local and universal time.

System Runs a command on the host system.

72 TDS 184 00 April 1989

20.4 Error messages

Server control commands

273

Command Description

Exit Terminates the server.

CommandLine Retrieves the server invocation command line.

Core Retrieves the contents of a peeked transputer's memory.

Version Retrieves revision data about the server.

20.4 Error messages

Boot filename is too long, maximum size is number characters

The specified filename was too long. number is the maximum size for
filenames.

Cannot find boot file filename

The server cannot open the specified file.

Command line too long (at string)

The maximum permissible command line length has been exceeded. The
overflow occurred at string.

Copy filename is too long, maximum size is number characters

The specified filename was too long. number is the maximum size for
filenames.

Expected a filename after -SB option

The 'SB' option requires the name of a file to load.

Expected a filename after -SC option

The 'SC' option requires the name of a file to load.

Expected a name after -SL option

The 'SL' option requires a link name or address.

72 TDS 184 00 April 1989

274

Failed to analyse root transputer

20 iserver - host file server

The link driver could not analyse the transputer.

Failed to reset root transputer'

The link driver could not reset the transputer.

Link name Is too long, maximum size is number characters

The specified name was too long. number is the maximum length.

Protocol error, message

Incorrect protocol on the link. This can happen if there is a hardware
fault, or if an incorrect version of the server is used.

message can be any of the following:

got 'number bytes at start of a transaction
packet size is too large
read nonsense from the link
timed out getting a further dataname
timed out sending reply message

For more information about server protocols see appendix F.

Reset and analyse are incompatible

Reset and analyse options cannot be used together.

Timed out peeking word number

The server was unable to analyse the transputer.

Transputer error flag has been set

The program has set the error flag. Debug the program.

Unable to access a transputer

The server was unable to gain access to a link. This occurs when the
link address or device name, specified either with the SL option or the
TRANSPUTER environment variable, is incorrect.

72 TDS 184 00 April 1989

20.4 Error messages

Unable to free transputer link

275

The server was unable to free the link resource because of a host error.
The reason for the error will be host dependent.

Unable to write byte number to the boot link

The transputer did not accept the file for loading. This can occur if the
transputer was not reset or because the file was corrupted or in incorrect
format.

72 TDS 18400 April 1989

276

72 TDS 184 00

20 iserver - host file server

April 1989

21 isim - T414
simulator

This chapter describes the T414 simulator tool isim that simulates the operation
of the T414 transputer and allows programs to be tested and debugged without
recourse to hardware. The chapter explains how to invoke the tool and describes
the Monitor page and symbolic debugging facilities. The chapter ends with a list
of error messages.

21.1 Introduction

The simulator can run any program that can be run on a single IMS T414, on
a boot from link transputer evaluation board. It provides most of the symbolic
and low level debugging features of the toolset debugger, plus the abilities to set
break points at source level and to single step the program.

To use the interactive facilities of the simulator the program must be compiled
with debug data enabled, and the program must be linked and made bootable.

An important feature of the simulator is that the simulated code is identical to that
which would run on a real transputer. Because all transputers are compatible at
the occam source level, programs that run correctly using the simulator will run
correctly on any real 32-bit transputer after recompiling for the correct transputer
type.

The simulator can also be used to familiarise new users with the toolset and
transputer programming.

21.2 Running the simulator

To invoke the simulator, use the following command line:

isim filename programparameters

where: filename is the bootable file containing the program to be simulated;

programparameters are the parameters to be passed to the program.

If isim is run with no filename or parameters brief help information is displayed.

When first invoked the simulator enters the Monitor page environment, which
displays low level data about the simulated transputer and a list of options. Typing

72 TDS 18400 April 1989

278 21 isim - T414 simulator

a?, at the Monitor page displays a summary of the commands available.

21.2.1 The ITERM file

Like the debugger, the simulator reads the ITERM file to determine how to con­
trol the terminal screen and keyboard. The name of the ITERM file should be
defined in the host environment variable I TERM. For details of the ITERM file
see appendix D.

21.2.2 Loading and running a program

To load a program type 'X' at the Monitor page. Once loaded, the occam source
can be examined by typing '0' to enter the symbolic interface.

To run a loaded program type 'G' at the Monitor page. The program then runs
until the program completes successfully, a run-time error occurs, or a break
point is reached. If an error occurs the processor halts, the error flag is set,
and the program can be debugged using the same symbolic and assembly level
facilities as the debugger. For details of the facilities see chapter 14.

21.3 Simulator interfaces

The simulator has two command interfaces. The first is the Monitor page for low
level debugging, which is entered when the simulator is invoked. The second
is the sy·mbolic interface for examining source code. Both interfaces provide
the same standard debugging features as the debugger itself, and both provide
additional facilities for monitoring program execution.

21.3.1 Numerical parameters

Some simulator commands require numerical parameters, such as addresses.
These can be specified as simple expressions in hexadecimal format. Expres­
sions can be the sum of two expressions, the result of subtracting one expres­
sion from another, or constants. Constants can be: areg, breg, creg, iptr,
wptr, hexadecimal constants, or abbreviated hexadecimal constants.

Hexadecimal numbers can also be specified in an abbreviated form by prefixing
the number with '%', which assumes a hexadecimal prefix of '8000 ••.. '. For
example, 'SOOOF8A' can be specified as '%F8A'.

72 TDS 18400 April 1989

21.4 The Monitor page

21.4 The Monitor page

279

When the simulator is first invoked from the operating system, it displays the
simulator Monitor page. If the program is compiled with debugging data disabled,
only the Monitor page facilities can be used.

The simulator Monitor page is similar to that of the debugger, which is described
in section 14.5. Data displayed at the Monitor page includes the following items:

Iptr

Wdesc

Error

Halt On Error

Fptrl

Bptrl

FptrO

BptrO

Tptrl

TPtrO

Contents of instruction pointer (address of
the next instruction to be executed)

Contents of workspace descriptor

Whether the error flag was set

Whether the halt on error flag was set

Pointer to the front of the low priority active
process queue

Pointer to the back of the low priority active
process queue

Pointer to the front of the high priority active
process queue

Pointer to the back of the high priority active
process queue

Pointer to the low priority timer queue

Pointer to the high priority timer queue

If Wdesc contains the most negative address value, it will be described as 'in­
valid'. This normally means that no process is executing in the simulator (for
example, the program may have become deadlocked). If Wdesc contains the
address of 'Memstart' it is displayed as such.

An asterisk displayed next to the Iptr or Wdesc pointers indicates invalid object
code. To investigate the cause, use the 'N' command to display a memory map
for the program. Invalid pointers may be generated ~hen processes become
deadlocked.

The Monitor page also displays the last instruction executed, a summary of
Monitor page commands, and if an error has occurred, the cause of the error.
When the simulator is first invoked the Monitor page display includes a memory
map of the program.

72 TDS 184 00 April 1989

280

21.4.1 Monitor page commands

21 isim - T414 simulator

Many of the simulator Monitor page commands are the same as those of the
debugger; for full descriptions of the commands and the functions they provide
see section 14.5.

Table 21.1 summarises the simulator Monitor page commands.

[K] - ASCII

Displays memory contents in ASCII. See debugger.

00 - Breakpoints

Sets, displays, and cancels break points at specified memory locations or pro­
cedure calls. The command displays the Breakpoint Options Page:

Breakpoint Options Page

1) Set breakpoint at Address

2) Set breakpoint at Procedure

3) Display breakpoints

4) Cancel breakpoint at Address

5) Cancel breakpoint at Procedure

Select Option?

[Q] - Load debugging data

Loads debugging data for a specific separately compiled unit. Specify the name
of the compiled file.

lID - Disassemble

Displays memory in transputer instructions. See debugger.

@]-Go

Starts the program, or restarts the program after it has been halted (unless the
error flag has been set, in which case the program can no longer be run). The
program will run until it completes successfully, sets the error flag, or reaches a
break point.

72 TDS 18400 April 1989

21.4 The Monitor page 281

Key Meaning Description

A ASCII Displays a portion of memory in ASCII.

B Break points Breakpoint menu.

C Load debug data Loads debugging data for a specific
module.

D Disassemble Displays transputer instructions at a
specified area of memory.

G Go Runs program (or resumes execution).

H Hex Displays a portion of memory in hex-
adecimal.

I Inspect Displays a portion of memory in any oc-
cam type.

L Links Displays Iptr and Wdesc for pro-
cesses waiting for input or output on a
link, or for a signal on the Event pin.

M Memory map Displays a memory map of the simulated
transputer.

0 occam Changes to symbolic debugging.
p Procedures Displays occam procedures and ad-

dresses.

Q Quit Quits the simulator.

R Run queue Displays Iptr and Wdesc for pro-
cesses on the high or low priority active
process queues.

S Single step Executes one transputer instruction.

T Timer queue Displays Iptr and Wdesc and wake-
up times for processes on the high or
low priority timer queues.

U Assign register Assigns a value to a register.

X Boot Runs iboot and loads the program.

? Help Displays help information.

IFINISHI Quit Quits the simulator.

ICURSOR upl Scrolls the current display.

ICURSOR DOWNI Scrolls the current display.

ICODE INFOI Help Displays help information.

/REFRESHI Refresh Redraws the screen.

Table 21.1 Simulator Monitor page commands

72 TDS 18400 April 1989

282 21 isim - T414 simulator

To start the program, specify a break point address after the following prompt
and press \RETURN\:

(break point address)

The default is not to set a break point.

[[) - Hex

Displays memory in hexadecimal format. See debugger.

IT] - Inspect

Displays a portion of memory in any occam type. See debugger.

[g- Links

Displays information about links. See debugger.

[M] - Memory map

Displays a complete memory map. See debugger.

[Q]- occam

Changes the simulator to symbolic debugging mode.

YVhen entering symbolic debugging from the Monitor page, addresses for the
desired Iptr and Wdesc must be supplied. Specify an address for Iptr after
the prompt:

Iptr (#hhhhhhhh) ?

To accept the default, press \ENTERI. The default is the value given by the current
Iptr.

Useful addresses can be determined using the Monitor page lp', 'R', 'T', and 'L'
commands.

If the supplied Iptr is not within the program body, one of the following error
messages is displayed and you are returned to the Monitor page after the next
key press.

Error: Cannot locate to configuration level code

72 TDS 184 00 April 1989

21.4 The Monitor page 283

Error: Location is not in proqram or a library

If the supplied Iptr is within the program body, a Wdesc address should be
specified after the following prompt:

Wdesc (#hhhhhhhh) ?

If no symbolic features other than a single 'locate' are required, a specific Wdesc
is not required and the default can be accepted by typing IENTERI. If an invalid
Wdesc is given, most of the symbolic features will not work, or will give incorrect
results.

After values for Iptr and Wdesc have been supplied, the simulator displays the
source code at the required location, and the full range of symbolic commands
are available.

[fJ - Procedures

Displays the names and addresses of all functions and procedures in the pro­
gram. ICURSOR upl and ICURSOR DOWNI can be used to scroll through the list of
procedures. Information provided by this command is useful for setting break
points or for locating to specific locations in the source.

@]- Quit

Quits the simulator, and returns to the operating system.

[ID - Run queue

Displays process queues. See debugger.

[!] - Timer queue

Displays timer queues. See debugger.

[[] - Assign

Assigns a value to a register. To assign a value, specify the register by name
(abbreviations are permitted), and give a value to be assigned to the register.

[!] - Boot

Loads the program and executes the bootstrap code. When complete, the Iptr
will be pointing to the start of the program. The program source can then be
examined, or the program run.

72 TDS 184 00 April 1989

284

[1J - Help

Lists the available commands.

1CODE INFORMATION 1- Help

Lists the available commands.

IREFRESH 1- Refresh

Redisplays the screen.

IFINISH 1- Quit

21 isim - T414 simulator

Quits the simulator, and returns to the operating system.

The ICURSOR upl and ICURSOR DOWNI keys can be used to scroll the display.

21.5 Symbolic facilities

Provided that the program is compiled with debugging information enabled and
the source is available, the simulator allows any part of the program to be ac­
cessed in a read-only manner, using symbolic debugging.

Only the modules that are to be inspected using the symbolic options need to·
be compiled with debugging data enabled; the remainder need not. Compiling
a module with debugging enabled does not affect the code which is produced
in any way; it merely controls the production of debugging information for the
debugger and simulator to use. No extra bugs will be introduced (or existing
bugs masked) by recompiling the program with debugging disabled.

For convenience in the following descriptions, symbolic commands are divided
into two groups; symbolic debugging commands, and program execution moni­
toring commands.

21.5.1 Symbolic debugging commands

The simulator symbolic debugging commands are the same as those of the
debugger.

Table 21.2 lists the symbolic commands. For details of the commands see
section 14.4.4.

72 TDS 18400 April 1989

21.5 Symbolic facilities

Locating and backtraclng

285

While locating to a source line, the simulator displays the following message:

'Locating... '

If the source line is not present the simulator locates instead to the line cor­
responding to the call of that code, and will repeat the locate operation until it
finds some source code to display. While backtracing in this way, the simulator
displays the following message:

'Backtracing ... '

In certain situations the location displayed may not correspond exactly to the
expected location. For example, if no valid branch of an IF or CASE has been
found, the simulator locates to the statement following the construct. For further
details see section 7.4.

Function Operation

IBACKTRACEI Locates to procedure or function call.

ITOP OF FILEI Goes to first line of the file.

IBOTTOM OF FILEI Goes to last line of the fil~.

ICHANGE FILEI Displays a different source file.

ICHANNEL! Locates to the process waiting on a channel.

ICODE INFORMATIONI Displays a summary of utility key uses.

IENTER FILEI Changes to an included file.

IEXIT FILEI Changes to an enclosing file.

IGET ADDREssl Displays address of source line.

IGOTO L1NEI Goes to a specific line in the file.

UNFOI Displays some extra information.

UNSPECTI Displays the type and value of an occam symbol.

ILlNKSI Displays the link connections.

IMONITORI Changes to the Monitor page.

IRELOCATEI Locates back to the last location line.

IRETRACEI Retraces the last operation.

ISEARCHI Searches for a specified string.

Table 21.2 Symbolic debugging commands

72 TDS 18400 April 1989

286

21.5.2 Execution monitoring commands

21 isim - T414 simulator

In addition to the symbolic debugging commands, the simulator provides com­
mands for monitoring program execution interactively. Facilities available include
the setting of break points and single step execution of the code.

Table 21.3 summarises the simulator execution monitoring commands.

Function Operation

ISET BREAKI Sets and removes break points.

ISINGLE STEPI Single steps a source line.

IWALKI Single steps a source line, preventing the process deschedul-
ing.

Table 21.3 Execution monitoring commands

ISET BREAKI

Toggles a break point on the current line. If the cursor is positioned on a line that
generates no code, for example, one containing only declarations or comments,
the break point appears at the first true instruction after the line. To determine
the address at which a break point has been set use the Monitor page 'B' and
'0' commands.

To remove a break point ISINGLE STEP I

Single steps to the next source line. If the next source line is in another routine or
process the operation may take a little time and the message 'Locating... '
will be displayed. If an error occurs as a result of the step, the process is
descheduled and the next line located to may be in another process. If the next
line is in a library, and the source of the library is absent, the simulator steps to
the next line in the source.

The same as ISINGLE STEPI, but the process is not descheduled. This ensures
that the next line located to is within the current process.

Note: Because processes execute normally, the IWALKI operation may take a
little time, particularly if the line requires input or output from other processes,
and those processes are not yet ready to proceed.

72 TDS 18400 April 1989

21.6 Error messages

21.6 Error messages

Cannot open bootfile 'filename'

287

The file containing the code to be run could not be opened or could not
be found.

Environment variable 'IBOARDSIZE' does not exist

Board memory size must be specified to the system using the the host en­
vironment variable IBOARDSIZE. Details of how to set up IBOARDSIZE
on your system can be found in the Delivery Manual.

IBOARDSIZE is too small (at least number bytes required)

The simulator requires a minimum memory size in order to run correctly.
Modify the IBOARDSIZE variable and retry the program.

ITERM error
Iterm Initialisation has failed

The ITERM file for setting up the terminal codes is invalid. ITERM error
describes the fault in the file.

72 TDS 184 00 April 1989

288

72 TDS 184 00

21 isim - T414 simulator

April 1989

22 iskip - skip loader
This chapter describes the skip loader tool that allows programs to be loaded
onto transputer networks over the root transputer. The tool sets up a data transfer
protocol on the root transputer that allows programs running on the rest of the
network to communicate directly with the host.

22.1 Introduction

The skip tool iskip prepares a network to load a program by skipping the root
transputer. It does this by setting up a route-through link on the root transputer
that allows data to be exchanged between the target network and the host without
running program code on the root transputer. This makes the root transputer
transparent to the rest of the network. The route-through link uses a simple
protocol that transfers data byte by byte between the program and the host.

After iskip has been invoked to set up the data link across the root transputer,
the program can be loaded down the host link using iserver.

22.1.1 Uses of the skip tool

The skip tool has two main uses:

1 To allow programs configured for specific arrangements of transputers to
be loaded onto the target network without using the root transputer to run
part of the program. The root transputer helps to load the program onto
the network and subsequently acts as a data relay between the host and
the target network.

Boards that can be used to load programs in this way are the B004 PC
add-in board which contains a single T414 transputer, and the B008 PC
motherboard fitted with a TRAM in slot zero to act as the root transputer.
Other slots on the B008 motherboard could be used to accomodate the
target sub-network.

2 Programs configured for a network that normally incorporates the root
transputer can be debugged without using idump to save the contents
of the root transputer to disk. Programs can be loaded onto the network
beyond the root transputer and the debugger can then run on the root
transputer without overwriting the program. The external network must
have the correct number and arrangement of processors for the program
to be loaded.

72 TDS 184 00 April 1989

290 22 iskip - skip loader

This can make debugging of single transputer programs easier where a
multitransputer board is available.

22.2 Running the skip tool

To invoke the iskip tool use the following command line:

iskip Iinknumber {options}

where: linknumber is the root transputer link to which the target network is con­
nected.

options is a list, in any order, of one or more options from the following
table.

Option Description

E Monitors the subsystem error flag and terminates the server when
the flag is set by the program.

R Reset subsystem. Resets the network of transputers connected to
link Iinknumber. Does not reset the root transputer.

I Displays progress information as the tool runs.

Options are preceded by '-' for UNIX based toolsets.

Options are preceded by '/' for non-UNIX based toolsets.

Spaces between options and the case of letters in parameters are not signifi­
cant.

Options may be specified in any order.

22.2.1 Monitoring the error flag

The 'E' option directs the server to monitor the halt-an-error signal and terminate
when it becomes set. The program can then be debugged. If the 'E' option is not
used the program may become suspended and the server should be terminated
using the host system break key.

The 'E' option is only used when loading programs compiled in HALT mode.

Note: There is a delay of one second after iskip is invoked before the error flag
is monitored; if the program fails within this interval the server may not terminate
correctly.

72 TDS 18400 April 1989

22.3 Error messages

22.2.2 Loading a program

291

Once iskip has been invoked to prepare the network, the program is loaded
by invoking iserver with the 'SS' and 'SC' options.

Note: After using the skip tool the root transputer must not be reset or analysed,
that is, iserver must not be invoked with the 'SR', 'SB', or 'SA' options.

For an example of how to use iskip to load a program see section 6.5.

22.3 Error messages

This section lists error messages that can be generated by the skip tool.

Called incorrectly

Command line parsing error. Check command line syntax.

Cannot read server's command line

Syntax error. Retry the command.

Duplicate option: option

option was supplied more than once on the command line.

No filename supplied

You failed to give the name of a bootable file on the command line.

This option must be followed by a parameter: option

Option requires a parameter. Check command line syntax.

Unknown option: option

The specified option was invalid. Check permitted options.

You must specify a link number (0 to 3)

A link number is required. Specify the link on the root transputer to
which the network is connected. If you specify the link to which the host
is connected an error is reported.

72 TDS 18400 April 1989

292

72 TDS 18400

22 iskip - skip loader

April 1989

23 occam - occam 2
compiler

This chapter describes the occam 2 compiler occam. It describes the com­
mand line syntax and its options, explains about error modes, transputer targets
and separately compiled units, and describes the compiler directives in detail.
The chapter ends with some features of the transputer implementation of oc­
cam supported by the occam 2 compiler, an explanation of how the compiler
allocates memory, and a list of error messages.

23.1 Introduction

The toolset compiler implements the occam 2 language targetting to IMS T212,
T222, M212, T414, T425 and T800 transputers. For a full description and formal
definition of the occam 2 language see the 'occam 2 Reference Manua/'.

Each compilation of a program must be targetted at a specific transputer or
transputer class and in one of four execution error modes. All components of a
program to be run on the same transputer -must be compiled for the same target
processor and error mode.

Six directives, extensions to standard occam are recognised by the occam 2
compiler. These are fUSE, # INCLUDE, #IMPORT, #OPTION, #COMMENT and
#SC. Compiler directives are described in section 23.6.

occam source files can contain references to object code libraries, occam
source to be included in the compilation, separately compiled occam code,
and code produced by compilers for other languages.

Libraries and separately compiled units must be already compiled before any file
which references them can itself be compiled. It is the programmer's responsi­
bility to ensure all components of program are compiled in the correct order and
that object code is kept up to date with changes in the source. This may be as­
sisted by using a Make program in conjunction with the imakef tool. For details
of version control using Make programs and the imakef tool see chapter 19.

The operation of the compiler in terms of file extensions is shown below.

72 TDS 18400 April 1989

294 occam - occam 2 compiler

23.2 Running the compiler

The occam 2 compiler takes as input an occam source file and compiles it
into a binary object file. Command line options determine the target transputer
for the compilation, the compilation error mode, and other compiler facilities such
as alias and usage checking.

A target processor and compilation error mode should be specified for each
compilation. The compiler default is to produce code for the T414 in HALT
mode, and for code of this type the transputer target and error mode options
may be omitted.

To invoke the compiler use the following command line:

occam filename {options}

where: filename is the name of the file containing the source code. If you do not
specify a file extension, the extension .occ is assumed. If the filename
is omitted brief help information is displayed.

options is a list, in any order, of one or more of the options given in
tables 23.1 and 23.2.

If the compilation is unsuccessful an error message is displayed giving the name
of the file and the number of the line where the error occurred. Compiler error
messages are listed in section 23.10.

23.2.1 Filenames

occam source files can be given any legal filename for the host system you
are using. The use of the .occ extension for occam source, and the . inc
extension for files containing declarations of constants and protocols, is recom­
mended.

72 TDS 184 00 April 1989

23.3 Transputer targets 295

Output files are specified using the '0' option. If you do not specify a filename,
the input filename is used and an extension is added in accordance with the
rules described in section 3.7.2.

If you use the Makefile generator tool imakef to assist with version control you
must use the recommended extensions.

23.3 Transputer targets

The compiler produces code for the IMS T212, M212, T222, T414, T425 and
T800 transputers. These can be grouped into transputer classes.

23.3.1 Transputer classes

Transputers can be grouped into compilation classes because much of the object
code is common between different transputers. For example, code for all the 32­
bit processors (IMS T414, T425, T800) is identical provided that no floating-point
CRC, or 2D block move operations are used.

32-bit processors can be grouped into three classes according to the overlap in
their instruction sets. The three classes and the compatible target processors
are listed below.

Class Compatible targets

TA T414, T425, T800

TB T414, T425

TC T425, T800

Code compiled for a member of one class can be mixed with code compiled for
any member of the class, or for a superset of that class. For example, code
compiled for class TC can be mixed with code compiled specifically for the T425
and T80D processors and with code compiled for class TA, but not with code
compiled for class TB.

The formal rule for mixing code between classes is as follows:

Code may be called provided it is compiled for a class which is the same
or is a superset of the calling code.

For more details on mixing transputer types see section 4.4.2.

If you compile for TA or TC transputer classes or in UNIVERSAL error mode,
you must disable the compiler libraries with the 'E' option, because they are not
supplied in these compilation modes. For details of the compiler libraries see

72 TDS 18400 April 1989

296

Option

TA

TB

TC

T212

T222

M212

T2

T414

T4

T425

T5

T800

T8

H

s
u
X

A

C

D

E

occam - occam 2 compiler

Description

Compile for transputer class TA (T414, T425, T800)

Compile for transputer class TB (T414, T425)

Compile for transputer class TC (T425, T800)

Compile for a T212 processor.

Compile for a T222 processor. Same as T212.

Compile for a M212 processor. Same as T212.

Same as T212.

Compile for T414 processor.
This is the default processor type and may be omitted when com­
piling for a T414 processor.

Same as T414 (default).

Compile for a T425 processor.

Same as T425

Compile for a T800 processor.

Same as T800.

Produces code in HALT mode. This is the default compilation mode
and may be omitted for HALT mode programs.

Produces code in STOP mode.

Produces code in UNDEFINED mode.

Produces code in UNIVERSAL mode.

Prevents the compiler from performing alias checking. The de­
fault is to perform alias checking. This option also disables usage
checking. Details of alias and usage checking rules are given in
the 'occam 2 Reference Manual'.

Disables the generation of object code. The compiler performs a
syntax check only.

Disables the generation of debugging information. The default is
to produce debugging data. Debugging data is required by the
debugger and by the transputer simulator.

Prevents the compiler from loading the compiler libraries. If this
option is used and the occam code requires use of the libraries,
an error is reported. The compiler libraries must be disabled when
compiling for TA or TC transputer classes, or for any processor in
UNIVERSAL error mode.

Table 23.1 occam 2 compiler options

72 TDS 184 00 April 1989

23.3 Transputer targets 297

Option

G

I

K

L

N

o outputfile

v

w

Description

Enables the compiler to recognise the restricted range of
transputer instructions, via the GUY construct. See ap­
pendix B for the list of permitted instructions.

Displays additional information as the compiler runs. This
information includes target and error mode, and information
about directives as they are processed. The default is not to
display this information.

Disables run-time checking of array bounds. the default is to
perform run-time range checking. This option has no effect
in UNDEFINED mode.

Loads the compiler and terminates. Useful for loading the
compiler onto the board prior to compiling a program.

Disables usage checking. The default is to perform usage
checking. Usage checking is also disabled by option 'A'.
Details of usage checking rules are given in the 'occam 2
Reference Manual'.

Specifies the name of the output file. If no output file is
specified the compiler uses the input filename and adds a
file extension in accordance with the rules outlined in sec­
tion 3.7.2

Prevents the compiler from producing code which has a sep­
arate vector space requirement. The default is to produce
code which uses separate vector space.

Enables the compiler to recognise the full range of transputer
instructions, via the GUY construct. See the Transputer in­
struction set: a compiler writer's guide for the complete list
of instructions.

Options must be preceded by '-' for UNIX based toolsets

Options must be preceded by 'I' for non-UNIX based toolsets

Spaces between options and the case of letters in parameters are not signifi­
cant.

Options may be in any order.

N.B. some options are mutually exclusive (e.g. Ta and T2). If mutually
exclusive options are given then an error is reported.

Table 23.2 occam 2 compiler options

24.2.

72 TDS 18400 April 1989

HALT

STOP

298 occam - occam 2 compiler

23.4 Compilation error modes

The compilation mode determines the behaviour of a program if it fails during
execution. There are three main modes; HALT system, STOP process, and UN­
DEFINED. There is also a special mode called UNIVERSAL, which is described
separately in section 23.4.1.

The execution behaviour of programs compiled in the three standard modes is
as follows:

When an error occurs in the program the transputer halts.
This is useful for developing and debugging systems and is
the default mode. For errors to be detected correctly the
server must be invoked with the 'SE' option.

When an error occurs the system behaves like the occam
STOP process, that is, other processes continue until they
become dependent upon the stopped process. This ensures
that a failure in one process does not automatically produce
failure in other processes. Using this mode it is possible to
build a ~ystem with redundancy and enable a system to run
even if parts of the program fail or processes fail because the
time out is exceeded.

UNDEFINED When an error occurs the effect on code execution is not
defined. UNDEFINED mode implies a minimum of run time
checking, and is useful for optimising the run time of proven
code.

Compilation modes and their effect are described in more detail in the 'occam
2 Reference Manua/'; also see section 4.4.3.

23.4.1 UNIVERSAL mode

It is sometimes desirable to combine processes compiled in UNDEFINED error
mode, where run time checking is kept to a minimum, with code compiled in
other modes.

UNIVERSAL mode is like UNDEFINED mode in that run time checking is min­
imised, but unlike UNDEFINED mode it allows code mixing with any of the three
standard error modes. Code compiled in any of the three error modes may
call code in UNIVERSAL mode, but UNIVERSAL mode may only call code in
UNIVERSAL mode.

UNIVERSAL mode should not be used to allow indiscriminate mixing of code, but
rather to permit fast execution of selected areas of code within other processes.

72 TDS 18400 April 1989

23.5 Separately complied units and libraries 299

Note: Compiler library functions such as floating point and extended data types
in programs cannot be used in UNIVERSAL mode, because the action of the
compiler libraries differs between error modes. If you compile a program in
UNIVERSAL mode you should disable the compiler libraries using the compiler
'E' option.

23.5 Separately compiled units and librari-es

Any group of one or more occam procedures and/or functions may be compiled
separately provided they are completely self-contained and make no external ref­
erences except via their parameters or compiler directives. Separate compilation
is used to reduce the need for recompilation, and to split compilations into smaller
parts. Separately compiled code is known as a compilation unit.

Any collection of compilation units may be made into a library using the librarian.
For details of how to create libraries see chapter 16.

Libraries and compilation units differ in the following ways:

• Libraries are selectively loaded as required by the transputer type and
error mode of the compilation, whereas separately compiled units are
always loaded. If a unit containing incompatible code is used an error is
generated, whereas libraries containing incompatible code are ignored.

• Separate compilation units that are contained in libraries can be selec­
tively loaded.

All separate compilation units and libraries must be compiled before the program
that references them is itself compiled. An easy way to ensure this is to use the
toolset Makefile generator imakef with a suitable Make utility. For more details
see chapter 19.

23.6 Compiler directives

The occam compiler supports a number of directives that improve program
readability and assist with file referencing. They allow occam source to be
included from other files, permit code to be used from separately compiled units
and libraries, including C, FORTRAN and Pascal code, and support the insertion
of comments in object code.

The directives are:

72 TDS 184 00 April 1989

300

INCLUDE

fUSE

IMPORT

#COMMENT

#OPTION

#SC

occam - occam 2 compiler

- inserts occam source code

- references separately compiled units and libraries

- references non-OCCam compiled code

- inserts comments in object code

- allows compiler options to be actioned in source text

- references separately compiled units.

The #USE and #SC directives perform a similar function in occam code but
#USE should always be used in preference. The #SC directive is included only
for compatibility with the IMS D700D Transputer Development System (TDS).

If the compiler 'I' option is used directives are displayed on the screen as the
compilation proceeds.

23.6.1 Syntax

Directives must occupy a single line.

Filenames referred to in compiler directives must be enclosed in double quotes
("). Files are located according to the search rules defined in section 3.7.3.

If double quotes are to be used within a directive, the double quote character
must be preceded by an asterisk (*).

The scope of directives are defined, like declarations of constants and protocols,
by the level of indentation in the occam source.

23.6.2 #INCLUDE directive

The # INCLUDE directive inserts the contents of a named file at the point in the
program source where the directive occurs, with the same indentation as the
directive.

#INCLUDE files can be used by any number of programs, including separately
compiled units, and are commonly used to share common declarations of con­
stants and protocols between several programs.

To track file dependencies within included files use of the imakef tool is rec­
ommended.

72 TDS 18400 April 1989

23.6 Compiler directives

The syntax of the #INCLUDE directive is as follows:

#INCLUDE "filename"

where: filename is the name of the file to be included.

301

The first text after the directive must be the filename enclosed within double
quotes ("). All other text on the line is ignored and may be used for comments.
Included files may be nested to a depth of ten levels.

23.6.3 #USE directive

The #USE directive allows separately compiled occam units and libraries to be
referenced from occam source. The file referenced by the #USE directive must
be compiled for the same processor type and compilation mode as the main
program, and should be made available in all modes for which the program will
be compiled.

The compiler ignores all library modules compiled with a processor type or com­
pilation mode incompatible with the current compilation.

A library may be used in any number of separately compiled units or other
libraries, provided that each unit contains the #USE directive.

The syntax of the #USE directive is as follows:

#USE "filename"

where: filename is the name of the object code file. The object file can be a
compiled (. txx) , linked (. cxx), or library (.lib) file. If you omit the file
extension, the compiler adds an extension of the form •txx, using the
rules described in section 3.7.2. The extension applied is the same as
the one for the compiler output. For example, when compiling for a T800
in STOP on error mode the extension would be •t8a.

The first text after the #USE directive must be the filename, which must be
enclosed within double quotes ("). All other text on the line is ignored and may
be used for comments.

23.6.4 #IMPORT directive

The #IMPORT directive allows code produced by compatible non-OCCam com­
pilers to be referenced from occam programs. The code produced must also
be compatible with the toolset linker ilink.

72 TDS 184 00 April 1989

302 occam - occam 2 compiler

The syntax of the #IMPORT directive is as follows:

IMPORT "filename"

where: filename is the name of the compiled and linked equivalent occam pro­
cess. If no extension is given the . cxx extension is assumed. For more
details about importing C, FORTRAN and Pascal processes into occam
see chapter 9.

The first text after the #IMPORT directive must be the file name, which must be
enclosed within double quotes ("). All other text on the line is ignored and may
be used for comments.

For more information on how to set up calls to C, FORTRAN, and Pascal see
chapter 9.

An example of how to use the #IMPORT directive is given below:

#IMPORT "cprogram.c4h" -- Cprog()

SEQ
,Cprog(fs, ts, flag, wsl, ws2, in, out)
-- call C language program

In this program fragment one C program called Cprog is used. The parameters
supplied in the program call, flag, wsl, ws2, in, and out are those of the
type 3 procedural interface. See chapter 9 for more details about how to interface
non-OCCam programs.

23.6.5 #COMMENT directive

The #COMMENT directive allows comments to be placed in the object code. The
comment must be enclosed in double quotes following the #COMMENT directive.
Comments cannot be split over more than one line.

Comments may not appear at the exact position in the object code corresponding
with the source code directive, but the sequence of comments in the file is always
maintained. Comments are stripped from the object code when it is linked or
made bootable.

The main use for the #COMMENT directive is in libraries where it can be used
to indicate a version number, record dependencies on other libraries, and hold
copyright information.

72 TDS 18400 April 1989

23.6 Compiler directives 303

The binary lister tool ilist can be used to display comments inserted with the
#COMMENT directive.

An example of how to use the #COMMENT directive is given below:

PROC my. lib ()

#COMMENT "My library V1.3, 18 May 1988"
#COMMENT "Copyright me 1988"

SEQ
library source

23.6.6 #OPTION directive

The #OPTION directive allows you to specify compiler options within the source
text of a compilation unit. The options apply to the whole compilation and are
added to the command line when the compiler is invoked. Only compiler options
that relate directly to the source can be specified with the #OPTION directive,
namely:

A - disable alias (and usage) checking.

E - disable the compiler libraries.

G - allow sequential code inserts.

N - disable usage checking.

V - disable separate vector space usage.

W - enable full code inserts.

Specifying any other compiler option produces an error.

#OPTION directives can only appear in the file to which they apply; they cannot
be nested in an included file. #OPTION directives must. also be the first non­
blank or non-comment text in the source file. If they are found at any other
position in the file an error is reported.

The syntax of the #OPTION directive is as follows:

#OPTION "optionname {optionname} "

where: option is any option permitted in a #OPTION directive. Spaces within
the double quotes are ignored. No option prefix character is required in
the syntax and none should be specified.

72 TDS 18400 April 1989

304 occam - occam 2 compiler

The first text after the #OPTION directive must be the list of options enclosed
in double quotes. All other text on the line is ignored and may be used for
comments.

An example of how to use the #OPTION directive is given below. In the example
the unit does not require usage checking but contains transputer code inserts
from the restricted set.

-- This compilation unit requires sequential
-- code inserts and does not pass the usage
check.

#OPTION "G N"

PRoe x ()
body of procedure

The #OPTION directive should only be used for compiler options that are always
required.

23.6.7 #se directive

The #se directive allows separately compiled occam units to be referenced
from occam source. It works in a similar manner to fUSE, except that libraries
are not supported.

Note: #se is supported for compatibility with the IMS D700D Transputer Devel­
opment System (TDS). It places restrictions on the use of separately compiled
code in a way that the #USE directive does not. For example, code referenced
must be linked in a particular order. For this reason #USE should always be
used in preference to to #se when referencing separate compilation units.

#se references are not permitted within code that is referenced by a #USE
directive. fUSE and #se directives must not be used to reference the same
code in a program.

The problems associated with linking code referenced by the #se directive can
be avoided by using the toolset Makefile generator imakef to keep track of file
dependencies.

A separately compiled unit may contain other separately compiled units, which
may be nested to any depth. All nested must be compiled before the enclosing
unit can be compiled. Separately compiled units can reference other source files
using the #INeLUDE directive and library files using the #USE directive. Sepa­
rately compiled units that reference include files or libraries must be recompiled

72 TDS 18400 April 1989

23.7 Implementation of usage checking

if a common include file is changed.

The syntax of the #se directive is as follows:

#se "filename"

305

where: filename is the name of the file which contains the code of the separately
compiled unit. If you omit the file extension, the compiler adds an exten­
sion of the form • txx, using the rules described in section 3.7.2. The
extension applied is the same as the one for the compiler output.

The first text after the #se must be the filename, which must be enclosed within
double quotes ("). All other text on the line is ignored and may be used for
comments.

23.7 Implementation of usage checking

This section describes the usage checking that is implemented by the compiler.

23.7.1 Usage rules of occam 2

The usage checking rules occam 2 are as follows:

• No variable assigned to, or input to, in any component of a parallel may
be used in any other component.

• No channel may be used for input in more than one component process
of a parallel. No channel may be used for output in more than one
component of a parallel.

23.7.2 Checking of non-array elements

Variables and channels which are not elements of arrays are checked according
to the rules of occam 2. It is assumed that no channel is used for both input
and output.

23.7.3 Checking of arrays of variables and channels

Where possible, the compiler treats each element of an array as an independent
variable. This makes it possible to assign to the first and second elements of an
array in parallel.

72 TDS 18400 April 1989

306 occam - occam 2 complier

For usage checking to operate in this way, it must be possible for the compiler
to evaluate all possible subscript values of an array. The compiler is capable of
evaluating expressions consisting entirely of constant values and operators (but
not function calls). Where a replicator is used in an expression the compiler can
evaluate the expression for all values of the index provided that the replicator's
base and count can be evaluated. However, there are some problems with
parallel replicators which are described below in section 23.7.5.

Where an array subscript contains variables, a function call, or the index of
a replicator where the base or the count cannot be evaluated, the compiler
assumes that all possible subscripts of the array may be used. This may cause
a spurious error. For example, consider the following program fragment:

x := 1
PAR

a[O] := 1
a[x] := 2

The compiler reports the assignment to a [x] as a usage error. The fragment
could be changed to:

VAL x IS 1:
PAR

a[O] := 1
a[x] := 2

This would be accepted by the compiler because x can be evaluated at compile
time.

The compiler checks segments of arrays similarly to simple subscripts. Where
the base and count of a segment can be evaluated, each segment is treated as
though it has been used individually. Where the base or count cannot be evalu­
ated, the compiler behaves as if the whole array has been used. For example,
the following code is accepted without generating an error:

PAR
[a FROM 4 FOR 4] := x
a[8] := 2
[a FROM 9 FOR 3] .- y

23.7.4 Arrays as procedure parameters

Any variable array which is the parameter of a procedure is treated as a single
entity. That is, if any element of the array is referenced, the compiler treats the
whole array as being referenced. Similarly, if any variable array, or element of a
variable array is used free in a procedure then the compiler treats it as if every
element were used. For example, the compiler reports an error in the following

72 TDS 184 00 April 1989

23.7 Implementation of usage checking 307

-- c free in p

code because it considers every element of a to have been used when p (a)
occurred.

PRoe p ([] INT a)
a[l] .- 2

PAR
pea)
a[O] := 2

Similarly, where one element of an array of channels is used for input or output
within a procedure, the compiler treats the array as if all elements were used in
the same way. For example, the compiler reports an error in the following code
because it considers an output has been performed on every element of c when
p () occurred.

PRoe pc)
c[l] ! 2

PAR
P ()
c[O] ! 1

23.7.5 Abbreviating variables and channels

The compiler treats an element which is abbreviated in an element abbreviation
as if it had been assigned to, whether or not it is actually updated. If this causes
an apparently correct program to be rejected the program should be altered
to use a VAL abbreviation. For example, the compiler reports an error in the
following code because it considers the first component of the PAR to have been
assigned to b.

PAR
a IS b
x .- a
y .- b

This could be changed to:

PAR
VAL a IS b
x := a
y := b

Where a channel is an abbreviation of a channel array element, the compiler
behaves as if the whole of the channel array had been used unless the element
is an array element with a single, constant subscript, a constant segment of an
array (Le. with constant base and count) or a constant segment with a single,

72 TDS 184 00 April 1989

308 occam - occam 2 compiler

constant subscript. For example, the compHer reports an error in the following
code because it considers the whole of the array a to have been used for output
when c! 1 occurred since a [1] [2] contains two subscripts.

PAR
c IS a[l] [2]
c ! 1
a[O] [1] ! 2

However, the following code is accepted because each abbreviation has just
one, constant subscript.

PAR
c.slice IS a[l] :
c IS c.slice[2]
c ! 1

a[O] [1] 2

Problems with repllcators

The compiler has the follo~ing problems in its handling of replicators:

1 Parallel accesses to an array inside a replicator loop may be incorrectly
checked against each other and flagged as errors. For example, in the
following code the compiler reports the second assignment as an error
even tho·ugh this does not break the usage rules.

SEQ i = 0 FOR 10
PAR

a[i] := 1
a [i + 1] := 2

The reason for the spurious error in this case is that the array elements
which will be assigned to by the first assignment during the execution
of the SEQ replicator will overlap those assigned to by the second as­
signment. To avoid this problem usage checking may be disabled in the
compiler by using the compiler 'N' option.

2 Replicated PAR loops are not checked properly. The compiler permits
any usage of an array element within a replicated PAR provided the repli­
cator index occurs within the subscript expression.

72 TDS 18400 April 1989

23.8 Memory allocation by the compiler 309

The following two programs are examples of incorrect programs accepted
by the checker:

PAR i = 0 FOR 10
a [i - i] := 1

PAR i = 0 FOR 4
SEQ

a[i] := 1
a [i + 1] := 1

23.8 Memory allocation by the compiler

The code for a whole program occupies a contiguous section of memory.

23.8.1 Procedure code

The compiler places any nested procedures at lower addresses (nearer MOSTNEG
lNT) than the code for the enclosing procedure. Nested procedures are placed
at increasingly higher addresses in the order in which their definitions are com­
pleted.

23.8.2 Code referenced by #se

If a unit contains code referenced by the #se directive then the code for this
nested unit is loaded at a lower address. If a unit contains more than one unit
referenced by the #se directive then the code for the last declared unit is loaded
at the lowest address.

The allocation of space for libraries and other separately compiled units refer­
enced by the #USE directive is controlled by the linker. The linker can also
be used to optimise specific libraries by placing them low in memory. This is
achieved using the linker 'Q' option. For more details see section 17.4.6.

23.8.3 Workspace

Workspace is allocated from higher to lower address (Le. the workspace for a
called procedure is nearer MOSTNEG lNT than the workspace for the caller). In
a PAR or PRl PAR construct the last textually defined process is allocated the
lowest addressed workspace. In a replicated PAR construct the instance with
the highest replication count is allocated the lowest workspace address.

Unless separate vector space is disabled, arrays (apart from those explicitly

72 TDS 18400 April 1989

310 occam - occam 2 compiler

placed in the workspace) are allocated in a separate data space. The allocation
is done in a similar way to the allocation of workspace, except that the data
space for a called procedure is at a higher address than the data space of its
caller.

When a program is loaded onto a transputer in a network, memory is allocated in
the following order starting at MOSTNEG INT: workspace; code; separate vector
space. This allows the workspace to be given priority usage of the on-chip RAM,
after the real arithmetic handling library and any libraries that are specified with
the linker IQ' option. For more details about how memory is allocated at load
time see section 11 .3.3.

The variables within a single process (or procedure) are allocated so that the
textually first variable is given the highest address in the current workspace.

From within a called procedure the parameters appear immediately above the
local variables. When an unsized vector is declared as a formal procedure
parameter an extra VAL INT parameter is also allocated to store the size of
the array passed as the actual parameter. This size is in the units of the array.
One extra parameter is supplied for each dimension of the array unsized in the
call, in the order in which they appear in the declaration.

If a procedure requires separate vector space, it is supplied by the calling proce­
dure. A pointer to the vector space supplied is given as an additional parameter
after all the actual parameters of the call.

23.9 The transputer implementation of occam

This section defines the implementation of occam on the transputer supported
This implementation is supported by the compiler.

23.9.1 Data representation

• The size of an INT (word) on an IMS T414, IMS T425, or IMS T800
transputer is 32 bits.

• The size of an INT (word) on an IMS T212, IMS T222, or IMS M212
transputer is 16 bits.

• Scalar variables are always allocated on a word (INT) boundary and
occupy an integral number of words.

• BOOL and BYTE variables in arrays occupy 8 bits each. A declared array
is aligned on a word boundary and occupies space rounded up to the

72 TDS 184 00 April 1989

The transputer Implementation of occam 311

next word boundary. Note that an abbreviation of part of such an array
might not begin on a word boundary.

• Protocol tags are represented by 8-bit values. The compiler allocates
such values from 0 (BYTE) upwards in order of declaration.

• A RETYPES specification is invalid unless the alignment and size of the
right-hand side is the same as for the left-hand side. Note especially
that an array of BOOL or BYTE variables specified by an abbreviation
(e.g. passed as a parameter) may have any alignment and so can not in
general be retyped.

23.9.2 Hardware dependencies

• The number of priorities supported by the transputer is 2, so a PRI PAR
may have two component processes. Nested PRI PARs are invalid;
the compiler checks this within a procedure, but does not check across
procedure boundaries. A runtime check is done to compensate for this;
if the program attempts a PRI PAR while at high priority. the error flag
is set. Future releases of the compiler may check for nested PRI PARs
properly.

• The low priority clock increments at a rate of 15625 ticks per second.
or one tick = 64 microseconds (IMS T800. IMS T4148, IMS T425, IMS
T212. IMS T222, and IMS M212).

• The high priority clock increments at a rate of 1 000000 ticks per second,
or one tick = 1 microsecond (IMS T800, IMS T4148. IMS T425, IMS T212.
and IMS M212).

• TIMER channels cannot be placed in memory with a PLACE statement.

23.9.3 Language and configuration

• The following directives are supported: # INCLUDE, #USE. # COMMENT.
IMPORT, #OPTION. and #SC. For more information about compiler
directives see section 23.6.

• The following statements are supported: PLACE name IN VECSPACE
and PLACE name IN WORKSPACE.

• The keyword GUY introduces a section of transputer assembly code.

72 TDS 184 00 April 1989

312 occam - occam 2 complier

• The numbers used as PLACE addresses are word offsets from the bottom
of address space.

• A channel declared as CHAN OF ANY can be passed as an actual pa­
rameter in place of a formal channel parameter of any protocol. A channel
of a specific protocol cannot be passed in place of a formal channel pa­
rameter of CBAN OF ANY. Communications on a channel declared as
CBAN OF ANY must be identical at both ends of the channel.

• The syntax of the PROCESSOR statement is extended so that the key­
words T800, T414, T425, or T212 can be used to specify the trans­
puter type.

23.10 Error messages

All messages produced by the compiler are in the standard toolset format. Some
error messages may be preceded by the message:

Reading compiler library -

This indicates that the error occurred when the compiler was attempting to load
its own library files. The compiler libraries are automatically loaded unless the
compiler 'E' option is used. -

The compiler finds the compiler libraries by searching the path specified by the
host environment variable I SEARCH. The most common cause of a compiler
library error is failure to set up this logical name correctly.

No object files are generated if an error occurs.

Bad format compiler option In #OPTION directive

Incorrect compiler options specified after a #OPTION directive.

Bad format code file

Library or separately compiled procedure object code is not in the correct
format. The code may not have been linked correctly, or the file may have
become corrupted.

72 TDS 18400 April 1989

23.1 0 Error messages

Cannot find compiler libraries for this error mode

313

You must disable compiler libraries with the 'E' option when compiling for
TA or TC transputer classes or in UNIVERSAL error mode.

Cannot find compiler libraries for this target

You must disable compiler libraries with the E option when compiling for
TA or TC transputer classes or in UNIVERSAL error mode.

Closing object code file

File system error. An object file could not be closed.

Closing quote missing from directive

Parameters following compiler directives must be enclosed in double
quotes.

Closing source file

File system error. The source file or an include file could not be closed.

Duplicate option: option

Command line error. option was supplied more than once.

IBOARDSIZE not set up correctly

For details of how to set up the IBOARDSIZE host environment variable
see the Delivery Manual.

Illegal compiler option in #OPTION directive

Incorrect compiler options specified after an #OPTION directive.

Illegal file name in directive

An invalid filename was given within the quote marks after a compiler
directive.

#INCLUDE files nested too deep

The maximum depth of nesting permitted within a single compilation unit
is ten.

72 TDS 18400 April 1989

314 occam - occam 2 compiler

Libraries must be referenced by a #USE directive

A library has been referenced using a #se directive.

Line too long

The command line must not exceed 255 characters.

More than one error mode specified

The compilation error mode was specified more than once on the com­
mand line.

More than one transputer type specified

The transputer type was specified more than once on the command line.

No file name given

Command line error. A file name is required.

No file name supplied

Command line error. A file name is required.

No file name supplied with directive

No file name was specified within the quote marks.

No options supplied

At least one option is required.

Nothing In directive quotes

No parameter was found within the quote marks after the compiler direc­
tive.

Nothing in source file

The source file is empty.

72 TDS 184 00 April 1989

23.10 Error messages

Object code compiled for Incompatible error mode

315

Code in a compilation unit has been compiled in an error mode that is
incompatible with the main compilation.

Object code compiled for incompatible target

Code in a compilation unit has been compiled for a transputer target that
is incompatible with the main compilation.

Object code not compatible with current version

The object code (a library or separately compiled procedure) was com­
piled with a incompatible compiler.

Opening object code file

File system error. The object code file could not be opened.

Opening 'INCLUDE file

File system error. A file referenced by an #INCLUDE directive could not
be opened.

Opening object code file

File system error. The object file could not be opened.

Opening quote missing from directive

Parameters following compiler directives must be enclosed in double
quotes.

Opening source file

File system error. The source file or an include file could not be opened.

'OPTION directive must be at start of file

Only one #OPTION directive is allowed in a file and it must be on the
first non-blank or non-comment line in a file.

72 TDS 18400 April 1989

316

Reading object code file

occam - occam 2 compiler

File system error. An object file could not be read.

Reading source file

File system error. The source file or an include file could not be read.

This option must be followed by a parameter: option

Command line error. option requires a parameter.

Unknown option: option

Command line error. The option option was invalid.

#USEd code contains #se code

The IUSE directive cannot be used to reference that contains code ref­
erenced by a I se directive.

Writing object code file

File system error. The object code file could not be closed.

72 TDS 18400 April 1989

24 occam
24.1 Introduction

libraries

A comprehensive set of occam libraries is provided for use with the toolset.
They include the compiler libraries which are automatically referenced by the
compiler, and a number of user libraries to assist with common programming
tasks.

The user libraries provide standard mathematical functions, host i/o and file man­
agement procedures, file stream i/o support, and many other functions. A full list
of all the toolset libraries with brief descriptions of their contents can be found in
table 24.1.

24.1.1 Using the occam libraries

If a library routine is used in a program then the library must be declared with
the fUSE directive and the declaration must be in scope where the routine is
used. The scope of a library, as with all occam declarations, is determined by

Library Description

Multiple length integer arithmetic
Floating point functions

Compiler 32 bit IEEE arithmetic functions
Libraries 64 bit IEEE arithmetic functions

2D block move library
Bit manipulation and CRC library
Arithmetic instruction library

snglmath.lib Single length mathematical functions
dblmath.lib Double length mathematical functions
tbmaths.lib T414/425 optimised maths functions
hostio.lib Host file server library
streamio.lib Stream i/o library
string. lib String library
convert.lib Type conversion library
ere. lib Block CRC library
xlink.lib Extraordinary link handling library
process.lib Process support library

Table 24.1 Toolset libraries

72 TDS 18400 April 1989

318

its level of indentation in the occam text.

An example showing how to declare a library is given below.

#USE "hostio.lib"

Linking libraries

occam libraries

All libraries used by a program or program module must also be linked with
the main progam. This includes the compiler libraries even though they are
automatically referenced when the program is compiled.

24.1.2 Listing library contents

You can use the ilist tool to examine the contents of a library and determine
which routines are available. The tool displays procedural interfaces for routines
in each library module and the code size and workspace requirements for indi­
vidual modules. It can also be used to determine the transputer types and error
modes for which the code was compiled.

24.1.3 Toolset constants

Constants and protocols used by the toolset libraries are d~fined in four include
files which are supplied with the toolset. Two of the four files provide constants
and definitions for the hostio and streamio libraries. a third provides mathemati­
cal and trigonometric constants and the fourth contains the absolute transputer
link addresses. All files containing constant definitions must be declared in the
program before the library that references them.

Files of constants provided with the toolset are summarised in table 24.1 .3. Full
listings of the files can be found in appendix C.

File Description
hostio.inc Constants for the host file server interface
streamio.inc Constants for the stream ito interfaces
mathvals.inc Maths constants
linkaddr.inc Addresses of transputer links

Table 24.2 Files of constants

72 TDS 18400 April 1989

24.2 Compiler libraries

24.2 Compiler libraries

319

Compiler libraries are used internally by the compiler to implement multiple length
and floating point arithmetic, IEEE functions, and special transputer functions
such as bit manipulation and 2D block data moves. They are found automatically
by the compiler on the path specified by the I SEARCH host environment variable
and do not need to be referenced by the IUSE directive.

The compiler libraries can be disabled using the compiler 'E' option. The libraries
must be disabled for programs compiled in UNIVERSAL error mode, and for
programs compiled for transputer classes TA and TC.

Separate libraries are supplied for the T2, T4, and T8 families of transputers, in
each main error mode. A full list of the compiler libraries is given below.

File Processor/error mode
occam2h.lib T212/222/M212 halt
occam2s.1ib T212/2221M212 stop
occam2u.lib T212/2221M212 undefined
occambh.lib T414/425 halt
occambs.lib T414/425 stop
occambu.lib T414/425 undefined
occam8h.lib T800 halt
occam8s.1ib T800 stop
occam8u.lib T800 undefined

File names of the compiler libraries must not be changed. The compiler as­
sumes these filenames, and generates an error if they are not found on the path
specified by the host environment variable I SEARCH.

Descriptions of some of the compiler library functions and procedures can be
found in the 'occam 2 Reference Manua/'.

24.2.1 User functions

The following routines from the compiler libraries may be of interest to the ap­
plications programmer. Calls to these routines can be made directly and do not
have to reference the library in a IUSE statement.

The functions are grouped as follows: maths functions, including trigonomet­
ric and extended arithmetic routines; 2-D block moves; bit manipulation; and
functions for cyclic redundancy checking (CRG).

72 TDS 184 00 April 1989

320

Maths functions

occam libraries

Result(s) Function Parameter specifiers

REAL32 ABS VAL REAL32 x

REAL32 SQRT VAL REAL32 x

REAL32 LOGS VAL REAL32 x

REAL32 FLOATING. UNPACK VAL REAL32 x

REAL32 MINUSX VAL REAL32 x

REAL32 MOLBY2 VAL REAL32 x

REAL32 DIVBY2 VAL REAL32 x

REAL32 FPINT VAL REAL32 x

SOOL ISNAN VAL REAL32 x

SOOL NOTFINITE VAL REAL32 x

REAL32 SCALES VAL REAL32 x, VAL INT n

REAL32 COPYSIGN VAL REAL32 x, y

REAL32 NEXTAFTER VAL REAL32 x, Y

SOOL ORDERED VAL REAL32 x, y

SOOL, ARGUMENT.REDUCE
INT32 ,

VAL REAL32REAL32 x, y, y.err

REAL32 REAL320P VAL REAL32 x, VAL INT op,
VAL REAL32 Y

REAL32 REAL32REM VAL REAL32 x, REAL32 y

SOOL, IEEE320P VAL REAL32 x,
REAL32 VAL INT rm, op,

VAL REAL32 Y

SOOL REAL32EQ VAL REAL32 x, Y

SOOL REAL32GT VAL REAL32 x, Y

INT IEEECOMPARE VAL REAL32 x, Y

72 TDS 184 00 April 1989

24.2 Compiler libraries 321

Result(s) Function Parameter specifiers

REAL64 DSQRT VAL REAL64 x

REAL64 DABS VAL REAL64 x

REAL64 DLOGB VAL REAL64 x

REAL64 DFLOATING.UNPACK VAL REAL64 x

REAL64 DMINUSX VAL REAL64 x

REAL64 DMULBY2 VAL REAL64 x

REAL64 DDIVBY2 VAL REAL64 x

REAL64 DFPINT VAL REAL64 x

BOOL DISNAN VAL REAL64 x

BOOL DNOTFINITE VAL REAL64 x

REAL64 DSCALEB VAL REAL64 x, VAL INT n

REAL64 DCOPYSIGN VAL REAL64 x, Y

REAL64 DNEXTAFTER VAL REAL64 x, Y

BOOL DORnERED VAL REAL64 x, Y

BOOL, DARGUMENT.REDUCE VAL REAL64 x, y, y.err
INT32 ,
REAL64

REAL64 REAL640P VAL REAL64 x, VAL INT op,
VAL REAL64 Y

REAL64 REAL64REM VAL REAL64 x, Y

BOOL, IEEE640P VAL REAL64 x,
REAL64 VAL INT rm, op,

VAL REAL64 Y

BOOL REAL64EQ VAL REAL64 x, Y

BOOL REAL64GT VAL REAL64 x, Y

INT DIEEECOMPARE VAL REAL64 x, Y

72 TDS 184 00 April 1989

322 occam libraries

Result(s) Function Parameter specifiers

INT LONGADD VAL INT left, right,
carry. in

INT LONGSUM VAL INT left, right,
carry. in

INT LONGSUB VAL INT left, right,
borrow. in

INT, INT LONGDIFF VAL INT left, right,
borrow. in

INT, INT LONGPROD VAL INT left, right,
carry. in

INT, INT LONGDIV VAL INT dividend. hi,
dividend. 10, divisor

INT, INT SBIFTRIGHT VAL INT hi.in, lo.in,
places

INT, INT SHIFTLEFT VAL INT hi.in, lo.in,
places

INT, INT, INT NORMALISE VAL INT hi.in, lo.in

INT ASBIFTRIGHT VAL INT operand, places

INT ASBIFTLEFT VAL INT argument, places

INT ROTATERIGHT VAL INT argument, places

20 block moves

Procedure Parameter Specifiers

MOVE2D VAL [] [] BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length

DRAW2D VAL [] [] BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length

CLIP2D VAL [] []BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length

72 TDS 184 00 April 1989

24.2 Compiler libraries

Procedure definitions

MOVE2D

PROC MOVE2D (VAL [] []BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

Moves a data block of size width by length starting at byte
Source [sy] [sx] to the block starting at Dest [dy] [dx].

DRAW2D

PROC DRAW2D (VAL [] []BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only non-zero bytes are transferred.

CLIP2D

PROC CLIP2D (VAL [] []BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only zero bytes are transferred.

Bit manipulation functions

Result Function Parameter Specifiers

INT BITCOUNT VAL INT Word, CountIn

INT BITREVNBITS VAL INT x, n

INT BITREVWORD VAL INT x

Function definitions

BITCOUNT

INT FUNCTION BITCOONT (VAL INT Word, CountIn)

323

Counts the number of bits set to 1 in Word, adds it to Count In, and
returns the total.

72 TDS 18400 April 1989

324

BITREVNBITS

occam libraries

INT FUNCTION BITREVNBITS (VAL INT x, n)

Returns an INT containing the n least significant bits of x.

BITREVWORD

INT FUNCTION BITREVWORD (VAL INT x)

Returns an INT containing the bit reversal of x.

CRC functions

Result Function Parameter Specifiers

INT CRCWORD VAL INT data, CRCIn,
generator

INT CRCBYTE VAL INT data, CRCIn,
generator

Function descriptions

CRCWORD

INT FUNCTION CRCWORD (VAL INT data, CRCIn,
generator)

Performs a cyclic redundancy check over the single word data using
the CRC value obtained from the previous call. generator is the CRC
polynomial generator. Can be used iteratively on a sequence of words
to obtain the CRC.

CRCBYTE

INT FUNCTION CRCBYTE (VAL INT data, CRCIn,
generator)

As CRCWORD but performs the check over a single byte. The byte pro­
cessed is contained in the least significant end of the word data.

For further infomation about CRC functions see' INMOS Technical note
26: Notes on graphics support and performance improvements on the
IMS TBOO'.

72 TDS 184 00 April 1989

24.3 Maths libraries

24.3 Maths libraries

325

Elementary maths and trigonometric functions are provided in three libraries, as
follows:

Library Description

snglmath.lib Single length library

dblmath.lib Double length library

tbmaths.lib T4141T425 optimised library

The single and double length libraries contain the same set of functions in single
and double length forms. By convention the double length forms begin with the
letter '0'. Function names are in upper case.

The T4141T425 library is a combined single and double length library contain­
ing all the single and double length functions optimised for the T414 and T425
processors. The standard maths libraries can also be used on the T414 and
T425, but optimum performance on these processors can be achieved by using
the optimised functions.

The accuracy of the T4141T425 optimised"functions is similar to that of the stan­
dard single length functions but results returned may not be identical because
different algorithms are used.

Functions in the optimised Iibrray have the same names as the equivalent func­
tions in the single and double length libraries. This means that the optimised
library cannot be used together with either the single or double length library on
the same processor. If the optimised library is used in code compiled for any
processor except a T414 or T425, the compiler reports an error.

Single and double length maths functions are listed below. Descriptions of the
functions can be found in succeeding sections.

72 TDS 184 00 April 1989

326 occam libraries

Result(s) Function Parameter specifiers
REAL32 ALOG VAL REAL32 X

REAL32 ALOG1O VAL REAL32 X

REAL32 EXP VAL REAL32 X

REAL32 POWER VAL REAL32 X, VAL REAL32 Y

REAL32 SIN VAL REAL32 X

REAL32 COS VAL REAL32 X

REAL32 TAN VAL REAL32 X

REAL32 ASIN VAL REAL32 X

REAL32 ACOS VAL REAL32 X

REAL32 ATAN VAL REAL32 X

REAL32 ATAN2 VAL REAL32 X, VAL REAL32 Y

REAL32 SINS VAL REAL32 X

REAL32 COSH VAL REAL32 X

REAL32 TANS VAL REAL32 X

REAL32,INT32 RAN VAL INT32 X

Result(s) Function Parameter specifiers

REAL64 DALOG VAL REAL64 X

REAL64 D~G1O VAL REAL64 X

REAL64 DEXP VAL REAL64 X

REAL64 DPOWER VAL REAL64 X, VAL REAL64 Y

REAL64 DSIN VAL REAL64 X

REAL64 DCOS VAL REAL64 X

REAL64 DTAN VAL REAL64 X

REAL64 DASIN VAL REAL64 X

REAL64 DACOS VAL REAL64 X

REAL64 DATAN VAL REAL64 X

REAL64 DATAN2 VAL REAL64 x, VAL REAL64 Y

REAL64 DSINS VAL REAL64 X

REAL64 DCOSS VAL REAL64 X

REAL64 DTANH VAL REAL64 X

REAL64,INT64 DRAN VAL INT64 X

72 TDS 18400 April 1989

24.3 Maths libraries

24.3.1 Function definitions

ALOG
DALOG

REAL 32 FUNCTION ALOG (VAL REAL32 X)
REAL 64 FUNCTION DALOG (VAL REAL64 X)

Compute loge(X),

ALOG10
DALOG10

REAL32 FUNCTION ALOG10 (VAL REAL32 X)
REAL64 FUNCTION DALOG10 (VAL REAL64 X)

Compute I0910(X),

EXP
DEXP

REAL32 FUNCTION EXP (VAL REAL32 X)
REAL64 FUNCTION DEXP (VAL REAL64 X)

Compute eX.

POWER
DPOWER

REAL32 FUNCTION POWER (VAL REAL32 X,
VAL REAL32 Y)

REAL64 FUNCTION DPOWER (VAL REAL64 X,
VAL REAL64 Y)

Compute XY.

SIN
DSIN

REAL32 FUNCTION SIN (VAL REAL32 X)
REAL64 FUNCTION DSIN (VAL REAL64 X)

Compute sine(X) (where X is in radians).

327

72 TDS 184 00 April 1989

328

COS
DCOS

TAN
DTAN

REAL32 FUNCTION COS (VAL REAL32 X)
REAL64 FUNCTION DCOS (VAL REAL64 X)

Compute cosine(X) (where X is in radians).

REAL32 FUNCTION TAN (VAL REAL32 X)
REAL64 FUNCTION DTAN (VAL REAL64 X)

Compute tan (X) (where X is in radians).

occam libraries

AS IN
DASIN

REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)

Compute sine- 1(X) (in radians).

ACOS
DACOS

REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)

Compute cosine- 1(X) (in radians).

ATAN
DATAN

REAL32 FUNCTION ATAN (VAL REAL32 X)
REAL64 FUNCTION DATAN (VAL REAL64 X)

Compute tan-1(X) (in radians).

72 TDS 184 00 - April 1989

24.3 Maths libraries

ATAN2
DATAN2

REAL32 FUNCTION ATAN2 (VAL REAL32 X,
VAL REAL32 Y)

REAL64 FUNCTION DATAN2 (VAL REAL64 X,
VAL REAL64 Y)

Compute the angular co-ordinate tan- 1(Y/ X) (in radians) of a point
whose X and Y co-ordinates are given.

SINH
DSINH

REAL32 FUNCTION SINH (VAL REAL32 X)
REAL64 FUNCTION DSINH (VAL REAL64 X)

Compute sinh(X).

COSH
DCOSH

REAL32 FUNCTION COSH (VAL REAL32 X)
REAL64 FUNCTION DCOSH (VAL REAL64 X)

Compute cosh(X).

TANH
DTANH

REAL32 FUNCTION TANH (VAL REAL32 X)
REAL64 FUNCTION DTANH (VAL REAL64 X)

Compute tanh(X).

RAN
DRAN

REAL32,INT32 FUNCTION RAN (VAL INT32 X)
REAL64,INT64 FUNCTION DRAN (VAL INT64 X)

329

These produce a pseudo-random sequence of integers, or a correspond­
ing sequence of floating-point numbers between zero and one. X is the
seed integer that initiates the sequence.

72 TDS 18400 April 1989

330 occam libraries

24.4 Host file server library

The host file server library contains routines that are used. to communicate with
the host file server. The routines are independent of the host on which the server
is running. Using routines from this library you can guarantee that programs will
be portable across all implementations of the toolset.

The library is compiled for T212 in universal error mode, and TA in universal
error mode. Constant and protocol definitions for the hostio library, including
error and return codes, is provided in the include file hostio . inc. A listing of
the file can be found in appendix C.

24.4.1 Errors and the C run time library

The hostio routines use functions provided by the host file server. These are
defined in appendix F. The server functions in turn use routines in a C run time
library, some of which is implementation dependent.

In particular, the hostio routines do not check the validity of stream identifiers, and
the consequences of specifying an incorrect streamid may differ from system
to system. For example, some systems may return an error tag, some may
return a text message. If you use only those stream ids returned by the hostio
routines that open files (so. open, so. open. temp, and so. popen . read),
invalid ids are unlikely to occur.. .

It is also possible in rare circumstances for a program to fail altogether with an
invalid streamid because of the way the C library is implemented on the s}'Stem.
This error can only occur if direct use of the library to perform the operation
would produce the same error.

24.4.2 Inputting real numbers

Routines for inputting real numbers only accept numbers in the standard occam
format for REAL numbers. Programs that allow other ways of specifying real
numbers must convert to the occam format before presenting them to the library
procedure.

For details of occam syntax for real numbers see the 'occam 2 Reference
Manual'.

72 TDS 18400 April 1989

24.4 Host file server library

24.4.3 Procedure descriptions

331

In the procedure descriptions, fs is the channel from the host file server, and
ts is the channel" to the host file server. The SP protocol used by the host file
server channels is defined in the include file hostio. inc, which is listed in
appendix C.

The hostio routines are divided into six groups: five groups that reflect function
and use, and a sixth miscellaneous group. The five specific groups are:

• File access and management

• General host access

• Keyboard input

• Screen output

• File output.

Each group of routines is described in a separate section. Each section begins
with a list of the routines in the group with their formal parameters. This is
followed by a formal description of each routine in turn.

24.4.4 File access routines

This group includes routines for managing file streams, for opening and closing
files, and for reading and writing blocks of data.

72 TDS 18400 April 1989

so. close

332 occam libraries

Procedure Parameter Specifiers

so. open CHAN OF SP fs, ts, VAL []BYTE name,
VAL BYTE type, mode, INT32 streamid,
BYTE result

so.open.temp CHAN OF SP fs, ts, VAL BYTE type,
[so.temp.filename.length]BYTE
filename,
INT32 streamid, BYTE result

so. popen . read CHAN OF SP fs, ts, VAL [] BYTE
filename,
VAL []BYTE path.variable.name,
VAL BYTE open.type, INT full.len,
[]BYTE full.name, INT32 streamid,
BYTE result

CHAN OF SP fs, ts, VAL INT32 streamid,
BYTE result

so. read

so.write

so.gets

so.puts

so. flush

72 TDS 184 00

CHAN OF SP fs, ts, VAL INT32 streamid,
INT length, []BYTE data

CHAN OF SP fs, ts, VAL INT32 streamid,
VAL []BYTE data, INT length

CHAN OF SP fs, ts, VAL INT32 streamid,
INT length, []BYTE data, BYTE result

CHAN OF SP fs, ts, VAL INT32 streamid,
VAL []BYTE data, BYTE result

CHAN OF SP fs, ts, VAL INT32 streamid,
BYTE result

April 1989

24.4 Host file server library

Procedure Parameter Specifiers

333

so. seek CHAN OF SP fs, ts,
VAL INT32 streamid, VAL INT32 offset,
origin, BYTE result

so.tell CHAN OF SP fs, ts,
VAL INT32 streamid,
INT32 position, BYTE result

so. test. exists CHAN OF SP fs, ts,
VAL []BYTE filename, BOOL exists

so.eof CHAN OF SP fs, ts,
VAL INT32 streamid, BYTE result

so.ferror CHAN OF SP fs, ts,
VAL INT32 streamid, INT32 error.no,
INT length, []BYTE message,
BYTE result

so.remove CHAN OF SP fs, ts, VAL []BYTE name,
BYTE result

so.rename

Procedure definitions

so.open

CHAN OF SP fs, ts,
VAL []BYTE oldname, newname,
BYTE result

PROC so.open (CHAN OF SP fs, ts,
VAL [] BYTE name,
VAL BYTE type, mode,
INT32 streamid, BYTE result)

Opens the file given by name and returns a stream identifier streamid
for all future operations on the file until it is closed. File type is specified
by type and the mode of opening by mode.

type can take the following values:

spt .binary File contains raw bytes only.

spt . text File contains text records separated by
newline sequences.

72 TDS 184 00 April 1989

334 occam libraries

mode can take the following values:

spm.input

spm.output

spm.append

spm.existing.update

spm.new.update

spm.append.update

Open existing file for reading.

Open new file, or truncate an existing
one, for writing.

Open a new file, or append to an exist­
ing one, for writing.

Open and existing file for update (read­
ing and writing), starting at beginning of
the file.

Open new file, or truncate existing one,
for update.

Open new file, or append to an existing
one, for update.

result can take the following values:

spr.ok

spr.operation.failed

spr.bad.name

spr.bad.type

spr.bad.mode

spr.bad.packet.size

The open was successful.

The open failed.

Invalid file name.

Invalid file type.

Invalid open mode.

File name too large.

so.open.temp

PROC so.open.temp
(CHAN OF SP fs, ts,
VAL BYTE type,
[so.temp.filename.length]BYTE filename,
INT32 streamid, BYTE result)

Opens a temporary file in spm. update mode. If the file already exists
the nn suffix on the name tempnn is incremented up to a maximum of
9999 until an unused number is found. If the number exceeds 2 digits
the last character of temp is overwritten. For example: if the number
exceeds 99 the p is overwritten , as in tem999; if the number exceeds
999, the m is overwritten, as in te9999. File type can be spt .binary
or spt . text, as with so. open. The name of the file actually opened
is returned in filename.

The result returned can take any of the following values:

72 TDS 18400 April 1989

24.4 Host file server library

spr. ok The open was successful.

so.popen.read

PROC so.popen.read
(CHAN OF SP fs, ts,
VAL []BYTE filename,
VAL []BYTE path.variable.name,
VAL BYTE open. type,
INT full.len, []BYTE full.name,
INT32 streamid, BYTE result)

335

As so . open but the search path for the file can be specified as a string in
path. variable. name(defined by ISEARCB. Obeys the path search­
ing rules used by the toolset, as described in section 3.7.3. File type can
be
spt .binary or spt. text, as with so. open. The mode of opening
is always spm. input.

The name of the file opened is returned in full. name, and the length of
the file name is returned in full. len. If no file is opened full.len
is set to zero.

The result returned can take any of the following values:

spr. ok The open was successful.

spr. operation. failed The open failed.

spr.bad.name Null name supplied.

spr .bad. type Invalid file type specified.

spr .bad. packet. size File name too large.

so.close

PROC so.close (CHAN OF SP fs, ts,
VAL INT32 streamid,
BYTE result)

Closes the stream identified by streamid.

The result returned can take any of the following values:

spr. ok The close was successful.

spr. operation. failed The close failed.

72 TDS 184 00 April 1989

336

so.read

occam libraries

PROC so. read (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT length, []BYTE data)

Reads a block of bytes from the specified stream up to a maximum given
by the size of the array data. If length returned is not the same as
the size of data then the end of the file has been reached or an error
has occurred.

so.write

PROC so.write (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE data,
INT length.written)

Writes a block of data to the specified stream. If length. written is
less than the size of data then an error has occurred.

so.gets

PROC so.gets (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT length, []BYTE data,
BYTE result)

Reads a line from the specified input stream. Characters are read until a
newline sequence is found, the end of the file is reached, or all characters
in data have been read. The newline sequence is not included in the
returned array. If the read fails then either the end of file has been
reached or an error has occurred.

The result returned can take any of the following values:

spr.ok

spr.operation.failed

spr.bad.packet.size

spr.buffer.overflow

72 TDS 184 00

The read was successful.

The read failed.

data is too large (>
sp. max. readbuffer. size).

The line was larger than the buffer
data. length contains the size of
the buffer.

April 1989

24.4 Host file server library

so.puts

PROC so.puts (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE data, BYTE result)

337

Writes a line to the specified output stream. A newline sequence is added
to the end of the line. The size of data must be less than or equal to
the hostio constant sp.max.writebuffer.size.

The result returned can take any of the following values:

spr. ok The write was successful.

spr. operation. failed The write failed.

spr.bad.packet.size SIZE data is too large (>
sp. max. writebuffer. size).

so.flush

PROC so. flush (CHAN OF SP fs, ts,
VAL INT32 streamid,
BYTE result)

Flushes the specified output stream. All internally buffered data is written
to the stream. Write and put operations that are directed to standard
output are flushed automatically.

The result returned can take any of the following values:

spr. ok The flush was successful.

spr. operation. failed The flush failed.

so.seek

PROC so. seek (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT32 offset, origin,
BYTE result)

Sets the file position for the specified stream. A subsequent read or write
will access data at the new position.

For a binary file the new position will be offset bytes from the position
defined by origin. For a text file offset must be zero or a value
returned by so. tell, in which case origin must be spo. start.

72 TDS 18400 April 1989

338 occam libraries

origin may take the following values:

spo. start The start of the file.

spo. current The current position in the file.

spo . end The end of the file.

The result returned can take any of the following values:

spr. ok The operation was successful.

spr. operation. failed The seek failed.

spr . bad. origin Invalid origin.

so.tell

PROC so.tell (CHAN OF SP fs, ta,
VAL INT32 streamid,
INT32 position, BYTE result)

Returns the current file position for the specified stream.

The result returned can take any of the following values:

spr. ok The operation was successful.

spr . operation. failed The tell failed.

so.eof

PROC so.eof (CHAN OF SP fs, ts,
VAL INT32 streamid, BYTE result)

Tests whether the specified stream has reached the end of a file.

The result returned can take any of the following values:

spr. ok End of file has been reached.

spr. operation. failed The end of file has not been reached.

so.ferror

PROC so.ferror (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT32 error.no, INT length,
[]BYTE ~essage, BYTE result)

72 TDS 184 00 April 1989

24.4 Host file server library 339

Indicates whether an error has occurred on the specified stream. The
integer error. no is a host defined error number. The message will
have length zero if no message can be provided.

The result returned can take any of the following values:

spr. ok An error has occurred.

spr . operation. failed No error has occurred.

spr . buffer. overflow An error has occurred but the mes­
sage is too large for the buffer.

If the buffer overflows length is set to the buffer size.

so.remove

PROC so.remove (CHAN OF SP fs, ts,
VAL []BYTE name, BYTE result)

Deletes the specified file.

The result returned can take any of the following values:

spr. ok The delete was successful.

spr. operation. failed The delete failed.

spr . bad. name Null name supplied.

spr. bad. packet. size SIZE name is too large (>
sp. max. removename. size).

so.rename

PROC so.rename (CHAN OF SP fs, ts,
VAL [] BYTE oldname, newname,
BYTE result)

Renames the specified file.

The result returned can take any of the following values:

spr.ok

spr.operation.failed

spr.bad.name

spr.bad.packet.size

72 TDS 184 00

The operation was successful.

The rename failed.

Null name supplied.

File names are too large
(SIZE namel + SIZE name2 >
sp. max . renamename . size).

April 1989

340

so.test.exists

occam libraries

PROC so.test.exists (CHAN OF SP fs, ts,
VAL []BYTE filename,
BOOL exists)

Tests if the specified file exists. The value of exists is TRUE if the file
exists, otherwise it is FALSE.

24.4.5 General host access

This group contains routines to access the host computer for system information
and services.

Procedure Parameter Specifiers

so.commandline CHAN OF SP fs, ts,
VAL BYTE all, INT length,
[]BYTE string, BYTE result

so.parse.command.line CHAN OF SP fs, ts,
VAL [] []BYTE option. strings,
VAL [] INT .
option.parameters.required,
[]BOOL option.exists,
[] [2]INT option.parameters,
INT error.len, []BYTE line

so.getenv CHAN OF SP fs, ts,
VAL []BYTE name, INT length,
[]BYTE value, BYTE result

so. time CHAN OF SP fs, ts,
INT32 localtime , UTCtime

72 TDS 184 00 April 1989

24.4 Host file server library

Procedure Parameter Specifiers

so.system CHAN OF SP fs, ts,
VAL [] BYTE command,
INT32 status, BYTE result

so. exit CHAN OF SP fs, ts,
VAL INT32 status

so.core CHAN OF SP fs, ts,
VAL INT32 offset, INT lenqth,
[]BYTE data, BYTE result

so. version CHAN OF SP fs, ts,
BYTE version, host, os, board

Procedure definitions

so.commandline

341

PROC so.commandline (CHAN OF SP fs, ts,
VAL BYTE all, INT length,
[]BYTE strinq, BYTE result)

Returns the command line passed to the server when it was invoked.
If all has the value sp. short. commandline then all options are
stripped from the command line. If all is sp. whole. commandline
then the command line is returned exactly as it was invoked.

The result returned can take any of the following values:

spr . ok The operation was successful.

spr . buffer. overflow Command line too long for strinq.

If the buffer overflows lenqth is set to the buffer size.

so.parse.command.line

PROC so.parse.command.line
(CHAN OF SP fs, ts,
VAL [] []BYTE option.strinqs,
VAL []INT option.parameters.required,
[]BOOL option.exists,
[] [2]INT option.parameters,
INT error.len, []BYTE line)

72 TDS 184 00 April 1989

342 occam libraries

This procedure reads the command line and parses it for specified options
and associated parameters.

The parameter option. strings contains a list of all the possible op­
tions. Options may be any length up to 255 bytes and are not case sen­
sitive. To read a parameter that has no preceding option (such as a file
name) then the first option string should be empty (contain only spaces).
For example, consider a program can be supplied with a file name, and
any of three options 'A', 'B' and 'C'. The array option. strings would
look like this:

VAL option.strings IS [" ", "A", "B", "C"]:

The parameter option. parameters. required indicates if the cor­
responding option (in option. strings) requires a parameter. The
values it may take are:

spopt . never Never takes a parameter.

spopt . maybe Optionally takes a parameter.

spopt . always Must take a parameter.

Continuing the above example, the file name must be supplied and none
of the options take parameters, except for 'C', which mayor may not have
a parameter, then option. parameters. required would look like
this:

VAL option.parameters.required IS
[sopt.always, sopt.never,
sopt.never, sopt.maybe]:

If an option was present on the command line option. exists is set
to TRUE, otherwise it is set to FALSE.

If an option was followed by a parameter then the position in the array
line where the parameter starts and the length of the parameter are
given by the first and second elements respectively of the parameter
element in option. parameters.

If an error occurs whilst the command line is being parsed then
error. len will be greater than zero and line will contain an error
message of the given length. If no error occurs then line will contain
the command line as supplied by the host file server.

72 TDS 18400 April 1989

24.4 Host file server library

so.qetenv

PROC so.qetenv (CHAN OF SP fs, ts,
VAL [] BYTE name,
INT lenqth, []BYTE value,
BYTE result)

343

Returns the string defined for the host environment variable name. If
name is not defined on the system result takes the value
spr.operation.failed.

The result returned can take any of the following values:

spr.ok

spr.bad.name

spr.operation failed

spr.bad.packet.size

spr. buffer. overflow

The operation was successful.

The specified name is a null string.

Could not read environment string.

SIZE name is too large (>
sp. max. qetenvname. size).

Environment string too large for
value.

If the buffer overflows lenqth is set to the buffer size.

so.time

PROC so.time (CHAN OF SP fs, ts,
INT32 localtime, UTCtime)

Returns the Coordinated Universal Time and local time if they are avail­
able on the system. Both times are expressed as the number of seconds
that have elapsed since midnight on 1st January, 1970. If either time is
unavailable then it will have a value of zero.

so. system

PROC so. system (CHAN OF SP fs, ts,
VAL []BYTE command,
INT32 status, BYTE result)

Passes the string command to the host command processor for execu­
tion. If the command string is of zero length result takes the value
spr . ok if there is a host command processor, otherwise an error is
returned. If command is non-zero in length then status contains the
host-specified value of the command, otherwise it is undefined.

72 TDS 18400 April 1989

344 occam libraries

The result returned can take any of the following values:

spr. ok Host command processor exists.

spr .bad.packet. size The array command is too large (>
sp. max. systemcommand. size).

so.exit

PROC so.exit (CHAN OF SP fs, ts,
VAL INT32 status)

Terminates the server, which returns the value of status to its caller.
If status has the special value sps. success then the server will
terminate with a host specific 'success' result. If status has the special
value sps. failure then the server will terminate with a host specific
'failure' result.

so.core

PROC so. core (CHAN OF SP fs, ts,
VAL INT32 offset,
[]BYTE data, BYTE result)

Returns the contents of the root transputer's memory as peeked from the
transputer when iserver is invoked with the analyse ('SA') option. The
start of the memory segment is given by offset, and the number of
bytes by the size of the data vector. An error is returned if offset is
larger than the total amount of peeked memory.

The result returned can take any of the following values:

spr. ok The operation was successful.

spr. operation. failed The operation failed.

spr . bad. packet. size The array data is too large (>
sp . max. corerequest . size).

This procedure can also be used to determine whether the memory was
peeked (whether the server was invoked with the 'SA' option), by specify­
ing a size of zero for data and offset. If the routine fails the memory
was not peeked.

so.version

PROC so.version (CHAN OF SP fs, ts,
BYTE version, host, os, board)

72 TDS 18400 April 1989

24.4 Host file server library 345

Returns version information about the server and the host on which it is
running. A value of zero for any of the items indicates that the information
is unavailable.

The version of the server is given by version. The value should be
divided by ten to yield the true version number. For example, a value of
15 means version 1.5.

The host machine type is given by host, and can take any of the follow­
ing values:

sph • PC IBM PC

sph.NECPC NEC PC

sph.VAX DEC VAX

sph. SUN3 SUN Microsystems Sun-3

sph. SUN4 SUN Microsystems Sun-4

Values up to 127 are reserved for use by INMOS.

The host operating system is given by os, and can take any of the fol­
lowing values:

spo.DOS DOS

spo •HELlOS HELlOS

spo.VMS VMS

spo. SunOS SunOS

Values up to 127 are reserved for use by INMOS.

The interface board type is given by board, and can take any of the
following values:

spb.B004

spb.B008

spb.B010

spb.BOll

spb.B014

spb.DRXll

spb.QTO

72 TDS 184 00

IMS B004

IMS B008

IMS B010

IMS B011

IMS B014

DRX-11

Caplin QTO

April 1989

346

Values up to 127 are reserved for use by INMOS.

24.4.6 Keyboard input

occam libraries

Procedure

so.po11key

so.getkey

so. read. line

so.read.echo.line

so.ask

so.read.echo.int

Parameter Specifiers

CHAN OF SP fs, ts,
BYTE key, result

CHAN OF SP fs, ts,
BYTE key, result

CHAN OF SP fs, ts,
INT len, []BYTE line,
BYTE result

CHAN OF SP fs, ts,
INT len, []BYTE line,
BYTE result

CHAN OF SP fs, ts,
VAL []SYTE prompt, replies,
VAL BOOL
display.possible.replies,
VAL BOOL echo. reply,
INT reply.number

CHAN OF SP fs, ts, INT n,
SOOL error

so.read.echo.int64

so.read.echo.hex.int CHAN OF SP fs, ts,
INT n, BOOL error

CHAN OF SP fs, ts,
INT64 n, BOOL error

so.read.echo.hex.int64 CHAN OF SP fs, ts,
INT64 n, BOOL error

so.read.echo.any.int

so.read.echo.rea132

so.read.echo.rea164

72 TDS 184 00

CHAN OF SP fs, ts,
INT n, BOOL error

CHAN OF SP fs, ts,
REAL32 n, SOOL error

CHAN OF SP fs, ts,
REAL64 n, SOOL error

April 1989

24.4 Host file server library

Procedure definitions

so.pollkey

PROC so.pollkey (CHAN OF SP fs, ts,
BYTE key, result)

347

Reads a single character from the keyboard. If no key is available then
it returns immediately with spr. operation. failed. The key is not
echoed on the screen.

The result returned can take any of the following values:

spr. ok The read was successful.

spr. operation. failed The read failed.

so.qetkey

PROC so.qetkey (CHAN OF SP fs, ts,
BYTE key, result)

As so . pollkey but waits for a key if none is available. The key is not
echoed on the screen.

The results can take the same values as s-o .pollkey.

so.read.line

PROC so. read. line (CHAN OF SP fs, ts, INT len,
[]BYTE line, BYTE result)

Reads a line of text from the keyboard, without echoing it on the screen.
The line is read until 'RETURN' is pressed at the keyboard.

The result returned can take any of the following values:

spr. ok The read was successful.

spr. operation. failed The read failed.

so.read.echo.line

PROC so.read.echo.line (CHAN OF SP fs, ts,
INT len, []BYTE line,
BYTE result)

72 TDS 184 00 April 1989

348 occam libraries

As so. read . line, but user input is echoed on the screen.

so.ask

PROC so.ask (CHAN OF SP fs, ts,
VAL []BYTE prompt, replies,
VAL BOOL display.possible.replies,
VAL BOOL echo.reply,
INT reply.number)

Prompts on the screen for a user response on the keyboard. The prompt
is specified by the string prompt, and the list of permitted relies by the
string replies. Only single character responses are permitted, and
alphabetic characters are not case sensitive. For example if the permit­
ted responses are 'V', 'N' and 'Q' then the replies string would con­
tain the characters "YNQ", and 'y', In' and Iq' would also be accepted.
reply. number indicates which response was typed, numbered from
zero.

If d;splay .possible. replies is TRUE the permitted replies are
displayed on the screen. If echo. reply is TRUE the user's response
is displayed.

The procedure will not return until a valid response has been typed.

so.read.echo.int

PROC so.read.echo.int (CHAN OF SP fs, ts, INT n,
BOOL error)

Reads a decimal integer typed at the keyboard and displays it on the
screen. The number must be terminated by 'RETURN'. The boolean
error is set to TRUE if an invalid integer is typed.

so.read.echo.int64

PROC so.read.echo.int64 (CHAN OF SP fs, ts,
INT64 n, BOOL error)

As so. read. echo. int but reads 64-bit numbers.

72 TDS 18400 April 1989

24.4 Host file server library

so.read.echo.hex.int

PROC so.read.echo.hex.int (CHAN OF SP fs, ts,
INT n, BOOL error)

349

As so. read. echo. int but reads a number in hexadecimal format.
The number must be prefixed with either '#', which directly indicates a
hexadecimal number, or '%', which assumes the prefix #8000 •••.

so.read.echo.hex.int64

PROC so.read.echo.hex.int64 (CHAN OF SP fs, ts,
INT64 n, BOOL error)

As so. read. echo. hex. int but reads 54-bit numbers.

so.read.echo.any.int

PROC so.read.echo.any.int (CHAN OF SP fs, ts,
INT n, BOOL error)

As so. read. echo. int but accepts numbers in either decimal or hex­
adecimal format. Hexadecimal numbers must be prefixed with either 'I',
which specifies the number directly, or '%', which assumes the prefix
#8000 •••.

so.read.echo.rea132

PROC so.read.echo.rea132 (CHAN OF SP fs, ts,
REAL32 n, BOOL error)

Reads a real number typed at the keyboard and displays it on the screen.
The number must be terminated by 'RETURN'. The boolean variable
error is set to TRUE if an invalid number is typed.

so.read.echo.rea164

PROC so.read.echo.rea164 (CHAN OF SP fs, ts,
REAL64 n, BOOL error)

As so. read. echo. rea132, but for 54-bit real numbers.

72 TDS 18400 April 1989

350

24.4.7 Screen output

occam libraries

Procedure Parameter Specifiers

so.write.char CHAN OF SP fs, ts,
VAL BYTE char

so.write.nl CHAN OF SP fs, ts

so.write.string CHAN OF SP fs, ts,
VAL [] BYTE string

so.write.string.nl CHAN OF SP fs, ts,
VAL []BYTE string

so.write.int CHAN OF SP fs, ts,
VAL lNT n, field

so.write.int64 CHAN OF SP fs, ts,
VAL lNT64 n, VAL lNT field

so.write.hex.int CHAN OF SP fs, ts,
VAL lNT n, width

so.write.hex.int64 CHAN OF SP fs, ts,
VAL lNT64 n, VAL lNT width

so.write.real32 CHAN OF SP fs, ts,
VAL 'REAL32 r, VAL lNT lp, Dp

so.write.real64 CHAN OF SP fs, ts,
VAL REAL64 r, VAL lNT lp, Dp

Procedure definitions

so.write.char

PROC so.write.char (CHAN OF SP fs, ts,
VAL BYTE char)

Writes the single byte char to the screen.

so.write.nl

PROC so.write.nl (CHAN OF SP fs, ts)

Writes a newline sequence to the screen.

72 TDS 18400 April 1989

24.4 Host file server library

so.write.string

PROC so.write.string (CHAN OF SP fs, ts,
VAL []BYTE string)

Writes the string string to the screen.

so.write.string.nl

PROC so.write.string.nl (CHAN OF SP fs, ta,
VAL [] BYTE string)

351

As so. write. string, but appends a newline sequence to the end
of the string.

so.write.int

PROC so.write.int (CHAN OF SP fs, ts,
VAL INT n, field)

Writes the value n (of type INT) to the screen as decimal ASCII digits,
padded out with leading spaces and an optional sign to the specified
field width. If the field width is too small for the number it is widened
as necessary; a zero value for field specifies minimum width.

so.write.int64

PROC so.write.int64 (CHAN OF SP fs, ts,
VAL INT64 n, VAL INT field)

As so. write . int but for 64-bit integers. The field parameter be­
haves as in so. write. into

so.write.hex.int

PROC so.write.hex.int (CHAN OF SP fs, ts,
VAL INT n, width)

Writes the value n (of type INT to the screen as hexadecimal ASCII digits,
preceded by the 'I' character. The number of characters to be printed
is specified by width. If width is larger than the size of the number
then the number is padded with leading 'O's or 'F'S as appropriate. If
width is smaller than the size of the number, the number is truncated
to width digits.

72 TDS 184 00 April 1989

352

so.write.hex.int64

occam libraries

PROC so.write.hex.int64 (CHAN OF SP fs, ts,
VAL lNT64 n,
VAL lNT width)

As so. write . hex. int but for 64-bit integers. The width parameter
behaves as in so . write. hex. into

so.write.rea132

PROC so.write.rea132 (CHAN OF SP fs, ts,
VAL REAL32 r,
VAL lNT lp, Dp)

Writes the value r (of type REAL32) to the screen as decimal ASCII
digits. The number is padded out with leading spaces and an optional
sign bit to the number of digits specified by m before and n after the
decimal point. The total width of the number is m + n + 2, except in the
cases described under REAL32TOSTRlNG (see section 24.7).

so.write.rea164

PROC so.write.rea164 (CHAN OF SP fs, ts,
VAL REAL64 r,
VAL lNT lp, Dp)

As so. write. rea132 but for 64-bit real numbers. Allows 3 digits for
the exponent.

24.4.8 File output

These routines write characters and strings to a specified stream, usually a file.
The result returned can take the values spr. ok or
spr. operation. failed, which signal success or failure of the operation
respectively.

72 TDS 18400 April 1989

24.4 Host file server library 353

Procedure Parameter Specifiers

so.fwrite.char CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL BYTE char, BYTE result

so.fwrite.nl CHAN OF SP fs, ts,
VAL lNT32 streamid,
BYTE result

so.fwrite.string CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL [] BYTE string, BYTE result

so.fwrite.string.nl CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL [] BYTE string, BYTE result

so.fwrite.int CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL lNT n, field, BYTE result

so.fwrite.int64 CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL lNT64 n, VAL lNT field,
BYTE result

so. fwrite.hex. int CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL lNT n, width, BYTE result

so. fwrite.hex. int64 CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL lNT64 n, VAL lNT width,
BYTE result

so.fwrite.rea132 CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL REAL32 r, VAL lNT lp, Dp,
BYTE result

so.fwrite.rea164 CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL REAL64 r, VAL lNT lp, Dp,
BYTE result

72 TDS 184 00 April 1989

354

Procedure definitions

so.fwrite.char

occam libraries

PROC so.fwrite.char (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL BYTE char,
BYTE result)

Writes a single character to the specified stream.

so.fwrite.nl

PROC so.fwrite.nl (CHAN OF SP fs, ts,
VAL INT32 streamid,
BYTE result)

Writes a newline sequence to the specified stream.

so.fwrite.string

PROC so.fwrite.string (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE string,
BYTE result)

Writes a string to the specified stream.

so.fwrite.string.nl

PROC so.fwrite.string.nl (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL r]BYTE string,
BYTE result)

As so. fwrite. string, but appends a newline sequence to the end
of the string.

72 TDS 184 00 April 1989

24.4 Host file server library

so.fwrite.int

PROC so.fwrite.int (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT n, field,
BYTE result)

355

Writes the value n (of type INT) to the specified stream as decimal
ASCII digits, padded out with leading spaces and an optional sign to the
specified field width. If the field width is too small for the number
it is widened as necessary; a zero value for field will give minimum
width.

so.fwrite.int64

PROC so.fwrite.int64 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT64 n, VAL INT field,
BYTE result)

As so. fwrite. int but for 64-bit integers. The field parameter
behaves as in so. fwrite . int."

so.fwrite.hex.int

PROC so.fwrite.hex.int (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT n, width,
BYTE result)

Writes the value n (of type INT) to the specified stream as hexadecimal
ASCII digits preceded by the 'I' character. The number of characters
to be printed is specified by width. If width is larger than the size
of the number then the number is padded with leading 'O's or 'F'S as
appropriate. If width is smaller than the size of the number, then the
number is truncated to width digits.

so.fwrite.hex.int64

PROC so.fwrite.hex.int64 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT64'n,
VAL INT width,
BYTE result)

72 TDS 18400 April 1989

356 occam libraries

As so. fwrite . hex. int but for 54-bit integers. The width param­
eter behaves as in so. fwrite . hex. into

so.fwrite.rea132

PROC so.fwrite.rea132 (CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL REAL32 r,
VAL lNT lp, Dp,
BYTE result)'

Writes the value r (of type REAL32) to the specified stream as decimal
ASCII digits. The number is padded out with leading spaces and an
optional sign bit to the number of digits specified by m before and n after
the decimal point. The total width of the number is m + n + 2, except in
the cases described under REAL32TOSTRlNG (see section 24.7).

so.fwrite.rea164

PROC so.fwrite.rea164 (CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL REAL64 r,
VAL lNT lp, Dp,
BYTE result)

As so. fwrite . rea132 but for 64-bit real numbers. Allows 3 digits
for the exponent.

24.4.9 Miscellaneous commands

The miscellaneous group includes procedures for:

• Time and date processing

• Buffering and multiplexing

• AF-to-SP protocol conversion.

72 TDS 18400 April 1989

35724.4 Host file server library

Time processing

Procedure Parameter Specifiers

so.time.to.date VAL INT32 input.time,
[so.date.len]INT date

so.date.to.ascii VAL [so.date.len]INT date,
VAL BOOL long.years,
VAL BOOL days.first,
[so.time.string.len]BYTE string

so.time.to.ascii VAL INT32 time,
VAL BOOL long.years,
VAL BOOL days.first
[so.time.string.len]BYTE string

so.today.date CHAN OF SP fs, ts,
[so.date.len]INT date

so.today.ascii CHAN OF SP fs, ts,
VAL BOOL long.years,
VAL BOOL days.first,
[so.tim~.string.len]BYTEstring

so.time.to.date

PROC so.time.to.date (VAL INT32 input.time,
[so.date.len]INT date)

Converts time (as supplied by so. time) to six integers, stored in the
date array. The elements of the array are as follows:

Element of array Data

0 Seconds past the minute

1 Minutes past the hour

2 The hour (24 hour clock)

3 The day of the month

4 The month

5 The year

72 TDS 18400 April 1989

358

so.date.to.ascii

occam libraries

PROC so.date.to.ascii
(VAL [so.date.len]INT date,
VAL BOOL long.years,
VAL BOOL days.first,
[so.time.string.len]BYTE string)

Converts an array of six integers containing the date (as supplied by
so . time. to. date) into an ASCII string of the form:

HH:MM:SS DDIMMlYYYY

If long. years is FALSE then year field is reduced to two characters,
the last two characters being padded with spaces. If days. first is
FALSE then the ordering of day and month is changed (to the U.S. stan­
dard).

so.time.to.ascii

PROC so.time.to.ascii
(VAL INT32 time,
VAL BOOL long. years,
VAL BOOL days.first
[so.time.string.len]BYTE string)

CO,nverts time (as supplied by so. time) into an ASCII string, as de..
scribed for so. date. to. ascii.

so.today.date

PROC so.today.date (CHAN OF SP fs, ts,
[so.date.len]INT date)

Gives today's date as six integers, stored in the data array. The format
of the array is the same as for so. time. to . date. If the date is
unavailable all elements in date are set to zero.

so.today.ascii

PROC so.today.ascii
(CHAN OF SP fs, ts,
VAL BOOL long.years, days.first,
[so.time.string.len]BYTE string)

72 TDS 184 00 April 1989

24.4 Host file server library 359

Gives today's date as an ASCII string, in the same format as procedure
so. date. to. ascii. If the date is unavailable strinq is filled with
spaces.

Buffers and multiplexors

This group of procedures are designed to assist with buffering and multiplexing
data exchange between the program and host.

Procedure Parameter Speclflers

so.buffer

so.muJ.tiplexor

so.overlapped.buffer

CHAN OF SP fs, ts,
from. user, to.user,
CHAN OF BOOL stopper

CHAN OF SP fs, ts,
from. user, to.user,
CHAN OF BOOL stopper

CHAN OF SP fs, ts,
[]CHAN OF SP from.user,
to. user,
CHAN OF BOOL stopper

so.overlapped.multiplexor CHAN OF SP fs, ts,
[]CHAN OF SP from. user,
to.user,
CHAN OF BOOL stopper,
[]INT queue

so.buffer

PROC so.buffer (CHAN OF SP fs, ts,
from. user, to.user,

CHAN OF BOOL stopper)

This procedure buffers data between the user and the host. It can be
used by processes on a network to pass data to the host across interven­
ing processes. It is terminated by sending a FALSE value on the channel
stopper.

so.overlapped.buffer

PROC so.overlapped.buffer (CHAN OF SP fs, ts,
from. user,

CHAN OF SP to.user,
CHAN OF BOOL stopper)

72 TDS 18400 April 1989

360 occam libraries

Similar to so. buffer, but contains built-in knowledge of host file server
commands and allows many host communications to occur simultane­
ously through a train of processes. This can improve efficiency if the com­
munications pass through many processes before reaching the server. It
is terminated by a FALSE value on the channel stopper.

so.multiplexor

PROC so.multiplexor (CHAN OF SP fs, ts,
[]CHAN OF SP from.user,

to.user,
CHAN OF BOOL stopper)

This procedure multiplexes any number of pairs of SP protocol channels
onto a single pair of SP protocol channels, which may go to the file server
or another SP protocol multiplexor (or buffer). It is terminated by sending
a FALSE value on the channel stopper.

so.overlapped.multiplexor

PROC so.overlapped.multiplexor
(CHAN OF SP fs, ts,

[]CHAN OF SP from.user,
to.user,

CHAN OF BOOL stopper,
[] INT queue)

Similar to so.multiplexor, but can pipeline server requests. The
number of requests than can be pipelined is determined by the size
of queue, which must provide one word for each request that can be
pipelined. Pipelining improves efficiency if the server requests have to
pass through many processes on the way to and from the server. It is
terminated by a FALSE value on the channel stopper.

Protocol converter

Procedure Parameter Specifiers

af.to.sp CHAN OF SP fs, ts,
CHAN OF ANY from. user, to.user,
VAL BOOL pass.terminate

72 TDS 18400 April 1989

24.4 Host file server library

af.to.sp

PROC af.to.sp (CHAN OF SP fs, ts,
CHAN OF ANY from. user, to. user,
VAL BOOL pass.terminate)

361

Converts channels from the AFSERVER protocol to the SP protocol.
fs and ts are the SP channels from and to the host file server, and
from. user and to. user are the channels between the application
program and the AFSERVER. The boolean pass. terminate controls
the action of the AFSERVER terminate command; if set to TRUE it will
terminate the server, if set to FALSE it will not.

72 TDS 18400 April 1989

362 occam libraries

24.5 Streamio library

The streamio library contains routines for reading and writing to files and to the
terminal at a higher level of abstraction than the hostio library. A set of constants
for the streamio library is provided in the file streamio. inc.

The streamio routines can be classified into three main groups:

• Stream processes

• Stream input procedures

• Stream output procedures.

Stream input and output procedures are used to input and output characters in
keystream KS and screen stream SS protocols. KS and SS protocols must be
converted to the server protocol before communicating with the host.

Stream processes convert streams from keyboard or screen protocol to the
server protocol SP or to related data structures. They are used to transfer data
from the stream input and output routines to the host. Stream processes can
be run as parallel processes serving stream input and output routines called in
sequential code.

The key stream and screen stream protocols are identical to those used in the
IMS D7000 Transputer Development System (TDS) and facilitate the porting of
programs between the TDS and the toolset.

24.5.1 Naming conventions

Procedures always begin with a prefix derived from the first parameter. Stream
processes, where the SP channel (listed first) is used in combination with either
the KS or SS protocols, are prefixed with 'so. '. Stream input routines, which
use only the KS protocol are prefixed with 'ks.', and stream output routines,
which use only the SS protocol, are prefixed with 'ss. '. The single KS to SS
conversion routine, which uses both protocols, is prefixed with 'ks . '.

72 TDS 18400 April 1989

24.5 Streamio library

24.5.2 Stream processes

363

Procedure

so.keystream.from.kbd

so.keystream.from.file

so.keystream.from.stdin

ks.keystream.sink

Parameter Speclfiers

CHAN OF SP fs, ts,
CHAN OF KS keys.out,
CHAN OF BOOL stopper,
VAL INT tieks.per.poll

CHAN OF SP fs, ta,
CHAN OF KS keys.out,
VAL []BYTE filename,
BYTE result

CHAN OF SP fs, ta,
CHAN OF KS keys.out,
BYTE result

CHAN OF KS keys

ks.keystream.to.scrstream CHAN OF KS keyboard,
CHAN OF SS sern

ss.scrstream.sink

so. serstream.to. file

so.serstream.to.stdout

ss.serstream.to.array

ss.serstream.from.array

ss.serstream.copy

ss.serstream.fan.out

so.scrstream.to.ANSI

so.serstream.to.TVI920

72 TDS 18400

CHAN OF SS sern

CHAN OF SP fs, ts,
CHAN OF SS sern,
VAL []BYTE filename,
BYTE result

CHAN OF SP fs, ts,
CHAN OF SS sern,
BYTE result

CHAN OF SS sern,
[] BYTE buffer

CHAN OF SS sern,
VAL []BYTE buffer

CHAN OF SS sern, sern.out

CHAN OF SS sern,
CHAN OF SS sereen.outl,
sereen.out2

CHAN OF SP fs, ts,
CHAN OF SS sern

CHAN OF SP fs, ts,
CHAN OF SS sern

April 1989

364

Procedure definitions

so.keystream.from.kbd

occam libraries

PROC so.keystream.from.kbd
(CHAN OF SP fs, ts,
CHAN OF KS keys.out,
CHAN OF BOOL stopper,
VAL INT ticks.per.poll)

Reads characters from the keyboard and outputs them one at a time as
integers on the channel keys. out. It is terminated by sending FALSE
on the boolean channel stopper. The procedure polls the keyboard at
an interval determined by the value of ticks. per. poll, in transputer
clock cycles. ticks. per. poll must not be zero.

After FALSE is sent on the channel stopper the procedure sends the
negative value ft . terminated on keys. out to mark the end of the
file.

so.keystream. from. file

PROC so.keystream.from.£ile
(CHAN OF SP fs, ts,
CHAN OF KS keys.out,
VAL []BYTE filename,
BYTE result)

As so. keystream. from. kbd, but reads characters from the speci­
fied file. Terminates automatically when It has reached the end of the file
and all the characters have been read from the keys. out channel. The
negative value ft. terminated is sent on the channel keys. out to
mark the end of the file. The result value returned will be one of those
returned by so. gets.

so.keystream. from. stdin

PROC so.keystream.from.stdin
(CHAN OF SP fs, ts,
CHAN OF KS keys.out,
BYTE result)

As so. keystream. from. kbd, but reads from the standard input
stream. The standard input stream is normally assigned to the keyboard,
but can be redirected by the host operating system.

72 TDS 184 00 April 1989

24.5 Streamio library

ks.keystream.sink

PROC ks.keystream.sink (CHAN OF KS keys)

365

Reads integers until ft. terminated is received, then terminates.

ks.keystream.to.serstream

PROC ks.keystream.to.serstream (CHAN OF KS
keyboard,

CHAN OF SS sern)

Converts key stream protocol to screen stream protocol.

ss.serstream.sink

PROC ss.serstream.sink (CHAN OF SS sern)

Reads screen stream protocol and ignores it except for the negative value
ft . terminated which terminates the procedure.

so.serstream.to.file

PROC so.serstream.to.file (CHAN OF SP fs, ts,
CHAN OF SS sern,
VAL []BYTE filename,
BYTE result)

Creates a new file with the specified name and writes the data sent on
channel sern to it. The sern channel uses the screen stream protocol
which is used by all the stream output library routines (and is the same
as the inmos TDS screen stream protocol). It terminates on receipt of the
stream terminator from ss . write. endstream, or on an error condi­
tion. The error code returned by result can be any result returned by
so.write.

If used in conjunction with so. serstream. fan. out it may be used
to file a copy of everything sent to the screen.

so.serstream.to.stdout

PROC so.serstream.to.stdout (CHAN OF SP fs, ts,
CHAN OF SS sern,
BYTE result)

Performs the same operation as so . serstream. to . file, but writes
to the standard output stream. The standard output stream goes to the

72 TDS 18400 April 1989

366 occam libraries

screen, but can be redirected to a file by the host operating system.

ss.scrstream.to.array

PROC ss.serstream.to.array (CHAN OF SS sern,
[] BYTE buffer)

Buffers a screen stream whose total size does not exceed the capacity
of buffer, for debugging purposes or subsequent onward transmission
using so. serstream. from. array. The procedure terminates on
receipt of the stream terminator from ss . write. endstream.

ss.serstream.from.array

PROC ss.serstream.from.array (CHAN OF SS sern,
VAL []BYTE buffer)

Regenerates a screen stream buffered in buffer by a previous call of
so. serstream. to. array. Terminates when all buffered data has
been sent.

ss.serstream.fan.out

PROC ss.serstream.fan.out
(CHAN OF SS sern,
CHAN OF SS sereen.outl,

sereen.out2)

Sends copies of everything received on the input channel sern to two
output channels. The procedure terminates on receipt of the stream
terminator from ss. write. endstream without passing on the end­
stream.

ss.scrstream.copy

PROC ss.serstream.copy (CHAN OF SS sern,
sern.out)

Copies screen stream protocol input on sern to sern. out. Terminates
on receipt of the endstream terminator, which is not passed on.

72 TDS 18400 April 1989

24.5 Streamio library

so.serstream.to.ANSI

PROC so.serstream.to.ANSI (CHAN OF SP fa, ts,
CHAN OF SS Bern)

367

Converts screen stream protocol into a stream of BYTEs according to
the requirements of ANSI terminal screen protocol. Not all of the screen
stream commands are supported, as some are not straightforward to
implement. Refer to the source of the procedure to determine which
commands are supported. The procedure terminates on receipt of the
stream terminator from ss . write. endstream.

so.serstream.to.TVI920

PROC so.scrstream.to.TVI920 (CHAN OF SP fa, ta,
CHAN OF SS Bern)

Converts screen stream protocol into a stream of BYTEs according to
the requirements of TVI920 (and compatible) terminals. Not all of the
screen stream commands are supported, as some are not straightforward
to implement. Refer to the source of the procedure to determine which
commands are supported. The procedure terminates on receipt of the
stream terminator from ss . write. endstream.

24.5.3 Stream input

These routines read characters and strings from the input stream, in KS protocol.

Procedure Parameter Specifiers

ks.read.char CHAN OF KS source, INT char

ks.read.line CHAN OF KS source, INT len,
[]BYTE line, INT char

ks.read.int CHAN OF KS source,
IN·T number, char

ks.read.int64 CHAN OF KS source,
INT64 number, INT char

ks.read.rea132 CHAN OF KS source,
REAL32 number, INT char

ks.read.rea164 CHAN OF KS source,
REAL64 number, INT char

72 TDS 18400 April 1989

368

Procedure definitions

ks.read.char

occam libraries

PROC ks.read.char (CHAN OF KS source, INT char)

Returns ASCII value of next char from source, (if input is from a file end
of line is signified by the value INT' *c').

ks.read.line

PROC ks.read.line (CHAN OF KS source, INT len,
[]BYTE line, INT char)

Reads text into the array line up to and including '*c', or up to and
excluding any error code. Any '*n' encountered is thrown away. len
is the length of the line. If there is an error its code is returned as char,
otherwise the value of char will be INT ' *c'. If the array is filled
before a '*c' is encountered all further characters are ignored.

ks.read.int

PROC ks.read.int (CHAN OF KS source,
INT number, char)

Skips input up to a digit, #, + or -, then reads a sequence of digits to the
first non-digit, returned as char, and converts the digits to an integer in
number. char must be initialised to the first charact~r of the number.
If the first significant character is a ,#, then a hexadecimal number is
input, thereby allowing the user the option of which number base to use.

ks.read.int64

PROC ks.read.int64 (CHAN OF KS source,
INT64 number, INT char)

As ks . read. int, but for 64-bit integers.

ks.read.real32

PROC ks.read.real32 (CHAN OF KS source,
REAL32 number, INT char)

Skips input up to a digit, + or -, then reads a sequence of digits with
optional decimal point and exponent) up to the first invalid character, re­
turned as char. Converts the digits to a floating point value in number.

72 TDS 18400 April 1989

24.5 Streamio library

ks.read.real64

PROC ks.read.real64 (CHAN OF KS souree,
REAL64 number, INT ehar)

As ks . read. real32, but for 64-bit real numbers.

24.5.4 Stream output

369

These routines write text, numbers and screen control codes to an output stream
in SS protocol.

Procedure

ss.write.ehar

ss.write.nl

ss.write.string

Parameter Speclflers

CHAN OF SS sern,
VAL BYTE ehar

CHAN OF SS sern

CHAN OF SS sern,
VAL [] BYTE str

ss.write.endstream CHAN OF SS sern

ss.write.text.line CHAN OF SS sern,
VAL [] BYTE str

ss.write.int CHAN OF SS sern,
VAL INT number, field

ss.write.int64 CHAN OF SS sern,
VAL INT64 number,
VAL INT field

ss.write.hex.int CHAN OF SS sern,
VAL INT number, field

ss.write.hex.int64 CHAN OF SS sern,
VAL INT64 number,
VAL INT field

72 TDS 184 00 April 1989

370 occam libraries

Procedure Parameter Specifiers

ss.write.rea132 CHAN OF SS sern,
VAL REAL32 number,
VAL lNT lp, Dp

ss.write.rea164 CHAN OF SS sern,
VAL REAL64 number,
VAL lNT lp, Dp

ss.goto.xy CHAN OF SS sern,
VAL lNT x, y

ss.elear.eol CHAN OF SS sern

ss.elear.eos CHAN OF SS sern

ss.beep CHAN OF SS sern

ss.up CHAN OF SS sern

ss.down CHAN OF SS sern

ss.left CHAN OF SS sern

ss.right CHAN OF SS sern

ss.insert.ehar CHAN OF SS sern, VAL BYTE ch

ss.delete.ehr CHAN OF SS sern

ss.delete.ehl CHAN OF SS sern

ss.ins.line CHAN OF SS sern

ss.del.line CHAN OF SS sern

Procedure definitions

ss.write.ehar

PROC ss.write.ehar (CHAN OF SS sern,
VAL BYTE char)

Sends the ASCII value char down sern, in serstream protocol, to
the current position in the output line.

ss.write.nl

PROC ss.write.nl (CHAN OF SS sern)

Sends" *e*n" to the sern.

72 TDS 184 00 April 1989

24.5 Streamio library

ss.write.string

PROC ss.write.string (CHAN OF SS sern,
VAL [] BYTE str)

Sends all characters in str to sern.

ss.write.endstream

PROC ss.write.endstream (CHAN OF SS sern)

371

Sends a special stream terminator value to sern. A call of this is needed
if sern is a file interface, or other interface procedure without an explicit
stopping channel, but not if it is a real screen channel.

ss.write.text.line

PROC ss.write.text.line (CHAN OF SS sern,
VAL []BYTE str)

Sends a line of characters from str, optionally terminated by a '*e',
to sern, followed by a line feed. This procedure should be used for text
which is organised into complete lines.

ss.write.int

PROC ss.write.int (CHAN OF SS sern,
VAL INT number, field)

Converts number into a sequence of ASCII decimal digits padded out
with leading spaces and an optional sign to the specified field width
if necessary. If the number cannot be represented in field characters
it is widened as necessary, a zero value for field will give minimum
width. The converted number is sent to sern.

ss.write.int64

PROC ss.write.int64 (CHAN OF SS sern,
VAL INT64 number,
VAL INT field)

As ss. write. int but for 54-bit integers.

72 TDS 184 00 April 1989

372

ss.write.hex.int

occam libraries

PROC ss.write.hex.int (CHAN OF SS sern,
VAL INT number, field)

Converts number into a sequence of ASCII hexadecimal digits, using
upper case letters, preceded by #. The total number of characters sent is
always field + 1, padding out with 0 or F on the left if necessary. The
number is truncated at the left if the field is too narrow, thereby allowing
the less significant part of any number to be printed. The converted
number is sent to sern.

ss.write.hex.int64

PROC ss.write.hex.int64 (CHAN OF SS sern,
VAL INT64 number,
VAL INT field)

As ss. write .hex. int but for 64-bit integer values.

ss.write.real32

PROC ss.write.rea132 (CHAN OF SS Bern,
VAL REAL32 number,
VAL INT Ip, Dp)

Converts number into a sequence of ASCII decimal digits padded out
with leading spaces and an optional sign to the specified number of digits
Ip before and Dp after the decimal point. The converted number is sent
to sern.

The total width will be Ip + Dp + 2 except in the cases described
under REAL32TOSTRING (see section 24.7).

ss.write.real64

PROC ss.write.real64 (CHAN OF SS sern,
VAL REAL64 number,
VAL INT Ip, Dp)

As for ss . write. rea132 but for 64-bit real values. Allows 3 digits for
the exponent.

72 TDS 184 00 April 1989

24.5 Streamio library

ss.goto.xy

373

PROC ss.goto.xy (CHAN OF SS sern, VAL INT x, y)

Sends the cursor to screen position (x,y). The origin (0,0) is at the top
left corner of the screen.

ss.elear.eol

PROC ss.elear.eol (CHAN OF SS Bern)

Clears from the cursor position to the end of the current screen line.

ss.elear.eos

PROC ss.elear.eos (CHAN OF SS sern)

Clears from the cursor position to the end of the current line and all lines
below.

ss.beep

PROC ss.beep (CHAN OF SS sern)

Sends a bell code to the terminal.

ss.up

PROC ss.up (CHAN OF SS sern)

Sends a command to the terminal to move the cursor one line up the
screen.

ss.down

PROC ss.down (CHAN OF SS sern)

Sends a command to the terminal to move the cursor one line down the
screen.

ss.left

PROC ss.left (CHAN OF SS sern)

Sends a command to the terminal to move the cursor one place left.

72 TDS 18400 April 1989

374

ss.right

PRoe ss.right (CHAN OF SS sern)

occam libraries

Sends a command to the terminal to move the cursor one place right.

ss.insert.ehar

PRoe ss.insert.ehar (CHAN OF SS sern,
VAL BYTE ch)

Sends a command to the terminal to move the character at the cursor
and all those to the right of it one place to the right and inserts char at
the cursor. The cursor moves one place right.

ss.delete.ehr

PRoe ss.delete.ehr (CHAN OF SS sern)

Sends a command to the terminal to delete the character at the cursor
and move the rest of the line one place to the left. The cursor does not
move.

ss.delete.ehl

PRoe ss.delete.ehl (CHAN OF SS sern)

Sends a command to the terminal to delete the character to the left of
the cursor and move the rest of the line one place to the left. The cursor
also moves one place left.

ss.ins.line

PRoe ss.ins.line (CHAN OF SS sern)

Sends a command to the terminal to move all lines below the current line
down one line on the screen, losing the bottom line. The current line
becomes blank.

ss.del.line

PROC ss.del.line (CHAN OF SS sern)

Sends a command to the termi nal to delete the current line and move all
lines below it up one line. The bottom line becomes blank.

72 TDS 184 00 April 1989

24.6 String handling library

24.6 String handling library

Library: string. lib

375

This library contains functions and procedures for handling strings and scanning
lines of text. They assist with the manipulation of character strings such as
names, commands, and keyboard responses.

The library provides routines for:

• Identifying characters

• Comparing strings

• Searching strings

• Editing strings

• Scanning lines of text

Result Function Parameter Specifiers

BOOL is.in.range VAL BYTE char, bottom,
top

BOOL is.upper VAL BYTE char

BOOL is. lower VAL BYTE char

BOOL is.digit VAL BYTE char

BOOL is.hex.digit VAL BYTE char

BOOL is.id.char VAL BYTE char

INT compare. strings VAL [] BYTE str1, str2

BOOL eqstr VAL []BYTE sl,s2

INT string.pos VAL []BYTE search, str

INT char.pos VAL BYTE search,
VAL []BYTE str

INT, BYTE search.match VAL [] BYTE possibles, str

INT, BYTE search.no.match VAL [] BYTE possibles, str

72 TDS 184 00 April 1989

376

Procedure

str.shift

delete.string

insert.string

to.upper.case

to. lower. case

append. char

append. text

append.int

append.int64

append.hex.int

append.hex.int64

append.real32

append.real64

72 TDS 184 00

occam libraries

Parameter Specifiers

[]BYTE str,
VAL lNT start, len, shift,
BOOL not.done

lNT len, []BYTE str,
VAL lNT start, size,
BOOL not.done

VAL [] BYTE new. str,
lNT len, []BYTE str,
VAL lNT start, BOOL not.done

[]BYTE str

[]BYTE str

lNT len, []BYTE str,
VAL BYTE char

lNT len, []BYTE str,
VAL []BYTE text

lNT len, []BYTE str,
VAL lNT number, field

lNT len, []BYTE str,
VAL lNT64 number, VAL lNT field

lNT len, []BYTE str,
VAL lNT number, field

lNT len, []BYTE str,
VAL lNT64 number,
VAL lNT width

lNT len, []BYTE str,
VAL REAL32 number,
VAL lNT lp, Dp

lNT len, []BYTE str,
VAL REAL64 number,
VAL lNT lp, Dp

April 1989

24.6 String handling library 377

Procedure Parameter Specifiers

next.word. from. line VAL []BYTE line,
INT ptr, INT len,
[] BYTE word, BOOL ok

next.int.from.line VAL []BYTE line,
INT ptr, number, BOOL ok

24.6.1 Character identification

is.in.range

BOOL FUNCTION is.in.range (VAL BYTE char, bottom,
top)

Returns TRUE if the value of char is in the range defined by bottom
and top inclusive.

is.upper

BOOL FUNCTION is.upper (VAL BYTE char)

Returns TRUE if char is an ASCII upper case letter.

is.lower

BOOL FUNCTION is. lower (VAL BYTE char)

Returns TRUE if char is an ASCII lower case letter.

is.digit

BOOL FUNCTION is.digit (VAL BYTE char)

Returns TRUE if char is an ASCII decimal digit.

is.hex.digit

BOOL FUNCTION is.hex.digit (VAL BYTE char)

Returns TRUE if char is an ASCII hexadecimal digit. Upper or lower
case letters A-F are allowed.

72 TDS 18400 April 1989

378

is.id.char

occam libraries

BOOL FUNCTION is.id.char (VAL BYTE char)

Returns TRUE if char is an ASCII character which can be part of an
occam name.

24.6.2 String comparison

These two procedures allow strings to be compared for order or for equality.

compare. strings

INT FUNCTION compare.strings (VAL []BYTE str1,
str2)

This general purpose ordering function compares two strings according
to the lexicographic ordering standard. (Lexicographic ordering is the
ordering used in dictionaries etc., using the ASCII values of the bytes).
It returns one of the 5 results 0, 1, -1, 2, -2 as follows.

o The strings are exactly the same in length and content.

str2 is a leading sub-string of strl

-1 str1 is a leading sub-string of str2

2 str1 is lexicographically later ttran str2

-2 str2 is lexicographically later than strl

So if s is 'abed':

compare. strings ("abc" , [s FROM 0 FOR 3]) = 0

compare. strings ("abc" , [s FROM 0 FOR 2]) 1

compare. strings ("abc" , s) =-1

compare. strings ("be" , s) = 2

compare. strings ("a4" , s) =-2

eqstr

BOOL FUNCTION eqstr (VAL []BYTE sl,s2)

This is. an optimised test for string equality. It returns TRUE if the two
strings are the same size and have the same contents.

72 TDS 184 00 April 1989

24.6 String handling library

24.6.3 String searching

379

These procedures allow a string to be searched for a match with a single byte
or a string of bytes, for a byte which is one of a set of possible bytes, or for a
byte which is NOT one of a set of bytes. Searches insensitive to alphabetic case
should use to . upper. case or to . lower . case on both operands before
using these procedures.

string.pos

INT FUNCTION string.pos (VAL []BYTE search, str)

Returns the position in str of the first occurrence of a sub-string which
exactly matches search. Returns -1 if there is no such match.

char.pos

INT FUNCTION char.pos (VAL BYTE search,
VAL []BYTE str)

Returns the position in str of the first occurrence of the byte search.
Returns -1 if there is no such byte.

search.match

INT, BYTE FUNCTION search.match
(VAL []BYTE possibles, str)

Searches str for anyone of the bytes in the array possibles. If one
is found its index and identity are returned as results. If none is found
then -1, 255(BYTE) are returned.

search.no.match

INT, BYTE FUNCTION search.no.match
(VAL []BYTE possibles, str)

Searches str for a byte which does not match anyone of the bytes in
the array possibles. If one is found its index and identity are returned
as results. If none is found then -1, 255(BYTE) are returned.

24.6.4 String editing

These procedures allow strings to be edited. The string to be edited is stored
in an array which may contain unused space. The editing operations supported
are: deletion of a number of characters and the closing of the gap created;

72 TDS 18400 April 1989

380 occam libraries

insertion of a new string starting at any position within a string, which creates a
gap of the necessary size.

These two operations are supported by a lower level procedure for shifting a
consecutive substring left or right within the array. The lower level procedure
does exhaustive tests against overflow.

str.shift

PROC str.shift ([]BYTE str, VAL INT start,
len, shift, BOOL not.done)

Take a substring [str FROM start FOR len], and copies it to a
position shift places to the right. Any implied actions involving bytes
outside the string are not performed and cause the error flag not. done
to be set TRUE. Negative values of shift cause leftward moves.

delete. string

PROC delete. string (INT len, []BYTE str,
VAL INT start, size,
BOOL not.done)

Deletes size bytes from the string str starting at str [start] .
There are initially len significant characters in str and it is decremented
appropriately. If start is outside the string, or size is negative or
greater than the string length, then no action occurs and not. done is
set TRUE.

insert. string

PROC insert. string (VAL []BYTE new.str, INT len,
[]BYTE str, VAL INT start,
BOOL not.done)

Creates a gap in str before str [start] and copies the string
new. str into it. There are initially len significant characters in str and
len is incremented by the length of new. str inserted. Any overflow
of the declared SIZE of str results in truncation at the right and setting
not. done to TRUE. This procedure may be used for simple concate­
nation on the right by setting start = len or on the left by setting
start = O. This method of concatenation differs from that using the
append. procedures in that it can never cause the program to stop.

72 TDS 184 00 April 1989

24.6 String handling library

to.upper.case

PROC to.upper.case ([]BYTE str)

Converts all alphabetic characters in str to upper case.

to.lower.case

PROC to.lower.case ([]BYTE str)

Converts all alphabetic characters in str to lower case.

append. char

PROC append. char (INT len, []BYTE str,
VAL BYTE char)

381

Writes a byte char into the array str at str [len]. len is incre­
mented by 1. Behaves like STOP if the array overflows.

append. text

PROC append. text (INT len, []BYTE str,
VAL [] BYTE text)

Writes a string text into the array str, starting at str [len] and
computing a ne~ value for len. Behaves like STOP if the array overflows.

append.int

PROC append.int (INT len, []BYTE str,
VAL INT number, field)

Converts number into a sequence of ASCII decimal digits padded out
with leading spaces and an optional sign to the specified field width
if necessary. If the number cannot be represented in field characters
it is widened as necessary. A zero value for field will give minimum
width. The converted number is written into the array str starting at
str [len] and len is incremented. Behaves like STOP if the array
overflows.

append.int64

PROC append.int64 (INT len, []BYTE str,
VAL INT64 number,
VAL INT field)

72 TDS 18400 April 1989

382

As append. int but for 64-bit integers.

append.hex.int

occam libraries

PRoe append.hex.int (INT len, []BYTE str,
VAL INT number, width)

Converts number into a sequence of ASCII hexadecimal digits, using
upper case letters, preceded by t. The total number of characters sent
is always width+l, padding out with 0 or F on the left if necessary. The
number is truncated at the left if the field is too narrow, thereby allowing
the less significant part of any number to be printed. The converted
number is written into the array str starting at str [len] and len is
incremented. Behaves like STOP if the array overflows.

append.hex.int64

PRoe append.hex.int64 (INT len, []BYTE str,
VAL INT64 number,
VAL INT width)

As append. hex. int but for 64-bit integers.

append.rea132

PRoe append.rea132 (INT len, []BYTE str,
VAL REAL32 number,
VAL INT lp, Dp)

Converts number into a sequence of ASCII decimal digits padded out
with leading spaces and an optional sign to the specified number of digits
Ip before and Dp after the decimal point. The converted number is
written into the array str starting at str [len] and len is incremented.
Behaves like STOP if the array overflows.

The total width will be Ip + Dp + 2 except in the cases described
under REAL32TOSTRING (see section 24.7).

append.rea164

PRoe append.rea164 (INT len, []BYTE str,
VAL REAL64 number,
VAL INT lp, Dp)

As append. rea132, but for 64-bit real values. Allows 3 digits for the
exponent.

72 TDS 18400 April 1989

24.6 String handling library

24.6.5 Line parsing

383

These two procedures read a line serially, returning the next word and next
integer respectively.

next.word. from. line

PROC next.word.from.line (VAL []BYTE line,
INT ptr, INT len,
[] BYTE word,
BOOL ok)

Skips leading spaces and tabs and reads the next word from the string
line. The value of ptr is the starting point of the search for the word.

If the first non-space and non-tab character found is not a printable ASCII
character, or if the end of the string is reached, the boolean ok is set to
FALSE. If the word is followed by a space; tab, or the end of the string,
ok is also set to TRUE, otherwise it is set to FALSE.

The pointer ptr is updated to point either to the position beyond the last
character read, or to the end of the string, whatever value of ok is set.

next.int.from.line

PROC next.int.from.line (VAL []BYTE line,
INT ptr, number,
SOOL ok)

Skips leading spaces and tabs and reads the next integer from the string
line. The value of ptr is the starting point of the search.

If the first non-space and non-tab character found is not a digit or sign
(+ or -), or if the end of the string is reached. the boolean ok is set to
FALSE. If the integer is followed by a space, tab, or the end of the string,
ok is also set to TRUE, otherwise it is set to FALSE.

The pointer ptr is updated to point either to the position beyond the I~t

character read, or to the end of the string, whatever value of ok is set.

72 TDS 18400 April 1989

384 occam libraries

24.7 Type conversion library

Library: convert. lib

This library contains procedures for converting numeric variables to strings and
vice versa.

String to numeric conversions return two results, the converted value and a
boolean error indication. Numeric to string conversions return the converted
string and an integer which represents the number of significant characters writ­
ten into the string.

72 TDS 184 00 April 1989

24.7 Type conversion library 385

Procedure Parameter Specifiers

STRlNGTOBOOL

lNTTOSTRlNG

lNT16TOSTRlNG

lNT32TOSTRlNG

lNT64TOSTRlNG

HEXTOSTRlNG

HEX16TOSTRlNG

HEX32TOSTRlNG

HEX64TOSTRlNG

REAL32TOSTRlNG

lNT len, []BYTE string, VAL lNT n

lNT len, []BYTE string, VAL lNT16 n

lNT len, []BYTE string, VAL lNT32 n

lNT len, []BYTE string, VAL lNT64 n

lNT len, []BYTE string, VAL lNT n

lNT len, []BYTE string, VAL lNT16 n

lNT len, []BYTE string, VAL lNT32 n

lNT len, []BYTE string, VAL lNT64 n

lNT len, []BYTE string,
VAL REAL32 X, VAL lNT lp, Dp

REAL64TOSTRlNG lNT len, []BYTE string, VAL REAL64 X,
VAL lNT lp, Dp

BOOLTOSTRlNG lNT len, []BYTE string, VAL BOOL b

STRlNGTOlNT BOOL Error, lNT n, VAL []BYTE string

STRlNGTOlNT16 BOOL Error, lNT16 n,
VAL []BYTE string

STRlNGTOlNT32 BOOL Error, lNT32 n,
VAL []BYTE string

STRlNGTOlNT64 BOOL Error, lNT64 n,
VAL []BYTE string

STRlNGTOHEX BOOL Error, lNT n, VAL []BYTE string

STRlNGTOHEX16 BOOL Error, lNT16 n,
VAL []BYTE string

STRlNGTOHEX32 BOOL Error, lNT32 n,
VAL []BYTE string

STRlNGTOHEX64 BOOL Error, lNT64 n,
VAL []BYTE string

STRlNGTOREAL32 BOOL Error, REAL32 X,
VAL []BYTE string

STRlNGTOREAL64 BOOL Error, REAL64 X,
VAL []BYTE string

BOOL Error, b-, VAL [] BYTE string

72 TDS 18400 April 1989

386

24.7.1 Procedure definitions

INTTOSTRING

occam libraries

PROC INTTOSTRING (INT len, []BYTE string,
VAL INT n)

Converts an integer value to a string.

INT16TOSTRING

PROC INT16TOSTRING (INT len, []BYTE string,
VAL INT16 n)

As J:NTTOSTRING but for 16-bit integers.

INT32TOSTRING

PROC INT32TOSTRING (INT len, []BYTE string,
VAL INT32 n)

As INTTOSTRING but for 32-bit integers.

INT64TOSTRING

PROC INT64TOSTRING (INT len, []BYTE string,
VAL INT64 n)

As INTTOSTRING but for 64-bit integers.

HEXTOSTRING

PROC HEXTOSTRING (INT len, []BYTE string,
VAL INT n)

Converts a hexadecimal integer value to a string.

HEX16TOSTRING

PROC HEX16TOSTRING (INT len, []BYTE string,
VAL INT16 n)

As HEXTOSTRING but for 16-blt integers.

72 TDS 184 00 April 1989

24.7 Type conversion library

HEX32TOSTRING

PROC HEX32TOSTRING (INT len, []BYTE string,
VAL INT32 n)

As HEXTOSTRING but for 32-bit integers.

HEX64TOSTRING

PROC BEX64TOSTRING (INT len, []BYTE string,
VAL INT64 n)

As BEXTOSTRING but for 64-bit integers.

REAL32TOSTRING

PROC REAL32TOSTRING (lNT len, []BYTE string,
VAL REAL32 X,
VAL INT lp, Dp)

387

Converts a 32-bit real number to a string. The total width will be Ip +
Dp + 2 except in the following cases:

If the value will not fit, an exponential form is used.

If Ip is zero, an exponential form with Dp significant digits is used, giving
a field width of Dp + 6.

If lp and Dp are zero, a minimum field width free format is used.

Numbers which correspond to the IEEE standard concepts of 'Infinity'
and 'NotaNumber' produce the texts lnf and NaN, respectively.

In exponential forms a number in the range [1.0, 10.0] is followed by E,
a + or - sign, and a 2 digit decimal exponent.

REAL64TOSTRING

PROC REAL64TOSTRING (INT len, []BYTE string,
VAL REAL64 X,
VAL INT Ip, Dp)

As REAL32TOSTRING but for 64-bit numbers.

72 TDS 18400 April 1989

388

BOOLTOSTRING

occam libraries

PROC BOOLTOSTRING (INT len, []BYTE string,
VAL BOOL b)

Converts a boolean value to a string.

STRINGTOINT

PROC STRINGTOINT (BOOL Error, INT n,
VAL []BYTE string)

Converts a string to a decimal integer.

STRINGTOINT16

PROC STRINGTOINT16 (SOOL Error, INT16 n,
VAL []BYTE string)

As STRINGTO:tNT but converts to a 16-bit integer.

STRINGTOINT32

PROC STRINGTOINT32 (BOOL Error, INT32 n,
VAL [] BYTE string)

As STRINGTOINT but converts to a 32-bit integer.

STRINGTOINT64

PROC STRINGTOINT64 (BOOL Error, INT64 n,
VAL []BYTE string)

As STRINGTOINT but converts to a 64-bit integer.

STRINGTOHEX

PROC STRINGTOHEX (BOOL Error, INT n,
VAL []BYTE string)

Converts a string to a hexadecimal integer.

72 TDS 184 00 April 1989

24.7 Type conversion library

STRINGTOHEX16

PROC STRINGTOHEX16 (BOOL Error, INT16 n,
VAL [] BYTE string)

As STRINGTOHEX but converts to a 16-bit integer.

STRINGTOHEX32

PROC STRINGTOHEX32 (BOOL Error, INT32.n,
VAL [] BYTE string)

As STRINGTOHEX but converts to a 32-bit integer.

STRINGTOHEX64

PROC STRINGTOHEX64 (BOOL Error, INT64 n,
VAL [] BYTE string)

As STRINGTOHEX but converts to a 64-bit integer.

STRINGTOREAL32

PROC STRINGTOREAL32 (BOOL Error, REAL32 X,
VAL []BYTE string)

Converts a string to a 32-bit real number.

STRINGTOREAL64

PROC STRINGTOREAL64 (BOOL Error, REAL64 X,
VAL []BYTE string)

As STRINGTOREAL32 but converts to a 64-bit number.

STRINGTOBOOL

PROC STRINGTOBOOL (BOOL Error, b,
VAL []BYTE string)

Converts a string to a boolean value.

72 TDS 184 00

389

April 1989

390 occam libraries

24.8 Block CRC library

Library: ere. lib

The block CRC library provides two functions for generating CRC codes from
byte strings. The application that uses the function must also provide the old
CRC code.

For further infomation about CRC functions see' INMOS Technical note 26: Notes
on graph~cs support and performance improvements on the IMS TBOO'.

Result Function Parameter Specifiers

INT CRCFROMMSB VAL []BYTE InputStrinq,
VAL INT PolynomialGenerator,
INT OldCRC

INT CRCFROMLSB VAL []BYTE InputStrinq
VAL INT PolynomialGenerator,
INT OldCRC

24.8.1 Function definitions

CRCFROMMSB

INT FUNCTION CRCFROMMSB (VAL []BYTE InputString,
VAL INT PolynomialGenerator,
INT OldCRC)

The string of bytes is polynomially divided by the generator, starting at
the most significant bit of the most significant byte.

CRCFROMLSB

INT FUNCTION CRCFROMLSB (VAL []BYTE InputString,
VAL INT PolynomialGenerator,
INT OldCRC)

The string of bytes is polynomially divided by the generator, starting at
the least significant bit of the least significant byte.

72 TDS 184 00 April 1989

24.9 Extraordinary link handling library

24.9 Extraordinary link handling library

Library: xlink .lib

391

The extraordinary link handling library contains routines for handling communi­
cation failures errors on a link. Four procedures are provided to allow failures on
input and output channels to be handled by timeout or by signalling the failure
on another channel. A fifth procedure allows the channel to be reset.

Procedure Parameter Specifiers

InputOrFail.t CHAN OF ANY c, [] BYTE mess,
TIMER TIME, VAL INT t, BOOL aborted

OutputOrFail.t CHAN OF ANY c, VAL [] BYTE mess,
TIMER TIME, VAL INT t, BOOL aborted

InputOrFail.c CHAN OF ANY c, []BYTE mess
CHAN OF INT kill, BOOL aborted

OutputOrFail.c CHAN OF ANY c, VAL [] BYTE mess,
CHAN OF INT kill, BOOL aborted

Reinitialise CHAN OF ANYc

24.9.1 Procedure definitions

The four procedures take as parameters a link channel c (on which the com­
munication is to take place), a byte vector mess (which is the object of the
communication), and the boolean variable aborted. The choice of a byte vec­
tor for the message allows an object of any type to be passed along the channel
providing it is retyped first.

InputOrFail.t

PROC InputOrFail.t (CHAN OF ANY c, []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

This procedure is used for communication where failure is detected by a
timeout. It takes a timer parameter TIME, and an absolute time t. The
procedure treats the communication as having failed when the time as
measured by the timer TIMER is AFTER the specified time t.

72 TDS 184 00 April 1989

392

OutputOrFail.t

occam libraries

PRoe OutputOrFail.t (CHAN OF ANY c,
VAL []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

This procedure is used for communication where failure is detected by a
timeout. It takes a timer parameter TIME, and an absolute time t. The
procedure treats the communication as having failed when the time as
measured by the timer TIME is AFTER the specified time t.

InputOrFail.c

PROC InputOrFail.c (CHAN OF ANY c, []BYTE mess,
CHAN OF INT kill,
BOOL aborted)

This procedure provides communication where failure cannot be detected
by a simple timeout. In this case failure must be signalled to the inputting
procedure via a message on the channel kill. The kill message is of
type INT and can be any value.

OutputOrFail.c

PROC OutputOrFail.c (CHAN OF ANY c,
VAL []BYTE mess,
CHAN OF INT kill,
BOOL aborted)

This procedure provides communication where failure cannot be detected
by a simple timeout. In this case failure must be signalled to the inputting
or outputting procedure via a message on the channel kill. The mes­
sage is of type INT and can be any value.

Reinitialise

PROC Reinitialise (CHAN OF ANY c)

This procedure may be used to reinitialise the link channel c after it is
known that all activity on the link has ceased.

Reinitialise must only be used to reinitialise a link channel after
communication has finished. If the procedure is applied to a link channel
which is being used for communication the transputer's error flag will be
set and subsequent behaviour is undefined.

72 TDS 184 00 April 1989

24.10 Process library

24.10 Process library

Library: process .lib

393

The process library provides two procedures. The first supports processes run­
ning on boot from ROM transputer boards, and the second is a timer process
for analysing deadlocks. The process library is supplied in object and source
forms.

Procedure Parameter Specifiers

ss.BOOx.stream.driver CHAN OF SS
from. user. screen,
CHAN OF KS to.user.kbd,
VAL INT board. type, port,
baud. rate, screen.type

debug. timer CHAN OF INT stop

24.10.1 Procedure definitions

ss.BOOx.stream.driver

PROC ss.BOOx.stream.driver
(CHAN OF SS from.user.screen,
CHAN OF KS to.user.kbd,
VAL INT board. type, port,
baud. rate, screen.type)

This interface procedure may be run in parallel with any application on an
IMS 8001, IMS 8002, or IMS 8006 transputer evaluation board. It takes
input in screen stream protocol on the channel from. user. scrn and
sends it to an RS232 output, and sends the corresponding input in key
stream protocol to the channel to. user. kbd.

board. type should be 1 for 8001, 2 for 8002, or 6 for 8006. Any
other value will reset the error flag. The uart port is defined by passing
o (terminal) or 1 (host) in the parameter port.

If baud. rate is non-zero the UART is reset when the procedure starts
executing. The value passed should be one of: 38400, 19200, 9600,
7200, 4800, 2400, 2000, 1800, 1200, 1050, 600, 300, 200, 150, 134,
110, 75 or 50 for 8001 and 8002 boards, and any of the same values
except 38400 and 19200 for 8006 boards. If baud. rate is zero the
reset is assumed to have been already performed (e.g. by code in the
ROM).

72 TDS 18400 April 1989

394 occam libraries

The procedure supports ANSI and TVI920 screen protocols. screen. type
should be set to 0 (zero) for ANSI based terminals (for example the
VT100), and 1 (one) for TVI920 based terminals.

debug. timer

PROC debug.timer (CHAN OF INT stop)

A timer process for use when analysing deadlocks in occam programs.
Section 7.4 gives an example of how to debug a deadlocked program
using similar code.

The parameters are as follows:

stop A single INT value on this channel terminates the
timer process.

72 TDS 184 00 April 1989

Appendices

72 TDS 184 00 April 1989

396

72 TDS 184 00

Appendices

April 1989

A Names defined by the
software

All names which may appear in occam source text and which are defined either
by the language, the compiler or the libraries are given below in alphabetical
order.

Toolset constants are not included; for listings of the constants files see appendix
C.

The names in this table are grouped into the following classes:

1 Language keyword. Keyword defined in the language reference manual.

2 Compiler keyword. Keyword defined by the current compiler implemen­
tation.

3 Compiler predefine. A procedure or function which is predeclared by the
compiler and implemented by in line code.

4 Compiler library. A library procedure or function which is used by com­
piler generated code. On some processors these are implemented by a
function in a library with the name indicated, on others they are imple­
mented as in line code (a predefine). Where a compiler library routine
is implemented as a predefine for some transputers the word predefine
appears in the 'Notes' column.

5 System library. Library routines for special transputer system operations.
Consists of the libraries ere .lib and xlink . lib.

6 Maths library. A function in the elementary function libraries. The library
name depends on version required (single or double length).

7 Maths utility library. Supporting function for maths library.

8 10 library. A procedure or function in the input/output and supporting
libraries (hostio . lib, streamio .lib, string . lib, and
convert . lib). The library name which must be used to access it is
also shown.

9 Compiler input directive. A word in occam source code recognised
by the compilation system for special action at compile time. Always
preceded in occam source by the character I"~.

Any name which is not a language keyword may be redeclared as an identifier in

72 TDS 18400 April 1989

398 A Names defined by the software

an occam program. However, redefining a name of a compiler library procedure
or function can have unexpected consequences and it is strongly recommended
that all the names in these tables are reserved for the uses specified.

Name Class Library Notes
ABS compiler library predefine
ACOS maths library snglmath also tbmaths
af .to.sp io library hostio
AFTER language keyword
ALOG maths library snglmath also tbmaths
ALOG1O maths library snglmath also tbmaths
ALT language keyword
AND language keyword
ANY language keyword
append. char io library string
append.hex.int64 io library string
append.hex.int io library string
append.int64 io library string
append.int io library string
append.rea132 io library string
append.rea164 io library string
append. text io library string
ARGUMENT. REDUCE compiler library
ASHIFTLEFT compiler predetine
ASHIFTRIGHT compiler predetine
ASIN maths library snglmath also tbmaths
AT language keyword
ATAN maths library snglmath also tbmaths
ATAN2 maths library snglmath also tbmaths
BITAND language keyword
BITCOUNT compiler library predefine
BITNOT language keyword
BITOR language keyword
BITREVNBITS compiler library predetine
BITREVWORD compiler library predatine
BOOL language keyword
BOOLTOSTRING io library convert
BYTE language keyword
CASE language keyword
CAUSEERROR compiler predetine
CHAN language keyword
char.pos io library string

72 TDS 184 00 April 1989

Names defined by the software A 399

Name Class Library Notes
CLIP2D compiler library predefine
COMMENT compiler di rective
compare. strings io library string
COPYSIGN compiler library
COS maths library snglmath also tbmaths
COSH maths library snglmath also tbmaths
CRCBYTE compiler library predefine
CRCFROMLSB system library crc
CRCFROMMSB system library crc
CRCWORD compiler library predefine
DABS compiler library predefine
DACOS maths library dblmath also tbmaths
DALOG maths library dblmath also tbmaths
DALOG1O maths library dblmath also tbmaths
DARGUMENT.REDUCE compiler library
DASIN maths library dblmath also tbmaths
DATAN maths library dblmath also tbmaths
DATAN2 maths library dblmath also tbmaths
DCOPYSIGN compiler library
DCOS maths library dblmath also tbmaths
DCOSH maths library dblmath also tbmaths
DDIVBY2 compiler library predefine
delete. string io library string
DEXP maths library dblmath also tbmaths
DFLOATING.UNPACK compiler library
DFPINT compiler library predefine
DIEEECOMPARE compiler library
DISNAN compiler library predefine
DIVBY2 compiler library predefine
DLOGB compiler library
DMINUSX compiler library predefine
DMULBY2 compiler library predefine
DNEXTAFTER compiler library
DNOTFINITE compiler library predefine
DORDERED compiler library predefine
DPOWER maths library dblmath also tbmaths
DRAN maths library dblmath also tbmaths
DRAW2D compiler library predefine
DSCALEB compiler library
DSIN maths library dblmath also tbmaths

72 TDS 184 00 April 1989

400 A Names defined by the software

Name Class Library Notes
DSINH maths library dblmath also tbmaths
DSQRT compiler library predefine
DTAN maths library dblmath also tbmaths
DTANH maths library dblmath also tbmaths
ELSE language keyword
eqstr io library string
EXP maths library snglmath also tbmaths
FALSE language keyword
FIX maths utility library
FIX64 maths utility library
FLOATING. UNPACK compiler library
FOR language keyword
FPINT compiler library predefine
FracDiv maths utility library
FracDiv64 maths utility library
FRACMUL compiler predefine T4,T8,T425,

TA,TB,TC
FracMult64 maths utility library
FROM language keyword
FUNCTION language keyword
GUY compiler keyword
HEX16TOSTRING io library convert
HEX32TOSTRING io library convert
HEX64 TOSTRING io library convert
HEXTOSTRING io library convert
IEEE320P compiler library
IEEE32REM compiler library not T8
IEEE640P compiler library
IEEE64REM compiler library not T8
IEEECOMPARE compiler library
IF language keyword
IMPORT compiler directive
IN language keyword
IncExp maths utility library
IncExp64 maths utility library
INCLUDE compiler directive
InputOrFail.c system library xlink
InputOrFail.t system library xlink
insert. string io library string
INT language keyword

72 TDS 184 00 April 1989

Names defined by the software A

Name Class Library Notes
INT16 language keyword
INT16ADD compiler library not T2
INT16BITAND compiler library not T2
INT16BITNOT compiler library not T2
INT16BITOR compiler library not T2
INT16DIV compiler library not T2
INT16EQ compiler library not T2
INT16GT compiler library not T2
INT16LSHIFT compiler library not T2
INT16MINUS compiler library not T2
INT16MUL compiler library not T2
INT16PLUS compiler library not T2
INT16REM compiler library not T2
INT16RSHIFT compiler library not T2
INT16SUB compiler library not T2
INT16TlMES compiler library not T2
INT16TOINT32 compiler library T2 only
INT16TOINT64 compiler library T2 only
INT16TOREAL32 compiler library T2 only
INT16TOREAL64 compiler library T2 only
INT16TOSTRING io library convert
INT16XOR compiler library not T2
INT32 language keyword
INT32ADD compiler library T2 only
INT32BITAND compiler library T2 only
INT32BITNOT compiler library T2 only
INT32BITOR compiler library T2 only
INT32DIV compiler library T2 only
INT32DIVREM compiler library T2 only
INT32EQ compiler library T2 only
INT32GT compiler library T2 only
INT32LSHIFT compiler library T2 only
INT32MINUS compiler library T2 only
INT32MUL compiler library T2 only
INT32PLUS compiler library T2 only
INT32REM compiler library T2 only
INT32RSHIFT compiler library T2 only
INT32SUB compiler library T2 only
INT32TlMES compiler library T2 only
INT32TOINT16 compiler library T2 only

401

72 TDS 18400 April 1989

402 A Names defined by the software

Name Class Library Notes
INT32TOINT64 compiler library
INT32TOREAL32 compiler library not TB
INT32TOREAL64 compiler library not TB
INT32TOSTRING io library convert
INT32XOR compiler library T2 only
INT64 language keyword
INT64ADD compiler library
INT64BITAND compiler library
INT64BITNOT compiler library
INT64BITOR compiler library
INT64DIV compiler library
INT64DIVREM compiler library
INT64EQ compiler library
INT64GT compiler library
INT64LSHIFT compiler library
INT64MINUS compiler library
INT64MUL compiler library
INT64PLUS compiler library
INT64REM compiler library
INT64RSHIFT compiler library
INT64 SUB compiler library
INT64TlMES compiler library
INT64TOINT16 compiler library T2 only
INT64TOINT32 compiler library
INT64TOREAL32 compiler library not TB
INT64TOREAL64 compiler library not TB
INT64TOSTRING io library convert
INT64XOR compiler library
INTTOSTRING io library convert
io.handler io library process
IS language keyword
is.digit io library string
is.hex.digit io library string
is.id.char io library string
is.in.range io library string
is.lower io library string
is.upper io library string
ISNAN compiler library predefine
KERNEL.RUN compiler predefine

72 TDS 184 00 April 1989

Names defined by the software A 403

Name Class Library Notes
ks.keystream.sink io library streamio
ks.keystream.to.scrstream io library streamio
ks.read.char io library streamio
ks.read.hex.int io library streamio
ks.read.hex.int64 io library streamio
ks.read.int io library streamio
ks.read.int64 io library streamio
ks.read.line io library streamio
ks.read.rea132 io library streamio
ks.read.rea164 io library streamio

Name Class Llbr Notes
LOAD.BYTE.VECTOR compiler predefine
LOAD.INPUT.CHANNEL compiler predefine
LOAD.INPUT.CHANNEL.VECTOR compiler predefine
LOAD.OUTPUT.CBANNEL compiler predefine
LOAD.OUTPUT.CBANNEL.VECTOR compiler predefine
LOGB compiler library
LONGADD compiler predefine
LONGDIFF compiler predefine
LONGDIV compiler predefine
LONGPROD compiler predefine
LONGSUB compiler predefine
LONGSUM compiler predefine
MINUS language keyword
MINUSX compiler library predefine
MOSTNEG language keyword
MOSTPOS language keyword
MOVE2D compiler library predefine
MULBY2 compiler library predefine
next.int.from.line io library string
next.word.from.line io library string
NEXTAFTER compiler library
NORMALISE compiler predefine
NORMALISE64 maths utility library
NOT language keyword
NOTFINITE compiler library predefine
OF language keyword
OPTION compiler directive

72 TDS 18400 April 1989

404 A Names defined by the software

Name Class Library Notes
OR language keyword
ORDERED compiler library predefine
OutputOrFail.c system library xlink
OutputOrFail.t system library xlink
PAR language keyword
PLACE language keyword
PLACED language keyword
PLUS language keyword
PORT language keyword
POWER maths library snglmath also tbmaths
PRI language keyword
PROC language keyword
PROCESSOR language keyword
PROTOCOL language keyword
QRealIDiv compiler library T2 only
QRealIMul compiler library T2 only
QUADNORMALI SE compiler library T2 only
QUADSHIFTLEFT compiler library T2 only
QUADSHIFTRIGHT compiler library T2 only
RAN maths library snglmath also tbmaths
REAL32 language keyword predefine
REAL32EQ compiler library predefirie
REAL32EQERR compiler library predefine
REAL32GT compiler library predefine
REAL32GTERR compiler library predefine
REAL320P compiler library
REAL320PERR compiler library predefine
REAL32REM compiler library
REAL32REMERR compiler library predefine
REAL32TOINT16 compiler library
REAL32TOINT32 compiler library
REAL32TOINT64 compiler library
REAL32TOREAL64 compiler library
REAL32TOSTRING io library convert
REAL64 language keyword
REAL 64EQ compiler library predefine
REAL 64EQERR compiler library predefine
REAL64GT compiler library predefine
REAL64GTERR compiler library predefine
REAL640P compiler library

72 TDS 18400 April 1989

Names defined by the software A 405

Name Class Library Notes
REAL640PERR compiler library predefine
REAL64REM compiler library
REAL64REMERR compiler library predefine
REAL64TOINT16 compiler library
REAL64TOINT32 compiler library predefine
REAL64TOINT64 compiler library predefine
REAL64TOREAL32 compiler library predefine
REAL64TOSTRING io library convert
RealIDiv compiler library
RealIMul compiler library
ReFloat maths utility library
ReFloat64 maths utility library
Reinitialise system library xlink
REM language keyword
RESULT language keyword
RETYPES language keyword
ROTATELEFT compiler predefine
ROTATERIGHT compiler predefine
ROUND language keyword
ROUNDSN compiler predefine T4, T425, TB
se compiler directive
SCALES compiler library
search.match io library string
search.no.match io library string
SEQ language keyword
SHIFTLEFT compiler predefine
SHIFTRIGHT compiler predefine
SHIFTRIGHT64 maths utility library
SIN maths library snglmath also tbmaths
SINH maths library snglmath also tbmaths
SIZE language keyword
SKIP language keyword
so.ask io library hostio
so.buffer io library hostio
so. close io library hostio
so.commandline io library hostio
so. core io library hostio
so.date.to.ascii io library hostio
so.eof io library hostio

72 TDS 18400 April 1989

406 A Names defined by the software

Name Class Library Notes
so.exit io library hostio
so.ferror io library hostio
so. flush io library hostio
so.fwrite.char io library hostio
so.fwrite.hex.int io library hostio
so.fwrite.hex.int64 io library hostio
so. fwrite. int io library hostio
so.fwrite.int64 io library hostio
so.fwrite.nl io library hostio
so.fwrite.rea132 io library hostio
so.fwrite.rea164 io library hostio
so.fwrite.string io library hostio
so.fwrite.string.nl io library hostio
so.getenv io library hostio
so.getkey io library hostio
so.gets io library hostio
so.keystream.from.file io library streamio
so.keystream~from.kbd io library streamio
so.keystream. from. stdin io library streamio
so.multiplexor io library hostio
so.open io library hostio
so.open.temp io library hostio
so.overlapped.buffer io library hostio
so.overlapped.multiplexor io library hostio
so.parse.command.line io library hostio
so.pollkey io library hostio
so.popen.read io library hostio
so.puts io library hostio
so.read io library hostio
so.read.echo.any.int io library hostio
so.read.echo.hex.int io library hostio
so.read.echo.hex.int64 io library hostio
so.read.echo.int io library hostio
so.read.echo.int64 io library hostio
so.read.echo.line io library hostio
so.read.echo.rea132 io library hostio
so.read.echo.rea164 io library hostio
so.read.line io library hostio

72 TDS 18400 April 1989

Names defined by the software A 407

Name Class Library Notes
so. remove io library hostio
so. rename io library hostio
so.scrstream.to.ANSI io library streamio
so.scrstream.to.stdout io library streamio
so.scrstream.to.TVI920 io library streamio
so. system io library hostio
so.tell io library hostio
so.test.exists io library hostio
so.time io library hostio
so.time.to.ascii io library hostio
so.time.to.date io library hostio
so.today.ascii io library hostio
so . today. date io library hostio
so.version io library hostio
so.write io library hostio
so.write.char io library hostio
so.write.hex.int io library hostio
so.write.hex.int64 io ~ibrary hostio
so.write.int io library hostio
so.write.int64 io library hostio
so.write.nl io library hostio
so.write.rea132 io library hostio
so.write.rea164 io library hostio
so.write.strinq io library hostio
so.write.strinq.nl io library hostio
SQRT compiler library predefine
ss.beep io library streamio
ss.BOOx.terminal.driver io library process
ss.clear.eol io library streamio
ss.clear.eos io library streamio
ss.del.line io library streamio
ss.delete.chl io library streamio
ss.delete.chr io library streamio
ss.down io library streamio
ss.qoto.xy io library streamio
ss.ins.line io library streamio
ss.insert.char io library streamio
ss.left io library streamio
ss.right io library streamio

72 TDS 18400 April 1989

408 A Names defined by the software

Name Class Library Notes
ss.scrstream.copy io library streamio
ss.scrstream.fan.out io library streamio
ss.scrstream.from.array io library streamio
ss.scrstream.sink io library streamio
ss.scrstream.to.array io library streamio
ss.scrstream.to.file io library streamio
ss.seek io library hostio
ss.up io library streamio
ss.write.char io library streamio
ss.write.endstream io library streamio
ss.write.hex.int io library streamio
ss.write.hex.int64 io library streamio
ss.write.int io library streamio
ss.write.int64 io library streamio
ss.write.nl io library streamio
ss.write.rea132 io library streamio
ss.write.rea164 io library streamio
ss.write.string io library streamio
ss.write.text.line io library streamio
STOP language keyword
str.shift io library string
string.pos io library string
STRINGTOBOOL io library convert
STRINGTOHEX io library convert
STRINGTOHEX16 io library convert
STRINGTOHEX32 io library convert
STRINGTOHEX64 io library convert
STRINGTOINT16 io library convert
STRINGTOINT32 io library convert
STRINGTOINT64 io library convert
STRINGTOINT io library convert
STRINGTOREAL32 io library convert
STRINGTOREAL64 io library convert
T2 compiler keyword
T212 compiler keyword
T222 compiler keyword
T4 compiler keyword
T414 compiler keyword
T425 compiler keyword

72 TDS 184 00 April 1989

Names defined by the software A

Name Class Library Notes
TB compiler keyword
T800 compiler keyword
TA compiler keyword
TAN maths library snglmath also tbmaths
TANH maths library snglmath also tbmaths
TB compiler keyword
TC compiler keyword
TIMER language keyword
TIMES language keyword
to. lower. case io library string
to.upper.case io library string
TRUE language keyword
TRUNC language keyword
UNPACKSN compiler predefine T4, T425, TB
USE compiler directive
VAL language keyword
VALOF language keyword
VECSPACE compiler keyword
WHILE language keyword
WORKSPACE compiler keyword

409

72 TDS 18400 April 1989

410

72 TDS 184 00

A Names defined by the software

April 1989

B Transputer instruction
support

This appendix contains the list of transputer instructions supported by the toolset
restricted code insertion facility, and gives the mnemonic for each instruction. All
the instructions listed can be inserted into occam programs using the GOY

construct.

These instructions are available when the compiler is targetted to an IMS T212,
T222, M212, T414, T425 or TeOO, unless otherwise indicated. Instructions that
are only supported when the compiler is targetted to the IMS TeOO, T425 and TC,
are given in separate sections. For the full instruction set the reader is referred
to the 'Transputer instruction set: a compiler writer's guide'.

B.1

ADC
AJW
CALL
CJ
EQC
J
LDC
LDL
LDLP
LDNL
LDNLP
NFIX
OPR
PFIX
STL
STNL

Direct functions

Add constant
Adjust workspace
Call
Conditional jump
Equals constant
Jump relative
Load constant
Load local
Load local pointer
Load non local
Load non local pointer
Negative prefix
Operate
Prefix
Store local
Store non local

72 TDS 18400 April 1989

412

B.2

ADD
BSUB
DIFF
GT
LB
PROD
REV
SUB
WSUB

B.3

Short indirect functions

Add
Byte subscript
Difference
Greater than
Load byte
Product
Reverse
Subtract
Word subscript

Long indirect functions

B Transputer instruction support

AND
BCNT
CCNT1
CFLERR

CSNGL
CSUBO
CWORD
DIV
FMUL

LADD
LDIFF"
LDINF
LDIV
LDPI
LDPRI
LDTIMER
LMUL
LSHL
LSHR
LSUB
LSUM
MINT
MOVE
MUL

72 TDS 184 00

And
Byte count
Check count from 1
Check single length floating point infinity or NaN
(T414, T425 and TB only)
Check single
Check subscript from 0
Check word
Divide
Fractional multiply
(T414, T425, T800, TA, TB and TC only)
Long add
Long difference
Load single length infinity (T414, T425 and TB only)
Long divide
Load pointer to instruction
Load current priority
Load timer
Long multiply
Long shift left
Long shift right
Long subtract
Long sum
Minimum integer
Move message
Multiply

April 1989

8.4 Additional instructions for IMS T425, T800 and TC 413

NORM
NOT
POSTNORMSN

OR
REM
ROUNDSN

SB
SETERR
SHL
SHR
STTIMER
SUM
TESTERR
TESTHALTERR
TESTPRANAL
UNPACKSN

WCNT
XDBLE
XOR
XWORD

Normalise
Not
Post-normalise correction of single length floating
point number (T414, T425 and TB only)
Or
Remainder
Round single length floating point number
(T414, T425 and TB only)
Store byte
Set error
Shift left
Shift right
Store timer
Sum
Test error false and clear
Test halt-on-error
Test processor analysing
Unpack single length floating point number
(T414, T425 and TB only)
Word count
Extend to double
Exclusive or
Extend to word

8.4 Additional instructions for IMS T425, T800 and TC

The following instructions are supported by the code insertion facility for IMS
T425, T800 and TC processors.

BITCNT
BITREVNBITS

BITREVWORD
CRCBYTE
CRCWORD
DUP
MOVE2DALL
MOVE2DINIT
MOVE2DNONZERO
MOVE2DZERO
WSUBDB

72 TDS 184 00

Count bits set in word
Reverse n bits in word (where 1 ~ n ~ 32)

Reverse all bits in word
Calculate CRC on byte
Calculate CRC on word
Duplicate top of stack
Two-dimensional block copy
Initialise data for two-dimensional block move
Two-dimensional block copy non zero bytes
Two-dimensional block copy zero bytes
Form double word subscript

April 1989

414 B Transputer instruction support

8.5 Additional instructions for IMS TaCC

The following IMS T800 instructions are supported by the code insertion facility.

FPADD
FPB32TOR64
FPCHKERR
FPDIV
FPDUP
FPEQ
FPGT
FPI32TOR32
FPI32TOR64
FPINT
FPLDNLADDDB
FPLDNLADDSN
FPLDNLDB
FPLDNLDBI
FPLDNLMULDB
FPLDNLMULSN
FPLDNLSN
FPLDNLSNI
FPLDZERODB'
FPLDZEROSN
FPMUL
FPNAN
FPNOTFINITE
FPORDERED
FPREMFIRST
FPREMSTEP
FPREV
FPRTOl32
FPSTNLDB
FPSTNLI32
FPSTNLSN
FPSUB
FPTESTERR
FPUABS
FPUCHKI32
FPUCHKI64

72 TDS 184 00

Floating point add
Bit32 to real64
Check floating error
Floating point divide
Floating duplicate
Floating point equality
Floating point greater than
Int32 to real32
Int32 to real64
Round to floating integer
Floating load non local and add double
Floating load non local and add single
Floating load non local double
Floating load non local indexed double
Floating load non local and multiply double
Floating load non local and multiply single
Floating load non local single
Floating load non local indexed single
Load zero double
Load zero single
Floating point multiply
Floating point NaN
Floating point finite
Floating point orderability
Floating point remainder first step
Floating point remainder iteration step
Floating reverse
Real to int32
Floating store non local double
Store non local int32
Floating store non local single
Floating point subtract
Test floating error false and clear
Floating point absolute
Check in range of type int32
Check in range of type int64

April 1989

8.5 Additional instructions for IMS T800 415

FPUCLRERR
FPUDIVBY2
FPUEXPDEC32
FPUEXPINC32
FPUMULBY2
FPUNOROUND
FPUR32TOR64
FPUR64ROR32
FPURM
FPURN
FPURP
FPURZ
FPUSETERR
FPUSQRTFIRST
FPUSQRTLAST
FPUSQRTSTEP

72 TDS 18400

Clear floating point error
Divide by 2.0
Divide by 2**32
Multiply by 2**32
Multiply by 2.0
Real64 to real32 without rounding
Real32 to real64
Real64 to real32
Set rounding mode to round minus
Set rounding mode to 'nearest'
Set rounding mode to round positive
Set rounding mode to round zero
Set floating point error
Floating point square root first step
Floating point square root end
Floating point square root step

April 1989

416

72 TDS 184 00

B Transputer instruction support

April 1989

C Constants
This appendix lists the constants provided with the occam libraries. The con­
stants are supplied in source files on the library search path and are given the
extension . inc (for 'include').

There are four separate files containing toolset constants, as follows:

File Contents
hostio.inc Hostio tag values and protocols
streamio.inc Streamio tag values
mathvals.inc Mathematical constants
linkaddr.inc Transputer link addresses

To use any of these files in a program, incorporate the file into the source using
the #INCLUDE directive as follows:

#INCLUDE "hostio.inc"

Constants must be declared before they are used in a program or library.

C.1 Hostio constants

-- SP protoco1
PROTOCOL SP XS XNT16::[]BYTE :

-- Command tags
-- va1ues up to 127 are reserved for use by XNMOS
-- Fi1e command tags
VAL sp.open.tag IS 10(BYTE)
VAL sp.c1ose.tag IS 11(BYTE)
VAL sp.read.tag XS 12(BYTE)
VAL sp.write.tag XS 13(BYTE)
VAL sp.gets.tag XS 14(BYTE)
VAL sp.puts.tag XS 15(BYTE)
VAL sp.f1ush.tag XS 16(BYTE)
VAL sp.seek.tag XS 17(BYTE)
VAL sp.te11.tag XS 18(BYTE)
VAL sp.eof.tag IS 19(BYTE)
VAL sp.ferror.taq IS 20(BYTE)
VAL sp.remove.taq IS 21(BYTE)
VAL sp.rename.tag IS 22(BYTE)

-- Bost command tags
VAL sp.getkey.tag IS 30(BYTE)
VAL sp.po11key.tag IS 31(BYTE)
VAL sp.getenv.tag IS 32(BYTE)
VAL sp.time.tag IS 33(BYTE)

72 TDS 184 00 April 1989

418

VAL sp.system.tag
VAL sp.exit.tag

:IS 34(BYTE)
:IS 35(BY'l'E)

C Constants

:IS sp.max.packet.data.size - 3

:IS sp.max.packet.data.size - 5

:IS sp.max.packet.data.size - 3

:IS sp.max.packet.data.size - 3

:IS sp.max.packet.data.size - 3

-- Server command tags
VAL sp.command1ine.tag IS 40(BYTE)
VAL sp.core.tag :IS 41(BYTE)
VAL sp.version.tag :IS 42(BYTE)

OS speci~ic command tags
These OS speci~ic tags wi11 be ~o11owed by
another tag indicating
which OS speci~ic ~unction is required

VAL sp.DOS.tag IS 50(BYTE)
VAL sp.BEL:IOS.tag :IS 51(BYTE)
VAL sp.VMS.tag :IS 52(BYTE)
VAL sp.SONOS.tag :IS 53(BY'l'E)

-- Command tags
-- Packet and bu~~er Sizes
VAL sp.max.packet.size :IS 512
-- bytes transferred, inc1udes 1ength , data
VAL sp.min.packet.size:IS 8:
-- bytes transferred, inc1udes 1ength , data

VAL sp.max.packet.data.size :IS sp.max.packet.size - 2
-- :INT16 1ength
VAL sp.min.packet.data.size :IS sp.min.packet.siz. - 2

:INT16 1ength

individua1 command maxima
VAL sp.max.openname.size :IS sp.max.packet.data.size - 5
-- 5 bytes extra
VAL sp.max.readbuffer.size :IS sp.max.packet.data.size - 3
-- 3 byte. extra
-- ditto for gets
VAL sp.max.writebuffer.size :IS sp.max.packet.data.size - 7
-- 7 byte. extra
-- ditto for puts
VAL sp.max.removename.size
-- 3 bytes extra
VAL sp.max.renamename.size
-- 5 bytes extra
VAL sp.max.qetenvname.size
-- 3 bytes extra
VAL sp.max.systemcommand.size
-- 3 bytes extra
VAL sp.max.corerequest.size
-- 3 bytes extra

VAL sp.max.bu~fer.size :IS sp.max.writebuffer.size
sma11er of read , write

Packet and buf~er Sizes
Resu1t va1ues (spr.)

72 TDS 18400 April 1989

C.1 Hostio constants

VAL spr.ok IS o(BYTE)

419

1 (BYTE)
2 (BYTE)

VAL spr.not.implemented IS
VAL spr.bad.name IS
-- filename is null
VAL spr.bad.type IS 3 (BYTE)
-- open file type is incorrect
VAL spr.bad . mode IS 4 (BYTE)
-- open file mode is incorrect
VAL spr.invalid.streamidcIS 5 (BYTE)
-- never opened that atreamid
VAL spr.bad.stream.use IS 6 (BYTE)
-- reading an output file, or vice versa
VAL spr.buffer.overflow IS 7 (BYTE)
-- buffer too small for required data
VAL spr.bad.packet.size IS 8 (BYTE)
-- data too big or small for packet
VAL spr.bad.origin IS 9 (BYTE)
-- seek origin is incorrect
VAL spr. notok IS 127 (BYTE) . I

-- a general fail result

-- anything 128 or above is a server dependent 'failure' result
VAL spr.operation.failed IS 128(BYTE)

-- Predefined streams (apid.)
VAL apid.stdin IS O(INT32)
VAL spid.stdout IS 1(INT32)
VAL spid.stderr IS 2 (INT32)

-- Open types (spt.)
VAL spt.binary IS l(BYTE)
VAL spt.text IS 2(BYTE) :

-- Open modes
VAL spm. input
VAL spm. output
VAL spm. append
VAL apm.existing.update
VAL spm.new.update
VAL spm.append.update

(spm.)
IS l(BYTE)
IS 2(BYTE)
IS 3(BYTE)
IS 4(BYTE)
IS 5(BYTE)
IS 6(BYTE)

-- Status values (sps.)
VAL sps.success IS 999999999 (INT32)
VAL sps.failure IS -999999999(INT32)

-- Seek origins (spo.)
VAL spo.start IS 1(INT32)
VAL apo.current IS 2 (INT32)
VAL spo.end IS 3(INT32) :

Version info~ation (sph., spo., spb.)
Bost types (sph.)
values up to 127 are reaerved for use by INMOS

VAL sph.PC IS l(BYTE) :

72 TDS 184 00 April 1989

420

VAL sph.DCPC :IS 2 (BYTE)
VAL sph.VAK :IS 3(BYTE)
VAL sph. SON3 :IS 4 (BYTE)
VAL sph. SON4 :IS 5 (BYTE)

-- OS ~ypes (spo.)
VAL spo.DOS :IS l(BYTE)
VAL spo. BEL:IOS :IS 2 (BYTE)
VAL spo.VMS :IS 3(BYTE) :
VAL spo.SONOS :IS 4(BYTE) :

va1ues up ~o 127 are reserved for use by XNMOS

C Constants

:In~erface Board ~ypes (spb.)
This de~ermines ~he in~erface be~ween ~he 1ink and the host

VAL spb.B004 :IS l(BYTE)
VAL spb.B008 :IS 2(BYTE)
VAL spb.B010 :IS 3 (BYTE)
VAL spb. B011 :IS 4 (BYTE)
VAL spb.B014 :IS 5 (BYTE)
VAL spb.DRXll :IS 6(BYTE)
VAL spb. QTO :IS 7 (BYTE)
-- va1ues up ~o 127 are reserved for use by :INMOS

-- Command 1ine
VAL sp. short. command1ine :IS BYTE 0
-- remove server's own arguments
VAL sp. who1.e . command1.ine :IS BYTE 1
-- inc1.ude server's own arguments

VAL spop~.n~ver :IS 0 :
-- va1uee for so.parse.command1ine
VAL spop~ •maybe :IS 1 :
-- indi'ca~e whether an option requires a fo1.1.owing
YAL epopt. al."aye :IS 2 :
-- parame~er

-- Time s~ring and date 1.enqths
VAL so.time.string.1.en :IS 19 :
-- enough for "BB:MN:SS DD/MM./YYYY"
VAL so.da~e.1.en :IS 6:
-- enough for DDMMYY (as integers)

-- Temp fi1.ename 1.enqth
VAL so.temp.fi1.ename.1.enqth :IS 6 :
-- six chars vi1.1. work on anything!

C.2 Streamio constants

VAL st.max.string.size :IS 256
VAL ft. terminated :IS -8
VAL ft.number.error :IS -11 :

PROTOCOL ItS IS INT:

72 TDS 184 00

used to terminate a keystream

April 1989

C.3 Maths constants

PROTOCOL SS
CASE

st.reset
st.up
st.down
st.1eft
at. right
at.goto; XNT32; XNT32
at.ina.char; BYTE
at . de1. char
at. out. atring; INT32::[]BYTE
st.c1ear.eo1
st.c1ear.eos
st.ins.1ine
st.de1.1ine
at.beep
st. spare
st.terminate
st.he1p
at.initia1is8
st.out.byte; BYTE
st.out.int; INT32
st.key.raw
st.key.cooked
st.re1ease
st.c1aim
st.endstream

C.3 Maths constants

-- REAL32 Constants

VAL REAL32 INFINITY RETYPES '7F800000(INT32)
VAL REAL32 MrNREAL RETYPES '00000001(XNT32)
VAL REAL32 MAXREAL RETYPES i7F7FFFFF(INT32)
-- 3.40282347 E+38
VAL REAL32 E RETYPES #402DF854(INT32)
-- 2.71828174 E+OO
VAL REAL32 PI RETYPES i40490FDB(INT32)
-- 3.14159274 E+OO
VAL REAL32 LOGE2 RETYPES #3F317218(INT32)
-- 6.93147182 E-01
VAL REAL32 LOG10E RETYPES #3EDE5BD9(INT32)
-- 4.34294492 E-01
VAL REAL32 ROOT2 RETYPES #3FB504F3(INT32)
-- 1.41421354 E+OO
VAL LOGEPI IS 1.1447298858(REAL32) :
VAL RADIAN IS 57.295779513(REAL32) :
VAL DEGREE IS 1.74532925199E-2(REAL32)
VAL GAMMA IS 0.5772156649(REAL32) :

72 TDS 184 00

421

April 1989

422

-- REAL64 Constants

C Constants

VAL REAL64 DrNFrNITY RETYPES #7FFOOOOOOOOOOOOO(INT64)
VAL REAL64 D~NREAL RETYPES #OOOOOOOOOOOOOOOl(INT64)
VAL REAL64 DMAXREAL RETYPES #7FEFFFFFFFFFFFFF(INT64)
-- 1.7976931348623157E+308
VAL RBAL64 DE RETYPES '4005BFOA8B145769(INT64)
-- 2.7182818284590451E+OOO
VAL REAL64 DPI RETYPES '400921FB54442D18 (INT64)
-- 3.1415926535897931B+000
VAL REAL64 DLOGE2 RETYPES '3FE62E42FEFA39EF(INT64)
-- 6.9314718055994529E-001
~ RBAL64 DLOG10B RETYPES '3FDBCB7B1526E50E(INT64) :
-- 4.3429448190325182E-001
VAL REAL64 DROOT2 RETYPES '3FF6A09E667F3BCD(INT64)
-- 1.4142135623730951E+OOO
~ DLOGEPI IS 1.1447298858494001741(REAL64) :
VAL DRADIAN IS 57.295779513082320877(REAL64) :
VAL DDEGREE IS 1.7453292519943295769E-2(REAL64)
VAL DGAMNA IS 0.57721566490153286061(REAL64) :

C.4 Transputer link addresses

VAL 1inkO.in :IS 4:
VAL 1inkO.out IS 0:

VAL 1ink1.in IS 5:
VAL 1ink1.out IS 1:

VAL l.ink2.in IS 6:
VAL 1ink2.out IS 2:

VAL 1ink3.in IS 7:
VAL 1ink3.out IS 3:

VAL event.in :IS 8:

72 TDS 184 00 April 1989

D ITERM
0.1 Introduction

This appendix describes the format of ITERM files; it is included for people who
need to write their own ITERM because they are using terminals that are not
supported by the standard ITERM file supplied with the toolset.

ITERMs are ASCII text files that describe the control sequences required to
drive terminals. Screen oriented applications that use ITERM files are terminal
independent.

ITERM files are similar in function to the UNIX termcap database and describe
input from, as well as output to, the terminal. They allow applications that use
function keys to be terminal independent and configurable.

Within the toolset, the ITERM file is only used by the debugger tool idebug
and the T414 simulator tool isim.

0.2 The structure of an ITERM file

An ITERM file consists of three sections. These are the host, screen and key­
board sections. Sections are introduced by a line beginning with the section
letters 'H', IS' or 'K'. Case is unimportant and the rest of the line is ignored. Sec­
tions consist of a number of lines beginning with a digit. A section is terminate~

by a line beginning with the letter 'E'.The host section must appear first; other
sections may appear in any order in the file. Sections must be separated by at
least one blank line.

The syntax of the lines that make up the body of a section is best described in
an example:

3:34,56,23,7. comments

Each line starts with the index number followed by a colon and a list of numbers
separated by commas. Each line is terminated by a full stop (' • ') and anything
following it is treated as a comment. Spaces are not allowed in the data string
and an entry cannot be split across more than one line.

Comment lines, beginning with the character 'I', may be placed anywhere in an
ITERM file. Extra blank lines in the file are ignored.

72 TDS 18400 April 1989

424 D ITERM

The index numbers in each section correspond to an agreed meaning for the
data. In the following sections the meaning of the data in each of the three
sections is described in detail.

0.3 The host definitions

D.3.1 ITERM version

This item identifies an ITERM file by version. It provides some protection against
incompatible future upgrades.

e.g. 1 :2.

0.3.2 Screen size

This item allows applications to find out the size of the terminal at startup time.
The data items are the number of columns and rows, in that order, available on
the current terminal.

e.g. 2: 80,25.

Screen locations should be numbered from 0, 0 by the application. Terminals
which use addressing from 1, 1 can be compensated for in the definition of goto
X, Y.

0.4 The screen definitions

The lists of values in the screen section represent control codes that perform
certain operations; the data values are ASCII codes to send to the display device.

ITERM version 2 defines the indices given in table 0.1. These definitions are
used in the example ITERM file; for a complete listing of the file see section 0.7.

For example, an entry like: '8: 27 , 91, 75.' indicates that an application should
output the ASCII sequence 'ESC [K' to the terminal output stream to clear to
end of line.

72 TDS 184 00 April 1989

0.5 The keyboard definitions 425

Index Screen operation Index Screen operation
1 cursor up 10 insert line
2 cursor down 11 delete line
3 cursor left 12 ring bell
4 cursor right 13 home and clear screen
5 goto x Y 20 enhance on
8 clear to end of line 21 enhance off
9 clear to end of screen

Table 0.1 ITERM screen operations

0.4.1 Goto X V processing

The entry for 5, 'goto X V', requires further interpretation by the application.
A typical entry for 'goto X Y' might be:,

5:27,-11,32,-21,32

The negative numbers relate to the arguments required for X and Y.

••• f -ab, nn, ...

where: a is the argume~t number (Le. 1 for X, 2 for V).

b controls the data output format.
If b=1 output is an ASCII byte (e.g. 33 is output as !).
If b=2 output is an ASCII number (e.g. 33 is output as 3 3).

nn is added to the argument before output.

As a complete example, consider the following ITERM entry in the screen section:

5:27,91,-22,1,59,-12,1,72. ansi cursor control

This would instruct an application wishing to move the terminal cursor to X=14,
Y=8 (relative to 0,0) to output the following bytes to the screen:

Bytes in decimal: 27 91 57 59 49 53 72
Bytes in ASCII: ESC [9 1 5 H

0.5 The keyboard definitions

Each index represents a single keyboard operation. The data specified after
each index defines the keystroke associated with that operation. Multiple entries

72 TDS 184 00 April 1989

426

for the same index indicate alternative keystrokes for the operation.

D ITERM

ITERM version 2 defines the indices given in table D.2. These definitions are
used in the example ITERM file; for a complete listing of the file see section D.7.

Index Function Index Function
1 return 36 get address!
2 delete code address
6 up 39 run/goto line
7 down 40 backtrace
8 left 41 inspect
9 right 42 channel

14 sol 43 top/step source
15 eol 44 retrace
18 line up 45 relocate/
19 line down walk source
20 page up 46 information/
21 page down breakpoint

26 enter file 47 search

27 exit file 48 links/go

28 refresh 49 monitor

29 change file 50 word left

31 finish/ 51 wordright
Monitor page 55 top of file

33 info 56 end of file
34 help

Table D.2 ITERM key operations

0.6 Setting up the ITERM environment variable

To use an ITERM the application has to find and read the file. An environment
variable (or logical name on VMS) called 'ITERM' should be set up with the
pathname of the file as its value. For example, under MS-DOS the command
would be:

C:\> set ITERM=C:\ITOOLS\TOOLS\IBMPC.ITM

Under UNIX you would set an environment variable. For example, the command
for csh users might be:

% setenv ITERM -/.iterm

72 TDS 18400 April 1989

0.7 An example ITERM

Under VMS you would define a logical name. For example:

$ DEFINE ITERM SYS$LOGIN:VT220.ITM

For more details see the Delivery Manual.

D.7 An example ITERM

This is the toolset ITERM file for the IBM PC using the ANSI screen driver.

427

iterm for ibm-pc (with ansi.ays)
support for d705 debugger and simulator

#
#
#
#
#
#
#
#

Vl.l - 16 March 89 (j3)

host section
1:2.
2:80,25.
end of host section

screen section
#
1:27,91,49,65.
2:27,91,49,66.
3:27,91,49,68.
4:27,91,49,67.
5:27,91,-22,1,59,-12,1,72.
8:27,91,75.
9:27,91,50,74.
#10 ansi.sys does
#11 not have these
12:7.
13:27,91,74.
end of screen section

keyboard section
IBM-PC KEY
2:127. # BACKSPACE
6:0,72. # UP
7:0,80. # DOWN
8:0,75. # LEFT

72 TDS 184 00

version
screen size

DEBUGGER

cursor left

goto x y
clear to eol
clear to eos
insert line
delete line
bell
clear screen

DEBUGGER
del char
cursor up
cursor down
cursor left

SIMULATOR
cursor up
cursor down
cursor left
cursor right
goto x y
clear to eol
clear to eos
insert line
delete line
bell
clear screen

SIMULATOR

cursor up
cursor down
cursor left

April 1989

428 D ITERM

9:0,77. # RIGHT cursor right cursor right
14:0,65. # F7 start of line start of line
15:0,66. # F8 end of line end of line
18:0,67. # F9 line up
19:0,68. # F10 line down
20:0,112. # ALT F9 page up page up
21:0,113. # ALT F10 page down page down
26:0,71. # KEYPAD 7 enter file
27:0,73. I KEYPAD 9 exit file
28:27. # ESC refresh refresh
29:0,85. # SHIFT F2 change file
31:0,117. # CTRL KEYPAD 1 finish monitor page
33:0,60. I F2 help
34:0,59. I F1 help help
36:0,63. # F5 get address code address
39:0,64. # F6 goto line
40:0,129. I ALT 0 backtrace backtrace
41:0,120. # ALT 1 inspect inspect
42:0,121. # ALT 2 channel channel
43:0,122. # ALT 3 top step source
44:0,123. # ALT 4 retrace retrace
45:0,124. # ALT 5 relocate walk source
46:0,125. # ALT 6 info breakpoint
47:0,126. # ALT 7 search search
48:0,127. # ALT 8 links go
49:0,128. # ALT9 monitor monitor
50:0,90. # SHIFT F7 word left
51:0,91. # SHIFT F8 word right
55:0,92. # SHIFT F9 top of file
56:0,93. # SHIFT F10 end of file
end of keyboard section

eof

72 TDS 184 00 April 1989

E Executable file format
This appendix describes the format of the executable image files that are pro­
duced by the bootstrap tool. These are:

• Bootable files which contain bootstrap code in addition to program code
and which can be loaded directly onto a transputer which boots from link.
These files have a •bxx file extension.

• Non-bootable files which contain only program code and can be used
for dynamic loading using the KERNEL. RUN program or for programs to
be loaded by code booted independently from ROM. These files have a
. rxx file extension.

E.1 Bootable files

The bootstrap tool can only be used to produce bootable files for programs that
are intended to run on a single processor.

A bootable file consists of three _parts:

1 The primary loader. This is used to initialise the transputer and call in
the secondary loader.

The length of the primary loader is determined by the first byte in the file
(which is unsigned), and cannot exceed 255 bytes. The bytes following
the length byte will be the primary loader, up to the length specified.

2 The secondary loader. This is used to load the program and set up the
parameters used to call the program. TM§e parameters are standard
for all bootable programs and cannot be altered; they are fixed into the
secondary loader's code.

For 32 bit transputers the length of the secondary loader is given by the
first four bytes (which are signed) after the end of the primary loader.
This 32 bit integer is represented in the same way as an occam INT32
type, with the least significant byte first.

For 16 bit transputers the length of the secondary loader is given by the
first two bytes (which are signed) after the end of the primary loader. This
16 bit integer is represented in the same way as an occam INT16 type,
with the least significant byte first. This means that on 16 bit transputers
the secondary loader cannot exceed 32K bytes in length.

The block of bytes following the length bytes is the secondary loader, up

72 TDS 184 00 April 1989

430 E Executable file format

to the length specified.

3 A series of 32 bit integers and BYTE blocks that represent program pa­
rameters, followed by the program code. The 32 bit integers are rep­
resented in the same way as an occam INT32 type, with the least
significant byte first. The integers provide data about the program which
is used by the secondary loader to set up the parameters for the call of
the program. The last word before the program block gives the size of
the program in bytes and is followed by the program code.

The Interface descriptor and Compiler id are included for compatibility
with other software such as the IMS 07000 Transputer Development
System (TDS). In files created by the toolset they are not used and are
represented by a pair of 32-bit integers with the value zero.

The sequence of data and code blocks in a bootable file is summarised in the
following table.

Type Value Unit

BYTE Primary loader code size bytes

[] BYTE Primary loader code block

INT32 Secondary loader code size bytes

orINT16 (for 16 bit transputers)

[] BYTE Secondary loader code block

INT32 Interface .descriptor size bytes

[] BYTE Interface descriptor

INT32 Compiler id size bytes

[] BYTE Compiler id

INT32 Target processor type

INT32 File format version

INT32 Program scalar workspace requirement words

INT32 Program vector workspace requirement words

INT32 C/FORTRAN/Pascal stack requirement words

INT32 Program entry point offset bytes

INT32 Program code size bytes

[] BYTE Program code block

The meanings of the INT32 parameters that precede the program block are
described below.

Target This value indicates the type of transputer for which the program was

72 TDS 18400 April 1989

E.2 Non-bootable files

compiled. The values it may take are given in the following table.

Value Meaning
2 T212, T222 or M212
4 T414
8 T800
9 T425

431

Version This value indicates the format version number of the file. If the value is
less than 10 there will be no vector workspace size or C/FORTRAN/Pascal
stack size values in the file. If the value is 10 there will be a vector
workspace size but no C/FORTRAN/Pascal stack size. If the value is 11
then there will be both vector workspace and C/FORTRAN/Pascal stack
sizes in the file. The toolset always produces files with a version number
of 10 or greater.

Scalar workspace This value specifies in words the size of the workspace re­
quired for the linked program's run time stack.

Vector workspace This value specifies in words the size of the workspace re­
quired for the linked program's vector (array) data. The vector workspace
is used by the program for storing the arrays and data structures that are
used during program execution, and is normally separate from the run­
time stack. This value will only be present in the code file if the version
number is 10 or 11.

Non-occam stack size This specifies the size of the separate run time stack,
in words, for non-OCCam code, as specified by the bootstrap IS' option.
This value will only be present in the code file if the version number is
11.

Entry point offset This value indicates the offset from the base of the code
block where the program starts. The value is given in bytes.

Code size The size of the program code block.

E.2 Non-bootable files

This format is produced by the omit bootstrap ('R') option. The format is identical
to that for bootable files, except that the primary and secondary loader parame­
ters and code blocks are omitted.

Non-bootable files can be loaded dynamically at run-time. They can also be
loaded and run on transputer boards that boot from ROM.

72 TDS 184 00 April 1989

432 E Executable file format

The sequence of data and code blocks in non-bootable files is summarised in
the following table.

Type Value Unit

INT32 Interface descriptor size bytes

[] BYTE Interface descriptor

INT32 Compiler id size bytes

[] BYTE Compiler id

INT32 Target processor type

INT32 Version number

INT32 Program scalar workspace requirement words

INT32 Program vector workspace requirement words

INT32 C/FORTRAN/Pascal stack size words

INT32 Program entry point offset bytes

INT32 Program code size bytes

[]BYTE Program code block

72 TDS 184 00 April 1989

F Host file server
protocol

This appendix describes the protocol of the host file server iserver.

F.1 The host file server iserver

The host file server iserver is implemented in C using ANSI standard run-time
libraries to facilitate porting to other machines. This provides an easy method
of porting the toolset (or programs written under the toolset) to new hosts. The
server can easily be extended to accomodate a new host, but at the risk of
unportability.

The source of the server and of the libraries used to communicate with the server
is supplied with the toolset.

F.2 The server protocol

Every communication to and from the server is a packet consisting of a counted
array of bytes. The count gives the length of the message and is sent in the first
two bytes of the packet as a signed 16 bit number. The structure of a server
packet is illustrated in figure F.1.

This protocol has been given the name SP, and is defined in occam as follows:

PROTOCOL SP IS INT16:: []BYTE :

F.2.1 Packet size

There is a maximum packet size of 512 bytes and a minimum packet size of 8
bytes in the to-server direction (Le. a minimum message length of 6 bytes). The
server may take advantage of this knowledge.

message of length bO + (256 * b1)

72 TDS 184 00

Figure F.1 SP protocol packet

April 1989

434 F Host file server protocol

The packet size must always be an even number of bytes. If the number of
bytes is odd a dummy byte is added to the end of the packet and the packet
byte count rounded up by one.

The hostio library contains routines that ensure that the size restrictions are met
when sending a packet to the server (see section F.3).

F.2.2 Protocol operation

Every request sent to the server receives a reply of the same protocol, in strict
sequence, and no further requests are accepted until the reply has been sent.

All integer types used by the protocol are signed and are little endian. Numbers
are transmitted as sequences of bytes (2 bytes for 16 bit numbers, 4 bytes
for 32 bit numbers) with the least significant byte first. Negative integers are
represented in 2s complement. Strings and other variable length blocks are
introduced by a 16 bit signed count.

All server calls return a result byte as the first item in the return packet. If the
operation succeeds the result byte is zero and if the operation fails the result
byte is non-zero. The result is one (1) in the special case where the operation
fails because the function is not implemented1• If the result is non-zero, some or
all of the return values may not be present, resulting in a smaller return packet
than if the call was successful.

F.3 The server libraries

The hostio library hostio . lib contains all the routines provided in the toolset
for communicating with the server. It contains a set of basic routines, hidden
from the user. from which the more complex user visible routines are built.

A naming convention has been adopted for the server libraries. The basic library
routines use the server protocol directly and map directly to server functions.
These have the prefix 'sp. '. Routines which use the basic routines and are
visible to the user have the prefix 'so. '. The 'so.' routines documented in this
manual use underlying 'sp.' routines, and in some cases the mapping is one
to one.

The source of the hostio library is provided with the toolset and serves as an
example of how to use the SP protocol.

If you add your own libraries for server functions you are recommended to keep

1Result values between 2 and 127 are defined to have particular meanings by occam
server libraries. Result values of 128 or above are specific to the implementation of a server.

72 TDS 184 00 April 1989

F.4 Porting the server

to the naming convention.

435

There are two 'sp.' library routines included to help you extend the set of
available routines. These are sp. send. packet and sp . receive. packet.
These are described below.

sp.send.packet

PROC sp.send.packet (CHAN OF SP ts,
VAL []BYTE packet,
BOOL error)

This procedure sends a packet on the channel ts, provided that it meets
the requirements for a SP protocol packet. If the requirements are not
met then the packet is not sent and error is set to FALSE.

sp.receive.packet

PROC sp.receive.packet (CHAN OF SP fs,
INT16 length,
[] BYTE packet,
BOOL error)

This procedure receives a packet on the channel fs. The value error
is set to FALSE if the packet exceeds the maximum packet size.

F.4 Porting the server

In order to port the iserver to a new machine you must have a C compiler
for that machine with ANSI standard libraries. A Makefile that can assist with
porting to a new machine is supplied on the toolset 'source' subdirectory.

The hostio library expects all the functions described below to be provided by
iserver.

F.5 Defined protocol

The functions provided by the iserver are split into three groups:

1 File commands, for interacting with files

2 Host commands, for interacting with the host

3 Server commands, for interacting with the server.

72 TDS 18400 April 1989

436 F Host file server protocol

In the descriptions that follow, the arguments and results of server calls are listed
in the order that they appear in the data part of the packet. The size of a packet
is the aggregated size of all the items in the packet, rounded up to an even
number of bytes. occam types are used to define data items within the packet.

F.5.1 Reserved values

INMOS reserves the following values for its own use:

• Function tags in the range 0 to 127 inclusive.

• Result values in the range 0 to 127 inclusive.

• Stream identifiers 0, 1 and 2.

Some commands may return particular values, which may be reserved. The
range of reserved values is given with each command as appropriate.

F.5.2 File commands·

Open files are identified with 32 bit descriptors. There are three predefined open
files:

o- standard input
1 - standard output
2 - standard error

If one of these is closed then it may not be reopened.

Fopen - Open a file

Synopsis: Streamld Fopen(Name, Type, Mode)

To server: BYTE
INT16:: []BYTE
BYTE
BYTE

Tag = 10
Name
Type = 1 or 2
Mode 1 ... 6

From server: BYTE
INT32

72 TDS 184 00

Result
Streamld

April 1989

F.5 Defined protocol 437

Fopen opens the file Name and, if successful, returns a stream identifier
Streamld.

Type can take one of two possible values:

1 Binary. The file will contain raw binary bytes.

2 Text. The file will be stored as text records. Text files are host­
specified.

Mode can have 6 possible values:

1 Open an existing file for input.

2 Create a new file, or truncate an existing one, for output.

3 Create a new file, or append to an existing one, for output.

4 Open an existing file for update (both reading and writing), starting
at the beginning of the file.

5 Create a new file, or truncate an existing one, for update.

6 Create a new file, of append to an existing one, for update.

When a file is opened for update (one of the last three modes above) then
the resulting stream may be used for input or output. There are restric­
tions, however. An output operation may not follow an input operation
without an intervening Fseek, Ftell or Fflush operation.

The number of streams that may be open at one time is host-specified,
but will not be less than eight (including the three predefines).

Fclose - Close a file

Synopsis: Fclose(Streamld)

To server: BYTE
INT32

From server: BYTE

Tag = 11
Streamld

Result

Fclose closes a stream Streamld which should be open for input or out­
put. Fclose flushes any unwritten data and discards any unread buffered
input before closing the stream.

72 TDS 18400 April 1989

438

Fread - Read a block of data

F Host file server protocol

Synopsis: Data Fread(StreamId, Count)

To server: BYTE Tag = 12
INT32 StreamId
INT16 Count

From server: BYTE Result
INT16: : [] BYTE Data

Fread reads Count bytes of binary data from the specified stream. Input
stops when the specified number of bytes are read, or the end of file is
reached, or an error occurs. If Count is less than one then no input is
performed. The stream is left positioned immediately after the data read.
If an error occurs the stream position is undefined.

Result is always zero. The actual number of bytes returned may be
less than requested and Feof and Ferror should be used to check for
status.

Fwrite - Write a block of data

S·ynopsis: Written = Fwrite(StreamId, Data)

To server:

From server:

BYTE
INT32
INT16:: []BYTE

BYTE
INT16

Tag = 13
StreamId
Data

Result
Written

Fwrite writes a given number of bytes of binary data to the specified
stream, which should be open for output. If the length of Data is less
than zero then no output is performed. The position of the stream is
advanced by the number of bytes actually written. If an error occurs then
the resulting position is undefined.

Fwrite returns the number of bytes actually output in Written. Result
is always zero. The actual number of bytes returned may be less than
requested and Feof and Ferror should be used to check for status.

72 TDS 184 00 April 1989

F.5 Defined protocol 439

If Streamld is 1 (standard output) or 2 (standard error) then the write
is automatically flushed.

Fgets - Read a line

Synopsis: Data = Fgets(Streamld, Count)

To server:

From server:

BYTE
INT32
INT16

BYTE
INT16: : [] BYTE

Tag = 14
Streamld
Count

Result
Data

Fgets reads a line from a stream which must be open for input. Charac­
ters are read until end of file is reached, a newline character is seen or
the number of characters read is not less than Count.

If the input is terminated because a newline is seen then the newline
sequence is not included in the returned array.

If end of file is encountered and nothing has been read from the stream
then Fgets fails.

Fputs - Write a line

Synopsis: Fputs(Streamld, String

To server:

From server:

BYTE
INT32
INT16: : [] BYTE

BYTE

Tag = 15
Streamld
String

Result

Fputs writes a line of text to a stream which must be open for output.
The host-specified convention for newline will be appended to the line
and output to the file. The maximum line length is host-specified.

72 TDS 184 00 April 1989

440

Fflush - Flush a stream

Synopsis:

F Host file server protocol

Fflush(Streamld)

To server: BYTE
INT32

From server: BYTE

Tag = 16
Streamld

Result

Fflush flushes the specified stream, which should be open for output. Any
internally buffered data is written to the destination device. The stream
remains open.

Fseek - Set position in a file

Synopsis: Fseek(Streamld, Offset, Origin)

To server: BYTE
INT32
INT32
INT32

From server: BYTE

Tag = 17
Streamld
Offset
Origin

Result

Fseek sets the file position for the specified stream. A subsequent read
or write will access data at the new position.

For a binary file the new position will be Offset characters from Origin
which may take one of three values:

1 Set, the beginning of the file

2 Current, the current position in the file

3 End, the end of the file.

For a text stream, Offset must be zero or a value returned by Ftell. If
the latter is used then Origin must be set to 1.

72 TDS 184 00 April 1989

F.5 Defined protocol

Ftell - Find out position in a file

441

Synopsis: Position

To server: BYTE
INT32

From server: BYTE
INT32

Ftell(Streamld

Tag = 18
Streamld

Result
Position

Ftell returns the current file position for Streamld.

Feof - Test for end of file

Synopsis: Feof(Streamld

To server: BYTE
INT32

From server: BYTE

Tag = 19
Streamld

Result

Feof succeeds if the end of file indicator for Streamld is set.

Ferror - Get file error status

Synopsis: ErrorNo, Message = Ferror(Streamld)

To server:

From server:

BYTE
INT32

BYTE
INT32
INT16: : [] BYTE

Tag = 20
Streamld

Result
ErrorNo
Message

Ferror succeeds if the error indicator for Streamld is set. If it is, Fer­
ror returns a host-defined error number and a (possibly null) message
corresponding to the last file error on the specified stream.

72 TDS 184 00 April 1989

442

Remove - Delete a file

F Host file server protocol

Synopsis:

To server:

From server:

Remove(Name)

BYTE
INT16: : [] BYTE

BYTE

Tag = 21
Name

Result

Remove deletes the named file.

Rename - Rename a file

Synopsis: Rename(OldName, NewName

To server:

From server:

BYTE
INT16: : [] BYTE
INT16: : [] BYTE

BYTE

Tag = 22
OldName
NewName

Result

Rename changes the name of an existing file OldName to NewName.

F.5.3 Host commands

Getkey - Get a keystroke

Synopsis: Key GetKey()

To server: BYTE Tag = 30

From server: BYTE Result
BYTE Key

GetKey gets a single character from the keyboard. The keystroke is
waited on indefinitely and will not be echoed. The effect on any buffered
data in the standard input stream is host-defined.

72 TDS 18400 April 1989

F.5 Defined protocol

Pollkey - Test for a key

443

Synopsis: Key = PollKey ()

To server: BYTE

From server: BYTE
BYTE

Tag = 31

Result
Key

PollKey gets a single character from the keyboard. If a keystroke is not
available then PolIKey returns immediately with a non-zero result. If a
keystroke is available it will not be echoed. The effect on any buffered
data in the standard input stream is host-defined.

Getenv - Get environment variable

Synopsis: Value = Getenv(Name

To server:

From server:

BYTE
INT16: : [] BYTE

BYTE
INT16: : [] BYTE

Tag = 32
Name

Result
Value

Getenv returns a host-defined environment string for Name. If Name is
undefined then Result will be non-zero.

Time - Get the time of day

Synopsis: LocalTime, UTCTime = Time()

To server: BYTE Tag 33

From server: BYTE
INT32
INT32

Result
LocalTime
UTCTime

Time returns the local time and Coordinated Universal Time if it is avail­
able. Both times are expressed as the number of seconds that have
elapsed since midnight on 1st January, 1970. If UTC time is unavailable
then it will have a value of zero.

72 TDS 184 00 April 1989

444

System - Run a command

F Host file server protocol

Synopsis: Status System (Command

To server:

From server:

BYTE
INT16: : [] BYTE

BYTE
INT32

Tag = 34
Command

Result
Status

System passes the string Command to the host command processor for
execution. If Command is zero length then System will succeed if there
is a command processor. If Command is not null then Status is the
return value of the command, which is host-defined.

F.5.4 Server commands

Exit - Terminate the server

Synopsis: Exit(Status)

To server: BYTE
INT32

From server: BYTE

Tag = 3S
Status

Result

Exit terminates the server, which exits returning Status to its caller.

If Status has the special value 999999999 then the server will terminate
with a host-specific 'success' result.

If Status has the special value -999999999 then the server will termi­
nate with a host-specific 'failure' result.

72 TDS 18400 April 1989

F.5 Defined protocol

CommandLine - Retrieve the server command line

445

Synopsis:

To server:

String

BYTE
BYTE

CommandLine (All

Tag = 40
All

From server: BYTE
INT16: : [] BYTE

Result
String

CommandLine returns the command line passed to the server on invo­
cation.

If All is zero the returned string is the command line, with arguments
that the server recognised at startup removed.

If All is non-zero then the string returned is the entire command vector
as passed to the server on startup, including the name of the server
command itself.

Core - Read peeked memory

Synopsis

To server:

Data

BYTE
INT32
INT16

Core(Offset, Length

Tag = 41
Offset
Length

From server: BYTE
INT16: : [] BYTE

Result
Core

Core returns the contents of the root transputer's memory, as peeked
from the transputer when the server was invoked with the analyse option.

Core fails if Offset is larger than the amount of memory peeked from
the transputer or if the transputer was not analysed.

If Offset + Length is larger than the total amount of memory that
was peeked then as many bytes as are available from the given offset
are returned.

72 TDS 184 00 April 1989

446

Version - Find out about the server

F Host file server protocol

Synopsis: Id = Version()

To server: BYTE

From server: BYTE
BYTE
BYTE
BYTE
BYTE

Tag = 42

Result
Version
Host
OS
Board

Version returns four bytes containing identification information about the
server and the host it is running on.

If any of the bytes has the value 0 then that information is not available.

Version identifies the server version. The byte value should be divided
by ten to yield the version number.

Host identifies the host machine and can be any of the following:

1 PC

2 NEC-PC

3 VAX

4 Sun-3

5 370 Architecture

OS identifies the host environment and can be any of the following:

1 DOS

2 Helios

3 VMS

4 SunOS

5 CMS

Board identifies the interface board and can be any of the following:

1 8004

72 TDS 18400 April 1989

F.5 Defined protocol 447

2 B008

3 B010

4 B011

5 B014

6 DRX-11

7 QTO

8 B015

9 CAT

Values of Host, OS and Board from 0 to 127, inclusive, are reserved for use
by INMOS.

72 TDS 184 00 April 1989

448

72 TDS 18400

F Host file server protocol

April 1989

G Glossary
Alias check A program compilation check that ensures that names are unique

within a given scope.

Analyse To assert a signal to a transputer forcing it to halt at the next deschedul­
ing point, to allow the state of the processor to be read. In the context
of 'analysing a network', to analyse all processors in the network.

Also refers to one of the system control functions on transputers and the
pin on which the function is asserted.

Backtrace Within the debugger an simulator tools, to move from a position within
a procedure or function body to the call of that procedure or function.

Bootable code Self-starting program code, that can be loaded onto a transputer
or transputer network down a transputer link and run. Bootable code
is produced by iboot for single transputer programs and iconf for
multitransputer programs.

Bootstrap A transputer program, loaded from a ROM or over a link after the
transputer has been reset or analysed, which initialises the processor
and loads a program for execution (which may be another loader).

Compiler library A group of occam library routines that are used by the com­
piler to implement extended arithmetic and transputer system operations.

Configuration The association of components of an occam program with a
set of physical resources. Used in this manual to refer to the specific
case of allocating occam processes to processors in a network, and
channels to links between processors. The term is also used, depending
on the context, to describe the act of deciding on these allocations for
a program, the occam code which describes such a set of allocations,
and the act of applying the configurer to a network description.

Configurer The tool which assigns processes and channels on a specified con­
figuration of transputers. The output from the tool is a bootable program.

Deadlock A state in which one or more concurrent processes can no longer
proceed because of a communication interdependency.

72 TDS 18400 April 1989

450 G Glossary

Error mode The compilation mode of a program that determines what happens
when a program error (such as an array bounds violation) occurs. A
program compiled using the toolsetmay be compiled in one of four error
modes: HALT, STOP, UNDEFINED, or UNIVERSAL.

Error signal In the transputer, an external signal used to indicate that an error
has occurred in a running program. Also refers to one of the system
control functions on transputers. Error signals can be OR-ed together
on transputer boards to indicate an error has occurred in one of the
transputers in the network.

Extended data types occam data types INT16, INT32, INT64, REAL32
and REAL64.

Hard channels Channels which are mapped onto links between processors in
a transputer network (cf. Soft channels).

Host The computer which is running the toolset host file server and providing
the filing system and terminal ito.

Host file server A file server which provides access to the filing system and
terminal ito of a host operating system, which may be used when running
standalone programs. The' toolset host file server is distinct from that
used to run the Transputer Development System (TDS).

Include 'ile A file containing source code which is incorporated into a program
using the #INCLUDE directive. Include files that contain only declara­
tions by convention are given the • inc extension.

Library A collection of separately compiled procedures or functions, created by
the toolset librarian ilibr, which may be shared between parts of a
program or between different programs.

Library build file A file containing a list of input files for the librarian tool ilibr.
Each file forms a separately loadable module in the library. Library build
files must have the . Ibb extension.

Library usage file A file listing the libraries and separately compiled units used
by another library. Library usage files must have the . liu extension.

72 TDS 18400 April 1989

Glossary G 451

Link In the context of transputer hardware, the serial communication link be­
tween processors. Used as a verb in the context of program compilation,
to collect together all the code for a program or compilation unit, resolving
all references and recompiling where necessary, and place the collected
code into a single file.

Linker The program or tool which links a program or compilation unit.

Loader Depending on the context, refers to the part of the host file server which
loads a transputer network or to a small program which is loaded into
a transputer, and which then distributes code to other transputers and
loads a larger program on top of itself.

Makefile An input file for a Make program. A Makefile contains details of file
dependencies and directions for rebuilding the object code. Makefiles
are created for the toolset using imakef.

Network A set of transputers connected together using links as a connected
graph, that is, in such a way that there is a path, via links and other
transputers, from each transputer to every other transputer in the set.

Newline sequence The sequence of ASCII characters, defined within the host
file server, that directs a new line to be started on the terminal display or
within a file. Defined for the toolset as the sequence 'CA LF'.

Object code Intermediate code between occam source and bootable files. Ob­
ject code cannot be directly loaded onto a transputer and run. The com­
pilerand linker tools generate object code.

Peek and poke To read and write locations in a transputer's memory, by com­
munication over a link, while the transputer is waiting for a bootstrap.

Preamble The part of a transputer loader program that initialises the state of the
processor.

72 TDS 18400 April 1989

452 G Glossary

Priority In the transputer, the priority level at which the currently executing pro­
cess is being run. The IMS T800, IMS T425, IMS T414 and the IMS
T212 all support two levels of priority, known as 'high' and 'Iow'.

Process Self-contained, independently executable occam code.

Protocol The pattern of communications between two processes, often includ­
ing communications on more than one channel. When appearing as
PROTOCOL, refers to a specific communication structure on an occam
channel (see the 'occam 2 Reference Manua/').

Reset The transputer system initialisation control signal. Also refers to the pin
on which the signal is asserted.

Root transputer (or Root processor) The processor in a transputer network
which is physically connected to the host computer, and through which
the network is loaded or analysed.

Separate compilation A self-contained part of a program may be separately
compiled, so that only those parts of a program which have changed
since the last compilation need to be recompiled.

Server A program running in the host computer attached to a transputer network,
which provides access to the filing system and terminal i/o of the host
computer. The server can also be used to load the program onto the
network.

Soft channels Channels declared and used within a process running on a single
transputer. (cf. Hard channels). Soft channels are implemented by a
single word in memory.

Standard error The host system error handler. Errors directed to standard error
are displayed in a host-defined way, for example, on the terminal screen.
For details of how to modify standard error on the system, consult the
operating system documentation.

Standard input The host system input handler. Specifies the standard input
device, for example the terminal keyboard or a disk file. For details of
how to modify standard input on the system, consult the operating system
documentation.

Standard output The host system output handler. Specifies the standard output
device, for example, the terminal screen or a disk file. For details of how

72 TDS 184 00 April 1989

Glossary G 453

to modify standard input on the system, consult the operating system
documentation.

Subsystem In transputer board architecture, the combination of the Reset, Anal­
yse and Error signals which allows the board to control another board on
its subsystem port.

Target transputer The transputer on which the code is intended to run. The
transputer type, or a restricted set of types defined in a transputer class,
is defined when the program is compiled, using command line options.

Usage check A compilation check that ensures no variables are shared between
parallel processes, and that enforces rules about the use of channels as
unidirectional point-to-point connections.

Vector space The data space required for ·the storage of vectors (arrays) within
an occam program.

Workspace The data space required by an occam process; when used in
contrast to Vector space, refers to the data space required for scalars
within the process.

72 TDS 184 00 April 1989

454

72 TDS 184 00

G Glossary

April 1989

H Bibliography
This appendix contains a list of some transputer-related publications which may
be of interest to the reader.

H.1 INMOS publications

D Pountain and D May
A tutorial introduction to occam programming
Blackwell Scientific 1987.

INMOS
occam 2 Reference Manual
Prentice Hall 1988.

INMOS
occam
Keigaku Shuppan Publishing Company 1984
(In Japanese)

INMOS
Transputer reference manual
Prentice Hall 1988

INMOS
Transputer development system
Prentice Hall 1988

INMOS
Transputer instruction set: a compiler writer's guide
Prentice Hall 1988

H.2 INMOS technical notes

R Shepherd
Extraordinary use of transputer links
Technical note 1
72 TCH 001

P Moore
IMS 8010 NEe add-in board
Technical note 8
72 TCH 008

72 TDS 18400 April 1989

456

S Ghee
IMS B004 IBM PC add-in board
Technical note 11
72 TCH 011

P Atkin
Performance maximisation
Technical note 17
72TCH017

N Miller
Exploring Multiple Transputer Arrays
Technical note 24
72 TCH 024

G Harriman
Notes on graphics support and performance
improvements on the IMS TBOO
Technical note 26
72 TCH 026

R Shepherd and P Thompson
Lies, damned lies, and benchmarks
Technical note 27
72 TCH 027

R Shepherd
.Security aspects of occam 2
Technical note 32
72 TCH 032

J M Wilson
Analysing transputer networks
Technical note 33
72 TCH 033

J M Wilson
Loading transputer networks
Technical note 34
72 TCH 034

H Bibliography

S Redfern
Implementing data structures and recursion in occam
Technical note 38
72 TCH 038

72 TDS 184 00 April 1989

H.2 INMOS technical notes

T Watson
Module motherboard architecture
Technical note 49
72 TCH 049

J Packer
Simple real-time programming with the transputer
Technical note 51
72 TCH 051

A Hamilton
Using the D7058 occam toolset with non-OCCam applications
Technical note 55
72 TCH 055

457

72 TDS 184 00 April 1989

458

72 TDS 184 00

H Bibliography

April 1989

Index

inmess 127
outbyte 127

- outmess 127
- outword 127
iCOMMENT 302
#IMPORT 110, 301
#INCLUDE 44,300

in configuration code 176, 178
#OPTION 303
#se 304,309

in library files 227
#USE 44, 47, 301

configuring programs 60
in configuration code 176, 178

0/0 278
2D block move 319, 322

Abbreviation checking 168, 307
Abbreviations 211

in arrays 311
Aborting programs 32
ABS 320
ACOS 328
af.to.sp 361
AFSERVER 361
Alias checking 41, 168, 296, 303
Alignment 137, 311
Allocation 135
ALOG 327
ALOG10 327
ALT 94
Analyse 73, 75, 187
Analyse 137,212
ANSI 427, 433
ANSI screen protocol 367
append. char 381
append.hex.int 382
append.hex.int64 382
append. int 381
append. int64 381
append.rea132 382
append.rea164 382

72 TDS 184 00

append. text 381
ARGUMENT.REDUCE 320
Arithmetic error 78, 210
Array accesses 210
ASHIFTLEFT 322
ASHIFTRIGHT 322
ASIN 328
Assembly code 139, 311, 411
ATAN 328
ATAN2 329

IBACKTRACEI 88, 194, 213, 285
Backtracing 213
Binary byte stream 333
Binary lister 16, 247
Bit manipulation 319, 323
BITCOUNT 323
BITREVNBITS 324
BITREVWORD 324
Block CRC library 390

introduction 20
Board connections 73
BOOLTOSTRING 388
Boot from link boards 72
Boot from ROM 431
Boot from ROM boards 72
Bootable code 155
Bootable files 429
Bootable programs 32, 269
Bootstrap code 156
Bootstrap loaders 158

creation 161
Bootstrap tool 15, 155
IBOTTOM OF FILEI 90, 195, 285
Break key 32, 290
Break points 97, 99, 280, 286
Buffer sizes

linker 239
Buffering processes 105
Buffers 359
Building libraries 227

hints 227

April 1989

460

rules 227

C
entries in Makefile 264

C channel communication 127
C programming 107
C run time library 330
Calling occam procedures 131
Caplin QTO 345
CASE 91
CAUSEERROR 152
CHAN OF ANY 312
Change control 46
ICHANGE FILEI 90, 194, 285
Changing values 98
CHANINMESS 128
ICHANNELI 192, 285
Channelchec~ng 41
Channel communication 125
Channel protocols 128
Channel routines 126
Channel usage 42
Channels

mixed language programs 125
reserved 111

CHANOUTBYTE 127
CHANOUTMESSAGE 128
CHANOUTWORD 128
char.pos 379
Character identification 377
Check

network topology 199
occam source 30, 139

Checker 165
CLIP2D 323
Clock 311
Clock rate 311
Code allocation 135
Code dump data 254
ICODE INFORMATIONI 90, 194, 285
Code insertion 135, 138, 303, 411
Code size 430
Command line 341, 342
COMMENT directive 302
COMMON 238
Communications 211

72 TDS 18400

Index

Compare memory 199
compare.strings 378
Compilation

order of 299
Compilation error modes 40, 293,

298
Compilation targets 37, 295
Compilation unit 44
Compiler 17

C 435
directives 299
file names 294
occam 293
options 296

Compiler directives 293
Compiler errors 312
Compiler keyword 397
Compiler libraries 296, 319

introduction 18
locating 18
predefined names 397
user functions 319

Compiler parameters 37
Compiler predefine 397
Compiling

example 85
Configuration 59, 60, 61, 173

error modes 174
introduction 59
referencing code 176
referencing source 176
summary 69

Configuration description 176
summary 178

Configuration language 176
Configuration map 174
Configurer 15, 61, 173
Connecting a network 73
Connecting boards together 73
Constants 318

files 18
predefined 417
sharing 45

Conventions
command line 23
file extensions 24

April 1989

Index

filenames 24
options 23
used by toolset 22
used in manual 3

COPYSIGN 320
COS 328
COSH 329
CRC 324
CRC library 390
CRCBYTE 324
CRCFROMLSB 390
CRCFROMMSB 390
CRCWORD 324
ICURSOR DOWNI 208
ICURSOR LEFTI 209
Cursor positioning 425
ICURSOR RIGHTI 209
ICURSOR upl 208

DABS 321
DACOS 328
DALOG 327
DALOG10 327
DARGUMENT.REDUCE 321
DASIN 328
Data representation 310
DATAN 328
DATAN2 329
Date 358
DCOPYSIGN 321
DCOS 328
DCOSH 329
DDIVBY2 321
Deadlock 91
debug. timer 394
Debugger 15,77, 183

hints 91
Monitor page 195
symbolic functions 190

Debugging
assembly level 81
8004 boards 186
backtracing procedures 88
dummy network 186
example 81
from network dump 185

72 TDS 184 00

461

Goto process 89
inspecting channels 87, 192
inspecting memory 192
inspecting variables 87
low level 81
non-OCCam programs 80
process queues 88
tracing processes 88
transputer boards 74

Debugging data 77,211, 253, 296
removing from libraries 225

Debugging programs 77
DEC VAX 345
delete. string 380
DEXP 327
DFLOATING.UNPACK 321
DFPINT 321
DIEEECOMPARE 321
Direct functions 411
Directives 299, 311, 397
Directory path 24
Disassembly 200, 280
DISNAN 321
Displaying object code 31, 247
Displaying procedures 283
DIVBY2 320
DLOGB 321
DMINUSX 321
DMULBY2 321
DNEXTAFTER 321
DNOTFINITE 321
DORDERED 321
DOS 13, 21, 22, 103, 345
Down 73
DPOWER 327
DRAN 329
DRAW2D 323
DRX-11 345
DSCALEB 321
DSIN 327
DSINH 329
DSQRT 321
DTAN 328
DTANH 329
Dummy network 186
Dynamic code loading 135, 141

April 1989

462

Dynamic loading
generating code 156

Echoed keyboard input 347
Elementary functions 325
End of file 338
IENTER FILEI 90, 195, 285
Entry point 430
Entry point data 250
Environment variables 22, 86, 343,

426
eqstr 378
Equivalent occam process 108
Error 73
Error 137
Error flag 152

setting 135
Error handling 27
Error messages

format 27, 167
iboot 161
icheck 170
iconf 179
idebuq 214
idump 222
ilibr 228
ilink 241
ilist 255
imakef 265
iserver 273
isim 287
iskip 291
occam 312

Error modes 40
HALT 298
mixing 40
selective loading 226
STOP 298
UNDEFINED 298
UNIVERSAL 298

Error signal 73
Event 137,203
Examining links 282
Examples

analysing deadlock 91
compiling a program 85

72 TDS 184 00

Index

debugging 81
dynamic code loading 144
hello name 34
multiple transputer 62
pipeline sorter 49
placing channels 137
resetting 8004 138
simulator 98
single transputer 33
type 1 interface 114
type 2 interface 118
type 3 interface 124
debugex.occ 81
iskip 75
simple.occ 33
sorter.occ 49,62

Execution modes 40
IEXIT FILEI 90, 195, 285
EXP 327
Extended data types 319
Extending Iinker capacity 236
External bootstrap loaders 160
External reference data 251
Extraordinary link handling library

391
introduction 20

Extraordinary use of links 1.35, 148,
391

File access 331
File access errors 338
File deletion 339
File extensions

conventions 24
summary 25

File formats 429
File output 352
File positioning 337
File renaming 339
Filenames 24

conventions 24
permitted characters 24

IFINISHI 194
Floating point arithmetic 319
FLOATING. UNPACK 320

April 1989

Index

FORTRAN
entries in Makefile 264

FORTRAN channel communication
127

FORTRAN programming 107
FPINT 320
Free memory 30
Free memory buffer 159

IGET ADDREssl 90, 194, 285
Global data 255
IGOTO L1NEI 90, 195, 285
Goto process 201
GUY 167,297, 311
GUY code 311

HALT mode 40
in configuration code 174
in debugging 77

Halt system error mode 271
HaltOnError 40
Hard channels 136, 178
Heap requirements 111
HELlOS 345
IHELPI 209
HEX16TOSTRING 386
HEX32TOSTRING 387
HEX64TOSTRING 387
HEXTOSTRING 386
Host dependencies 21
Host file server 16, 269

file commands 436
host commands 442
interrupting 271
introduction 101
protocol 433
server commands 444

Host file server library 330
Host library support 102
Host services

access to 101
Host system call 343
Host variables 22
Host versions 21
Hostio library 330

introduction 19

72 TOS 18400

463

hostio.inc 102
hostio.lib 102,269
Hyperbolic functions 329

IBM PC 21, 103, 345, 427
IBOARDSIZE 22,86,113,186

calculating free memory 30, 159
iboot 71, 155
icheck 165
iconf 61, 173
idebug 183
idump 86, 221, 270

use in debugging 185
IEEE floating point arithmetic 319
IEEE320P 320
IEEE640P 321
IEEECOMPARE 320
IF 91
ilibr 223

indirect input 224
ilink 231

indirect input 235
ilist 247,318
imakef 46,58,85,259,293

command syntax 261
file extensions 295

Implementation differences 21
IMPORT directive 301
IMS B001 393
IMS B002 72, 393
IMS B004 74, 137, 186,345
IMS B006 72, 393
IMS B008 72, 345
IMS B010 345
IMS B011 345
IMS B014 72, 345
IMS B404 188
IMS 07000 300, 304, 362
IMS T425 413
IMS TeOO 413,414
INCLUDE directive 300
Indirect functions 412
IINFol 90, 193, 285
inmess 126
inmess 128
InputOrFail.c 392

April 1989

464

InputOrFail.t 391
insert.string 380
UNSPECTI 87, 190, 285
Inspect 202
Inspecting memory 282
Instruction pointer 80, 81, 94, 195
INT16TOSTRING 386
INT32TOSTRING 386
INT64TOSTRING 386
Interrupting programs 32
INTTOSTRING 386
Invalid pointers 94
10 library 397
Iptr 195
is.digit 377
is.hex.digit 377
is . id. char 378
is.in.range 377
is . lower 377
is . upper 377
ISEARCH 18,22,24,27,335

compiler libraries 319
iserver 71, 269
isim 277
iskip 71, 289

example 75
use in debugging 185

ISNAN 320
ITERM 22,86,186,278
ITERM file 423

use by simulator 278
version 424

Jump
code insertion 140

KERNEL. RUN 141
Keyboard definitions 425
Keyboard input 346, 364
Keyboard polling 347
Keystream input 367
Keystream protocol 362
Keyword 397
ks 362
ks.keystream.sink 365

72 TDS 18400

Index

ks.keystream.to.scrstream
365

ks.read.char 368
ks.read.int 368
ks.read.int64 368
ks.read.line 368
ks.read.rea132 368
ks.read.rea164 369

Labels
code insertion 140

Language keyword 397
Languages

scientific 107
Large programs 46
Librarian 16, 223

error messages 228
Libraries 227, 299, 317

block CRC 20
building 48, 227
compiler 319
compiler support 397
disassembling 224
displaying 318
double length 326
exploding 224
extraordinary link handling 20, 391
hostio 19, 330
i/o 19
in configuration code 178
introduction 17
linking 48
maths 325
modules 226
optimised for T414/425 325
process 20, 393
removing debug data 225
selective loading 226
single length 326
standard 20
streamio 19, 362
string handling 20, 375
summary 18
T414/425 maths 325
T4141T425 maths 19
type conversion 20, 384

April 1989

Index

using 47
Library build files 224
Library indirect files 224
Library usage files 226

creating 265
ILlNE DOWNI 209
Line parsing 383
ILlNE upl 209
Link

dangling 178
Link address 271
Link failure 391
Link handling library 391
Link map 232
Linker 16, 231

error messages 241
memory requirements 239

Linker indirect files 235
Linker options 236
Linking

libraries 48
Linking programs

for configuration 60
introduction 31

ILlNKSI 90, 194, 285
Links 203, 282

communications failure 150
dangling 178

Load from file and run 145
Load from link and run 144
LOAD.BYTE.VECTOR 141
LOAD.INPUT.CHANNEL 141
LOAD.INPUT.CHANNEL.VECTOR

141
LOAD •OUTPUT. CHANNEL 141
LOAD.OUTPUT.CHANNEL.VECTOR

141
Loading 71
Loading programs 71, 32, 269

mechanism 72
on networks 61
onto sub-networks 72
iskip 291

Locate 79
LOGB 320
Logical name 426

72 TDS 18400

465

Long integers 322
LONGADD 322
LONGDIFF 322
LONGDIV 322
LONGPROD 322
LONGSUB 322
LONGSUM 322
Lower case 377, 381

M212 293
MAIN. ENTRY 109

procedure interface 113
MAKE 57,85,259
Makefile 85
Makefile generator 16, 46, 259
Maths libraries 325

introduction 19
predefined names 397

Maths utility library 397
Memory allocation 159, 309
Memory dump

example 86
usage 78

Memory dump file 222
Memory dumper 16, 221

error messages 222
Memory map 81, 204, 282
Memory mapped peripherals 137
MemStart 160
MINUSX 320
Mixed language programming 107
Mixing error modes 40
Mixing transputer types 39
Module data 252
Modules 226
IMONITORI 194, 285
Monitor page 196

debugger 195
simulator 279

MOSTNEG INT 136
MOVE2D 323
Moving the cursor 373
MULBY2 320
Multiplexing processes 104
Multiplexors 359

April 1989

466

NEC PC 345
Network dump 205
Network dump file 185
Next error 201
next.int.from.line 383
next.word.from.line 383
NEXTAFTER 320
Non-bootable files 431
NORMALISE 322
NOTFINITE 320

Object code
displaying 247

Object file 294
occam

and transputers 7
checker 15
compiler 293
interface code 108
libraries 317
programs 29
run-time errors 210
scope rules 94

occam
debugging command 206
simulator command 282

occam 293
syntax 294

On-chip RAM 42, 112
Optimising library functions 240
OPTION directive 303
Option prefix 21
ORDERED 320
outbyte 126
outbyte 128
outmess 126
outmess 128
OutputOrFail.c 392
OutputOrFail.t 392
outword 126
outword 128

Packet 433
IPAGE DOWNI 208
IPAGE upl 208
Parsing command line 341

72 TDS 184 00

Index

Pascal
entries in Makefile 264

Pascal channel communication 128
Pascal programming 107
Path searching 24
PC 13
Pipelining processes 106
PLACE 312
PLACE statement 177, 135, 311
PLACED PAR 177
Placing channels 177
PORT 137
POWER 327
Predefined names 397
Prelinking 235

on command line 236
PRr PAR 311
Primary loader 429
Priority 208, 311
PROC.ENTRY 109

procedure interface 115
PROC.ENTRY.RC 120
PROC.ENTRY.RF 120
PROC.ENTRY.RP 120
PROC.ENTRY.STUB 120
Procedural data 248
Procedure parameters 142
Process library 393

introduction 20
Process queue 81, 88, 208

displaying 283
PROCESSOR 177,312
Processor number 177
Program building

automated 57, 85
overview 13

Programs
loading 71

Protocol
sequential 129
sharing 45
simple 129
variant 130

Protocol conversion 360
Protocol equivalents 128
Protocol tags 311

April 1989

Index

Protocol
predefined 417

Queues
process 88, 208, 283
timer 208, 283

Quit 208, 283

R-mode programs 184
RAN 329
Random number generation 329
REAL 330
Real numbers 330
REAL32EQ 320
REAL32GT 320
REAL320P 240,320
REAL320PERR 240
REAL32REM 320
REAL32TOSTRING 387
REAL64EQ 321
REAL64GT 321
REAL640P 321
REAL64REM 321
REAL64TOSTRING 387
IREFRESHI 198, 209, 281
Reinitialise 392
IRELOCATEI 193, 208, 285
Replicators 210, 308
Reserved channels 111
Reset 73, 75
Reset 137
Resetting links 391
IRETRACEI 88, 193, 208, 285
RETYPES 311
Retyping 211
Root processor 173
Root transputer 75, 183
ROTATERIGHT 322
RS232 73, 393
Run queue 208, 283
Running programs 32

dynamically loaded 141

se directive 304
Scalar workspace 431
SCALES 320

72 TDS 18400

467

Scientific languages 107
Screen definitions 424
Screen output 350
Screen size 424
Screenstream output 369
Screenstream protocol 362
ISEARCHI 90, 193, 285
Search path 27, 335
search.match 379
search.no.match 379
Secondary loader 158, 429
Selective linking 235
Selective loading

libraries 47, 226
Separate compilation 44, 299
Separate compilation units 44
Separate stack 160
Separate vector space 42, 142,

160,297,303,309
Separately compiled units 299
Sequential protocol 129
Server

libraries 434
porting 435
protocol 434

Server functions 435
summary 271

Server termination 344
ISET BREAKI 286
SHIFTLEFT 322
SHIFTRIGHT 322
Shifts 210
Simple protocol 129
Simulator 277

interfaces 278
numerical parameters 278
starting a program 280
symbolic commands 284
transputer 17
use in debugging 95

SIN 327
ISINGLE STEPI 286
Single step 286
Single step execution 97, 100
SINH 329
S~p loader 17,289

April 1989

468

so 362
so.ask 348
so . buffer 359
so.close 335
so.commandline 341
so.core 344
so.date.to.ascii 358
so.eof 338
so.exit 344
so.ferror 338
so.flush 337
so.fwrite.char 354
so.fwrite.hex.int 355
so.fwrite.hex.int64 355
so.fwrite.int 355
so.fwrite.int64 355
so.fwrite.nl 354
so.fwrite.real32 356
so.fwrite.real64 356
so.fwrite.string 354
so.fwrite.string.nl 354
so . getenv 343
so.getkey 347
so.gets 336
so.keystream. from. file

364
so.keys~ream.from.kbd 364
so.keystream.from.stdin

364
so.multiplexor 360
so.open 333
so . open. temp 334
so.overlapped.buffer 359
so.overlapped.multiplexor

360
so.parse.command.line 341
so.pollkey 347
so.popen.read 335
so.puts 337
so.read 336
so.read.echo.any.int 349
so.read.echo.hex.int64

349
so.read.echo.int 348,349
so.read.echo.int64 348
so.read.echo.line 347

72 TDS 184 00

Index

so.read.echo.real32 349
so.read.echo.real64 349
so.read.line 347
so.remove 339
so.rename 339
so.scrstream.to.ANSI 367
so.scrstream.to.file 365
so.scrstream.to.stdout

365
so.scrstream.to.TVI920

367
so. seek 337
so. system 343
so.tell 338
so.test.exists 340
so.time 343
so.time.to.ascii 358
so.time.to.date 357
so.today.ascii 358
so.today.date 358
so.version 344
so.write 336
so.write.char 350
so.write.hex.int 351,352
so.write.hex.int64 352
so. write. int 351
so.write.int64 351
so.write.nl 350
so.write.reaI32 352
so.write.real64 352
so.write.string 351
so.write.string.nl 351
Soft channels 178
Source file 294
SQRT 320
ss 362
ss.BOOx.stream.driver 393
ss . beep 373
ss.clear.eol 373
ss.clear.eos 373
ss.del.line 374
ss.delete.chl 374
ss.delete.chr 374
ss . down 373
ss.qoto.xy 373
ss.ins.line 374

April 1989

Index

ss.insert.char 374
ss . left 373
ss.right 374
ss.scrstream.copy 366
ss.scrstream.fan.out 366
ss.scrstream.from.array

366
ss.scrstream.sink 365
ss.scrstream.to.array 366
ss .up 373
ss.write.char 370
ss.write.endstream 371
ss.write.hex.int 372
ss.write.hex.int64 372
ss. write. int 371
ss.write.int64 371
ss. write .nl 370
ss.write.rea132 372
ss.write.rea164 372
ss.write.string 371
ss.write.text.line 371
stack buffer 159
Stack requirements 111
Standard error 436
Standard input 436
Standard output 436
Static link

in C, FORTRAN and Pascal 132
STOP mode 40

in configuration code 174
str. shift 380
Stream ito library 362

introduction 19
streamio.inc 102
streamio.lib 102,269
Streams 331
String handling

comparison 378
editing 379
searching 379

String handling library 375
String library

introduction 20
string. pos 379
STRINGTOBOOL 389
STRINGTOHEX 388

72 TDS 18400

469

STRINGTOHEX16 389
STRINGTOHEX32 389
STRINGTOHEX64 389
STRINGTOINT 388
STRINGTOINT16 388
STRINGTOINT32 388
STRINGTOINT64 388
STRINGTOREAL32 389
STRINGTOREAL64 389
Sub-networks 73
Subsystem 73
Subsystem reset 270
Subsystem wiring 73
Sun-3 13, 21, 103, 345
Sun-4 345
SunOS 13, 21, 345
Suspending programs 33
Symbol table 232
Symbolic debugging 79, 188

simulator 284
Syntax checker 15, 165
Syntax checking 30
Syntax errors 30
System call 343
System library 397
System services 73

T-mode programs 184
T212 293
T222 293
T414 293, 325
T425 293, 325
T800 293
TA 38,295
Tag data 253
TAN 328
TANH 329
TB 38,295
TC 38,295
TDS 20,300,304,362
Text reading 336
Text stream 333
Text writing 337
Time 343, 358

transputer clock 311
Time processing 357

April 1989

470

Timeout 148, 391
channel input 391
channel output 392

TIMER channels 311
Timer queue 89, 208

displaying 283
to.lower.case 381
to.upper.case 381
Toolset

host versions 13
introduction 5, 15
summary 14

Toolset constants 18, 417
IT.QE] 90, 193,209
!rop OF FILE! 90, 195, 285
TRAM 74,188
TRANSPUTER 22, 86
Transputer boards

boot from ROM 72
Transputer classes 38,295
Transputer Development System

20, 300, 304, 362
Transputer error flag 201
Transputer implementation of

occam 310
Transputer instructions 411
Transputer ,networks 59
Transputer simulator 17
Transputer type

PROCESSOR statement 177
Transputer types

mixing 39
Trigonometric functions 327
TVI920 367
Type conversion library 384

introduction 20
Type conversions 210

UART 135, 393
UART driver 393
UNDEFINED mode 40

in configuration code 174
UNIVERSAL mode 41

in configuration code 174
UNIX 21,103
Up 73

Index

Upper case 139,377,381
Usage checking 41, 168, 297, 303,

305
USE 178
USE directive 301

Variant protocol 130
VAX 13,21,103
VECSPACE 311
Vector space 431

e, FORTRAN and Pascal 132
VECSPACE 42,311

VMS 13, 21, 22, 103, 345

!WALK! 286
Warning messages 27
Wdesc 195
Word length

IMS M212 310
IMS T212 310
IMS T222 310
IMS T414 310
IMS T425 310
IMS T800 310
independence 136

Workspace 309
e, Fortran and Pascal 132
in dynamic loading 142

WORKSPACE 42, 311
Workspace descriptor 94, 195
Workspace pointer 80,81

72 TDS 184 00 April 1989

INMOS Limited
1000 Aztec West
Almondsbury
Bristol B812 4SQ
U.K.
Telephone (0454) 616616
TLX 444723

INMOS SARL
Immeuble Monaco
7 rue Le Corbusier
SILIC 219
94518 Rungis Cedex
France
Telephone (1) 46.87.22.01
TLX 201222

INMOS GmbH
panziger Strasse 2
8057 Eching
West Germany
Telephone (089) 319 1028
TLX 522645

INMOS Corporation
P.O. Box 16000
Colorado Springs
Colorado 80935
U.S.A.
Telephone (719) 630 4000
TLX (Easy Link) 62944936

INMOS Japan K.K.
4th Floor No 1 Kowa Bldg
11-41 Akasaka 1-chome
Minato-ku
Tokyo 107
Japan
Telephone 03-505-2840
TLX J29507 TEI JPN

• , Itnmos, IMS and occam are trademarks of the INMOS Group of Companies.

72 TDS 184 00 April 1989

	Contents overview
	Contents
	Preface
	1 How to use the manual
	1.1 About the manual
	1.1.1 Readership

	1.2 User guide
	1.2.1 Getting started

	1.3 Reference manual
	1.4 Conventions used in the manual

	2 Introduction
	2.1 Overview
	2.2 Transputers
	2.3 Transputers and occam
	2.3.1 The occam programming model
	2.3.2 Multitransputer programming
	2.3.3 Reliability
	2.3.4 Real time programming

	2.4 Program development using the toolset
	2.4.1 System design
	2.4.2 Programming and code generation
	2.4.3 Debugging

	User guide
	3 Overview of the toolset
	3.1 Introduction
	3.2 Program development
	3.3 The toolset
	3.3.13 occam - the occam 2 compiler
	3.3.12 iskip - the skip loader tool
	3.3.11 isim - the T414 simulator
	3.3.10 iserver - the host file server
	3.3.9 imakef - the Makefile generator
	3.3.8 ilist - the binary lister
	3.3.7 ilink - the linker
	3.3.6 ilibr - the librarian
	3.3.5 idump - the memory dumper
	3.3.4 idebug - the debugger
	3.3.3 iconf - the configurer
	3.3.2 icheck - the occam 2 syntax checker
	3.3.1 iboot - the bootstrap tool

	3.4 The occam libraries
	3.4.1 Constants
	3.4.2 Compiler libraries
	3.4.3 Maths libraries
	3.4.4 I/o libraries
	Hostio library
	Streamio library

	3.4.5 Other libraries
	String handling library
	Type conversion library
	Extraordinary link handling library
	Block CRC library
	Process library

	3.5 Implementation differences
	3.5.1 Host dependencies
	Command line syntax
	Libraries
	Directories and files

	3.6 Host environment variables
	3.7 Toolset conventions
	3.7.1 Command line conventions
	Syntax
	Common options

	3.7.2 Filename conventions
	Filenames
	File extensions

	3.7.3 Locating files
	3.7.4 Search paths
	3.7.5 Error handling and message format
	Message formats

	4 Programming single transputers
	4.1 Program examples
	4.2 occam programs
	4.2.1 Checking programs
	4.2.2 Compiling programs
	Compilation information

	4.2.3 Linking programs
	4.2.4 Viewing code
	4.2.5 Making bootable programs
	4.2.6 Loading and running programs
	4.2.7 Interrupting programs

	4.3 Compiling a simple example program
	4.3.1 Checking the example program
	4.3.2 Compiling the example program
	4.3.3 Linking the example program
	4.3.4 Running the example program

	4.4 Compiler parameters
	4.4.1 Compilation for different transputers
	Transputer classes

	4.4.2 Mixing code for different transputers
	4.4.3 Error modes of compilation
	4.4.4 Mixing code with different error modes
	4.4.5 Alias and usage checking
	4.4.6 Using separate vector space

	4.5 Sharing source between files
	4.6 Separate compilation
	4.6.1 Sharing protocols and constants
	4.6.2 Compiling and linking large programs

	4.7 Change control
	4.8 Libraries
	4.8.1 Selective loading
	4.8.2 Building libraries

	4.9 The pipeline sorter program
	4.9.1 Overview of the program
	4.9.2 The protocol
	4.9.3 The sorting element
	4.9.4 The input/output process
	4.9.5 The calling program
	4.9.6 Building the program
	4.9.7 Automated program building

	5 Programming transputer networks
	5.1 Introduction
	5.2 Configuration
	5.3 Preparing for configuration
	5.4 Configuring a program
	5.5 Loading a network
	5.6 Example: A pipeline sorter on four transputers
	5.6.1 The configuration description
	Planning the configuration description

	5.6.2 Building the program
	5.6.3 Running the program
	5.6.4 Automated program building

	5.7 Summary of configuration steps

	6 Loading transputer programs
	6.1 Introduction
	6.2 Tools for loading programs
	6.2.1 The loading mechanism

	6.3 Boards and sub-networks
	6.3.1 Boot from ROM boards
	6.3.2 Subsystem wiring
	6.3.3 Controlling sub-networks

	6.4 Debugging programs on transputer boards
	6.4.1 Program mode
	6.4.2 Board types
	6.4.3 Programs which use the root transputer
	6.4.4 Programs which do not use the root transputer
	6.4.5 Analyse and Reset

	6.5 Example of using iskip

	7 Debugging occam programs
	7.1 Introduction
	7.1.1 Compiling programs for debugging
	7.1.2 Programs that can be debugged

	7.2 Debugger facilities
	7.2.1 Symbolic debugging
	7.2.2 Debugging non-occam programs
	7.2.3 Assembly level debugging

	7.3 A debugging example
	7.3.1 The example program
	7.3.2 Building a loadable program
	7.3.3 Host environment variables
	7.3.4 Running the example program
	7.3.5 Creating a memory dump file
	7.3.6 Running the debugger

	7.4 Hints for debugging occam programs
	Examining and disassembling memory
	Debugging IF and CASE statements
	Analysing deadlock

	7.5 Debugging using embedded messages
	7.5.1 Reading the message buffers

	7.6 Notes on using the debugger
	Invalid pointers
	Locating within the ALT construct
	occam scope rules

	7.7 Debugging with the T414 simulator
	7.7.1 Using the simulator
	7.7.2 Standard debugging
	Symbolic facilities
	Low level facilities

	7.7.3 Program execution monitoring
	Break points
	Single step execution
	Changing registers

	7.8 Simulator example
	7.8.1 Running the simulation
	Setting break points

	7.8.2 Starting the program
	7.8.3 Single step execution
	7.8.4 Setting break points in source

	8 Access to host services
	8.1 Introduction
	8.2 Communicating with the host
	8.2.1 The host file server
	8.2.2 Library support
	8.2.3 File streams
	Protocols

	8.3 Host implementation differences
	8.4 Accessing the host from a program
	8.4.1 Using the simulator

	8.5 Multiplexing processes to the host
	8.5.1 Buffering processes to the host
	8.5.2 Pipelining

	9 Mixed language programming
	9.1 Introduction
	9.2 The equivalent occam process
	9.2.1 occam interface code
	9.2.2 Reserved channels
	9.2.3 Error modes
	9.2.4 Stack and heap requirements
	Stack overflow

	9.3 Type 1 interface
	9.3.1 Type 1 procedural interface
	9.3.2 Building a type 1 process

	9.4 Type 2 interface definition
	9.4.1 Type 2 procedural interface
	9.4.2 Building a type 2 process
	9.4.3 Example type 2 wrappings

	9.5 Type 3 interface definition
	9.5.1 Type 3 procedural interfaces
	9.5.2 Building a type 3 process
	9.5.3 Example type 3 wrapping

	9.6 Channel communication
	9.6.1 Communication libraries
	9.6.2 C channel communication
	9.6.3 FORTRAN channel communication
	9.6.4 Pascal channel communication
	9.6.5 Implementing other occam protocols
	9.6.6 Guidelines and rules
	Simple protocols
	Sequential protocols
	Variant protocols

	9.7 Calling occam from other languages
	9.7.1 Examples

	10 Low level programming
	10.1 Allocation
	10.2 Code insertion
	10.2.1 Using the code insertion mechanism
	10.2.2 Labels and jumps

	10.3 Dynamic code loading
	10.3.1 Calling code
	10.3.2 Loading parameters
	10.3.3 Examples

	10.4 Extraordinary use of links
	10.4.1 Clarification of requirements
	10.4.2 Programming concerns
	10.4.3 Input and output procedures
	10.4.4 Recovery from failure
	10.4.5 Example: a development system

	10.5 Setting the error flag

	Reference manual
	11 iboot - bootstrap tool
	11.1 Introduction
	11.1.1 Programs that can be made bootable
	11.1.2 Transputer targets

	11.2 Running the bootstrap tool
	11.2.1 Bootstrap code
	11.2.2 Producing code for dynamic loading
	11.2.3 External loaders

	11.3 Bootstrap loaders
	11.3.1 Secondary loader interface
	11.3.2 Program interface
	11.3.3 Memory allocation

	11.4 External bootstrap loaders
	11.4.1 Creating external loaders

	11.5 Error messages

	12 icheck - occam 2 checker
	12.1 Introduction
	12.2 Running the checker
	12.2.1 Checker messages

	12.3 Alias and usage checking
	12.3.1 Usage checking
	12.3.2 Alias checking
	Scalar variables
	Arrays

	12.4 Error messages

	13 iconf - configurer
	13.1 Introduction
	13.2 Running the configurer
	13.2.1 Source compilation mode - options H S U
	13.2.2 Generating a configuration map - option M

	13.3 Configuration description
	13.3.1 Separately compiled code
	13.3.2 Source code
	13.3.3 Configuration language
	Allocating code to processors
	Placing channels on links

	13.4 Summary of configuration description
	13.5 Error messages

	14 idebug - debugger
	14.1 Introduction
	14.1.1 Debugged code

	14.2 The root transputer
	14.2.1 T-mode programs
	14.2.2 Debugging R-mode programs
	14.2.3 Debugging from a network dump file
	14.2.4 Debugging a dummy network

	14.3 Running the debugger
	14.3.1 Debugging programs on B004-type boards and TRAMs

	14.4 Debugger symbolic facilities
	14.4.1 Scrolling the display
	14.4.2 Compiling modules for symbolic debugging
	14.4.3 Non-occam programs
	14.4.4 Symbolic functions

	14.5 Monitor page
	14.5.1 Monitor page commands
	14.5.2 occam run time errors

	14.6 Implementation notes
	14.6.1 Debugging information generated by the compiler
	14.6.2 Accessing the network
	14.6.3 Backtracing
	14.6.4 Accessing variables and channels

	14.7 Error messages

	15 idump - memory dumper
	15.1 Introduction
	15.2 Running the memory dumper
	15.3 Error messages

	16 ilibr - librarian
	16.1 Introduction
	16.2 Running the librarian
	16.2.1 Library indirect files
	16.2.2 Exploding libraries into constituent files
	16.2.3 Removing debug data

	16.3 Library modules
	16.3.1 Selective loading

	16.4 Library usage files
	16.5 Building libraries
	16.5.1 Rules for constructing libraries
	16.5.2 Hints for building libraries

	16.6 Error messages

	17 ilink - linker
	17.1 Introduction
	17.2 Running the linker
	17.2.1 Ordering of Input flies
	17.2.2 Renaming entry points
	17.2.3 Using imakef to simplify linking
	17.2.4 Input files referenced by #SC
	17.2.5 Linker output
	17.2.6 Linker indirect files

	17.3 Features of the linker
	17.3.1 Selective linking of libraries
	17.3.2 Prelinking of program components
	17.3.3 Command line prelinking

	17.4 Linker options
	17.4.1 Extending linker capacity - option E
	17.4.2 Permit unresolved references - option U
	17.4.3 Disabling the link map - option M
	17.4.4 Symbol table - option S
	17.4.5 Changing buffer sizes - option B
	Buffer sizes
	Calculating memory requirements

	17.4.6 Optimise symbols - option Q

	17.5 Error messages

	18 ilist - binary lister
	18.1 Introduction
	18.2 Data displays
	18.3 Running the binary lister
	18.4 Procedural interface data - option P
	18.5 Entry point data - option E
	18.6 External reference data - option X
	18.7 Module data - option M
	18.8 Tag data
	18.9 Debugging data - option D
	18.10 Code dump data - option C
	18.11 Global data - option V
	18.12 Error messages

	19 imakef - Makefile generator
	19.1 Introduction
	19.2 What is Make?
	19.2.1 Makefiles

	19.3 Running the Makefile generator
	19.3.1 Code targets for imakef

	19.4 Format of Makefiles
	19.4.1 Macro definitions
	19.4.2 Rules
	Action Strings

	19.4.3 Editing the Makefile
	Adding options
	Adding rules for C, FORTRAN and Pascal

	19.5 Library usage files
	19.6 Error Messages

	20 iserver - host file server
	20.1 Introduction
	20.2 Running the server
	20.2.1 Supplying parameters to the program
	20.2.2 Loading programs
	20.2.3 Terminating the server
	20.2.4 Specifying a link address - option SL
	20.2.5 Terminating on error - option SE

	20.3 Server functions
	File system commands
	Host environment commands
	Server control commands

	20.4 Error messages

	21 isim - T414 simulator
	21.1 Introduction
	21.2 Running the simulator
	21.2.1 The ITERM file
	21.2.2 Loading and running a program

	21.3 Simulator interfaces
	21.3.1 Numerical parameters

	21.4 The Monitor page
	21.4.1 Monitor page commands

	21.5 Symbolic facilities
	21.5.1 Symbolic debugging commands
	Locating and backtracing

	21.5.2 Execution monitoring commands

	21.6 Error messages

	22 iskip - skip loader
	22.1 Introduction
	22.1.1 Uses of the skip tool

	22.2 Running the skip tool
	22.2.1 Monitoring the error flag
	22.2.2 Loading a program

	22.3 Error messages

	23 occam - occam 2 compiler
	23.1 Introduction
	23.2 Running the compiler
	23.2.1 Filenames

	23.3 Transputer targets
	23.3.1 Transputer classes

	23.4 Compilation error modes
	23.4.1 UNIVERSAL mode

	23.5 Separately compiled units and libraries
	23.6 Compiler directives
	23.6.1 Syntax
	23.6.2 #INCLUDE directive
	23.6.3 #USE directive
	23.6.4 #IMPORT directive
	23.6.5 #COMMENT directive
	23.6.6 #OPTION directive
	23.6.7 #SC directive

	23.7 Implementation of usage checking
	23.7.1 Usage rules of occam 2
	23.7.2 Checking of non-array elements
	23.7.3 Checking of arrays of variables and channels
	23.7.4 Arrays as procedure parameters
	23.7.5 Abbreviating variables and channels
	Problems with replicators

	23.8 Memory allocation by the compiler
	23.8.1 Procedure code
	23.8.2 Code referenced by #SC
	23.8.3 Workspace

	23.9 The transputer implementation of occam
	23.9.3 Language and configuration
	23.9.2 Hardware dependencies
	23.9.1 Data representation

	23.10 Error messages

	24 occam libraries
	24.1 Introduction
	24.1.1 Using the occam libraries
	Linking libraries

	24.1.2 Listing library contents
	24.1.3 Toolset constants

	24.2 Compiler libraries
	24.2.1 User functions
	Maths functions
	2D block moves
	Bit manipulation functions
	CRC functions

	24.3 Maths libraries
	24.3.1 Function definitions

	24.4 Host file server library
	24.4.1 Errors and the C run time library
	24.4.2 Inputting real numbers
	24.4.3 Procedure descriptions
	24.4.4 File access routines
	Procedure definitions

	24.4.5 General host access
	Procedure definitions

	24.4.6 Keyboard input
	Procedure definitions

	24.4.7 Screen output
	Procedure definitions

	24.4.8 File output
	Procedure definitions

	24.4.9 Miscellaneous commands
	Time processing
	Buffers and multiplexors
	Protocol converter

	24.5 Streamio library
	24.5.1 Naming conventions
	24.5.2 Stream processes
	Procedure definitions

	24.5.3 Stream input
	Procedure definitions

	24.5.4 Stream output
	Procedure definitions

	24.6 String handling library
	24.6.1 Character identification
	24.6.2 String comparison
	24.6.3 String searching
	24.6.4 String editing
	24.6.5 Line parsing

	24.7 Type conversion library
	24.7.1 Procedure definitions

	24.8 Block CRC library
	24.8.1 Function definitions

	24.9 Extraordinary link handling library
	24.9.1 Procedure definitions

	24.10 Process library
	24.10.1 Procedure definitions

	Appendices
	A Names defined by the software
	B Transputer instruction support
	B.1 Direct functions
	B.2 Short indirect functions
	B.3 Long indirect functions
	B.4 Additional instructions for IMS T425, T800 and TC
	B.5 Additional instructions for IMS T800

	C Constants
	C.1 Hostio constants
	C.2 Streamio constants
	C.3 Maths constants
	C.4 Transputer link addresses

	D ITERM
	D.1 Introduction
	D.2 The structure of an ITERM file
	D.3 The host definitions
	D.3.1 ITERM version
	D.3.2 Screen size

	D.4 The screen definitions
	D.4.1 Goto X Y processing

	D.5 The keyboard definitions
	D.6 Setting up the ITERM environment variable
	D.7 An example ITERM

	E Executable file format
	E.1 Bootable files
	E.2 Non-bootable files

	F Host file server protocol
	F.1 The host file server iserver
	F.2 The server protocol
	F.2.1 Packet size
	F.2.2 Protocol operation

	F.3 The server libraries
	F.4 Porting the server
	F.5 Defined protocol
	F.5.1 Reserved values
	F.5.2 File commands
	F.5.3 Host commands
	F.5.4 Server commands

	G Glossary
	H Bibliography
	H.1 INMOS publications
	H.2 INMOS technical notes

	Index

