
ANSI C Toolset
Reference Manual

INMOS Limited

~ SGS-1HOMSON,.~I® ~D©OO@rn[brn©lJrn@~D©~
INMOS is a member of the SGS-THOMSON Microelectronics Group

72 TDS 346 01 October 1992

© INMOS Limited 1992. This document may not be copied, in whole or in part, without
prior written consent of INMOS.

• ®, ~[[i)mOs® , IMS and occam are trademarks of INMOS Limited.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

~I~ is a registered trademark of the SGS-THOMSON Microelectronics Group.

The Ccompiler implementation was developed from the Perihelion Software "C" Compiler
and the Codemist Norcroft nc" Compiler.

INMOS Document Number: 72 TDS 346 01

Contents overview
Contents

Preface

Tools

1 ice Describes the ANSI C compiler.

2 icconf Describes the configurer which generates configuration
binary files from configuration descriptions.

3 icollecl Describes the code collector which generates executable
code files.

4 idebug Describes the network debugger. Lists the symbolic functions
and Monitor page commands at machine level.

5 idump Describes the memory dumper tool which dumps root trans-
puter memory for post mortem debugging.

6 iemit Describes the memory configurer tool which helps to confi-
gure the transputer memory interface.

7 ieprom Describes the EPROM formatter tool which creates execut-
able files for loading into ROM.

8 ilibr Describes the toolset librarian which creates libraries from
compiled code files.

9 ilink Describes the toolset linker which links compiled code and
libraries into a single unit.

10 ilist Describes the binary lister which displays binary files in a
readable form.

11 imakef Describes the Makefile generator which creates Makefiles for
toolset compilations.

12 imap Describes the map tool which generates a memory map for
an executable file.

13 iserver Describes the host file server which loads programs onto
transputer hardware and provides host communication.

14 isim Describes the transputer simulator which allows programs to
be run without hardware.

15 iskip Describes the skip loader tool which loads programs onto
external subnetworks.

72 TDS 346 01 October 1992

ii

Appendices

Contents overview

A Toolset standards and Describes the conventions and standards of the
conventions toolset.

B Transputer types and Describes the meaning and use of transputer
classes types and classes and lists the command line

options to select them for the compiler and
linker.

C Using the assembler Describes the use of the C assembler and the
assembler directives.

D ISERVER Protocol Describes the server protocol and the
ISERVER functions.

E ITERM Describes the format of the ITERM files.

F Bootstrap loaders Describes the INMOS bootstrap loading
scheme and advises on how it might be custom-
ized.

Index

72 TDS 346 01 October 1992

I Contents

Contents overview .

Contents iii

Preface xix

Host versions xix

About this manual xix

About the toolset documentation set xx

Other documents . xxi

occam and FORTRAN toolsets . xxi

Documentation conventions. xxi

Tools... 1

1 ice - ANSI C compiler .
1.1 Introduction .

1.2 Running the compiler .

Examples of use: .
1.2.1 Optimizing compiler options .
1.2.2 Transputer targets .
1.2.3 Error modes .
1.2.4 Default command line options .
1.2.5 File extension defaults .
1.2.6 Search paths .
1.2.7 Using the assembler .
1.2.8 Compatibility with other C implementations .

Arithmetic right shifts .
Signedness of char .

1.2.9 Software quality check .
1.3 Memory map .

1.4 Compiler directives .

1.4.1 #define .
1.4.2 #elif constant_expression .
1.4.3 #else .
1.4.4 #endif .
1.4.5 #error .
1.4.6 #if .
1.4.7 #ifdef .
1.4.8 #ifndef .

3
3
3
6
6
6
7
7
7
7
7
8
8
8
8
9

12

12
12
12
12
13
13
13
13

iv Contents

1.4.9 #include. 14
Relative directory names . 14
Backslash character in filenames 14

1.4.10 #line. 14
1.4.11 #pragma. 14

Pragma IMS_nolink 17
Pragma IMS_descriptor . 17

1.4.12 #undef. 19
1.5 Compiler predefinitions . 19

1.5.1 Macro names. 19
1.5.2 Other predefines . 20

1.6 Transputer inline code 21
1.6.1 Inlined functions 21

1.7 Compiler diagnostics . 22
1.7.1 Message format 22
1.7.2 Severities 22
1.7.3 Standard terms 22

abstract declarator . 23
1.7.4 ANSI trigraphs . 24
1.7.5 Warning diagnostics . 24
1.7.6 Recoverable errors. 31
1.7.7 Serious errors 38

2 icconf - configurer 49
2.1 Introduction ~ 49
2.2 Configuration language implementation 50
2.3 Running the configurer . 50

2.3.1 Default command line 52
2.3.2 Virtual routing processes . 52
2.3.3 Support for the Advanced Toolset 52
2.3.4 Boot from ROM options . 52
2.3.5 Mixed language programming 53
2.3.6 Configurer library file 53
2.3.7 Standard include files. 53

Defaults file setconf.inc 53
Other include files . 53

2.3.8 Configuration description examples 53
2.3.9 Search paths . 54
2.3.10 Default memory map 54
2.3.11 LoadStart. 55
2.3.12 System processes 55

2.4 Configurer messages 55
2.4.1 Information . 56
2.4.2 Warnings. 57

Contents v

2.4.3 Errors. 60
2.4.4 Serious messages 75
2.4.5 Fatal errors 79

3 icollect - code collector D • • • • •• 81
3.1 Introduction. 81

Unconfigured program (using 'T' option): 82
Configured processor program: 82

3.2 Running the code collector 82
3.2.1 Examples of use . 85

Example A (unconfigured program mode): 85
3.2.2 Default command line 85
3.2.3 Input files 85
3.2.4 Output files. 85

Single processor non--eonfigured case (T option) . . 86
Configured programs. 86
Memory map files 86
Debug data file 86

3.3 Memory allocation for unconfigured programs 86
3.3.1 C and FORTRAN programs 87
3.3.2 occam programs. 88
3.3.3 Memory initialization errors . 89
3.3.4 Small values of IBOARDSIZE 89

3.4· Parity-checked memory 90
3.5 Non-bootable files created with the K option 91

3.5.1 File format '........... 91
3.6 Boot-from-ROM output files . 92
3.7 Alternative bootstrap loaders for unconfigured programs. . . . 93
3.8 Alternative bootstrap schemes 93
3.9 The memory map file 93

3.9.1 Unconfigured (single processor), boot from link 94
Program targetled at transputer type 94
Program targetled at transputer class 96

3.9.2 Configured program boot from link 97
3.9.3 Boot from ROM programs . 98

Unconfigured (single processor), boot from ROM,
run in RAM 98
Unconfigured (single processor), boot from ROM,
run in ROM 98
Configured program, boot from ROM, run in RAM. 98
Configured program, boot from ROM, run in ROM. 98

3.10 Disabling interactive debugging - 'V' option 99
3.11 Error messages 100

3.11.1 Warnings. .. 100

vi

3.11.2
3.11.3

Contents

Serious errors 100
Fatal errors 106

4 idebuq - network debugger 107

4.1 Introduction .. 107
4.2 Debugging the root transputer .. 107

4.2.1 Board wiring. .. 108
4.2.2 Post-mortem debugging R-mode programs. 108
4.2.3 Post-mortem debugging T-mode programs 108
4.2.4 Post-mortem debugging from a network dump file. 109
4.2.5 Debugging a dummy network 109
4.2.6 Methods for interactive breakpoint debugging. 109

4.3 Running the debugger 109
4.3.1 Toolset file types read by the debugger 111
4.3.2 Environment variables .. 112
4.3.3 Program termination. .. 113

4.4 Post-mortem mode invocation. .. 113

4.4.1 Debugging T-mode programs - option 'T' 114
4.4.2 Debugging R-mode programs - option 'R' 114
4.4.3 Debugging a network dump file - option 'N' 114
4.4.4 Debug~ing a previous breakpoint session -

option M' 115
4.4.5 Reinvoking the debugger on single transputer

programs 115
4.4.6 Debugging boot from ROM programs. 115

4.5 Interactive mode- invocation .. 115
4.6 Function key mappings. .. 116
4.7 Debugging programs on INMOS boards.... 116

4.7.1 Subsystem wiring. .. 116
4.7.2 Debugging options to use with specific board types 117
4.7.3 Detecting the error flag in interactive mode 117

4.8 Debugging programs on non-INMOS boards. 118
4.9 Monitor page commands 119

4.9.1 Command format............................. 119
4.9.2 Specifying transputer addresses 119
4.9.3 Scrolling the display. .. 119
4.9.4 Editing functions 120
4.9.5 Commands mapped by ITERM 120
4.9.6 Summary of commands. .. 120
4.9.7 Symbolic-type commands. .. 122
4.9.8 Scroll keys 122
4.9.9 Monitor page command descriptions 123
4.9.10 Symbolic-type commands .. 141

4.10 Symbolic functions. .. 142

Contents vii

4.10.1 Symbolic functions 143
4.10.2 Interactive mode functions 144
4.10.3 Locating functions. .. 146
4.10.4 Cursor a~d display control functions. 146
4.10.5 Miscellaneous functions 147

4.11 INSPECT/MODIFY expression language for C 149
4.11.1 Syntax not supported. .. 149
4.11.2 Extensions to C syntax 149

Subarrays .. 149
Scope resolution operator .. 149
Hex constants 150
Address constant indirect 150

4.11.3 Automatic expression pickup 150
4.11.4 Editing functions 151
4.11.5 Warnings.................................... 151
4.11.6 Types. .. 152

Type compatibility when using 152
4.12 Display formats for source code symbols 153

4.12.1 Notation. .. 153
4.12.2 Basic Types. .. 154
4.12.3 Default type of "plain" char 154
4.12.4 Enumerated types 154
4.12.5 Pointers. .. 155
4.12.6 Function Pointers 155
4.12.7 Structs...................................... 155
4.12.8 Unions. .. 156
4.12.9 Addressof operator & .. 156
4.12.10 Arrays....................................... 156
4.12.11 Channels.................................... 157

4.13 Example displays...................................... 157
4.14 INSPECT/MODIFY expression language for occam 159

4.14.1 Inspecting memory. .. 159
4.14.2 Inspecting arrays 159
4.14.3 Type compatibility when using 160

4.15 Display formats for source code symbols 161
4.15.1 Notation..................................... 161
4.15.2 Basic Types. .. 161
4.15.3 Channels. .. 162
4.15.4 Arrays....................................... 163
4.15.5 Procedures and functions 163

4.16 Example displays...................................... 163
4.17 Error messages 166

4.17.1 Out of memory errors.......................... 166
4.17.2 If the debugger hangs 166
4.17.3 Error message list. .. 166

viii Contents

5 idump - memory dumper 175
5.1 Introduction. .. 175
5.2 Running the memory dumper 175

5.2.1 Example of use. .. 176
5.3 Error messages. .. 176

6 iemit - memory interface configurer 177
6.1 Introduction. .. 177
6.2 Running iemit .. 178
6.3 Output files 180
6.4 Interactive operation 180

6.4.1 Page 0 180
6.4.2 Page 1 182
6.4.3 Page 2 186
6.4.4 Page 3 187
6.4.5 Page 4 188
6.4.6 Page 5 189
6.4.7 Page 6 190

6.5 iemit error and warning messages. .. 191
6.6 Memory configuration file .. 192

7 ieprom - ROM program convertor ~ 195
7.1 Introduction .. 195
7.2 Prerequisites to using the ieprom tool 196
7.3 Running ieprom 196

7.3.1 Examples of use 197
7.4 ieprom control file 197

Statement .. 198
Parameter/Description .. 198
Statement .. 200
Parameter/Description .. 200

7.5 What goes into the EPROM ". 200
7.5.1 Memory configuration data 200
7.5.2 Parity registers 201
7.5.3 Jump instructions 201
7.5.4 Bootable file. .. 202
7.5.5 Traceback information. .. 202

7.6 ieprom output files .. 202
7.6.1 Binary output .. 202
7.6.2 Hex dump. .. 202
7.6.3 Intel hex format. .. 203
7.6.4 Intel extended hex format. .. 203

Contents ix

7.6.5 Motorola S-record format. .. 203
7.7 Block mode.............. .. 203

7.7.1 Memory organization 203
7.7.2 When to use block mode. .. 204
7.7.3 How to use block mode 204

7.8 Example control files. .. 205
7.8.1 Simple output 205
7.8.2 Using block mode. .. 205

7.9 Error and warning messages. .. 206

8 ilibr - librarian 207

8.1 Introduction .. 207
8.2 Running the librarian .. 208

Example .. 208
8.2.1 Default command line 208
8.2.2 Library indirect files 209
8.2.3 Linked object input files 209
8.2.4 Library files as input .. 209

8.3 Library modules .. 209
8.3.1 Selective loading. .. 210
8.3.2 How the librarian sorts the library index 210

8.4 Library usage files .. 210

8.5 Building libraries. .. 211
8.5.1 Rules for constructing libraries. 211
8.5.2 General hints for building libraries 211
8.5.3 Optimizing libraries .. 211

All libraries 212
Libraries containing occam modules. 212
Semi-optimized library build targeted at all
transputer types .. 212
Optimized library targeted at all transputer types .. 213
Library build targeted at specific transputer types.. 213

8.6 Error Messages 214
8.6.1 Warning messages. .. 214
8.6.2 Serious errors 214

9 ilink - linker 217

9.1 Introduction. .. 217
9.2 Running the linker .. 218

9.2.1 Default command line 219
9.3 Linker indirect files. .. 219

9.3.1 Linker indirect files supplied with the toolset 220
9.4 Linker directives .. 220

x Contents

9.5

9.6
9.7

9.8
9.9

9.4.1 #alias basename {aliases} 220
9.4.2 #define symbolname value .. 221
9.4.3 #include filename 221
9.4.4 #mainentry symbolname 221
9.4.5 #reference symbolname 221
9.4.6 #section name. .. 222
Linker options .. 222
9.5.1 Processor types 222
9.5.2 Error modes - options H, S and X 223
9.5.3 TCOFF and LFF output files - options T, LB, LC .. 223
9.5.4 Extraction of library modules - option EX 224

Example: Extraction from a user library 224
Example: ~xtraction from a user library, using the
run-time library 225
Example: Extraction from a user library, for
multiple processor types .. 225
Example: Generation of a completely linkable library 226
Extraction using #define 226

9.5.5 Display information - option I 227
9.5.6 Virtual memory - option KB 227
9.5.7 Main entry point - option ME 227
9.5.8 Link map filename - option MO 227
9.5.9 Linked unit output file - 0 227
9.5.10 Permit unresolved references - option U 228
9.5.11 Disable interactive debugging - Y 228
Selective linking of library modules 228
The link map file. .. 228
9.7.1 MODULE record: 229
9.7.2 SECT record: .. 229
9.7.3 MAP record: .. 229
9.7.4 Value record: 230
Using imakef for version control 230
Error messages....................................... 230
9.9.1 Warnings. .. 230
9.9.2 Errors. .. 231
9.9.3 Serious errors 232
9.9.4 Embedded messages 235

10 ilist - binary lister 237

10.1 Introduction .. 237
10.2 Data displays 237

10.2.1 Modular displays. .. 238
10.2.2 Example displays used in this chapter 238

10.3 Running the binary lister .. 238

Contents xi

10.3.1 Options to use for specific file types 239
10.3.2 Output device 240
10.3.3 Default command line 240

10.4 Specifying an output file - option 0 240
10.5 Symbol data - option A .. 241

10.5.1 Specific section attributes 241
10.5.2 General symbol attributes 241
10.5.3 Example symbol data display. 242

10.6 Code listing - option C 242
10.6.1 Example code listing display. 243

10.7 Exported names - option E 244
10.7.1 Example exported names display..... .. 244

10.8 Hexadecimal/ASCII dump - option H .. 244
10.8.1 Example hex dump display. 245

10.9 Module data - option M 245
10.9.1 Example module data display. 246

10.10 Library index data - option N .. 246
10.10.1 Example library index display. 247

10.11 Procedural interface data - option P 247
10.11.1 Example procedural data display. 247

10.12 Specify reference - option R . 248
10.13 Full listing - option T 248

10.13.1 Example full data display 248
10.13.2 Configuration data files 249

10.14 File identification - option W 249
10.14.1 Example file identification display 250

10.15 External reference data - option X .. 251
10.15.1 Example external reference data display 251

10.16 Errormessages 251
10.16.1 Warning messages 252
10.16.2 Seriouserrors 252

11 imakef - makefile generator 253

11.1 Introduction .. 253
11.2 How imakefworks :................... . 253
11.3 File extensions for use with imakef .. 254

11.3.1 Target files 254
11.4 Linker indirect files. .. 257
11.5 Library indirect and library usage files 257
11.6 Running the makefile generator 257

11.6.1 Example of use. 258
11.6.2 Specifying language mode................. 259

xii Contents

11.6.3 Configuration description files 259
11.6.4 Disabling debug data .. 259
11.6.5 Removing intermediate files. 260
11.6.6 Files found on ISEARCH 260
11.6.7 Map file output for imap .. 260

11.7 imakef examples................................... 260
11.7.1 C examples 261

Single transputer program. .. 261
Multitransputer program 262

11.7.2 occam examples .. 263
Single transputer program. .. 263
Multitransputer program 264

11.7.3 Mixed language program....................... 265
11.8 Format of makefiles .. 266

11.8.1 Macros. .. 266
11.8.2 Rules.............. 266

Example: 266
Action strings .. 267

11.8.3 Delete rule 267
11.8.4 Editing the makefile 267

Adding options 267
Re-running imakef .. 267

11.9 Errormessages 268

12 imap - memory mapper 271
12.1 Introduction .. 271
12.2 Running the map tool 272

12.2.1 Source files required by imap 273
12.2.2 Re-directing imap's output. 274

12.3 Output format. .. 274
12.3.1 imap memory map structure................. 275
12.3.2 Process types 276
12.3.3 User processes. .. 276
12.3.4 Module memory usage 276
12.3.5 Other processes. .. 277
12.3.6 Symbol table. .. 277

12.4 Example. .. 278
_ 12.5 Error messages 281

12.5.1 Serious errors 281
12.5.2 Fatal errors 281

13 iserver - host file server 283
13.1 Introduction .. 283
13.2 Loading programs. .. 283

Contents xiii

13.3 Host interface .. 283
13.4 Access to transputer networks 284

User links .. 284
The session manager 284

13.5 Running the iserver .. 284
13.5.1 Examples of use .. 285
13.5.2 Server environment variables. 286
13.5.3 Loading programs. .. 286

Running a program using the iserver - option SS. 286
Sending data down a user link - option SC 286
Running programs which do not use the server. .. 286
Analyzing a transputer network - option SA 287
Terminating the server .. 287

13.5.4 Supplying parameters to a program 287
13.5.5 Specifying the transputer resource - option SL . .. 287
13.5.6 Terminating on error - option SE 287
13.5.7 Terminating the server. .. 287
13.5.8 Specifying the session manager configuration file . 288

13.6 Using the session manager interface .. 288
13.6.1 Session manager commands 288
13.6.2 The options command. .. 288
13.6.3 The iserver command 289
13.6.4 User-defined commands 290

Running the debugger from the session manager. 291
13.6.5 Host OS commands .. 291

13.7 Connecting transputers to computer networks 291
13.7.1 Capabilities. .. 291
13.7.2 The connection database 292
13.7.3 Using a specific node. .. 293

13.8 The connection database .. 293
13.8.1 Connection databases .. 293

Capability names 294
13.8.2 Connection database format /~ 294
13.8.3 Example connection databases 295

PC development system 295
Sun workstation 296
IMS 8300 .. 296

13.9 New server features 297
13.9.1 Session manager 297
13.9.2 Connection manager ~ .. 297
13.9.3 New command line options. 297
13.9.4 User interrupt. .. 297
13.9.5 Exit codes 298
13.9.6 Error codes 298
13.9.7 Stream identifier validation 298

xiv Contents

13.9.8 Record structured file support 298
13.10 Errormessages 298

13.10.1 Additional error messages 300

14 isim- T425 simulator 303
14.1 Introduction .. 303
14.2 Running the simulator. .. 303

14.2.1 Passing in parameters to the program 304
14.2.2 Example of use. .. 305
14.2.3 ITERM file 305

14.3 Monitor page display. .. 305
14.4 Simulator commands 306

14.4.1 Specifying numerical parameters. 306
14.4.2 Keys mapped by ITERM 306
14.4.3 Command summary. 307
14.4.4 Command descriptions 307

14.5 Batch mode operation .. 313
14.5.1 Setting up ISIMBATCH 313
14.5.2 Input command files .. 313
14.5.3 Output.. 313
14.5.4 Batch mode commands... 313

14.6 Error messages 314

15 iskip - skip loader 317
15.1 Introduction. .. 317

15.1.1 Uses of the skip tool. .. 317
15.2 Running the skip loader. .. 318

15.2.1 Skipping a single transputer 319
Subsystem wired down: .. 319
Subsystem wired subs: 319

15.2.2 Skipping multiple transputers 319
15.2.3 Loading a program .. 320
15.2.4 Monitoring the error status - option E 320
15.2.5 Clearing the error flag 321

15.3 Error messages 321

Appendices 323

A Toolset conventions and defaults 325
A.1 Command line syntax .. 325

A.1.1 General conventions 325
A.1.2 Standard options. .. 325

A.2 Unsupported options. .. 326

Contents xv

A.3 Filenames 326
A.4 Search paths 326
A.5 Standard file extensions .. 327

A.5.1 Main source and object files 328
A.5.2 Indirect input files (script files) 329
A.5.3 Files read by the memory map tool imap 329
A.5.4 Other output files 329
A.5.5 Miscellaneous files .. 330

A.6 Extensions required for imakef 330
A.7 Message handling. .. 331

A.7.1 Message format 331
A.7.2 Seventies .. 331
A.7.3 Runtime errors 332

B Transputer types and classes 333
8.1 Transputer types supported by this toolset 333
8.2 Transputer types and classes 333

8.2.1 Single transputer type 333

8.2.2 ~~~~~~~e~P~~?~~~ ~~i~~. ~~.~~ ~~. ~.r~.~~~ ~~... 334
8.2.3 Linked file containing code compiled for different

targets. .. 335
occam object files targetted at different targets. . .. 337

8.2.4 Classes/instruction sets - additional information .. 337
8.3 Transputer type command line options 339

C Using the assembler 341
C.1 Introduction. .. 341
C.2 Running the assembler. .. 341

C.2.1 Specifying the source filename 341
C.2.2 Use of icc command options with the assembler .. 342
C.2.3 Using the pre-processor with the assembler. 342

C.3 Language. .. 343
C.3.1 Label definitions 343
C.3.2 Symbols. .. 343
C.3.3 Expressions. .. 343
C.3.4 Transputer instruction mnemonics. 345
C.3.5 Comments. .. 345

C.4 Assembler directives. .. 346
C.5 8NF grammar for assembler language 376
C.6 Errors. .. 379

C.6.1 Fatal Errors 379
C.6.2 Serious Errors .. 379

xvi Contents

C.6.3 Errors. .. 380

D iserver protocol 383

D.1 iserver packets .. 383
D.2 Server commands .. 383
D.3 File commands. .. 385

D.3.1 Fopen - Open a file 385
0.3.2 Fclose - Close a file. .. 386
D.3.3 Fread - Read a block of data 387
0.3.4 Fwrite - Write a block of data 387
0.3.5 FGetBlock - Read a block of data and return

success 388
0.3.6 FPutBlock - Write a block of data and return

success 389
0.3.7 Fgets - Read a line 389
0.3.8 Fputs - Write a line 390
D.3.9 Fflush - Flush a stream .. 390

D.4 Record Structured file commands 391
D.4.1 FopenRec - Open a record structured file. 391
0.4.2 FGetRec - Read a record .. 393
0.4.3 FPutRec - Write a record 393
0.4.4 FputEOF - Write an end of file record 394
D.4.5 Fseek - Set position in a file. 394
0.4.6 Ftell - Find out position in a file 395
D.4.7 Feof - Test for end of file. .. 395
0.4.8 Ferror - Get file error status 396
D.4.9 Remove - Delete a file 396
D.4.10 Rename - Rename a file. .. 397
D.4.11 Isatty - Discover if a stream is connected to a

terminal .. 397
D.4.12 FileExists - Check to see if a file exists 398
0.4.13 FerrStat - Get file error status 398

D.5 Host commands. .. 399

D.5.1 Getkey - Get a keystroke. .. 399
0.5.2 Pollkey - Test for a key 399
D.5.3 RequestKey - Request a single keyboard

'event' .. 400
D.5.4 Getenv - Get environment variable. 400
D.5.5 Time - Get the time of day 401
D.5.6 System - Run a command 401
D.5.7 Translate - Translate an environment variable 402

D.6 Server commands. .. 403
D.6.1 Exit - Terminate the server .. 403
D.6.2 CommandLine - Retrieve the server command line 403
D.6.3 Core - Read peeked memory 404

Contents xvii

0.6.4 Version - Find out about the server. 405
0.6.5 Getlnfo - Obtain information about the host and

server......... 406
0.6.6 CommandArgs - Retrieve the server command line

arguments 407
0.7 Reserved Tags and Third Party Tags. 408

0.7.1 MSOOS - Perform MS-DOS specific function 408
0.7.2 SocketA - make a socket library call 409
0.7.3 SocketM - make a socket library call 409
0.7.4 ALSYS - Perform Alsys specific function. 409
0.7.5 KPAR - Perform Kpar specific function 410

0.8 Record Structured file format. .. 410

0.8.1 SunOS and MS-DOS 410
Formatted Sequential .. 410
Unformatted Sequential .. 410
Formatted Direct .. 410
Unformatted Direct .. 410

0.9 Termination codes. .. 411

E ITERM files 413

E.1 Introduction .. 413
E.2 The structure of an ITERM file 413
E.3 The host definitions .. 414

E.3.1 ITERM version 414
E.3.2 Screen size 414

E.4 The screen definitions. .. 414

E.4.1 Goto X Y processing 415
E.5 The keyboard definitions 416

E.6 Setting up the ITERM environment variable 416

E.7 Iterms supplied with a toolset 417

E.8 An example ITERM .- 418

F Bootstrap loaders 421

F.1 Introduction .. 421
F.1.1 The example bootstrap 421

Transfer of control. .. 422
F.1.2 Writing bootstrap loaders 422

xviii Contents

Preface

Host versions

The documentation set which accompanies the ANSI C toolset is designed to
cover all host versions of the toolset:

• IMS 07314 - IBM PC compatible running MS-DOS

• IMS 04314 - Sun 4 systems running SunOS.

• IMS 06314 - VAX systems running VMS.

About this manual

This manual is the Too/set Reference Manua/ to the ANSI C toolse1.

The manual provides reference material for each tool in the toolset describing:

• Command line syntax, including an example command line.

• Command line options.

• How to run the tool.

• A list of error messages which may be obtained.

Many of the tools in the toolset are generic to other INMOS toolset products Le.
the occam and FORTRAN toolsets and the documentation reflects this. Exam­
ples are given in C.

The appendices provide details of:

• Toolset conventions.

• Transputer types.

• The C assembler.

• Server protocol.

• ITERM files.

• Bootstrap loaders.

72 TDS 34601 October 1992

xx About the toolset documentation set

About the toolset documentation set

The documentation set comprises the following volumes:

• 72 TDS 345 01 ANSI C Toolset User Guide

Describes the use of the toolset in developing programs for running on the
transputer. The manual is divided into two sections; (Basics' which
describes each of the main stages of the development process and
includes a (Getting started' tutorial. The 'Advanced Techniques' section is
aimed at more experienced users. The appendices contain a glossary of
terms and a bibliography. Several of the chapters are generic to other
INMOS toolsets.

• 72 TDS 346 01 ANSI C Toolset Reference Manual (this manual)

• 72 TDS 347 01 ANSI C Language and Libraries Reference Manual

Provides a language reference for the toolset and implementation data. A
list of the library functions provided is followed by detailed information
about each function. Details are also provided about howto modify the run­
time startup system. although only the very experienced user should
attempt this.

• 72 TDS 348 01 ANSI C Optimizing Compiler User Guide

Provides reference and user information specific to the ANSI C optimizing
compiler. Examples of the type of optimizations available are provided in
the appendices. This manual should be read in conjunction with the refer­
ence chapter for the standard ANSI C compiler. provided in the Tools Ref­
erence Manual.

• 72 TDS 354 00 Performance Improvement with the DX314 ANSI C Toolset

This document provides advice about how to maximize the performance
of the toolset. It brings together information provided in other toolset docu­
ments particularly from the Language and Libraries Reference Manual.
Note: details of how to manipulate the software virtual through-routing
mechanism are given in the User Guide.

• 72 TDS 355 00 ANSI C Toolset Handbook

A separately bound reference manual which lists the command line
options for each tool and the library functions. It is provided for quick refer­
ence and summarizes information provided in more detail in the Tools Ref­
erence Manual and the Language and Libraries Reference Manual.

• 72 TDS 360 00 ANSI C Toolset Master Index

A separately bound master index which covers the User Guide. Toolset
Reference Manual. Language and Libraries Reference Manual. Optimiz­
ing Compiler User Guide and the Performance Improvement document.

72 TDS 34601 October 1992

Preface

Other documents

xxi

Other documents provided with the toolset product include:

• Delivery manual giving installation data, this document is host specific.

• Release notes, common to all host versions of the toolset.

occam and FORTRAN toolsets

At the time ofwriting the occam and FORTRAN toolset products referred to in this
document set are still under development and specific details relating to them are
subject to change. Users should consult the documentation provided with the cor­
responding toolset product for specific information on that product.

Documentation conventions

The following typographical conventions are used in this manual:

Bold type

Teletype

Italic type

Braces {}

Brackets []

Ellipsis ...

72 TDS 346 01

Used to emphasize new or special terminology.

Used to distinguish command line examples, code fragments,
and program listings from normal text.

In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Used to denote optional items in command syntax.

Used in command syntax to denote optional items on the com­
mand line.

In general terms, used to denote the continuation ofa series. For
example, in syntax definitions denotes a list of one or more
items.

In command syntax, separates two mutually exclusive alterna­
tives.

October 1992

xxii

72 TDS 34601

Documentation conventions

October 1992

Tools

72 TDS 34601 october 1992

2

72 TDS 34601

Tools

October 1992

1 icc-ANSI C
compiler

This chapter describes in detail the ANSI C compiler ice. It describes the com­
mand line syntax, compiler options, preprocessor directives, and other features of
the compiler such as support for transputer code. The chapter ends with a list of
error messages.

This chapter applies to both the standard and optimizing C compilers supplied with
this toolset unless otherwise stated. The 'ANSI C Optimizing Compiler User Guide'
provides details of command line options only available when using the optimizing
compiler and also provides a complete list of error diagnostics for the optimizing
compiler.

1.1 Introduction

The ANSI C compiler conforms fully with the X3.159-1989 ANSI standard for the
C programming language. This standard has now been ratified as "ISO/IEC
9899:1990 Programming languages - C". The ANSI C compiler provides support
for concurrent programming as well as some additional extensions to the C lan­
guage including compiler directives, pragmas and low level programming.

The ANSI standard for the C language defines the language including runtime
library support, new types and function prototyping. For a summary of the differ­
ences between ANSI C and the original definition of the language see chapter 4
'New features in ANSI C' in the accompanying Language and Libraries Reference
Manual. The ANSI C compiler includes support for parallel programming through
a set of library functions with associated types and structures, a mechanism for
incorporating transputer code sequences, and a group of compiler pragmas for
enabling compiler options in sections of code and for conveying directives to the
linker. The transputer code mechanism supports the full set of transputer instruc­
tions and operations and also supports labels.

Parallel processing is achieved through a library of process, channel, and sema­
phore functions and their related types and data structures. Calls to the functions
are compiled by ice into highly efficient parallel code for the transputer.

ice generates code for a particulartransputer, transputertype, or class, and a tar­
get should be specified for all compilations. The default is to produce code for the
IMS T414.

1.2 Running the compiler

To invoke the compiler use the following command line:

72 TDS 34601 October 1992

4

~ icc filename {options}

1.2 Running the compiler

where: filename is the C program source code. If no extension is given . C is
assumed. Only one filename may be given on the command line.

options is a list of options given in table 1.1. Options to select the transputer
target for the compilation are listed in appendix B.

Options must be preceded by '-' for UNIX-based toolsets and'I' for
MS-DOS and VMS based toolsets.

Options may be entered in upperorlowercase and can be given in any
order on the command line.

Options must be separated by spaces.

If no arguments are given on the command line brief help information is displayed;
the full help page is displayed by using command option 'HELP'.

Note: icc must be invoked in a writeable directory, that is, one in which you (or
any alias you use to invoke the compiler) have write access.

Option Description

Transputer type See appendix B for a list of options to specify transputer type.
AS Assemble the input file to produce and object file. The ?om-

piler phase is suppressed. See section 1.2.7.
C Performs a syntax check only. Generates no object code. This

option is ignored by the optimizing compiler.

D symbol Defines a symbol. Same as #define symbol 1 at the start of
the source file.

D symbol=value Defines a symbol and assigns a value. Same as #define
symbol value at the start of the source file.

EC Disables checks for invalid type casts. ANSI compliance
check.

EP Disables checks for invalid text after #else or #endif. ANSI
compliance check.

EZ Disables checks for zero-sized arrays. ANSI compliance
check.

FC Change the signedness property of plain char to be signed.
The default is to compile charS as unsigned.

FH Performs a number of software quality checks. See section
1.2.9.

FM Generates warning messages on #defined but unused
macros.

Table 1.1 Standard icc compiler options

72 TDS 34601 October 1992

1 ice - ANSI C compiler 5

Option Description
FS Directs the compiler to treat right-shifts of signed integers as

arithmetic shifts. See section 1.2.8.
FV Reports all externally visible functions and variables which

are declared but unreferenced, and have file scope.
G Generates comprehensive debugging data. The default is to

produce minimal debugging data. Debugging data is required
for the correct operation of idebug.

HELP Displays full help information for the tool.
I Displays detailed progress information at the terminal as the

compiler runs.
J dir Adds dirto the list of directories to be searched for source files

incorporated with the'include directive in extended search
paths. See section 1.4.9 for details.

KS Enables stack checking.
0 outputfile Specifies an output file. If no filename is given the compiler

derives the output filename from the input filename stem and
adds the . teo extension.

p mapfile Produces a map ofworkspace for eachfunction defined in the
file, and a map of the static area of the whole file. The map is
written to the file mapfile. See section 1.3.

PP Lists the preprocessed source file to stdout.

S Compiles the source file to assembly language and writes it
to a file. Assembly is suppressed and no object code is pro-
duced. The file is named after the input file and given the . s
extension.

U symbol Disables a symbol definition. Equivalent to 'undef symbolat
the start of the source file.

WA Suppresses messages warning of '=' in conditional expres-
sions.

WO Suppresses messages warning ofdeprecated function decla-
rations.

WF Suppresses messages warning of implicit declarations of
extern int () .

WN Suppresses messages warning of implicit narrowing or lower
precision.

WT Suppresses messages warning of the possibility of less effi-
cient code when compiled for a transputer class.

WV Suppresses messages warning of non-declaration of void
functions

Table 1.1 continued - Standard ice compiler options

72TD8 34601 October 1992

6

Examples of use:

UNIX based toolsets:

ice hello
ilink hello. teo -f estarlup.lnk
ieeonf hello.efs
ieolleet hello.efb
iserver -sb hello.btl-se

1.2 Running the compiler

MS-D-OSNMS based toolsets:

ice hello
ilink hello.teo If estarlup.lnk
ieeonf hello.efs
ieolleet hello.efb
iserver /sb hello.btl/se

1.2.1 Optimizing compiler options

There are a number of options which may be specified on the command line but
which the standard ANSI C compiler will ignore. These options are supported
exclusively by the optimizing ANSI C compiler and they enable and support a range
of code optimizations performed at compile time. These options are documented
in detail in the 'ANSI C Optimizing Compiler User Guide' which accompanies this
toolset. The options are listed in table 1.2 for completeness.

Option Description

FSC Provides information on how the compiler has treated rou-
tines with respect to side effects.

00 Disable optimization.

01 Enable local optimization.

02 Enable both global and local optimization.

QS Optimize for space.

QT Optimize for time.

WS Suppress warning messages about possible side effects.

Table 1.2 Optimizing compiler options

1.2.2 Transputer targets

The compiler generates code for a specific transputer type. This means that a pro­
cessor type should be specified for all transputer targets except the default which
is built into the compiler. The default processor type which is used if no target is
specified is the T414.

Transputers are also grouped into classes for the purpose of generating common
code suitable for running on a number of different transputer targets. Transputer
classes group transputers according to word size and instruction set compatibility.
They can be used to generate code for combinations of transputers.

The use of transputer types and classes in developing programs is explained in
appendix B. The command line options for selecting a transputer target are given
in this appendix.

72 TDS 34601 October 1992

1 ice - ANSI C compiler

1.2.3 Error modes

7

All code in mixed language transputer programs must be compiled and linked in
the same or a compatible error mode. ice always generates code in UNIVERSAL
error mode, which is compatible with HALT and STOP error modes created by
other INMOS compiler toolsets.

The error mode for a mixed language program can be consolidated into a single
mode for the entire program by specifying the appropriate linkeroption. If no mode
is specified the linker generates the program in HALT mode.

1.2.4 Default command line options

Commonly used command line parameters can be defined in the host environment
variable ICCARG. Parameters specified in this way are automatically added to the
end of the command line when the compiler is invoked.

Command line parameters must be specified in ICCARG using the syntax required
by the ice command line.

1.2.5 File extension defaults

The . c extension is assumed on input source files and does not need to be speci­
fied. If no output file is specified the compiled object file is named after the input
file and given a . tco extension. A . tco extension is also added ifa file is specified
without an extension.

When the input file is an assemblersource file, a file extension (otherthan .c) must
be specified. Even though the 'AS' option is specified to invoke the assembler, the
compilerwill assume a Csource file is to be compiled ifa file extension is not speci­
fied on the command line.

1.2.6 Search paths

The normal search paths are used for locating files specified on the command line.
The search rules are described in appendix A.

Search paths for files imported with the 'include compiler directive differ slightly
from those for files specified on the command line and can be extended by the use
of special syntax and a command line option. Details of this facility can be found
in section 1.4.9. .

1.2.7 Using the assembler

Assembler source files may be assembled by using the ice command line option
'AS'. This causes the compilation phase of the compiler to be suppressed and the
input file to be passed directly to the assembler. If the input assembly source file

72 TDS 346 01 October 1992

8 1.2 Running the compiler

contains preprocessor directives, the compiler preprocessor must first be used to
process the source file; the output from the preprocessor may then be used as
input to the assembler.

The use of the assembler is described in appendix C, together with examples of
how it is invoked. The file name conventions for assembler files and the command
options which may be used with the assembler are listed. The appendix also
describes the syntax of assembler directives and lists the error messages which
may be generated by the assembler.

1.2.8 Compatibility with other C implementations

Two compiler options are provided which may assist users porting existing C code
to transputer systems.

Arithmetic right shifts

By default, the compiler implements right-shifts of signed integers as logical shifts,
the command line option FS switches the implementation. This allows correct
working of programs which assume that right shifts of signed values propagate the
sign.

Signedness of char

By default the compiler implements plain chars as unsigned chars. The com­
mand line option Fe switches the implementation to signed char. Details of type
representation are given in chapter 6 of the ANSI C Language and Libraries
Manual.

1.2.9 Software quality check

The FH option allows policing ofsoftware quality requirements. The option requires
all externally visible definitions to be preceded by adeclaration (from a header file),
thus guaranteeing consistency.

When the FH option is used the compiler reports:

• all forward s tatic declarations which are unused when the function is
defined.

• all repeated macro definitions (this is when macros are redefined to the
same value; redefining a macro to adifferent value is always diagnosed as
an error).

• (optimizing compiler only) - reports all unused function arguments.

Note: the standard compiler reports all unused function arguments by default.

72 TDS 346 01 October 1992

1 ice - ANSI C compiler

1.3 Memory map

9

The compiler may be instructed, via the P mapfile option, to produce a map ofwork­
space for each function defined in the file, and a map of the static area of the whole
file. The file contains information which may assist the user during program debug­
ging. The map is written to the file mapfile.

The file consists ofa series ofworkspace maps; one for each routine, giving details
of workspace requirements. These are followed by a series of section maps; one
for each section of code, listing details of its static variables.

The file is generated in text format and is structured as follows:

• The name of the source file for which the map of code and data is being pro­
duced. The full pathname will be given if it exists.

• Version data for the compiler.

• The target transputer of the compilation, T805, T400 etc.

• The error mode of the compilation, this is always UNIVERSAL for C pro­
grams.

• Name of the routine forwhich the map ofworkspace is being produced. Items
in the workspace map are given in ascending order of workspace offset.

List of local variables giving their offset (in bytes) into the routine's work­
space. This list may include temporary variables introduced by the com­
piler.

List of formal parameters giving their name and offset (in bytes) into the
routine's workspace. Parameters added by the compiler may also be
listed, see table 1.3.

The workspace requirement of the routine in bytes. Note: this includes
the four word call overhead introduced by the transputer call instruction.

• Name of the section for which the section map is being produced. Items in
the section map are given in ascending order of section offset.

• A list of static variables or routines, giving the following details:

- Name of static variable or routine. This may be in the form
'<name>%xp', see table 1.4

- Type of variable or routine

- Offset in bytes into static data or code area

- Other properties of variable or routine, see table 1.4.

Static variables are either placed in the static or code areas. Details of how the
compiler allocates space for static data are given in section 6.15 of the ANSI C Lan­
guage and Libraries Manual.

72 TDS 346 01 October 1992

10

Formal parameter

Compiler temporary

Result pointer

Return address

Global static base pointer (gsb)

Static link

1.3 Memory map

Table 1.3 Parameters inserted by compiler

Property Description

global Globally visible static item.

static Static item.

pointer to external Static item introduced by the compiler to
object enable code to access an external object.

The name of the external object is used as
the prefix to the compiler generated name.
e.g. 'fred%xp' is a static item introduced by
the compiler which points to an external
object named 'fred'.

translated from data Static items whose name has been modified
name by the IMS_translate pragma are listed

under the name that is put into the object file.
They are annotated with the message:
'translated from sourcename', where
sourcename is the name used in the source
file.

Table 1.4 Static variable properties

Note: The message "No local variables" may be displayed if no user vari­
ables are found, however, compiler temporaries may have been assigned to work­
space. In addition some compiler temporaries may not be listed in the map file.

The compiler does not generate an explicit "No static data" message. If a file
does not contain static data, such information will not be present in the map file.

Information generated in the compiler map file may be extracted by the imap tool.
This tool can be used to produce a memory map for the program after it has been
compiled, linked and collected. See chapter 12.

72 TDS 34601 October 1992

1 ice - ANSI C compiler

Map of code and data for source file hello.c

11

Created by INMOS C compiler Version 2.02.05 (built at 18:11:13 Dec 10 1991)

Target processor T4
Error mode UNIVERSAL

Map of workspace

Routine : main

Variable name

b
a

Formal parameter name

<return address>
<gsb>

Offset (bytes)

Offset (bytes)

8
12

Workspace size

Map of workspace

Routine : bill

24 bytes

Variable name

<compiler temporary>
<compiler temporary>
z

Formal parameter name

<return address>
<gsb>
<result pointer>
c
f

Offset (bytes)

0
4
12

Offset (bytes)

20
24
28
32
36

Workspace size 36 bytes

Section map

Section name static%base

Name Type Offset (bytes)

fred static data

Section map

Section name text%base

Name Type Offset (bytes)

main code 4 global
bill code 36 static

Figure 1.1 Example compiler map

72 TDS 346 01 October 1992

12 1.4 Compiler directives

1.4 Compiler directives

1.4.1 #define

Syntax: 'define name [(arg1, . . .,argn)] [value]

#define allows simple macro substitution to be performed. In its simplest mode
of operation name and value represent a series of ASCII characters causing the
preprocessor to substitute all occurrences of name by value (which may be nUll).
Arguments may also appear after the name, and when this happens the prepro­
cessor will still replace all occurrences of name and its following arguments by
value, but in this case the value string will have been defined in terms of the
expected arguments, and will therefore exhibit a dependence on the original text.

'define YES 1 /* replace all occurrences
of YES by 1 */

#define max(a,b) (a > b ? a : b)
/* max(2,4) will be replaced by

(2 > 4 ? 2 : 4) */

1.4.2 #elif constant_expression

Syntax: #elif

This directive can be used in place of the sequence

#else
#if constant_expression.

1.4.3 #else

Syntax: #else

This directive can be used with the #if, #ifdef, and #ifndef directives to mark
the beginning of text which will be ignored whenever the expression following the
#if evaluates to a non-zero value.

1.4.4 #endif

Syntax: #endif

This directive must be used with the #if, #ifdef, and #ifndef directives to mark
the end of the text which may be affected by the #if ... #else ... #endif
construct.

72 TDS 346 01 October 1992

1 ice - ANSI C compiler

1.4.5 terror

13

Syntax: terror text

This directive causes an explicit error with the text following the directive displayed
in the error message. This is useful for determining which pieces of code are being
bypassed by a construct of the form #if ... #else ... #endif.

1.4.6 #if

Syntax: #if constant_expression

This directive, along with the #else and #endif directives, is used in asimilarway
to the if ... else construct of many high level programming languages. When it is
encountered, the preprocessor evaluates the following constant expression and
if it is zero it ignores all text up to the following #else or #endif directive. If, how­
ever, the expression evaluates to non-zero, then the text between the #else and
#endif directives (if any) is ignored. This mechanism would typically be used to
allow conditional compilation.

As an extension to this directive, the preprocessor also allows 'if defined' type
expressions. In this case 'defined' is used as a unary operator which returns true
if its operand represents an identifier that is currently defined within the preproces­
sors symbol table, and false if it is not. By combining this operator with the logical
operators it is possible to build complex expressions of the form:

#if defined foo & ! defined dummy

/* if foo is defined & dummy is not */

1.4.7 #ifdef

Syntax: #ifdef identifier

This directive works in a similar way to the #if directive, but instead of basing its
decision on the result of an expression it uses the existence or non-existence of
the identifier within the preprocessor's symbol table as the criterion. If the identifier
has not previously appeared in a 'define directive or if it is not one of the prede­
fined identifiers then all text up to the following #else or #endif directive is
ignored; otherwise all text between the #else and 'endif directives is ignored.

1.4.8 'ifndef

Syntax: #ifndef identifier

This directive is similar to #ifdef, except that the text is passed if identifier is not
currently defined.

72 TDS 346 01 October 1992

14 1.4 Compiler directives

1.4.9 #include

Syntax: #include filename

The #include directive instructs the preprocessor to read the contents of the
named file as if they were at the current position in the current file. The filename
must be enclosed within angle brackets «filename» or double quotes ("file­
name"). The two forms generate different search strategies.

If angle brackets are used only those directories specified by ISEARCH are
searched. No other directories (including the current directory) are searched. This
method is mainly used to include the standard library header files.

If double quotes are used to enclose the filename the standard toolset search is
used, but incorporating a method for extending the search list. First the current
directory is searched. If the file is not found the search continues with the list of
directories specified after the compiler •J' option. If the file is still not found, or if no
list is given, directories specified by ISEARCH are searched.

A #include preprocessing directive may appear in a source file that has been
read because of a #include directive in another file. There is no fixed limit to
#include nesting.

Relative directory names

Relative directory names are treated as relative to the directory containing the cur­
rent source file.

Backslash character in filenames

In included filenames the backslash is not treated as introducing an escape
sequence unless it is followed by another backslash ('\ \').

1.4.10 #line

Syntax: #line linenumber [filename]

This directive instructs the compiler that subsequent lines begin with line number
linenumber in the file filename. If no file name is specified, the original name is
retained. linenumber must be within the range 1 to 32767 inclusive.

1.4.11 #pragma

Syntax: #pragma pragma (params)

This directive activates and deactivates various compiler options in sections of C
code. It may be used to set (or override) options specified on the command line.
Most pragmas also take parameters or numerical arguments.

Table 1.5 lists the main compiler pragmas and table 1.6 lists the parameters to
IMS_on and IMS_off.

72 TOS 346 01 October 1992

1 icc - ANSI C compiler

Option

IMS on (params)

IMS off (params)

IMS nolink (functionname)

IMS_linkage (["name"])

IMS_modpatchsize (n)

IMS_codepatchsize (n)

IMS translate (name,
" newname ")

IMS descriptor (function­
name,mnguage_~pe,work­
space,vectorspace, "descrip­
tor-string")

15

Description

Enables specific compiler actions. Takes a list
of parameters which specify the actions to be
enabled.

Disables specific compiler actions. Takes a list
of parameters which specify the actions to be
disabled.

Compiles the function functionname without a
global static base parameter. The function
must already have been declared but must not
have been defined or called. This pragma is
used for importing code written using lan-
guages such as occam which do not use
static data, and for exportin-g C functions to the
same languages.

Enables the user to change the order in which
code modules are linked together; this may aid
the use of faster on-ehip RAM. The compiler
creates the object code into a section named
"text%base". The IMS linkage pragma
causes the compiler to change the name of the
section to that supplied in the string. If no string
is present, "pri%text%base" is used; this
section being inserted at the front by the linker
in the default case. A linkage command (see
9.4.6) controls of the ordering of the sections.
The linkage directive should appear at the start
of the code, before any function definitions.

Specifies the number of bytes reserved by the
compiler for a linker module number patch. n
has default values of 3 for 32-bit targets and 2
for 16-bit targets.

Specifies the number of bytes n reserved by
the compiler for a linker code patch. n has a
default value of 6 for 32-bit targets and 4 for
16-bit targets.

The compiler replaces all references to name
(e.g. an external routine) by "newname". "new­
name" is a C string which can contain alphanu­
meric characters; the underscore (' '), percent
('%'), or full stop (' . ') characters. -

Creates a TCOFF descriptor for C functions.
Further details are given below.

72 TDS 34601

Table 1.5 icc compiler pragmas

October 1992

16

Parameter Short Description
form

1.4 Compiler directives

channel.J>ointers cp Treats a variable of type Channel in the scope
of the definition typedef const volatile
void * as a channel type for the debugger.
Default is off. This pragma is enabled in the
header file channel. h. If channel. h is
included in the program this pragma will remain
active until specifically disabled.

inline_ops il Compiles certain operations on long operands
(signed or unsigned) on 16-bit targets as in-line
operations rather than as calls to the compiler
library. Operations affected are: ~(bitwise com­
plement), +, -, & (bitwise AND), I (bitwise OR),
A (bitwise exclusive OR), «, », <, <=, =, ! =,
>=, and >. D~fault is on.

printf_checking pc Checks that arguments passed to a function
conform to the format used by printf. Default
is off. This pragma is normally used to check for­
mal arguments which are to be passed directly
as format strings to printf.

For each function within the scope of the pragma
the last formal parameter is read as a format
string and subsequent variable arguments are
checked for correct type, according to the for­
matting rules of printf. This pragma is
enabled in s tdio . h for the declaration of
printf and related functions, and subse­
quently disabled.

scanf_checking sf Checks that arguments passed to a function
conform to the format accepted by scanf.
Default is off. Otherwise this pragma has the
same effect printf checking. This pragma
is enabled in stdiO: h for the declaration of
scanf and related functions, and subsequently
disabled.

stack_checking sc Checks for stack overflow at the start of each
function. Default is off.

warn_bad_target wt Warns of inferior code generated for a transputer
class rather than for a specific transputer target.
Default is on.

warn_deprecated wd Warns of parameterless function declarations.
Default is on.

warn_ implici t wi Warns of undeclared functions. Default is on.

Table 1.6 Parameters to IMS on and IMS off

72 TDS 346 01 October 1992

1 ice - ANSI C compiler

Pragma INS_nolink

17

The pragma INS nolink enables C routines to call or be called from occam and
other languages:-

Syntax: 'pragma INS_nolink (fname)

The following code uses the pragma to allow an occam routine OCCAMREALOP to
be called in a C program:

extern float OCCAMREALOP(const float x,
const int op,
const float y);

'pragma IMS nolink (OCCAMREALOP)

float x, y, z;
z = OCCAMREALOP(x, op_add, y);

The following code allows the C function max to be called from occam:

extern int max(const int x, const int y);
'pragma INS nolink (max)
extern int max(const int x, const int y)
{ return x > y ? x : y; }

Note: functions which have had the IMS nolink pragma applied may not be
called through a pointer. The library routine call vithout gsb is supplied to
allow a call through a pointer to a nolinked function. -

Pragma IMS_descriptor

The pragma IMS descriptor creates a TCOFF descriptorfor C functions. It also
causes the definition of two TCOFF symbols giving the workspace and vector­
space requirements of the function. This pragma is of particular use when modify­
ing the C runtime startup code, further details of which are given in chapter 3 of the
ANSI C Language and Libraries Reference Manual. It is also applicable when mak­
ing use of the dynamic loading facility provided in the C library (see chapter 2 of
the ANSI C Language and Libraries Reference Manual and chapter 12 of the ANSI
C Toolset User Guide).

Syntax: 'pragma IMS_descriptor (functionname, language_type, \
workspace, vectorspace, udescriptor-stringn

)

The parameters to the pragma are given in table 1.7.

72 TDS 34601 October 1992

18 1.4 Compiler directives

functionname Name of the C function to which the descriptor applies.
language_type The language in which the descriptor string is written. The

language is given as a keyword:
unknown
occam
ansi c
fortran
isoyascal
modula2
ada
assembler
occam harness
Alternatively the descriptor-string may be an empty string,
however, a language type must still be given.

workspace The amount of workspace required by the function.
(Expressed as a number of words).

vectorspace The amount of vector space required by the function.
(Expressed as a number ofwords). This is usually '0' for C
functions.

"descriptor-stringn This is the descriptor string itself. If the string is not empty
then it must contain an occam style function declaration
equivalent to the C function prototype.

Table 1.7 Parameters to IMS_descriptor

The rules governing the use of this pragma are as follows:

• The function must be externally visible.

• The function must have been declared before the pragma appears.

• The function must not have been defined before the pragma appears.

• The pragma must appear in the same file in which the function is defined.

• Only one descriptor pragma can exist per function.

• No argument to the descriptor pragma can be the result of earlier prepro­
cessor substitutions.

An example of the use of this pragma follows:

void centry(int bill);

#praqma IMS_descriptor(centry, occam, 32, 0, \
"PROC centry(VAL INT bill)\n SEQ\n:")

void centry(int bill)
{

/* function body */;

72 TOS 346 01 October 1992

1 ice - ANSI C compiler 19

This defines an occam descriptor for the function centry. A requirement for 32
words of workspace and no vectorspace is also recorded in the descriptor. The
syntax for the descriptor string is the standard syntax for occam descriptors.

Note: type compatibility between the parameters in occam and C is retained by
following the rules given in the ANS/ C Too/sel User Guide, Mixed language pro­
gramming chapter.

Example TCOFF output from the above can be obtained using the 't' option on the
lister tool ilist, as follows:

00000080 SYMBOL EXP "centry" id: 4

00000092 SYMBOL EXP ONI "centry'wa" id: 5
0000009F SYMBOL EXP ONI "centry'vs" id: 6
OOOOOOAC DEFINE SYMBOL id: 5 32
000000B1 DEFINE-SYMBOL id: 6 0
000000B6 DESCRIPTOR id: 4 lanq: OCCAN
vs: 32 vs: 0
PROC centry(VAL INT bill)

SEQ

1.4.12 #undef

Syntax: #undef identifier

This directive causes the current definition of identifier (as defined using the
#define directive) to be deleted.

1.5 Compiler predefinitions

Certain macros which identify global information, and some function names, are
automatically recognized by the compiler. Generally, these items can be refer­
enced directly in C programs and do not need to be declared.

Note: Predefined variables _lsb and ""params (see section 1.5.2) should be
declared to avoid spurious warning messages being generated by the compiler.

1.5.1 Macro names

All predefined macro names defined by the ANSI standard are present; they are:

DATE
FILE- -
LINE- -
STDC
TIME- -

72 TDS 346 01

The current date.
Name of the current source file.
Line number of the current line of source.
A non-zero value if the implementation conforms to ANSI C.
The current time.

October 1992

20 1.5 Compiler predefinitions

CC NORCROFT
Ice
PTYPE
ERRORMODE

SIGNED CHAR

Details of the ANSI macros and the values they can take can be found in chapter
4 of the ANSI C Language and Libraries Reference Manual.

The following INMOS macro names are also defined:

Derived from the Norcroft C compiler.
INMOS C compiler.
Processor type.
Execution error mode.
Signedness of the plain char type, defined if the
ice 'FC' command line option is used.

Details of the macros and the values they can take can be found in chapter 5 of
the ANSI C Language and Libraries Reference Manual.

1.5.2 Other predefines

Two further names _lsb and yarams are predefined by the compiler. They can
be used in expressions in the same way as C variables. Both represent addresses
which may be manipulated in low level programming and must be declared as fol­
lows:

extern volatile const void *_lsb;

extern volatile const void *-params;

_lsb is a pointer to the base of the compiled file's data area.

yarams is a pointer to the base of the the current function's parameter block. It
can be used to obtain low level information about a function's runtime code.

The following example illustrates how -params can be used to determine a func­
tion's return address, global static pointer, and workspace pointer.

void p ()
{
extern volatile const void *-params;
typedef struct paramblock

{ void *return address;
void *gsb; -
int regparam1, regparam2;

}
paramblock;

paramblock *pp = (paramblock *)-params;

/* Return address is: pp->return address
global static base sb is: pp->gsb
caller wptr is: (void *) (pp + 1) */

72 TDS 346 01 October 1992

1 icc - ANSI C compiler 21

1.6 Transputer inline code

INMOS C provides different levels of support for inlining transputer instructions:

• A special keyword asm can be used to enclose sequences of transputer
instructions into CJ)rograms. The asm statement and how to use it is
described in chapter 5 of the ANSicLanguage and Libraries Reference
Manual.

• A number of functions are supplied which can be compiled inline as trans­
puter instructions, provided the appropriate header files are included in the
source code. The inputs and outputs of the instructions are treated as
parameters to and results from the functions.

1.6.1 Inlined functions

Each of the supplied functions is designed to allow access to a transputer instruc­
tion which is not directly accessible from the C source level. Note: however, that
the automatic inlining will only occur if the appropriate header file has been incorpo­
rated in the source code by using the #include directive. The header files contain
prototypes for the routines. Table 1.8 lists the functions, the instructions they sup­
port and the header file which is required.

Function Instruction supported Header file
BitCnt bitcnt misc.h
BitCntSum bitcnt misc.h
BitRevNBits bitrevnbits misc.h
BitRevWord bitrevword misc.h
BlockMove move misc.h
CrcByte crcbyte misc.h
CrcWord crcword misc.h
DirectChanln in channel.h
DirectChanlnChar in channel.h
DirectChanlnlnt in channel.h
DirectChanOut out channel.h
DirectChanOutChar outbyte channel.h
DirectChanOutlnt outword channel.h
memcpy move string.h
Move2D move2dall misc.h
Move2DNonZero move2dnonzero misc.h
Move2DZero move2dzero misc.h
ProcGetPriority Idpri process.h
ProcReschedule - process.h
ProcTime Idtimer process.h
strcpy - string.h

Table 1.8 Inlined functions

72 TDS 34601 October 1992

22 1.7 Compiler diagnostics

Note: the 'OirectChan.. .' functions- must not be used with virtual channels: sec­
tion 6.3.1 of the ANS/ C Too/set User Guide. discusses this.

Descriptions ofall the functions are provided in the ANS/ CLanguage andLibraries
Reference Manual.

1.7 Compiler diagnostics

This section lists diagnostic error messages generated by ice. The section is
introduced by descriptions of some standard terms which may be encountered in
the message texts.

1.7.1 Message format

Diagnostic messages are displayed in the standard toolset format for error mes­
sages. Details of the standard can be found in appendix A.

1.7.2 Severities

Diagnostics are tagged with a severity level which indicates their effect on the com­
pilation. Severity levels are the same as those used in the toolset standard but have
slightly different meanings, which are described below.

Information messages provide the user with information about the functioning or
performance of the tool. They do not indicate an errorand no useraction is required
in response.

Warning severity diagnostics are generated whenever legal. but unorthodox pro­
gramming styles are detected. Compilation is unaffected and object code is gener­
ated normally.

Error severity diagnostics are generated whenever the compiler detects a pro­
gramming error from which it can recover. Compilation continues. but may abort
if more errors are detected subsequently. No object code is generated.

Serious severity diagnostics are generated when programming errors are
detected from which the compiler cannot recover. Compilation continues but code
has been lost. No object code is generated.

Fatal errors indicate internal inconsistencies in the software and cause immediate
termination of the operation with no output. Fatal errors are unlikely to occur but
if they do the fact should be reported to your local INMOS distributor or field
applications engineer.

Error. Serious. and Fatal diagnostic messages return error codes for handling by
system MAKE programs and batch files.

1.7.3 Standard terms

This section explains some of the standard terms and notation used in compiler
error messages.

72 TDS 34601 October 1992

1 ice - ANSI C compiler 23

abstract declarator

When using explicit casts or when passing an argument to sizeof () , a
data type must be specified. This can be done by declaring an object of the
correct type without specifying the name of the object. Declarations of this
type are called abstract declarations, because they apply to no known
object.

Examples of abstract declarations are:

(int) a = b; /* 'int' is the abstract
declarator */

sizeof(int [3]); /* 'int [3]' is the abstract
declarator */

char

Stands for a single ASCII character.

context

Stands for a type, for example, 'character constant', 'integer constant', and
'string constant'.

deprecated declaration

This means that a function declaration is incomplete. Declarations should
specify the type of the function and the type of each formal parameter. If
there are no parameters then the function type void should be specified.

expression

Stands for a C expression.

filename

A file name.

function prototype

A function declaration which usually precedes the function definition. It
declares the function's type and the types of its parameters.

identifier

A C identifier, for example, a variable or function name.

initializer

An initial value which is assigned to an object at the time of its declaration.

message string

The string which follows a compiler directive.

72TDS 34601 October 1992

24

op

1.7 Compiler diagnostics

An operator. Valid operators include: "++", "--", "->", "<=", and the unary
operators &, ., + and -.

store class

A C storage class. Valid classes are static or extern.

string

Any string of ASCII characters.

struct/union

A variable of type struct or union.

type

A type identifier.

void context

This can occur at any point in a program where a value is not expected, for
example, calling a function without using the returned number.

instruction

A transputer instruction, or a pseudo-instruction as accepted by the asm
construct. -

1.7.4 ANSI trigraphs

The ANSI specification includes a number of three character sequences that can
be used to represent certain ASCII characters that may not be present on all key­
boards. These sequences, known as trigraphs, are used in compiler error mes­
sages to stand for these characters.

ANSI standard trigraph sequences consist of a sequence of 2 question marks fol­
lowed by a third character. A complete list of ANSI trigraphs is given in the chapter
4 of the accompanying ANSI C Language and Libraries Manual.

1.7.5 Warning diagnostics

#define macro identifier defined but not used

The named macro has been defined, but not referenced in the rest of the
program. This message is only generated if specifically enabled by the 'FM'
compiler option.

'&' unnecessary for function or array identifier

A pointer to a function or array is implied by use of the name alone; the (,'
operator is not required.

72 TDS 34601 October 1992

1 ice - ANSI C compiler 25

lint identifier ()' assumed - 'void' intended?

A function was defined without specifying its type. The compiler assumes
a function of type int if no type is specified.

identifier already has a descriptor defined, pragma ignored

The pragma IMS_ descriptor has already been applied to identifier,
more than one application is invalid.

identifier has been called; pragma ignored

The pragma must be applied to identifier before the latter has been called.

identifier has been defined; pragma ignored

The pragma must be applied to identifier before the latter is defined.

identifier has not been declared; pragma ignored

The pragma must be applied to identifier after the latter has been declared.

identifier is not a function; pragma ignored

The argument to the pragma must be a function name.

identifier is not externally visible; pragma ignored

The first argument to the IMS descriptor pragma must be the name of
an externally visible function.-

identifier multiply translated, this translation ignored

The IMS_translate pragma has been applied to identifier more than
once.

number treated as number UL in 32-bit implementation

No type was specified for the number. The compiler assumes unsigned
long if no type was specified.

op : cast between function and object pointer

The specified operator has been used in an expression involving pointers
of different types, that is, a function pointer and an object pointer (a pointer
to an area in memory).

type identifier declared but not used

The named identifier has been declared, but not used in the program.

actual type type mismatches format '%char '

The type of an argument to printf or scanf does not match that implied
by the control string.

ANSI 'char char char' trigraph for 'char' found - was this intended?

The specified three character sequence was found in the source program.
This has been treated as an ANSI trigraph and substituted for the character
shown.

72 TDS 346 01 October 1992

26 1.7 Compiler diagnostics

argument and old-style parameter mismatch: expression

There is an old (non-prototype) style function definition in scope, and the
type of an argument (after default argumen~romotion has taken place)
does not agree with the type of the corresponding formal parameter.

Cannot delete temporary file filename

Host file system error.

Cannot generate stack check for function (pragma nolink applied)

A stack check requires a static link, and the function function has been spe­
cified not to receive a static link (using IMS nolink). ice compiles the
function with the stack check omitted. -

character sequence 1* inside comment

The start-of-comment character sequence was detected within a com­
ment. Check that the previous comment was terminated correctly.

Dangling 'else' indicates possible error

Within nested if ... else constructs, there is some ambiguity as to which
'if' relates to which 'else'.

Deprecated declaration identifier () - give arg types

In the prototype declaration of the named function, the argument's names
and/or their types were not specified.

division by zero: op

Division, or remainder, by zero, will cause overflow.

Expected ')'; perhaps you tried to give too many names - pragma ignored

A ')' was expected but not found in a pragma; it may be that too many
parameters have been given.

Expected integer as argument - pragma ignored

An integer argument was expected but not found in a pragma.

Expected string as argument - pragma ignored

The argument to the IMS_linkage pragma must be a string literal.

Expected string as fifth argument; pragma ignored

The fifth argument to the IMS descriptor pragma must be a string lit-
eral. -

Expected string as second argument - pragma ignored

The second argument to the IMS translate pragma must be a string lit-
eral. -

72 TDS 346 01 October 1992

1 icc - ANSI C compiler 27

Expression generates poor code on this target ('dup' required)

An expression is being compiled for a transputer class of which only some
members have the dup instruction. The compiler has decided that the
expression could be compiled more efficienUy using the dup instruction, but
cannot do so because it is not present on all members of the class.

extern 'main' needs to be 'int' function

In a declaration ofmain(), the function should always be declared as type
into

extern identifier not declared in header

All objects must be declared before use. This message is only generated
if specifically enabled by the 'FM' compiler option.

floating point constant overflow: op

Floating point overflow occurred during addition, subtraction, multiplication
or division of two constants.

Floating-point generates poor code on this target

Floating-point code is being compiled for a transputer class of which only
some members have instruction set additions to enhance floating-point
performance. As these instructions are not present on all members of the
class, the compiler cannot use them.

floating to integral conversion failed

Conversion (casting) from a floating point type to an integral type (such as
int) failed.

formal parameter identifier not declared - 'int' assumed

A formal parameter has been listed in the parameter list of the function defi­
nition, but there is no entry for it in the declaration list; it is therefore
assumed to be of type into

Format requires count parameter(s), but count1 given

A call to printf or scanf was made with the incorrect number of argu­
ments. The control string indicated that count arguments are needed, but
count1 were provided. This warning is only generated if pragma IMS on
(pc) is active. The header file stdio. h includes this pragma. -

Illegal format conversion '%char'

The character sequence '%char' is not a legitimate conversion character
for printf or scanf. This warning is only generated if pragma IMS on
(pc) is active. The header file stdio. h includes this pragma. -

Illegal language type string; replaced by string

The language type given for the interface descriptor-string is not a valid
one, and has been overridden by a known type.

72TD5 346 01 October 1992

28 1.7 Compiler diagnostics

implicit cast (to type) overflow

Overflow occurred when casting an expression.

implicit narrowing cast: op

The result of an operation performed at higher precision is immediately,
and implicitly, cast to lower precision, thus losing the extra precision: if the
extra precision is not required, the operation ought to be performed at the
lower precision.

If the narrowing cast is really required, the warning may be suppressed by
writing the cast explicitly.

implicit return in non-void identifier ()

The function does not contain a return statement, even though it is
defined to return a value.

Incomplete format string

The control string for use with printf or scanf is incomplete. This warn­
ing is only generated if pragma INS on (pc) is active. The header file
stdio. h includes this pragma. -

index value number is outside array bounds

The array subscript value number is larger than the maximum subscript
allowed forthe array, orsmallerthan the minimum subscript allowed for the
array.

Integer too large to be represented - pragma ignored

An integer parameter to a pragma has been given with a value too large
to be able to be dealt with by the compiler.

inventing 'extern int identifier ();'

No declaration exists for the function; it will be defined by default as
extern into

label identifier was defined but not used

The named label was set, but not used.

Linkage already set - pragma ignored

The IMS_linkage parameter has been specified more than once.

lower precision in wider context: op

The result of an operation performed at lower precision is immediately cast
to a higher precision; it may be that the user was expecting the operation
to be performed at the higher precision.

Missing comma in pragma argument list - pragma ignored

Multiple arguments to a pragma must be separated by commas.

72 TDS 346 01 October 1992

1 ice - ANSI C compiler 29

Negative value given for vectorspace - pragma ignored

Vectorspace values in the IMS_descriptor pragma must be ~ o.
Negative value given for workspace - pragma ignored

Workspace values in the IMS_descriptor pragma must be ~ o.
No pragma name given in pragma directive - was this intended?

The compiler has detected a pragma directive which does not have a
name. This is not illegal, however, it has no effect.

no side effect in void context: identifier

The value which has been returned by an expression is not being used e.g.

int a;
a;

non-portable - not 1 char in ' ... '

The characters enclosed by single quotes represent more than one char­
acter. The compiler will read the first character only, for example, 'AB' will
be read as 'A'.

Non-positive values for patch size are meaningless - pragma ignored

Patch size values must be > O.

non-value return in non-void function

A function which should return a value has terminated without using a
return statement or with a return statement that has no arguments. The
value received from the function by the calling routine is undefined.

odd unsigned comparison with 0 : op

a ~ comparison of an unsigned integer with zero, or a ~ comparison of~ero

with an unsigned integer, is always true.

omitting trailing '\0' for char [count]

The char array is fully occupied by characters and there is no room to
append the string terminator (\0). count is the full length of the character
array.

repeated definition of #define macro identifier

The named macro has been defined more than once. The definitions are
identical.

Shift of type by count undefined in ANSI C

A shift of more than the number of bits in type, or less than zero was
requested, undefined in ANSI C.

72TDS 346 01 October 1992

30 1.7 Compiler diagnostics

signed constant overflow: op

Overflow occurred when performing op upon signed, constant operands.

spurious {} around scalar initialiser

A scalar can take only one initializer, so there is no need to use braces as
are required with aggregate types such as arrays.

static identifier declared but not used

The named static object was declared but not used.

struct has no named member

A structure has been declared without any members.

Too many assembler arguments
Too many compiler arguments

There are too many options on the command line. The extra options are
ignored.

Undefined macro string in #if - treated as 0

This error occurs when enumeration or undefined constants appear after
the preprocessor lif directive. For example, if 'ab' and 'cd' are enumera­
tion constants of the enumerated type 'abed', the statement lif ab = cd
would generate this error.

union has no named member

A union has been declared without any members.

unnamed bit field initialised to 0

A static declaration of a structure or union containing an unnamed bit field.
the compiler has initialized that field to zero.

Unrecognised #pragma (no '(')

The arguments to a pragma are not correctly enclosed in parentheses.

Unrecognised #pragma (no ')')

The arguments to a pragma are not correctly enclosed in parentheses.

Unrecognised #pragma identifier

identifier is not a pragma recognized by this compiler.

unsigned constant overflow: op

Overflow occurred when performing op upon unsigned, constant oper­
ands.

unused earlier static declaration of identifier

The static variable identifier has been defined before being declared. Gen­
erated only if the 'FH' compiler option is specified.

72 TDS 34601 October 1992

1 ice - ANSI C compiler 31

use of op in condition context

Generated when the invalid operators '=' (assignment) or ,~' (bit-not) are
used in a condition statement.

This message is given for use of the assignment operator in condition con­
text, e.g.

if (a = b)

as this is often due to mistyping the equality operator, Le. the desired code
is:

if (a = b)

If you really wish to perform the assignment in condition context, the warn­
ing message may be suppressed using the form:

if «a = b) != 0)

wrong number of parameters to function

A function declared without a prototype was called with the wrong number
of arguments. (An error is given if a function declared with a prototype is
called with the wrong number of arguments.)

variable identifier declared but not used

The variable was declared, but not used anywhere in the program.

(possible error): >= number lines of macro arguments

There are a surprisingly large number of lines ofarguments to a macro; this
may indicate a syntax error.

1.7.6 Recoverable errors

#ident is not in ANSI-C

#ident is not a recognized preprocessor directive.

first or last token in #define body

The II preprocessor operator must be preceded by a preprocessor token,
and succeeded by a preprocessor token.

instruction may not have a size specified

An _asm pseudo-instruction may not be explicitly sized.

I,' (not I;') separates formal parameters

A semicolon has been used to separate the formal parameters in a function
definition (as in Pascal) instead of a comma.

'register' attribute for identifier ignored when address taken

An attempt was made to take the address of a variable with 'register' stor­
age class. The register attribute will be ignored allowing the address to be
taken.

72 TDS 346 01 october 1992

32 1.7 Compiler diagnostics

<int> op <pointer> treated as <int> op (int) <pointer>

The expression involving a integer and a pointer will result in the pointer
being converted (cast) to an integer.

object identifier may not be function - assuming pointer

An attempt was made to use a function where it was not expected, typically
when a function is included as a component within a structure.

op: cast between function and non-function object

The operation is performed upon two arguments, one ofwhich is afunction,
and the other an object.

op : cast to non-equal type illegal

A structure or union has been cast into a structure or union of a different
type. The cast is illegal and will be ignored.

op : illegal cast to type

An illegal cast has been attempted. The cast is illegal and will be ignored.

op : implicit cast of type to 'int'

A non-integerobject has been used where an int was expected, for exam­
pie, attempting to use a double as an argument to a switch statement
(which requires an integer type).

op : implicit cast of non-O int to pointer

Evaluation of the expression will result in the cast of an integer to a pointer.

op : implicit cast of pointer to 'int'

Evaluation of the expression will result in the cast of the pointer to an inte­
ger.

op : implicit cast of pointer to non-equal pointer

Evaluation of the expression will result in the cast of one pointer type to
another.

op may not have whitespace in it

Two-character operators such as '+=' must not contain spaces.

<pointer> operator <int> treated as (int) <pointer> operator <int>

Evaluation of the expression will result in the cast of the pointer to an inte­
ger.

Ancient form of initialisation, use '='
A }, rather than =, was used to introduce an initializer, this is no longer legal
c.

72 TDS 346 01 October 1992

1 ice - ANSI C compiler 33

ANSI C does not support 'long float'

An object has been declared of type long float, this is illegal in ANSI C,
which supports float, double, or long double.

Array of type illegal - assuming pointer

An array of functions or void objects has been declared. The compiler
treats this as an array of pointers to functions or void objects.

Array [0] found

An empty array has been defined and will be set up instead as an array with
one element.

assignment to 'const' object identifier

The expression contains an assignment to a constant. The assignment will
be carried out.

const typedef identifier has const respecified

A typedef which is already qualified with const, has been qualified with
const.

comparison op of pointer and int: literal 0 (for == and !=) is only legal case.

The specified operator was used to compare an object of type int and one
of a type pointer. The only legal comparison of this type is between a
pointer and 0 using either = or ! =.

declaration with no effect

No name has been declared for the object. Specifying only the type of an
object generates this error.

differing pointer types: op

The specified operator was used with pointers of different types.

differing redefinition of #define macro identifier

The named macro has been defined more than once. The definitions are
not identical.

Digit 8 or 9 found in octal number

8 and 9 are meaningless in an octal number.

duplicate macro formal parameter: 'identifier'

The function macro has two formal parameters with the same name.

duplicate member identifier1 of identifier2

Two fields of structure or union identifier2 have the name identifier1.

72 TDS 34601 October 1992

34 1.7 Compiler diagnostics

ellipsis (...) cannot be only parameter

A function declared to take a variable number of parameters must have at
least one known parameter.

enumeration constant identifier too large to represent as lint' - 0 assumed

The value of an enumeration constant has overflowed the range of ints.

extern identifier mismatches top-level declaration

An extern declaration of identifier within a function definition does not
match an extern declaration of identifier at the top level.

expected symbo/1 or symbo/2 -inserted symbo/1 before symbo/3

symbo/1 or symbo/2 was expected before symbo/3, but neither was found.
symbo/1 is suggested as the most appropriate choice and the compiler has
changed the code accordingly.

formal name missing in function definition

The type of a formal parameter has been omitted in a function definition.

function identifier may not be initialised -assuming function pointer

Initializers cannot be used in function declarations or definitions.

function prototype formal identifier needs type or class - lint' assumed

The type of a formal parameter has been omitted in a function declaration
and int has been assumed.

function returning type illegal - assuming pointer

The user has appeared to declare a function which returns a function or an
array.

hex number cannot have exponent

A hex number ending in e may not be immediately followed by +or -; sepa­
rate the number and the additive operator with white space.

illegal bit field type type - lint' assumed

Bit fields cannot be set within non integral variables. The compiler assumes
an in t instead.

illegal string escape '\char' - treated as char

The character following \ does not form part of a valid string escape. The
compiler treats the sequence \char as char.

illegal [] member: identifier

An open array may not be a member of a structure or union.

junk at end of #identifier line - ignored

The text following the directive is invalid and will be ignored.

72 TDS 34601 October 1992

1 icc - ANSI C compiler 35

linkage disagreement for identifier - treated as store class

The storage class of a previously defined static or extern object or
function disagrees with the current declaration. The object will be treated
as though it is in storage class store class.

L'...' needs exactly 1 wide character

A wide character constant should contain exactly one wide character.

Missing newline before EOF - inserted

A blank line should have been inserted before the end-of-file character.

Missing type specification - 'int' assumed

A type specification is missing. The object will be assumed to be of type
into

more than 4 chars in character constant

More than 4 ASCII characters were used to represent acharacterconstant.
When using the single quote syntax for character constants a maximum
number of4 characters is permitted in order to accommodate the octal rep­
resentation of a character. The first 4 characters will be used.

no chars in character constant"

No characters or character codes have been specified for the character
constant. A NULL character is assumed.

no initializer list in braced initializer

There must be at least one entry in the initializer list of a braced initializer.

number illegally followed by letter

A numerical constant may not be followed immediately by a letter.

number missing in #line

There is no line number following the preprocessor #line directive.

objects that have been cast are not I-values

An object that has been cast in I-value context; ANSI has made this illegal.

Omitted type before formal declarator - 'int' assumed

No type was specified; type int will be assumed.

operand of # not macro formal parameter: 'identifier'

The operand to the # preprocessor operator must be a formal parameter
of the function macro containing it.

overlarge escape '\number1' treated as '\number2'

An octal number in an escape sequence is too large to be represented in
the target architecture.

72 TDS 346 01 October 1992

36 1.7 Compiler diagnostics

overlarge escape '\xnumber1' treated as '\xnumber2'

A hexadecimal number in an escape sequence is too large to be repre­
sented in the target architecture.

parentheses (...) inserted around expression following text

Parentheses were expected after the specified text, for example, around
a conditional expression such as an if statement.

prototype and old-style parameters mixed

It is illegal to mix new (prototype) and old-style parameter declarations.

return expression illegal for void function

A return statement with an expression was found within a void function.
The return statement is ignored.

size of 'void' required - treated as 1

'void' was used as an argument to sizeof. The compiler assumes the size
of void to be 1.

size of a [] array required, treated as [1]

The array is of unspecified size. In these circumstances sizeof return the
size of the array type.

size of function required - treated as size of pointer

A function name was passed to the sizeof function. In these circum­
stances sizeof returns the size of the pointer to the function.

sizeof bit field illegal - sizeof(int) assumed

A bit field was passed to the sizeoffunction. In these circumstances sizeof
casts the bit field to an integer and then returns its size.

Small (single precision) floating value converted to 0.0

The number is too small to represent in a single word (32 bit) floating point
format, and has been rounded to 0.0.

Small floating point value converted to 0.0

The number is too small to represent in a double word (64 bit) floating point
format, and has been rounded to 0.0.

Spurious #elif ignored

The 'elif directive could not be matched with a corresponding if direc­
tive and has been ignored.

Spurious #else ignored

The 'else directive could not be matched with a corresponding if direc­
tive and has been ignored.

72 TDS 346 01 October 1992

1 icc - ANSI C compiler 37

Spurious #endif ignored

The #endif directive could not be matched with a corresponding if direc­
tive and has been ignored.

static function identifier not defined -treated as extern

A function was defined as static in the function prototype, but the com­
piler was unable to find the function definition. An extern function is
assumed.

string initialiser longer than char [count]

A character array has been initialized with more characters than the array
can accommodate. Since the compiler adds a terminating NULL character
to strings, string initializers should always contain one less element than
the array.

struct member identifier may not be function - assuming pointer

A structure member was declared of function type; the compiler treats this
as pointer to function type.

struct tag identifier not defined

A structure has been referenced before being defined.

Translation unit contains no external declarations

A translation unit must contain at least one external declaration.

type or class needed (except in function definition) -lint' assumed

The type or storage class has been omitted from the function declaration.

Undeclared name, inventing 'extern int identifier'

An undeclared identifier was encountered and will be given the storage
class extern.

union member identifier may not be function - assuming pointer

A union member was declared of function type; the compiler treats this as
pointer to function type.

union tag identifier not defined

A union has been referenced before being defined.

unprintable char number found • ignored

An unprintable character was found in the source text.

volatile typedef identifier has volatile respecified

A typedef which is already qualified with volatile, has been qualified
with volatile.

72T05 34601 Odober 1992

38 1.7 Compiler diagnostics

wrong number of parameters to function

A function was called with the wrong number of arguments.

1.7.7 Serious errors

\space and \tab are invalid string escapes

White space ('\space' or '\tab') was found within a string. All characters up
to the first non-white space character are ignored; if the first non-white
space character is a newline character, this will also be ignored.

{} must have 1 element to initialise scalar or auto

When initializing a scalar quantity or auto variable only one initializer
should be specified within the enclosing braces.

#error encountered string

The terror directive was found.

#include file filename wouldn't open

The file filename could not be opened.

op : cast to non-equal type illegal

A structure or union has been cast into a structure or union of a different
type. The cast is illegal and will be ignored.

op : illegal cast of type to pointer

A variable has been cast into a pointer type. The cast is illegal and will be
ignored.

op : illegal cast to type

An illegal cast has been attempted. The cast is illegal and will be ignored.

context: illegal use in pointer initialiser

An object of type auto, or its address, cannot be initialized.

(...) must have exactly 3 dots

An ellipsis must consist of three dots.

'break' not in loop or switch - ignored

A break statement was encountered outside the scope of a loop or switch
statement. A break at this point is illegal and will be ignored.

'case' not in switch - ignored

A case prefix has been encountered outside the body of a switch state­
ment. A case statement at this point is illegal and will be ignored.

72 TDS 346 01 October 1992

1 ice - ANSI C compiler 39

'continue' not in loop - ignored

A continue statement has been encountered outside the body of a loop. A
continue statement at this point is illegal and will be ignored.

'default' not in switch - ignored

A default prefix has been encountered outside the body of a switch state­
ment. A default prefix at this point is illegal and will be ignored.

'goto' not followed by label - ignored

The text following a goto statement does not represent a label.

'void' values may not be arguments

Formal parameters in function definitions or declaration cannot be of type
void.

'while' expected after 'do' - found text

The while statement is missing from ado ... while construct. text marks
the position.

'{' of function body expected - found text

The opening brace in the body of a function is missing.

'{' or <identifier> expected after type, but found text

The opening brace following a struct, union or enum is missing. text
marks the position.

<asm-directive> expected but found a text

text indicates where the _asm directive was expected.

<command> expected but found a text

Statements such as switch or if should be followed by a command. text
indicates where the command was expected.

<expression> expected but found text

text indicates where the expression was expected.

<identifier> expected but found text in 'enum' definition

The compilerwas expecting to read an enumeration constant when it found
symbol. This may be because there is a spurious comma at the end of a
list of enumeration constants.

function has pragma nolink specified, but accesses static data

The specified function has been specified not to receive a static link (via
IMS nolink), but attempts to use static data. It is only possible to use
static data when a static link is available.

72 TDS 34601 October 1992

40 1.7 Compiler diagnostics

identifier is not a label • Idlabeldiff ignored

The operands to the Idlabeldiff pseudo-instruction must be labels.

instruction not followed by label • ignored

A load or stor~ _asm instruction must have a constant or label operand.

store class variables may not be initialised

Some types of C variables, such as those declared as extern, cannot be
initialized.

Array size count illegal - 1 assumed

Arrays cannot be larger than Oxffffff on a 32-bit target, or 65535 on a 16-bit
target.

attempt to apply a non-function

A name not declared as a function has been used in a context where a
function should be.

attempt to include struct/union identifier object/member within itself

A structure or union declaration may not contain a field of the structure or
union type, or a field which references another field.

bit fields do not have addresses

Elements of type bit field in C structures cannot be addressed.

Bit size size illegal - 1 assumed

Bit sizes greater than 32 are set to 1.

Cannot call function (it requires a static link)

An attempt has been made to call the specified function which requires a
static link, from a function which has been specified not to receive a static
link (via IMS_nolink).

Cannot call through pointer (it requires a static link)

An attempt has been made to call a function through the specified pointer
from a function which has been specified not to receive a static link (via
IMS nolink). All calls through function pointers are assumed to require
a static link.

Cannot store to identifier

identifier is a built-in name, such as _lsb or ""params, which cannot be
assigned to.

char and wide (L"...") strings do not concatenate

A char string and a wide char string appear adjacently in the source text.
Normally, adjacent strings in the source text are concatenated; however,
this is not possible here, as they have different types.

72 TDS 34601 October 1992

1 ice - ANSI C compiler 41

Digit required after exponent marker

Exponents offloating point numbers must be followed by a numeric charac­
ter. The numeric character may be preceded by '+' or '-'.

duplicate 'default' case ignored

The default prefix has already been specified for the switch construct. The
original definition will be used.

duplicate definition of identifier

The named identifier has already been defined.

duplicate definition of struct/union tag identifier

The named structure or union identifier has already been used.

duplicate definition of label identifier - ignored

The specified identifier has already been used. The original definition will
be used.

duplicate type specification of formal parameter parameter

The specified parameter has been listed more than once in the function's
formal parameter list.

duplicated case constant: constant

The constant has been specified more than once in the same case state­
ment.

EOF in comment

The end-of-file was detected inside a comment.

EOF in string

The end-of-file was detected within a string.

EOF in string escape

The end-of-file was detected within a string escape sequence.

EOF not newline after #if ...

The end-of-file was found after the "if' directive; a newline character was
expected.

expected symbo/1 - inserted before symbo/2

symbo/1 was expected before symbo/2 and the compiler has changed the
code accordingly. For example, in the code "if (TRUE printf () ;" the
compiler would expect to find ')' before 'printf'.

Expected <identifier> after operator but found text

The specified operator must be followed by an identifier. This error may
occur after the structure member operator' .' and the structure pointer
operator '->'.

72 TDS 34601 October 1992

42 1.7 Compiler diagnostics

Expecting <declarator> or <type>, but found text

An identifier or type was expected at text. For example, the declaration
'typedef int * [3] test;' generates this error.

Grossly over-long floating point number

There are too many digits in the floating point number. The compiler reads
the maximum number of digits allowed and discards the rest.

Grossly over-long hexadecimal constant

There are too many digits in the hexadecimal number. The compiler reads
the maximum number of digits allowed and discards the rest.

Grossly over-long number

There are too many digits in the decimal number. The compiler reads the
maximum number of digits allowed and discards the rest.

Hex digit needed after Ox or OX

The hexadecimal specifier Ox must be followed by a valid hexadecimal
digit. The compiler assumes a zero digit.

Identifier (name) found in <abstract declarator> - ignored

An identifier should not be used in an abstract declarator. This error is gen­
erated, for example, if sizeof (int *test [3]) ; is used instead of the
correct form sizeof (int * [3]) ;.

illegal bit field type type - 'int' assumed

Bit fields cannot be setwithin non integral variables. The compiler assumes
an int instead.

illegal character (number = 'char ') in source
illegal character (hex code number) in source

An unexpected character was found in the source code. The ASCII code
of the character (if printable), and the character itself, are given.

illegal in context: error

Illegal expressions such as those involving division by zero generate this
error.

illegal in expression: non constant identifier

A constant is required in certain expressions, for example after a case
prefix.

illegal indirection on (void *): '*'

An attempt has been made to take the contents of the object pointed to by
a pointer to void.

72 TDS 34601 October 1992

1 icc - ANSI C compiler 43

Illegal in I-value: context

An I-value was expected. For example, attempting to assign a value to a
constant will generate this error.

Illegal in I-value: 'enum' constant identifier

Enumeration constants cannot be used as I-values in an expression.

Illegal in Ivalue: function or array identifier

Arrays and function declarators cannot be used as I-values. This error
would be generated, for example, by attempting to assign a value to a func­
tion declarator.

Illegal in the context of an I-value: op

The operator op cannot appear in I-value context.

Illegal types for operands: operator

The operator has been used with an invalid type. For example, it is illegal
to use the structure member operator' . ' with a variable of type into

Illegal 'void' member/object: identifier

An object or member of a structure or union cannot be declared as being
of type void.

incomplete tentative declaration of identifier

The declaration of identifier has gone out of scope before the declaration
has been completed.

Invalid command line option (text)

text is not a recognized command line option.

Invalid source file name (filename)

filename is not avalid source file name. (Source file names may not contain
hyphens.)

I/O error writing filename

An error occurred when writing to the named file.

Junk after #if expression

The #if directive must be terminated by a newline character.

Junk after #include filename

The #include directive must be terminated by a newline character.

label identifier has not been set

A label has been referenced but not set. This message will be generated
if goto is used with an undefined label.

72 TDS 346 01 October 1992

44 1.7 Compiler diagnostics

Idlabeldiff not followed by label - ignored

The operands to the ldlabeldiff pseudo-instruction must be labels.

Misplaced 'else' ignored

An else statement was found where it was not expected. It will be ignored.

Misplaced '{' at top level - ignoring block

An opening brace was found at the top level of a program when it was not
expected, for example when not used as part ofa function or structure defi­
nition.

Misplaced preprocessor character char

A preprocessor directive character (# or \) was found where it was not
expected.

Missing #endif at EOF

An #endif directive is missing. This error will not be generated until the
last of the currently open files is about to be closed (ANSI standard does
not require #if and #else statements to match in included files).

Missing char in preprocessor command line

A 'quote' character is missing from a preprocessor command line. The mis­
sing character could be " <, >, or ".

Missing I)' after identifier (... on line number

A closing parenthesis is missing from the macro which will be substituted
at line number.

Missing',' or ')' after #define identifier (...

The list of parameters in a macro definition is either incomplete or has not
been correctly terminated by a closing parenthesis.

Missing < or " after #include

The opening 'quote' character which introduces the filename is missing.

Missing hex digit(s) after \x

The hexadecimal introducer sequence \x was found, but no hexadecimal
digit was specified. The compiler assumes that the letter x was intended.

Missing identifier after #define

The definition is empty. #define must be followed by an identifier.

Missing identifier after #ifdef

#ifdef must be followed by an identifier.

Missing identifier after #undef

#undef must be followed by an identifier.

72 TDS 34601 October 1992

1 ice - ANSI C compiler 45

Missing include directory name

The J command line option must be followed by a directory name.

Missing map file name

The P command line option must be followed by a map file name.

Missing object file name

The 0 command line option must be followed by an object file name.

Missing parameter name in #define identifier (...

A parameter is missing from the specified macro definition. This error
would be generated by a definition of the form fldefine test (arg,) .

Newline or end of file within string

A newline or end-of-file character was encountered within a string.

No C)' after #if defined{...

The closing parenthesis is missing from the directive.

No file name given

No source file was specified on the command line.

No identifier after #if defined

flif defined must be followed by an identifier.

Non-formal identifier in parameter-type-specifier

The parameter identifierwas included in the declarator list of a function, but
not in the parameter list. For example, a definition such as int foo () int
x; {} would generate this error.

non-static address identifier in pointer initialiser

Pointers cannot be initialized with the address of an object of type auto.

Number number too large for 32-bit implementation

The specified number is too large to be represented in 32 bits.

objects of type 'void' can not be initialised

Initializing objects of type void is illegal.

only const and volatile can qualify a pointer: found type

The only type qualifiers ofa pointer are const and volatile but type was
found instead.

Operand number to instruction is larger than a word

The arguments to an _ asm load or store pseudo-instruction must fit in a
machine word.

72TDS 346 01 October 1992

46 1.7 Compiler diagnostics

Operand number to instruction is not word-sized

The arguments to an _ asm store pseudo-instruction must fit exactly in a
machine word.

Operand to instruction must be a constant or local variable

An illegal operand has been given to an _asm Idl or stl instruction.

Operand to instruction is larger than a word

The operand to a primary instruction inside asm must fit in a machine
word. -

Out of memory
Out of store (for error buffer)
Out of store (in cc_ alloc)

The compiler ran out of available memory.

Overlarge (single precision) floating point value found

The number is too large to represent in single word (32 bit) floating point
format.

Overlarge floating point value found

The number is too large to represent in double-word (64 bit) floating point
format.

quote (char) inserted before newline

The specified quote character was found before a newline character. This
may indicate a a spurious character or a missing closing quote.

re-using struct/union tag identifier as union/struct tag

The named identifier has been used to identify two different types ofobject.

size of expression unknown: treated as 0

The size of a structure or union is required, but the structure or union has
not been completely declared. .

size of struct identifier needed but not yet defined
size of union identifier needed but not yet defined

The size of the structure/union has not yet been defined. This error can
occur when an undefined structure/union is used as an argument to the
sizeoffunction and when an undefined structure/union is used in the dec­
laration ofavariable. In the second case the error occurs because the com­
piler attempts to determine the size of the structure/union for memory
allocation purposes.

storage class store class incompatible with store class - ignored

Two incompatible storage classes have been used in a declaration. For
example, extern static £00; generates this error because extern
and static are incompatible types.

72 TDS 346 01 October 1992

1 ice - ANSI C compiler 47

storage class store class not permitted in context context - ignored

The specified storage class is not permitted in the context in which it has
been used. This error would be generated, for example, if storage class
auto were to be used at the top level.

struct identifier has no identifier field

The structure contains no field of that name.

struct identifier must be defined for (static) variable declaration

An undefined structure has been used in a variable declaration.

struct identifier not yet defined -cannot be selected from

A reference was made to an undefined structure.

Too few operands for instruction

A load or store _asm pseudo-instruction has too few arguments.

Too few arguments to macro identifier(. .. on line number

There are too few arguments to the macro which will be substituted at line
number.

Too many operands for instruction

A load or store _asm pseudo-instruction has too many arguments.

Too many arguments to macro identifier(. .. on line number

There are too many arguments to the macro which will be substituted at line
number.

Too many errors

After 100 Serious errors, the compilation aborts.

too many initialisers in {} for aggregate

An aggregate type, for example an array, has been initialized with more val­
ues than can be accommodated.

type type1 inconsistent with type2

Two incompatible type identifiers are being used in the declaration of a
single object. For example, the declaration double int x; would gener­
ate th is error.

type disagreement for identifier

The specified identifier has already been assigned a different type.

typedef name type used in expression context

A type definition has been used in an expression.

72TOS 34601 October 1992

48 1.7 Compiler diagnostics

type qualifier type qualifier not allowed to qualify type qualifier type

'const' may not be repeated in the qualifying list of a type, and similarly
for 'volatile'.

undefined structlunion identifier1 member/object: identifier2

The structure or union is, at present, undefined.

Uninitialised static [] arrays illegal

Static arrays of unspecified size must be initialized.

union identifier has no identifier field

The union contains no field of that name.

union identifier must be defined for (static) variable declaration

An undefined union has been used in a variable declaration.

union identifier not yet defined -cannot be selected from

A reference was made to an undefined union.

Unknown directive: #identifier

identifier is not a valid preprocessor directive. Check spelling and/or syn­
tax.

unknown instruction instruction

instruction is npt a defined transputer instruction.

zero width named bit field - 1 assumed

Named bit fields must be at least one bit wide.

72 TDS 34601 October 1992

2 icconf - configurer

This chapter describes the configurer tool icconf that configures code for trans­
puter networks. It describes the command line syntax and explains how the tool
generates a configuration data file from a configuration description for input to the
code collector tool. The chapter ends with a list of configurer diagnostics and error
messages.

2.1 Introduction

The configurer takes a configuration description created using the transputer con­
f!guration language and produces a configuration data file which icollect uses
to generate bootable code for a transputer network.

A configuration description describes how code is to be run on a network of trans­
puters. It consists of separate definitions of the software and hardware networks,
and a mapping description which defines how the software will be placed on the
processor network. Using this description the configurer allocates code to particu­
lar processors and performs wide ranging consistency checks on the mapping of
software to hardware.

icconf enables any topology of software network to be placed on any topology
of hardware network. There are no restrictions on how many communication chan­
nels may be allocated to a single inter-processor link. Where possible channels
should be left unplaced by the user, so that icconf can implement the 'best' route
through the network. Processes must be allocated to specific processors and any
channels going to edges must be placed on the specific edge links.

Code to be run on separate processors must be linked code. Linked units that are
to be run on the same transputer must be compiled for the same or a compatible
transputer type.

The operation of the configurer tool in terms of the standard toolset file extensions
is illustrated below.

~ _......

I~ .inc :

~-_.....·1__1_.c_c_o_n_f------l~_----..·G

72 TDS 34601 October 1992

50 2.2 Configuration language implementation

2.2 Configuration language implementation

The configuration language supported by ieeonf has a number of implementa­
tion characteristics of which the programmer should be aware. These are briefly
listed below; details can be found in section B.2 of the ANS/ C Too/set User Guide.

• Array subscript ranges are machine word-length dependent.

• Source lines must not exceed 1024 characters. Leading and following
white space is ignored.

• The number of dimensions for identifiers and array constants must not
exceed 64.

2.3 Running the configurer

The configurer takes as input a configuration description file and produces a con­
figuration data file for input to the collector tool.

To run the configurer use the following command line:

~ ieconf filename {options}

where: filename is the configuration description file. The filename is interpreted as
given and no file extension is assumed.

options is a list of one or more options from table 2.1.

Options must be preceded by ,_, for UNIX-based toolsets and '1' for
MS-DOS and VMS based toolsets.

Options may be entered in upperor lowercase and can be given in any
order.

Options must be separated by spaces.

Only one filename may be given on the command line.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Example of use:

UNIX based toolsets:

iee hello
i1ink hello.teo -f estartup.lnk
ieeonf hello.efs
ieOlleet hello.efb
iserver -sb hello.btl-se

72 TDS 34601

MS-DOSNMS based toolsets:

iee hello
i1ink hello.teo If estartup.lnk
ieeonf hello.efs
ieolleet hello.efb
iserver /sb hello.btl /se

October 1992

2 icconf - configurer 51

Option Description

C Checks the configuration description only. No configuration data
file is generated.

G This option is used when postmortem or interactively debugging
and disables any ordering ,of process memory segments in the
configuration code by the order and location process attrib-
utes.

The Goption significantly modifies the runtime behavior of the con-
figured program because virtual though routing is used for all chan-
nel communication between processors. This results in a memory
overhead and .reduction in performance of communications.

This option cannot be used with the GA, GP, RA or RO options.

GA Generates a configuration which can be debugged using the
Advanced Too/set debugger. This option has the same side effects
as the Goption except that the order and location attributes are not
disabled. This option cannot be used with the G or GP options.

GP This option is used when postmortem debugging and disables any
ordering of process memory segments in the configuration code by
the order and location process attributes.

The runtime behavior of the apptication will be little different to the
default behavior Le. when no options are specified. Virtual routing
is enabled and may be used. This option may be used with the RA
option but not with the G, GA or RO options.

I Displays extra information as the tool runs.

NV Generates a configuration without virtual routing.

0 fi/ename Specifies an output filename. If no output file is specified the config-
uration data file is given the base name of the input file and the
. cfb extension is added.

P procname Specifies the name of the root processor when configuring for
EPROMs. procname must not be an element from an array of pro-
cessors.

PRE Generates a configuration which can be profiled using the
Advanced Too/set network execution profiler. This option has the
same side effects as the GA option. Note: this option cannot be
used with the GA or PRO options.

PRU Generates a configuration which can be profiled using the
Advanced Too/set network utilization profiler. This option has the
same side effects as the GA option. Note: this option cannot be
used with the GA or PRE options.

Table 2.1 icconf command line options, page 1 of 2

72 TDS 346 01 October 1992

52 2.3 Running the configurer

Option Description

RA Creates a file suitable for a boot-from-ROM application in which the
user and system processes for the root processorand all other pro-
cessors are loaded into RAM to execute.

RO Creates a file suitable for a boot-from-ROM application in which the
user and system processes for the root processor execute in ROM
and for all other processors the user and system processes are
loaded into RAM to execute.

RS romsize Specifies the size of ROM on the root processor. Only valid when
used with the 'RA' or 'Ro' options. romsize is specified in decimal
format and can be followed by 'K' or 'N' to indicate kilobytes or
megabytes.

w Disables configurer messages of severity Warning.

WP Generates additional pedantic Warning messages.

Table 2.1 continued - Standard icconf compiler options

2.3.1 Default command line

Default command line parameters can be defined on the system in the ICCONFARG
environment variable. Parameters must be specified using the syntax required by
the configurer command line.

2.3.2 Virtual routing processes

The configurerwill automatically add virtual routing processes if they are required.
If virtual routing is not required the virtual router can be disabled by using the 'NV'
command line option. Note: the use of this option also has an affect on the value
of LoadStart. see section 2.3.11.

Chapter 6 of the ANSI C Toolset User Guide gives further information about virtual
routing.

2.3.3 Support for the Advanced Toolset

The 'GA', 'PRE' and 'PRU' command line options support the use of the Advanced
Too/sets debugging and profiling tools. These options have no affect within the
scope of the ANS/ C Too/sel and should not be used.

2.3.4 Boot from ROM options

The boot-from-ROM options 'RO' and 'RA' indicate that the program is to be col­
lected for loading into EPROM and select the execution mode (from ROM or RAM)
for the root transputer code. The 'RS' option enables the size of ROM on the root
processor to be specified.

72 TDS 346 01 October 1992

2 icconf - configurer 53

2.3.5 Mixed language programming

When the program includes a mixture or C and occam modules the configurer will
perform some extra checks to ensure continuity exists. Ifthe command line options
used on icconf indicate that the program is to be interactively debugged orvirtual
routing is enabled then the configurer checks that interactive debugging is enabled
in the occam modules. If it is not, a warning will be issued.

2.3.6 Configurer library file

The configurer reads a special library file which contains the system startup pro­
cesses for the different transputer types. The file is called sysproc .lib and is
searched for on the directory specified by ISEARCH. This is normally the toolset
libs directory, in which the file was originally installed.

A further file sysvlink .lib contains the virtual routing system processes placed
by the configurer when virtual through-routing is required.

2.3.7 Standard include files

A number of standard include files are supplied to assist with configuration. All
include files carry the. inc extension.

Defaults file setconf. inc

Configurer defaults are defined in the file setconf . inc.This file is automatically
included at startup and does not need to referenced by an 'include statement.

setconf. inc contains a number of boolean constants, definitions ofprocess and
processor base types, and predefined INMOS processor types. setconf. inc is
supplied on the libs installation directory.

Other include files

Two other include files are provided on the libs directory. These provide defini­
tions of processor and memory combinations for INMOS iq systems products.

trams.inc Processor type type definitions for INMOS iq systems TRAns-
puter Modules (TRAMs).

boards.inc Processor type definitions for INMOS iq systems transputer
evaluation boards.

These two files are not automatically referenced by the configurer and need to be
included in the normal way.

INMOS iq systems products are available separately through your local distributor.

2.3.8 Configuration description examples

A series of example configuration descriptions are supplied in the icconf exam­
ples subdirectory. These include configurations for specific network topologies
such as rings, grids, trees, and pipelines.

72 TDS 346 01 October 1992

54 2.3 Running the configurer

Further simple configurations are provided in the simple examples subdirectory.

2.3.9 Search paths

If a directory path is not specified the configurer uses the standard toolset search
mechanism for locating input files, include files, and system library files. Briefly, the
current directory is searched first, followed by the directories specified by ISEARCH
(if defined on the system). For details see appendix A.

2.3.10 Default memory map

By default the configurer maps code into memory in the following order beginning
at LoadStart: stack; code; vector space; static; heap and system data. The
memory segments are contiguous. The upper limit of the memory available to the
configurer is defined in the configuration description fiJe (. cfs), by the memory
attribute specified for the processor node. The default memory map is illustrated
in Figure 2.1. Note: vector space is only required if occam modules are present
in mixed language programs.

memory ---.:
I Free Space

Minlnt =
MOSTNEG INT

System data

Heap
Data Segments

Static
Data Segments

Vector
Data Segments

Code
Data Segments

Stack
Data Segments

Reserved by
transputer
architecture

+- FreeStart

Contiguous
memory

+- LoadStart
+-- MemStart

Figure 2.1 icconf default memory map

The first 2 or 4 Kbytes of memory above MOSTNEG INT is implemented as on­
chip RAM, and includes a few words which are reserved by the transputer hard­
ware for the implementation of links and other hardware registers. LoadStart is
either just above or coincident with MemStart, see below. FreeStart is the start of
unused memory.

72 TDS 346 01 October 1992

2 icconf - configurer

2.3.11 LoadStart

55

The position of LoadStart for a processor varies depending on the use of icconf
command line options and the reserved processor attribute, optionally specified
within a configuration description.

When the reserved processor attribute is specified, LoadStart is defined to be
the memory location obtained by adding the value ofreserved to MOSTNEG INT.

When the reserved processor attribute is not specified, LoadStart is coincident
with or just above MemStart:

• LoadStart =(MOSTNEG INT + 40 words) when no command line options
are used Le. virtual routing support is enabled.

• LoadStart =(MemStart + 6 words) when the 'NV' command line option is
specified, disabling virtual routing, but debugging or profiling is enabled
either for idebug or the Advanced Toolset.

• LoadStart =MemStart when the 'NV' command line option is specified but
neither idebug or the Advanced Toolset debugger or profiler are used.

The value of LoadStart can be checked once the application has been collected,
by generating and examining the collector map file, see chapter 3.

2.3.12 System processes

By default, the system startup processes' code and data are placed into user pro­
cess data areas e.g. stack, code, vector and so on. These system processes do
not interfere with the user's data because they complete theirtaskbefore the space
is needed by the user's code. Note: these system processes do not include the
virtual routing processes placed by the configurer.

2.4 Configurer messages

Errors in the configuration source produce error messages in standard toolset for­
mat. Details of the format can be found in section A.7.

Messages are generated at Information, Warning, Error, Serious and Fatal severi­
ties. Most messages are generated at Error severity. The configurer aborts after
400 source file errors.

In the following lists messages are grouped by severity and listed in alphabetical
order.

72 TDS 346 01 October 1992

56 2.4 Configurer messages

2.4.1 Information

The following messages are generated at severity level Information. They are
enabled by the I command line option.

isolated root processor 'name'

If multiple routing sub-networks are required then the named processor
has been selected as the root processor within its sub-network because
it is the only processor in its sUb-network. This processor will have no con­
nection to any other processors via the basic spanning trees.

no through routing on 'name'

The named processor has been prevented from being used for through­
routing channels by assigning its routecost attribute to be INFI­
NITE_cosT or greater.

placed channel 'name' onto link 'name'

The named channel has been placed automatically by the configurer onto
the named link.

placed edge 'name' onto edge 'name'

The named input (or output) edge has been placed automatically by the
configurer onto the named hardware edge.

placing string on 'name'

The named processor has been placed with a software through-routing
kernel process. string is the module that has been placed.

selected root processor 'name'

The named processor has been selected as the root processor of the span­
ning tree derived to provide a basic route for all routed channels. If the
application requires routing as multiple sub-networks then each sub-net­
work will generate this message.

'name'l string1 0 string2 Routers count1 DeMuxes count2 Muxes count3

The named processor requires virtual link support processes. count1,
count2, and count3 specify the number of through-routing, demultiplexing,
and multiplexing modules. string1 and string2 describe the virtual links
implemented by each input and output link of the processor.

These strings consist of pairs of characters; where the first is a digit and
specifies the link number and the second, which can be 1, R, or r, specifies
if local data, local and through-routed data, or just through-routed data is
carried by that link.

72 TDS 34601 October 1992

2 icconf - configurer

2.4.2 Warnings

The following messages are generated at severity level Warning.

57

attribute 'name' definition ignored

This message can only occur in mixed language programs incorporating
occam modules. The named stacksize or heapsize attribute has
been assigned a value that has been ignored.

attribute 'name' has been reassigned

Named attribute has been reassigned.

attribute 'name' undefined

Named attribute has not been assigned a value.

channel 'name' unconnected and unplaced

Named channel has not been connected or placed.

connector 'name' unused

Named connector has not been used in a connect statement.

could not through route between 'name 1, and 'name2'

This message is output when the basic routing algorithm within the confi­
gurer cannot find a viable route between a pair of processors. This may
explain subsequent errors output concerning channels running between
these two processors. name1 and name2 identifies the processors that
cannot be connected.

edge 'name' unconnected and unplaced

The named input (or output) edge has not been connected or placed.

edge 'name' unconnected

The named edge has not been connected.

exceeded LinkQuota on processor 'name'; count1 Inputs count2 Outputs

This warning is output if the requested linkquota on any processor has
been exceeded by the configurer. name identifies the processor concerned
while count1 and count2 indicates the number of input and output links that
are required.

72 TDS 346 01 October 1992

58 2.4 Configurer messages

ignored placement of direction channel on link

A channel connection placed onto the named link has been ignored. This
is generated ifchannel connections between processors have been placed
and interactive debugging has been specified. (The interactive debugger
requires all channel connections between processors to be implemented
as virtual channels.) direction can be either input or output.

illegal value for attribute 'name' when profiling

The named attribute has been assigned an illegal value. This is generated
if a process has been specified to start in high priority and the PRE or PRU
options have also been specified.

insufficient memory size for attribute 'name', value

The memory size specified by the named attribute is insufficient for the type
of processor. This will be generated if the memory or reserved processor
attributes have been assigned a memory size that is less than LoadStart.
value is the memory size.

link 'name' unconnected

Named link has not been connected.

nested comment statements, value

One or more nested comments have been found by the configurer. value
is the number of nested comments found.

overflow in hexadecimal escape character

A numerical overflow has occurred during the evaluation of a hexadecimal
escape character whose range is from 0 to 255.

overflow in octal escape character

A numerical overflow has occurred during the evaluation ofan octal escape
character whose range is from 0 to 255.

process location attributes ignored

The values assigned to the location process attributes have been
ignored. These attributes are ignored ifeitherthe Gor GP options have been
specified.

process order attributes ignored

The values assigned to the order process attributes have been ignored.
These attributes are ignored if the G or GP options have been specified.

72 TDS 34601 October 1992

2 icconf - configurer

processor 'name' unconnected

Named processor has not been connected to the network.

59

processor 'name' unused

Named process has been connected to the network but has had no user
processes placed onto it.

process 'name' using direct channel input/output

The named process has been compiled to use direct instructions instead
of indirect functions for channel i/o and because the process may also
execute under the interactive debugger or with the virtual link support pro­
cesses an incompatability may arise.

process 'name' using indirect channel input/output

The named process has been compiled to use indirect functions instead
of direct instructions for channel i/o and because the process will not be
executed under the interactive debugger orwith the virtual link support pro­
cesses the use of functions for channel i/o is unnecessary.

unable to debug 'name' as not accessable from root

The named process cannot be debugged by the advanced toolset debug­
ger because there exists no route, either physical or virtual, between the
processor on which the process is placed and root processor (which is con­
nected to the host).

using single hop software virtual links

This is output every time the the configurer adds any run-time multiplexing
software to the user's program to support virtual channels.

using through routed software virtual links

This is output every time the the configurer adds any run-time multiplexing
and through-routing software to the users program to support virtual chan­
nels.

string for process 'name' overlaps memory registers

A memory segment of the named process overlaps the hardware registers,
which are the memory locations below MemStart, of the processor that the
process has been placed on. string is the memory segment name which
can be code, heap, stack, static or vector.

string of 'name' overlaps string of 'name'

A memory segment of the first named process overlaps a memory segment
of the second named process. string is the memory segment name which
can be code, heap, stack, static or vector.

72 TDS 346 01 October 1992

60

2.4.3 Errors

2.4 Configurer messages

The following messages are generated at severity level Error. Most configurer
diagnostics are generated at this level.

attribute 'name' cannot be reassigned

Named attribute cannot be reassigned. This can only occur with the ele­
ment and type attributes of nodes and processors.

attribute 'name' multiply defined in 'name'

Named attribute has been declared within the interface attribute and its
name clashes with a previously declared attribute or its name clashes with
the name of a predefined attribute for the named process.

attribute 'name' undefined in 'name'

Named attribute is an undefined attribute of the named symbol.

attribute 'name' undefined

Named attribute has not been assigned a value which is required.

automatic Tree Router provoked Deadlock 11
automatic Tree Router provoked Deadlock

A potential communications deadlock has been detected in the routing net­
work constructed by the virtual through-routing algorithm where a cycle of
links that may through-route to each other has been created. This is an
internal consistency error and should never be generated.

bad channel placement between 'name' and 'name'

A channel placement between the named processors specifies link num­
bers which do not correspond to each end of the same link connection. This
is an internal consistency error and should never be generated.

cannot route channel between name1 and name2

This message indicates a failure to complete auto-routing. The message
is output each time a channel cannot be implemented either because it is
too long (> 24 hops) or no viable route exists to support it. The name1 and
name2 strings give the source and destination processors between which
the data or acknowledge path of a channel cannot be routed.

channel 'name' connected and unplaced

Named channel has been connected to an input (or output) edge and has
not been placed onto a link.

72 TDS 34601 October 1992

2 icconf - configurer 61

channel 'name' multiply connected

Named channel has been used more than once in a connect statement.

channel 'name' multiply placed

Named channel has been used more than once in a place statement.

channel 'name' unconnected and placed

Named channel has been placed and has not been connected.

connect 'name' to 'name' illegal, both channels

An illegal connect statement has been specified where both named ele­
ments are channels and they communicate in the same direction.

connect 'name' to 'name' illegal, both edges

Connect statement is illegal because the named elements are both edges.

connect 'name' to 'name' illegal, channel/edge

An illegal connect statement has been specified where the first named
element is a channel and the second named element is an input (or output)
edge and they communicate in different directions.

connect 'name' to 'name' illegal, edge/channel

An illegal connect statement has been specified where the first named
element is an input (or output) edge and the second named element is a
channel and they communicate in different directions.

connector 'name' multiply placed

Named connector has been used more than once in a place statement.

connector 'name' multiply used

Named connector has been used more than once in a connect statement.

constant dimension sizes inconsistent, value

A constant array has been defined which has inconsistent dimension sizes
for some of its elements. value is the number of the incorrect dimension,
counting from zero.

constant dimensions incompatible with 'name'

Named symbol has been assigned a constant value whose dimensions are
incompatible with those of the symbol.

72TDS 34601 October 1992

62 2.4 Configurer messages

constant element types not equal, type

A constant array has been defined where some or all of its elements have
non-equal types. type is the expected type for each element in the array.

constant type incompatible with 'name' , type

Named symbol has been assigned a constant value whose type is incom­
patible with that of the symbol. type is the expected type for the constant.

edge 'name' connected and unplaced

The named input (or output) edge has been connected to a channel and
has not been placed onto a hardware edge.

edge 'name' multiply connected

The named edge has been specified more than once in a connect state­
ment.

edge 'name' multiply placed

The named edge has been specified more than once in a place state­
ment.

edge 'name' unconnected and placed

The named edge has been placed and has not been connected.

element 'name' in connection undefined

The named element has been used in a connect statement and is unde­
fined. This is only generated from process and processor types.

element 'name' in placement undefined

The named element has been used in aplace statement and is undefined.
This is only generated from process and processor types.

element 'name' not completely subscripted

Named symbol has been defined as an array and has not been completely
subscripted.

host edge 'name' undefined

When configuring to boot from link, the named host edge has not been
declared in the configuration source. This error can only be caused if the
standard include file setconf. inc has been altered.

72 TDS 346 01 October 1992

2 icconf - configurer 63

illegal # directive type, found 'string'

An illegal identifier for a 'directive has been specified. string is the illegal
directive identifier.

illegal 16 bit RAM + ROM memory size for 'name', value

The named processor is a 16 bit processor which has been specified RAM
and ROM memory sizes whose total is illegal for 16 bit processors. value
is the illegal memory size.

illegal 16 bit RAM memory size for attribute 'name' , value

The named processor is a 16 bit processor which has been specified a
RAM memory size which is illegal for 16 bit processors. value is the illegal
memory size.

illegal 16 bit ROM memory size for 'name' , value

The named processor is a 16 bit processor which has been specified a
ROM memory size which is illegal for 16 bit processors. value is the illegal
memory size.

illegal 16 bit address for attribute 'name'

The named attribute, which is a sub-attribute of the location attribute for
a process, has been assigned an address which is illegal for 16 bit proces­
sors. value is the illegal address.

illegal assignment for attribute 'name'

The named attribute has been specified in an attribute modification state­
ment and is not of arithmetic type.

illegal definition of attribute 'name' for PRI PAR process

The named attribute, which is always the priority attribute of a process,
has been assigned to HIGH when the code for the process has been speci­
fied to also execute at high priority.

illegal definition of attribute 'name' when executing from ROM

The named attribute, which is always the code attribute of the location
attribute for a process, has been assigned an address when the code for
the process is to execute from ROM.

illegal dimension size, value

A dimension size not greater than zero has been specified. value is the
dimension number with the illegal dimension size.

72 TDS 34601 october 1992

64

illegal escape character sequence, char

2.4 Configurer messages

An illegal escape cnaracter sequence has been specified. char is the illegal
escape character.

illegal format character constant, char

An illegal format character constant has been specified. char is the unex­
pected character found in the character constant.

illegal format hexadecimal constant, char

An illegal format hexadecimal constant has been specified. char is the
unexpected character found in the hexadecimal constant.

illegal memory size for attribute 'name', value

The named attribute, which is always the reserved attribute of a proces­
sor, has been assigned a memory size which is greater than the size
assigned to the memory attribute of the processor. value is the illegal
memory size.

illegal number of dimensions for 'name'

The named symbol has been declared as an array whereas it should have
been declared as a scalar. This is generated for the host edge (when boot­
ing from link) or for the root processor (when booting from ROM).

illegal number of dimensions, value

Number of dimensions for a symbol or constant exceeds the maximum
number of dimensions allowed by the configurer. value is the maximum
number of dimensions allowed.

illegal number of subscripts for 'name' , value

Number of subscripts specified for the named symbol exceeds the number
the symbol requires. value is the maximum number of subscripts allowed.

illegal number of subscripts for constant, value

Number of subscripts specified for a constant exceeds the number the
constant requires. value is the maximum number of subscripts allowed.

illegal operation for attribute 'name'

The named attribute has been used inappropriately in an attribute modifi­
cation statement.

72 TDS 34601 October 1992

2 icconf - configurer 65

illegal source file character, value

An unexpected character has been found in the source file. value is the
ASCII value for the illegal character.

illegal subscript value, value

A subscript value of less than zero or greater than the dimension size has
been specified. value is the number of the dimension with the illegal sub­
script value.

illegal token for expression, found token

An unexpected token has been found at the start of an expression. token
is the unexpected token.

illegal token for statement, found token

An unexpected token has been found at the start of a statement. token is
the unexpected token.

illegal type for 'name' in USE statement, type

Named symbol has been specified in a use statement and is not a process
or a process type. type is the type of the symbol.

illegal type for 'name' in connection, type

Named symbol has been specified in a connect statement and is not a
channel, edge, link or connector. type is the type of the symbol.

illegal type for 'name' in definition, type

Named symbol has been specified in a node definition statement and is not
a node type. type is the type of the symbol.

illegal type for 'name' in expression, type

Named symbol has been specified in an expression and is not a constant
value. type is the type of the symbol.

illegal type for 'name' in modification, type

Named symbol has been specified in an attribute modification statement
and is not a node. type is the type of the symbol.

illegal type for 'name' in placement,' type

Named symbol has been specified in a place statement and is not a pro­
cess, processor, edge, channel, link or connector. type is the type of the
symbol.

72 TDS 34601 october 1992

66

illegal type for 'name' , type

2.4 Configurer messages

Named symbol does not have the type expected by the configurer. This will
only occur if the name specified using the P option is not a processor (when
booting from ROM) or if the host edge host is in fact not an edge (when
booting from link). type is the type of the symbol.

illegal type for IF statement condition, type

The condition value for an if statement is not of integral type. type is the
type of the condition value.

illegal type for arithmetic operator operator, type

The operand of an arithmetic unary operator is not of arithmetic type. type
is the type of the operand and operator is the arithmetic operator.

illegal type for boolean operator operator, type

The operand of a boolean binary operator is not of integral type. type is the
type of the operand and operator is the boolean operator.

illegal type for condition operator operator, type

The condition value for a conditional ternary operator is not of integral type.
type is the type of the condition value and operator is the conditional opera­
tor.

illegal type for connector 'name' in placement, type

Named symbol is a connector defining a connection and has been used in
the incorrect position in a place statement. type is the type of connection
defined by the symbol.

illegal type for dimension size, type

The type of a dimension size value is not of integral type. type is the type
of the dimension size value.

illegal type for integral operator operator, type

The operand of an integral unary operator is not of integral type. type is the
type of the operand and operator is the integral operator.

illegal type for subscript value, type

The type of a subscript value is not of integral type. type is the type of the
subscript value.

72 TDS 346 01 October 1992

2 icconf - configurer 67

illegal type for value in REP statement, type

The base or limit value for a replicator statement is not of integral type. type
is the type of the base or limit value.

illegal types for arithmetic operator operator, type1 and type2

The operands of an arithmetic binary operator are not both of arithmetic
type. type1 and type2 are the types of the operands and operator is the
arithmetic operator.

illegal types for equality operator operator, type1 and type2

The operands ofan equality binary operator are not both ofarithmetic type.
type 1 and type2 are the types of the operands and operator is the equality
operator.

illegal types for integral operator operator, type 1 and type2

The operands of an integral binary operator are not both of integral type.
type1 and type2 are the types of the operands and operator is the integral
operator.

illegal use of constant for element

A constant value has been used as an element.

illegal use of subfield operator for 'name'

The named symbol, which has no accessible attributes, has been used
with the subfield operator.

illegal use of subfield operator for constant

A constant value has been accessed using the subfield operator.

illegal value for attribute 'name'

Named attribute has been given a value which is inconsistent with the type
of the attribute and its semantic meaning.

incompatible interface, 'name' has different type, type
incompatible interface, 'name' has too few parameters
incompatible interface, 'name' has too many parameters
incompatible interface, 'name' has unequal dimensions

These messages can only be generated in mixed language programs
incorporating occam modules. The named symbol is an occam process
and the interface defined forthe process mismatches the formal param­
eter list defined in the object file associated with the process in a use state­
ment.

72 TDS 346 01 October 1992

68 2.4 Configurer messages

insufficient RAM memory for 'name' , value bytes amiss

Named processor's total RAM memory size is insufficient for the number
of processes placed on the processor (which includes their data require­
ments). value is the number of extra bytes needed to accommodate all the
processes on the processor.

insufficient ROM memory for 'name' , value bytes amiss

Named processor is the root processor in a boot from ROM system and its
total ROM memory size is insufficient for the number of processes placed
on the processor. value is the number of extra bytes needed to accommo­
date all the processes on the processor.

link 'name' multiply connected

Named link has been used more than once in a connect statement.

link 'name' multiply placed

Named link has been used more than once in a place statement.

links 'name' and 'name' unconnected and placed

Named links are not connected to each other and have each been placed
with channels which are connected to each other.

missing (for SIZE operator, found token

The size operator has been found and an opening parenthesis was
expected to be found after the keyword size, instead of which the token
token was found.

missing) for SIZE operator, found token

The size operator has been found and a closing parenthesis was
expected to be found after the operand to the operator, instead ofwhich the
token token was found.

missing) for attribute list, found token

An attribute list has been found and a closing parenthesis was expected
to terminate the list, instead of which the token token was found.

missing) for cast operator, found token

A cast operator has been found and a closing parenthesis was expected
to be found after the type identifier, instead of which the token token was
found.

72 TDS 346 01 October 1992

2 icconf - configurer

missing) for expression, found token

69

A parenthesized expression has been found and a closing parenthesis was
expected to be found after the sub-expression, instead of which the token
token was found.

missing, or TO for CONNECT statement, found token

A connect statement has been found and a comma or the keyword to
were expected to be found, instead of which the token token was found.

missing: for conditional operator, found token

A conditional operator has been found and a colon was expected to be
found after the first sub-expression, instead of which the token token was
found.

missing; for statement, found token

A statement has been found which expects a semicolon to terminate it,
instead of which the token token was found.

missing =for REP statement, found token

A replicator statement has been found and an equals was expected to be
found after the replicator identifier, instead of which the token token was
found.

missing =or (for attribute, found token

An attribute definition has been found and an equals or opening parenthe­
sis were expected to be found after the attribute identifier, instead ofwhich
the token token was found.

missing FOR for USE statement, found token

A use statement has been found and the keyword for was expected to
be found, instead of which the token token was found.

missing ON for PLACE statement, found token

A place statement has been found and the keyword on was expected to
be found, instead of which the token token was found.

missing TO or FOR for REP statement, found token

A replicator statement has been found and the keywords to or for were
expected to be found, instead of which the token token was found.

72T05 34601 October 1992

70 2.4 Configurer messages

missing] for subscript, found token

A subscript operator has been found and a closing square bracket was
expected to be found after the subscript value, instead of which the token
token was found.

missing attributes for attribute list

An attribute list has been found which is empty.

missing constants for constant list

A constant list has been found which is empty.

missing identifier for # directive, found token

A # directive has been specified and an identifier was expected to be found
after the #, instead of which the token token was found.

missing identifier for REP statement, found token

A replicator statement has been found and an identifier was expected to
be found after the keyword rep, instead of which the token token was
found.

missing identifier for VAL statement, found token

A value statement has been found and an identifier was expected to be
found after the keyword val, instead of which the token token was found.

missing identifier for attribute list, found token

An attribute list has been found and an identifier was expected to be found
after the opening parenthesis starting the list, instead of which the token
token was found.

missing identifier for attribute, found token

An attribute list has been found and an identifier was expected to be found
in the attribute list, instead of which the token token was found.

missing identifier for name, found token

A name expression has been found and an identifier was expected to be
found at the start of the expression, instead of which the token token was
found.

missing identifier for subfield, found token

A subfield expression has been found and an identifier was expected to be
found after the subfield operator, instead of which the token token was
found.

72 TDS 34601 October 1992

2 icconf - configurer

missing statements for statement list

A statement list has been found which is empty.

missing string for #INCLUDE statement, found token

71

An #include statement has been found and a string was expected to be
found after #include, instead of which the token token was found.

missing string for USE statement, found token

A use statement has been found and a string was expected to be found
after the use keyword, instead of which the token token was found.

missing type for DEFINE statement, found token

A define statement has been found and a type identifier was expected to
be found after the keyword define, instead of which the token token was
found.

missing type for attribute, found token

A parameter list declaration has been found and a parameter type was
expected to be found in the list, instead ofwhich the token token was found.

missing} for constant list, found token

A constant list has been found and a closing brace was expected to termi­
nate the list, instead of which the token token was found.

missing} for statement list, found token

A statement list has been found and a closing brace was expected to termi­
nate the list, instead of which the token token was found.

modification of 'name' illegal, already used

The named symbol is a node type that has been used to derive other sym­
bols and an attempt has been made to modify one of its attributes.

object file for 'name' undefined

Named process has not been associated with an object file.

overflow in REP statement expression

A numerical overflow has occurred dUring the evaluation of a replicator
statement, that is, the replicator identifier has overflowed.

72 TDS 346 01 October 1992

72 2.4 Configurer messages

overflow in arithmetic expression

A numerical overflow has occurred during the evaluation of an arithmetic
expression.

overflow in decimal integer constant

A numerical overflow has occurred during the conversion of a string repre­
senting a 32 ~it decimal integer constant.

overflow in dimension size expression

A numerical overflow has occurred during the evaluation of a dimension
size expression (which is done to the precision of the hosts integer word
length).

overflow in dimension sizes for 'name'

A numerical overflow has occurred during the evaluation of the array size
for the named symbol (performed to the precision of the integer word length
of the host).

overflow in dimension sizes for constant

A numerical overflow has occurred during the evaluation of the array size
for a constant array (performed to the precision of the integer word length
of the host).

overflow in hexadecimal integer constant

A numerical overflow has occurred during the conversion of a string of dig­
its representing a 32 bit signed hexadecimal integer constant.

overflow in octal integer constant

A numerical overflow has occurred during the conversion of a string of dig­
its representing a 32 signed bit octal integer constant.

overflow in real double constant

A numerical overflow has occurred during the conversion of a string of dig­
its representing a 64 bit real constant.

overflow in real float constant

A numerical overflow has occurred during the conversion of a string of dig­
its representing a 32 bit real constant.

overflow in subscript value expression

A numerical overflow has occurred during the evaluation of a subscript
value expression (which is done to the precision of the hosts integer word
length).

72 lOS 346 01 October 1992

2 icconf - configurer

place 'name' on 'name' illegal, channel/edge

73

An illegal place statement has been specified where the first named ele­
ment is a channel and the second named element is an input (or output)
edge.

place 'name' on 'name' illegal, edge/link

An illegal place statement has been specified where the first named ele­
ment is an input (or output) edge and the second named element is a link.

process 'name' and channel 'name' placed on different processors

The named channel, which is a channel of the named process, has been
placed on the link of a processor which is different to the processor placed
with the process.

process 'name' and processor 'name' execution types mismatch

The named process has an execution type (specified in the object file
associated with the process) which is incompatible with the execution
types of other processes executing on the named processor.

process 'name' and processor 'name' processor mismatch

The named process has a processor type (specified in the object file
associated with the process) which is incompatible with the processor type
of the named processor.

process 'name' multiply USEd

Named process has been used more than once in a use statement.

process 'name' multiply placed

Named process has been used more than once in a place statement.

process 'name' unplaced

Named process has not been placed.

process type 'name' multiply USEd

Named process type has been used more than once in a use statement.

processes 'name' and 'name' placed on different processors

The named processes, which are connected by channels, have been
placed onto different processors and there is no link connection is available
between the processors for placing the channels.

72 TDS 346 01 October 1992

74 2.4 Configurer messages

processor 'name' unconnected and placed

The named processor has not been connected to the hardware network
and has been placed with one or more processes.

reference to undefined symbol 'name'

Named symbol has been referenced but had not been defined at the point
of reference.

root processor 'name' undefined

When configuring to boot from ROM, the named processor (specified using
the P option) has not been defined in the configuration source.

subscript out of range for 'name', value

Named symbol has been accessed with the subscript operator and the
subscript value used is outside the valid range of the dimension being sub­
scripted. value is the dimension number that was subscripted.

subscript out of range for constant, value

A constant value has been accessed with the subscript operator and the
subscript value used is outside the valid range of the dimension being sub­
scripted. value is the dimension number that was subscripted.

symbol 'name' multiply defined in symbol table

Named symbol has been multiply defined in the configuration source.

unalligned address for attribute 'name'

The named attribute, which is a sub-attribute of the location attribute for
a process, has been assigned an address which is not word aligned. value
is the unaligned address.

uninitialised symbol 'name' in expression

Named symbol, which is ofarithmetic type, has been used in an expression
and has not been assigned any value.

unterminated character constant

A character constant has been specified where a closing quote has not
been found before the end of the line.

unterminated comment statement

A comment has been started and has not been terminated before the end
of the file.

72 TDS 34601 October 1992

2 icconf - configurer 75

unterminated string constant

A string constant has been specified where a closing double quote has not
been found before the end of the line.

unused connector 'name' in placement

Named connector has not been used in a connect statement and has
been used in a place statement.

value for attribute 'name' out of range

Named attribute has been assigned a value that is not in the valid range
for the attribute.

zero length character constant

A zero length character constant has been specified.

string for process 'name' exceeds maximum memory address

The named segment of the named process has been specified an address
which results in the segment exceeding the maximum memory address of
the processor that the process has been placed on. string is the memory
segment name which can be code, heap, stack, static or vector.

string for process 'name' overlaps unusable memory

The named segment of the named process has been specified an address
which results in the segment overlapping the unusable memory region of
the processor that the process has been placed on. string is the memory
segment name which can be code, heap, stack, static or vector.

2.4.4 Serious messages

The following diagnostic messages are generated at severity level Serious.

ROM memory size required when booting from ROM

The RA or RO command line options have been specified and the RS option
has been omitted.

TCOFF descriptor, illegal dimension size, value
TCOFF descriptor, illegal type for name, type
TCOFF descriptor, missing (, found char
TCOFF descriptor, missing), found char
TCOFF descriptor, missing :, found char
TCOFF descriptor, missing? or !, found char
TCOFF descriptor, missing], found char

72 TDS 346 01 October 1992

76 2.4 Configurer messages

TCOFF descriptor, missing OCCAM PROC keyword
TCOFF descriptor, missing OCCAM identifier
TCOFF descriptor, missing OF for CHAN or PORT parameter
TCOFF descriptor, overflow in dimension size
TCOFF descriptor, undefined channel parameter
TCOFF descriptor, unknown OCCAM parameter type
TCOFF descriptor, unknown OCCAM process type
TCOFF format, expected INDEX-ENTRY command (value)
TCOFF format, expected LIB-INDEX-START command (value)
TCOFF format, expected LINKED-UNIT command (value)
TCOFF format, expected START-MODULE command (value)
TCOFF format, invalid ADJUST-POINT adjust size (value)
TCOFF format, invalid ADJUST-POINT value type (value)
TCOFF format, invalid DEFINE-MAIN symbol reference (value)
TCOFF format, invalid DEFINE-MAIN/DESCRIPTOR definitions
TCOFF format, invalid DEFINE·SYMBOL symbol reference (value)
TCOFF format, invalid DEFINE·SYMBOL value type (value)
TCOFF format, invalid DESCRIPTOR language type (value)
TCOFF format, invalid DESCRIPTOR scalar size (value)
TCOFF format, invalid DESCRIPTOR string size (value)
TCOFF format, invalid DESCRIPTOR symbol reference (value)
TCOFF format, invalid DESCRIPTOR vector size (value)
TCOFF format, invalid INDEX·ENTRY attributes (value, value)
TCOFF format, invalid INDEX·ENTRY language type (value)
TCOFF format, invalid INDEX·ENTRY string size (value)
TCOFF format, invalid LOAD-TEXT text size (value)
TCOFF format, invalid ORIGIN SYMBOL format ('string')
TCOFF format, invalid SET-LOAD·POINT symbol reference (value)
TCOFF format, invalid START·MODULE attributes (value, value)
TCOFF format, invalid START·MODULE language type (value)
TCOFF format, invalid SYMBOL string size (value)
TCOFF format, invalid code entry offset (value)
TCOFF format, invalid/undefined DEFINE·MAIN definition
TCOFF format, multiple DEFINE-MAIN commands
TCOFF format, multiple DESCRIPTOR commands
TCOFF format, multiple LOAD·TEXT commands
TCOFF format, multiple ORIGIN SYMBOL commands
TCOFF format, multiple VIRTUAL SECTION commands
TCOFF format, unexpected ADJUST-POINT command
TCOFF format, unexpected command (value)

An error has been detected in an object file specified by a use statement
or a library file containing the system processes.

TCOFF format, expected INDEX·ENTRY command (value)

A module in a library file containing the system processes has been
requested and does not exist.

72 TDS 346 01 October 1992

2 icconf - configurer

advanced and interactive/postmortem debugging are incompatible

The GA option and the G or GP options have been specified together.

77

advanced debugging and profiling are incompatible

The GA option and the PRE or PRU options have been specified together.

advanced debugging requires software through routing

The GA option and the NV option have been specified together.

booting from ROM and advanced/interactive debugging are incompatible

The Gor GA options and the RA or RO options have been specified together.

booting from ROM and profiling are incompatible

The PRE or PRU options and the RA or RO options have been specified
together.

execution and utilisation profiling are incompatible

The PRE option and the PRU option have been specified together.

illegal ROM memory size, value

Value specified for the RS option is not greater than zero. value is the illegal
memory size.

illegal format ROM memory size, string

An illegal format memory size value has been specified for the RS option.
string is the illegal format memory size.

illegal record length (value)

A record length has been input from a file which exceeds the maximum
string length for a file. value is the illegal record length found.

illegal string length (value)

A string length has been input from a file which exceeds the maximum
record length for a file. value is the illegal string length found.

interactive and postmortem debugging are incompatible

The G option and the GP option have been specified together.

72TDS 34601 October 1992

78 2.4 Configurer messages

internal token buffer overflow, value

An internal buffer used for storing a source line has overflowed. value is the
size of the internal buffer in bytes.

multiple ROM memory sizes, string

The RS option has been specified more than once. string is the latest value
for the RS option.

multiple input file names, string

The input file name has been specified more than once. string is the latest
input file name.

multiple output file names, string

The 0 option has been specified more than once. string is the latest value
for the 0 option.

multiple processor names, string

The P option has been specified more than once. string is the latest value
for the P option.

processor name required when booting from ROM

The RA orRO options have been used and no P option has been specified.

running from ROM and post mortem debugging are incompatible

The RO option and the GP option have been specified together.

too many errors occurring, value

Number of errors exceeds maximum number allowed. value is the maxi­
mum number of errors allowed.

unable to allocate memory

Amount of memory available to the configurer is insufficient for configuring
the configuration source.

unable to close 'string' (value)
unable to close (value)
unable to open 'string' (value)
unable to open (value)
unable to read (value)
unable to seek (value)
unable to tell (value)
unable to write (value)

72 TDS 34601 October 1992

2 icconf - configurer 79

These messages are generated as a result ofan error occurring in the host
file system. value is the error failure code.

unexpected command line token, string

An argument has been specified on the command line to the configurerthat
is not recognized as a valid option string.

unexpected end of input

The end of the file has been found unexpectedly in an object file.

2.4.5 Fatal errors

Any fatal errors which occur should be reported to your 10callNMOS distributor or
field applications engineer.

The following errors are generated at severity Fatal:

did not find all processors in BuildDataStructs{)
did not find all processors in FilllnKernelTable{)
did not find all processors in PlaceDebugKernels{)

An internal error has occurred in the configurer. The configurer has found
an internal inconsistency while virtual routing.

problem in allocation routines

An internal error has occurred in the configurer. The configurer has incor­
rectly attempted to allocate memory from the heap.

problem in deallocation routines

An internal error has occurred in the configurer. The configurer has incor­
rectly attempted to return memory to the heap.

unable to support advanced debugger, no host edge
unable to support interactive debugger, no host edge

An internal error has occurred in the configurer.

72 TDS 34601 October 1992

80

72 TDS 34601

2.4 Configurer messages

October 1992

3 icollect - code
collector

This chapter describes the code collector tool icollect which generates an
executable file for a single or multitransputer program from a configuration data
file, or for a single transputer program directly from a linked unit. The tool is also
used to create files for input to the EPROM programmer tool ieprom, and to create
files that can be dynamically loaded by a user program.

3.1 Introduction

icollect generates bootable files for transputer programs, and other execut­
able files in special formats.

Bootable files are transputer executable files that can be directly loaded onto the
transputer hardware down a transputer link. The bootable file contains all the
information for loading and running the program on a specific network of proces­
sors, including data that controls the distribution of code on the network, and self­
booting code for each processor. Bootable programs are therefore self-distributing
and self-starting when they are sent down a transputer link.

Recommended program development for single and multitransputer programs is
to create a configuration data file (Le. binary file) and to use this as input to the col­
lector. The configuration data file describes the placement of processes and chan­
nels 'on the processor network in a special format which can be read by the collec­
tor. They are created from configuration descriptions by the configurer.

Single transputer programs can by-pass the configuration stage and use a single
linked unit as input. The collector then adds bootstrap and system code for a single
processor. Unconfigured programs can only run on a single transputer.

icollect can be directed to generate output files in a special format for proces­
sing by the ieprom tool, and executable code with no bootstrap or system process
information, intended for dynamic loading by a supervisory program.

The command line default is to assume input from a configuration binary file. Spe­
cial format outputs are selected by specifying command line options.

The main inputs and outputs of the collector tool for bootable programs are shown
below.

72 TDS 34601 October 1992

82

Unconfigured program (using IT' option):

icollect

Configured processor program:

icollect

3.2 Running the code collector

3.2 Running the code collector

The code collector is invoked using the following command line:

~ icollect filename {options}

where: filename is a configuration data file created by a configurer or a single
linked unit created by ilink. Only one filename may be given on the com­
mand line.

options is a list of the options given in Table 3.1.

Options must be preceded by 1_' for UNIX-based toolsets and I I' for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lowercase and can be given in any
order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

72 TDS 34601 October 1992

3 icollect - code collector 83

Option Description
B filename Uses a user-defined bootstrap loader program in place of the

standard bootstrap. The program is specified by filename and
must conform to the rules described in appendix F.

This option can only be used with the 'T' option (unconfigured
mode) and cannot be used with the 'RA' and 'RQ' options.

BM Instructs the tool to use a different bootstrapping scheme,
which uses the bottom of memory, see section 3.8.

This option is only valid for configured programs Le. when the
'T' option is not used.

c filename Specifies a name for the debug data file. A filename must be
supplied and is used as given.

This option can only be used with the 'T' option (unconfigured
mode) and cannot be used with the 'D' or 'K' options.

CM Instructs the collector to add a bootstrap which will clear
memory during the booting and loading of the transputer net-
work. Intended for use with parity-checked memory (see sec-
tion 3.4).

D Disables the generation of the debug data file for single trans-
puter programs. This option can only be used with the 'T' option
(unconfigured mode).

E Changes the setting of the transputer Halt On Error flag. HALT
mode programs are converted so that they not stop when the
error flag is set, and non HALT mode programs to stop when
the error flag is set.

This option can only be used with the 'T' option (unconfigured
mode).

I Displays progress information as the collector runs.

K Creates a single transputer file with no bootstrap code. If no file
is specified the output file is named after the input filename and
given the. rsc extension.

This option can only be used with the 'T' option (unconfigured
mode).

M memorysize Specifies the memory size available (in bytes) on the root pro-
cessor for single transputer programs. memorysize is specified
in bytes and may be given in decimal format (optionally fol-
lowed by 'K' or 'N' to indicate Kilobytes or Megabytes respec-
tively), or it may be specified in hexadecimal using the 'i' or '$'
prefixes.

This option can only be used with the 'T' option (unconfigured
mode) and results in a smaller amount of code being produced
(see section 3.3).

72 TDS 346 01 October 1992

84 3.2 Running the code collector

Option Description
o filename Specifies the output file. A filename must be supplied and is

used as given. (See section 3.2.4).
p filename Specifies a name for the memory map file. A filename must be

supplied and is used as given. The file extension .map should
be used when the file is to be used as input to imap, see chapter
12.

RA Creates a file for processing by ieprom into a boot from ROM
file to run in RAM. If no output file is specified the filename is
taken from the input file and given the .btr extension.

This option is only necessary when using the 'T' option (uncon-
figured mode) to create a ROM code file.

RO Creates a file for processing by ieprom into a boot from ROM
file to run in ROM. If no output file is specified the filename is
taken from the input file and. given the .btr extension.

This option is only necessary when using the 'T' option (uncon-
figured mode) to create a ROM code file.

RS romsize Specifies the size of ROM on the root processor in bytes. Only
valid when used with the 'RA' or 'RO' options.

romsize is specified in bytes and may be given in decimal for-
mat (optionally followed by 'K' or 'M' to indicate Kilobytes or
Megabytes respectively), or it may be specified in hexadecimal
using the 'If or '$' prefixes.

This option is only necessary when using the 'T' option (uncon-
figured mode) to create a ROM code file.

S stacksize Specifies the extra runtime stack size in words for single trans-
puter programs.

stacksize is specified in words and may be given in decimal for-
mat (optionally followed by 'K' or 'M' to indicate Kilowords or
Megawords respectively), orit may be specified in hexadecimal
using the 'I' or '$' prefixes.

This option can only be used with the 'T' option.

T Creates a bootable file for a single transputer. The input file
specified on the command line must be a linked unit. This
option can not be used for programs linked with the reduced
runtime library.

y Disables interactive debugging with idebug and reduces the
amount of memory used. (See section 3.10).

This option can only be used with the 'T' option (unconfigured
mode).

Table 3.1 icollect command line options

72 TDS 346 01 October 1992

3 icollect - code collector

3.2.1 Examples of use

Example A (unconfigured program mode):

UNIX based toolsets:

ice hello
i1ink hello.tco -f cnonconf./nk
icollect hello.lku -t
iserver -sb hello.btl-se

Example B (configured program mode):

UNIX based toolsets:

ice hello
ilink hello.tco -f cstarlup.lnk
icconf hello. cfs
icollect hello.cfb
iserver -sb hello.btl-se

85

MS-DOSNMS based toolsets:

ice hello
i1ink hello.tco If cnonconf./nk
icollect hello.lku It
iserver /sb hello.btl /se

MS-DOSNMS based toolsets:

ice hello
i1ink hello.tco If cstartup./nk
icconf hello. cfs
icollect hello.cfb
iserver /sb hello.bt/ /se

Note: single transputer programs linked with the reduced runtime libraries cannot
be linked and collected with the 'T' option, they must be configured.

3.2.2 Default command line

Commonly used command line parameters can can be defined for the tool using
the ICOLLECTARG environment variable. Parameters specified in this way are
automatically added to the command line when the tool is run.

Parameters in ICOLLECTARG must be specified using the syntax required by the'
command line.

3.2.3 Input files

The input file to icollect is either a configuration data file generated by a confi­
gurer, or a linked unit generated by ilink. By default the collector assumes a con­
figuration data file; for single transputer programs the input file may be a linked unit,
in this case the 'T' option must be given.

Input files of an incorrect format generate an error message and no output is pro­
duced.

3.2.4 Output files

The output produced by the tool depends the type of file input to the collector and
the collector options used. Provided the user does not specify an output file using
the '0' option, files will be produced with the extensions indicated below:

72 TDS 346 01 october 1992

86 3.3 Memory allocation for unconfigured programs

Single processor non-configured case (T option)

The default output file is a binary file that can be loaded directly onto the transputer
hardware down a transputer link. This type of file is known as a boot from link pro­
gram. Boot from ROM programs and dynamically loadable code must be specified
as output using the appropriate command line options.

If no filename is specified the output file is named after the input file and given a
.btl extension. If an output filename is specified the file is given the specified
name.

Files created using the 'RA', 'RO', and 'K' options, and where no output filename is
specified,are given special extensions to indicate the file type. File extensions
used for each of the file types are listed below.

Option File type Extension given
specified

RA RAM executable file .btr
RO ROM executable file .btr
K Dynamically loadable file .rse

Configured programs

When the program has been configured, the collector will output a file with the
.btl extension if the program was configured to boot from link; the default case.
If the program was configured to boot from ROM then the collector will generate
a .btr file.

Memory map files

A memory map file may be generated, in addition to the normal output, by specify­
ing the 'p' option. The format of these files is described in section 3.9.

Debug data file

For unconfigured transputer programs only, the collector automatically generates
a configuration binary file for use by the debugger. By default the filename stem
is taken from the output file and the extension' . efb' is added. If the 'c' option is
specified then the filename given is used, as supplied. Generation of the debug
data file can be disabled with the 'D' option.

3.3 Memory allocation for unconfigured programs

The memory allocation outlined in this section applies only to single processor pro­
grams collected with the 'T' option and without the 'K' option. For configured pro­
grams the layout of code and data in memory is determined by the configurer. For

72 TDS 34601 October 1992

3 icollect - code collector 87

programs generated with the 'T' option the layout is determined by the collector.
The details of memory use depend on the language used and the options to icol­
lect, this is described below.

Memory which is not reserved by the system for program code and data (known
as free memory) can be made available to a user application. For C programs this
is used for the heap and, optionally, the stack. In the case of a single occam pro­
gram the free memory passed as an array.

To calculate the actual memory available, the loader program in the bootable file
first reads the total memory size from the host environment variable IBOARDSIZE.
This communication with the host is performed after the program has been loaded
onto the transputer board but before the program is started. The size of the free
memory is given by IBOARDSIZE minus the combined program code and data
space required.

The process code which reads IBOARDSIZE requires approximately 3.5 Kbytes
of memory. This process is executed and terminated before the user program
runs, and the segment of free memory that the process uses is then returned to
the user program. Therefore when the user program executes it will not know
whether the process was present or not.

When the 'M' option is used to specify the memory size, IBOARDSIZE is not read
and therefore the total amount of memory required when loading the program will
be approximately 3.5 Kbytes less.

A memory map file may be obtained by specifying the 'p' command line option. The
content of memory map files is described in section 3.9.

3.3.1 C and FORTRAN programs

For C programs the bootstrap loader must allocate memory for static data, stack
and heap areas. FORTRAN programs have similar requirements and are handled
in the same way.

When the collector'S' option is specified the program's stack is placed at the bot­
tom of memory. When the's' option is not specified a stack area is allocated by
the runtime system, typically at the top of free memory.

Areas for static data and heap are always allocated by the language's runtime sys­
tem at the bottom of free memory. The heap area grows upwards, towards the top
of memory, and the stack grows downwards.

Figure 3.1 shows the memory map layouts for programs with and without the stack
requirement specified by the user.

The value of LoadStart is described in section 3.9.

72 TDS 34601 October 1992

88 3.3 Memory allocation for unconfigured programs

Without using's'
option

1
Stack ~

Heap t
Static

Code

Top of
memory

ree memory

Bottom of
user memory
(LoadStart)

Using's' option to
specify stack size

1
Heap t F

Static
1

Code

Stack ~

Figure 3.1 Memory maps for C and FORTRAN

3.3.2 occam programs

Free memory

Vector space
(if used)

Code

Workspace

stack.buffer
(if used)

Top of memory

Bottom of user
memory (LoadStart)

Figure 3.2 Memory map for occam program

An occam program requires space to be allocated for code, workspace and, poss­
ibly, vector space. Programs can also be passed one or two arrays as parameters;

72 TDS 346 01 October 1992

3 icollect - code collector 89

one (always available) provides access to the free memory. The other is optional
but, if used, it is placed at the bottom of the memory map to provide access to the
transputer's fast internal RAM. This array is known as the stack.buffer. The
default bootstrap loader attempts to optimize placement of the program's, and its
own, code and workspace. If present, the stack .buffer array is placed at the
bottom of memory (at LoadStart). This is followed in order by the workspace,
code, vector space (if used) and free memory.

Figure 3.2 shows the memory map of the loaded occam code as created by the
default bootstrap loader.

3.3.3 Memory initialization errors

While the loader is executing the memory initialization process, described above,
warning messages may be obtained which have the following format:

Warning-SystemA- message

where: message can be one of the following:

IBOARDSIZE, unable to read

IBOARDSIZE environment variable is not defined correctly.

number, illegal format number

The value specified for IBOARDSIZE is in the wrong format.

illegal 16 bit memory size, set to zero

The value of IBOARDSIZE is greater than 64Kwhen a 16 bit processor
is being used. The memory size has therefore been set to zero.

negative memory size, set to zero

A negative value was specified for IBOARDSIZE, which has been set
to zero.

unable to reset free memory

The loader cannot return the memory it has used to the user.

All the above errors are generated by the system process at runtime.

3.3.4 Small values of IBOARDSIZE

When the IT' option is used, very small values of IBOARDSIZE (including zero) are
detected at runtime and prevent the program from being run. (This can also hap­
pen when IBOARDSIZE has been incorrectly specified, because icollect
assumes a default value of zero.) Small values of IBOARDSIZE cause the collector
to generate a warning message but do not prevent the generation of a bootable
file.

72 TDS 34601 October 1992

90 3.4 Parity-checked memory

IBOARDSIZE must be ~ to the total memory requirements of the user program
being executed.

3.4 Parity-checked memory

If any processors in the network use parity-checking on external memory (typically
using the T426) then it is essential that that memory is initialized (written to) before
it is read. Reading from an uninitialized location is likely to cause a parity error.
Internal memory is not parity-checked, so a bootstrap program can always get
started, but the initialization must be done before any program using external
memory is run. Therefore the initialization of memory must be done during the
booting and loading of the processors.

There is an option to the collector, 'CM', which instructs the collector to use a boot­
strap that clears memory on each transputer before the application code is
executed. This must always be used when collecting programs for a network that
contains one or more T426s. When selected, the 'CM' option applies to all proces­
sors in the network, not just to T426s.

In order to clear the memory on a processor, it is necessary for the bootstrapping
sequence to know the size of the memory. There are four cases to consider:

A configured program.

Here the memory size is known at configuration time, and is specified by
the user in the configuration source file. The bootstrapping sequence pro­
duced by the collector will clear the amount of memory specified (in the
configuration source file) before booting the application.

2 A collected program with fixed memory size.

The collector may be used, with the 'T' option, to produce a bootable file
from a single linked unit. The amount of memory on the processor may be
specified with the 'M' option. In this case the bootstrapping sequence will
clear the amount of memory specified (with the ')I' option) before booting
the application.

3 A collected program with variable memory size, booted from link.

If the collector is run with the 'T' option, but without the 'M' option, the
memory size is known only at runtime. The memory size is found out at run­
time using the environment variable IBOARDSIZE. In this case the boot­
strapping sequence will clear memory up to the minimum required to boot
the program. After booting, the value of IBOARDSIZE will be read and the
remaining memory will be cleared.

4 A collected program with variable memory size, booted from ROM.

If the collector is run with the 'T' option, but without the 'M' option, and the
program is booted from ROM, then the memory size is not known at all. In

72 TDS 34601 October 1992

3 icollect - code collector 91

this case the bootstrapping sequence will clear enough memory for the
minimal requirements of the application. It is then the user program's
responsibility to clear any additional memory required.

Initialization of memory is carried out regardless of the processor type; memory
is initialized even if the processor is not a T426. So if the 'CM' option is selected
every processor's memory in the network will be initialized (including 16-bit trans­
puters).ln the case of the T426, the bootstrap code also clears the parity registers
by reading them before the program starts.

3.5 Non-bootable files created with the K option

Files created with the 'K' option are non-bootable files which can be dynamically
loaded or manipulated by a program at runtime. Non-bootable files cannot be
loaded and run on transputer hardware in the normal way.

3.5.1 File format

Non-bootable files consist of program code preceded by a specific sequence of
data words which provide runtime information. The sequence of data words and
code blocks is summarized in table 3.2. Descriptions of the more important data
items are given in table 3.3.

Data Number of bytes occupied Unit

Interface descriptor size Four bytes

Interface descriptor Set by above -

Compiler id size Four bytes

Compiler id Set by above -
Target processor type Four -

Version number Four -
Program scalar workspace requirement Four words

Program vector workspace requirement Four words

Static size Four words

Program entry point offset Four bytes

Program code size Four bytes

Program code block Set by above -

Table 3.2 Sequence of code segments in non-bootable files

72 TDS 346 01 October 1992

92

Target

Version

Scalar workspace

Vector workspace

Static size

Entry point offset

Code size

Code

3.6 Boot-from-ROM output files

A value indicating the processor type or transputer
class for which the program was compiled. Set by
compiler options or by default. Possible values and
their meaning are:
Value Applies to:
2 T212, T222, T225,M212
4 T414
8 T800, T801, T805
9 T425, T400, T426
10 TA
11 TB

The format version number of the file. This can be
either 10 or 11 in TCOFF files. For C and FORTRAN
programs this value is 11, which indicates that the
'Static size' parameter (below) is present. For occam
programs the value is 10, indicating no static data; the
parameter list will also not be present.

Specifies the size of the workspace required for the
linked program's runtime stack.

Specifies the size of the workspace required for the
linked program's vector (array) data.

Specifies the size of the static area (only present if the
file format version number is 11).

Indicates the offset in bytes of the program entry point
from the base of the code block.

Indicates the size of the program code in bytes.

The program code.

Table 3.3 Details of code segments in non-bootable files

3.6 Boot-from-ROM output files

Boot-from-ROM output files are either generated by using the collector options
'RA' or 'RO' for unconfigured programs or by configuring a program to boot from
ROM, prior to collecting. (The configurer also has 'RA' and 'RO' command line
options).

The boot-from-ROM files contain code that can be loaded into EPROM using the
ieprom tool. The code may be run on the root transputer ofa network; processors
on the network connected to the root transputer are booted from the root trans­
puter links.

'RA' generates code which is executed from RAM.The code is copied from ROM
into RAM at runtime. 'RO' generates code which is directly executed from ROM.

RAM executable code can be used for applications which are to be executed from
fast RAM, and for code which may be user-modified. ROM executable code
requires no external RAM and can be used to create a truly embedded system.

72 TDS 346 01 October 1992

3 icollect - code collector 93

3.7 Alternative bootstrap loaders for unconfigured programs

If not otherwise specified, icollect uses the standard INMOS primary bootstrap
loading sequence. The correct code for the application program is chosen auto­
matically from a library of bootstraps compiled for different transputer types and
error modes.

The collector can be directed to use other bootstrap loader programs defining dif­
ferent loading sequences by specifying the 'B' option. This option directs the col­
lector to append a user-defined loader program in place of the standard bootstrap
code.

User-defined bootstraps must comply with the format used by the standard INMOS
loader. The source of the standard INMOS Network Loader is supplied with the
toolset. The source is fully commented and can be used as a template to design
and code your own loading sequence.

3.8 Alternative bootstrap schemes

When building for a configured network, the collector uses a bootstrapping
scheme which makes use of the top two hundred bytes of memory. This memory
is required to load the last few bytes of application code prior to its execution. The
memory region becomes available to the user once their application is running.

This scheme does not remove memory from the user's environment on a perma­
nent basis and it facilitates the absolute placement of code and data by the user.
See the Too/set User Guide for details.

The user can tell the collector to use a different booting scheme by using the option
'BM'. In this case the booting scheme permanently removes a section of memory
from the user's environment and moves the value of LoadStart accordingly. This
section of memory is never made available to the user. This booting scheme does
not support the absolute placement of code and data by the user.

The booting scheme invoked by the 'BM' option, is used by default for unconfigured
programs Le. those collected using the 'T' option.

3.9 The memory map file

A memory map file may be obtained by specifying the lp' command line option,
followed by a filename. Such files contain the memory layout for each processor
in the network.

The file layout takes the form of a list of code and data to be placed on respective
processors. The right hand side of the file gives the start and end address followed
by the size of each block.

The memory map file contains the following information:

72 TDS 346 01 October 1992

94

• icollect version data

3.9 The memory map file

• For each processor· the following details are given:

o Processor type

o Error mode (HALT or STOP)

o LoadStart (lowest user memory address)

o For each process on this processor the following is listed:

o Code, name offile, offset from start (decimal), start address and
end address (hex), size (decimal), entry address (if any, in Hex)

o Workspace, start and end address (hex), size (decimal)

o Any other data requirements

• Boot path for the network - only present if program is configured

• Connectivity of the network - only present if program is configured

The absolute addresses are calculated using LoadStart, which is the base of user
memory. This varies for different processor types Le. the value of LoadStart for
a T4 processor is different to that for a T8.

If the 'BM' option is used the memory from MemStart to LoadStart is used by the
low level bootstraps and their workspace.

When the 'BM' option is not used the value of LoadStart is determined by the con­
figuration, see the reference chapter for the configurer, for further details.

The addresses allocated to various data items reflect the command line options
specified to the collector. Details of the memory map files for the following types
of files are given below:

• Unconfigured (single processor), boot from link programs targetted at a
specific processor type.

• Unconfigured (single processor), boot from link programs targetted at a
processor class.

• Configured, boot from link programs.

• Boot from ROM (single and configured)

3.9.1 Unconfigured (single processor), boot from link

Program targetted at transputer type

The first memory map described in this section is for a program which is to be
booted for a specific processor type.

72 TDS 34601 October 1992

3 icollect - code collector 95

The example shown in Figure 3.3 was produced by the following command line:

icollect -t hello.lku -s 400 -p hello.map(UNIX)

icollect It hello .lku /p / s 400 hello. map (MS-DOSNMS)

where: hello .lku was produced by compiling and linking the example program
hello. c for aT425 in the default halt-on-error mode. The compiled object
file was linked with the Clinker indirect file cnonconf. Ink because the
example is for an unconfigured program.

hello ".map lists code and data segments to be placed on each processor (one
in this case). For each process the workspace and vector space requirements are
given together with the entry point of the process. Notice that the first three pro­
cesses listed are non-user processes; this will always be the case for this type of
program.

icollect : INMOS toolset collector
Sun Version 3.0.14

Memory map for processor 0 T425
Load Start is 80000168, HALT ON ERROR, Minimum memory size is 21056

LOW priority INITSYSTEM process 'Init.system'
Code from 'sysproc.lib', file offset 9438

#800001F8 #80000418 544
Entry address #800001F9

Invocation stack #800001D8 #800001FO 24
Workspace #80000168 #800001D8 112

LOW priority SYSTEM process 'System.process.a'
Code from ~sysproc.lib', file offset 27180

#80004670 #80005040 2512
Entry address #80004671

Invocation stack #80004654 #80004668 20
Workspace #8000443C #80004654 536
Vectorspace #80005040 #80005240 512

HIGH priority SYSTEM process 'System.process.b'
Code from 'sysproc.lib', file offset 45498

#8000044C #800004A8 92
Entry address #8000044C

Invocation stack #80000430 #80000444 20
Workspace #80000418 #80000430 24

LOW priority USER process
Code from 'hello.lku', file offset 2

#80000888 #8000427C 14836
Entry address #800008B3

Invocation stack #8000086C . #80000880 20
Workspace #800007A8 #8000086C 196
Extra stack #80000168 #800007A8 1600
Static #8000443C #8000466A 558

Parameter data #8000427C #8000443C 448

Figure 3.3 Memory map file for a single T425 processor program

72 TDS 346 01 October 1992

96 3.9 The memory map file

Program targetted at transputer class

The second memory map described in this section is for a program which is to be
booted for processor classes TA or TB.

The example shown in Figure 3.4 was produced by the following command line:

icollect -t hello.lku -p hello.map

icollect It hello.lku /p hello.map

(UNIX)

(MS-DOSNMS)

where: hello .lku was produced by compiling and linking the example program
hello. c for class TA in the default halt-on-error mode. The compiled
object file was linked with the Clinker indirect file cnonconf . Ink because
the example is for an unconfigured program.

icollect : INMOS toolset collector
Sun Version 3.0.14

Memory map for processor 0 TA
Load Start is UNKNOWN, HALT ON ERROR, Minimum memory size is 20180

LOW priority INITSYSTEM process , Init.system'
Code from 'sysproc.lib', file offset 10420

13048 13F68 544
Entry address 13049

Invocation stack 13028 13040 24
Workspace 13CB8 13028 112

LOW priority SYSTEM process 'System.process.a'
Code from 'sysproc.lib', file offset 30561

1419C 14B6C 2512
Entry address 14190

Invocation stack 14180 14194 20
Workspace 13F68 14180 536
Vectorspace 14B6C f406C 512

HIGH priority SYSTEM process 'System.process.b'
Code from 'sysproc.lib', file offset 45888

134 190 92
Entry address 134

Invocation stack 118 12C 20
Workspace to 118 24

LOW priority USER process
Code from 'hello.lku', file offset 2

lED 13AF8 14872
Entry address 110B

Invocation stack IC4 108 20
Workspace 10 IC4 196
Static 13F68 14196 558

Parameter data 13AF8 13CB8 448

Figure 3.4 Memory map file for a single TA processor program

The memory layout is the same as for the previous example except that no space
is allocated for the extra stack (because extra stack was not requested on the com­
mand line). LoadStart, from which the start and end addresses are calculated, can

72 TDS 34601 October 1992

3 icollect - code collector 97

only be calculated at runtime. This is because the value of MemStart cannot be
determined at collect time. The numbers given, in place of absolute addresses are
offsets from LoadStart.

3.9.2 Configured program boot from link

icollect : INMOS toolset collector
Sun Version 3.0.14

Memory map for 'Single' processor 0 T425
Load Start is SOOOOOAO, HALT ON ERROR, Minimum memory size is 73236

HIGH priority INITSYSTEM process 'Init.system.simple'
Code from 'sysproc.lib', file offset 13366

#SOOOOOE4 #S000015S 116
Entry address #SOOOOOE4

Invocation stack #SOOOOOCO #SOOOOOE4 36
Workspace #SOOOOOAO #SOOOOOCO 32

HIGH priority OVERLAYED SYSTEM process 'System.process.b'
Code from 'sysproc.lib', file offset 4471S

#SOOOOlS4 #SOOOOlEO 92
Entry address #SOOOOlS4

Invocation stack #S0000170 #80000184 20
Workspace #S000015S #S0000170 24

LOW priority USER process 'Simple'
Code from 'hello.lku', file offset 2

Entry address
Invocation stack
Workspace
Static
Heap

Parameter data

#SOOOl17S #SOO04B6C 14S36
#800011A3
#SOOOl164 #8000117S 20
#800000AO #80001164 4292
#SOO04B6C #80005424 2232
#80005424 #SOOllC24 51200

#SOOllC24 #SOOllD50 300

Boot path for network

Boot processor 0 down link 0 from HOST

Connectivity for network

Connect HOST to processor 0 link 0

Figure 3.5 Memory map file for a configured T425 processor program

The example shown in Figure 3.5 was produced by the following command line:

icollect hello.cfb -p hello.map

icollect hello.cfb /p hello.map

(UNIX)

(MS-DOSNMS)

where: hello. cfb is the configuration binary file produced by the configurer for
the single processor 'Hello World' example program introduced in chapter
4 of the ANS/ C Too/set User Guide.

72 TDS 346 01 October 1992

98 3.9 The memory map file

The Memory map for the configured program is similar to that produced for uncon­
figured transputer programs except that it has two additional configuration sec­
tions at the end of the file. The Boot path for the network lists processors in the
order in which they are to be booted. The Connectivity for network lists the linkcon­
nections between the processors.

3.9.3 Boot from ROM programs

There are four cases for this type of program:

• Unconfigured (single processor), boot from ROM, run in RAM

• Unconfigured (single processor), boot from ROM, run in ROM

• Configured program, boot from ROM, run in RAM

• Configured program, boot from ROM, run in ROM

The memory maps for each of these are summarized below.

Unconfigured (single processor), boot from ROM, run in RAM

The memory map for this case will have the same layout as the single processor
boot from link programs.

Unconfigured (single processor), boot from ROM, run in ROM

It is not known at collect time where in memory th.e ROM is to be placed. Therefore,
the start and end addresses of the code segments are given as offsets from the
start of ROM, and are annotated as such. Items such as workspace will have abso­
lute addresses allocated, if the program is targetted at a specific processor type.

Note: for C programs the runtime startup system would require modification first,
in order to provide the system with details of heap and stack etc.

Configured program, boot from ROM, run in RAM

The layout of the memory map for this case will be the same as that for the boot
from linkconfigured program. This is because everything (code and data) is copied
into RAM.

Configured program, boot from ROM, run in ROM

For this case the root processorwill be shown in the same format as the single pro­
cessor case, run in ROM; some memory locations being expressed as offsets from
the beginning of ROM.

The other processors in the network will appear as in the boot from link case.

72 TDS 346 01 October 1992

3 icollect - code collector 99

The example shown in Figure 3.6 was produced by the following command line:

icollect hello.cfb -p hello.map

icollect hello.cfb /p hello.map

(UNIX)

(MS-DOSNMS)

where: hello. cfb is the configuration binary file produced by the configurer, for
the single processor 'Hello World' example program introduced in chapter
4 of the ANS/ C Too/set User Guide. The configurer 'RO', 'RS' and 'p' options
were used to create a. boot from ROM input file for the collector.

icollect : INMOS toolset collector
Sun Version 3.0.14

Memory map for 'Single' processor 0 (Booting and running in ROM) T425
Load Start is 800000AO, HALT ON ERROR, Minimum memory size is 58204

36
32

156f3B6Ff3AD3
f3AD6

f800000CO f800000E4
f800000AO f800000CO

HIGH priority INITSYSTEM process , Rom. init. system. simple'
Code from 'sysproc.lib', file offset 16750

ROM OFFSET
ROM entry offset

Invocation stack
Workspace

92

20
24

f3BCBf3B6F
f3B6F

f800000FC f80000110
f800000E4 f800000FC

HIGH priority OVERLAYED SYSTEM process 'System.process.b'
Code from 'sysproc.lib', file offset 44718

ROM OFFSET
ROM entry offset

Invocation stack
Workspace

300

14836

20
4292
2232

51200

fDF f3AD3
f10A

180001164 180001178
f800000AO f80001164
f80001178 f80001A30
f80001A30 f8000E230

f8000E230 f8000E35C

LOW priority USER process 'Simple'
Code from jhello.lku', file offset 2

ROM OFFSET
ROM entry offset

Invocation stack
Workspace
Static
Heap

Parameter data

Boot path for network

Connectivity for network

Figure 3.6 Memory map for program configured to boot from and run in ROM

3.10 Disabling interactive debugging - 'Y' option

The 'y' collector option has two effects on the program being built:

72 TDS 34601 October 1992

100 3.11 Error messages

• It disables interactive (breakpoint) debugging of the program

• It reduces the amount of memory used.

For programs compiled and linked for a specific transputer type, this option will
cause icollect to produce a program that uses less memory. However, pro­
grams compiled and linked for transputer classes 'TA' or 'TB' will not build when
this option is used. This option is only valid for programs collected with the T option.

3.11 Error messages

This section lists error messages generated by icollect. The messages are
listed in alphabetical order under the appropriate severity classification. In all
cases the introductory string (severity, and filename if appropriate) is omitted.

icollect generates errors of severities Warning and Serious. Serious errors
cause the tool to terminate without producing any output.

3.11 ~1 Warnings

The following messages are prefixed with 'Warning-'. They are only generated
when the 'T' option is used (single processor mode).

Extra disable option on command line ignored

The program has been configured with interactive debugging disabled
and the 'y' option specified to the collector is therefore superfluous.

Flip error mode ignored with user bootstrap

The 'E' option is ignored when a user-defined bootstrap is specified
since the collector will only accept a single linked unit as a bootstrap.

Program configured with interactive debugging enabled, option
ignored

The program has been configured with interactive debugging enabled
and the 'y' option has been specified to the collector. The 'y' option is
ignored and the boot file is built.

strange board size for sixteen bit processor: Setting to zero

The memory size specified exceeds the addressing capacity of a 16 bit
processor (64 Kbytes). The collector uses a memory size ofzero for the
rest of the build.

3.11.2 Serious errors

The following errors are prefixed with 'Serious-'.

72 TDS 34601 October 1992

3 icollect - code collector 101

Address space for target processor exhausted

The address space required by the program is greater than 64Kbytes,
the maximum addressable space on a 16-bit processor.

Bootstrap file already specified

More than one bootstrap file was specified. Only one file is allowed.

Bootstrap filename too long

The maximum length allowed for the bootstrap filename is 255 charac­
ters.

Bootstrap is greater than 255 byte in library file

The library bootstrap is too large. This should only occur if the library
file is invalid or corrupt.

Cannot have both rom types

'RA' and 'RQ' options are mutually exclusive and cannot both be speci­
fied on the same command line.

Cannot have configured and memory size

The memory size option is incompatible with building a bootable pro­
gram for a configuration binary file.

Cannot have configured and non bootable file

The collector cannot generate both a network loadable file and a non­
bootable file simultaneously for the same program.

Cannot have rom and non bootable file

The collector cannot generate both a ROM-Ioadable file and a non­
bootable file simultaneously for the same program.

Cannot open file filename

Host file system error. The file specified cannot be opened.

Cannot patch parameter data for processor class

The 'y' option has been specified with a linked unit for a processor class.
The collector cannot initialize some of the data without a linked unit for
a specific processor type.

Cannot use absolute placement and bottom of memory loader

The user has specified BM to the collector but is using absolute code and
data placement at configuration. This combination is not legal.

Command line parsing error at string

Unrecognized command line option.

72 TOS 346 01 October 1992

102 3.11 Error messages

Debug file already specified

More than one debug was file specified. Specify one only.

Dynamic memory allocation failure

Memory allocation error. The collector cannot allocate the required
amount of memory for its internal data structures.

Error in writing to debug file

Host file system error. The debug file could not be written. This mes­
sage will only appear if the collector is invoked with the 'T' option
(unconfigured mode).

Expected end tag found not present in .cfb file

A specific end tag is missing in the configuration binary file. Either the
file is corrupted or the versions of icollect and configurer used are
incompatible.

Illegal tag found in .cfb file

Incorrect format configuration binary file, recognized as an illegal tag.
Either the file is corrupted or the versions of icollect and configurer
used are incompatible.

Illegal language type found in input file

Source language used to create the file is not supported by the collec­
tor. Less likely, but possible, is that the file was created using an incom­
patible (possibly earlier) version of a tool.

Illegal process type

Unrecognized process type. Either the file has been corrupted or the
versions of icollect and configurer used are incompatible.

Illegal processor type

Unrecognized processor type. Either the file has been corrupted or
icollect and the configurer are incompatible.

Illegal tag found in input file: filename

Incorrect format input file. The most likely reason for this error is that an
incorrect file 'has been specified. Other less likely but possible explana­
tions are that the file was created using an earlier or incompatible ver­
sion of one of the tools, or that the file has become corrupted.

Input file already specified

More than one input file specified on the command line.

Input file has not been linked filename

The collector accepts only linked files, either directly when using single
processor operation, or indirectly via entries in the configuration binary

72 TDS 34601 October 1992

3 icollect - code collector 103

file. This message can be generated if the file was created using a pre­
vious version of a tool, or if the file is corrupt.

Input file is of incorrect type: filename

If the 'T' option is specified (single processor program) the input file
must be a single linked unit (.lku type). If the 'T' option has not been
specified the input file must be a configuration binary file (. cfb type).

Input filename too long

The maximum length allowed for the input filename is 256 characters.

Linked unit file in cfb and linked unit in input file found do not match:
filename

The linked file specified in the configuration binary and the one found
the collector do not match.

Linked unit module not found in: filename

The required library module is missing or has been corrupted. This
message is generated when an incorrect version of the library is
installed.

Memory requirement for build is greater than specified, an extra <n>
bytes required at least

The amount of memory specified on a processor is not enough for the
program to execute. An extra <n> bytes are required at least.

Memory size already specified

Memory size must be specified once only.

Memory size string invalid

Memory size must be given in decimal or hex. Hex numbers must be
introduced by 'I' or '$'.

Memory size string too long

Specified memory size is too large.

More than one parameter statements

The collector expects only one parameter statement per processor.
Eitherthe file has been corrupted orthe versions of icollect and con­
figurer used are incompatible.

No debug and debug output file specified in command line

Options '0' (disable debug) and 'e' (debug filename) cannot be used
together.

No input file specified

One, and only one, input file must be specified on the command line.

72TDS 346 01 October 1992

104 3.11 Error messages

No parameter descriptor present in input file: filename

The formal parameter descriptor in the input file is not present. This
usually means that the process has not been linked with a main entry
routine. This message will only appear if the collector is invoked with the
'T' option (unconfigured mode).

Output file already specified

More than one output file was specified. Specify only one.

Output filename too long

The maximum length allowed for the output filename is 256 characters.

Parameter descriptor error in input file: filename

The formal parameter descriptor in the input file is not of the correct
form, indicating that the process interface is not one recognized by the
collector. This message will only appear if the collector is invoked with
the 'T' option (unconfigured mode).

Print map file already specified

More than one print map file was specified. Specify one only.

Program configured for boot from ROM command line is boot from link

The specified configuration binary file was created for either ROM or
RAM, and neither has been specified to icollect.

Program configured for running in RA mode command line is RO mode

Wrong mode specified, or incorrect option given to the configurer when
the specified configuration binary file was created. RA and Ra modes
are mutually exclusive.

Program configured for running in RO mode command line is RA mode

Wrong mode specified, or incorrect option given to the configurer when
the specified configuration binary file was created. RA and Ra modes
are mutually exclusive.

Require at least <ny> bytes at the top of memory for bootstrapping on
processor <n>

The bootstrapping sequence requires an extra <ny> bytes at the top of
memory. Once the bootstrapping has finished this memory is available
to the user.

Rom size already specified

ROM size must be specified once only.

72 TDS 346 01 October 1992

3 icollect - code collector 105

Rom size in input file and command line do not match

The ROM size specified on the command line does not match that spe­
cified to the configurer when the input file was created.

Rom size not specified

A ROM size must be specified because the input file is to be loaded into
ROM.

Rom size string invalid

ROM size must be given in decimal.

Rom size string too long

ROM size specified was too large.

Stack size already specified

Stack size must be specified once only.

Stack size string invalid

Stack size must be specified in decimal format.

Stack size string too long

Specified stack size was too large.

Strange function or attribute for linked unit in : filename

The collector has found an unfamiliar value in the input file. Either an
old version of a tool was used in the creation of the input file, orthe input
file has been corrupted.

System error

Host system error has occurred, probably when accessing a file. This
message may be generated when a file is read and -its contents seem
to have changed or the file does not exist.

Unexpected end of file: filename

One of the files specified in the configuration binary has ended prema­
turely. filename identifies the offending file. If the message 'Suspect cor­
rupted file' is substituted for filename then the file is corrupted.

User bootstrap not allowed when program is configured

User defined bootstrap loaders can only be used with single processor
programs.

User bootstrap not allowed with rom option

User defined bootstrap loaders cannot be used with ROM-loadable
code.

72 TDS 346 01 October 1992

106 3.11 Error messages

User bootstrap type does not match that of linked unit

Either the target processor type or the error mode of the bootstrap code
does not match that of the input file.

3.11.3 Fatal errors

Internal error <message text>

An internal error has occurred this should be reported to your local
INMOS distributor or field applications engineer.

72 lDS 346 01 October 1992

4 idebug - network
debugger

This chapter is a reference chapter for the network debugger tool idebug. It
describes the command line syntax and gives examples of the commands to use
in different situations. It provides detailed reference information about the debug­
ger symbolic debugging functions and Monitor page commands, and provides a
list of error messages.

This chapterdoes not describe howto use the debugger, which is covered in Chap­
ter 8 of the Too/set User Guide.

4.1 Introduction

The network debugger idebug is a comprehensive debugging tool for transputer
programs. It can be run in post-mortem mode to determine the cause of failure in
a halted program, or in interactive (breakpoint) mode to execute a program step- ­
wise by setting breakpoints in the code. In either mode programs can be debugged
from source code using the symbolic functions or from the machine code using the
Monitor page commands

Post-mortem debugging allows programs to be examined for the cause of failure
after a transputer halts on error. The debugger locates the errant process in the
program either by direct examination of the program image in transputer memory
or by reading memory dump files. Processes running in parallel with the errant pro­
cess anywhere on the network can be examined.

Interactive breakpoint debugging allows programs to be executed in a stepwise
manner under interactive control. Breakpoints can be set within the code to cause
the program to pause for the inspection of variables, channels, and processes;
variables can be modified and the program continued with the new values.

The debugger can also be invoked on a dummy network to examine the static fea­
tures of a program. The dummy network simUlates the contents of memory loca­
tions and registers, and can also be used to explore the features of the debugger
without running a real program.

4.2 Debugging the root transputer

idebug can be used to debug single and multitransputer programs. The tech­
niques and commands to use when invoking the debuggerdifferslightly depending
on whether or not the program (or a process forming part of the program) runs on
the root transputer, and according to the debugging mode (post-mortem or break-
point). .

72 TDS 346 01 October 1992

108 4.2 Debugging the root transputer

Two procedures are used to debug programs in post-mortem mode, depending on
whether the application uses the root transputer. Programs that use the root trans­
puter are referred to in this chapter as R-mode programs, and programs that do
not use the root transputer are referred to as T-mode programs. Command line
options are used to select the correct mode of operation for idebug.

To avoid the need for a memory dump, programs can be skip loaded over the root
transputer using iskip. Skip loading requires at least one extra processor in the
network (which will be used by the debugger) but speeds up debugging consider­
ably and is the recommended method where more than one processor is available.
Skip loading is described in detail in chapter 15 of this manual.

4.2.1 Board wiring

Before any program can be debugged in post-mortem mode, the transputer's
Analyse signal must be asserted once, and once only. Because different proce­
dures must be adopted for programs which do and do not use the root transputer,
the debugger cannot assert the signal automatically and so the appropriate
iserver option must be specified on the idebug command line.

Table 4.4 summarizes the command sequences to use for the two program modes
on different board types.

4.2.2 Post-mortem debugging R-mode programs

Code running on the root transputer, and loaded with iserver directly, is
debugged in post-mortem mode from a memory dump file which is specified by the
'R' option. The memory dump file must be created using the idump tool before the
debugger is invoked. Other transputers in the network are debugged down links
connected to the root transputer, in the normal way.

For R-mode programs, idump asserts the Analyse signal and the 'SA option is not
required on the idebug command Une. In fact a second assertion of the signal
would cause data in the memory to become corrupted. If idump is not used before
the debugger is run then the debugger cannot load onto the root transputer and
a server error is reported.

A description of the idump tool can be found in chapter 5 of this manual.

4.2.3 Post-mortem debugging T-mode programs

T-mode programs are loaded using iskip and subsequently debugged using the
'T' option to specify the root transputer link to which the network is connected. The
'SA server option must also be added to the idebug command line in order to
assert Analyse.

If the 'SA option is not given, the debugger can not be booted onto the root trans­
puter and the server aborts with an error message. The debugger should then be
re-invoked with the correct options.

72 TDS 346 01 October 1992

4 idebug - network" debugger 109

4.2.4 Post-mortem debugging from a network dump file

To suspend a post-mortem R or T debugging session without losing the original
context, the Monitor page [!!J command can be used to dump the entire state of
a network into a network dump file. The debugger can then be invoked using this
file, without being connected to the network (although one transputer will still be
needed to run the debugger).

Note: This option will only work for programs that have not been interactively
(breakpoint) debugged.

Memory dump files and network dump files are not the same: the former contains
a single processor's memory image while the later contains data about a complete
network (they are also in different formats). The ilist tool can be used to deter­
mine the format of a dump file.

4.2.5 Debugging a dummy network

The debugger may be used to debug a program using dummy data. Using the
debugger command line 'D' option which simulates the contents of memory loca­
tions and registers, static features of a program may be examined. This is useful
to determine processor connectivity and memory mapping for each processor in
the network. Because memory locations etc. are simulated, this option only
requires the root transputer in order to execute the debugger (even when used with
a bootable file for a network of transputers).

The 'D' option may also be used to explore most features of the debugger without
running a program.

4.2.6 Methods for interactive breakpoint debugging

Interactive mode breakpoint debugging does not require use of the memory dump
tool because the program is automatically skip loaded over the root transputer
where the debugger is running. However, like all skip loads it requires an extra pro­
cessor on the network.

4.3 Running the debugger

The debugger is invoked using the following command line:

~ idebug bootablefile {options}

where: bootablefile is the bootable file to be debugged.

options is a list of the options given in Table 4.1.

Options must be preceded by '-' for UNIX-based toolsets and 'I' for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

72 TDS 34601 October 1992

110 4.3 Running the debugger

Only one bootable file may be specified on the command line.

If no arguments are given on the command line a help page is displayed giving the
command syntax and a list of command line options.

Command line parameters for programs being debugged interactively should not
be entered on the debugger command line. The debugger will prompt for these
parameters when the code being debugged is about to be started.

Note: idebug is unique amongst the toolset tools in that, when invoked with com­
mand line options, its driver program does not automatically reset (or analyze, as
appropriate) the root transputer. This is due to the diversity of hardware configura­
tions where the appropriate sequence may not be obvious to the driver. Because
of this, the task ofselecting the appropriate iserver command is delegated to the
user.

Failure to supply the appropriate iserver reset (SR) oranalyze (SA) options along
with idebug command line options will result in iserver failing to boot idebug.

Only when invoked with no command line options at all will idebug automatically
reset the root transputer and display its own help page.

Option Description

A Assert INMOS subsystem Analyse. Directs the debugger to
assert Analyse on the sub-network connected to the root pro-
cessor.
Required when using B004 type boards.

AP A replacement for the A option when running programs on
boards from certain vendors. Asserts Analyse on the network
connected to the root processor.
Contact your supplier to see whether this option is applicable
to your hardware. It does not apply to boards manufactured by
INMOS.

B Iinknumber Interactive breakpoint debug a network that is connected to
the root processor via link Iinknumber. idebug executes on
the root processor.
Must be accompanied by the iserver 'SR' option.

c type Specify a processor type (e.g. T425) instead of a class (e.g.
TA) for programs that have not been configured.

D Dummy debugging session. Can be used for familiarization
with the debugger or establishing memory mappings.
Must be accompanied by the iserver 'SR' option.

GXX Improves symbolic debugging support for C++ source code.
Should be specified when debugging C++ programs.

72TDS 346 01 October 1992

4 idebug - network debugger 111

Option Description

I Display debugger version string.

Must be accompanied by the iserver 'SR' option.

J I hexdigits Takes a hexadecimal digit sequence of up to 16 digits and
replicates it throughout the data regions of °a program (stack,
static, heap and vectorspace as appropriate) when interactive
debugging. The digit sequence must be preceded by a hash,
'I', character.

Used when breakpoint debugging configured T426 programs.

K Ihexdigits As the J option but includes freespace.

Used when interactive debugging non-configured T426 pro-
grams.

M linknumber Postmortem debug a previous interactive debugging session.
idebug executes on the root processor.

Must be accompanied by the iserver 'sA' option.

N filename Postmortem debug a program from a network dump file file-
name, created by idebug. The file is assumed to have the
extension . dmp if none is specified.

Must be accompanied by the iserver 'SR' option.

Q variable Specify environment variable used to specify the ITERM file.
The default is "ITERM".

R filename Postmortem debug a program that uses the root transputer.
filename is the file that contains the contents of the root pro-
cessor (created by idump or isim). The file is assumed to
have the extension . dmp if none is supplied.

S Ignore subsystem signals when interactive debugging.

T linknumber Postmortem debug a program that does not use the root pro-
cessor, on a network that is connected to link linknumber of
the root processor. idebug executes on the root processor.

Must be accompanied by the iserver 'SA' option.

xQ Causes the debugger to request confirmation of the Quit com-
mand.

Table 4.1 idebug command line options

4.3.1 Toolset file types read by the debugger

The debugger uses information within files produced by toolset tools in order to
establish the hierarchy of components used to produce a bootable file.

Table 4.2 provides a list offile types used by the debugger. The table covers alllan­
guages which the debugger supports (FORTRAN, C, and occam).

72 TDS 34601 October 1992

112 4.3 Running the debugger

File extension Description

. £77 FORTRAN source code file.

. h77 FORTRAN include file.

. c C source code file.

. h C include file.

. occ occam source code file.

.inc occam include file.

. efb Configuration 'data file.

. pgm occam configuration data file.

.btl Bootable file to be debugged.

.btr ROM code file to be debugged.

.clu occam configuration object file.

. lku Linked unit generated by linker.

. tee Object file generated by compiler.

. lib Library file.

.dmp Root processor dump file (created by idump or isim) or
network dump file (created by idebug).

Table 4.2 File types read by debugger

With the exception of a dump file which must have a . dmp filename extension, the
debuggerwill accept different extensions for a particular file type. (For example the
extensions used by imakef such as . tah which can be used instead of . tee).

4.3.2 Environment variables

idebug requires three environment variables to be set up on the host system (in
addition to those required to run the iserver and to build a bootable file). These
are listed in table 4.3. Details of how to set up these variables can be found in the
Delivery Manual that accompanies this release.

72 TDS 346 01 October 1992

4 idebug - network debugger 113

I TERM Contains the name of the file which defines key mappings for
debugger symbolic functions and some monitor page commands.
The name of the environment variable may be over-ridden by
using the IQ' command line option.

IDEBUGSIZE Defines the amount of memory available on the root transputer
board. This variable must be specified for idebuq to work cor-
rectly (idebuq requires at least 1 Mbyte of available root trans-
puter memory: it is strongly recommended that 2 Mbytes or more
be available).

IBOARDSIZE The amount of memory available for the application program.
Required for bootable single transputer programs (created from
linked units using icollect with the IT' option and without the
IM' option), where the memory size was not specified.

Table 4.3 Environment variables used by idebuq

4.3.3 Program termination

If the program terminates by issuing the 'terminate' command to the server, the fol­
lowing message is displayed:

[Proqram has finished (after nnn seconds) - hit any key
for monitor page]

The debugger can be re-entered after server termination by pressing any key. The
final state of the network can be examined using the full range of symbolic and
Monitor page commands.

The exit status returned by the program is displayed on the Monitor page.

If the program contains independent processes which require no communication
with the server then the debugger allows the program to be resumed. In this case
the debugger displays the following warning message:

[Warning: iserver terminated by user program: use CTRL-A
for monitor page]

4.4 Post-mortem mode invocation

To invoke the post-mortem debugger use the appropriate command from the fol­
lowing list. Command lines are shown in both in UNIX and MS-DOSNMS formats.

Note: Commands are given for a B008 board wired subs (see section 4.7.1). For
the commands and command sequences to use on other board types see sec­
tion 4.7.2.

72 TDS 34601 October 1992

114 4.4 Post-mortem mode invocation

4.4.1 Debugging T-mode programs - option 'T'

idebug boofablefile -t linknumber -sa
idebug boofablefile It linknumber I sa

where: boofablefile is the program bootable file;

linknumber is the number of the link of the root processor which is con­
nected to the network.

Use the 'T' option for programs that do not use the root transputer, that is those
loaded by using iskip. The program is debugged from the program image that
is resident in the memory of each transputer; the information about the rest of the
network is extracted down the root transputer link. This method provides the fastest
post-mortem debugging because the root transputer memory image is not saved.
However, the option does require an extra transputer on the network. The 'T' option
should be accompanied by the 'sI: option to assert Analyse on the network.

4.4.2 Debugging R-mode programs - option 'R'

idebug boofablefile - r dumpfile
idebug boofablefile / r dumpfile

where: boofablefile is the program bootable file;

dumpfile is the root transputer memory dump file.

Use the 'R' option for programs that use the root transputer in a network. The dump
file is created by using idwnp, which produces a dump of the program image on
the root transputer only; the debugger extracts information about other transputers
on the network (if applicable) via the root transputer's links.

4.4.3 Debugging a network dump file - option 'N'

idebug boofablefile -n netfile - sr
idebug boofablefile In neffile Isr

where: boofablefile is the program bootable file;

neffile is a network dump file.

Use the 'N' option to debug programs without access to the original network of
transputers~This is effectively debugging off-line. The network dump file is gener­
ated by the idebug Monitor page Q!] command. Note: this can only be used for
programs that have not been debugged interactively. The 'N' option should be
accompanied by the iserver 'SR' option to reset the network.

72 TDS 346 01 October 1992

4 idebug - network debugger

4.4.4 Debugging a previous breakpoint session - option 'M'

idebug bootablefile -m linknumber -sa
idebug bootablefile /m linknumber / sa

where: boofablefile is the program bootable file;

115

linknumber is the number of the link of the root processor which is con­
nected to the network.

Use the IM' option to debug a previous breakpoint debugging session where either
the network has crashed (error flag was set) or the host I BREAK Ikey was used
to to terminate the debugger. This option is the same as the IT' option but informs
the debugger the breakpoint runtime kernel is present. The 'M' option should be
accompanied by the iserver IsA' option to assert Analyse on the network. The
same action may be achieved when using the debugger in interactive mode with
a subsystem wired subs (see section 4.7.1) by use of the Monitor page [Y] com­
mand.

Note: Symbolic functions and Monitor page commands that support breakpointing
are absent in post-mortem mode.

4.4.5 Reinvoking the debugger on single transputer programs

For programs running on a single transputer only and debugged from a memory
dump file the debugger can be reinvoked on the same dump file by passing the ISR'
option to iserver from the idebug command line. This option is required to reset
the transputer before loading the debugger program (the resetting is normally done
by idump).

4.4.6 Debugging boot from ROM programs

Programs which are configured to boot from ROM and run in RAM may be
debugged in post-mortem mode via a transputer link in a similar manner to that
described in section 4.4.1. The debugger must be run on the root processor of the
network (as specified to the configurervia the lp' option) which must be set to boot
from link while debugging.

idebug romcodefile -t linknumber -sa
idebug romcodefile / t linknumber / sa

where: romcodefile is the .btr output file produced by icollect for use by
ieprom;

linknumber is the number of the link of the root processor which is con­
nected to the network.

4.5 Interactive mode invocation

To run the debugger in interactive mode use one of the commands below.

72 TDS 346 01 October 1992

116 4.6 Function key mappings

Note: Commands are supplied for a B008 board wired subs. For the commands
to use on other board types see Table 4.4.

idebug boolablefile -b linknumber -sr
idebug boofablefile /b linknumber / sr

where: boofablefile is the program executable file;

linknumber is the number of the root transputer link where the application
network is connected.

In interactive mode idebug loads the bootable file directly onto the network and
sets up a runtime kernel and idebug virtual link system on each processor used
by the program. iserver is not required to load the program, but an extra proces­
sor is required to run the debugger; the program is in effect 'skip' loaded.

When first invoked in interactive mode, the debugger immediately enters the Moni­
tor page where the [!] (Breakpoint Menu) command can be used to set break-
points before the program is started.

4.6 Function key mappings

All the debugger symbolic functions, and some Monitor page commands, are
assigned to specific keys on the keyboard by the ITERM file (the file specified by
the environment variable ITERM). For the correct keys to use on your terminal con­
sult the keyboard layouts provided in the Delivery Manual that accompanies this
release.

ITERM files are supplied with the release for terminals commonly used with your
host system but may also be created to suit your own requirements. Details of the
ITERM file and an example listing which illustrates the format can be found in
appendix E.

Key-mapped Monitor page commands are listed in section 4.9.7. A complete list
of symbolic functions can be found in section 4.10.

4.7 Debugging programs on INMOS boards

On transputer boards the Analyse and Reset signals can be propagated from the
root transputer in two ways, and this influences the options that must be used when
debugging programs.

4.7.1 Subsystem wiring

On transputer boards the subsystem signal is either propagated unchanged to all
transputers on the network (known as wired down), or the signals are connected
to the subsystem port (wired subs) from where they are controlled by the board's
root processor.

72 TDS 346 01 October 1992

4 idebug - network debugger 117

On 8004 boards and on all boards where subsystem is wired in the same way
Analyse must be asserted on the network before transputers can be accessed by
the debugger from the root processor. However, if Analyse is asserted more than
once the program will be corrupted in transputer memory.

The wiring type can be identified by the hardware addresses of the three subsys­
tem registers. On 8004-type boards the addresses are as follows:

Signal Hardware address

Reset #00000000

Analyse #00000004

Error #00000000

An example ofa 8004-type board is the IMS 8404 TRAM. Fordetails ofthe subsys­
tem wiring on other boards consult the Datasheet or board specification.

In addition, TRAM boards and 8004 boards differ in the way the subsystem port
is used. On TRAMs these subsystem signals are propagated to all transputers on
the network, whereas on 8004 boards the signals are not propagated at all.

4.7.2 Debugging options to use with specific board types

The conditions outlined above affect the commands that must be used when
debugging T-mode and R-mode programs. table 4.4 shows the command line
options to use for different combinations of board type, subsystem wiring, and pro­
gram mode.

For further details about loading programs see the chapters on loading and debug­
ging in the Too/set User Guide (chapters 7 and 8).

4.7.3 Detecting the error flag in interactive mode

In interactive mode the debugger detects that a processor has its error flag set by
use of the subsystem services. If the hardware is not wired up to use the subsystem
services then the debugger is unable to detect when an error flag is set; this may
cause the debugger to hang for no apparent reason. On such networks the
iserver 'SE' option should be used to detect when an error flag has been set.
Note, however, that detection ofa set error flag will terminate the debugger without
warning - the debugger can, however, be subsequently re-invoked in post-mor­
tem mode.

Note: When using the debugger in interactive mode, the hardware should be
set-up to use the subsystem services if possible.

72 TDS 346 01 October 1992

118 4.8 Debugging programs on non-INMOS boards

Board Wiring Mode Command line(s) to use

TRAM down T idebug program -b linknumber -sr -set -st

idebug program -m linknumber -sa

idebug program -t linknumber -sa

R idump dumpfile size
idebug program -r dumpfile

subs T idebug program -b linknumber -sr

idebug program -m linknumber -sa

idebug program -t linknumber -sa

R idump dumpfile size
idebug program -r dumpfile

8004 down T idebug program -b linknumber -sr -set -st

idebug program -m linknumber -sa

idebug program -t linknumber -sa

R idump dumpfile size
idebug program -r dumpfile

subs T idebug program -b linknumber -a -sr

idebug program -m linknumber -a -sa

idebug pr~gram -t linknumber -a -sa

R idwnp dumpfile size
idebug program -r dumpfile -a

Command lines are given in UNIX format ('-' option switch character). For
MS-DOS and VMS based toolsets use the '/' option switch character.

The 'SI' option may also be used on any command line to display activity
information while the debugger is loading.

Modes: R =program using the root transputer; T =program not using the
root transputer, and debugged down a root transputer link.

program is the program bootable file.

t See section 4.7.3.

Table 4.4 Commands to use on different board types

4.8 Debugging programs on non-INMOS boards

If the hardware does not adhere to the INMOS subsystem convention then it is nec­
essary to determine how the hardware is configured with respect to the subsystem
and select the appropriate command line options.

It will probably be necessary to use the idebug command line 's' option when
breakpoint debugging in order to stop the debugger monitoring the subsystem

72 TDS 346 01 October 1992

4 idebug - network debugger 119

error status, and the iserver 'SE' option to determine when the error flag has
been set.

Note: Some non-INMOS boards use a specific subsystem convention which is
supported by idebug, but which is different from the INMOS convention. To assert
subsystem Analyse on such boards, use the 'AP' rather than the 'I:, option. The
board supplier should be able to say whether the 'AP' option is appropriate for their
system.

4.9 Monitor page commands

This section lists and describes the debugger Monitor page commands. The com­
mands are tabulated in alphabetical order for easy reference. Where a command
invokes an option submenu the operation of each option in the submenu is
described.

Monitor page commands are also listed for easy reference in the Handbook that
accompanies this release.

4.9.1 Command format

All Monitor page commands are either single letter commands or are invoked by
a single function key press. Key mappings for the few general commands that use
function keys can be found in the Delivery Manual that accompanies this release.

4.9.2 Specifying transputer addresses

Many Monitor page commands require a memory address to be entered. Where
there is a default value, this is displayed with the prompt. The default address is
the last address specified or located to, and is used ifI RETURN Iis pressed without
entering an address.

Addresses can be specified in decimal or hexadecimal format. Hexadecimal num­
bers must be given as a sequence of hexadecimal digits preceded by the charac­
ters 'I', '$', or '%'. The '#' and '$' characters are used to prefix a full hexadecimal
address. The '%' character adds MOSTNEG INT to the hexadecimal value using
modulo arithmetic. This is useful when specifying transputer addresses which are
signed and start at MOSTNEG INT. For example, %70 is interpreted as #80000070
on a 32 bit transputer, and as #8070 on a 16 bit transputer.

Address may also be specified relative to the Iptr orWptr (derived from the cur­
rent Wdesc) currently displayed in the monitor page. One of the following forms
may be used:

i +nnn or i -nnn: for addresses relative to Iptr - in this case nnn is a~ offset.

w+nnn orw-nnn: for addresses relative to Wptr - in this case nnn is a word offset.

4.9.3 Scrolling the display

Several commands mapped by the ITERM file (see below) may be used to scroll
certain of the Monitor page displays. Cursor keys may also be used.

72 TDS 34601 October 1992

120 4.8 Debugging programs on non-INMOS boards

4.9.4 Editing functions

The following string editing functions are available for on-screen editing of strings
for certain commands:

I START OF LINE I Move the cursor to the beginning of the string.

I END OF LINE I Move the cursor to the end of the string.

I DELETE LINE I Delete the string.

~ Move the cursor left one character.

~ Move the cursor right one character.

[I] Replace the current string with the string used in the pre­
vious invocation of the command.

I DELETE I Delete the character to the left of the cursor.

I RETURN I Enter the string.

Note: I START OF LINE I, I END OF LINE I, I DELETE LINE I, and I DELETE I are
mapped by the ITERM file to specific keys on the keyboard. Details of the key map­
pings on your terminal can be found in the Delivery Manual that accompanies this
release. [I] will not be applicable to some commands.

4.9.5 Commands mapped by ITERM

Certain Monitor page commands are mapped to specific keys on the terminal by
the ITERM file. Commands mapped in this way include keys which are used to
scroll the display (see below), commands which produce the same effect in both
debugging modes, and the commands I TOP I, I RETRACE I, IRELOCATE Iand
I RESUME Iwhich invoke the corresponding symbolic mode functions.

The keys to use for all Monitor page commands mapped by ITERM can be found
by consulting the keyboard layouts supplied in the Delivery Manual.

4.9.6 Summary of commands

Key Meaning Description

A* ASCII View a region of memory in ASCII.

Bt* Breakpoint Display the Breakpoint menu enabling breakpoints
to be set, cleared or listed.

t = Interactive mode only.

* =String editing functions available for these commands, see section 4.9.4.

72 TDS 346 01 October 1992

4 idebug - network debugger 121

Key Meaning Description
C Compare Compare the code on the network with the code that

should be there to ensure that the code has not
been corrupted.

D* Disassemble Display the transputer instructions at a specified
area of memory.

E Next Error Switch the current display information to that of the
next processor in the network which has halted with
its error flag set.

F* Select file Select a source file for symbolic display using the
filename of the object file produced for it.

G Goto process Goto symbolic debugging for a particular process.

H* Hex View a region of memory in hexadecimal.

1* Inspect View a region of memory in a symbolic type. Types
are expressed as standard occam types.

Jt* Jump Start or resume the application program.

K Processor Display the names and types of all processors in the
names network.

L Links Display instruction pointers and process descriptors
for the processes currently waiting for input or output
on a transputer link, or for a signal on the Event pin.

M Memory map Display the memory map of the current processor.

N* Network dump Copy the entire state of the transputer network into a
'network dump' file in order to allow continued (off-
line) debugging at a later date.

0* Specify process Resume the source level symbolic features of the
debugger for a particular process.

P* Processor Switch the current display information to that of
another processor.

Q Quit Leave the debugger and return to the host operating
system.

R Run queues Display instruction pointers and process descriptors
of the processes on either the high or low priority
active process queue.

st Show messages Display the Messages menu enabling the default
actions of the debugger to debug support functions
to be changed.

t =Interactive mode only.

* =String editing functions available for these commands, see section 4.9.4.

72 TDS 34601 October 1992

122 4.8 Debugging programs on non-INMOS boards

Key Meaning Description

T Timer queues Display instruction pointers, the process descriptors
and the wake-up times of the processes on either
the high or low priority tir1)er queue.

ut Update Update the monitor page display to reflect the cur-
rent state of the processor.

V Process names Display the memory map of processes on the cur-
rent processor.

wt* Write Write to any portion of memory in a symbolic type. .
Types are expressed as standard occam types.

X Exit Return to symbolic mode.

yt Postmortem Change an interactive breakpoint debugging session
into a post-mortem debug session.

Z Virtual links Display instruction pointers and process descriptors
for processes waiting on the configurer's software
virtual links.

? Help Display help information.

t = Interactive mode only.
* = String editing functions available for these commands, see section 4.9.4.

4.9.7 Symbolic-type commands

I HELP' Display help information.

I REFRESH'

I RELOCATE'

I RESUME I

I RETRACE'

I TOP"

Re-draw the screen.

Switch to symbolic mode and perform symbolic relocate.

Restart a process stopped at a breakpoint.

Switch to symbolic mode and perform symbolic retrace.

Locate to the last instruction executed on the current pro­
cessor.

Key bindings for these commands on specific terminal types can be found in the
rear of the Delivery Manual.

4.9.8 Scroll keys

I LINE UP ,

72 TDS 346 01

Scroll the currently displayed memory, disassembly, queue,
or list.

October 1992

4 idebug - network debugger 123

I LINE DOWN I

I PAGE UP I

I PAGE DOWN I

I TOP OF FILE I

I END OF FILE I

Scroll the currently displayed memory, disassembly, queue,
or list.

Scroll the currently displayed memory, disassembly, queue,
or list.

Scroll the currently displayed memory, disassembly, queue,
or list.

Go to the top of the currently displayed processor name
list, or software virtual link list.

Go to the end of the currently displayed processor name
list, or software virtual link list.

Scroll the currently displayed memory, disassembly, queue,
or list.

Scroll the currently displayed memory, disassembly, queue,
or list.

Scroll the currently displayed processor left.

Scroll the currently displayed processor right.

Key bindings for these commands on specific terminal types can be found in the
rear of the Delivery Manual.

4.9.9 Monitor page command descriptions

[!J ASCII

This command displays a segment of transputer memory in ASCII format,
starting at a specific address. If no address is given the last specified
address is used. Specify a start address after the prompt:

Start address (#hhhhhhhh) ?

Either press I RETURN I to accept the default (last specified) address, or
enter the desired address. The address can be entered as a decimal num­
ber, a hexadecimal number preceded by"', or the short form '%h . .. h'.

The memory is displayed in blocks of 16 rows of 32 ASCII bytes, each row
preceded by an absolute address in hexadecimal. Bytes are ordered from
left to right in each row. Unprintable characters are substituted by a full
stop.

The scroll keys (section 4.9.7) can be used to scroll the display.

72TDS 346 01 October 1992

124 4.9 Monitor page commands

~ Breakpoint menu (interactive mode only)

This command invokes the Breakpoint Menu:

Breakpoint Menu
S - Set a breakpoint on this processor
T - Toggle a breakpoint on this processor
C - Clear a numbered breakpoint
A - Clear all breakpoints on all processors
B - Clear all breakpoints on this processor
E - Set a breakpoint at all entries this processor
G - Set a breakpoint at all entries all processors
M - Set a breakpoint at all main () this processor
L - List all breakpoints and hits
P - List all breakpoints and hits on this processor
Q - Quit this option

Breakpoint option (A,B,C,E,G,L,M,P,Q,S,T) ?

Options are selected by entering one of the single letter commands. A
selected option can be cancelled by pressing I RETURN Iwith no typed input
when it prompts for an address or a breakpoint number.

The 'E' and 'G' options, which set breakpoints at the entry point of all config­
uration level processes, are mainly for use with occam programs where
the entry point of the program is the start of the top-level process. For non­
configured occam programs the entry point is the first procedure called
when the program starts. For configured occam programs the entry point
is the configuration level code.

The 'M' option is intended for languages which have run-time support and
a known entry point to the application code (such as main () in C, or the
FORTRAN main program). This option sets a breakpoint at all the program
entry points on the current processor.

Note: for processors which do not have hardware breakpoint support the
debugger will not set breakpoints in high priority configuration level pro­
cesses when the 'E', 'G' or 'M' options are used.

Breakpoints are assigned a unique number which must be used with the
'c' option. Numbers are given on the List Breakpoints displays.

In addition, the List Breakpoint displays provide information about the pro­
cessor the breakpoint has been placed on (Proc:), the address of the
breakpoint (Addr:), the number of times the breakpoint has occurred
(Hits :) and for breakpoints set in symbolic mode the filename and line
number they correspond to. For example:

4) Proc: 0, Addr: #8000408E, "facs.c":201
Hits: 3

72 TDS 346 01 October 1992

4 idebuq - network debugger 125

This display means that breakpoint number 4 on processor 0 at address
#8000408E (which corresponds to line number 201 of the file "facs . c")
has been hit three times.

Note: Only breakpoints which are set in symbolic mode (at the beginning
of a statement) are properly supported. Setting breakpoints at arbitrary
addresses using the's' option may cause incorrect execution of the pro­
gram.

Note: Breakpoints should not be set in high priority processes on proces­
sors without hardware breakpoint support (M212, T212, T222, T414, and
T800). The E, Gand Moptions will not set a breakpoint in a high priority (con­
figuration level) process on these processors.

~ Compare memory

This option compares the code actually in memory on the network with the
code that was loaded, to check that memory has not become corrupted.

Note: This option treats breakpoints as corrupted code.

The following menu is displayed:

Compare memory
Number of processors in network is n

A - Check all network processors for discrepancies
B - Check this processor for discrepancies
C - Compare memory of this processor on screen
D - Find first error on this processor
Q - Quit this option

Compare memory option (A,B,C,D,Q) ?

Type one of the options A, B, C, D, or Q. Option 'Q' returns to the Monitor
page.

Checking the whole network • option A

Option 'K checks all the processors in the network and displays a summary
of the discrepancies found.

If there are no errors the following message is displayed:

Checked all processorrrs in network OK

If any errors are detected the number of errors is given along with the
address of the first error found and the name of the processor on which it
occurred.

72 TOS 346 01 October 1992

126 4.9 Monitor page commands

Checking a single processor • option B

Option 'B' checks just the current processor. In all other respects it is similar
to option 'x.

Compare memory on screen • option C

Option 'c' displays the actual and expected code for each address in the
program code area of the current processor. Discrepancies are marked
with an asterisk (,*').

Memory is checked in blocks of 128 bytes. At the end of each block, type
either 'Q' to quit, or I SPACE Ito read and display the next block.

The format of the display is similar to the following example:

#800001234
#80000123C
#800001244

Processor Code
0011223344556677
0011223344556677
0011223344556677

Correct Code
7766554433221100 *
0011223344556677
7766554433221100 *

#8000012AC AABBCCDDEEff0011 AABBCCDDEEff0011

Press [DOWN] to scroll memory, [SPACE] for next err
or, or Q to quit :

Pressing I SPACE I automatically invokes option 'D' - Find first
error ... (see below).

Find first error • option 0

Option 'D' searches the current processor's memory for the first occurrence
of a discrepancy. If a discrepancy is found the display is the same as in
option 'c' above, and the memory can be checked and displayed as in
'Compare memory on screen'.

[Q] Disassemble memory

The Disassemble command disassembles memory into transputer instruc­
tions. Specify an address at which to start disassembly after the prompt:

Start address (#hhhhhhhh) ?

Either press I RETURN Ito accept the default address, or enter the desired
address. The address can be entered as a decimal number, a hexadecimal
number preceded by '#', or the short form '%h . .. h'.

The memory is displayed in batches of sixteen transputer instructions,
starting with the instruction at the specified address. If the specified

72 TDS 34601 October 1992

4 idebug - network debugger 127

address is within an instruction, the disassembly begins at the start of that
instruction. Where the preceding code is data ending with a transputer
cpfix' or cnfix' instruction, disassembly begins at the start of the pfix or
nfix code.

Each instruction is displayed on a single line preceded by the address cor­
responding to the first byte of the instruction. The disassembly is a direct
translation of memory contents into instructions; it neither inserts labels,
nor provides symbolic operands.

The scroll keys (section 4.9.7) can be used to scroll the display.

IT] Next Error

Next Error searches forward through the network for the next processor
which has both its error and halt-on-error flags set. Processors are
searched in the same order as they are listed by the cK' command, starting
from the current processor and wrapping round. Ifa processor is found with
both flags set the display is changed to the new processor as if the cp' option
had been used. Press I TOP Ito display the source line which caused the
error.

If there is only one processor in the network then a message to this effect
is displayed.

[£] Select source file

This command enables a program source file to be displayed within the
symbolic debugging environment for a particular processor. This allows
breakpoints to be set in modules which have not yet been reached in the
program's execution. (Source which has not yet been executed cannot be
displayed using the '0' or cG' options because the Iptr and Wdesc
addresses are not yet known.) This command may also be used to browse
source files rather like the I CHANGE FILE I symbolic function. However,
unlikeI CHANGE FILE Iit allows some of the symbolic debugging operations
to be used.

Note: Editing keys may be used with this command to provide a simple his­
tory mechanism (see section 4.9.4).

For mixed language programs, the behavior of this command will differ
depending on whether icconf or the occam configurer occonf has
been used to configure the program. (icconf is supplied with FORTRAN
and ANSI C toolsets, occonf with occam toolsets.)

The differences in the behavior are described below:

72 TDS 34601 October 1992

128 4.9 Monitor page commands

Behavior of command when no configurer or icconf is used

If a processor has been configured to contain more than one process, this
option first prompts for the process number corresponding to the source
code:

Select process number (0 - N) ?

The range of numbers displayed in brackets are process numbers
assigned by the debuggerto different processes on the processor. The pro­
cess numbers assigned to process names by the debugger can be deter­
mined by using the Monitor page Process Name Cv) option before invok­
ing the 'F' command.

Once a valid process number has been supplied (if applicable), the debug­
ger prompts for the filename of the compiled object module. The full object
filename (including extension - conventionally . tco) must be supplied.

Object module filename ?

The object filename must be specified because the debugger extracts the
source code filename from the debug information in the compiled object
file.

Note: Editing keys may be used with this command to provide a simple his­
tory mechanism (see section 4.9.4). At each prompt this command may be
aborted by pressing I RETURN Iwith no typed input.

Behavior of command when occonf is used

The debugger first prompts for the filename of a linked object module. The
full linked filename (including extension - conventionally . lku) must be
supplied.

Linked unit filename ?

The linked filename must be specified because the debugger needs to
know which linked unit (incorporated by a configurer 'USE directive) con­
tains the object code from the source file to be displayed.

The debugger then prompts for the filename of a compiled object module
contained within the selected linked unit. The full object filename (including
extension - conventionally . tco) must be supplied.

Object module filename ?

The object module filename must be specified because the debugger
extracts the source code filename from the debug information in the com­
piled object file.

72 TDS 346 01 October 1992

4 idebug - network debugger 129

At each prompt this command may be aborted by pressing I RETURN Iwith
no typed input.

@] Go to process

This command locates to the source code for any process which is cur­
rently shown on the screen. Any process displayed by using the [0, [TI,
[!], [!], or~ commands may be selected.

The cursor is positioned next to the Iptr value and permitted responses
are listed on the screen, as follows:

Goto process - use [CURSOR] then [RETURN], or 0 to
F , (I)ptr , (L) 0 or (Q) ui t

To select a process and display the source code, move the cursor to a dis­
played Iptr value and press I RETURN I, or use one of the following short­
cuts:

• The [0 option locates to the current process (the process corre­
sponding to the displayed Iptr and Wdesc values).

• If currently in high priority, the [TI option can be used to locate to
the interrupted low priority process (the process corresponding to
the displayed IptrlntSave and WdesclntSave values).

• The hex numbers [!] - [£] will locate to the process corre­
sponding to one of the 16 lines displayed on the right hand side
of the Monitor page (the entries in the timer or run queues, or pro­
cesses waiting on links).

Type 'Q', I FINISH I, orl REFRESH Ito abort this command.

[8] Hex

The Hex command displays memory in hexadecimal. Specify the start
address after the prompt:

Start address (#hhhhhhhh) ?

Press I RETURN I to accept the default address, or enter the desired
address. The address can be entered as a decimal number, a hexadecimal
number preceded by 'I', or the short form '%h • .. h'. If the specified start
address is within a word, the start address is aligned to the start of that
word.

The memory is displayed as rows of words in hexadecimal format. Each
row contains four or eight words, depending on transputer word length.
Words are displayed in hexadecimal (four or eight hexadecimal digits
depending on word length), most significant byte first.

72 TDS 34601 October 1992

130 4.9 Monitor page commands

For a four byte per word processor the sequence of bytes in a single row
would be:

3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

For a two byte per word processor. the ordering would be:

1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

Words are ordered left to right in the row starting from the lowest address.
The word specified by the start address is the top leftmost word of the dis­
play.

The address at the start of each line is an absolute address displayed in
hexadecimal format.

The scroll keys (section 4.9.7) can be used to scroll the display.

[!] Inspect memory

The Inspect command can be used to inspect the contents of an entire
array. Specify a start address after the prompt:

Start address ('hhhhhhhh) ?

Either press I RETURN Ito accept the default address. or enter the desired
address. The address can be entered as adecimal number. a hexadecimal
number preceded by"'. or the short form '%h . .. h'.

When a start address has been given. the following prompt is displayed:

Typed Memory Dump
o - ASCII
1 - INT
2 - BYTE
3 BOOL
4 INT16
5 - INT32
6 - INT64
7 REAL32
8 REAL64
9 - CHAN
Q - Quit this option

Which occam type (1 - INT) ?

Give the number corresponding to the type of data to be displayed. press
I RETURN Ito accept the default type or enter Qto quit this option.

The types correspond to formal occam types as defined in the occam 2
Reference Manual. occam equivalences of C and FORTRAN types are
listed in table 4.5.

72 TDS 346 01 October 1992

4 idebug - network debugger 131

C FORTRAN occam

int INTEGER INT

char CHARACTER BYTEunsigned char

LOGICAL BOOL

short INTEGER*2 INT16signed short

long INTEGER*4 INT32signed long

float REAL REAL32REAL*4

double DOUBLE PRECISION REAL64long double REAL*8

Table 4.5 Type equivalents for Inspect command

ASCII arrays are displayed in the format used by the Monitor page com­
mand 0. Other types are displayed both in their normal representation
and hexadecimal. format.

The memory is displayed as sixteen rows of data. The address at the start
of each line is an absolute address displayed as a hexadecimal number.
The element specified by the start address is on the top row of the display.

Start addresses are aligned to the nearest valid boundary for the type, that
is: BYTE and BOOL to the nearest byte; INT16 to the nearest even
byte; INT, INT32, INT64, REAL32, REAL64, and CHAN to the nearest
word.

The scroll keys (section 4.9.7) can be used to scroll the display.

o Jump into and run program

This command starts up a program from the Monitor page, or restarts a pro­
cess which has encountered a breakpoint or has been stopped by one of
the debug support functions (for details of these functions see the appropri­
ate Language and libraries manual).

Starting a program

When starting a program the debugger converts (patches) the configura­
tion external channels (those assigned to links) for each processor into
virlual channels for use with the debugging kernel. This action is indicated
by an activity indicator.

When the patching is complete the debugger prompts for a command line
for the program:

Command line:

72 TDS 346 01 October 1992

132 4.9 Monitor page commands

Simply press I RETURN Iif the program does not require any command line
parameters. The program will then start running.

Resuming from a breakpoint

When jumping into and resuming a program from a breakpoint, in the moni­
tor page, the following menu is displayed:

Jump into Application

R - Resume process stopped at a breakpoint
o - Resume monitoring of network

(abandon process stopped at a breakpoint)
J - Restart process at a different location
Q - Quit this option

Which option (J,O,Q,R) ?

Note: the I RESUME Ikey can be used as an alternative to using this com­
mand with the R option.

Resuming from debug support functions

When resuming from one of the debug support functions, the following sub­
menu is displayed:

Jump into Application

° - Resume monitoring of network
(abandon process stopped at a program error)

J - Restart process at a different location
Q - Quit this option

Which option (J,O,Q) ?

Jump options

The four Jump options are described in the following table:

72 TDS 34601 October 1992

4 idebug - network debugger 133

Option Description

R Restarts the process that encountered the breakpoint.

0 Ignores the stopped process and resumes monitoring the
network for other process activity.

Note: When a process has stopped, other processes con-
tinue to run until they either encounter a breakpoint or pro-
gram error (Le. one of the debugging support functions), or
become dependent on the stopped process.

Note: Using this option for a process stopped on a break-
point removes the process forever.

J Restarts the process from a different location. Only use this
option if you are confident that the program can be
resumed from the new location; resumption from most loca-
tions will corrupt the program.

Q Quits the Jump sub-menu.

Editing keys

Editing keys may be used with this command when entering the command
line parameters starting the program, see section 4.9.4.

[K] Processor names

This command displays the internal processor numbers corresponding to
processor names used in the configuration description and the corre­
sponding processor type. Processor numbers must be given when select­
ing specific processors for display.

The scroll keys (section 4.9.7) can be used to scroll the display.

Note: The debugger displays only the first 19 characters of the processor
name. If this is a problem then names should be made unique within the
first 19 characters.

IT] Links

The Links command displays the instruction pointer, workspace descriptor,
and priority of the processes waiting for communication on the links, or for
a signal on the Event pin. If no process is waiting, the link is described as
'Empty'. Link connections on the processor, and the link from which the
processor was booted, are also displaYEfd.

If a processor uses software virtual links then the title line of the data dis­
played appears as:

Link Information (virtual links present)

72 TOS 346 01 October 1992

134 4.9 Monitor page commands

This is to warn that the linkstate information may be for software virtual pro­
cesses which cannot be located to in the normal manner. In this case it is
more useful to use the Monitor pagern command to display the software
virtual links instead.

For configured programs, the debugger checks that the link the root pro­
ces'sor has been booted from matches that expected by the configurer. It
it does not, the following message is displayed:

Booted from link n < Should be link m !!! >

The format of the display is similar to the following:

Link Information
Link 0 out Empty
Link lout Empty
Link 2 out Iptr: #80000256 Wdesc: #80000091 (Lo)
Link 3 out Empty
Link 0 in Empty
Link 1 in Empty
Link 2 in Iptr: #80000321 Wdesc: #80000125 (Lo)
Link 3 in Iptr: #80000554 Wdesc: #80000170 (Hi)
Event in Empty

Link 0 connected to Host
Link 1 not connected
Link 2 connected to Processor 1, Link 1
Link 3 connected to Edge

Booted from link 0

~ Memory map

The Memory map command displays the memory map of the current pro­
cessor along with the mode that idebug is currently in. The mode may be
one of:

Mode Description

Interactive Mode Interactive breakpoint debug-
ging session

Postmortem Interactive Mode Postmortem debugging session
of a previous interactive debug-
ging session.

Postmortem Mode Postmortem debugging session
either down a transputer link or
from a dump file.

Dummy Session Dummy debugging session

72 TDS 34601 October 1992

4 idebuq - network debugger 135

The display includes the address ranges of on-chip RAM, program code,
configuration code, stack (workspace) and vectorspace, the sizes of each
component in bytes rounded up to the nearest 1K bytes, total memory
usage, and the address of MemStart (the first free location after the RAM
reserved for the processor's own use).

Also displayed is the total memory usage. Total memory usage indicates
the amount of memory used by a user program. Note that this may include
a region of memory at the beginning offreespace; this area is used for con­
figuration code before execution ofa userprogram starts (this memory may
be safely overwritten by the user program because the configuration code
finishes executing before the user code starts).

The minimum memory size specified to the configurer or the collector, or
as defined in IBOARDSIZE as appropriate, must be at least as large as the
total memory usage for each processor.

Also displayed is the maximum number of processors that can be accom­
modated by the debugger's buffer space. This will depend on the amount
of memory on the root processor, indicated to the debugger by the host
environment variable IDEBUGSIZE.

The address of MemStart is the value actually found on the transputer in
the network. If this does not correspond to that expected by the configura­
tion description, for example if a T414 was found when a T805 was
expected, the following message is displayed:

MemStart: #80000048 (T414)?
MemStart should be: #80000070 (T80S) «!»

If an incorrect MemStart is detected the symbolic functions may not work
correctly. In this case the program should be rebuilt for the correct proces­
sor types before reinvoking the debugger.

Q!] Network dump

The Network dump command saves the state of the transputer network for
later analysis. If the debugger is terminated without creating a network
dump file, debugging cannot continue from the same point without re-run­
ning the program. This is because the debugger itself overwrites parts of
the memory on each transputer in the network.

Note: This command cannot be used in interactive mode (idebuq com­
mand line option 'B') orwhen post-mortem debugging a breakpoint session
(idebuq command line option 'M').

Once a network dump file has been created, debugging can continue from
the dump file, and the debugger does not need to be connected to the tar­
get network.

72 TDS 346 01 October 1992

136 4.9 Monitor page commands

Before the dump file is created, the debugger calculates the disk space
required, and requests confirmation. The size of the file depends on how
much of each processor's memory is actually used in running the program,
and is displayed as follows:

Create network dump file
Number of processors to dump 2
File size excluding Freespace : 112604 bytes
File size including Freespace : 2097308 bytes

Continue with network dump (Y,N) ?

To continue with the network dump, type 'y'.

The debugger will then ask whether to include freespace in the dump file
(this is not normally required for configured programs).

Do you wish to include Freespace (Y,N) ?

Type 'y' or 'N' as appropriate and specify a filename after the prompt:

Filename ("network.dmp" or "QUIT") ?

Press I RETURN I to accept the default filename, enter a filename (any
extension will be replaced by , . dmp') , or type 'QUIT' (uppercase) to exit.

If the file already exists, confirmation is asked for:

File "network.dmp" already exists
Overwrite it (Y,N) ?

If 'N' is entered then a new filename is asked for.

While the dump file is being written, a message is displayed at the terminal.
For example:

Dumping network to file "network.dmp"
Processor 1 (T800)
Memory to dump: 10456 bytes ...

~ Specify process

This command returns to symbolic debugging, either at the same source
line, or at another location. It can be used to locate to any source line,
whether or not a process is waiting or executing there. To ensure the
debugger locates to a valid process, it is better to use the 'G' command.

To return to symbolic debugging, the debugger requires values for Iptr
and Wdesc. Specify Iptr after the prompt:

Iptr (#hhhhhhhh) ?

72 TDS 346 01 October 1992

4 idebug - network debugger 137

The default displayed in parentheses is the last line located to on this pro­
cessor, or the address of the last instruction executed. Either press
I RETURN Ito accept the default address, or enter the desired address. The
address can be entered as a decimal number, a hexadecimal number pre­
ceded by"', or the short form '%h • •. h'.

Useful process addresses can be determined using the [g, [!], or IT]
commands to display processes. These processes can, however, be more
easily located by using the@] command. The value of the saved low prior-
ity Iptr can also be used.

If the Iptr is not within the program body, the debugger indicates the type
of code to which it corresponds.

After the Iptr has been entered the debugger prompts for the value of the
process descriptor:

Wdesc (#hhhhhhhh) ?

If a displayed Iptr was specified, its corresponding Wdesc is offered as
a default. Press I RETURN Ito accept the default, or specify a value in the
same format as the Iptr.

If no symbolic features other than a single 'locate' are required, then Wdesc
is not needed and the default can be accepted.

If an invalid Wdesc is given, most of the symbolic features will not work, or
will display incorrect values. However, the values of scalar constants and
some other symbols can still be determined.

Any attempt to inspect or modify variables or channels, or to backtrace, will
give one of the following messages:

Wdesc is invalid - Cannot backtrace
Wdesc is invalid - Cannot Inspect variables
Wdesc is invalid - Cannot Modify variables
Wdesc is invalid - Cannot auto backtrace out of library

Once the Iptr and Wdesc have been supplied, the debugger displays the
source code at the required location, and the full range of symbolic features
are available.

~ Change processor

This command changes to a different processor in the network. Specify the
processor number after the prompt:

New processor number (0 - n) ?

To determine the mapping between the processor number and the proces­
sor name used in the configuration file, use the 'K' command. If the proces-

72 TDS 34601 October 1992

138 4.9 Monitor page commands

sor exists the display is changed to provide information about the specified
processor. If the new processor's word length is different from that of the
previous processor. the start address is reset to the bottom of memory. If
the processor is not in the configuration. the following message is dis­
played:

Error : That processor number does not exist

To abort the command press I RETURN Iwith no input.

If there is only one processor in the network. an appropriate message is
displayed.

The scroll keys (section 4.9.7) can be used to change the displayed proces­
sor. The sequence of processors is the same as that displayed by the 'K'
command.

@] Quit

This command quits the debugger and returns to the operating system.
Once quit. the debugger cannot be used to debug the same program with­
out reloading the program unless a 'network dump' file has been created.
This is because using the debugger overwrites some of the contents of the
network.

If the command line option xQ has been 'used the debugger will ask for con­
firmation before quitting.

CB] Run queues

This command displays Iptrs and Wdescs for processes waiting on the
processor's active process queues.lf both high and low priority front pro­
cess queues are empty. the following message is displayed:

Both process queues are empty

Ifneitherqueue is empty. the debugger ask which queue is to be displayed:

High or low priority process queue ? (H,L)

Type 'H' or 'L' as required. Ifonly one queue is empty, the debuggerdisplays
the non-empty queue.

The screen display is paged. The scroll keys (section 4.9.7) can be used
to scroll the display.

Note: In interactive mode this command may show the details ofa process
more than once. The string '<! >' next to the queue heading serves as a
reminder that this may occur.

Processes which belong to the debugging kemei are also displayed and
identified with the string' (Runtime kernel)'.

72 TDS 34601 October 1992

4 idebug - network debugger 139

[!] Show debugging messages

This command is used to enable and disable debugging messages and
prompts. It invokes the following submenu:

Show Messages Menu

B Show message for breakpoints ON
D Show debug messages ON
E Show message for program errors ON
Q Quit this option

which option (B,D,E,Q) ?

Options Band E control the display of prompts when a breakpoint or pro­
gram error (Le. one of the debug support library functions
debug_assert() and debug_stop (), etc.) is encountered. Disabling
these options ensures that the debugger is entered on a breakpoint or error
without requesting confirmation.

Option D controls the display of debugging messages inserted with the
library functions debug_message (), etc.

[!] Timer queues

This command displays Iptrs, Wdescs, and wake-up times for processes
waiting on the processor's timer queues. Prompts and displays are similar
to those for the Run queues command.

[Q] Update registers

This command updates the clock and status display (e.g. run queues, links)
for the current processor. It enables the activity of other processes to be
monitored while one process is stopped at a breakpoint or error.

[YJ Process memory map

This command provides details on each process resident on a processor.
This consists of user processes, and configuration processes for virtual
channels (if applicable: their names begin with a '%'); it does not include the
debugging kernel used by the debugger when interactive breakpoint
debugging (this information is shown by the Memory Map option).

A process is assigned a number by the debugger in order to identify the pro­
cess when using certain other monitor page options. In addition to the pro­
cess number, the following details are provided: the name of the process,
the priority the process starts in, and the process stack and code areas.
Note that for non-configured C programs, the stack area displayed is not
that used by the program (the actual stack used is provided by the free­
space area).

72 TDS 34601 October 1992

140 4.9 Monitor page commands

An example output for two configured processes is shown below:

Process Memory Map
Process 0 "occam-process"

Initially High priority
stack '80005000 - '80005023

Code '8000A038 - '8000A04B

Process 1 "c-process"
Initially Low priority

Stack '80005024 - '8000A037
Code '8000A04C - '8000D73B

Note: The debugger displays only the first 19 characters of the process
name. If this is a problem then names should be made unique within the
first 19 characters.

Note: Processes placed on a processor to provide software virtual links
have names starting with '%'.

~ Write to memory

This command writes a value to a specified address. Values must be speci­
fied in the current type (the type used in the previous Monitor page Inspect
command), or the occam type INT if the type was a CHAN or the Disas­
semble or Hex options have been used after an Inspect.

o Exit

This command returns to symbolic mode and locates to the current
address.

m Enter post-mortem debugging

This command allows the debugger to be switched into post-mortem mode
when the program crashes (a process sets the errorfJag on any processor).
Halted processors prevent the breakpoint debugger from accessing the
network correctly and debugging must continue in post-mortem mode. It
has the same effect as re-invoking the debugger with the command line 'N'
option.

If the program has not already started, then the debugger prompts for con­
firmation:

The program has not started - are you sure (Y,N) ?

If the program has not crashed, the debugger prompts for confirmation:

The program has not crashed - are you sure (Y,N) ?

If checking of the subsystem error status is disabled (with the command
line's' option), then the prompt is:

Unable to detect if the program has crashed - are y
ou sure (Y,N) ?

72 TDS 34601 October 1992

4 idebug - network debugger 141

Typing 'y' continues the operation, typing 'N' aborts it.

This command will only work if the subsystem is wired subs (see section
4.7.1). For a subsystem wired down, it is necessary to quit and restart the
debugger using the Monitor page 'M' command line option (instead of the
previous breakpoint command line 'B' option).

Note: State information for a process that has stopped (on breakpoint or
error) will be lost when switching from breakpoint to post-mortem mode. If
the information is important it should be noted before switching modes.

~ Display software virtual links

This command displays instruction pointers and process descriptors for the pro­
cesses currently waiting on software virtual links placed onto a processor by the
configuer. All of the virtual output links (displayed as Vout N) are displayed fol­
lowed by all of the virtual input links (displayed as Vin N).

The scroll keys (section 4.9.7) can be used to scroll the display.

In order to establish the mapping of user channels onto software virtual links on
a particular processor, you should use the configurer information 'I' option when
configuring.

Note: all low priority user processes using software virluallinks will be promoted
temporarily to high priority when they communicate. The debugger cannot tell if
they were originally at high or at low priority. If you need to specify a low priority
Wdesc then use the displayed value with the least significant bit set (e.g. %1234
becomes %1235).

4.9.10 Symbolic-type commands

This command is used to display the source corresponding to the last
instruction to be executed on the current processor. It is the same as typing
'G', then 'I' (or 'G', then 1RETURN I).

1 RELOCATE 1

This command returns to symbolic mode and performs a symbolic
I RELOCATE I. It cannot be used if the processor has been changed at the
Monitor page.

I RETRACE I
This command returns to symbolic mode and performs a symbolic
I RETRACE I. It cannot be used if the processor has been changed at the
Monitor page.

72TDS 34601 October 1992

142

I RESUME I

4.10 Symbolic functions

This command resumes a process stopped at a breakpoint in a similar
manner using the I RESUME Icommand when in symbolic mode. It is a
shorthand equivalent to using the J command and selecting the R option
to resume a process stopped at a breakpoint from the monitor page.

These commands display a summary of the commands available at the
Monitor page.

I REFRESH I

This command refreshes the screen.

4.10 Symbolic functions

Symbolic debugging allows high level language programs to be debugged from the
identifiers used in the source code. Symbolic identifiers are the names given in the
program to variables, constants, channels, and functions.

Symbolic functions are invoked using keyboard function keys. Keyboard layouts
that show the key bindings for common terminal types can be found in the Delivery
Manual that accompanies the release. The symbolic functions are summarized
alphabetically below. Each description includes a reference to the page where the
command function is described in more detail.

Note: t =Functions only available in interactive mode.

IBACKTRACE I

I END OF FILE I

I CHANGE FILE I

I CHANNEL I

Locate to the calling function or procedure [page 146].

Go to the last line in the file [page 147].

Display a different source file [page 147].

Locate to the process waiting on a channel [page 144].

ICONTINUE FROM It Restart a stopped process from the current line [page 145].

I ENTER FILE I

I EXIT FILE I

I FINISH I

I GET ADDRESS I

72 TDS 34601

Change to an included source file [page 147].

Return to the enclosing source file [page 147].

Quit the debugger [page 148].

Display the location of a source line in memory [page 147].

October 1992

4 idebug - network debugger 143

I GOTO LINE

I HELP I

I INSPECT I

I INTERRUPT It

I MODIFY It

I MONITOR I

RELOCATE I

RESUME It

RETRACE I

SEARCH I

Go to a specific line in the file [page 146].

Display a summary of commonly used symbolic functions
[page 147].

Display process information (e.g. instruction pointer, pro­
cess descriptor, process name) [page 144].

Display the type and value of a source code symbol
[page 143].

Force the debugger into the Monitor page without stopping
the program [page 145].

Change the value of a variable in memory [page 145].

Change to the monitor page [page 148].

Locate back to the last location line [page 146].

Resume a process stopped at a breakpoint [page 145].

Undo a I BACKTRACE I [page 146].

Search for a specified string [page 147].

TOGGLE BREAK It Set or clear a breakpoint on the current line [page 145].

I TOGGLE HEX I

I TOP OF FILE

Enables/disables hex-oriented display of constants and
variables for C and FORTRAN [page 147].

Locate back to the error or last source code location
[page 146].

Go to the first line in the file [page 147].

4.10.1 Symbolic functions

I INSPECT I

This function displays the value and type of source code symbols. To
inspect a symbol, use the cursor keys to position the cursor on the required
symbol and press I INSPECT I. If the cursor is not on a valid symbol when
I INSPECT Iis pressed, a symbol name is prompted for. Type I RETURN Ito
abort theI INSPECT Ioperation, or type a name followed by I RETURN I. The
case of letters in a variable name is significant - except when debugging

72 TDS 34601 October 1992

144 4.10 Symbolic functions

FORTRAN where case is not significant. Variable names which contain
spaces must be entered without the spaces. Specifying an empty expres­
sion aborts the I INSPECT Ioper~tion.

The symbol must be in scope from the line to which the debugger last
located, which may not be different from the current cursor position. If the
symbol is not in scope at that location, or not found at all, one of the follow­
ing messages is displayed (depending on the language being debugged):

Name 'symbol' not in dynamic scope
Name 'symbol' not found
error: identifier "name" is not in scope
error: identifier "name" not found

Expression language

I INSPECT I supports an expression language for examining source file
symbols. Details of the language and display formats for symbols can be
found in the appropriate, language specific, sections below.

I CHANNEL I
This function 'jumps' down a channel if a process is waiting at the other end.
This is used in the same way as I INSPECT I, but positioned on a channel.
The debugger locates to the source line corresponding to the waiting pro­
cess; that process can then be debugged.

The ICHANNEL I function will jump to other processors along transputer
links as long as the program has not been configured to use virtual links
(see section 8.4 of the debugging chapter in the Too/set User Guide). If a
process running on another processor is waiting for communication on a
channel the debugger jumps down the link and automatically changes to
that processor.

This function displays the Iptr and Wdesc of the last location, the process
name and priority, and the processor number.

If the Wdesc is not in the defined region for a process the message: Unde­
fined process is displayed in place of the process name. For single pro­
cessor programs that have not been configured there is no defined region
and the message: <stack area unknown> is displayed to reflect this.

If a Wdesc has not been supplied, it is shown as 'invalid'.

4.10.2 Interactive mode functions

The following functions are only available when running in interactive mode.

72 TDS 34601 October 1992

4 idebug - network debugger 145

I TOGGLE BREAK 1

This function toggles a breakpoint on the source line indicated by the cursor
and provides information on the breakpoint number (as used by the Monitor
page [!] command), whether it was set or cleared, and the line number
it is on.

When the source line the cursor is on produces no associated object code
the debugger displays an exclamation mark «!» after the line number to
indicate that the breakpoint has been toggled on a different line to the one
the cursor is on (as shown at the bottom of the display).

I RESUME I
This function restarts a process stopped at a breakpoint. (To restart a pro­
cess which has been stopped by one of the debug support functions use
ICONTINUE FROM I)·

ICONTINUE FROM I

This function restarts the program from the line indicated by the cursor.
ICONTINUE FROM Ishould only be used to resume a process after it has
been stopped by one of the debug support functions. The result of continu­
ing from other points in the code may be unpredictable if there are interven­
ing stack adjustments.

I MODIFY 1

This function changes the value of a variable in transputer memory. For C
and FORTRAN, I MODIFY 1 accepts expressions involving any symbol in
scope. To modify a variable place the cursor on the name and press
I MODIFY I·

Expression language

Variables to be modified can be specified using the I INSPECT Iexpression
language. Details of the syntax can be found in the following language spe­
cific sections.

I INTERRUPT I
This function forces the debugger to enter the Monitor page without stop­
ping the program.

Note: This command does not operate if there are keystrokes waiting
before it in the keyboard buffers. It may also fail if the application program
is waiting for input from the keyboard.

72 TDS 346 01 october 1992

146 4.10 Symbolic functions

Note: A side effect of this command is that the debugger suspends
iserver communications in order to preserve debugger output to the
screen.

4.10.3 Locating functions

The following functions are used to change the debugger's current 'location'. The
current location is the point at which the all symbolic functions apply - associated
with the location are an instruction pointer value and a workspace address. The
initial location will generally be a breakpoint (in interactive mode) or the point where
an error occurred (in post-mortem mode).

I BACKTRACE I

This function locates to the line where a procedure or function was called.
If the debugger is already located in the program's topmost procedure, no
backtrace is possible.

I RETRACE I

This function locates back to the previous place where the debugger was
located. Repeated use of I RETRACE I reverses the effect of previous
I BACKTRACE I operations.

IRELOCATE I

This function returns the cursor to the last place located to by the debugger.
For example, it can be used to return to the original source line of an error
after browsing other areas of the code with the cursor keys orthe file selec­
tion functions.

This function locates back to the line containing the original breakpoint or
error, or to the line located to by the previous use of the monitor page @]
or @] commands.

4.10.4 Cursor and display control functions

These functions are used to move the cursor around the program and to view other
source files.

GOTO LINE

This function locates to a particular line in the source file. Specify a line
number, or type IRETURN Ito abort the operation.

72 TDS 346 01 October 1992

4 idebug - network debugger

TOP OF FILE

Moves to the start of the current file.

I END OF FILE I

Moves to the end of the current file.

I SEARCH I

147

This function searches forwards in the source file for a specified string.
Either specify a search string or press I RETURN I to accept the default,
which is the last string specified.

I ENTER FILE I

Enters an included source file. Position the cursor on the include directive
and press I ENTER FILE I.

I EXIT FILE I

Exits from an entered include file.

I CHANGE FILE 1

This function opens a different source file for reading only. No symbolic
functions are available, unlike the Monitor page 'F' option.

4.10.5 Miscellaneous functions

This function displays a help screen of the commonly used debugger sym­
bolic functions.

I GET ADDRESS I

This function displays the address of the transputer code corresponding to
the source line where the cursor is currently placed (not necessarily the
current 'location')

I TOGGLE HEX I

This function turns the display of hexadecimal values of variables on and
off. When enabled, the debugger displays hexadecimal as well as decimal

72 TDS 346 01 October 1992

148 4.10 Symbolic functions

values. The default for C and FORTRAN is to display variables in decimal
format only.

I MONITOR I

This function switches to the Monitor page environment.

I FINISH I

This function quits the debugger. The Monitor page 'Q' command has the
same effect. If the command line option 'xQ' was used then the debugger
will ask form confirmation before quitting.

72 TDS 346 01 October 1992

4 idebug - network debugger

4.11 INSPECT/MODIFY expression language for C

149

The expression language for source code symbols (variables, constants, and
channels) follows the syntax of the C programming language with some minor
modifications.

4.11.1 Syntax not supported

Table 4.6 lists the standard C expression syntax not supported in the debugger
expression language.

Area of limitation Example

Casting to pointer types (char *) ptr
Calling of functions sqrt (x)

Entry of strings "a string"
Entry of initializer lists { 1, 2, 3 }

Increment and decrement operators ++count
Trigraph sequences '?? ('

Bit field modification

Modification by assignment operators x = y
n += 1

Conditional operator a ? b : c

Table 4.7 Limitations to syntax

In addition, the 'address of' operator'" returns an int rather than a pointer to the
type.

4.11.2 Extensions to C syntax

Subarrays

The language supports the specification of array subranges for arithmetic data
types. Subranges are specified as two array bounds separated by a semicolon. For
example: foo [2 ; 4] displays the values of elements foo [2], foo [3] and
foo[4] .

Note: For arrays and structures the information displayed will normally overwrite
part of the screen display. Press any key, when prompted, to restore the display.

Scope resolution operator

The scope resolution operator': :' is available when debugging both C and C++
programs. This allows access to a global identifier which has been hidden by a
local declaration, for example:

72 TDS 346 01 October 1992

150 4.11INSPECT/MODIFY expression language for C

static int foo = 42;

void example (void) {

int foo = 321;

debug_stope); /* program "ill stop here */

In this example, when the program has stopped at the debug stop () function,
the identifier foo can be inspected and the value 321 (the value that is currently
in scope) will be displayed. If : : foo is inspected then the value 42 will be dis­
played.

Hex constants

The hex constant syntax has been extended to accept a '%' character after the lead­
ing ox component of a hex constant. This provides a shorthand mechanism for
specifying transputer addresses in a similar manner to that provided in the Monitor
page. The '%' character adds INT MIN (the most negative integer) to the hex
constant using modulo arithmetic. -

For example, Ox%70 produces the value Ox80000070 on a 32 bit transputer and
Ox8070 on a 16 bit transputer.

Address constant indirect

When using I INSPECT lorl MODIFY Ia constant expression which has type int or
unsigned int may be de-referenced. Normally only pointers may be de-refer­
enced: this addition removes the need to change to the Monitor page to inspect
memory locations.

For example, *OxBOOOOOOO (or *Ox%O) would display the integerat memory loca­
tion Ox80000000 on a 32 bit processor.

4.11.3 Automatic expression pickup

When I INSPECT lorl MODIFY Iis selected, idebug will automatically 'capture' the
identifierwhich is underneath the cursor (ifany). The captured expression can then
be modified (using the editing keys described below) before applying the selected
option.

In this release the automatic capture is more eager for simple struct or union
member expressions which contain only the . and -> operators.

This is best illustrated by example. In the following examples, the cursor is posi­
tioned over baz when I INSPECT Ior I MODIFY Iis selected:

72TDS 34601 October 1992

4 idebug - network debugger 151

Program text Expression captured
baz baz
baz.ptr baz.ptr
* (baz) .ptr baz
*baz.ptr baz.ptr
baz.ptr->ptr baz.ptr->ptr

baz.foo.ptr baz.foo.ptr

baz->foo->ptr baz->foo->ptr
baz [xl .ptr baz

In addition, for those captured expression which match the the program text, the ­
cursor may be positioned anywhere on the expression before selecting I INSPECT I
or I MODIFY I·

4.11.4 Editing functions

The following functions are available for the on-screen editing of expressions:

I START OF LINE 1 Move the cursor to the beginning of the expression.

I END OF LINE 1 Move the cursor to the end of the expression.

I DELETE LINE 1 Delete the expression.

~ Move the cursor left one character.

~ Move the cursor right one character.

~ Replace the current expression with the expression used in

the previous I INSPECT 1 or I MODIFY I operation.

I DELETE I Delete the character to the left of the cursor.

I RETURN I Enter the expression for evaluation.

Note:
I START OF LINE I, I END OF LINE I, I DELETE LINE I, and I DELETE Iare mapped by
the ITERM file to specific keys on the keyboard. Keyboard layouts can be found
in the Delivery Manual.

4.11.5 Warnings

When evaluating an expression, checking is performed which may lead to warning
messages being produced (e.g. overflow in arithmetic operation, mi5-aligned

72TDS 34601 October 1992

152 4.11 INSPECT/MODIFY expression language for C

pointer). Such warnings are intended to highlight potential problems and to ensure
that a user understands any action idebug is taking.

4.11.6 Types

C types are interpreted and displayed by the debugger as follows:

ANSI C types are categorized, by the debugger, as shown in table 4.8. These cate­
gories define the operations that can be performed on the various types and are
also used in error messages when invalid operands are used in expression syntax.
For example, arithmetic can be performed on any of the 'scalar' types, but attempt­
ing to use a 'derived' type, such as a struct, in an expression produces an error
message of the form "error: non-scalar left-hand operand..."

Name Member types

character char, signed char, unsigned char

floating float, double, long double

basic character, signed integer, unsigned integer, floating

integral character, signed integer, unsigned integer,enum

arithmetic integral, floating

scalar arithmetic, pointer

derived array, function pointer, struct, union

Table 4.8 Type categories in C

Type compatibility when using I MODIFY I

Source and destination expressions must be type compatible according to the
rules of C. Scalar types are cast automatically into other scalar types but non-sca­
lar expressions must be strictly compatible.

Type conversions, where required, are performed according to normal C prom9­
tion rules.

The following examples illustrate the rules governing type compatibility.

Given the following declarations:

int two d array[2] [10];
int one-d-array[10];
int foo;-
char bar;

Then the following modifications are permitted:

Source: one d array
Destination: two:d:array[l]

72 TDS 34601

(array of 10 integers)
(row of 10 integers)

October 1992

4 idebug - network debugger

Source: foo
Destination: bar

Source: two d array[l] [2]
Destination: bar- -

(a scalar type: int)
(a scalar type: char)

(single element of type int)
(single integer)

153

The following modific.ation is not permitted:

Source: two d array [1]
Destination: foo- -

(row of 10 integers)
(single integer)

4.12 Display formats for source code symbols

When displaying an object, idebug will. where possible, also display type informa­
tion for an object (e.g. unsigned char).

4.12.1 Notation

The debugger uses the following symbols in its display of values:

}

} ...

, c'

'\HH'

< >

()

indicates a list of values, or a structure

indicates a character list of unknown
length terminated by a null character
(which is shown)

indicates a character

indicates a hexadecimal character

indicates a character string in an array of
known size

indicates a character string of unknown
length terminated by a null character
(which is not shown)

indicates the contents of a basic or
channel object which is addressed by a
pointer (except when the object is
volatile)

provides extra information about an object

In addition, in the descriptions below, the following notation is used:

ddd

OxHHH

fff

72 TDS 346 01

indicates a (possibly signed) decimal value

indicates a hexadecimal value

indicates a floating point number of the
form: ddd.ddd or ddd.dddEddd

October 1992

154 4.12 Display formats for source code symbols

4.12.2 Basic Types

Display formats for basic C types are given in table 4.9. Displays are given in nor­
mal decimal format and in hex format (invoked by ITOGGLE HEX I).

Type Hex print off Hex print on

char ddd (' c') type ddd (' \xHH') type

short
int ddd type OxHHH (ddd) type
long

float fff float fff (OxHHH) float

double fff double fff (OxHHH) double
long double

For char, type is either signed char, or unsigned char.
For integral types, type is either just the type name, or unsigned followed by
the type name.

Table 4.9 Basic C types

4.12.3 Default type of "plain" char

By default, the type of a char (known as a "plain" char) typed into idebug is
unsigned char. This matches the default implemented by the INMOS C com­
piler ice. If however, the default type of plain chars has been overridden with the
C compiler 'Fe' option, it may be necessary to override the default type in idebug
by use of a cast. For example:

(signed char) 'c'

Note that such a cast is only necessary fora plain char entered by hand: idebug
will correctly interpret the type of a plain char identifier contained in program code.

4.12.4 Enumerated types

Variables of an enumerated type are displayed as their integervalue (in exactly the
same manner as an int) followed by the name of the enumeration and the enu­
meration constant name for the value. If there are multiple enumerated constants
that share the same value, a list is formed containing all of the enumeration
constant names. invalid enum constant is used to indicate when a value is
not a member of an enumerated type.

integer (enum-tag-name: enum-const-name)

integer (enum-tag-name: {enum-const-name, ... })

integer (enum-tag-name: invalid enum constant)

72 TDS 346 01 October 1992

4 idebug - network debugger

4.12.5 Pointers

155

Pointers are displayed in one of the following ways:

OxHHH (null pointer)

OxHHH (pointer to const volatile)

OxHHH (pointer to volatile)

OxHHH (channel pointer to link)

OxHHH (channel pointer to idebug virtual link link)

OxHHH (channel pointer to software virtual link link)

OxHHH (channel pointer to Event in)

OxHHH (channel pointer)

OxHHH * (mis-aligned pointer)

OxHHH < content of basic object >

OxHHH (pointer)

4.12.6 Function Pointers

If the function pointed to is defined in the current module, then the name ofthe func­
tion is displayed.

OxHHH (function pointer to "functionname ()")

OxHHH (cannot find corresponding function)

4.12.7 structs

Members ofstructures are described as forother identifiers ofthe appropriate type.
In order to display structures in a readable manner, members which are derived
types are not always displayed in as much detail as when the member occurs on
its own. To obtain more detail, inspect the member of the structure explicitly.

identifier = {
member1
member2
member3

For large structures, idebug pages the display and requests confirmation to con­
tinue after each page.

72 TDS 34601 october 1992

156 4.12 Display formats for source code symbols

4.12.8 Unions

Unions are displayed in the same manner as structs except that a question mark
? appears to the left of each member to indicate that only one member of the union
should be selected.

identifier = {
? member1
? member2
? member3
?

4.12.9 Addressof operator,

The result of the addressof operator, " is automatically printed as both a hex and
integer value regardless of the setting oflTOGGLE HE)q. Note that the result type
of addressof is an int rather than a pointer to the type used and is displayed in
a similar way:

'identifier = OxHHH (ddd)

4.12.10 Arrays

When displaying arrays, idebug prints the valid range of each dimension (if
known) in addition to any type information and the contents of the array. For single
dimension arrays containing arithmetic types each member of the array is dis­
played regardless of the size of the array. For large arrays idebug pages the dis­
play and requests confirmation to continue after each page. For large arrays,
where the full display may be unwieldy, use array subranging to display the area
of interest.

Single dimensional arrays of arithmetic types are displayed as:

identifier = array [0 . . M] of type {listofvalues}

Single dimensional arrays of other types are displayed as:

identifier = array [0 .. M] of type

Multi-dimensional arrays of all types are displayed as:

identifier = array [0 .. M] [0 .. N] of type

Sub ranges of arrays are shown as follows:

identifier [ddd ; ddd] = subarray of type {list of values}

72 TDS 346 01 October 1992

4 idebug - network debugger

4.12.11 Channels

157

Channels are displayed with information about the process that is waiting on the
channel (or Empty if no is process waiting), in one of the following forms:

identifier =Channel <Iptr: address, Wdesc: address (Lo»

identifier =Channel <Iptr: address, Wdesc: address (Hi»

identifier =Channel <Empty>

identifier =Channel <Empty (Link link) >

identifier = Channel <Empty (Software virtual link link) >

An asterisk * is used to denote an incorrect Iptr or Wdesc which is not in the
defined memory map range of the program but is in the defined memory range of
the proce.ssor.

A double asterisk ** is used to denote an incorrect Iptr or Wdesc which is not
in the defined memory map range of the program and not in the defined memory
range of the processor.

channel (name) = Channel <Iptr: addr*, Wdesc: addr**>

4.13 Example displays

Tables 4.10 and 4.11 show the display formats for a number of types, using the fol­
lowing source code segment compiled for a 32 bit transputer (for a 16 bit trans­
puter, addresses and integers in hex format would be displayed with 4 hex digits
instead of 8). The program containing this code is provided as display. c in the
C toolset debugger examples directory.

enum colour { red = 1 };
struct Many {

int a;
double b;

} ;

enum colour
struct Many

shoe red;
many = { -42, 2.0 };

int
char
char
char*
short

answer
key
string[]
ptr
iarray[]

42;
'A' ;
"bye";
string;
{ 1, 2, 3, 4 };

72 TDS 34601 October 1992

158 4.13 Example displays

Expression Display (hex print off)

answer answer = 42 int

&answer &answer = Ox801FFF2C (-2145386708) int

key key 65 (' A') ·unsigned char

string string = array [0 .. 3] of unsigned char "bye\O"

ptr ptr = Ox801FFF18 < "bye" ... unsigned char >
array[1;2] array[1;2] = subarray of short {2, 3}

shoe shoe = 1 int (colour: red)

red red = 1 int (enum constant)

many many = {
a = -42 int
b = 2.0 double

}

Table 4.10 Display formats with hex printing off

Expression Display (hex print on)

answer answer = OxOOOOO02A (42) int

&answer &answer = Ox801FFF2C (-2145386708) int

key key 65 ('\x41') unsigned char

string string = array [0 .. 3] of unsigned char {\x62,
\x79, \x65, \xOO}

ptr ptr = Ox801FFF18 < {\x62, \x79, \x65, \xOO} ...
unsigned char >

array[1;2 array[1;2] = subarray of short {OxOOO2, OxOOO3
] }

shoe shoe = OxOOOOOOO1 (1) int (colour: red)

red red = OxOOOOOOOl (1) int (enum constant)

many many = {
a = OxFFFFFFD6 (-42) int
b = 2.0 (Ox4000000000000000) double

}

Table 4.11 Display formats with hex printing on

72 TDS 346 01 October 1992

4 idebuq - network debugger

4.14 INSPECT/MODIFY expression language for occam

159

The expression language for debugging occam programs is simpler than that pro­
vided for C and FORTRAN - only a single identifier name can be entered for
inspection and only literal constants can be used as modification values.

4.14.1 Inspecting memory

To inspect the contents of any location in memory, specify an address rather than
a symbol name. Type the address as a decimal number, a hexadecimal number
(preceded by '#'), or the special short form %h • •• h, which assumes the prefix
#8000 •..

The debugger displays the contents of the word of memory at that address, in both
decimal and hexadecimal. For more versatile displays of memory contents, use
the Monitor page commands.

4.14.2 Inspecting arrays

If the symbol inspected is an array, elements from the array can be selected using
constant integer subscripts enclosed in square brackets (' [' and '] '); if no sub­
scripts are specified the debugger prompts for them.

For short byte arrays the debugger displays the contents of the array as a string.
Otherwise the debugger displays the size and type of the array, and prompts for
subscript values. For example:

[5] [4]INT ARRAY 'a', Subscripts?

PressI RETURN Ito obtain the address ofthe array, or enter the required subscripts,
which must be in the correct range. The subscripts should be typed either as deci­
mal constant integer values, or as integers separated by commas, for example
'[3] [2]', or '3, 2'. Spaces are ignored.

To simplify access to values indexed by variables (such as 'a [i] ') an array may
be indexed with'!' (e.g. 'a [!] ') - the'!' character is replaced by the value of the
last integer displayed.

Scrolling arrays

As well as simply displaying a single element of an array, the debugger allows an
array to be scrolled through one element at a time. In addition, byte arrays can be
displayed as a 16 byte 'segment' of the array - this segment can be moved up and
down like a window into the array contents.

Array scrolling is enabled by adding '++' after the array name when prompted for
a symbol name, or after the subscript when responding to the 'Subscripts ?'
prompt (entering '++' alone in response to the subscript prompt assumes a sub­
script of zero). The debugger then displays the first array element and then the,fol­
lowing prompt on the second line of the screen:

Press [UP] or [DOWN] to scroll, any other key to exit :

72 TDS 346 01 October 1992

160 4.14INSPECT/MODIFY expression language for occam

The [IJ and [!] cursor keys can then be used to scroll through the elements of
the array. The debugger will not allow you to scroll past the beginning or end of the
array. Pressing any other key will return you to normal symbolic mode.

Byte arrays can be viewed in sixteen character segments by appending a '+' after
the array name or subscript. As before, the cursor keys can be used to move the
'window' up and down the byte array one character at a time. Using '+' on anything
other than a byte array behaves identically to using '++'.

4.14.3 Type compatibility when using IMODIFY I

Once a variable is selected the debugger prompts for a new value. The new value
should be specified in the expected occam type (as specified within the prompt)
although there are a few relaxations to this rule to allow for implicit casts when
using the debugger (see below). REAL32 and REAL64 values must be given in the
correct occam format - including a sign for the exponent, if present.

The following occam types may be freely mixed to provide implicit type casts so
long as the value is defined within the destination type:

BOOL BYTE INT INT16 INT32 INT64

The following are examples of valid modification values:

Type Modify value

REAL32 42.0
IN.T64 TRUE
INT 'a'
BOOL 1
BOOL ' *#00'
INT16 #AO
INT32 $lA
BYTE 42

The following are examples of invalid modification values:

Type Modify value

REAL32 42
INT64 2.0

BOOL '*#02'
INT16 32768
BYTE -1
BYTE #100

72 TDS 346 01 October 1992

4 idebug - network debugger 161

4.15 Display formats for source code symbols

When displaying an object, idebug will display its type and value, together with
its address in memory. If there is too much information to be displayed on one line,
it is displayed in two parts. The symbol's name and type is displayed first and then,
after a short pause, the value and address.

The display formats for the basic occam types (BOOL, BYTE, INT, INT16, INT32,
INT64, REAL32 and REAL64), channels, arrays, and procedures and functions
are described below. For protocol names and tags, and timers only the type and
name are displayed.

4.15.1 Notation

The debugger uses the following symbols in its display of values:

'c' indicates a character

indicates a character string
() provides extra information about an object

(at #hhh) shows the memory address of an object

In addition, in the descriptions below, the following notation is used:

ddd indicates a (possibly signed) decimal value

#hhh indicates a hexadecimal value

ftf indicates a floating point number of the
form: ddd. ddd or ddd. dddEddd

bbb indicates a boolean value (TRUE or FALSE)

4.15.2 Basic Types

Display formats for the basic occam types are given in table 4.12. When debug­
ging occam programs, the debugger always displays both decimal and hexadeci­
mal values for integer types (regardless of the state invoked by ITOGGLE HEXI)·

72 TDS 34601 October 1992

162 4 15 Display formats for source code symbols

Type Display

BYTE BYTE 'name' has value ddd ('hh, 'c') (at 'hhh)
Note: non-printing characters are displayed as ' . '

BOOL BOOL 'name' has value bbb (at 'hhh)
INT type 'name' has value ddd ('hhh) (at 'hhh)
INT16
INT32
INT64
REAL32 type 'name' has value fff ('hhh) (at 'hhh)
REAL64

Table 4.12 Display formats for basic occam types

If a variable is optimized out because it is not used in the program, then the follow­
ing message is displayed:

type 'name' was never used and has been optimised out.

4.15.3 Channels

For channels, which are not empty, the Iptr and Wdesc of the process waiting for
communication, and its priority, are displayed.

Channels are displayed in one of the following forms:

CHAN 'chan' is empty (at #hhh)

CHAN 'chan' has Iptr: ,hhh and Wdesc: ,hhh (La) (at 'hhh)

CHAN 'chan' has Iptr: #hhh and Wdesc: #hhh (Hi) (at 'hhh)

An asterisk * is used to denote an incorrect Iptr or Wdesc which is not in the
defined memory map range of the program but is in the defined memory range of
the processor.

A double asterisk ** is used to denote an incorrect Iptr or Wdesc which is not in
the defined memory map range of the program and not in the defined memory
range of the processor.

CHAN 'chan' has Iptr: #hhh* and Wdesc: #hhh (Hi) (at
#hhh**)

If the channel is a hard channel then information about the link (or event channel)
that it is mapped onto is also provided. For example:

CHAN 'fs' is empty (Link 1 in)

~ If the channel is a software virtual link provided by the configurer, then the virtual
link number is displayed. However, this does not show whether this is an input or
output virtual link. For example: .

CHAN 'fs' is empty (virtual Link 41 at #hhh)

72 TDS 346 01 October 1992

4 idebug - network debugger 163

4.15.4 Arrays

If subscripts are specified then the type, value, and address of the array element
are displayed as described above.

If no subscripts are given then, for a short BYTE array, the contents are displayed
in ASCII. For any other type of array, just the dimensions, type and address of the
array are displayed.

4.15.5 Procedures and functions

For procedure or function names, the entry address, and nested workspace and
vectorspace requirements· are displayed (no address is displayed for library
names):

PROC 'name' at #hhh, uses ddd WS and ddd vs slots

FUNCTION 'name' at #hhh, uses ddd WS and ddd vs slots

4.16 Example displays

Table 4.13 shows the display formats for a number of types, using the following
source code segment compiled for a 32 bit transputer (for a 16 bit transputer,
addresses and integers in hex format would be displayed with 4 hex digits instead
of 8).

72 TDS 346 01 October 1992

164 4.16 Example displays

Debugger example: display.occ

Example of occam display types within idebug.

Note: This example uses the PAR construct in an
inefficient manner for illustrative purposes only.

'INCLUDE "hostio.inc"
'INCLUDE "linkaddr.inc"
'USE "hostio.lib"
'USE "debug. lib"

PROC example (CHAN OF SP fs, ts, []INT free.memory)
VAL name IS "occam example"

CHAN OF INT ca, cb
PLACE ca AT event.in
BOOL bool
BYTE byte :
INT int :
INT16 int16
INT32 int32
INT64 int64
REAL32 real32
REAL64 real64
[20] [32]INT grid
[256] BYTE string
INT x, y :
INT not. used
SEQ

PAR
ca ? x
cb ? Y
bool .- TRUE
byte .- 'B'
int := -42
int16 .- -42 (INT16)
int32 := -42 (INT32)
int64 := -42 (INT64)
real32 := 1.0 (REAL32)
real64 := 1.0 (REAL64)
grid[O] := grid[l]
[string FROM 0 FOR SIZE name] .- name
IF

(SIZE free.memory) > 0
free.memory[O] .- 66

TRUE
SKIP

72 TDS 346 01 October 1992

4 idebug - network debugger 165

DEBUG. STOP () -- debugger will locate to here

so.exit(fs, ts, sps.success)

Symbol Display

ca CHAN 'ca' ...
(then, after a pause)
has Iptr: 'S0003EAE and Wdesc: #SOO03DE5 (Lo)
(PLACED AT 8) (Event in)

cb CHAN 'cb' has Iptr: #S0003EB5 and Wdesc:
#S0003009 (Lo) (at #SOO03E24)

not. used INT 'not. used' was never used and has been
optimised out

bool BOOL 'bool' has value TRUE (at #SOO03E20)
byte BYTE 'byte' has value 66 ('42, 'B') (at

#SOO03E1C)
int INT 'int' has value -42 (#FFFFFFD6) (at

#80003E18)
int16 INT16 'int16' has value -42 ('FFD6) (at

#80003E14)
int32 INT32 'int32' has value -42 ('FFFFFFD6) (at

#80003E10)
int64 INT64 'int64' has value -42 (#FFFFFFFFFFFFFFD6)

(at #80003EOS)

real32 REAL32 'real32, has value 1.0 ('3FSOOOOO) (at
'80003E04)

real64 REAL64 'real64' has value 1.0
('3FFOOOOOOOOOOOOO) (at '800030FC)

grid [20] [32]INT ARRAY 'grid' (at 'SOO041DS)
string [256]BYTE ARRAY 'string' (at #80004BOS)
string + [16]BYTEs from 'string[O], is "occam

example ... " (at 'S0004BDS) Press [UP] or [DOWN]
to scroll, any other key to exit :

string ++ BYTE 'string[O], has value 111 (,6F, '0') (at
#S0004BOS) Press [UP] or [DOWN] to scroll, any
other key to exit :

example PROC 'example' at #80003E4C, uses 74 WS and 706
VS slots

DEBUG. STOP LIB PROC 'DEBUG. STOP' uses 25 WS and 0 VS slots

Table 4.13 occam display formats

72 TDS 346 01 October 1992

166

4.17 Error messages

4.17 Error messages

This section lists error messages generated by idebug. Other messages not in
this list may be generated by corrupt files and by files not created by the toolset.

4.17.1 Out of memory errors

If the debugger runs out of memory when trying to read in information and the
offending code module cannot be reduced in size, the amount ofmemory available
to the debugger may be increased by increasing the size of the memory on the
transputer the debugger is running on and updating IDEBUGSIZE accordingly.

4.17.2 If the debugger hangs

If the debugger starts up but then hangs with the message:

Loading network ...

one of the following errors may have occurred:

The network connectivity is not correctly described in the configuration
description, for example, a link is not connected to a processor, or the type
of a processor has been specified incorrectly.

Network connectivity on a board can be checked by running a check or
worm program, such as the ispy program supplied with the support soft­
ware for some INMOS iq systems products. These products are available
separately from your local INMOS distributor.

2 You have set IDEBUGS I ZE to be larger than the memory on the root pro­
cessor (where the debugger is running).

Change IDEBUGS I ZE to reflect the correct root processor memory size.

4.17.3 Error message list

"ti/ename" not compiled with full symbolic debug infonnation

The object code module does not contain sufficient debug information for
the debugger to locate to its corresponding source code (Le. it contains
minimal debug information). Recompile the module and rebuild the pro­
gram in order to debug it symbolically.

Already located - No process is waiting at the other end of this link

An attempt to jump down a hard channel (link) has failed because there is
no process waiting at the other end.

72TDS 34601 October 1992

4 idebug - network debugger 167

Attempted read outside Parameter block
Attempted write outside Parameter block

The configuration system has become corrupted. Check hardware using
a memory check program such as ispy. (The ispy program is supplied
as part of the board support software for INMOS iq systems products.
These products are available separately from your 10callNMOS distribu­
tor.)

Can only specify a transputer type if bootable is for a class

Cannot specify a transputer type for configured bootable files

You have tried to specify a processor type when the bootable file is already
for a specific processor type.

Cannot create network dump - reason

Creation ofa network dump file is not permitted on a program that is, or has
been, interactively debugg.ed. reason can be either of the following:

when in Interactive mode

2 when in Postmortem Interactive mode

3 Already reading one

Cannot debug boot from ROM run in ROM file "filename"

You may only debug boot from ROM run in HAM programs with idebug.

Cannot find this line's location

Either of the following has occurred:

You have moved the cursor beyond the end of the current source
file for which there is no executable code.

2 The compiler has optimized the executable code out.

Cannot locate beyond Freespace area

The address specified is not within the memory map range of the proces­
sor.

Cannot locate to area (Iptr: #address)

The address specified is not within the code area for the program on the
processor. area can be any of the following:

Reserved transputer memory
Runtime kernel

72 TDS 34601 October 1992

168

Reserved memory
Configuration code area
Stack area
Vectorspace area
Static area
Heap area
Freespace area

Cannot open "filename"

4.17 Error messages

Either the file does not exist or it is not on the ISEARCH path (note that by
default this includes the current directory). The ilist tool can be used to
confirm this.

Note: if the file name is vrdebxx. tea (or something similar), where xx is
a sequence of digits, then you are probably trying to locate to one of the
configurer's software virtual link processes. Use the mcommand to dis­
play processes waiting on the software virtual links.

Cannot read processor number (Txxx)

The debugger cannot communicate with that processor. Any of the follow­
ing errors may have occurred:

The root processor's core dump has been incorrectly specified.

2 The debugger has failed to analyze the network correctly. Either
you have failed to specify the '](option or the system control sig­
nals are wired incorrectly.

3 The network does not match that specified in the configuration file.
Check network connectivity using a check program such as ispy.
(The ispy program is supplied as part of the board support soft­
ware for INMOS iq systems products. These products are avail­
able separately from your local INMOS distributor.)

Cannot run application - the program has crashed !

Use the m (Enter post-mortem debugging) Monitor page command to
post-mortem debug the (now defunct) breakpoint session.

Channel is invalid

The channel does not point to a known process executing on the processor.

Configuration into inconsistent with linked unit

You have probably relinked a component of a program and forgotten to
reconfigure it.

72 TDS 34601 October 1992

4 idebug - network debugger 169

Configured for post-mortem debugging only

You have explicitly disabled interactive debugging (using configurer or col­
lector options).

Debug into too large (reason)

The debugging information for a particular compilation module is too large
for the debugger. Either reduce the size of the offending module or increase
the size of memory on the processor where the debugger is running (see
section 4.17.1 on how to overcome this).

reason can be any of the following:

ix.tags is full
ws.array is full
name table is full

Debugger incompatible configuration file "filename"

You have configured your program without specifying the debugger com­
patible option ('G' option) to the configurer, icconf.

For mixed language programs configured with the occam toolset confi­
gurer occonf, the error may be that you have configured your program
with the configurer 'RE' option to enable memory layout re-ordering.

File has changed since configuration "filename"

You should rebuild the program again.

FILE IS TOO BIG - truncated

The debugger buffer capacity has been exceeded. The buffer contains as
much of the file as could be read before the capacity was exceeded (see
section 4.17.1).

Illegal virtual channel address

The channel has been (possibly incorrectly) tagged as virtual but does not
point to a valid software virtual channel (as defined by the debugging kernel
or the configurer). This is caused by a channel that has become corrupted
(normally by overwriting the location of the channel). You should ensure
that no compiler checks have been disabled to prevent accidental corrup­
tion.

Incompatible debugger modes: message

Mutually incompatible options have been specified on the command line.

Interactive debugging has been disabled

The module has been linked with the linker 'y' option to disable breakpoint
(interactive) debugging. Rebuild your program without disabling interactive
debugging and retry.

72 TDS 34601 october 1992

170 4.17 Error messages

ITERM error on line linenumber, message

The debugger has detected a syntax error in the ITERM file. message
describes the error.

Name symbol is not in dynamic scope

The symbol symbol exists in the module, but is not in scope from where the
debugger last located to. In order to inspect the symbol you must locate to
a new position where the symbol is in scope.

Not a" (compatible) bootable file "filename"

The file is either a non-bootable file or a pre-product release bootable file.
Use ilist to determine the contents of the file if in doubt.

Not enough free memory for the debugger

You have either not set the environment variable IDEBUGSIZE oryou have
set it to be too small (it should be > 400K). Change the variable to reflect
the memory size of the root processor.

Not on a valid INCLUDE line

You may only useI ENTER FILE Iwhen the cursor is on a line with an include
directive.

Only debugging tools and cursor keys are available

You have pressed a key which is not defined.

Option must be followed by a link number (0 - 3)

Command line options 'B', 'M', and 'T' require a link number in the range 0
to 3.

Option must be followed by a valid processor type (eg. T425)

The processor type supplied is not recognized by the debugger.

(Probe Go) : Processor number- Cannot contact

The debugger is unable to communicate with processor number. The pro­
cessor type specified in the configuration (or to the debugger via the 'e'
option) does not match that found. Check the network using a program
such as ispy in order to determine the correct processor type.

(Probe Go) : Processor number- Expected processor type Txxx, found Txxx

The processor type specified in the configuration (or to the debugger via
the 'e' option) does not match that found. Check the configuration descrip-

72 TDS 34601 October 1992

4 idebug - network debugger 171

tion and the network (using a program such as ispy) in order to determine
the correct processor type.

(Probe Resume) : Processor number-Invalid Breakpoint

The debugger has stopped at a breakpoint which it did not place in the
code. Ifyou wish to continue executing the program set a breakpoint at the
same address and retry the command.

Processor number: insufficient memory, require at least number bytes

The memory requirement of the processor as specified to the configurer,
the collector, or in IBOARDSIZE (as appropriate) is too small. (Note that the
value displayed may include memory for some configuration code that is
reclaimed when program starts executing.)

This may also be caused by the debugging Runtime kernel using an extra
11-15K of memory.

Processor type must be a 32 bit processor (eg. T425)

You must specify a 32 bit processor type because processor classes are
for 32 bit processors only.

Processor type must be not abbreviated

You must specify specific processor types rather than abbreviated types
(e.g. T425 rather than T5) because some abbreviated types cover more
than one specific type.

READ ERROR - truncated

The debugger could not read all of the file. The buffer contains as much of
the file as could be read (see section 4.17.1 on how to overcome this).

Runtime kernel is not present (or has been overwritten)

Either the runtime kernel has been corrupted or you are trying to postmor­
tem a breakpoint session that didn't occur.

There is no enclosing INCLUDE

You have attempted to use I EXIT FILE I when not located in a nested
include file.

There are no processes waiting at either end of this link

An attempt to jump down a hard channel (link) has failed because there are
no processes waiting at either end.

This transputer link is connected to the host

The link specified in the 'B', 'M', or 'T' command line option is the commu­
nication link from the debugger to the host and is not connected to the net­
work.

72 TDS 346 01 October 1992

172 4.17 Error messages

Too many processes declared at configuration level (number)
Too many processes used at configuration level (number)

The debugger requires more memory in order to operate on this many pro­
cesses (see section 4.17.1 on how to overcome this).

Too many processors - There is only enough room for (number)

The debugger requires more memory in order to operate on this many pro­
cessors (see section 4.17.1 on how to overcome this).

Unable to find any low priority entrypoints on any processor
Unable to find any low priority entrypoints on this processor
Unable to find any low priority main () on this processor

The processes you have requested the debugger to set breakpoints in are
all at high priority on processors with no hardware breakpoint support.

Unable to read environment variable ITERM

There is no translation for the ITERM environment variable which defines
the screen and keyboard format.

Unable to toggle a breakpoint on this line

The breakpoint cannot be set or cleared on this source line. Either:

The current file contains no executable code, or

2 Executable code is contained in an include file and the debugger
cannot determine whether you mean to toggle the breakpoint in
that file or in the current file.

Move to the line where you really want to toggle the breakpoint and retry
the command.

Unknown core dump format "filename"

The network dump file is in the wrong format or the wrong file has been spe­
cified. You can use ilist to determine the format of the file.

Wdesc is invalid - message

The Wdesc supplied is invalid: this may be deliberate because it is
unknown. If you supplied it from the Monitor page environment, retry the
command with a valid Wdesc.

message can be one of:

cannot inspect variables
cannot modify variables

72 TDS 34601 October 1992

4 idebug - network debugger

cannot backtrace
cannot auto backtrace out of library

Wrong number of processors in network dump file filename

173

The number of processors does not correspond to the current program.
The wrong network dump file may have been specified.

You cannot backtrace from here (to configuration code)

This normally occurs when you try to backtrace from the program's topmost
procedure into the bootstrap routine which is not supported symbolically by
the debugger (Le. the configuration code area).

You cannot backtrace from here (to Iptr: #nnn, Wdesc: #mmm)

An attempt to backtrace from a procedure or function has failed because
the resultant process details are invalid (e.g. Iptr is not in the Code area),
or you are trying to locate to a software virtual link router process..

The Iptr and Wdesc shown are those of the invalid process which sup­
posedly called the current procedure or function.

If this error occurs, you should use~ before backtracing to check that
the current process details are valid (they are normally only invalid when
incorrect process details have been specified with the Monitor page 'Q'

command). Corruption of the stack (workspace) is another possible cause
of this error; to prevent accidental corruption you should ensure that no
compiler checks have been disabled.

This error can also occur if you try to locate to a process which implements
the software virtual links. This can be checked by using the~ command
to search for a process with a Code area which contains the displayed
Iptr and a stack area which contains the displayed Wdesc. If the name
of the process is "%ROUTER [n] " then it is a software virtual link process
which can not be located to.

You have changed file, so you can't use this key

There are certain symbolic features that cannot be used if you have
changed to another source file. Either use IRELOCATE I, or relocate to the
original file using the Monitor page [£] (Select file) command, before
retrying the command.

You must specify a filename

The command line syntax requires a filename.

72 TOS 346 01 October 1992

174 4.17 Error messages

You must specify a transputer type (bootable is for a TA class)
You must specify a transputer type (bootable is for a TB class)

The program you are trying to debug is for a transputer class (either TA or
TB); the debugger needs to know the actual processor type (e.g. T425).

You should retry using the debugger with the command line 'c' option to
specify the appropriate processor type.

You must specify the application boardsize in IBOARDSIZE to be <= #10000

On a T2 the maximum memory size is 64K (#10000).

72 TDS 346 01 October 1992

5 idump - memory
dumper

This chapter describes the memory dumper tool idump that dumps the contents
of the root processor's memory to disk. It is used to enable the debugging of code
running on the root transputer.

5.1 Introduction

The memory dumper allows programs that use the root transputer to be debugged
in the normal way using the debugger tool idebug. It is required because idebug
runs on the root transputer and dverwrites all code and code in its memory. idump
saves the contents of the root transputer to a disk file in a format that can be read
by the debugger. Information contained in the file allows the debugger to analyze
data in the root transputer in the same manner as othertransputers on the network.

When idump is invoked it calls the server with the 'sA' option so that the space
occupied by the dumper program is saved before it is loaded onto the transputer.

5.2 Running the memory dumper

To invoke the idump tool, use the following command line:

~ idump filename memorysize [{ startoffset length }]

where: filename is the name of the dump file to be created.

memorysize is the number of bytes, starting at the bottom of memory, to
be written to the file.

startoffset is an offset in bytes from the start of memory.

length is the amount of memory in bytes, starting at startoffset, to be
dumped in addition to memorysize.

All parameters can be expressed in either decimal or in hexadecimal format. Hexa­
decimal numbers must be preceded by the hash character'#' orthe dollar sign '$'.

The memory dump file stores the contents of the transputer's registers and the first
memorysize bytes of memory. The file is given the .dmp extension. After the dump
has been performed idump remains resident on the transputer board ready to
load the debugger.

72 TDS 34601 October 1992

176 5.3 Error messages

memorysize must be large enough to contain the complete program with its work­
space and vectorspace.lfthe program to be dumped uses the free memory buffer,
the whole of the transputer board's memory should be dumped.

Further portions of memory can be dumped by specifying the start of the segment
of memory to be dumped and the number of bytes, using pairs of starloffset length
parameters. The start address is given by starloffset and the number of bytes by
length. The overall size of the memory dump file is given by the amount of memory
saved plus around 500 bytes for the register contents.

5.2.1 Example of use

Assuming a value of 100K for IBOARDSIZE:

idump core 102400

This command writes the contents of the root transputer's memory to the file
core. dmp. The . dmp extension is added by default because the filename is spe­
cified with no extension.

5.3 Error messages

Badly formed command line

Command line error. The command syntax requires a file name followed
by the number of bytes of memory to dump. Check the syntax of the com­
mand and retry.

Cannot open file

File system error. The memory dump file could not be opened on the host
system.

Cannot write file

File system error. The memory dump file could not be written to the host
system.

You must tell the server to peek the transputer

idump has been invoked by calling the host file server with the incorrect
option. This error can only occur if the tool is not invoked with the supplied
executable file idump. exe .

72 TDS 346 01 October 1992

6 iemit - memory
interface configurer

This chapter describes the memory configuration tool iemi t. This tool can be
used interactively to explore the effects of changes in the external memory inter­
face parameters of certain 32 bit transputers. The tool can also be used in batch
mode to create ASCII or PostScript files. The tool produces a memory configura­
tion file which may be included as an input file to ieprom and blown into EPROM
along with a ROM-bootable application file.

The chapter describes how to use iemi t and outlines its capabilities. Example
displays are provided, followed by a list of error messages which the tool may gen­
erate. The format of the memory configuration file is described and an example is
given. Note: memory configuration files are simple text files which may be created
manually using a standard text editor or generated by using iemit.

6.1 Introduction

The IMS T400, T414, T425, T426, T800 and T805transputers have a configurable
external memory interface (EMI) which allows a variety of types of memory device
to be connected using few extra components.

For these transputers, the interface configuration may be selected by one of two
mechanisms. The user may select one of the 17 standard memory configurations
(13 for the T414) or a customized memory configuration may be loaded from a
ROM or PAL on reset.

Both methods of memory configuration are available when booting from ROM or
from link. If the transputer is being booted from ROM, a customized memory con­
figuration may be added to the ROM or a standard configuration may be used. If
the transputer is booted from link a standard configuration may be used at no extra
cost, or a dedicated ROM or PAL may be added for a customized configuration.

In order to generate a customized configuration the user may create a memory
configuration file, describing the memory configuration and have this blown into
an EPROM. The configuration chosen is made known to the transputer by simple
board level connections which are detected by the transputer on reset. If a stan­
dard configuration is required the MemConfig pin is connected to the appropriate
address pin. For example, standard configuration 7 is selected via address pin
MemAD7. If a customized configuration is required the MemConfig pin is con­
nected though an invertor to the appropriate data line, usually this is
MemnotWrDO. Note: when iemit is used to generate the memory configuration,
the MemnotWrDO pin must be used. For further details see The transputer data­
book.

72 TDS 346 01 October 1992

178 6.2 Running iemit

The external memory interface configuration tool iemit produces timing dia­
grams for potential configurations of the memory interface and warns of possible
errors in the design. It indicates whether one of the preset configurations that are
available would be suitable, or whether it would be necessary to use an externally
programmed configuration.

Note: That it is assumed that readers creating memory configuration files are
familiar with the memory interface of the processor that they are using. The stages
in designing a memory interface, including examples, are described in chapter 2
of The transputer applications notebook - Systems and performance. Further
information may also be found in The transputer databook.

6.2 Running iemi t

The iemi t tool can be invoked by the following command line:

~ iemit options

where: options is a list of options given in Table 6.1.

Options must be preceded by '-' for UNIX-based toolsets and 'I' for
MS-DOS and VMS based toolsets.

Options may be entered in upperor lowercase and can be given in any
order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description
A Produce ASCII output file.
E Invoke interactive mode.

F filename Specify input memory configuration file.
I Select verbose mode. In this mode the user will receive status

information about what the tool is doing during operation for
example, reading or writing to a file.

o filename Specify output filename.
p Produce PostScript output file.

Table 6.1 iemi t command line options

Note: that if option 'E' is selected Le. interactive mode, then no other options may
be specified on the command line.

The operation of iemi t in terms of standard file extensions is shown below:

72 TDS 346 01 October 1992

6 iemit - memory interface configurer 179

Examples of use

iemit may be invoked in interactive mode by using one of the following com­
mands:

iemi t -e (UNIX based toolsets)
iemi t / e (MS-DOS and VMS based toolsets)

Output files in ASCII or PostScript may be specified by command options from
within interactive mode; alternatively iemi t may be invoked in batch mode, to
create an output file in one of these formats.

When the tool is invoked in batch mode to produce an output file in either ASCII
or PostScript format, then an input file must be supplied using the 'F' option. It is
also mandatory to specify either the 'll or 'p' option. If the '0' parameter is not sup­
plied then an output filename will be constructed, from the input filename, with an
extension of ' .ps' for a PostScript output, or ' .asc' for an ASCII output.

Example:

The following commands cause iemit to produce an output file in PostScript for­
mat. The tool is invoked in verbose mode.

UNIX based toolsets:

iemit -i -p -f memconfig.mem -0 waveform.ps

MS-DOS and VMS based toolsets:

iemit /i /p /f memconfig.mem /0 waveform.ps

Note: iemit will make use of the ITERM host environment variable, if it is avail­
able, otherwise it will use defaults.

72 TDS 34601 October 1992

180 6.3 Output files

6.3 Output files

Two different types of output may be produced by iemit, these are listed below:

• A memory configuration file suitable for including as an input file to the
ieprom tool.

• An output file in either ASCII or Postscript format, suitable for inclusion in
documentation.

The tool may be used interactively to produce a memory configuration file in text
format. This file may then be used as an input file to the ieprom tool, thus enabling
the memory configuration to be stored on ROM. iemi t is capable of saving and
reloading configurations to allow for design over an extended period and for com­
parison of different configurations. The memory configuration file is described and
an example is given in section 6.6.

Additionally iemi t may be used to produce an output file which is either a plain
ASCII file containing timing data or a file in PostScript format containing waveform
diagrams. These formats were chosen so that the results of the program could be
easily included in reports or other documentation.

6.4 Interactive operation

When iemi t is invoked in interactive mode the program will start up with the
default standard configuration 31.

The tool's user interface is presented as a number ofdisplay pages showing timing
data. The displays may be updated by changing the timing parameters, which are
accessed from page 1. All inputs are executed immediately so that the user can
see the effect on any of the displays. As each page is shown, the user has the
option of selecting another page for display by keying in its number. The current
configuration may be saved at any time to a specified output file.

The information displayed and options available on each page are described
below.

6.4.1 Page 0

This page acts as an index to the others. It shows the title of each page and allows
one of them to be selected. An option is provided to enable an input file to initialize
the memory configuration. Other options enable the user to selectively generate
output files. Options are listed in table 6.2 and an example of the display page is
given in figure 6.1.

The user enters an option code followed by theI RETURN Ikey. Ifa file option is spe­
cified the userwill be prompted for a filename. Note: file extensions should be spe­
cified, there are no defaults.

72 TDS 346 01 October 1992

6 iemi t - memory interface configurer 181

Option Description
1 to 6 Selects the page to be displayed.

Q Quit - selection of this option exits the program.

L Load previously saved configuration. A filename is prompted for,
and the configuration saved in that file is read in and the display
data is updated. The program expects a memory configuration file.

If loading does not succeed because the file has a bad format, the
current configuration is reset to standard configuration 31. If load-
ing fails because the file could not be found or could not be opened
for reading, the load is abandoned without losing the current con-
figuration.

S Save configuration to a file. The program prompts for the name of
a file to which the data will be written, by convention the extension
. mem should be used. Output is a memory configuration file. An
error is reported if the data could not be saved. The saved file is
given comments in its header indicating that it was created by the
iemi t program.

A Output pages in ASCII format to a file. The program prompts for
the name of a file to which the data will be written. Output is in plain
ASCII format with a form feed (FF) character after each page. It
includes full timing information and a representation of the timing
diagrams for read and write cycles. An error is reported if the out-
put could not be written.

p Generate PostScript file. The program prompts for a filename. The
program writes to the file a program in the PostScript page descrip-
tion language to draw the timing diagrams for the chosen memory
interface configuration. The waveforms shown are the same as
those which can be seen by selecting pages 4 and 5.

The file produced fully conforms to the PostScript structuring con-
ventions, allowing it to be processed by other programs. The dia-
gram is designed to fit lengthways on an A4 page, and is suitable
for inclusion in technical notes and reports. The file can be sent
directly to an Apple LaserWriter or other PostScript output device.

Table 6.2 iemi t page 0 options

72 TDS 346 01 October 1992

182

Page 0

6.4 Interactive operation

T414/T800 External Memory Interface Program

Page 0:
1:
2:
3:
4:
5:
6:

Index - this page
EMI configuration parameters
General timing
Dynamic RAM timing
Read cycle waveforms
Write cycle waveforms
Configuration table

Please enter 1... 6 to see a new page;
<S> to save configuration to a file;
<L> to load a saved configuration;
<A> to generate an ASCII listing of all pages to a file;
<P> to generate PostScript file of waveforms;
<Q> to exit the program.

Figure 6.1 Example iemi t display page 0

6.4.2 Page 1

This page shows the input parameters to iemit. It is from these parameters that
the tool computes the timing information and the waveforms. Only one parameter
may be changed at a time and the display data is immediately updated. An exam­
ple of the display page is given in figure 6.2.

Page 1
EMI configuration parameters
============================

Device type T425-25
EMI clock period Tm 20ns at ClockIn = 5MHz
Wait states 0
Address setup time T1: periods Tm
Address hold time T2: periods Tm
Read cycle tristate/write data setup T3: periods Tm
Extended for wait T4: periods Tm
Read or write data T5: periods Tm
End tristate/data hold T6: periods Tm
Nonprogrammable strobe "notMemSO " "0" SO
Progranunable strobe "notMemS1 " "1" SI: 30 periods Tm
Progranunable strobe "notMemS2 " "2" S2: 30 periods Tm
Progranunable strobe "notMemS3 " "3" S3: 30 periods Tm
Progranunable strobe "notMemS4 " "4" S4: 18 periods Tm
Read cycle strobe "notMemRd " "r"
Write cycle strobe "notMemWrB" "w"
Refresh period: 72 ClockIn periods Wait: 0
Write mode: Late Configuration: 31

Enter a new page number (0 for the index) or <C> to change a parameter:

Figure 6.2 Example iemi t display page 1

When the page is displayed, the user has the option to select a new page byenter­
ing its number, or entering @] to change one of the parameters. In the latter case,

72TDS 34601 October 1992

6 iemi t - memory interface configurer 183

a list of parameter identifiers is displayed (see table 6.3) and the user is a prompted
to select one. The user may then specify a newvalue, or by pressing the I RETURN I
key, leave the current selection unchanged. The parameters used for modifying
the timing data are described in tables 6.4, and 6.5.

Parameter Parameter
identifier

0 to 6 Page to be displayed

D Device type

T1 Address setup time before address valid strobe

T2 Address hold time after address valid strobe

T3 Read cycle tristate or write data setup

T4 Extendible data setup time

TS Read or write data

T6 End tristate or data hold

so Non-programmable strobe UnotMemSO"

Sl Programmable strobe UnotMemS1"

S2 Programmable strobe u notMemS2"

S3 Programmable strobe u notMemS3"

S4 Programmable strobe U notMemS4"

RS Read cycle strobe name

WS Write cycle strobe name

R Refresh period

WM Write mode

W Memwait input connection

c. Standard configuration

Table 6.3 iemi t page 1 parameter identifiers

Note: there are two parameters displayed on page 1 which are calculated by
iemi t and cannot be directly updated by the user; they are the EMI clock period
Tm and the Wait states (see Table 6.5).

72 TDS 346 01 October 1992

184 6.4 Interactive operation

Parameter Description

Device type This parameter enables the program to deduce the time
taken for a half cycle of the signal ProcClockOut: this is
Tm, the basic unit of time of the memory interface. A menu
of the available devices is displayed and the user is invited
to select one:

T400-20 T8OO-17
T414-15 T8OO-20
T414-17 T8OO-22
T414-20 T8OO-25
T425-17 T8OO-30
T425-20 T8OO-35
T425-25 T805-25
T425-30 T805-30

Tstates Tl-T6 The length of each Tstate T1 to T6, is entered as a number
of Tm periods between 1 and 4. (2 Tm periods = 1 clock
cycle).

Programmable The programmed durations of the strobes notMemSO to
strobes SO-S4 notMemS4. The strobes each have two names which can

be altered. One which can be up to 9 characters in length,
and one consisting of just one character. There should be
no embedded spaces in the long names. The short names
are used in the timing information on pages 2 and 3, while
the long names are used to label the waveforms on pages4
and 5, and in the PostScript output. The signal names are
initialized to sensible defaults.
Note: that SO is a fixed strobe, so its duration cannot be
changed. The duration of a strobe can be 0 to 31 Tm peri-
ods. If the value for S1 is set to zero, then notMemS1 stays
high throughout the cycle; if the value for S2, S3 or S4 is
set to zero, then the strobe is low for the duration of the
cycle.

Read strobe The names for the read strobe notMemRd can be altered.
name

Write strobe The names for the write strobe notMemWrB can be
name altered. Note that because the four byte write strobes have

the same timing, only one is considered.

Refresh The refresh period is given as a number of Clockln periods
period (18,36,54, or 72) or as Refresh Off if zero is selected.

Table 6.4 iemi t page 1 parameters

72 TDS 346 01 October 1992

6 iemi t - memory interface configurer 185

Parameter Description

Write mode The write mode can be set to Early or Late to suit
the type of memory being used.

Wait connection The MemWait input may be connected to one of
the strobes 52, 53, S4 by entering '52', '53' or '54'
respectively. Alternatively, by specifying a num-
ber in the range 1 to 60 MemWait may be con-
nected to a simulated external wait state genera-
tor. This causes MemWait to be held high then to
become inactive (Iow) a set number ofTm periods
after the start of T2. Note: that this mode is not
supported directly by the T414; in a final design,
a circuit would have to be built to perform this
function.
If the current connection of MemWait causes the
signal to become inactive just as ProcClockOut
is falling during T4, a warning is given that there
is a hazard of a wait race condition. This is
because MemWait is sampled on the falling edge
of ProcClockOut -and if the signal is changing
while being sampled, the result is undefined.

EM! clock period Tm The value ofTm for a clockln frequency of5MHz.
This is computed from the other parameters and
displayed.

Wait states The number of wait states in the current configu-
ration. This is computed from the other parame-
ters and displayed.

Standard configura- The parameters can all be reset to those for one
tion of the built in configurations. There are 13 stan-

dard configurations available for the T414, valid
configuration numbers being 0 to 11 and 31. For
the T400, T425, T800 and the T805 there are 17
standard configurations available, valid configu-
ration numbers being 0 to 15 and 31. If the user
selects, for a T414, one of the four configurations
which are not available, a message will be dis-
played indicating that this configuration may not
be hardwired on a T414.
If the currently set configuration happens to corre-
spond exactly to one of the preset configurations,
the tool reports the fact.

Table 6.5 iemi t page 1 parameters

72 TDS 346 01 October 1992

186

6.4.3 Page 2

6.4 Interactive operation

This page shows general timing information for the interface, such as delays
between various strobes and required access times of the memory devices to be
used. The user should adjust these figures to allow for delays in external logic.

Table 6.6 lists the timing information displayed on this page while an example of
the display is given in figure 6.3.

JEDEC sym- Parameter description
bol

TOLOL Cycle time (in both nanoseconds and processor cycles)

TAVQV Address access time

TOLQV Access time from notMemSO

TrLQV Access time from notMemRd

TAVOL Address setup time

TOLAX Address hold time

TrHQX Read data hold time

TrHQZ Read data turn off

TOLOH notMemSO pulse width low

TOHOL notMemSO pulse width high

TrLrH notMemRd pulse width low

TrLOH Effective notMemRd width

TOLwL notMemSO to notMemWrB delay

TDVwL Write data setup time

TwLDX Write data hold time 1

TwHDX Write data hold time 2

TwLwH Write pulse width

TwLOH Effective notMemWrB width

Table 6.6 General timing parameters

The total cycle time is given in nanoseconds and in processor clock cycles. The
only option available from this page is to select another page for display.

72 TDS 34601 October 1992

6 iemi t - memory interface configurer

Page 2
General Timing

187

Symbol Parameter min(ns) max(ns) Notes

TOLOL Cycle time
TAVQV Address access time
TOLQV Access time from 0
TrLQV Access time from r
TAVOL Address setup time
TOLAX Address hold time
TrHQX Read data hold time
TrHQZ Read data turn off
TOLOH 0 pulse width low
TOHOL 0 pulse width high
TrLrH r pulse width low
TrLOH Effective r width
TOLwL 0 to w delay
TDVwL Write data setup time
TwLDX Write data hold time 1
TwHDX Write data hold time 2
TwLwH Write pulse width
TwLOH Effective w width
Please enter a new page number

480
400
320
160

80
80
o

80
320
160
160
160
160

80
240

80
160
160

(0 for the index):

12 processor cycles

Figure 6.3 Example iemi t display page 2

6.4.4 Page 3

Page 3
Dynamic RAM Timing

Symbol Parameter min(ns) max(ns) Notes

T1L1H 1 pulse width 400
T1H1L 1 precharge time 80
T3L3H 3 pulse width
T3H3L 3 precharge time
T1L2L 1 to 2 delay
T2L3L 2 to 3 delay
T1L3L 1 to 3 delay
T1LQV Access time from 1 320
T2LQV Access time from 2
T3LQV Access time from 3
T3L1H 1 hold (from 3)
T1L3H 3 hold (from 1)
TwL3H w to 3 lead time
TwL1H w to 1 lead time 240
T1LwH w hold (from 1) 320
T1LDX Wr data hold from 1 400
T3HQZ Read data turn off
TRFSH 256 refresh cycles 3650 time in microseconds
Please enter a new page number (0 for the index):

Figure 6.4 Example iemi t display page 3

This page gives timing information of special interest to designers working with
dynamic memory, including various access times and the time for 256 refresh
cycles. With this information the designer can ensure that the requirements of the

72 TDS 34601 October 1992

188 6.4 Interactive operation

memory devices to be used are met. The user should adjust these figures to allow
for delays in external logic. Table 6.7 lists the DRAM timing parameters.

The only option available from this page is to select another page for display. An
example of the display is given in figure 6.4.

JEDEC sym- Parameter description
bol

T1L1H notMemS1 pulse width

T1H1L notMemS1 precharge time

T3L3H notMemS3 pulse width

T3H3L notMemS3 precharge time

T1L2L notMemS1 to notMemS2 delay

T2L3L notMemS2 to notMemS3 delay

T1L3L notMemS1 to notMemS3 delay

T1LQV Access time from notMemS1

T2LQV Access time from notMemS2

T3LQV Access time from notMemS3

T3L1H notMemS1 hold (from notMemS3)

T1L3H notMemS3 hold (from notMemS1)

TwL3H notMemWrB to notMemS3 lead time

TwL1H notMemWrB to notMemS1 lead time

T1LwH notMemWrB hold (from notMemS1)

T1LDX Write data hold from notMemS1

T3HQZ Read data turn off

TRFSH Time for 256 refresh cycles (in microseconds)

Table 6.7 DRAM timing parameters

6.4.5 Page 4

This page shows graphically the timing for a memory read cycle. An example of
the display page is given in figure 6.5.

The Tstates and strobes are labelled, and bus activity is shown. The point where
data are latched into the processor is also indicated.

At the top of the page is displayed the processor clock and the Tstates, a number
indicating the Tstate, 'W' indicating a wait state, and 'E' indicating a state that is
inserted to ensure that T1 starts on a rising edge of the processor clock.

72 TDS 346 01 October 1992

6 iemi t - memory interface configurer 189

Below this are displayed the waveforms of the programmable strobes and the
read, write and address/data strobes. Each of these strobes is labelled with the
corresponding label parameter.

The point at which the read data is latched is indicated by a 'A' beneath the read
cycle address/data strobe.

Page 4

ProcClock

notMemSO (0)

notMemS1 (1)

notMemS2 (2)

notMemS3 (3)

notMemS4 (4)

MemWait
READ CYCLE
MemAD

notMemRd (r)

11/1111112/21212131313131414141415151515161616161

/-'-/-'-/-'-/-'-/-'-/-'-/-'-/-'-/-'-/-'-/-'-/-'-

----------_/---

--------------->---------------< >------
Read data latched here ~

----_/---

Please enter a new page number (0 for the index), <L> to
scroll display left, or <R> to scroll display right:

Figure 6.5 Example iemi t display page 4

The MemWait waveform shows the input to the MemWait pin. If the wait input is
a number then it goes low n Tm periods after the end of T1 and high again at the
end of T6, if the wait input is connected to a strobe it goes low and then high when
that strobe does so.

If the cycle is too long to fit horizontally on the screen, it may be scrolled left and
right using the [I] and~ keys. The displayed area moves by about 15 charac-
ters each time these are used.

6.4.6 Page 5

Page 5 shows the waveforms for a memory write cycle. The display is similar to
that of page 4, indeed the read and write cycle diagrams are combined when the
PostScript output is produced.

Scrolling the display to the left or right is done in the same way as for page 4.

An example of the display page is given in figure 6.6.

72TDS 34601 October 1992

190

Page 5

ProcClock

notMemSO (0)

notMemS1 (1)

notMemS2 (2)

notMemS3 (3)

notMemS4 (4)

6.4 Interactive operation

11111111121212121313/3131414141415151515/61616/61

/-'-/-'-/-'-/-'-/-'-/-'-/-'-/-'-/-'-/-'-/-'-/-'-

-----------,/---

MemWait
WRITE CYCLE
MemAD X~:X~ _

notMemWrB(w) ------,/---

Please enter a new page number (0 for the index), <L> to
scroll display left, or <R> to scroll display right:

Figure 6.6 Example iemit display page 5

6.4.7 Page 6

This page gives a configuration table for the current configuration. This is a listing
of the data which have to be placed in a ROM situated at the top of the transputer's
memory map in order to achieve the desired configuration. The table consists of
36 words of data, but only the least significant bit in each is used. The address and
contents are given for each location. Note: when iemi t is used to generate the
memory configuration, the Memconfig pin must be connected to MemnotWrDO.

An example of the display page is given in figure 6.7.

Note: that ifpage 1 indicates that the configuration is one of the transputer's preset
ones, there will be no need for a ROM; configuration can be achieved by connect­
ing the MemConfig pin of the device to one of the address/data lines.

72 TOS 346 01 October 1992

6 iemit - memory interface configurer

Page 6
Configuration Table

191

#7fffff6c 1
#7fffff70 1
#7fffff74 1
#7fffff78 1
#7fffff7c 1
#7fffff80 1
#7fffff84 1
#7fffff88 1
#7fffff8c 1
#7fffff90 1
t7fffff94 1
t7fffff98 1
t7fffff9c 0
#7fffffaO 1
#7fffffa4 1
#7fffffa8 1
#7fffffac 1
#7fffffbO 0

Please enter a new page number

#7fffffb4 1
#7fffffb8 1
#7fffffbc 1
#7fffffcO 1
#7fffffc4 0
#7fffffc8 1
#7fffffcc 1
#7fffffdO 1
#7fffffd4 1
#7fffffd8 0
#7fffffdc 1
#7fffffeO 0
#7fffffe4 0
#7fffffe8 1
#7fffffec 1
#7ffffffO 1
#7ffffff4 1
#7ffffff8 : 1

(0 for the index):

Figure 6.7 Example iemit display page 6

6.5 iemit error and warning messages

The following is a list of error and warning messages the tool can produce:

Wait race

If one of the programmable strobes is used to extend the memory cycle
then the strobe must be taken low an even number of periods Tm after the
start of the memory interface cycle. If the strobe is taken lowan odd number
of periods after the start then a wait race warning will appear. Should this
warning appear, it will remain on display on page 1, until the race condition
is removed. Further information can be obtained from reference 1, listed
at the start of this chapter.

Input out of range

If the value entered for a numeric parameter is outside the range valid for
that parameter, an input out of range warning is displayed, the value
cleared from the screen and the program waits for a new value.

MemWait connection error

If an attempt is made to connect S1 to the MemWait input an error is dis­
played because it is a meaningless operation.

Configuration cannot be hardwired on a 1414

The transputers which have a configurable memory interface all have (with
the exception of the T414) 17 standard memory configurations available

72TDS 34601 October 1992

192 6.6 Memory configuration file

to them. The T414 only has a choice of 13 standard configurations. If the
standard configurations 12,13,14 or 15 are selected for a T414 the above
warning message will be displayed against the selection on page 1.

Unable to open configuration file 'fiJename'

This can occur when attempting to load a memory configuration file and
indicates that the tool cannot find the specified input file. Check the spelling
of the filename and/or that the file is present.

Command line parsing error

An option has been specified that the tool does not recognize.

No input file specified

This indicates that when trying to invoke the tool to produce an output file,
the user has not specified a memory configuration file to use as input.

One and only one of options A or P must be specified

This indicates that when trying to produce an output file, the user has not
specified whether the output is to be in ASCII or PostScript format.

Unable to open output file 'fiJename'

An output filename has been specified incorrectly. Check the format of the
filename.

6.6 Memory configuration file

Memory configuration files are text files which may be generated by a standard text
editor or by using the memory interface configuration tool iemit, see section 6.2.

By convention memory configuration files have the file extension . memo The file
consists of a sequence of statements and comments. The following are consid­
ered to be comments:

• Blank lines

• Any line whose first significant characters are '--'

• Any portion of a line following '--'.

Comments are ignored by the ieprom and iemi t tools. Statements are all other
lines within the file; they may be interspersed with comments.

Individual statements are constructed ofthe statement and an associated parame­
ter. These must be separated by at least one space or tab but extra spaces may

72 TDS 34601 October 1992

6 iemi t - memory interface configurer 193

be inserted before. between. or after them for aesthetic purposes. An example
memory configuration file is shown in figure 6.8.

Memory configuration file produced
by a save command from IEMIT.
on Thu Feb 13 15:04:04 1992

device. type

t1.duration
t2.duration
t3.duration
t4.duration
t5.duration
t6.duration

sO.label
sl.label
s2.label
s3.label
s4.label
rs.label
ws.label

sl.duration
s2.duration
s3.duration
s4.duration

:= T425-25

:= 4
:= 4
:= 4
:= 4
:= 4
:= 4

:= notMemSO
:= notMemS1
:= notMemS2
:= notMemS3
:= notMemS4
:= notMemRd
:= notMemWrB

:= 30
:= 30
:= 30
:= 18

refresh.period := 72
write.mode := LATE
wait. connection := 0

Figure 6.8 Example memory configuration file

The statements defined are listed along with their parameters in table 6.8. Further
information about specifying parameters is given in section 6.4.2.

Option Description

standard. configuration oto 13. or 31 for T414 processors. 0 to 15. or
31 forT400. T425. T800 and T805 processors.

device. type One of the following devices:

T400-20 T800-17
T414-15 T800-20
T414-17 T800-22
T414-20 T800-25
T425-17 T800-30
T425-20 T800-35
T425-25 T800-25
T425-30 T805-30

72 TDS 346 01 October 1992

194 6.6 Memory configuration file

Option Description

tl.duration, 1 to 4 Tm periods. (2 Tm periods =1 clock
t2.duration, cycle). Defines the length in Tm periods of
t3.duration, Tstates. T1 to T6. of the memory cycle.
t4.duration,
t5.duration,
t6.duration

sO.label, Each of these parameters accepts two text
sl.label, strings. They are the long (up to 9 characters)
s2.label, and short (1 character) names of the strobes
s3.label, notMemSO to notMemS4. The names should
s4.label not contain embedded spaces. Names longer

than the permitted number ofcharacters will be
truncated.

rs.label As above. the long and short names for the
read strobe notMemRd.

ws.label As above. the long and short names for the'
read strobe notMemWrB.

sl.duration oto 31 Tm periods. The S1 strobe goes low at
the start of Tstate 2. This parameters defines
the number of Tm periods before it goes high.

s2.duration, oto 31 Tm periods. The S2 to S4 strobes all go
s3.duration, high at the end of Tstate 5. These parameters
s4.duration define the number of Tm periods before each

strobe goes low.

refresh.period 18. 36. 54. 72 or the string "Disabled". This
parameter defines the period between refresh
cycles as a count of Clockln cycles.

write.mode String value either: "Early" or "Late". Defines
the write mode.

wait. connection S2. S3. S4 or a value in the range 0 to 60. This
parameter connects MemWait to one of the
strobes S2. S3. S4 orto simulated external wait
state generator.

Table 6.8 Memory Configuration file statements

72 TDS 346 01 October 1992

7 ieprom - ROM·
program convertor

This chapter describes the EPROM hex tool ieprom. This tool is used to convert
a ROM-bootable file into one or more files suitable for programming an EPROM.

The chapter describes how to invoke ieprom and gives details of the command
line syntax. It describes the control file which the tool accepts as input and provides
background information on the layout of the code in the EPROM. A description of
the various file formats which may be output by the tool is given, including block
mode where the output is split up over a number of files. The chapter ends with a
list of error messages which may be generated by the tool.

7.1 Introduction

The INMOS EPROM software is designed so that programs which have been
developed and tested using the INMOS toolset may be placed in ROM with only
minor modification (see below).

This has the advantages that an application need not be committed to ROM until
it is fully debugged and the actual production of the ROMs can be done relatively
late in the development cycle without the fear of introducing new problems.

If a network of transputers is being used, only the root transputer needs to be
booted from ROM; once this has been booted it will boot its neighbors by link.

Figure 7.1 shows how a network of five transputers would be loaded from a ROM
accessed by the root transputer.

ROM Boot from link Boot from link

72 TDS 346 01

Figure 7.1 Loading a network from ROM

October 1992

196 7.2 Prerequisites to using the ieprom tool

Some 32 bit transputers have a configurable external memory interface. For these
transputers a memory configuration file may be created and put into ROM together
with the application. A description of memory configuration files and how to create
them is given in Chapter 6.

7.2 Prerequisites to using the ieprom tool

For an application file to be suitable for programming into ROM it must have been
configured to be booted from ROM rather than booted from link. This selection is
made by specifying the appropriate command line option when using the confi­
gurer and collector tools. See chapters 6 and 3 respectively. It is also essential that
all C and FORTRAN programs, including those targeted at a single processor, are
configured; programs prepared with the icollect 'T' option are not in a format
suitable for ieprom.

7.3 Running ieprom

ieprom takes as input a control file and outputs one or more files which may be
put into ROM by an EPROM programmer.

The control file, in text format, specifies the root transputer type, the name of the
bootable file containing the application, the memory configuration file (if one is
being used), the amount of space available in the EPROM, and the format that the
output is to take. Available output formats are: binary, hex dump, Intel, Extended
Intel, or Motorola S-Record format.

The ieprom tool is invoked by the following command line:

~ ieprom filename {options}

where: filename is the name of the control file.

options is a list of options from Table 7.1.

Options must be preceded by '-' for UNIX-based toolsets and '/' for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

72 TDS 34601 October 1992

7 ieprom - ROM program convertor 197

Option Description
I Selects verbose mode. In this mode the user will receive status

information about what the tool is doing during its operation, for
example reading or writing to a file.

R Directs ieprom to display the absolute address ofthe code refer-
ence point. This address can be used to locate within the memory
map created by the icollect 'p' option.

Table 7.1 ieprom command line options

The operation of ieprom in terms of standard file extensions is shown below.

7.3.1 Examples of use

ieprom may be invoked in verbose mode by using one of the following commands:

ieprom -i mycontrol.epr

ieprom /i mycontrol.epr

(UNIX based toolsets)

(MS-DOS and VMS based toolsets)

7.4 ieprom control file

The control file is a standard text file, prepared with an editor; it consists of com­
ments and statements. A comment is any blank line or any text following the com­
ment marker '__'. Comments are ignored by the ieprom tool.

Statements are all other lines within the file. They may be in any order, except that
the four statements defining a block must immediately follow the statement
'output.block' (see table 7.3). Statements may be interspersed with com­
ments.

Individual statements are constructed of a keyword and an associated parameter.
These must be separated by at least one space or tab but extra spaces may be
inserted before, between, orafter them for aesthetic purposes. The statements are
listed, along with their parameters, in tables 7.2 to 7.4.

Examples of control file contents are given in section 7.8.

72TDS 34601 October 1992

198 7.4 ieprom control file

The statements in table 7.2 are used to specify the contents of the EPROM: the
processor type, the source of the data (code and memory configuration) to be
placed in the EPROM, and the total size of EPROM memory.

Statement Parameter/Description

root.processor.type type

This statement specifies the processor type. The
processor type can be specified in full (e.g. T400),
or one of the following classes can be specified:

T2: 16 bit processor (M212, T212, T222, T225)

T4: 32 bit processor (T400, T414, T425, notT426)

TB: 32 bit processor with FPU (T800, T801, T805)

The IMS T426 must be specified as T426. See
appendix B for a full list of valid processor types.

This statement must be present as the first line in
the control file.

bootable.file filename

This statement specifies the file that contains the
output of icollect, usually the application plus
its ROM loader(s).

This statement must be present in the control file.

memory. configuration filenafJ1e

This statement specifies a T4fT8 memory configu-
ration file to be included in the EPROM image. This
file is a standard memory configuration description
(see chapter 6 for details).

This statement is optional. If absent from the con-
trol file then no memory configuration will be
inserted in the output file.

eprom.space hex number

This statement specifies the size of the EPROM
memory space in bytes. This space may actually
contain several physical devices.

This statement must be present in the control file.

Table 7.2 Specifying the EPROM contents

72TDS 34601 October 1992

7 ieprom - ROM program convertor 199

The statements in table 7.3 specify the output to be produced: the format of the
data and whether the data is to be placed in a single file or split into blocks.

Statement Parameter/Description

output. format hexlintellextintellsrecordlbinary

This statement specifies the output file format as being one
of: plain ASCII hex, Intel hex, extended Intel hex, Motorola
S-record or binary format respectively. These output formats
are explained in section 7.6.

This statement is optional. If absent from the control file then
the default output is hex.

output. all filename

output.block filename

These statements are used to specify the type of output and
the output filename. By convention the following file exten-
sions should be used:

. hex Hexadecimal

.bin Binary

.ihx Intel formats

.mot Motorola format

output. all means that all of the image is to be output to
one file.

output .block specifies that a block of data is to be output
to the specified file. It must be followed by the four statements
that define the block; these are detailed in table 7.4.

The control file must contain one output. all statement, or
one or more output.block statements.

Table 7.3 Specifying the output format

Table 7.4 lists the statements used to define each output block. One of each of
theSe statements must follow each output. block statement.

72 TOS 34601 October 1992

200 7.5 What goes into the EPROM

Statement Parameter/Description

start. offset hex number

This statement specifies the address of the start of the
block, as a byte offset into the EPROM space.

end. offset hex number

This statement specifies the address of the end of the
block, as a byte offset into the EPROM space.

byte. select byte list Iall

This statement is followed by either a list of byte numbers
(separated by &), or the keyword all. It specifies which
bytes in aword are to be output in this block. The byte num-
bers can be 0, 1, 2 and 3 for 32 bit processors; or 0 and 1
for 16 bit processors.

output. address hex number

This statement specifies the byte address, in the EPROM
programmer's memory map, at which the block is to be out-
put.

Table 7.4 Output block specification

7.5 What goes into the EPROM

This section describes the contents of the EPROM, the reasons behind the code
layout and the function of those components inserted by ieprom.

The contents of the EPROM includes the bootable file, traceback data and jump
instructions to enable the processor to find the start of the bootable file. Should the
user define the memory configuration this information will also be placed in the
EPROM. The general layout of the code in the EPROM is shown in figure 7.2.

7.5.1 Memory configuration data

Memory configuration data, when present, is placed immediately below the top
word of the EPROM. The top word holds the first instructions to be executed if the
transputer is booting from ROM.

If the processor has a configurable memory interface it will scan the memory con­
figuration data held on the EPROM, before executing the first instructions. Ifastan­
dard memory configuration is being used there should be no memory configuration
data present and the processor will ignore this section of the EPROM.

72TDS 346 01 October 1992

7 ieprom - ROM program convertor 201

'7FFFFF60 (T426) #7FFA
#7FFFFF68 (others)

r increasing address

jump to bounce ~

data from memory
configuration file
(T4 an(1 TB only)

- - - -'P~~~2~~~~~~- - - -
.J'

bounce jump -.

content of bootable
file minus icollect
comment bootstrap

--"--
traceback information

empty

Address (T4ITB) Address (T2)

'7FFFFFFE '7FFE

Figure 7.2 Layout of code in EPROM

7.5.2 Parity registers

The T426 has the ParityErrorReg and ParityErrorAddressReg mapped into the
two words immediately below the memory configuration data (addresses
#7FFFFF64 and #7FFFFF68). The EPROM tool needs to that it must avoid these
addresses on the T426 and so the processor type must be given explicitly in the
root. processor. type statement.

7.5.3 Jump instructions

The first instruction executed by the processor when booting from EPROM, is
located at most positive integer - 1: this is #7FFFFFFE for 32-bit machines and
#7FFE for 16-bitmachines. The first two instructions cause a backwards jump to
be made, with a distance of up to 256 bytes; however, since most applications are
larger than 256 bytes it is necessary for ieprom to insert a 'bounce' jump back to
the start of the bootable file.

72 TDS 34601 October 1992

202 7.6 ieprom output files

7.5.4 Bootable file

The bootable file will have been produced by the collector tool icollect, using
a boot from ROM loader. The comment bootstrap, containing traceback informa­
tion originally added to this file by icollect, is stripped off by ieprom.

The bootable file is placed in the EPROM such that the start of the file is placed
at the lowest address, with the rest of the file being loaded in increasing address
locations. The end of the file is placed immediately below the bounce jump instruc­
tion, which points to the start of the bootable file.

7.5.5 Traceback information

iepromcreates its own traceback information consisting of the name of the control
file and the time at which ieprom ran. This information is placed below the start
of the bootable file. Note: at present this information is not used by any of the tools.

7.6 ieprom output files

The tool can produce output in a form readable by the user or in a form readable
by EPROM programming devices. The following formats are supported:

• Binary output

• Hex dump

• Intel hex format

• Intel extended hex format

• Motorola S-record format

Whichever form is used, it is sometimes necessary to output the data in separate
blocks. Block mode operation is discussed in section 7.7.

Note: there is no output for unused areas of the EPROM. If the buffer in the
EPROM programmer is not initialized before loading the files produced by this pro­
gram into it, unused areas of the EPROM will be filled with random data. Although
the operation of the bootstrap code and loader programs will not be affected by the
presence of random data, these areas of the EPROM cannot subsequently be pro­
grammed without erasing the whole device.

7.6.1 Binary output

This file is in binary format and simply contains all bytes output. There is no addi­
tional information such as address or checksums.

7.6.2 Hex dump

This simple format is intended to be used to check the output from the program.
The dump consists of rows of 16 bytes each, prefixed by the address of the first

72 TDS 346 01 October 1992

7 ieprom - ROM program convertor 203

byte of each row. The format contains no characters other than the hexadecimal
digits, the space character and newlines.

7.6.3 Intel hex format

This is a commonly used protocol for EPROM programming equipment. A
sequence of data records is sent. Each record contains a few bytes of information,
a start address and a checksum. In addition, a special record marks the end of a
transmission. Since the format only supports 16-bit addresses, any longer
addresses will generate an error message. Records produced by this program
contain at most 32 bytes each.

7.6.4 Intel extended hex format

This format, also known as Intel86 format, is similar to Intel hex, but adds another
type of record. The new type 02 record is used to specify addresses of more than
16 bits. The type 02 record contains a 16-bitfield giving asegment base offset. This
value is shifted left four places and added to subsequent addresses. This mimics
the operation of the segment registers on the Intel8086 range of microprocessors.
The segment base offset value persists until the next type 02 record occurs. This
format therefore allows addresses up to 20 bits in length. Again, longer addresses
will generate an error message. The program minimizes the number of type 02
records inserted in its output.

7.6.5 Motorola S-record format

This format is anotherwell known industry standard; it consists of a header record,
data records, and finally an image end record. The advantage of this format is that,
by the use of different data record types, it can support 16, 24, or 32 bit addresses.
This program uses whichever data record type is necessary.

7.7 Block mode

Block mode is a term used to describe the output from ieprom, when more than
one output file is produced. The user defines how the data is to be split between
files using control file statements (see table 7.4).

7.7.1 Memory organization

In order to understand the ideas behind block mode operation it is helpful to under­
stand the way memory is organized in a 16 or 32 bit transputer.

In general, a transputer with a 32 bit data bus will expect to read from memory in
32 bit words; the addresses of these words will be on word boundaries (Le. the
address will always be divisible by4, the two least significant bits will be 0). EPROM

72 TDS 346 01 October 1992

204 7.7 Block mode

devices, however, are usually 8 bits wide, and so it is necessary to have 4 EPROMs
side by side to make up the 32 bit width. These 4 devices are addressed as bytes
oto 3. The two least significant bits of an address (the 'byte selector') give the byte
numbers.

Similarly a 16 bit transputer will expect to read from memory in 16 bit words. The
address of each word will always be divisible by 2. The two EPROM devices
required to make up the 16 bit width will be addressed as bytes 0 and 1. In this case
the least significant bit of an address indicates the byte being accessed.

7.7.2 When to use block mode

Block mode has three uses:

• When the EPROM programmer being used is unable to split the input data
into bytes, in order to program separate byte wide devices.

• When the EPROM programmer has insufficient memory to hold the entire
image.

• When it is necessary, for some reason, to load the program to a different
address in the EPROM programmer to that which it will occupy in the
EPROM space.

7.7.3 How to use block mode

When block mode is to be used, the user must first decide on the blocks to be out­
put. For each block an output. block statement must be specified in the control
file. Each output. block statement must be followed by the four statements:

start. offset
end. offset
byte.select
output. address

ieprom will scan the entire image and output those bytes that have an EPROM
space address between start.offset and end. offset and whose byte
address matches the byte. select value. It will output this data to contiguous
addresses starting at output. address.

Note: if the image does not occupy all of the EPROM space then there may be
some space at output. address before the data starts.

72 TDS 346 01 October 1992

7 ieprom - ROM program convertor

7.8 Example control files

205

7.8.1 Simple output

For this example the application is in the file bootable .btr, there is no memory
configuration, there is 128 kbytes of EPROM, and the EPROM programmer can
take all of the code as one file.

-- EPROM description file for example 1
root.processor.type -T4
bootable.file bootable.btr
eprom.space 20000
output. format srecord
output. all image.mot

7.8.2 Using block mode

In this example the application is in embedded. btr, there is a memory configura­
tion in fastsram.mem, there are 16 kbytes of EPROM and the data is to be split
into four blocks of 4k EPROMs to be programmed at locations 0000, 1000, 2000,
and 3000 in the EPROM programmer's memory.

-- EPROM description file example 2

root.processor.type TB
bootable.file embedded.btr
memory. configuration fastsram.mem
eprom.space 4000
output. format intel

output.block
start.offset
end. offset
byte. select
output. address

output.block
start. offset
end. offset
byte. select
output. address

output.block
start. offset
end. offset
byte. select
output. address

output.block
start. offset
end. offset
byte. select
output. address

72TDS 34601

part1.ihx
0000
3FFF
o
0000

part2 .ihx
0000
3FFF
1
1000

part3.ihx
0000
3FFF
2
2000

part4.ihx
0000
3FFF
3
3000

October 1992

206 7.9 Error and warning messages

7.9 Error and warning messages

The following is a list of error and warning messages the tool can produce:

Command line parsing error

This indicates that a command line option has been specified that the tool
does not recognize.

No input file specified

This indicates that when trying to invoke the tool the user has not specified
a control file to·use as input.

Unable to open control file 'filename'

The control file specified cannot be found. Check the spelling of the file­
name and/or that the file is present.

Unable to open configuration file 'filename'

The memory configuration file specified in the control file cannot be found.
Check the spelling of the filename and/or that the file is present.

Unable to open bootable file 'filename'

The bootable file specified in the control file cannot be found. Check the
spelling of the filename and/or that the file is present.

Unable to open output file 'filename'

An output filename has been specified incorrectly. Check the format of the
filename.

Control file error

This message will be received whenever an error is found in the format of
the control file. A selfexplanatory message will be appended, giving details
of what the tool expects the format to be.

72 TDS 34601 October 1992

8 ilibr -librarian
This chapter describes the librarian tool ilibr that integrates a group of compiled
code files into a single unit that can be referenced by a program. The chapter
begins by describing the command line syntax, goes on to describe some aspects
of toolset libraries, and ends with some hints about how to build efficient libraries
from separate modules.

8.1 Introduction

The librarian builds libraries from one or more separately compiled units supplied
as input files. The input files may be any of the following:

• Compiled object code files produced by the INMOS compilers:

- oc (occam 2 compiler),

- icc (ANSI C compiler),

- if77 (FORTRAN-77 compiler).

• Library files already generated by ilibr (see section 8.2.4).

• Linked object files (see section 8.2.3).

The librarian takes a list ofcompiled files in TCOFF format and integrates them into
a single object file that can be used by a program or program module. Each module
in the input list becomes a selectively loadable module in the library. Input files can
either be specified as a list on the command line or in indirect files.

The library, once built, will contain an index followed by the concatenated modules.
The index is generated and sorted by the librarian to facilitate rapid access of the
library content by the other tools in the toolset, for example, the linker.

Compiled object files (excluding library files) may be concatenated for conve­
~ nience before using the librarian. This may prove useful when dealing with a large

number of input files.

The operation of the librarian in terms of standard file extensions is shown below.

72TDS 346 01 October 1992

208 8.2 Running the librarian

8.2 Running the librarian

To invoke the librarian use the following command line:

~ ilibr filenames {options}

where: filenames is a list of input files separated by spaces.

options is a list of one or more options from Table 8.1.

Options must be preceded by '-' for UNIX-based toolsets and'I' for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

The number of file names allowed on a command line is system dependent. To
avoid overflow, files may be concatenated or an indirect file used. It is the user's
responsibility to ensure that the concatenation process does not corrupt the mod­
ules, for example by omitting to specify that the concatenation is to be done in
binary mode.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description

F filename Specifies a library indirect file.

I Displays progress information as the library is built.

o filename Specifies an output file. If no output file is specified the name
is taken from the first input file and a . lib extension is
added.

Table 8.1 ilibr command line options

Example

ilibr myprog.t4x myprog.t8x

In this example, the compiled object code files myprog. t4x and myprog. t8x
(compiled for T4 and T8 transputers respectively) are used to create a library.
Because no output file name is specified on the command line, the library will be
given the name myprog .lib.

8.2.1 Default command line

A set of default command line options can be defined for the tool using the
ILIBRARG environment variable. Options must be specified in the variable using
the syntax required by the command line.

72 TDS 346 01 October 1992

8 ilibr - librarian 209

8.2.2 Library indirect files

Library indirect files are text files that contain lists of input files, directives to the
librarian, and comments. Filenames and directives must appear on different lines.
Comments must be preceded by the double dash character sequence '__', which
causes the rest of the line to be ignored. By convention indirect files are given the
.lbb extension.

Indirect files may be nested within each other, to any level. This is achieved by
using the 'INCLUDE directive. By convention nested indirect files are also given
the extension . lbb.

The fol'owing is an example of an indirect file:

-- user's .lbb file

userprocl.tco
userproc2.tco
userproc3.tco
myconcat.tco
'INCLUDE indirect.lbb
userproc4.tco

single modules

concatenation of modules
another indirect file
another single module

The contents of a nested indirect file will effectively be expanded at the position it
occurred.

To specify indirect files on the command line each indirect filename must be pre­
ceded by the 'F' option.

8.2.3 Linked object input files

The librarian will also accept linked object files as input, with certain conditions. The
facility to create libraries of linked modules provides an easy method of specifying
input to the configurer. Such library files should only be referenced from a configu­
ration description.

The librarian will generate an error ifan attempt is made to include both linked units
and compiled modules in a single library. In addition, libraries of linked object mod­
ules must not be used as input to the linker ilink. This is because the linker does
not accept linked units as input files.

8.2.4 Library files as input

Library files can themselves be used as input files to ilibr. When a library file is
used as a component of a new library, its index is discarded by ilibr.

Library files may not be concatenated for input to the librarian.

8.3 Library modules

Libraries are made up of one or more selectively loadable modules. A module is
the smallest unit of a library that can be loaded separately. Modules are selected
via the library index.

72 TDS 346 01 October 1992

210 8.4 Library usage files

8.3.1 Selective loading

Libraries can contain the same routines compiled for different transputer types and
(for occam modules) in different error modes.

Selection of library modules for linking in with the program is made on the basis
of target processor type and error mode. For example, if the program is compiled
for an IMS T414 only modules compiled for this processor type or for processors
in acompatible transputerclass are loaded. For languages such as FORTRAN and
C the error mode is always UNIVERSAL.

For C and FORTRAN modules the linker selects the library modules best suited
to the compilation units. For occam the compiler identifies the modules to be
selected according to the requirements of the main program. The linker then
makes the selection.

The linker also selects library modules for linking on the basis of usage. Only those
modules that are actually used by the program are linked into the program.

8.3.2 How the librarian sorts the library index

The librarian creates a library index which is used by the linker to select the
required modules. The librarian sorts the index so that for a given processor type,
the optimum module is always selected by the linker.

The librarian compares and sorts modules according to a numberoffactors includ­
ing attributes set by the compiler options used. These determine for example, the
instruction set of the module and influence run-time execution times.

For example, where two library modules were derived from the same source but
compiled for classes TA and T4, the librarian would place the T4 module first
because it uses a larger instruction set. Modules compiled with interactive debug­
ging enabled are placed later in the index than those for which debugging is dis­
abled. The librarian orders the index entries such that the first valid entry is always
the 'best choice'. If two entries are found to be identical the librarian will issue a
warning.

8.4 Library usage files

Library usage files describe the dependencies ofa library on other libraries or sep­
arately compiled code. They consist of a list of separately compiled units or
libraries referenced within a particular library. The . liu files required by the tool­
set's libraries are supplied by INMOS.

If the imakef tool is used then library usage files should be created for all libraries
that are supplied without source. This is to enable the imakef tool to generate the
necessary commands for linking. Library usage files are text files. They may be
created for a specific library by invoking the imakef tool and specifying a .liu
target. See section 11.5.

72 TDS 346 01 October 1992

8 ilibr - librarian 211

Such files are given the same name as the library file to which they relate but with
an .liu extension.

8.5 Building libraries

This section describes the rules that govern the construction of libraries and con­
tains some hints for building and optimizing libraries.

8.5.1 Rules for constructing libraries

1. Routines of the same name in a library must be compiled for different trans­
puter types, error modes or debug attributes.

2. Libraries that contain modules compiled for a transputer class (Le. TA or
TB) are treated as though they contain acopy for each memberofthe class.

3. Libraries that contain modules compiled in UNIVERSAL mode are treated
as though they contain a copy for each of the two error modes HALT and
STOP.

4. Libraries that contain modules with interactive debugging enabled are
treated as though they also contain a copy with interactive debugging dis­
abled. (When interactive debugging is enabled, channel input/output is
performed via library calls otherwise transputer instructions are used).

8.5.2 General hints for building libraries

Routines that are Ukely to be used together in aprogram or procedure (such as rou­
tines for accessing the file system) can be incorporated into the same library. At
a lower level, routines that will always be used together (such as those for opening
and closing files) can be incorporated into the same module.

Libraries can contain the same routines compiled for different transputer types, in
different error modes and with different input/output access to channels. Only
those modules actually used by the program are incorporated by the compiler and
linked in by the linker.

Where possible compile library input files with debugging enabled. This enables
the debugger to locate the library source if an error occurs inside the library.

When building C libraries care should be taken if the 'FS' or 'Fe' INMOS C compiler
command line options are used, that code compatibility is maintained.

8.5.3 Optimizing libraries

It is possible for the user to optimize the size and content of any libraries which he
builds himself, to target appropriate processors, improve the speed ofcode execu­
tion and to provide the best code for a given processor.

72 TDS 34601 October 1992

212 8.5 Building libraries

All libraries

Points to consider when constructing libraries in any language or mixture of lan­
guages:

• Whether the library is to be targeted at one or two specific processors or
a wide range of processors. The transputer type specified for the compila­
tion of a library module determines the instruction set used. Transputer
classes TA and TB provide the basic instruction sets common to several
transputer types. Transputer classes such as the T5 provide extended
instruction sets but are targetted at fewer transputers than classes TA and
TB.

• For floating point operations, classes T5 and TB provide better code and
therefore better execution times than class TA.

• Whether the versatility of the library should be reduced in order to create
a smaller library.

Libraries containing occam modules

When building libraries which include modules written in occam the same consid­
erations apply, but also note the following:

• The error mode used will affect the size of the library. A library created from
modules compiled in UNIVERSAL mode will behave as if it contains a copy
of the code for both HALT and STOP mode. Also, on the current range of
transputers, code compiled in HALT mode will tend to execute faster than
if it is compiled in STOP or UNIVERSAL error modes.

• For libraries containing modules where the method ofchannel inpuUoutput
may be altered, (such as in occam), both the availability of the interactive
debugging facility and the speed at which the code will be executed may
be affected.

When interactive debugging is enabled, channel inpuUoutput will be imple­
mented via library calls. When interactive debugging is disabled using the
compiler 'y' option, transputer instructions are used for channel inpuUout­
put. This leads to faster execution times. However, disabling interactive
debugging for one module of a program, will disable this facility for the
whole program.

For a detailed description of transputer types and error modes, see appendix B.

Outlined below are three different approaches to optimization. The first approach
provides the greatest level offlexibility in its application. The experienced user may
refine these guidelines to specific requirements.

Semi-optimized library build targeted at all transputer types

This is the simplest way to build a library that covers the full range of transputers.

72 TDS 34601 October 1992

8 ilibr - librarian 213

The user should compile each module separately for the following three cases and
incorporate all three versions into the library.

Processor type/class Error mode Method of channel I/O

T2 UNIVERSAL Via library calls

TA UNIVERSAL Via library calls.

TB UNIVERSAL Via library calls.

Note: Error mode and channel ilo only apply only to modules which employ them
e.g. occam modules compiled by oc.

The resulting library will be small in terms of the number of modules it will contain.
Due to their generic nature the modules themselves may be bulky and because
they contain only the base set of instructions, the execution time for the program
will tend to be slower than a more optimized approach.

"Optimized library targeted at all transputer types

In order to build a library which is both generalized enough to work for all 32-bit
transputers and is then optimized for modules which require extended instructions
sets the following approach is recommended:

1. Compile all modules for classes TA and TB. This will provide modules which
can be run on all 32-bit transputers.

2. If any of the modules perform floating point operations, compile these mod-
ules for class TB as well.

For 16-bit transputers it should be sufficient to compile all modules for class T2.

Library build targeted at specific transputer types

This method of building a library will limit the use of the library modules to specific
transputer types and error modes. It is recommended as the simplest strategy to
use when the following options are known for each module:

• Target transputer type.

• Error mode of modules, if any, (Le. HALT, STOP or UNIVERSAL).

• Method of channel input/output, if any.

All modules to be included in the library must be compiled for each target transputer
type and, if appropriate, for the same error mode and method of channel input/out­
put. The resulting library may be large and contain a certain amount of duplication.

For example, for the following options:

72 TDS 346 01 October 1992

214

• T414 and T425 processor types

• HALT error mode

• channel inpuUoutput via library calls

each module should be compiled for the following:

8.6 Error Messages

Processor type/class Error mode Method of channel I/O

T414 HALT Via library calls

T425 HALT Via library calls.
Note: Error mode and channel i/o only apply only to modules which employ them
e.g. occam modules compiled by oc.

8.6 Error Messages
I

This section lists each error and warning message which may be generated by the
librarian. Messages are in the standard toolset format which is explained in appen­
dixA.

8.6.1 Warning messages

filename • bad format: symbol symbol multiply exported

An identical symbol has occurred in the same file. There are three possibili­
ties:

The same file-has been specified twice.

The file was a library where previous warnings have been ignored.

A module in the file has been incorrectly generated.

filename1 • symbol symbol also exported by filename2

An identical symbol has occurred in more than one module. If the linker
requires this symbol, it will never load the second module.

8.6.2 Serious errors

bad format: reason

A module has been supplied to the librarian which does not conform to a
recognized INMOS file format or has been corrupted.

72 TDS 346 01 October 1992

8 ilibr - librarian 215

filename - line number - bad format: excessively long line in indirect file

A line is too long. The length is implementation dependent, but on all cur­
rently supported hosts, is long enough to only be exceeded in error.

filename - line number - bad format: file name missing after directive

A directive (such as INCLUDE) has no file name as an argument.

filename - line number - bad format: non ASCII character in indirect file

The indirect file contains some non printable text. A common mistake is to
specify a library or module with the F command line argument or the
INCLUDE directive.

bad format: not a TCOFF file

The supplied file is not a library or module of any known type.

filename - line number - bad format: only single parameter for directive

The directive has been given too many parameters.

command line error token

An unrecognized token was found on the command line.

filename - could not open for reading

The named file could not befound/opened for reading.

filename1 -line number- could not open filename2 for reading

The file name specified in an INCLUDE directive could not opened.

filename ~ could not open for writing

The named file could not be opened for writing.

filename - must not mix linked and linkable files

The librarian is capable of creating libraries from compiled modules or
linked units, but it is illegal to attempt to create a library from both.

no files supplied

Options have been given to the librarian but no modules or libraries.

filename - nothing of importance in file

The file name specified in a library indirect file or in an INCLUDE directive
was empty or contained nothing but white space or comments.

72 TDS 34601 October 1992

216 8.6 Error Messages

filename - line number • only one file name per line

More than one file name has been placed on a single line within an indirect
file.

filename -line number· unrecognised directive directive

An unrecognized directive has been found in an indirect file.

72 TDS 346 01 October 1992

9 ilink - linker

This chapter describes the linker tool ilink which combines a number of com­
piled modules and libraries into a linked object file. The chapter begins with a short
introduction to the linker, explains the command line syntax and goes on to
describe linker indirect files and the main .linker options. The chapter ends with a
list of linker messages.

9.1 Introduction

The linker links a number of compiled modules and library files into a single linked
object file (known as a linked unit), resolving all external references. The linker may
be used to link object files produced by the ANSI C compiler icc, the occam 2
compiler oc, and the FORTRAN-77 compiler if77. Code produced by the linker
can be used as input to the configurer and collector tools to produce a bootable
code file.

The linker can be driven directly from the command line or indirectly from a Jinker
indirect file. This is a text file which contains a list of files to be linked, together with
directives to the linker.

The linker is designed to accept input files in the Transputer Common Object File
Format (TCOFF) supported by this release of the toolse1. However, the linker can
be directed to produce output files in Linker File Format (LFF). In this format the
output is compatible with either the iboot or iconf tools used by previous2

INMOS toolset releases.

The operation of the linker in terms of standard toolset file extensions is shown
below.

G
e-=l,....-...;....-i-li-nk--,--~·G

~

2. Pre-TCOFF toolsets, for example the Dx05 occam toolsets.

72 TDS 346 01 October 1992

218 9.2 Running the linker

9.2 Running the linker

To invoke the linker use the following command line:

~ ilink [filenames] {options}

where: filenames is a list of compiled files or library files.

options is a list of the options given in Table 9.1.

Options must be preceded by 1_' for UNIX-based toolsets and 1I' for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

If an error occurs during the linking operation no output files are produced.

Example of use:

UNIX based toolsets:

ice hello
ilink hello.teo -f estartup.lnk
icconf hello.cfs
icollect hello.cfb
iserver -sb hello.btl -se

MS-DOS and VMS based toolsets:

ice hello
ilink hello.teo If estartup.lnk
icconf hello.cfs
icollect hello.cfb
iserver /sb hello.btl /se

In this example a compiled C file is linked forth~ default T414 transputer, using the
standard C startup linker indirect file estartup .lnk. The example also shows
the steps for compiling, booting and loading the program.

72 TDS 34601 October 1992

9 ilink - linker 219

Option Description
Transputer type See appendix 8 for a list of options to specify transputer type.

EX Allows the extraction of modules without linking them.
F filename Specifies a linker indirect file.

H Generates the linked unit in HALT mode. This is the default
mode for the linker and may be omitted for HALT mode pro-
grams. This option is mutually exclusive with the 'S' option.

I Displays progress information as the linking proceeds.
KB memorysize Specifies virtual memory required in Kilobytes.

LB Specifies that the output is to be generated in LFF format, for
use with the iboot bootstrap tool and iconf configurer tool
used in earlier INMOS toolsets. (See footnote 2).

Le Specifies that the output is to be generated in LFF format, for
use with the iconf tool used in earlier INMOS toolsets. (See
footnote 2).

ME entryname Specifies the name of the main entry point of the program and
is equivalent to the #mainentry linkerdirective (See below).

MO .filename Generates a module information file with the specified name.
o filename Specifies an output file.

S Generates the linked unit in STOP mode. This option is mutu-
ally exclusive with the 'H' option.

T Specifies that the output is to be generated in TCOFF format.
This format is the default format.

U Allows unresolved references.
X Generates the linked unit in UNIVERSAL error mode, which

can be mixed with HALT and STOP modes.
y Disables interactive debugging for occam code. Used when

linking in occam modules compiled with interactive debug-
ging disabled.

Table 9.1 ilink command line options

9.2.1 Default command line

A set of default command line options can be defined for the tool using the
ILINKARG environment variable. Options must be specified using the syntax
required by the command line.

9.3 Linker indirect files

Linker indirect files are text files containing lists of input files and commands to the
linker. Indirect files are specified on the command line using the 'F' option.

Linker indirect files can contain filenames, linker directives, and comments. File­
names and directives must be on separate lines. Comment lines are introduced

72 TDS 34601 October 1992

220 9.4 Linker directives

by the double dash ('--') character sequence and extend to the end of line. Com­
ments must occupy a single line.

Indirect files can include other indirect files.

Linker indirect files must be created for all link operations which involve the use of
imakef and either C or FORTRAN modules. For further details see section 11.4.

9.3.1 Linker indirect files supplied with the toolset

Linker indirect files supplied with the toolset are described in section 3.11 of the
Too/set User Guide. The purpose of these files is to reference various runtime
libraries (or in the case of occam, compiler libraries) required to link application
programs. When specifying the program modules to be linked, the appropriate
linker indirect file must be included on the linker command line.

9.4 Linker directives

The linker supports six directives which can be used to fine tune the linking opera­
tion. Linker directives must be incorporated in indirect files (they cannot be speci­
fied on the linker command line) and are introduced by the hash Cl') character.

The six linker directives are summarized below and described in detail in the fol­
lowing sections.

Directive Description

'alias Defines a set of aliases for a symbol name.

'define Assigns an integer value to a symbol name.

'include Specifies a linker indirect file.

'mainentry Defines the program main entry point.

Ireference Creates a reference to a given name.

Isection Defines the linking priority of a module.

Note: Symbol names are case sensitive.

9.4.1 'alias basename {aliases}

The 'alias directive defines a list ofaliases for a given base name. Any reference
to the alias is converted to the base name before the name is resolved or defined.
For example, if a module contains a call to routine proc a, which does not exist,
then another routine proc d may be given the alias proc a in order to force the
call to be made to routine proc_d. -

'alias proc_d proc_a

In the above example the reference to proc a is considered to be resolved. Mod­
ules may be loaded from the library for proc_d but the linker will not attempt to

72 TDS 346 01 October 1992

9 ilink - linker 221

search for library modules for proc 8. If a procedure called proc a is found in
any module then an error will resultas the symbol will be multiply defined.

9.4.2 'define symbolname value

The #define directive defines a symbol and gives it a value. This value must
either be an ·optionally signed decimal integer, or an unsigned hexadecimal inte­
ger. (If it is the latter it must be preceded by a # sign). #define is also discussed
in section 9.5.4.

Note: this directive is not applicable to occam.

9.4.3 'include filename

The #include directive allows a further linker indirect file to be specified. Linker
indirect files can be nested to any level. The following is an example of nested indi­
rect files:

-- user's .lnk file:

userprocl.tco
#mainentry proc a
#include sub. Ink

-- module
-- main entry point directive
-- nested indirect file

-- user's sub.lnk file:

userproc2.tco
userproc3.tco
userlib.lib

-- further modules

-- library

9.4.4 #mainentry symbolname

The #mainentry directive defines the main entry point of the program i.e. the top
level function of the program. This directive is equivalent to the 'ME' command line
option. Only one main entry point may be specified. If it is omitted the linker will
select the first valid entry point in its input as a default. If there is more than one
such symbol the linker will warn that there is an ambiguity.

For C and FORTRAN programs the supplied linker indirect startup files define the
system main entry point.

9.4.5 'reference symbolname

The #reference directive creates a forward reference to a given symbol. This
allows names to be made known to the linker in advance, or forces linking of library
modules that would otherwise be ignored. The purpose is to allow the inclusion of
library initialization routines which might not otherwise be included. For example:

'reference open

72TDS 346 01 October 1992

222 9.5 Linker options

The above example causes open to be included in the link, whether it is needed
or not.

9.4.6 #section name

The #section enables the user to define the order in which particular modules
occur in the executable code.

In order to use this directive the program modules must have been compiled using
the compiler pragma IMS linkage (C programs) or LINKAGE (occam pro­
grams). Details of the apprOPriate directive can be found within the compiler refer­
ence chapter of this manual.

A compiler directive enables a section name to be associated with the code of a
compilation module. A section name may take the default value
"pri%text%base" or a name specified by the user.

The linker will place modules associated with the section name
"pri%text%base" first in the code of the linked unit, in the order in which these
modules are encountered. When the linkerdirective #section is used this default
condition is overridden. The modules identified by user defined section names will
be placed first in the linked module, in the order in which the #section directives
are encountered. These will be followed by any other modules in an undefined
order at the end of the linked unit.

For example:

#section~first%section%name

#section second%section%name

In the above example any modules identified by first%section%name will be
linked first, followed by modules identified by second%section%name, followed
by any other modules.

9.5 Linker options

9.5.1 Processor types

A number ofoptions are provided to enable the userto specify the target processor
for the linked object file, see appendix B. Only one target processor or transputer
class may be specified and this must be compatible with the processor types or
transputer class used to compile the modules.

If no target processor is specified, the processor type for the linked object file will
default to a T414 processor type.

Ifany input file in the list is incompatible with the processor type in use, the link fails
and an error is reported.

72TDS 34601 October 1992

9 ilink - linker 223

9.5.2 Error modes - options H, S and X

Linked code may be generated in three error modes. For Cor FORTRAN modules,
compiled respectively using icc or if77, the error mode will be UNIVERSAL.
occam modules, compiled by oc, may be compiled in one of three error modes
as shown in table 9.2.

Error mode Description

HALT An error halts the transputer immediately.

STOP An error stops the process and causes graceful degradation.

UNIVERSAL Modules compiled in this mode may be run in either HALT or
STOP mode depending on which mode is selected at link time.

Table 9.2 Error modes

Modules that are to be linked together must be compiled for compatible error
modes. C and FORTRAN modules can be mixed with occam modules and
occam modules compiled for different error modes may also be mixed. Table 9.3
indicates the compilation error modes which are compatible and the possible error
modes they may be linked in.

Compatible error modes ilink options

HALT, UNIVERSAL H

STOP, UNIVERSAL S

Table 9.3 ilink error modes

Note: Modules which have been compiled in UNIVERSAL error mode may be
linked in this mode using the X option. If the resulting linked unit is then processed
by the icollect tool it will be treated as if it had been linked in HALT mode.

The linker will produce an error if an input file is in a mode incompatible with the
command line options or defaults. The linker default is to create linked modules
in HALT mode unless otherwise specified.

9.5.3 TCOFF and LFF output files - options T, LB, Le

These three options enable the format of the linked unit output file to be changed.
The linker will default to TCOFF output if none is specified.

Option T specifies that the linked unit is to be output in TCOFF format. This file may
then be processed normally by other tools in the toolset, for example, the confi­
gurer and collector tools.

The LB and Le options specify that the linked unit is to be output in LFF format so
that it is compatible with previous toolsets. The LB option produces a file compat-

72 TOS 346 01 October 1992

224 9.5 Linker options

ible with the iboot and iconf tools used by earlier INMOS toolsets. (See footnote
2). The specified main entry point of the linked program is then available for boot­
strapping by iboot or configuring by iconf. The Le option is used only in mixed
language systems incorporating occam programs. No main entry point need be
specified.

When the LB and Le options are used the linked output file will not be compatible
with the current toolset, which requires TCOFF format.

9.5.4 Extraction of library modules - option EX

The EX option instructs the linker to extract the modules which would normally
have been linked by the ilink command, and to insert them unmodified into an
output file. When the EX option is used, the linker does not produce a linked unit
as output. Instead it outputs a concatenation of the component modules that would
have made up the linked unit. This file can then itself be used as input to either the
linker or librarian. By default the output file produced will have the extension . lku,
although it is not a linked unit. An alternative output filename and extension can
be specified using the ilink 0 option.

This mechanism can be used for creating sub units for linking at a later date or far
extraction of modules from libraries.

When linking or extracting modules the linker attempts to resolve any unresolved
references. The linkeru option and the 'reference directive are particularly use­
ful for controlling the extraction of unlinked modules. For non-Qccam modules the
'define directive can also be used to refine the selection of modules which are
extracted. Linker options and directives used in conjunction with the EX option do
not modify the extracted modules, they just influence the selection process.

Example: Extraction from a user library

This example demonstrates how to extract sut>--parts of a previously supplied
library.

Suppose we are given a library, mylib. lib, which contains routines with entry­
points start, run, clear, and stop. These routines may also call other modules
which reside in the same library, but we are not concerned about their exact
names. We can use the linker's EX option to extract a sut>--library, which just con­
tains start, run, and stop, but does not contain clear.

We do this by forcing the linker to 'find' references to start, run and stop, but
leave out clear.

Create the following linker indirect file x . Ink:

-- Items wanted
'reference start
'reference stop
'reference run

-- Libraries
mylib.lib

72 TDS 34601 October 1992

9 ilink -linker 225

2 Use ilink to extract the required modules and place them in a named file:

ilink -f x . Ink -0 sublib. teo -ex (UNIX)
ilink If x . Ink 10 sublib. teo lex (M5-DOS and VMS)

This command will create a file called sublib. tco which will contain all the
submodules required.

3 The librarian can then be used to create a library:

ilibr sublib. teo -0 sublib . lib (UNIX)
ilibr sublib. teo 10 sublib . lib (MS-oOS and VMS)

Example: Extraction from a user library, using the run-time library

The example demonstrates how to extract sutrparts of a previously supplied
library which uses the run-time library.

Consider the same example as that described above, but where the routines
start, stop and run have calls to the run-time library embedded inside them.
We have to tell the linker not to complain about these references, because they
will be resolved later, when sublib. lib is used.

We do the same as before, but we tell the linker not to complain about unre­
solved references, by using the u command line flag:

ilink -f x.lnk -0 sublib.teo -ex -u (UNIX)
ilink If x . Ink 10 sublib. teo lex lu (MS-DOS and VMS)

2 sublib. tco then be supplied to the librarian in the same way as before.

Example: Extraction from a user library, for multiple processor types

Suppose we are supplied with mylib .lib which contains the routines start,
stop, run, and clear for both T400 and TA, and that we wish to create a library
sublib .lib which contains everything except clear.

We use the same method as the first example to extract the T400 code:

ilink -f x.lnk -0 sublib.t4 -ex -t400 (UNIX)
ilink If x . Ink 10 sublib. t4 lex It400 (MS-DOS and VMS)

This command will create a file called sublib. t4 which will contain all the submo­
dules compiled for T400.

2 We do the same again for TA:

ilink -f x . Ink -0 sublib. ta -ex -ta (UNIX)
ilink If x . Ink 10 sublib. ta lex Ita (MS-DOS and VMS)

This command will create a file called sublib . ta which will contain all the submo­
dules compiled for TA.

3 The librarian can then be used to create a library containing both:

ilibr sublib. t4 sublib. ta -0 sublib . lib (UNIX)
ilibr sublib. t4 sublib. ta 10 sublib . lib (MS-DOS and VMS)

72 TDS 34601 October 1992

226 9.5 Linker options

Example: Generation of a completely linkable library

Suppose we have built a library mylib . lib, which requires access to the run­
time library, and we wish to supply this to another person, without having to supply
the run-time library separately. We can arrange for the linker to extract all the
required parts of the run-time library and add them to mylib . lib.

Create a linker indirect file x. Ink which contains 'reference lines for
each symbol in mylib . lib:

-- Items wanted
'reference start
'reference stop
'reference run

-- Libraries
mylib.lib

-- Linker indirect file to access run-time library
'include occama.lnk

The run~time library line should be adjusted depending on the type of pro­
cessor which is being used:

Language When Linker indirect filet

C Full run-time library clibs.lnk

C Reduced run-time library clibsrd.lnk

occam 32-bit processors without an FPU occama.lnk

occam 32-bit processors with an FPU occam8.lnk

occam 16-bit processors occam2.lnk

t The Clinker indirect files apply to the Dx314 toolsets and the occam
indirect files to the Dx305 toolsets.

2 Use ilink to extract the required modules and place them in a named file:

ilink -f· x .lnk -0 fulllib. tco -ex (UNIX)
ilink / f x .lnk /0 fulllib. tco / ex (MS-DOS and VMS)

This command will create a file called fulllib. tco which will contain all
the submodules required.

3 The librarian can then be used to create the extended library full­
lib .lib which will contain the user library together with any routines
which are required from the run-time library.

ilibr fulllib. tco -0 fulllib . lib (UNIX)
ilibr fulllib. tco /0 fulllib .lib (MS-DOS and VMS)

Extraction using #define

A module is the smallest unit the linkercan extract from a library, and a module may
contain several functions. It is quite likely that a module contains functions which

72 TDS 34601 October 1992

9 ilink - linker 227

are not required as well as functions which are referenced from modules which are
required. To prevent a function from being extracted it is assigned 'a dummy value
within a 'define directive; any value will do. This causes any reference to it to
be satisfied.

When the linker encounters a reference to a required function it will extract the
whole module. However, if the module contains a function already specified in a
Idefine directive, the function will be multiply defined and the linker will abort the
extraction. It may be wise when a function is not required, to define all functions
which are exported from that module, to some dummy value, thereby preventing
them all from being extracted.

9.5.5 Display information - option I

This option enables the display of linkage information as the link operation pro­
ceeds.

9.5.6 Virtual memory - option KB

The KB option allows the user to specify how much memory the linker will use for
storing the image of the users program. By default the linker will attempt to store
the entire image in memory. In situations where memory is limited, an amount (~ 1
Kbytes) may be specified. If the program is larger than the amount specified then
the linker will use the host filing system as an intermediate store. A reduction in
speed may be expected at link time.

9.5.7 Main entry point - option ME

The ME option defines the main entry point of the program i.e. the point from which
linking will start. This option is equivalent to the lmainentry directive and takes
as its argument a symbol name which is case sensitive.

Only one main entry point may be specified. If it is omitted the linker will select the
first valid entry point in its input as a default. If there is more than one such symbol
the linker will warn that there is an ambiguity.

9.5.8 Link map filename - option MO

This option causes a link map file to be produced with the specified name. A file
extension should be specified as there is no default available. If the option is not
specified a separate link map file is not produced.

A link map file is a text, file containing information about the position of modules in
the code file.

9.5.9 Linked unit output file - 0

The name of the linked unit output file can be specified using the 0 option. If the
option is not specified the output file is named after the first input file given on the

72 TDS 346 01 October 1992

228 9.6 Selective linking of library modules

command line and a .lku extension is added. If the first file on the command line
is an indirect file the output file takes the name of the first file listed in the indirect
file.

Note: Because there is no restriction on the order in which files may be listed it is
up to the user to ensure that the output file is named appropriately.

9.5.10 Permit unresolved references - option u

The linker normally attempts to resolve all external references in the list of input
files and reports any that are unresolved as errors.

Sometimes it is desirable to allow unresolved external references, for example
during program development. The uoption allows the link to proceed to completion
by assuming unresolved references are to be resolved as zero. Warning mes­
sages may still be generated and the program will only execute correctly if such
references are in fact redundant.

9.5.11 Disable interactive debugging - Y

This option applies only to the occam modules only. The option directs the linker
not to use library calls for channel ilo but instead use transputer instructions, result­
ing in faster execution. occam modules in cannot be interactively debugged if this
option is used.

9.6 Selective linking of library modules

Library modules that are compiled for incompatible processor types or error
modes are ignored by the linker. This allows library modules to be selectively
loaded for specific processor types or transputer classes.

Libraries supplied with the toolset are supplied in several forms to cover the com­
plete range of transputer types. User libraries that are likely to be used on different
transputer types should be supplied for all transputer types likely to be used.

Libraries are also selected for linking on the basis of previous usage. Modules that
are used by several input files are linked in only once.

9.7 The link map file

Module data and details of the target processor are always included in the linked
unit output file in the form of a comment. This information may also be directed to
a named output file by using the MO command line option.

The file contains a map of the code being linked and contains information which
may assist the user during program debugging. It is generated in text format and

72 TOS 34601 October 1992

9 ilink - linker 229

covers two categories of input file; separate compilation units, and library modules.
The map consists of single line records containing a number of fields. Fields have
a single character name followed by a colon. The following information is included:

9.7.1 MODULE record:

A module record is created for each component module in the linked unit.

Record Description
name

N Module number assigned by the linker.

S Source filename, may be empty if string is unobtainable.

F Object filename, the name of the file of library from which the mod-
ule has been loaded. This will be the full path name.

0 File offset, the offset (in bytes) of the module within its object file.

R Reference, an external symbol that is used for loading the module
from a library. This field will be blank it the module was not loaded
from a library.

M The compilation mode, processor type/class.

9.7.2 SECT record:

A section record is created for each section in the linked unit and shows where it
is located.

Record Description
name ~

N Section number assigned by the linker.

R Name of the section.

A Section attributes, where R - read, W - write, X - execute, 0-
debug, V - virtual.

P Whether the code has been placed at a fixed address; either N (no)
or Y (yes).

0 The offset in bytes of the section within the code.

S The size in bytes of the section.

9.7.3 MAP record:

This record shows how a region of the linked unit is mapped to a module and sec­
tion.

72TDS 346 01 October 1992

230 9.8 Using imakef for version control

Record Description
name

M Module number of the module that supplied this region.

R Section number of the section in which this region lies.

A Address of the region, in bytes.

S Size of the region, in bytes.

9.7.4 Value record:

This record shows the value of a symbol after linkage.

Record Description
name

N Section number assigned by the linker.

0 Name of the origin symbol - occam modules only. (Used by the
linker to ensure the order of compilation is correct in respect to
IUSE) .

M Module number of the exporting module.

U Whether the symbol has been used (externally at least); either N
(no) or Y (yes).

V Value of the symbol after linking. Expressed as a decimal integer or
as a section number plus byte offset into that section.

9.8 Using imakef for version control

The imakef tool may be used to simplify the linking ofcomplex programs, particu­
larly those which use libraries that are nested within other libraries or compilation
units.

Note: For imakef to function correctly the special file extension system described
in section 11.3 and appendix A must be used.

9.9 Error messages

This section lists each error and warning message that can be generated by the
linker. Messages are in the standard toolset format which is explained in appen­
dixA.

9.9.1 Warnings

filename • bad format: reason

The named file does not conform to a recognized INMOS file format or has
been corrupted.

72 TOS 34601 October 1992

9 ilink - linker 231

Size bytes too large for 16 bit target

The code part of the linked unit has exceeded the address space of the
T212 derived processor family.

filename - symbol, implementation of channel arrays has changed

Only generated in programs where occam code is used that was compiled
in LFF format. The implementation of channel arrays in occam differs
between the earlier occam 2 compiler and the current TCOFF-based con­
figurer, and channel arrays cannot therefore be used as parameters to con­
figured procedures.

filename • symbol symbol not found

The specified symbol was not found in any of the supplied modules or
libraries.

file1 • usage of symbol out of step with file2

May be generated when linking programs incorporating occam modules
with a #USE directive, which causes the compiler to scan the file for details
concerning certain program resources. This file must be unchanged at link
time, and the message indicates that this is not the case. There are several
possible causes:

file2 has been recompiled after file1, in which case file1 requires
recompiling.

2 The file that occurred in the #USE directive has been replaced by
a different version of the file at link time.

3 The file that occurred in the #USE directive has not been supplied
to the linker, but the linker has located a different version of a
required entry point elsewhere.

The occam compiler oc may need to scan certain libraries, of which the
user is unaware. Specifying one of the special occam linker indirect files
occam2 . Ink, occama .lnk or occam8 . Ink should take care of these
'hidden'libraries.

9.9.2 Errors

filename • name clash with symbol from filename

May be generated when linking mixed language programs incorporating
occam modules.

In languages such as occam entry points may be scoped, i.e. extra
information is associated with each symbol to indicate which version of that
entry point it is. This allows programs to be safely linked even though there

72 TDS 346 01 October 1992

232 9.9 Error messages

are several different versions of the same entry point occurring at different
lexical levels within the program.

This error indicates that a language without occam-type scoping has been
mixed with a scoped language and a name conflict has occurred between
a scoped and non scoped symbol.

filename • symbol symbol multiply defined

The symbol, introduced in the specified file, has been introduced pre­
viously, causing a conflict. The same module may have been supplied to
the linker more than once or there may be two or more modules with the
same entry point or data item defined.

filename • symbol symbol not found

The specified symbol was not found in any of the supplied modules or
libraries.

filename • usage of symbol out of step with namefile

May be generated when linking programs incorporating modules with a
'USE directive which causes the compiler to scan the file for details con­
cerning certain program resources. This file must be unchanged at link
time, and the message indicates that this is not the case. There are several
possible causes:

file2 has been recompiled after file1, in which case file1 requires
recompiling.

2 The file that occurred in the 'USE directive has been replaced by
a different version of the file at link time.

3 The file that occurred in the 'USE directive has not been supplied
to the Iinker, but the linker has located a different version of a
required entry point elsewhere.

The occam compiler oc may need to scan certain libraries, of which the
user is unaware. Specifying one of the special occam linker indirect files
occam2 . Ink, occama . Ink or occam8 . Ink should take care of these
'hidden' libraries.

9.9.3 Serious errors

filename • bad format: reason

The named file does not conform to a recognized INMOS file format or has
been corrupted.

filename - line number· bad format: excessively long line in indirect file

A line is too long. The length is implementation dependent, but on all cur­
rently supported hosts it is long enough so as only to be exceeded in error.

72 TDS 34601 October 1992

9 ilink -linker 233

filename - line number· bad fonnat: file name missing after directive

A directive (such as include) has no file name as an argument.

filename - line number· bad format: directive invalid number

A numeric parameter supplied to a directive does not correspond to the
appropriate format.

filename • bad format: multiple main entry points encountered

A symbol may be defined to be the main entry point ofa program by a com­
piler. Only one such symbol must exist within a single link.

filename • linenumber • bad fonnat: non ASCII character in indirect file

The indirect file contains some non printable text. A common mistake is to
specify a library or module with the 'F' command line argument or an
include directive.

filename • bad format: not linkable file or library

The linker expects that all files names presented without a preceding
switch (on the command line) or directive (in an indirect file) are either
libraries or modules.

filename - line number· bad format: only single parameter for directive

The directive has been given too many parameters.

Cannot create output without main entry point

No main entry point has been specified.

Command line: 1k minimum for paged memory option

When using the KB option, the amount of memory used to hold the image
of the program being linked is specified. There is a minimum size of 1k.

Command line: token

An illegal token has been encountered on the command line.

Command line: bad format number

A numerical parameter of the wrong format has been found.

Command line: image limit multiply specified

. The command line option 'KB' has been specified more than once.

Command line: 'load and terminate' option set, some arguments invalid

Options to load and terminate the linker have been specified in conjunction
with other command line options. The linker cannot execute these options
if it has been instructed to terminate first.

72 TDS 346 01 october 1992

234 9.9 Error messages

Command line: multiple debug modes

The command line option 'y' has been specified more than once.

Command line: multiple error modes

More than one error mode has been specified to the linker.

Command line: multiple module files specified

The command line option 'MO' has been specified more than once.

Command line: multiple output files specified

The command line option '0' has been specified more than once.

Command line: multiple target type

More than one target processor type has been specified to the linker.

Command line: only one output format allowed

The options 'T', 'LB' and 'Le' are mutually exclusive.

filename· could not C?pen for input

The named file could not be found/opened for reading.

filename • could not open for output

The named file could not be opened for writing.

filename - line number· could not open for reading

The file name specified in an include directive could not opened.

Could not open temporary file

The 'KB' option has been used in a directory where there is no write access
or not enough disc space.

filename • mode: mode • linker mode: mode

The linker has been given a module to link which has been compiled with
attributes incompatible with the options (or lack thereof) on the linker com­
mand line.

Invalid or missing descriptor for main entry point symbol

Applies to occam modules only. The specified main entry point to the pro­
gram does not have a valid occam descriptor. This occurs if the wrong
symbol name has been used, for example a data symbol in C.

Multiple main entry points specified

The main entry point has been specified on the command line orin an indi­
rect file more than once.

72 TDS 34601 October 1992

9 ilink -linker 235

filename - line number· directive not enough arguments

The wrong number of arguments have been supplied to a directive.

filename • nothing of importance in file

The file name specified in an include directive was empty or contained
nothing but white space or comments.

Nothing to link

Various options have been given to the linker but no modules or libraries.

filename - line number· only one file name per line

More than one file name has been placed on a single line within an indirect
file.

filename - line number· directive too many arguments

The wrong number of arguments have been supplied to a directive.

Unknown error modes not supported in the LFF format
Unknown processors not supported in the LFF format

When generating LFF format files, certain constructs will have no repre­
sentation. For example processor types that have come into existence
since the LFF format was defined.

filename - line number· unrecognised directive directive

An unrecognized directive has been found in a linker indirect file.

9.9.4 Embedded messages

Tools that create modules to be linked with ilink may embed "messages" within
them. Three levels of severity exist; serious, warning, and message. The docu­
mentation of the appropriate tool should be consulted for more information. The
format of these messages is as follows:

Serious· ilink· filename· message: message
Warning· ilink · filename • message: message
Message • ilink . filename • message

72 TDS 34601 October 1992

236

72 TDS 34601

9.9 Error messages

October 1992

10 ilist - binary lister

This chapter describes the binary lister tool ilist, which takes an object file and
displays information about the object code in a readable form. The chapter pro­
vides examples ofdisplay options and ends with a list oferror messages which may
be generated by ilist.

10.1 Introduction

The binary listertool ilist reads an object code file, decodes it, and displays use­
ful information about the object code on the screen. The output may be redirected
to a file. Command line options control the type of data displayed.

The ilist tool can decode and display object files produced by icc, by the linker,
librarian, configurer and collector tools, and by other compatible INMOS compilers
such as the occam 2 compiler oc. Files in editable ASCII format are listed without
further processing.

The ilist tool will also list compilation and linked units in Linker File Format used
by earlier versions of the INMOS toolsets (such toolsets are the IMS
0705/0605/0505 and the 0711/0611/0511 series toolsets).

Also, because ilist uses the same method to locate files as the other tools (see
section A.4) it can be used to find and display the location of header files and library
files in the search path specified by I SEARCH.

10.2 Data displays

There are several categories of data that can be displayed. Categories are
selected by options on the command line. The main categories are:

• Symbol data - symbol names in each module. Information is displayed in
tabular form.

• External reference data - names of external symbols used by each mod­
ule. Information is displayed in tabular form.

• Module data - data for each module including target processor, compila­
tion mode, and module file name.

• Code listing - code contained in each module, displayed in hexadecimal
format.

• Index data - the content of library indexes.

72 TOS 34601 october 1992

238 10.3 Running the binary lister

• Procedural data - for external occam calls only.

10.2.1 Modular displays

Object code files reflect the modular structure of the original source. Single unit
compilations produce a file containing a single object module, whereas units con­
taining many compilations, such as libraries and concatenations of modules, pro­
duce object files with as many object modules. The data produced by ilist
reflects the modular composition of object files.

10.2.2 Example displays used in this chapter

Except where indicated, the example displays used in this chapter showthe output
generated from the lister for the compiled (. tea) file generated by iee for the
'Hello World' example program. The program was compiled for a T425 processor.

10.3 Running the binary lister

To invoke the binary lister use the following command line:

~ i list { filenames} {options}

where: filenames is a list of one or more files to be displayed.

options is a list of one or more of the options given in Table 10.1.

Options must be preceded by '-' for UNIX-based toolsets and 'I' for
MS-DOS and VMS based toolsets.

Options may be entered in upperor lower case and can be given in any
order.

Options must be separated by spaces.

Only one filename may be given on the command line.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Note: Options will only be applied to files of the appropriate file type. If the file can­
not be displayed by the specified option, an error message is generated and the
file is not displayed.

Example of use:

ilist hello. tea -a
ilist hello. tea la

72TDS 346 01

(UNIX based toolsets)
(MS-DOS and VMS based toolsets)

October 1992

10 ilist - binary lister 239

Option Description

A Displays all the available information on the symbols used within
the specified modules.

C Displays the code in the specified file as hexadecimal. This
option also invokes the 'T' option by default.

E Displays all exported names in the specified modules.

H Displays the specified file(s) in hexadecimal format.

I Displays full progress information as the lister runs.

M Displays module data.

N Displays information from the library index.

o filename Specifies an output file. If more than one file is specified the last
one specified is used.

p Displays any procedural interfaces found in the specified mod-
ules.

R reference Displays the library module(s) containing the specified refer-
ence. This option is used in conjunction with other option to dis-
play data for a specific symbol. If more than one library file is
specified the last one specified is used.

T Displays a full listing of a file in any file format.
w Causes the lister to identify a file. The filename (including the

search path if applicable) is displayed followed by the file type.
This is the default option.

X Displays all external references made by the specified modules.

Table 10.1 ilist command line options

ilistwill attempt to identify the file type by its contents. Iffilenames only are sup­
plied, ilist uses the default option 'w" and simply displays the file's identity.

Examples of ilist usage and the displays generated by the options can be found
in succeeding sections.

10.3.1 Options to use for specific file types

Table 10.2 lists the available options and indicates which file formats they may be
used to list. The table also lists the file types it is recommended to use with each
option, in order of usefulness.

72 TDS 34601 October 1992

240 10.4 Specifying an output file - option 0

Option Permitted file format Recommended usage

H Any format

0 Any format

T Any format

W Any format

A TCOFF only . lib, .teo, .lku
C TCOFF only .teo, .lku, .lib
E TCOFF only . lib, .teo, .lku
M TCOFF only .teo, .lku, .lib
N TCOFF libraries only .lib
p TCOFF only .lib, .teo, .lku
R TCOFF libraries only .lib
X TCOFF only . lib, .teo, .lku

Table 10.2 Recommended options

10.3.2 Output device

ilist sends its output to the host standard output stream, normally the terminal
screen. Facilities available on the host system may allow you to redirect the output
to a file, or send it to another process, such as a sort program. For details of these
facilities consult the documentation for your system. Alternatively the ilist '0'
command line option may be used to redirect output to a specified file.

10.3.3 Default command line

A set of default command line options can be defined for the tool using the
ILlSTARG environment variable. Options must be specified using the syntax
required by the command line.

10.4 Specifying an output file - option 0

The 0 option enables the user to redirect the display data to an output file. If more
than one output file is specified on the command line then the last one specified
is used. File extensions should be specified, because defaults are not assumed.

Display options are described in the following sections 10.5 to 10.15. Options are
given in alphabetical order.

72 TDS 34601 October 1992

10 ilist - binary lister

10.5 Symbol data - option A

241

This option displays all the available information about the symbols used within the
specified modules. A tabular format is used.

Note: The data produced by this display is extensive and detailed and assume
some knowledge of the object file format.

The following information is given:

• Symbol name.

• Section attributes, if applicable.

• Symbol attributes.

• The number of the symbol within the module plus the number of its origin.

• Module name.

• Target processor.

• Error mode.

• Interactive debugging - if disabled indicated by the presence of a 'y' char­
acter. If this field is blank then interactive debugging is enabled.

10.5.1 Specific section attributes

Certain attributes apply only to symbols which are section names. If they are appli­
cable, these attributes are indicated by the following nomenclature and displayed
as a character string:

R - Read section.

W - Write section.

X - Execute section.

D - Debug section.

V - Virtual section.

10.5.2 General symbol attributes

Attributes for all symbols, including section names, are also indicated by a charac­
ter string, using the following nomenclature:

72 TDS 34601 October 1992

242 10.6 Code listing - option C

Symbol Description attribute
L Symbol local to the module.

E Symbol exported from the module.
I Symbol imported to the module.

W Weak attribute, indicates that the symbol takes the value 0 when
not defined.

C Conditional attribute, indicates that the first value given to the
symbol is always used.

U Unindexed, indicates that the symbol is not present in the library
index.

p Provisional attribute, indicates that the last value given to the
symbol is always used.

0 Indicates that the symbol is an origin symbol. The origin symbol
is used by the linker to check the origin of the module.

Symbol attributes are displayed immediately after the section attributes, and each
attribute is displayed at a specific position in the string. Attributes which are not
present are indicated by a hyphen '-'.

The position of each attribute in the string is as follows:

RWXDV LElweupo

10.5.3 Example symbol data display

Figure 10.1 shows the symbol data display for the compiled file hello. teo.

module%table%base
module%number
static%base
local%static
%lsb
text%base
local%text
next%common
main
_1MSyrintf
static%space

----v -E------ 0
----- L------- 1
----v -E------ 2
----- L------- 3
----- L------- 4
R-X-- -E------ 5
----- L------- 6
----- -E--CU-- 7
----- -E------ 8
----- --1----- 9
----- -E---UP- 10

hello.c
hello.c
hello.c
hello.c
hello.c
hello.c
hello.c
hello.c
hello.c
hello.c
hello.c

T425 X
T425 X
T425 X
T425 X
T425 X
T425 X
T425 X
T425 X
T425 X
T425 X
T425 X

_Figure 10.1 Example output produced by the A option.

10.6 Code listing - option e

The 'e' option produces a full listing of the code in the same format as that gener­
ated by the 'T' option, but with the addition of a hex listing of the code at each
LOAD TEXT directive. This option may be accompanied by the 'T' option; if the 'T'
option-is not specified it is supplied automatically.

72 TDS 346 01 October 1992

10 ilist - binary lister 243

The output from this option gives an ASCII dump, in hexadecimal format, of the
code for each module. It can be used on any object code.

When used to display object code produced by the occam compiler, the code for
each module is displayed as a contiguous block of lines, where each line has the
format:

address ASCII hex ASCII characters

where: address is the address of the first byte on the line, expressed as an offset
from the start of the module.

ASCII hex is the hex representation of the code

ASCII characters are the ASCII characters corresponding to the hex code.

In all cases code is read from left to right. If a value is not printable it is replaced
by a dot (. '.

10.6.1 Example code listing display

Figure 10.2 shows the code listing display for the compiled file hello. tco.

00000000 LINKABLE
00000002 START MODULE CORE FMUL FPSUP DUP WSUBDB MOVE2D CRC BITOPS FPTSTERR

LDDEVID DBGSUP TMRDIS LDMSTVL POP BIT32 MS=28 ICALL X lang: ANSI C
00000010 VERSION tool: ice origin: hello.c -
0000001E SECTION VIR EXP "module%table%base" id: 0
00000034 SET LOAD POINT id: 0
00000037 SYMBOL LaC "module%number" id: 1
00000048 DEFINE LABEL id: 1
0000004B SECTION VIR EXP "static%base" id: 2
0000005B SET LOAD POINT id: 2
0000005E SYMBOL LaC "local%static" id: 3
0000006E DEFINE LABEL id: 3
00000071 SYMBOL-LOC "%lsb" id: 4
00000079 DEFINE SYMBOL id: 4 SS:0+SV:3
00000081 SECTION REA EXE EXP "text%base" id: 5
0000008F SET LOAD POINT id: 5
00000092 SYMBOL LaC "local%text" id: 6
OOODOOAO DEFINE LABEL id: 6
000000A3 SYMBOL-EXP CON UNI "next%common" id: 7
000000B2 DEFINE SYMBOL id: 7 SS:2
000000B7 COMMENT bytes: 5
000000C1 LOAD EXPR size: 4 SV:1
000000C6 SYMBOL EXP "main" id: 8
OOOOOOCE DEFINE SYMBOL id: 8 SV:6+4
000000D6 SYMBOL-IMP "_IMS-printf" id: 9
000000E5 LOAD TEXT bytes: 24
000000E8 4521FB71 219222FO OA48656C 6C6F2057 E!.q!." .. Hello W
000000F8 6F726C64 OA002020 orld..
00000100 LOAD PREFIX size: 6 AP(SV:9-LP) instr:
00000109 LOAD-TEXT bytes: 2
0000010C 2020-
0000010E COMMENT bytes: 33
00000134 SYMBOL EXP UNI PRO "static%space" id: 10
00000144 DEFINE SYMBOL id: 10 SV:7
00000149 END_MODULE

Figure 10.2 Example output produced by the c option

72 TOS 346 01 October 1992

244

10.7 Exported names - option E

10.7 Exported names - option E

The output from this option is in a tabular format. It consists of a list of names
exported by the modules. This option also displays any globally visible data.

The following information is given by the display:

• Exported name.

• The name of the module in which the exported name is found.

• Language used.

• Target processor.

• Error mode.

• Interactive debugging - if disabled indicated by the presence of a ry' char­
acter. If this field is blank then interactive debugging is enabled.

10.7.1 Example exported names display

Figure 10.3 shows the exported names display for the compiled file hello. teo.

main -> hello.c T425 X

Figure 10.3 Example output produced by the E option

10.8 Hexadecimal/ASCII dump - option H

This option provides a display of the specified files in hexadecimal and ASCII for­
mat. The option does not attempt to identify file types and may be used to display
any files which the lister has previously identified incorrectly.

The output takes the form of a hexadecimal representation of the whole of the file
content. The display has a similar appearance to that produced by the C option,
however, the C option only functions on code found within the file.

Each module is displayed as a contiguous block of lines, where each line has the
format:

address ASCII hex ASCII characters

where: address is the address of the first byte on the line, expressed as an offset
from the start of the module.

72 TDS 346 01 October 1992

10 ilist - binary lister 245

ASCII hex is the hex representation of the code

ASCII characters are the ASCII characters corresponding to the hex code.

In all cases code is read from left to right. If a value is not printable it is replaced
by a dot I. '.

10.8.1 Example hex dump display

Figure 10.4 shows the hex dump display for the compiled file hello. teo.

00000000 0100020C FOFFFE1F 00F052EO 07000400
00000010 1BOC0369 63630768 656C6C6F 2E630B14
00000020 10021160 6F64756C 65257461 626C6525
00000030 62617365 0401001E OF010060 6F64756C
00000040 65256E75 60626572 OE01010B OE10020B
00000050 73746174 69632562 61736504 01021EOE
00000060 010C6C6F 63616C25 73746174 69630E01
00000070 031E0601 04256C73 620F0604 06040003
00000080 030BOC06 02097465 78742562 61736504
00000090 01051EOC 010A6C6F 63616C25 74657874
OOOOOOAO OE01061E 00320B6E 65787425 636F6060
OOOOOOBO 6F6EOF03 07040214 08000005 00008194
OOOOOOCO 06080304 03011E06 02046061 696EOF06
OOOOOODO 08060306 01041EOO 040B5F49 40535F70
OOOOOOEO 72696E74 66061918 4521FB71 219222FO
OOOOOOFO OA48656C 6C6F2057 6F726C64 OA002020
00000100 07070600 07030902 00060302 20201424
00000110 00002103 03010001 OE050404 03060800
00000120 000E0908 040EOBOA 040EOOOC OA040E04
00000130 OFOC101C 1EOE620C 73746174 69632573
00000140 70616365 OF030A03 070300

•••••••••• R•••••
.•• icc.hello.c ••
...module%table%
base modul
e%number .
static%base .
· .local%static ..
.••.• %lsb••.
· text%base •
...•.. local%text
•••.. 2.next%comm
on .
.•........main ..
..••••.•.•_IMSy
rintf ... E! .q!.".
.Hello World ..
•• •• •• •• •• •• • $
.. ! .

• .••.. b. static%s
pace•..

Figure 10.4 Example output produced by the H option

10.9 Module data - option M

This option displays any header information which is present. This may include ver­
sion control data, general comments that may have been appended to the file dur­
ing use of the toolset and copyright information. The data is displayed for individual
modules in the object file and includes:

• Module name

• Transputer type and compilation error mode

• Language type

• Version control data

• Comments inserted by the toolset, for example, copyright clauses.

Data is displayed in separate blocks for each module. Some ofthe data is also used
by other tools in the toolset, for example, some comments are used by the debug-

72TDS 34601 October 1992

246 10.10 Library index data - option N

ger tool idebug while version information is used by some tools for compatibility
testing.

When linked units are displayed using this option, a long comment will be dis­
played. This comment gives details of the allocation of memory to each separately
compiled code and library module used in the linked module. The following
information is given in tabular format:

• Code type - Separately compiled code (SC) or library module (LIB).

• Module name.

• Address offset in linked module.

• Start address.

• End address.

• Reference in library (if applicable) used to locate the relevant library mod­
ule.

10.9.1 Example module data display

Figure 10.5 shows the module data display for the compiled file hello. teo.

MODULE: ANSI C T425 X
VERSION: ice hello.c

Figure 10.5 Example output produced by the M option

10.10 Library index data - option N

This option is used to list library indexes. The data is given in a tabular format. For
each entry in the index the following information is given:

• The address of the module in the library.

• The symbol name.

• The language the module is written in.

• The target processor type.

• The error mode used.

72TOS 34601 October 1992

10 ilist - binary lister 247

• Interactive debugging - if disabled indicated by the presence of a 'V' char-
acter. If this field is blank then interactive debugging is enabled.

10.10.1 Example library index display

Figure 10.6 shows part of the output produced by the 'N' option for one of the stan­
dard C library files.

00025C21 ie64op.pax:8340AC71
00036155 xlink1.pax:F11BAD5A
00034AF7 DATAN2%c
000330DO DCOS%c
0000B898 DefaultSignalHandler%c
0001CAC6 floorf
0002007B get static size%c
000129AD sub=vfprintf%c

OCCAM
OCCAM
OCCAM
OCCAM
ANSI C
ANSI-C
ANSI-C
ANSI=C

TA X
TA X
TA X
TA X
TA X
TA X
TA X
TA X

Figure 10.6 Example output produced by the N option

10.11 Procedural interface data - option P

This option is only applicable to occam modules or mixed language programs. It
displays procedural interface information for all external occam functions and pro­
cedures. The following information is displayed for each module:

• Target processor.

• Error mode.

• Language used.

• Amount of workspace us~d by the procedure or function, in words.

• Amount of vector space used by the procedure or function, in words.

• Parameters used by the procedure or function.

• Data type of parameters.

• Channel usage, if applicable.

Channel usage is displayed in occam notation. A channel marked with an ? is an
input channel to the code of that entry point, and a channel marked with ! is an
output channel.

When a library file is listed this will be indicated by the words 'INDEX ENTRY
mode:' rather than 'OESCRIPTOR mode'.

10.11.1Example procedural data display

Figure 10.7 shows an example procedural data display for a compiled occam
module. This example is taken from the 'simple' example occam program com­
piled by oc for the TA processor class.

72 TDS 34601 October 1992

248 10.12 Specify reference - option R

DESCRIPTOR mode: TA H language: OCCAM
DESCRIPTOR mode: TA H language: OCCAM
ws: 75 vs: 128
PROC simple(CHAN OF SP fs,
CHAN OF SP ts,
[] INT memory)

SEQ
fs?
ts!

<ORIGIN DESCRIPTOR>

Figure 10.7 Example output produced by the P option

10.12 Specify reference - option R

This option is used in conjunction with any of the other display options to locate a
specific symbol within a named library. All library modules that export the symbol
are displayed.

The exact format of the display depends on the main display option with which R
is used.

Note: Symbol names must be specified in the correct case.

10.13 Full listing -option T

This option displays all data found in the input file. Provided that ilist recognizes
the file type, the file is decoded in its own format. Text file are displayed as text and
unrecognized file types are displayed as a hexadecimal dump.

Data is not displayed in a tabular form but is output in the sequence in which it is
found in the module.

The display formats are tailored to each file format and are intended for diagnostic
support and analysis; large amounts of data are produced which may require
skilled interpretation.

10.13.1 Example full data display

Figure 10.8 shows the full data display for the compiled file hello. teo.

72 TDS 34601 October 1992

10 ilist - binary lister 249

00000000 LINKABLE
00000002 START_MODULE CORE FMUL FPSUP DUP WSUBDB MOVE2D CRC BITOPS FPTSTERR

LDDEVID DBGSUP TMRDIS LDMSTVL POP BIT32 MS=28 ICALL X lang: ANSI C ww
00000010 VERSION tool: ice origin: hello.c -
0000001E SECTION VIR EXP wmodule%table%baseWid: 0
00000034 SET LOAD POINT id: 0
00000037 SYMBOL LOC wmodule%numberw id: 1
00000048 DEFINE LABEL id: 1
0000004B SECTION VIR EXP Wstatic%baseWid:
0000005B SET LOAD POINT id: 2
0000005E SYMBOL LOC Wlocal%staticWid: 3
0000006E DEFINE LABEL id: 3
00000071 SYMBOL-LOC W%lsbWid: 4
00000079 DEFINE SYMBOL id: 4 SS:0+SV:3
00000081 SECTION REA EXE EXP Wtext%base Wid: 5
0000008F SET LOAD POINT id: 5
00000092 SYMBOLLOC Wlocal%textWid: 6
OOOOOOAO DEFINE LABEL id: 6
000000A3 SYMBOL-EXP CON UNI Wnext%common Wid: 7
000000B2 DEFINE SYMBOL id: 7 SS:2
000000B7 COMMENT bytes: 5
000000C1 LOAD EXPR size: 4 SV:1
000000C6 SYMBOL EXP "main" id: 8
OOOOOOCE DEFINE SYMBOL id: 8 SV:6+4
00000006 SYMBOL-IMP w_IMS-printfW id: 9
000000E5 LOAD TEXT bytes: 24
00000100 LOAD-PREFIX size: 6 AP(SV:9-LP) instr: j
00000109 LOAD-TEXT bytes: 2
0000010E COMMENT bytes: 33
00000134 SYMBOL EXP UNI PRO "static%space" id: 10
00000144 DEFINE SYMBOL id: 10 SV:7
00000149 END_MODULE

Figure 10.8 Example output produced by the T option

10.13.2 Configuration data files

The full data listing of a configured (. cfb) file shows how the processes are
mapped onto a transputer system and has adifferent appearance to otherdisplays
produced by this option.

10.14 File identification - option w

This option causes the lister to identify the file type. ilist takes a heuristic
approach to file identification. The filename is displayed along with the file type.
The full path to the file is also displayed if the file is not in the current directory (Le.
if it has been found in the search path specified in the ISEARCH environment vari­
able). This is the default command line invocation if no other option is supplied.

Table 10.3 indicates how the lister classifies file types.

72 TDS 346 01 October 1992

250 10.14 File identification - option w

File format Default Listed file type
extension

TCOFF compiled unit .teo TCOFF LINKABLE UNIT

TCOFF compiled library .lib TCOFF LINKABLE UNIT LIBRARY
unit

TCOFF linked unit .lku TCOFF LINKED UNIT
TCOFF linked library unit .lib TCOFF LINKED UNIT LIBRARY
Configuration binary .efb CONFIGURATION BINARY
Core dump .dmp CORE DUMP FILE

Network dump .dmp NETWORK DUMP

LFF file .exx, LFF SC
.txx

LFF library .lib LFF LIBRARY

Extracted SC .rxx EXTRACTED SC
iboot program .bxx BOOTABLE PROGRAM (iboot)

Extracted program .btl BOOTABLE PROGRAM

Empty file - EMPTY FILE

Text files - TEXT FILE

None of the above - UNKNOWN BINARY FORMAT

Table 10.3 File types recognised by ilist

where: SC files are separately compiled files.

LFF files are separately compiled or linked files in LFF format.

Extracted files are files which have been compiled and developed to be
dynamically loaded onto a transputer system.

iboo·t programs are programs which have had a bootstrap added by the
iboot tool, supported by previous issues of the toolset Le. the IMS
0711/0611/0511 and 0705/0605/0505 series toolsets.

10.14.1 Example file identification display

Figure 10.9 shows the file identification display for the compiled file hello. teo.
and two linker control files. This output was generated by the following command:

ilist hello.teo oecama.lnk clibsrd.lnk

72 TOS 346 01 October 1992

10 ilist - binary lister

hello.teo
/home/D4205/libs/oeeama.lnk
/home/D4300/libs/elibsrd.lnk

TCOFF LINKABLE UNIT
TEXT FILE
TEXT FILE

251

Figure 10.9 Example output produced by the woption

10.15 External reference data - option x

This option displays a list ofall the code and data symbols imported by the modules
specified to the lister, Le. it lists their external references. External references are
references to separately compiled units. For C programs the option will also display
any external references to globally visible data.

The output from this option is in a tabularformat. It consists of a list ofexternal refer­
ences and their associated modules. The following information is displayed:

• External reference Le. name of the separately compiled unit.

• The name of the module in which the external reference exists.

• Language used.

• Target processor.

• Error mode.

• Interactive debugging - if disabled indicated by the presence of a 'Y' char­
acter. If this field is blank then interactive debugging is enabled.

10.15.1 Example external reference data display

Figure 10.10 shows the external reference data display for the compiled file
hello.teo.

_IMSJ>rintf (- hello.c T425 X

Figure 10.10 Example output produced by the x option

10.16 Error messages

This section lists error and warning messages that can be generated by the lister.
Messages are in the standard toolset format which is explained in appendix A.

72 TDS 34601 October 1992

252

10.16.1 Warning messages

filename - reason

10.16 Error messages

The named file does not conform to a recognized INMOS file format
or has been corrupted.

10.16.2 Serious errors

filename - bad format: reason

The named file does not conform to a recognized INMOS file format
or has been corrupted.

filename - could not open for input

The named file could not be found/opened for reading.

filename - could not open for output

The named file could not be opened for writing.

filename - file type does not correspond to command line options

The options given to the lister apply to formats dissimilar to the for­
mat of the file being read.

must supply additional TCOFF options with reference reference

The required format of the listing has not been specified.

filename - no entry for reference in library index

The specified reference cannot be found in the library index.

parsing command line token

An unrecognized token was found on the command line.

filename - unexpected end of file

The named file does not conform to a known INMOS file format or
has been corrupted.

72 TDS 34601 October 1992

11 imakef - makefile
generator

This chapter describes the makefile generator imakef that creates makefiles for
input to make programs. It explains how the tool can be used to create makefiles
and describes the special file naming conventions that allow imakef to create
makefiles for mixtures ofcode types. The chapter describes the format ofmakefiles
generated by imakef and ends with a list of error messages.

11.1 Introduction

Make programs automate program building by recompiling only those components
that have been changed since the last compilation. To do this they read a makefile
which contains information about the interdependencies of files with one another,
along with command lines for rebuilding the program.

imakef creates makefiles for all types oftoolset object files, using its built in knowl­
edge of how files referenced within the target file depend on one another. It is
intended to be used with aliiNMOS compiler systems that generate TCOFF object
code, which includes the the ANSI C compiler ice, the occam 2 compiler oc and
the FORTRAN 77 compiler if77. Its mode of operation with different languages
is controlled by command line options. The makefile is generated in a standard for­
mat for input to most make programs.

Makefiles created using imakef are compatible with many public domain and pro­
prietary make programs. The following make programs are directly compatible:

• Borland make.

• Unix make.

• Microsoft nmake.

• Gnu make.

However, the older Microsoft make program "make" is not compatible.

The source of imakef is supplied with the toolset so that it can be modified for use
with other make programs.

11.2 How imakef works

imakef operates by working back from the target file to determine its depen­
dences on other files, using its knowledge of inputs and outputs of each tool and

72TDS 34601 October 1992

254 11.3 File extensions for use with imakef

the compilation architecture of the toolset. For example, compiled object files must
be created from language source files using the compiler.

In a similar way linked files must be generated from compiled files. imakef
assumes that programs targeted at a single transputer are not required to be confi­
gured. Bootable files may therefore be generated from linked units or configuration
data files. imakef works back from the target file, determining file dependencies
and creating commands to recreate the target file, recompiling and relinking where
necessary.

11.3 File extensions for use with imakef

imakef identifies files and file types by a special set of file extensions which iden­
tify the transputer target type and compilation error mode. This allows the tool to
produce makefiles for mixed module combinations.

Note: The extensions that imakef requires differ in most cases from the standard
toolset default extensions which are described in section A.5. For imakef to work
correctly the extensions described in section 11.3.1 must be used on all intermedi­
ate and target files, at all stages of program development Le. compiling, linking,
configuring, and booting.

The file naming convention uses a three-character extension which identifies the
type offile and in most cases includes the transputertarget and error mode. Source
files for the most part use standard language extensions.

11.3.1 Target files

The following table lists the types of object code files for which imakef can create
makefiles, along with the file extension formats that must be used.

Target file File extension

Compiled code. .txx

Linked code. .cxx
Bootable code for single transputer programs. .bxx

Bootable code for multitransputer programs. .btl

Dynamically loadable code. .rxx

Libraries. .lib

Configuration binary file. .cfb

Library usage file. .liu

Library indirect file. .lbb

Compiled, linked, bootable and non-bootable files, whatever their language origin,
have a transputer target designator as the second character of the extension, and

72 TDS 34601 October 1992

11 imakef - makefile generator 255

an error mode designatoras the third character. Accepted values of these designa­
tors are listed below.

2nd Transputer types
Character supported

2 T212, T222, M212

3 T225

4 T414

5 T426, T425, T400

8 T800

9 T805, T801

a Class TA

b Class TB

3rd Error mode
Character

x UNIVERSAL

h HALT

s STOP

Examples:

. t4x - refers to a compiled module targetted for T4 transputers, in UNI­
VERSAL error mode.

. tah - refers to a module targetted for the any 32-bit transputer in HALT
error mode.

Compiled code generated by icc or if77 is in UNIVERSAL mode, designated by
the character 'x'. HALT and STOP code can be generated by the occam 2 com­
piler oc.

Transputer types are explained further in section B.2.

Program development using imakef and the extensions to use are illustrated in
Figure 11.1. Target files which can be created by imakef are shown in bold.

72TDS 346 01 October 1992

T
ar

ge
tf

ile
s

in
b

o
ld

r-
--

--
--

--
--

--
--

-,
r
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
'

C
om

pi
la

tio
n:

I
I

C
on

fig
ur

at
io

n:

I\
.)

0
1 en

.&
.

....
.&

.

CA ::!! CD (1
)

~ (1
) ::s (n er ::s (n 0- ., c: (n (1
) =E ;:
;

:::
T

~
. ~ ~ (I
) I-
b

--
--

--
--

--
-,

f::
::\

C
an

d
FO

R
TR

A
N

:
[
~

~
•

ic
c
o

n
f

.c
fb

,
Q

oc
ca

m
:

I
~

e
·o

c
c
o

n
f

.c
fb

J
~

L
_

L
-
-

J

Ii
1
i
b
r
~

r-
--

--
--

--
--

--
--

--
-

I
Li

nk
.

bo
ot

an
d

lo
ad

:
I I I

!
I

.Q

--
--

-.

oc
ca

m
:

'-
"

(
.

\
\

.!
nC ~

o
c

1-
FO

R
TR

A
N

:
'-

"
(
.

\
\

.!
nC

"
I

C: 1
'-

"
\

.h
\ &

ic
c

1-

(
'-

"
\

.fT
7)

I
"
-

L
_

~ tu :i" m ca ga. ::
!t CD en en ::
r ~. :::
J

cc CD ~ CD :::
J en er :::
J en CD .c c: a· Q
.

"'T
1

cC
·

c: CD

....
...
~ -f o en ~ 0

') o o S
l

o C
"

CD .., <
0

<
0
~

11 imakef - makefile generator

11.4 Linker indirect files

257

For C and FORTRAN modules linker indirect files must be created for all linked
units where imakef will be used to generate atarget file. Linker indirect files define
to imakef the components of the linked unit, providing a starting point for working
out file dependencies.

Linker indirect files must be named after the linked unit to which they relate and
carry the . Ink extension.

For programs written wholly in occam, imakef will automatically generate a
linker indirect file. The file is named after the target filename but is given an exten­
sion in the form . In. The file contains a list of modules to be linked. In addition
an 'INCLUDE statement references a further linker indirect file, referencing com­
piler libraries. imakef deduces the compiler libraries to be included from the
extension of the linked object file.

Section 11.6.2 provides ashort description of linker indirect files and several exam­
ples are given in section 11.7.

11.5 Library indirect and library usage files

When building a library using imakef, a file must be provided that contains the
names of all the object modules required to build the library. This file is known as
a library indirect file and has the extension .lbb. See chapter 8 for further details.

Library usage files describe the dependencies ofa library on other libraries or sep­
arately compiled code. They contain a list offiles to which the library must be linked
before it can be run, and ensure that the correct linker commands are generated.

Library usage files should be created for all user-defined libraries where the source
of the library is not available. They are created using imakef.

Library usage files are given the same name as the library to which they relate, but
with a .liu extension. To create a library usage file using imakef, specify the
library name and add a .liu extension. For example, the following command
creates a library usage file for the library mylib .lib:

imakef mylib.liu

When imakef is used to create a library usage file no makefile is generated.

11.6 Running the makefile generator

The imakef tool takes as input a list of files generated by tools in the toolset and
generates a makefile, containing full instructions ofhowto build the application pro­
gram. The output file is named after the first target filename and is given a .mak
extension (if no output file is specified on the command line).

72 TDS 34601 October 1992

258 11.6 Running the makefile generator

To invoke imakef use the following command line:

~ imakef fiJenames {options}

where: fiJenames is a list of target files for which makefiles are to be generated. If
more than one file is specified the single makefile generated will generate
all of the specified files.

options is a list, in any order, of one or more options from Table 11.1.

Options must be preceded by '-' for UNIX-based toolsets and '/' for
MS-DOS and VMS based toolsets.

Options may be given in any order.

Options may be entered in upperor lowercase and can be given in any
order.

Only one filename may be given on the command line.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description

C This option is used when incorporating C or FORTRAN modules
into the program. It specifies that the list of files to be linked is to be
read from a linker indirect file. This option must be specified for cor-
rect C or FORTRAN operation.

D Disables the generation of debugging information in compilations.
The default is to compile with full debugging information.

I Displays full progress information as the tool runs.
M Produce compiler, linker and collector map files for imap.

NI Files in the directories in I SEARCH are not put into the makefile.
This means that system files are not present, making it much easier
to read.

o fiJename Specifies an output file. If no file is specified the output file is named
after the target file and given the .mak extension.

R Writes a deletion rule into the makefile.
y Disables interactive (breakpoint) debugging in all compilations.

The default is to compile with full breakpoint debugging information.

Table 11.1 imakef options

11.6.1 Example of use

imakef hello .b4x -c

imakef hello. b4x / c

72 TDS 346 01

(UNIX based toolsets)

(MS-DOS and VMS based toolsets)

October 1992

11 imakef - makefile generator 259

This creates the makefile hello. mak which when used as input to make gener­
ates the bootable file hello .b4x (a bootable file for T4 transputers).

11.6.2 Specifying language mode

imakef can be used with all compilers in the INMOS TCOFF family. This includes
the ANSI C compiler icc, the occam compiler oc as well as the FORTRAN com­
piler if77.

imakef has two modes of operation: one for the traditional languages FORTRAN
and C, and another for occam. occam mode is the default (for historical reasons
only - it was the first transputer toolset to be developed); FORTRAN and C opera­
tion is controlled by a command line option.

In occam programs, file dependencies are wholly deducible from the source and
target files. In FORTRAN and C programs the list of files to be processed by the
linker must be created in a linker indirect file; the imakef 'e' option is then used
to specify the linker indirect file(s) to be read. The linker indirect files must include
all the components of a program, including any libraries that are used.

The 'e' option must be specified for all C and FORTRAN programs and for any
mixed language programs which incorporate modules in these languages. For
mixed language programs all files which are to be linked must be listed in the linker
indirect file, including any occam modules or library files. In systems that use mix­
tures of code compiled for different transputer types and error modes, a separate
linker indirect file must be created for each.

An example is given in section 11.7.3 of how imakef may be used to build a mixed
language program.

11.6.3 Configuration descriptiC?n files

When imakef builds a makefile for a configured program it will look for the pres­
ence of a configuration description file which has the same name as the program
to be built.

The type of file searched for depends on the mode of operation specified to ima­
kef. If the default occam mode is used, that is, the 'e' option is not specified, ima­
kef will look first for a configuration description file with the extension. pgm, (read­
able by the occam configurer occonf). If a .pgm file is not present imakef will
then look for a .cfs file (readable by the 'C-style' configurer icconf).

If the FORTRAN/C mode is used, that is, the 'e' option is specified, the reverse
sequence is used, that is, imakef looks first for a . cfs file.

11.6.4 Disabling debug data

Two options to imakef disable the creation of debug data.

72 TOS 346 01 October 1992

260 11.7 imakef examples

The '0' option disables the generation of all debugging information in the target file.
If this option is used the resulting target code cannot be debugged.

The 'y' option disables only the data required for interactive (breakpoint controlled)
debugging. If this option is given no breakpoint debugging operations can be used
on the final program. Post-mortem debugging is unaffected.

11.6.5 Removing intennediate files

Intermediate files can be removed by specifying the 'R' option to imakef. This
adds a delete rule to the makefile which directs make to remove all intermediate
after the program is built. The delete operation is only honored if make is subse­
quently invoked with the DELETE option.

11.6.6 Files found on ISEARCH

When imakef runs, it includes all dependencies in the set of rules. The NI option
prevents imakef recording in the makefile, any dependencies on files found using
I SEARCH. As a result the makefile is easier to read and is more portable.

11.6.7 Map file output for imap

Using the 'M' option, imakef can be made to generate switches in the calls to the
compiler, linker or collector to output map files. These map files are then available
for reading by the imap tool, details of which can be found in chapter 12.

11.7 imakef examples

This section contains several examples of the use of imakef with different pro­
gramming languages. The final example shows how a mixed language program
can be built with imakef.

The sources appropriate to the toolset are supplied in the imakef examples subdi­
rectory.

72 TDS 346 01 October 1992

11 imakef - makefile generator 261

11.7.1 C examples

The first example shows howto create a makefile for a multi-module program, writ­
ten in C, running on a single transputer. The second example shows how to create
a makefile for a configured C program.

Single transputer program

This first example is for a program which is not configured.

The example program is made up of three source files, written in C:

main.c

hellof.c

worldf.c

imakef needs to know the names of the main components of the program, and
looks for the associated linker indirect file hello. lnk:

hello .lnk must contain the following text:

main.t4x
hellof.t4x
worldf.t4x
'include cnonconf.lnk

Note: the use of the . t4x extension rather than . tco. This is because imakef
needs to work out the required processor type. The startup tinker indirect file
cnonconf .lnk is also included. The inclusion of this file is standard for all C pro­
grams which are not configured and directs imakef to include the libraries. To
create the makefile use the command:

imakef hello.b4x -c
imakef hello.b4x /e

(UNIX based toolsets)
(MS-DOS and VMS based toolsets)

Note: the use of the .b4x extension instead of .btl. Using this form ofextension
informs imakef that we wish to create a bootable program for a single transputer
without the aid of the configurer. The makefile hello. mak is created.

72T08 34601 October 1992

262 11.7 imakef examples

Multitransputer program

This example program uses the configurer to place linked units on two processors.
The program is made up of the following source files written in C:

master.c
mult.c
multi.cfs

The .cfs file is the configuration description file. It places 2 linked units on 2 pro­
cessors, using the following statements:

use "master.cBx" for master;
use "mult.c4x" for mult;

Note: the use of the . cxx form of extension instead of the toolset default exten­
sion for linked units .lku. imakef reads the. cfs file and determines that the pro­
gram is made up of two linked units, each ofwhich must have an associated linker
indirect file, namely, master . Ink, and mult . Ink.

The two linker indirect files files must contain the following text:

master.lnk:

master.tBx
'include cstartup.lnk

mult.lnk:

mult.t4x
'include cstartrd.lnk

Again note the use of the . txx form ofextension. master . Ink includes the linker
indirect file cstartup .lnk, which is used for configured programs linked with the
full runtime library. mult .lnk includes cstartrd . Ink, the standard linker indi­
rect file used for configured programs linked with the reduced library. This library
can be used by mult . t4x because the module does not require host access.

To create the makefile use the following command:

imakef multi.btl -c
imakef multi.btl /c

(UNIX based toolsets)
(MS-DOS and VMS based toolsets)

The .btl extension informs imakef that the target is a configured program, to be
built from a configuration description file called multi .efs. The makefile
multi .mak is created.

Note: when multi .mak invokes the configurer, the following warning is issued:

Warning-icconf-Using single hop software virtual links

This warning may be ignored.

72TOS 346 01 October 1992

11 imakef - makefile generator 263

11.7.2 occam examples

Two examples are again provided, the first for a multi-module program running on
a single transputer and the second example for a configured program.

The program used is the pipeline sorter program which is supplied in the examples
directory.

Single transputer program

The example program is made up of four source files, written in occam:

sorthdr.inc

element.occ

inout.occ

sorter.occ

To create the makefile use the followi~g command:

imakef sorter.b4h

Note the use of the .b4h extension instead of .btl. Using this form of extension
informs imakef that we wish to create a bootable program for a single transputer
without the aid of the configurer.

The makefile generator has built-in knowledge of the file name rules for occam.
In this example, it knows by examining the file name that the program to be built
is for a single T414 processor in HALT mode, and that the source of the main body
of the program is in the file sorter. occ. It reads the file sorter. occ and discov­
ers that it uses a library called hostio . lib, the two compilation units inout and
element, and two include files, sorthdr. inc and hostio. inc. It then reads
the sources of the include files and compilation units and finds no more file depen-
dencies. -

With this information about source file and their dependencies, imakef builds a
makefile called sorter. mak containing full instructions on how to build the pro­
gram and creates a linker indirect file sorter .l4h (see section 11.4).

To build the program run the make program on sorter. mak. The entire program
will be automatically compiled, linked and made bootable, ready for loading onto
the transputer.

72 TDS 34601 October 1992

264 11.7 imakef examples

Multitransputer program

This version of the sorter program is configured to place linked units on four proces­
sors. The program is made up of the following occam files:

sorthdr. inc

element.occ

inout.occ

sortb3c .pgm

To create the makefile use the following command:

imakef sortb3c.btl

The .btl extension informs imakef that the target is a configured program, to be
built from a configuration description file called sortb3c .pgm. The configuration
description references two linked units:

'USE "inout.c4h"
'USE "element.c4h"

Note: the use of the . cxx form ofextension instead ofthe toolset default extension
for linked units .lku. imakef reads the .pgm file and will produce a file called
sortb3c .mak containing a make description of the program.

To build the program run the make program on sortb3c. male.

72 TOS 34601 October 1992

11 imakef - makefile generator 265

11.7-.3 Mixed language program

This example, uses a mixed language program which combines both occam and
C modules. It is based on the example given in the 'Mixed language programming'
chapter of the accompanying Too/set User Guide.

The example program is made up of the following files:

mixed.t4h

cfune.t4x

- Compiled occam module

- Compiled C module

where: the occam module is the main program which calls in the C function.

To create the makefile for the example program use one of the following com­
mands:

imakef ealle.b4h -e

imakef ealle.b4h le

(UNIX based toolsets)

(MS-DOS and VMS based toolsets)

This command informs imakef that we wish to create a bootable program for a
single T414 processor in HALT mode. The 'c' option tells imakef that the program
also includes modules written in C.

imakef needs to know the names of the C components of the program, and looks
for the associated linker indirect file ealle. Ink. Because a linker indirect file is
supplied to imakef, all the modules to be linked must be listed.

ealle . Ink must contain the following files:

ealle.t4x
esubfune.t4h
ealle.lib
hostio.lib
#INCLUDE elibsrd.lnk
#INCLUDE oeeama.lnk

The occam module is listed first, because it contains the main entry point of the
program. Note: the use of the . t4h and. t4x extensions. The C module has been
compiled in UNIVERSAL mode, which is the standard mode for the C compiler.
This does not cause a problem because UNIVERSAL mode may be called by
HALT mode.

The files hostio .lib and callc .lib are the occam libraries. occama . Ink
contains a list of occam compiler libraries which may be required.

elibsrd . Ink references the reduced C runtime library used by the C module.
Note: clibsrd . Ink does not contain an entry point. When building a C program
which calls in other language modules, a C main entry point is required. Therefore

72 TDS 34601 October 1992

266 11.8 Format of makefiles

one of the standard C startup files should be used i.e. cstartup . Ink,
cstartrd . Ink or cnonconf . Ink.

With this information imakef builds the make program callc.mak.

Further information about mixed language programming can be found the accom­
panying Toolset User Guide.

11.8 Format of makefiles

Makefiles essentially consist of a number of rules for building all the parts of a pro­
gram. Each rule contains two main elements: a definition ofthe file's dependencies
in a format acceptable to make programs; and the command to recreate the file on
a specific host. All makefiles also contain macros which define command strings
and option combinations.

11.8.1 Macros

All makefiles created by imakef include a set of macro definitions inserted at the
head of the file.

Macros define strings which are used to call the compiler, the configurer, the linker,
the librarian, the collector, and the eprom formatter tools, and fixed combinations
of options for these tools.

Macros are provided so that customized versions of the toolset commands, and
specific combinations of options, can be easily incorporated. Existing macros can
be modified for specific host environments, and new macros created, by editing the
makefile.

The full set of macros defined by imakef can be found by consulting any makefile
created by the tool.

11.8.2 Rules

Rules define the dependencies of object files on other files and specify action
strings to build those files.

Example:

UNIX based toolsets:

example.t4h : example.c
$ (CC) example -t4 -h -0 example.t4h $(COPT)

MS-DOS and VMS based toolsets:

example.t4h : example.c
$ (CC) example /t4 /h /0 example.t4h $(COPT)

72 TDS 34601 October 1992

11 imakef - makefile generator 267

This rule first defines the target as the compiled program example. t4h, which is
dependent on the source file example. c and then specifies the command that
must be invoked to build it.

The first rule in all makefiles is for the main target. Succeeding rules define sub­
components of the main target, and are listed hierarchically.

Action strings

Action strings define the complete command line needed to recreate a specific file.
The format is similar for all tools and consists of a call to the tool via a predefined
macro, a fixed set of parameters, a list of command line options, probably also via
a macro, and the output filename. (The output file is specified on the command line
so that the rebuilt file is always written to the directory that contains the source.)

11.8.3 Delete rule

The delete rule directs make to remove all intermediate object files once the pro­
gram has been built. It consists of a single labelled action string which invokes the
host system 'delete file' command. Deletion is only performed if make is subse­
quently invoked with the DELETE option.

The delete rule is appended to the makefile by specifying the imakef 'R' option.

11.8.4 Editing the makefile

Makefiles created by the imakef tool can be edited for specific requirements. For
example, new macros can be added and new rules defined for compiling and link­
ing code written in other languages.

Adding options

imakef generates action strings which have the minimum of options for each tool.
In most cases additional options are unnecessary or may be specified using com­
piler directives. To modify the set of default options for a particular tool simply edit
the appropriate macro in the makefile.

For example, if the output of progress information is to be enabled for all invoca­
tions of the compiler, the compiler 'I' option would be added to the macro which
defines the standard combination ofoptions for invoking the compiler. Alternatively
a new macro containing only the 'I' option could be defined and added to each
compiler action string.

Re-running imakef

Once the set of options have been changed in the macros, it is useful to retain this
set of options when imakef is run again. For this reason, imakef will check for
the existence of a previous makefile. If one exists, it will re-use (in the new make­
file) the set of macro definitions from the old one, plus any additional text up to a
line marked "IMAKEF CUT".

72TDS 34601 October 1992

268

11.9 Error messages

11.9 Error messages

imakef generates error messages ofseverities Warning and Error. Messages are
displayed in standard toolset format.

Cannot have a makefile

The file specified on the command line is not one for which imakef can
generate a makefile. imakef can only create makefiles for object files and
bootable files.

Cannot open "filename" :reason

The file specified as the output file cannot be opened for writing by the pro­
gram, for the reason given.

Cannot write linker command file

The linker command file cannot be opened for writing by the program.

Command line is invalid

An incorrect command line was supplied to the program. Check the syntax
of the command and try again.

Error whilst reading

A file system error has occurred whilst reading the source.

#IMPORT references are illegal in configuration text

At the given line number in the file there is a reference to the #IMPORT
directive, which is illegal for configuration source.

#INCLUDE may not reference a library

The #INCLUDE directive is being used to reference a file with the . lib
extension.

#INCLUDE may not reference binary files

The #INCLUDE directive is being used to reference a file containing com­
piled code.

Incomplete compiler directive

At the given line number in the file there is an invalid compiler directive.

Library on PATH "pathname" also exists in the current directory

A library with the specified name has been found on the current search path
and in the current directory.

Malloc failed

The program has failed while trying to dynamically allocate memory for its
own use. Try using a transputer board with more memory. If the program
is being run on the host it may be possible to increase the memory available
using host commands.

72 TDS 34601 October 1992

11 imakef - makefile generator 269

Options are incorrectly delimited

The terminating bracket, which determines the options in a library build file,
is missing at the given line number.

#SC references are illegal in configuration text

Applies to occam modules only.
At the given line number in the file there is a ,se directive, which is illegal
in configuration source code.

#SC, #USE may not reference source files

Applies to occam modules only.
The directives ,se and 'USE cannot be used to reference occam source
code.

Source file does not exist

The referenced source file does not exist on the system.

Target is not a derivable file

The specified file cannot be generated by the toolset.

Tree checking failed· no output performed

The tree of files has been found to be invalid and unusable for generating
makefile. This message always follows a message indicating what is wrong
with the tree. The most common reason for this error is the presence of
cyclic references in the source.

"filename" unknown/illegal file reference

A compiler directive is attempting to reference the wrong type of file.

Writing file

A host system error occurred while the file was being written.

72 TDS 34601 October 1992

270

72 TDS 34601

11.9 Error messages

October 1992

12 imap - memory
mapper

This chapter describes the memory map tool imap. The tool takes the text output
from the toolset compiler, linker and collector and gives the absolute addresses
of the static variables for functions. The chapter begins with an introduction to
imap and explains the command line syntax. imap's output is described in some
detail and an example is given. The chapter ends with a list of error messages.

12.1 Introduction

The imap tool takes as input memory map files output by the compiler, linker and
collector. Command line options for these tools enable the user to specify that a
memory map file is to be produced. imap collates the information from the different
source files and puts it in a format suitable for output on the display screen. Alterna­
tively the output from imap can be redirected to another output file as the user
wishes. Memory maps may be generated for both single and multiprocessor trans­
puter programs.

imap is invoked by supplying it with the name ofa map file produced by the collec­
tor. The tool will automatically determine the names of map files produced by the
linker and compiler, provided the naming convention for extensions has been
adhered to, see section 12.2.1. Each tool generates a different level of information:

Collector: For each process on each processor, memory locations of code,
static, heap, stack, invocation stack and vector space are listed.

Linker: For each process the offset in memory for code and static for
individual modules which make up the process are listed.

Compiler: For each module listed in the linker output file the offset in
memory for individual static items and functions are listed.

Where a particular category of information is not applicable to a language, this field
will be left blank. occam programs for instance do not use heap, so obviously such
details are not generated for occam.

Where the output files from the compiler and linker cannot be opened or parsed
properly imap will insert a warning at the appropriate point in the output.

The operation of the map tool in terms of standard toolset file extensions is shown
below. Output is sent to standard out, which is usually set to the display screen.

72 TDS 34601 October 1992

---. Input

••~ References

272 12.2 Running the map tool

e-1~ilna_.P _ !-----la
88

12.2 Running the map tool

To invoke the map tool use the following command line:

~ imap filename { options}

where: filename is the name of the file containing the map output from the collector
icollect. If there is no extension given, .map is assumed. Otherwise the
file name is taken as given.

options is a list of the options given in Table 12.1

Options must be preceded by '-' for UNIX-based toolsets and'I' for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

Only one filename may be given on the command line.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Examples of use:

imap myprog

imap myprog.map

Both the above examples will cause imap to read the file myprog . map, generated
by the collector.

72 TDS 346 01 October 1992

12 imap - memory mapper 273

Option
A

I

o filename
R

ROM hex offset

Description

Displays the list of symbols produced by the linker, includ­
ing those symbols the linker identifies as not being used.
This option will not override the 'R' option if it is used.

Displays progress information as imap processes
information from the input files, such as the filenames of
files as they are opened and closed.
Specifies an output file.
This option reduces the amount of detail generated by
imap in two ways:

• the Module memory usage table only displays
details for user modules i.e. 'USER' and
'SHARED_USER' processes.

• the Symbol table excludes those symbols containing
a '%' character in their name. Such symbols are nor­
mally internal symbols e.g. C runtime library sym­
bols.

This option is only applicable to, and must be specified for,
code targetted at ROM. It enables a hexadecimal offset to
be specified which represents the start address of the
code in ROM. This offset will be added to the start
address of any code which is to run in ROM, in imap's
output.

Table 12.1 imap command line options

12.2.1 Source files required by imap

Three different types of source file are read by imap and should therefore be made
available. The files are in fact memory maps generated by the compiler, linker and
collector. The appropriate command line option must be specified on each tool's
command line including a filename for the map produced. The filename specified
by the user must have the appropriate extension as indicated in table 12.2.

Extension File description

.InXX Map file output by the compiler. The characters 'xx' are determined
by the 2nd and 3rd characters of the extension given to the compiler
object file. For example if the compiler object file takes the default
extension . tco, the information file is given the extension . mco.

.dxx Map file output by the linker. The characters'xx'are determined by
the 2nd and 3rd characters of the extension given to the linker
object file. For example if the linker object file takes the default
extension .lku, the information file is given the extension . dku.

.map Map file output by the collector.

Table 12.2 Files extensions for imap source files

72 TDS 34601 october 1992

274 12.3 Output format

12.2.2 Re;lirecting imap's output

imap's output goes to standard out by default. To redirect it to an output file. use
the '0' option and specify an output filename.

12.3 Output format

This section describes the format of the memory map produced by imap. An
example output is given in section 12.4.

If the imap tool cannot find a linker or compiler output file. it will insert a warning
message in place of the missing information. It will not produce a warning if the
process or module comes from a library (such as the system process library).

72 TDS 346 01 October 1992

12 imap - memory mapper

12.3.1 imap memory map structure

275

• All processors used are listed. Details for each processor are as follows:

• Processor name - if specified by the user in a configuration data file.

• Processor Id. - a unique number which is assigned by the collector.
These numbers start from zero, and increase by one for each processor.

• Processor type e.g. T400, T805 etc.

• A list of processes, (in the same order as the collector output file). The
following details are given for each process as appropriate:

o Process Id. ~ a three digit number assigned by imap. Process num­
bers start at 000 and are incremented by 1 for each new process.

o Process priority - HIGH or LOW

o Process type - USER; SHARED USER; INITSYSTEM; SYSTEM or
OVERLAYED_SYSTEM. See table12.3.

o Process name, if specified by the user.

o List of linked units or a library from which the process is made. For
each linked unit or library the following details are included:

o Name of the linked unit or library

o The file offset in memory, expressed as a decimal number.

o The offset from the start of the linked unit or library, at which code
for that process begins, (expressed as a decimal number). In a
linked unit this will usually be avery small number, pointing to just
after the header, whereas in a library, where the code is selected
from a number of related chunks of code, the offset may point to
anywhere within the library.

o A list of modules that make up the unit. The list is in the same
order as the Iinker output file. Details include:

- Module Id. - a three digit module number assigned imap.

- TCOFF object filename.

- Name of the source file from which the object was generated.

• A table of the memory blocks allocated to user processes. See 12.3.3.

• A table of the code and static memory blocks used by individual modules,
including the section of memory that each block represents. See 12.3.4.

• A table of the memory blocks that non-user processes use. See 12.3.5.

• A table of symbols used by all of the processors. See 12.3.6.

72 TDS 346 01 October 1992

276

12.3.2 Process types

12.3 Output format

Process type Description

INITSYSTEM A process used in the initialization of the transputer net-
work.

OVERLAYED SYSTEM System process which is overwritten by other processes
after it has been used.

SYSTEM A process used in the initialization and running of the
network.

USER A user process.

SHARED USER A user process whose code can be used by more than
one process.

Table 12.3 Process types

12.3.3 User processes

The table headed with "User processes" gives the start and end addresses and
lengths of the various blocks of memory used by the user processes for that pro­
cessor. The table is ordered by start address and is structured as follows:

• Process number or 'AII' if it is the parameter data block, which is not asso­
ciated to just one process.

• Memory block type - stack; overhd; code; heap; static or param.
See table 12.4.

• Start address in hexadecimal.

• End address in hexadecimal.

• Length in decimal.

Block type Description

stack Used for workspace

overhd Used for invocation stack

code Used for code

heap Used for heap

static Used for static data

param Used for the parameter data block

Table 12.4 Memory block types

12.3.4 Module memory usage

The table headed with "Module memory usage" gives the memory areas that are
used by each module for code or static data. The table is ordered by start address
and has the following format:

72 TDS 346 01 October 1992

12 imap - memory mapper 277

• Process Ld.

• Module i.d.

• Type (code or static)

• Name of the section that the area belongs to

• Start address in hexadecimal.

• End address in hexadecimal.

• Length of the area in decimal.
Examples of section names are pri%text%base and text%base for code, and
static%base for static data.

If the 'R' command line option is used only details of user processes are shown.

12.3.5 Other processes

The table headed with "Other processes" is the same as the "User processes"
table but for all the non-user processes. This table will not include an entry for the
parameter data block.

12.3.6 Symbol table

The symbol table is alphabetically ordered by symbol name and gives the following
information:

• Symbol name.

• Processor Id.

• Process Id.

• Module Id.

• Start'address associated with symbol (in hexadecimal).

• Symbol type (see below).
The type field of the symbol table is either taken directly from the compiler map file,
or is created by imap. In the latter case, the field will be enclosed in parentheses.
This information is based on which section the symbol comes from. Refer to the
compiler documentation for the meaning of items in this field that aren't enclosed in
parentheses.

Note: command line options can be used to extend or limit the amount of symbol
information generated. Normally imap only gives details of symbols used by the
program; the 'I:, option instructs imap to include unused symbols in the list. The
'R' option prevents details of internal symbols, such as those used by the runtime
libraries, being listed.

72 TDS 346 01 October 1992

278 12.4 Example

12.4 Example

The following example, for a single processor program, was generated by the
command:

imap test -r
imap test /r

Memory map for 'test1'

Map for processor 0 (T800)

List of processes

P:OOO - LOW priority INITSYSTEM process: , Init.system'
From 'sysproc.lib' (offset 4969)

(UNIX)
(MS_DOS and VMS)

P:001 - LOW priority SYSTEM process: 'System.process.a'
From 'sysproc.lib' (offset 13391)

P:002 - HIGH priority SYSTEM process: 'System.process.b'
From 'sysproc.lib' (offset 28774)

P:003 - LOW priority USER process:
From 'testt800.lku' (offset 2)

M:OOO - Module 'testt800.tco' from 'testt800.c'
M:OOl - Module '/inmos/prod/d4214b/libs/centry.lib' from'tmp.occ'
M:002 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'exit.p8x'
M:003 - Module '/inmos/prod/d4214b/libs/libc.lib' from'virtual.tmp'
M:004 - Module '/inmos/prod/d4214b/libs/libc.lib' from'semprocs.tmp'
M:005 - Module '/inmos/prod/d4214b/libs/libc.lib' from'support.c'
M:006 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'chandeb.c'
Mi'o07 - Module " /inmos/prod/d4214b/libs/libc.lib' from 'plus.c'
M:008 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'newsem2.c'
M:009 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'printf.c'
M:010 - Module '/inmos/prod/d4214b/libs/libc.lib' from'stdioini.c'
M:011 - Module '/inrnos/prod/d4214b/libs/libc.lib' from'tmp.s'
M:012 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'crunl.c'
M:013 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'crun2.c'
M:014 - Module '/inmos/prod/d4214b/libs/libc.lib' from'ioprgnarn.c'
M:015 - Module '/inmos/prod/d4214b/libs/libc.lib' from'iocmdlin.c'
M:016 - Module '/inmos/prod/d4214b/libs/libc.lib' from'iscmdlin.c'
M:017 - Module '/inmos/prod/d4214b/libs/libc.lib' from'isbuf.c'
M:018 - Module '/inmos/prod/d4214b/libs/libc.lib' from'ismisc.c'
M:019 - Module '/inmos/prod/d4214b/libs/libc.lib' from'isversn.c'
M:020 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'ctype.c'
M:021 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'clock.c'
M:022 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'ptime.c'
M:023 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'atexit.c'
M:024 - Module '/inmos/prod/d4214b/libs/libc.lib' from'ioinit.c'
M:025 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'agwalloc.c'
M:026 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'flushbuf.c'
M:027 - Module '/inmos/prod/d4214b/libs/libc.lib' from'misc.c'
M:028 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'fflush.c'
M:029 - Module '/inmos/prod/d4214b/libs/libc.lib' from '<fabricated>'
M:030 - Module '/inmos/prod/d4214b/libs/libc.lib' from'istatic.c'

Figure 12.1 imap example, screen 1 of 3

72 TOS 346 01 October 1992

12 imap - memory mapper

M:031 - Module '/inmos/prod/d4214b/libs/libc.lib' from'tmp.s'
M:032 - Module '/inmos/prod/d4214b/libs/libc.lib' from'ioisatty.c'
M:033 - Module '/inmos/prod/d4214b/libs/libc.lib' from'tmp.s'
M:034 - Module '/inmos/prod/d4214b/libs/libc.lib' from'memcpy.c'
M:035 - Module '/inmos/prod/d4214b/libs/libc.lib' from'memmove.c'
M:036 - Module '/inmos/prod/d4214b/libs/libc.lib' from'memset.c'
M:037 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'fpprintf.c'
M:03S - Module '/inmos/prod/d4214b/libs/libc.lib' from'math.c'
M:039 - Module '/inmos/prod/d4214b/libs/libc.lib' from'strcpy.c'
M:040 - Module '/inmos/prod/d4214b/libs/libc.lib' from'strlen.c'
M:041 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'fseek.c'
M:042 - Module '/inmos/prod/d4214b/libs/libc.lib' from'iofsize.c'
M:043 - Module '/inmos/prod/d4214b/libs/libc.lib' from'isfseek.c'
M:044 - Module '/inmos/prod/d4214b/libs/libc.lib' from'isftell.c'
M:045 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'clearerr.c'
M:046 - Module '/inmos/prod/d4214b/libs/libc.lib' from 'ftell.c'
M:047 - Module '/inmos/prod/d4214b/libs/libc.lib' from'vfprintf.c'
M:04S - Module '/inmos/prod/d4214b/libs/libc.lib' from 'writebuf.c'
M:049 - Module '/inmos/prod/d4214b/libs/libc.lib' from'iolseek.c'
M:050 - Module '/inmos/prod/d4214b/libs/libc.lib' from'iowrite.c'
M:051 - Module '/inmos/prod/d4214b/libs/libc.lib' from'isfflush.c'
M:052 - Module '/inmos/prod/d4214b/libs/libc.lib' from'isfwrite.c'

User processes:

Process Type Start End Length

--------- --------- ------------
P:003 stack #SOOOO154 #SOOO0267 276
P:003 overhd #SOOO026S #SOOO027B 20
P:003 code #SOOO02S4 #SOO04E2F 19372
P:All param #SOO04E30 #SOO04FEF 44S
P:003 static #SOO052AO #SOO05409 570

Module memory useage:

279

Process Module Type Section Start End Length
-------------------- --------- ---------

P:003 M:OOO code text%base #SOOO02S4 #SOOO05C7
P:003 M:OOO static module%table%base #S00052AO' #aOO052A3
P:003 M:OOO static static%base #S0005300 #SOO0531B

Other processes:

Process Type Start End Length

--------- --------- ------------
P:002 stack #SOOOO154 #SOOOO16B 24
P:002 overhd #SOOOO16C #SOOOO17F 20
P:002 code #SOOOOlSS #SOOOOlE3 92
P:OOO stack #SOO04FFO #SOO0505F 112
P:OOO overhd #SOO05060 #SOO05077 24
P:OOO code #SOO050S0 #SOO0529F 544
P:001 stack #SOO052AO #SOO054B7 536
P:001 overhd #SOO054BS #SOO054CB 20
P:001 code '#SOO05404 #SOO05E1F 23S0
P:001 vector #SOO05E20 #SOO0601F 512

Fig,ure 12.2 imap example, screen 2 of 3

S36
4

2S

72 TDS 346 01 October 1992

280 12.4 Example

Table of symbols

Symbol name Processor Process Module Start Type
-------------------------------- --------- ------- ------ --------- ---------

C.ENTRY 0 P:003 M:001 #800005C9 (code)
1MS 1sFileBuffer 0 P:003 M:005 #80005364 (static)

-1MS-StartTime 0 P:003 M:005 #8000532C (static)
=1MS=SystemLink 0 P:003 M:005 #8000535C (static)
_1MS_boar~type 0 P:003 M:005 #800055AO (static)
_1MS_closeptr 0 P:003 M:024 #80005A90 (static)
_IMS_ctype 0 P:003 M:020 #800058B8 (static)
_1MS_entry_term_mode 0 P:003 M:005 #80005330 (static)

1MS errno 0 P:003 M:005 #8000531C (static)
=1MS=fcloseptr 0 P:003 M:010 #800055BO (static)
_IMS_fdmap 0 P:003 M:024 #80005A8C (static)
_1MS_fflushptr 0 P:003 M:010 #800055B4 (static)
_1MS_heap_base 0 P:003 M:005 #80005348 (static)
_1MS_heap_front 0 P:003 M:005 #8000534C (static)
_IMS_hos t_type 0 P:003 M:005 #8000559C (static)

1MS huge val 0 P:003 M:005 #80005334 (static)
-1MS-iob - 0 P:003 M:010 #800055B8 (static)
-1MS-isbufsize 0 P:003 M:005 #800055A4 (static)
=1MS=last_recorded_wptr 0 P:003 M:005 #8000533C (static)

1MS max wptr extent 0 P:003 M:005 #80005354 (static)
=1MS=os_type - 0 P:003 M:005 #80005598 (static)
_1MSJrintf 0 P:003 M:009 #80000DBA (code)

1MS retval 0 P:003 M:005 #80005328 (static)
-1MS-shared area 0 P:003 M:005 #80005340 (static)
-1MS-stack base 0 P:003 M:005 #80005350 (static)
-IMS-s tack-limit 0 P:003 M:005 #80005344 (static)
-IMS-startenv 0 P:003 M:005 #80005320 (static)
calloc 0 P:003 M:025 #800020E1 (code)
clock 0 P:003 M:021 #80001B54 (code)
exit 0 P:003 M:023 #80001BFD (code)
exit.p8x:B905FF7C 0 P:003 M:002 #80000284 (code)
fflush 0 P:003 M:028 #80002727 (code)
free 0 P:003 M:025 #800020CO (code)
frexp 0 P:003 M:038 #80003600 (code)
ldexp 0 P:003 M:038 #80003580 (code)
longjmp 0 P:003 M:033 #80002925 (code)
main 0 P:003 M:OOO #80000299 code
malloc 0 P:003 . M:025 #80001FB5 (code)
memcpy 0 P:003 M:034 #80002940 (code)
memmove 0 P:003 M:035 #8000294C (code)
memset 0 P:003 M:036 #80002A60 (code)
printf 0 P:003 M:037 #80003403 (code)
semprocs.tmp:3B081EOC 0 P:003 M:004 180000284 (code)
strcpy 0 P:003 M:039 1800036D4 (code)
strlen 0 P:003 M:040 #80003744 (code)
test1 0 P:003 M:OOO 180005300 data
test2 0 P:003 M:OOO #80005304 data
test3 0 P:003 M:OOO #80005308 data
testfunctiont800 0 P:003 M:OOO #80000288 code
tolower 0 P:003 M:020 #80001A83 (code)
virtual.tmp:E5F06A7A 0 P:003 M:003 180000284 (code)

Figure 12.3 imap example, screen 3 of 3

72 TDS 346 01 October 1992

12 imap - memory mapper

12.5 Error messages

281

This section lists each error message that can be generated by the memory map
tool. Messages are in the standard toolset format which is explained in appendix A.

All open files are closed when an error is found and the tool halts without producing
a map.

12.5.1 Serious errors

Filename input file cannot be parsed properly

The named file cannot be read by imap.

Cannot open collector's output file for reading

The collector map file specified on the command line cannot be found.
Check that the extension used for the collector map file is in the correct for­
mat. See section 12.2.

Cannot open output file for writing

The output file cannot be opened for writing. May indicate a disk space
problem or some other host system error.

Error parsing command line

The command line has the wrong syntax or a non--existent option has been
specified.

Must specify input file

An input file must be specified.

Only single output filename allowed

More than one output filename has been specified.

Only single ROM offset value allowed

More than one ROM offset has been specified.

12.5.2 Fatal errors

Filename internal data structure failure or file corrupt

A source file used by imap has referenced something which cannot be
found. This can occur when redundant map files are read by imap in error.

72 TDS 346 01 October 1992

282 12.5 Error messages

Filename out of heap space

There is not enough heap space to generate the memory map.

Unexpected end of file

A source file, read by imap has been corrupted. Regenerate compiler,
linker and collector map files.

72 TDS 346 01 October 1992

13 iserver - host file
server

This chapter describes the host file server iserver which loads application pro­
grams onto transputer networks and provides runtime access to the host.

This document describes version 1.5 of the server. This is completely compatible
with earlier versions but provides greater flexibility in the way transputers are
accessed. In particular, the server can access transputer systems connected to a
computer network (e.g. via Ethernet).

A summary of the new features of this version appears in Section 13.9.

13.1 Introduction

The host file server iserver provides three functions:

• Loading bootable programs onto transputer systems.

• A runtime environment for application programs, giving access to host
services (e.g. file and terminal i/o).

• Controlled access to transputer systems; multiple users in a computer
network can request a specific transputer system or a particular type of
transputer. Access to each transputer system is granted to one user at a
time for as long as required.

13.2 Loading programs

Before a program can be loaded into a transputer network it must be compiled and
linked. Multi-transputer programs must also be configured for the transputer sys­
tem they are to run on. The program' is made bootable with the collector tool,
icollect. The bootable file will generally have a .btl file extension.

13.3 Host interface

Generally, transputer applications communicate with the host file server using the
standard i/o libraries for the language being used. The library calls available and
their parameters will be documented in the relevant language manual.

The communication with the host is based on a protocol, defined in appendix D.
This protocol is used by the C, FORTRAN, and occam run time libraries to com­
municate with the host.

72 TDS 34601 October 1992

284 13.4 Access to transputer networks

13.4 Access to transputer networks

Previous versions of the server required different code (and, therefore, a different
executable) for every type of host interface. This version of the server provides
support for all types of link interface in a single program. This means that when the
server is run, it must be told what transputer systems are available and which type
of interface to use for each.

User links

Each transputer system can be thought ofas being connected to the host by a user
link. User links are given descriptive names (known as capabilities) which are used
by the server to find a suitable transputer system. Programs may be loaded onto
transputer systems down user links, whilst operating system services are provided
to the programs by communicating with the host file server via the user link. The
names of the available user links, and the way in which the transputers are
accessed, are defined in a connection database file.

More detail on user links, the connection database file, and accessing transputer
networks is provided in section 13.7.

The session manager

The iserver guarantees unique access to a transputersystem while it is running.
The system is released when the server terminates. Often, the same resource
needs to be used to run several programs (or run one program several times). For
example, after running a program, it may be necessary to use the debugger - it
would not be very useful if another user had started using the transputer between
the program failing and the debugger starting.

The server's session manager allows access to a resource to be guaranteed for
as long as required. The session manager is started with the'SM' option and pro­
vides a simple command line interface. All the normal host operating system com­
mands can be used as well as the iserver and session manager commands.

More detail on using the session manager are given in section 13.6.

13.5 Running the iserver

To run the host file server use the following command line:

~ iserver {options}

where: options is a list of one or more options from Table 13.1.

If iserver is invoked with no options, help information is displayed, briefly
explaining the command line arguments.

Some parameters can also be provided by the environment variables which are
described in Section 13.5.2. These can be overridden by values provided on the
command line.

72 TDS 346 01 October 1992

13 iserver - host file server

Option Description

285

SA

SB filename
se filename
SE

SI

SK interval

SL name
SM

SP n
SR

SS

ST

Analyses the root transputer and peeks 8K of its memory.

Boots the program contained in the named file.

Copies the named file to the root transputer link.

Terminates the server if the transputer error flag is set or a
control link error message is received.

Displays progress information as the program is loaded.

Specifies the number of seconds between attempts to access
the resource.

Specifies the capability name.

Invokes the session manager interface.

Sets the size of memory to peek on Analyse to n Kbytes.

Resets the root transputer and its subsystem.

Serves the link, Le. provides host system support to programs
communicating on the host link.

All of the following command line is passed directly to the
booted program as parameters.

Options must be preceded by '-' for UNIX based toolsets.

Options must be preceded by 'I' for non-UNIX based toolsets.

There must be at least one space between options. The case of letters in the
parameters are not significant.

Options may be in any order, except that no further options may appear after ST.

Option'SB filename' is equivalent to 'SR SS SI se fi/ename'.

Table 13.1 Host file server options

13.5.1 Examples of use

UNIX based toolsets:

iee hello
ilink hello.feo -festartup.lnk
ieconf hello.efs
ieolleet hellq.cfb
iserver -sb hello.btl -se

MS-DOSNMS based toolsets:

iee hello
i/ink hello.teo If estartup.lnk
ieeonf hello.efs
ieolleet hello.efb
iserver Isb hello.btl Ise

In this example iserver is executed to load and serve the bootable file
hello.btl and to terminate on error. The example also shows the steps for com­
piling, linking, configuring and making the bootable file.

Note: this example assumes that the environment variable TRANSPUTER has been
set to the name of the user link to be used.

72TDS 34601 October 1992

286

13.5.2 Server environment variables

13.5 Running the iserver

The server may obtain some parameters by inspecting environment variables. The
following names are used:

TRANSPUTER Defines the capability (user link name) to be used by the
server. May be overridden by the SL option.

ICONDB Defines the name of the connection database file used by the
server.

ISESSION Defines the name of the session manager configuration file.
The default is 'session. cfg'.

13.5.3 Loading programs

Before a program can be loaded onto a transputer network it must be compiled,
linked and made bootable.

Running a program using the iserver - option SB

The name of the file containing the bootable program is specified using the 'SB'
option. This resets the board and then copies the contents of the bootable file to
the user link. If the file ca"nnot be found an error is reported. When the program has
been successfulIy loaded the server then provides host services to the program.

Note: Using the 'SB' option is equivalent to using the SR, SS, SI and SC options
together.

Sending data down a user link - option se

To send data down a user link, or to load a program onto a board without resetting
the root transputer, use the 'Sc' option - this simply copies the contents ofthe spe­
cified file to the user link. This should only be done if the transputer is running a
program that can interpret the data sent down the link, or has already been reset.
To reset the transputer subsystem use the 'SR' option.

Running programs which do not use the server

To terminate the server immediately after loading the program use the 'SR' and 'sc'
options together. This combination of options resets the transputer, loads the pro­
gram onto the board, and terminates the server - the program on the transputer
will continue running. This can be used to run a program which does not need to
use the server facilities. If the program on the transputer attempts to access the
server then it will deadlock until the server is run with the 'SS' option.

Note: single transputer programs built with the collector's 'T' option cannot be run
in this way as the loader uses the server to read the value of the environment vari­
able IBOARDSIZE. Configured programs (and programs built with the collector's
'T' and 'M' options) will perform no communication with the host otherthan that spe­
cified in the user's program.

72TDS 346 01 October 1992

13 iserver - host file server 287

Analyzing a transputer network - option SA

To load a board in analyze mode, for example when you wish to use the debugger
to examine the program's execution, use the 'sA' option to dump a section of the
transputer's memory (starting from MOSTNEG INT). The default amount of
memory to dump is 8 Kbytes, but this can be overridden with the 'sp' option. The
data is stored in an internal buffer which can be read by the idump tool when pro­
grams that use the root transputer are to be debugged.

Terminating the server

When the program sends a terminate command to the server (or some serious
error occurs) the server will terminate if the session manager is not being used. If
an error occurred an error message will be printed. If the session manager inter­
face is being used, then control will return to the session manager.

13.5.4 Supplying parameters to a program

Any parameters on the command line following the 'ST' option are passed as
parameters to a booted program. This includes parameters that would normally be
interpreted as iserver parameters. In addition, any text on the command line that
is not recognized as a server parameter is also passed to a booted program.

13.5.5 Specifying the transputer resource - option SL

To specify the transputer resource to be used a capability name must be specified.
The server may be given the capability on the command line using the 'SL' option.

The capability may also be specified by the environment variable TRANSPUTER.
This variable is overridden by a capability specified by the 'SL' option.

The SK option can be used to specify how frequently the server should retry if the
requested resource is not available.

13.5.6 Terminating on error - option SE

When- debugging programs it is useful to force the server to terminate when the
subsystem's error flag is set. To do this use the 'SE' option. This option should only
be used for programs written entirely in occam and compiled in HALT system
mode. If the program is not written entirely in occam then the error flag may be
set even though no error has occurred.

13.5.7 Terminating the server

To terminate the server press the host system break key. The serverwill either then
terminate, returning to the host operating system prompt, or return to the session
manager interface prompt if the server was invoked with the 'SM' option.

72 TDS 346 01 October 1992

288 13.6 Using the session manager interface

13.5.8 Specifying the session manager configuration file

The session manager configuration file contains iserver commands for use by
the session manager and may be customized for personal use.

The file is given by the environment variable ISESSION. If ISESSION is not set,
then the filename 'session. cfg' is used.

13.6 Using the session manager interface

The session manager provides a mechanism for guaranteeing unique access to
a transputer system for as long as is required. Once the server terminates, or the
system is released from within the session manager, access to the same system
is no longer guaranteed.

13.6.1 Session manager commands

The session manager has a simple command line interface. There are a number
of commands for managing the session such as open to select the transputer
resource to be used, and exit to terminate the session. A complete list of session
manager commands is given in table 13.2.

Command Description

iserver parameters Run as server to load network and provide host ser-
vices. This command has most of the same options as
the normal iserver command (except, of course, 'SL'
and'SM').

source filename Read commands from a file

open capability Release any held system and open a session with the
named capability.

options parameters Specify command line parameters to iserver com-
mand.

show List user-defined commands.

help List internal and user-defined commands.

exit or quit Release any held system and exit the session man-
ager.

user command A user-defined command.

any other command Any other command is passed directly to the host
operating system.

Table 13.2 Session manager commands

13.6.2 The options command

The options command allows a set of standard options for the session manag­
er's iserver command to be defined. Any parameters to the options command

72 TDS 34601 October 1992

13 iserver - host file server 289

are saved and added to any following iserver command. See the examples in
sections 13.6.3 and 13.6.4.

With no parameters, the options command displays the parameters which are
currently set. To remove parameters which have previously been set with the
options command, use an empty string as the parameter, i.e.

options ""

13.6.3 The iserver command

The command iserver starts the server, from within the session manager, to load
code onto the transputer system and provide host services to it. This command can
be followed by any of the command line options described in section 13.5 (except
'SL' and 'SM' which are ignored). This allows programs to be run repeatedly on the
same transputer system. When the program running on the transputer terminates
(whether due to a normal termination, an error condition, ora user interrupt) control
is returned to the session manager, without releasing the transputer system.

Note: the options to the session manager iserver command must be preceded
by the appropriate option character as defined in table 13.1.

When an iserver command is executed, either directly or via a user-defined
command, the parameters are built up from 3 parts in the following order:

The parameters supplied with the options command.

2 The parameters entered on the command line by the user.

3 The parameters from the command definition (ifa user-defined command).

Example (UNIX based systems):

If the following commands are executed in the session manager:

options -sb ika.btl
iserver -si 42 tako.dat

Then the following iserver command line is generated:

iserver : -sb ika.btl: : -si 42 tako.dat:

Para-meters -from -the ,- Parameters-from-the J

options command command line

Example (MS-DOSNMS based systems):

If the following commands are executed in the session manager:

• options Isb ika.btl
• iserver Isi 42 tako.dat

72 TDS 34601 October 1992

290 13.6 Using the session manager interface

Then the following iserver command line is generated:

iserver: Isb ika.btl: :/si 42 tako.dat:

Paramele-rS -from -the .- ParameterS-from-the
J

options command command line

13.6.4 User-defined commands

In addition to the built-in commands of the session manager, new commands can
be defined by the user. These commands define a set of of parameters to be
passed to the session manager iserver command, giving a shorthand for regu­
larly used commands.

New commands are defined in the session manager configuration file, named in
the environment variable ISESSION. The commands are defined as a set of
parameters to the session manager's iserver command.

The format of the file is simple. Each command occupies a single line. The com­
mand name is the first word on the line. The rest of the line are the parameters to
the iserver command that is to be substituted for the user-defined command.

As an example, suppose a program called mytool is normally booted onto atrans­
puter with the SE and the SB options followed by user parameters for the tool. The
normal iserver command line might look something like this: .

iserver -se -sb lusr/tpbin/mytool.bBhparameters (UNIX)
iserver Ise Isb lusr/tpbin/mytool.bBh parameters (M~OOSNMS)

To simplify this inside the session manager, the following lines would be put in the
session manager configuration file:

mytool -se -sb lusr/tpbin/mytool.bBh (UNIX)
mytool Ise Isb lusr/tpbin/mytool.bBh (MS-OOSNMS)

Then, if the command 'mytool parameters' is entered on the session manager
command line it will be replaced with the command:

UNIX based systems:
r - - - - - - - - - - -, r - ..

iserver: parameters: : -se -sb lusr/tpbin/mytool.bBh:
P~r~~~t~~fr~~ ~ - - - - - Parameters from the - - - - - - - - - J

the command line command definition

MS-OOSNMS based systems:

iserver-: parameters: : Ise Isb lusr/tpbin/mytool.bBh:
P~r~~~t~~fr~~ ~ - - - - - Pa-rameters from ilie - - - - - - - - - J

the command line command definition

72 TOS 34601 October 1992

13 iserver - host file server 291

The server command line is built up as described above in section 13.6.3 so, if
some extra parameters are defined with the options command they will be
included as well. For example, the command sequence:

UNIX based systems: MS-oOSNMS based systems:

options -si options /si
mytool parameters mytool parameters

Would cause the following iserver command to be generated:

iserver -si parameters -se -sb /usr/tpbin/mytool.b8h (UNIX)
iserver /si parameters /se /sb /usr/tpbin/mytool.b8h

(MS-DOSNMS)

Running the debugger from the session manager

One important use of user defined commands in the session manager is to allow
the debugger to be run. This is done by defining a command such as the following
in the session manager configuration file.

idebug -se -sb /usr/local/D5214/itools/idebug.btl (UNIX)
idebug /se /sb /usr/local/D5214/itools/idebug.btl

(MS-DOSNMS)

The exact form of this command will depend on which toolset is being used and
the type of program being debugged. For more details on idebug command line
options, see chapter 4.

13.6.5 Host OS commands

If a command is not one of the session manager's internal commands and not a
user-defined command then it is passed to the host's operating system for execu­
tion.

13.7 Connecting transputers to computer networks

Transputer systems may be connected to the host computer in a number of ways.
For example, they may be connected directly to the host via a board such as the
IMS 8008 motherboard, or via Ethernet using an IMS 8300 TCPlink box.1

Each connection, however implemented, is treated in the same way. Programs can
be loaded onto a transputer system via any of these connections and that program
can then gain access to host facilities and communicate with the uservia the same
connection. Each of these connections is known as a user link.

13.7.1 Capabilities

User links are identified to users (and tools) by name. Each user link has one or
more names, known as capabilities - the names should be chosen to indicate to
1. It is also possible to remotely access a transputer directly connected to another (remote) host.
This requires the host connection server (HCS) to be running on the remote host - currently the
HCS software is only available for PCs.

72 TDS 346 01 October 1992

292 13.7 Connecting transputers to computer networks

a user what type of transputer system is connected to that user link. Examples of
capability names that might be used are B008, T801+2MB, or Grid: lOxlO.

Com~uterNetwork

Capabilities
USERLINKl

T8Torus
T80S

Capabilities
USERLINK2

16bit-Transputer
T212

Capabilities
USERLINK3

32bit-Transputer
T42S

T
Capabilities
USERLINK4

32bit-Transputer
T800

Figure 13.1 Capabilities for user links

If access to a transputer system is desired, one of the capability names of a user
link is given to the iserver. If a user link of that name is free then unique access
to that user link is granted until the server terminates. If the session manager inter­
face of the server is used (see Section 13.6), then unique access to the user link
can be maintained for as long as required. If the capability specified is not unique
then the iserver searches forthe first free user link on the local machine with that
capability. If that capability is not available, remote machines are then searched.
For this reason each user link will normally have several capabilities, at least one
of which will be unique in the network.

Figure 13.1 shows an example computer network with four user links. Each user
link has several capabilities. If a specific user link is to be used then the capability
USERLINK1, USERLINK2 etc. should be used. If that user link is free unique
access to it will be given. If all that is required is a 32 bit transputer (to run a tool,
for instance) then the capability 32bit-Transputer could be used; connection
to either of user links 3 or 4 could then be made, assuming that one of them is free.

When the iserver is run it is given the name of a capability with the 'SL' option
or the environment v~riable TRANSPUTER. The server finds the information it
needs to access that transputer network from the connection database file.

13.7.2 The connection database

Each transputer system available is described in the connection database file. The
iserver, when given the name of a transputer system, uses the connection data­
base to determine how to access that system. The name of the connection data­
base file is defined by the environment variable ICONDB.

The connection database is a text file which contains a description of all the avail­
able capabilities. In a PC development system, for example, the connection data­
base may contain only a single entry - the transputer board which is installed in
the PC. In a multi-user development environment, such as a networked Sun
workstation, the database may contain a number· of capabilities representing

72 TDS 346 01 October 1992

13 iserver - host file server 293

transputer links connected directly to the host or accessible via Ethernet. In this
case the connection database will be set up by the system administrator.

There may be several entries in the connection database with the same capability
name. In this case, when a user runs iserver specifying this capability, the first
system with that capability name which is not already in use will be allocated to the
user.

The connection database must exist for iserver to be able to access a trans­
puter. The server uses the environment variable ICONDB to locate the connection
database file.

Examples and further details of the contents of the connection database are given
in section 13.8.

13.7.3 Using a specific node

It is possible to request that a capability on a specific network node is used (note
that 'node' in this context may be an IMS B300 Ethemet interface). To do this the
character '@' is added after the capability name, followed by the name of the node.
When this is done the named node is contacted directly. If the specified capability
is not free on that node then the request will fail.

For example, to use the capability T4-torus on the node pwllheli the name
T4-torus@pwllheli would be specified to the server.

The special name localhost is defined as being the the local host (alternatively,
the local host's name may be used directly). If the local host is specified then only
local user links may be used. If no suitable user link is found locally the request will
fail.

13.8 The connection database

This section gives more detail about the connection database file that provides
information to the server about the available transputer networks.

13.8.1 Connection databases

A connection database file must be available on your host before you can gain
access to any user links. The connection database describes the transputer sys­
tems available on your network. The format of the connection database file is
described below, in section 13.8.2.

In a single-user system such as a PC-compatible development system, there may
only be a single entry in the connection database file - this will describe the trans­
puter board installed in the PC. A typical entry for an IMS B008 board in a PC might
look like this:

IB008lTllocalhostl#lS0lb0041 1IB008 with 3 x TBOSI

72 TDS 346 01 october 1992

294 13.8 The connection database

In a larger development environment, there may be many entries describing all the
transputer systems in the entire network ofdevelopment systems. In this case, the
connection database file will usually be created and managed by the system
administrator.

Capability names

There may be a number of different user links with the same name so that similar
transputer systems can have the same capability. For example, all the user links
which are connected to transputers which can run transputer based tools could be
given the capability ToolHost.

Similarly, there may be more than one entry for each transputer system in order
to give multiple names to the same resource. This allows a transputer networkwith
a 30MHz T805 transputer, for example, to be described with the capabilities
ToolHost (for user who want to use any transputer that can run transputer based
tools) and T80S-30 (for those who need to· use that specific type of transputer).

13.8.2 Connection database format

Connection database files are ASCII text files. It can contain four types of line:

• Blank lines - these are ignored.

• Lines starting with a 'I' chara er are comment lines, and are ignored.

• Lines starting with a ' I 'character re record lines, containing connection
data.

• Lines starting with a '*' character are continuation lines, used when a
record line will not conveniently fit on one line.

Records in the database are made up of eight fields, in a fixed order. Fields are
separated by a 'I' character. Records may be broken over a number of lines if
required, but may only be broken between fields. In this case a '*' character is used
as the field separator, and must appear at the end of the line to be continued, and
as the first character on the continuation line. The characters 'I ' and '*' are not per­
mitted within any field. Trailing spaces in a field are ignored.

The fields are shown in Table 13.3. There are two field types, String and Boolean.
A String is one or more ASCII text characters and a Boolean is asingle ASCII char­
acter, either 'f' or 'F' for false or 't' or 'T' for true.

72 TDS 346 01 October 1992

13 iserver - host file server 295

Field Type Description Example

Capability String Capability (Name) of user link Ta-grid

IsWorking Boolean True if the user link is available T

Machine String Network name of host machine for pwllheli
that user link (localhost if local)

Linkname String Name of link connected to user link /dev/bxviO

Linkdev String Type of device providing user link B016

Mmsfile String Reserved for future use

Mmslink String Reserved for future use

Description String Comment describing user link Taos Square
Grid

Table 13.3 Connection database record fields

13.8.3 Example connection databases

PC development system

The first example shows how 2 PC add-in boards in the same system could be
described. Each board has two names: a common name (BOOS) to allow a user
to access whichever user link is available, and a unique name to enable the user
to specify which transputer system they wish to use (T400 or TSOS).

, The following resource describes a BOOS with a T400.
, The link device is at address '150.

IT400 ITllocalhostl'lS0lb0041 IIBOOS board with T400 + 2MB I
IBOOS ITllocalhostl'lS0lb0041 IIBOOS board with T400 + 2MB I

t The following resource describes a BOOS with a TS01.
t The link device is at address '200.

ITSOS ITllocalhostl'200lb0041 I IBOOS board with TS01 + 2MB I
IBOOS ITllocalhostl'200lb0041 I IBOOS board with TS01 + 2MB I

72TDS 346 01 October 1992

296

Sun workstation

13.8 The connection database

This example shows how the various boards that can be connected to a Sun
workstation directly, can be described in a connection database file.

t Sample connection database.
t The device names and addresses supplied are the default names
t and/or addresses suggested in the installation section of the
t board's manual.

t The following resource allows access to a BOll connected to this
t host. The resource name is "BOll" and the device is accessed
, at address Ox800000.

IBOll1TIlocalhostlOx800000lbOll1 I IDescription of board I

t The following resource allows access to a B014 connected to the*host. The resource name is "B014" and the B014 device driver is
, accessed via "/dev/bxviO".

IB014 ITllocalhostl/dev/bxviOlb014I I IDescription of board I,
The following resource allows access to a B016 connected to the
t host. The resource names are "B016" and the B016 device drivers
tare accessed via "/dev/bxviO" through to "/dev/bxvi3".

IB016 ITllocalhostl/dev/bxviOlb0161 I IDescription of board I
IB016 ITllocalhostl/dev/bxvillb0161 I IDescription of board I
IB016 ITllocalhostl/dev/bxvi2Ib0161 I IDescription of board I
IB016 ITllocalhostl/dev/bxvi3Ib0161 I IDescription of board I

IMS 8300

The following example shows how four transputer systems available via Ethemet
could be described.

t Connection database for an IMS B300 with the node name 'billy'

t A T42S connected to link 2 of the B300
IHOSTLINKO ITlbillYI21tcpl I IT42S+1MI
ITA ITlbillYl2ltcpll'IT42S+1MI
IT42S ITlbillyI21tcpl I IT42S+1MI

t A T80S connected to link 3 of the B300
IHOSTLINKl ITlbillYI31tcpl I IT80S+2MI
ITA ITlbillyI31tcpl I IT80S+2MI
IT80S ITlbillYl31tcpI I IT80S+2MI

t Another T80S connected to link 0 of the B300
IHOSTLINK2 ITlbillYIOltcpl I IT80S+2MI
ITA ITlbillYIOltcpl I IT80S+2MI
IT80S ITlbillYIOltcpl I IT80S+2MI

t A small network connected to link 1 of the B300
IHOSTLINK3 ITlbillYllltcpl I IT800+4M + T80S+2M + T222+60KI
ITA ITlbillYllltcplI IT800+4M + T80S+ZM + T222+60KI
IT800 ITlbillYllltcpl I IT800+4M + T80S+ZM + T222+60KI

72 TDS 34601 October 1992

13 iserver - host file server 297

13.9 New server features

This section summarizes the main differences between version 1.5 of the
iserver and previous versions.

The new features are:

• The addition of a session manager user interface.

• A connection manager has been added, and capability names are used
instead of link names. There is no longer a default name.

• Some new command line options have been added.

• User interrupt behavior has changed.

• Exit codes have changed.

• New error codes have been added.

• Stream identifiers are validated.

• Support for record structured files has been added.

These changes are described in more detail in the following sections.

13.9.1 Session manager

This is a simple user interface that provides control of access to shared transputer
resources. It will provide unique access to a specified transputer resource (if avail­
able) for as long as required.

13.9.2 Connection manager

The connection manager provides transparent access to both remote and local
transputer resources. Resources are identified by a "capability name" and, option­
ally, the n"ame of the host to which the resource is connected.

13.9.3 New command line options

Three new command line options have been added:

SK Retry the connection at intervals.

SM Invoke the session manager interface.

ST All arguments which follow are not iserver arguments and will be
passed to the application. Note that this is a significant change to the way
that the iserver parses its command line. Existing command files or shell
scripts may need to be changed.

13.9.4 User interrupt

Behavior on user interruption depends on how the server is being run. If the ses­
sion manager interface is being used, then the server returns to the session man­
ager interface. If the session manager is not being used then the server terminates.

72 TDS 34601 October 1992

298

13.9.5 Exit codes

13.10 Error messages

This version of the iserver makes it possible to distinguish between the various
causes of termination of the server, such as user break, error flag set etc. Appen­
dix D provides full details of the exit codes.

13.9.6 Error codes

Server operations now return a range of error codes to indicate the cause of a fail­
ure. Checks are now made to ensure that operations are supported, a particular
transputer system is available etc.

Appendix D provides details of iserver error codes.

13.9.7 Stream identifier validation

Checks have been added to the server to validate all stream identifiers. Earlierver­
sions of the server assumed that a stream identifier would always be valid.

13.9.8 Record structured file support

Support for record structured files has been added for all supported hosts. Sup­
ported formats are formatted sequential, unformatted sequential, formatted direct
and unformatted direct. See Appendix D for full details.

13.1 0 Error messages

A list of possible error messages which iserver may produce follows. In some
cases, these messages may be followed by an extra message giving additional
information; these are listed below in section 13.10.1.

Aborted by user
The user interrupted the server, by pressing ICtrl-Cl or ICtrl-Breakl .

Boot filename is too long, maximum size is number characters
The specified filename was too long. number is the maximum size for file­
names.

Cannot find boot file filename
The server cannot open the specified file.

Command line too long (at string)
The maximum permissible command line length has been exceeded. The
overflow occurred at string.

72 TDS 346 01 October 1992

13 iserver - host file server 299

Copy filename is too long, maximum size is number characters
The specified filename was too long. number is the maximum size for file­
names.

Error flag raised by transputer
The program has set the error flag. Debug the program.

Expected a filename after -se option
The 'ss' option requires the name of a file to load.

Expected a filename after -SC option
The 'se' option requires the name of a file to load.

Expected a name after -SL option
The 'SL' option requires a link name or address.

Expected a number after -SP option
The 'SP' option must specify the number of Kbytes to peek.

Failed to allocate CoreDump buffer
The 'SP' option was used but the server was unable to allocate enough
memory to allow the transputer's memory to be copied.

Failed to analyse root transputer
The link driver could not analyze the transputer.

Failed to reset root transputer
The link driver could not reset the transputer.

Reset and analyse are incompatible
Reset and analyze options cannot be used together.

Timed out peeking word number
The server was unable to peek the transputer.

Transputer error flag has been set
The program has set the error flag. Debug the program.

Unable to access a transputer
The server was unable to gain access to a link. This occurs when the link
address or device name, specified either with the SL option or the TRANS­
PUTER environment variable, is incorrect or does not exist. This message
will be followed by one of the messages listed below.

72 TDS 346 01 october 1992

300 13.10 Error messages

Unable to free transputer link
The serverwas unable to free the link resource because ofa host error. The
reason for the error will be host dependent.

Unable to get request from link
The server failed to get a packet from the transputer because of some gen­
eral failure.

Unable to write byte number to the boot link
The transputer did not accept the file for loading. This can occur if the trans­
puter was not reset or because the file was corrupted or in incorrect format.

13.10.1 Additional error messages

The following messages provide additional information to accompany error mes­
sages from the server.

: no environment variable ICONDB

There is no environment variable ICONDB.

: can't open connection database file [...]

The file specified in the environment variable ICONDB cannot be accessed.

connection database, file [...], at line [...]
-> premature end of file

The database file is corrupt, a record line is not complete.

connection database, file [...], at line [...]
-> premature end of file, looking for field {...}

The database file is corrupt. A record line is not complete; the field {...} does
not exist.

connection database, file [...], at line [...]
-> expecting continuation character

Line [...] of the database file is corrupt. The record was not complete, a field
is missing and there was no continuation indicating the record is continued
on the next line.

connection database, file[...], at line[...]
-> expecting continuation character at start of line, looking for field {...}

Line [...] of the database file is corrupt. The previous line ended with a con­
tinuation character - a continuation was expected to start the current line.

72 TDS 346 01 October 1992

13 iserver - host file server 301

connection database, file[...], at line[...]
-> can't start a line with continuation, looking for field {...}

Line [...] of the database file is corrupt. A record line started with a continua­
tion character (it should start with a field separator). The {...} field was
expected.

connection database, file[...], at line[...]
->bad field separator, looking for field {...}

Line [...] of the database file is corrupt; the field was illegal.

connection database, file[...], at line[...]
-> field {...} cannot be null

Line [...] of the database file is corrupt. The field {...} contained a null value
(this is illegal).

connection database, file[...], at line[...]
-> illegal boolean value, looking for field {...}

Line [...] of the database file is corrupt. The field {...} should contain a bool­
ean value.

connection database, file[...], at line[...]
-> illegal linkdev field - unknown method

Line [...] of the database file is corrupt. The Linkdev field should contain a
link method value.

72 TDS 346 01 october 1992

302

72 TDS 346 01

13.10 Error messages

October 1992

14 isim- T425
simulator

This chapter describes the T425 simulator tool isim that allows programs to be
run and tested without transputer hardware. The chapter explains how to invoke
the tool and describes the simulator commands that allow the simulated program
to be debugged interactively.

14.1 Introduction

The simulator can run any transputer program that would run on a single IMS T425
mounted on a normal transputer evaluation board and supported by a host running
iserver. No transputer hardware is required unless you have an MS-DOS host,
in which case isim does requires a 32-bit transputer processor. This is due to the
memory requirements of isim.

Because the simulator runs the same code that would be loaded onto a real trans­
puter, any program that runs satisfactorily in the simulatorwill run on an IMS T425.
Because all 32-bit transputers are compatible at the source level, the same pro­
gram can also be run on any IMS 32-bit processor after recompiling for the correct
processor type.

The simulator also provides a reduced set of debugging facilities similar to those
of the debugger Monitor page. Additional features provided by the simulator are
the ability to set break points at simulated transputer addresses and to single step
the program. The program should be loaded into memory (using the @], 0 or
~ commands) b.efore breakpoint debugging facilities are used. This ensures that
breakpoints are not overwritten during the booting phase.

The simulatorcan also be used to familiarize new users with transputers and trans­
puter programming, and as a teaching aid.

14.2 Running the simulator

To run the simulator use the following command line:

~ isim program [programparameters] {options}

where: program is the program bootable file.

programparameters is a list of parameters to the program. The list of
parameters may follow the isim IN' option and parameters must be sepa­
rated by spaces. See section 14.2.1.

72 TDS 34601 October 1992

304 14.2 Running the simulator

options is a list of options from Table 14.1.

Options must be preceded by '-' for UNIX-based toolsets and' I' for
MS-DOS and VMS based toolsets.

Options may be given in any order.

Options may be entered in upper or lower case and can be given in any
order.

Only one filename may be given on the command line.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description

B Batch mode operation. The simulator runs in line mode Le. full
display data is not provided. Commands are read in from the
input stream e.g. the keyboard and executed. The commands
are not echoed to the output stream e.g. the display screen, as
they are executed.

BQ Batch Quiet mode. The simulator automatically executes the pro-
gram specified on the command line and then terminates. If an
error occurs, the appropriate message will be displayed. The
debugging facilities of the simulator are not available in this
mode.

BV Batch Verify mode. Similar to batch mode, except that the com-
mands and prompts displayed when running the simulator in
interactive mode are echoed to the output stream e.g. the dis-
play.

I Displays information about the simulator as it runs.

N No more options for the simulator. Any options entered after this
option will be assumed to be program parameters to be passed
to the program running on the simulator.

Table 14.1 isim options

14.2.1 Passing in parameters to the program

Program parameters can be passed to programs which are simulated on any host.
Parameter passing is equivalent to running a transputer bootable program using
iserver.

isimwill normally parse the command line and any options it recognizes as its own
will not be passed to the user program. In cases where options are required for a
user program which clash with one of the isim options the 'N' option can be used.
After the 'N' option isim ceases parsing the command line for its own options; the
remainder of the command line is simply passed through to the user program.

72 TDS 346 01 October 1992

14 isim - T425 simulator

14.2.2 Example of use

isim hello.btl

305

This invokes the simulator on the 'Hello World' program.

When first invoked the simulator enters the debugging environment. To start the
program invoke the 'G' command. The program then runs until it completes suc­
cessfully, a runtime error occurs, or a break point is reached. If an error occurs the
processor halts, the error flag is set, and the program can be debugged using com­
mands to examine memory and registers.

When invoked with the 'BQ' option (Batch Quiet) the simulator immediately runs the
program and does not enter the debugging environment.

14.2.3 ITERM file

The simulator reads the ITERM file to determine how to control the terminal screen
and to map a few simulator commands. The ITERM file must be defined in the host
environment variable I TERM.

14.3 Monitor page display

The simulator Monitor page is similar to that of the debugger, which is described
in chapter 4. Data displayed at the simulator Monitor page includes:

Iptr Contents of instruction pointer (address of the next
instruction to be executed).

Wptr Contents of workspace pointer.

Error Status of error flag.

Halt On Error Status of halt on error flag.

Fptrl Pointer to the front of the low priority active process
queue. If 'jump 0' breaks are enabled the letter B is dis-
played after the pointer value.

Bptrl Pointer to the back of the low priority active process
queue.

FptrO Pointer to the front of the high priority active process
queue.

BptrO Pointer to the batk of the high priority active process
queue.

Tptrl Pointer to the low priority timer queue. If the timer is dis-
abled the letter x is displayed after the pointer value.

TPtrO Pointer to the high priority timer queue.

Note: If Wptr contains the most negative address value, it will be described as
'invalid'. This normally means that no process is executing in the simulator (for
example, the program may have become deadlocked).

72 TDS 346 01 October 1992

306 14.4 Simulator commands

The Monitorpage also displays the last instruction executed, asummary ofMonitor
page commands, and, if an error has occurred, the cause of the error.

14.4 Simulator commands

All simulator commands are given at the Monitor page. Many of the commands are
similar to those ofthe idebug Monitorpage, however, there are anumberof imple­
mentation differences. Full descriptions of the commands are given in the following
sections.

14.4.1 Specifying numerical parameters

Some simulator commands require numerical parameters, such as addresses.
These can be specified as simple expressions in decimal or hexadecimal format.
Expressions can be the sum of two expressions, the result of subtracting one
expression from another, or constants. Constants that can be specified are: Areg,
Breg, Creg, Iptr, Wptr, decimal constants, hexadecimal constants, or abbre­
viated hexadecimal constants.

Hexadecimal constants are specified using the prefix #. Abbreviated hex constants
can be created by prefixing the sequence of hex digits with '%', which assumes the
hexadecimal prefix '8000 ... '. For example, the abbreviation '%F8A' is interpreted
as the hex number '8000F8A'.

14.4.2 Keys mapped by ITERM

Several commands for controlling the display are mapped to specific keys by the
ITERM file. Key mappings for specific terminal keyboards can be found in the
Delivery Manual.

~

I REFRESH I

I FINISH I

I PAGE UP I

I PAGE DOWN I

72 TDS 346 01

Displays help information.

Re-draws the screen.

Quits the simulator.

Scrolls the current display.

Scrolls the current display.

Scrolls the current display.

October 1992

14 isim - T425 simulator

14.4.3 Command summary

307

Key Meaning Description

A ASCII Displays a portion of memory in ASCII.

B Break points Breakpoint menu.

0 Disassemble Displays transputer instructions at a specified area
of memory.

G Go Runs (or resumes) the program.

H Hex Displays a portion of memory in hexadecimal.

I Inspect Displays a portion of memory in any occam type.

J Jump into pro- Runs (or resumes) the program. Same as G.
gram

L Links Displays Iptr and Wptr for processes waiting for
input or output on a link, or for a signal on the
Event pin.

M Memory map This option is not supported for the current toolset.

N Create dump file Creates a core dump file.
p Program boot Simulates a program 'boot' onto the transputer.

Q Quit Quits the simulator.

R Run queue Displays Iptr and Wptr for processes on the high
or low priority active process queues.

5 Single step Executes the next transputer instruction.

T Timer queue Displays Iptr, Wptr, and wake-up times for pro-
cesses on the high or low priority timer queues.

U Assign register Assigns a value to a register.

? Help Displays help inform~tion.

Table 14.2 Simulator commands

14.4.4 Command descriptions

[!]-ASCII

This command displays a segment of transputer memory in ASCII format, starting
at a specific address. If no address is given the default address Wptr is used.
Specify a start address after the prompt:

(Start address (Wptr)) ?

Either pressI RETURN Ito accept the default address, or enter the desired address.
The address can be entered as a decimal number, a hexadecimal number pre­
ceded by 'I', or the short form '%h ... h'.

72 TDS 346 01 October 1992

308 14.4 Simulator commands

The memory is displayed in blocks of 13 rows of 32 ASCII bytes, each row pre­
ceded by an absolute address in hexadecimal. Bytes are ordered from left to right
in each row. Unprintable characters are substituted by a full stop.

The [Al, [1], I PAGE UP I, and I PAGE DOWN Ikeys can be used to scroll the dis­
play.

[!] - Breakpoints

Sets, displays, and cancels break points at specified memory locations or proce­
dure calls. The program should be loaded into memory (using the @], 0 or[!J
commands) before this command is used to set breakpoints. (The @] command
may also be used prior to this command, to determine where to set breakpoints).

The command displays the Breakpoint Options Page:

Breakpoint Options Page

1) Set breakpoint at Address

2) Display breakpoints

3) Cancel breakpoint at Address

Select Option?

Options are selected by entering one of the single digit commands. The following
prompts are displayed depending on the command selection:

Command Prompt

1 (break address) ?

3 (break address (ALL»

Pressing I RETURN Iwith no typed input in response to command 1 cancels the
option; in response to command 3, it causes all breakpoints to be cancelled.

After each breakpoint command the user is returned to the simulator command
prompt.

@] - Disassemble

The Disassemble command disassembles memory into transputer instructions.
Specify an address at which to start disassembly after the prompt:

(Start address (Iptr» ?

Either press I RETURN Ito accept the default address, or enter the desired address.
The address can be entered as a decimal number, a hexadecimal number pre­
ceded by"', or the short form '%h ... h'.

72 TDS 34601 October 1992

14 isim - T425 simulator 309

The memory is displayed in batches of thirteen transputer instructions, starting
with the instruction at the specified address. If the specified address is within an
instruction, the disassembly begins at the start of that instruction. Where the pre­
ceding code is data ending with a transputer 'pfix' or 'nfix' instruction, disas­
sembly begins at the start of the pfix or nfix code.

Each instruction is displayed on a single line preceded by the address correspond­
ing to the first byte of the instruction. The disassembly is a direct translation of
memory contents into instructions; it neither inserts labels, nor provides symbolic
operands.

The [I], rn, I PAGE UP I, and I PAGE DOWN Ikeys can be used to scroll the dis­
play.

@] -Go

Starts the program, or continues running the program after a breakpoint or error
has been encountered. The program will run until it completes successfully, sets
the error flag, or reaches a break point.

To start the program, specify a break point address after the following prompt and
press I RETURN I:

(break point address)

The default is not to set a break point.

[8] - Hex

The Hex command displays memory in hexadecimal. Specify the start address
after the prompt:

(Start address (wptr) ?

Press I RETURN Ito accept the default address, or enter the desired address. The
address can be entered as a decimal number, a hexadecimal number preceded
by"', or the short form '%h ... h'. If the specified start address is within aword, the
start address is aligned to the start of that word.

The memory is displayed as rows of words in hexadecimal format. Each row con­
tains four words of eight hexadecimal digits, with the most significant byte first.

Words are ordered left to right in the row starting from the lowest address. The word
specified by the start address is the top leftmost word of the display.

The address at the start of each line is an absolute address displayed in hexadeci­
mal format.

72 TDS 346 01 october 1992

310 14.4 Simulator commands

[JJ - Inspect

Displays a portion of memory in any occam type - as defined in the 'occam 2
Reference Manual'.

The Inspect command can be used to inspect the contents of an entire array.

Specify a start address after the prompt:

(Start address (Wptr» ?

Either pressI RETURN Ito accept the default address, or enter the desired address.
The address can be entered as a decimal number, a hexadecimal number pre­
ceded by"', or the short form '%h ..• h'.

When a start address has been given, the following prompt is displayed:

Typed memory dump
o - ASCII
1 - INT
2 - BYTE
3 - BOOL
4 - INT16
5 - INT32
6 - INT64 (Not implemented)
7 - REAL32 (Not implemented)
8 - REAL64 (Not implemented)
9 - CHAN

Which occam type ?

Give the number corresponding to the type you wish to display or press I RETURN I
to accept the default type. Initially the default will be HEX; for subsequent use of
the command the default takes the value of the last selected type.

ASCII arrays are displayed in the format used by the Monitor page command
'ASCII'. Other types are displayed both in their normal representation and hexade­
cimal format.

The memory is displayed as thirteen rows ofdata. The address at the start of each
line is an absolute address displayed as a hexadecimal number. The element spe­
cified by the start address is on the top row of the display.

Start addresses are aligned to the nearest valid boundary for the type, that is: BYTE
and BOOL to ~he nearest byte; INT16 to the nearest even byte; INT, INT32 and
CHAN to the nearest word.

o -Jump into program

Same as @] - starts or continues running the program.

72 TDS 346 01 October 1992

14 isim - T425 simulator 311

[IJ - Links

Displays information about simulated links.

The Links command displays the instruction pointer Iptr, workspace descriptor
Wdesc and priority, of the processes waiting for communication on a link, or for a
signal on the Event pin. If no process is waiting, the link is described as 'Empty'.
Link connections on the processor, and the link from which the processor was
booted are also displayed.

The format of the display is similar to the following:

Link 0 out Iptr: #80000256 Wdesc: #80000091 (Lo)
Link lout Empty
Link 2 out Empty
Link 3 out Empty
Link 0 in Empty
Link 1 in Empty
Link 2 in Empty
Link 3 in Empty

Link 0 connected to Host
Links 1, 2, 3 not connected

Booted from link 0

~ - Memory map

This option is not applicable to the current version of isim, if used the following
message will be displayed:

Memory Map Invalid

[!!] - Create dump file

Creates a core dump file from which the program can be debugged off-line. The
name of the file and the numberof bytes to write must be specified. Afile extension
is not required and should not be specified. The dump file is automatically given
the . dmp extension.

~ - Program boot

Loads the program into transputer memory ('boots the program') so that debug­
ging can start at beginning of the application program without stepping through
bootstrap loading code. The program is loaded into memory but is not automati­
cally run. This command can only be used prior to executing any other instructions.

[9] -Quit

Quits the simula~or, and returns to the host operating system.

72 TDS 346 01 October 1992

312

~ - Run queues

14.4 Simulator commands

This command displays Iptrs and WdescS for processes waiting on the proces­
sor's active process queues. If both high and low priority front process queues are
empty, the following message is displayed:

Both process queues are empty

If neither queue is empty, you are required to specify the queue:

High or low priority process queue ? (H,L)

Type 'H' or 'L' as required. Ifonly one queue is empty isim displays the non-empty
queue.

The [IJ, 00, I PAGE UP I, and I PAGE DOWN Ikeys can be used to scroll the dis­
play.

[!] - Single step transputer instruction

This command executes the transputer instruction pointed to by Iptr. By repeat­
ing the command the user may single step through the program, observing the
changes to the process queues and registers, as the display is updated.

[!] - Timer queue

This command displays Iptrs, Wdescs, and wake-up times for processes waiting
on the processor's timer queues. Prompts and displays are similar to those for the
Run queue command.

@]-Assign

Assigns a value to a register, Iptr or Wptr. To assign a value, specify the register
by name (abbreviations are permitted), and give a value to be assigned to the reg­
ister. This enables the program to be re-run (using @] orQ]) with alternative val­
ues in the registers.

I HELP 1

[TI-Help

Lists the available simulator commands.

I REFRESH 1- Refresh

Refreshes the screen.

72 TDS 34601 October 1992

14 isim - T425 simulator 313

I FINISH 1- Quit

Quits the simulator, and returns· to the host operating system.

The [i], 00, I PAGE UP I, and I PAGE DOWN Ikeys can be used to scroll the dis­
play.

14.5 Batch mode operation

1S1m can be run in batch mode by setting up the environment variable
ISIMBATCH. If this variable is defined on the system isim automatically selects
batch mode operation.

14.5.1 Setting up ISIMBATCH

I SIMBATCH is set up on the system as an environment variable using the appropri­
ate command for your host system.

VERIFY and NOVERIFY modes which enable and disable the output of input com­
mands and user responses are defined by setting a value for ISIMBATCH. In MS­
DOS the command to use is the set command. For example:

C:\ set ISIMBATCH=VERIFY

C:\ set ISIMBATCH=NOVERIFY

In UNIX the equivalent command is setenv and on VMS systems the command
to use is define. Details of how to use these commands can be found in the user
documentation for your system.

14.5.2 Input command files

In batch mode isim is driven from a command script containing simulator com­
mands and responses to prompts. All prompts by isim must be followed by a valid
response.

14.5.3 Output

Output can be written to a log file or displayed at the terminal. Input and output
streams can be assigned to files or the user's terminal by commands on the host.

isim can be set up to operate in VERIFY or NOVERIFY mode by setting a different
values for ISIMBATCH. In VERIFY mode all prompts and user responses are
included in the output.

14.5.4 Batch mode commands

Batch mode simulator commands '1\ through 'u' are the same as the interactive
debugging commands. Two additional commands generate special batch mode
output:

72 TDS 346 01 October 1992

314 14.6 Error messages

Key Meaning Description

? Query state Displays values of registers and queue pointers.

Where Displays next Iptr and transputer instruction.

[2] - Query state

Displays information about the processor state, including current values of regis­
ters, queue pointers, and error flag status. For example:

Processor state
Iptr '80000070
Wptr '800000C8
Areg '80000070
Breg '800000C8
Creg '80000010
Error Clear
Halt on Error Set
Fptr1 (Low '00000000
Bptr1 queue) '00000000
FptrO (High '00000000
BptrO queue) '00000000
Tptr1 (timer '20202020
TptrO (queues '20202020

D-Where

Displays the Iptr of the next instruction to execute and a disassembly of that
instruction. For example:

Iptr '80000070. Low Priority, Next Instruction ajw 42 - '2A

14.6 Error messages

Cannot open bootfile 'filename'

The file containing the code to be run could not be opened or could not be
found.

Environment variable 'IBOARDSIZE' does not exist

Board memory size must be specified to the system using the the host envi­
ronment variable IBOARDSIZE. Details of how to set up IBOARDSIZE on
your system can be found in the Delivery Manual.

Environment variable 'ITERM' not set up

The ITERM definition file for the simulator function keys must be specified
in the ITERM host environment variable.

72 TDS 346 01 October 1992

14 isim - T425 simulator

IBOARDSIZE is too small (at least number bytes required)

315

The simulator requires a minimum memory size in order to run correctly.
Modify IBOARDSIZE and retry the command.

ITERM error
Iterm initialisation has failed

The ITERM file for setting up the terminal codes is invalid. ITERM error
describes the fault in the file.

Simulator terminated: Error flag set • message

Simulator messages may be output when the simulator halts (Le. as an
error condition). message can be one of:

arithmetic overflow

arithmetic underflow

long overflow

subscript out of range

count out of range

check single

check word

arithmetic exception

floating point error

Simulator terminated: message

Simulator messages may be output when the simulator halts, due to an
invalid operation within the program being simulated. message can be one
of:

attempt made to input from non-existent hard channel

Attempt to input from output link.

attempt made to output to non-existent hard channel

Attempt to output to input link.

attempt to output to unattached hard channel

Attempt to output on unattached link.

attempt to read illegal memory byte at address

The memory address specified is invalid (not within IBOARDSIZE).

72 TDS 346 01 October 1992

316 14.6 Error messages

attempt to read illegal memory word at address

Invalid memory address or attempt to access non word aligned.

attempt to set illegal memory byte pointer

Invalid memory address (not within IBOARDSIZE).

attempt to set illegal memory word pointer

Invalid memory address or attempt to access non word aligned.

attempt to write illegal memory byte at address

Invalid memory address (not within IBOARDSIZE).

attempt to write illegal memory word at address

Invalid memory address or attempt to access non word aligned.

high priority process restored from save area

A swapped out low priority process has been written over during an inter­
rupt.

illegal operand (nnn) to operate command

An attempt has been made to execute invalid instruction for the T425.

input from iserver when iserver outputting

ISERVER packet input before leading output sent.

inputting iserver packet larger than expected

Illegal ISERVER protocol packet on input.

output iserver packet larger than expected

Illegal ISERVER protocol packet on output.

output to iserver when iserver inputting

ISERVER packet output before response to last output received.

72 TDS 346 01 October 1992

15 iskip - skip loader

This chapter describes the skip loader tool that allows programs to be loaded onto
transputer networks over the root transputer. The tool sets up a data transfer proto­
colon the root transputer that allows programs running on the rest of the network
to communicate directly with the host.

15.1 Introduction

The skip tool i skip prepares a network to load a program over the root transputer
by setting up a transparent route-through process on the root transputer to transfer
data from the application program running on the target network to and from the
host computer. A subsequent call to iserver loads the program onto the network
connected to the root transputer, but does not use the root transputer as part of the
network. The root transputer is in effect rendered transparent to the rest of the net­
work. The route-through process uses a simple protocol that transfers data byte
by byte between the program and the host.

After iskip has been invoked to set up the data link across the root transputer,
the program can be loaded down the host link using iserver. iskip can be used
to skip any number of processors and load a program into any part of a network,
see section 15.2.2.

iskip itself may only be executed on 32 bit transputers which have more than 8
Kbytes of memory, although it may be used to reach both 16 and 32 bit transputers
for target program execution.

15.1.1 Uses of the skip tool

The skip tool has two main uses:

To allow programs configured for specific arrangements of transputers to
be loaded onto the target network without using the root transputer to run
the program. The root transputer helps to load the program onto the net­
work and subsequently provides a route-through process which transfers
data from the application program to the host.

Example of boards supplied by INMOS that can be used to skip load pro­
grams are the IMS 8004 PC add-in board, which contains a single IMS
T414 transputer, and the IMS 8008 PC motherboard fitted with a TRAM in
slot zero to act as the root transputer. Other slots on the motherboard can
be used to accommodate the target network.

2 Programs configured for a network that normally incorporates the root
transputer can be debugged without having to use idump to save root

72 TOS 34601 October 1992

318 15.2 Running the skip loader

transputer's memory to disk. Programs can be loaded into the networkcon­
nected to the root transputer and the debugger can safely run on the root
transputer without overwriting the program. The external network must
have the correct number and arrangement of processors and memory for
the program to be loaded.

This can make debugging transputer programs easierwhen an extra trans­
puter is available.

15.2 Running the skip loader

To invoke the iskip tool use the following command line:

~ iskip Iinknumber {options}

where: linknumber is the link on the root transputer to which the target transputer
network is connected.

options is a list, in any order, of one or more options from Table 15.1.

Options must be preceded by '-' for UNIX-based toolsets and'/' for
MS-DOS and VMS based toolsets.

Options may be given in any order.

Options may be entered in upperor lower case and can be given in any
order.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description

E Directs iskip to monitor the subsystem error status and termi-
nates when it becomes set.

I Displays detailed progress information as the tool loads.

R Reset subsystem.Resets all transputers connected downstream
of link Iinknumber. Does not reset the root transputer.

RP A replacement for the R option when running programs on
boards from certain vendors.

Contact your supplier to see whether this option is applicable to
your hardware. It does not apply to boards manufactured by
INMOS.

Table 15.1 iskip options

72 TDS 346 01 October 1992

15 iskip - skip loader 319

15.2.1 Skipping a single transputer

This example illustrates how to use iskip to skip over the root transputer for the
example network shown in Figure 15.1.

r---

H
32 bit 16 or 32 bit0 2 1

S
~ root target

~
transputer transputer

Figure 15.1 Skipping a single transputer

For further information about subsystem wiring see chapter 7 in the Too/set User
Guide and the debugger documentation in chapter 4 of this manual.

Subsystem wired down:

iskip 2 -r (UNIX based toolsets)
iskip 2 /r (MS-DOSNMS based toolsets)

In this example iskip is invoked for a network where the subsystem is wired
down. The network is prepared to load the program over the root transputer, which
is connected to the network via link 2; the 'r' option resets the target network.

Subsystem wired subs:

iskip 2 -r -e (UNIX based toolsets)
iskip 2 /r /e (MS-DOSNMS based toolsets)

Inthis example iskip is invoked for a network where the subsystem is wired subs.
The 'e' option has been added to the example, to direct iskip to monitor the sub­
system error status, see section 15.2.4.

15.2.2 Skipping multiple transputers

This example illustrates how to use iskip to skip over two transputers (starting
with the root transputer) for the example network shown in Figure 15.2.

r---

H 16 or 32 bit
0 32 bit root 2 1 32 bit 0 3 target~

transputer transputerS transputer
T-----

Figure 15.2 Skipping over two transputers

72 TDS 34601 October 1992

320 15.2 Running the skip loader

Normally iskip is invoked via its driver program; this resets the root transputer
and loads the transputer bootable image iskip. btl onto the transputer (essen­
tially it performs an iserver -se -sb iskip. btl operation). Note: because
the root transputer is reset, running iskip twice in succession will not achieve any
more than running iskip once; the second invocation will reset the first and load
iskip onto the root transputer. In order to skip over more than one transputer,
iskip must be loaded onto subsequent transputers by a 'different' method that
does not involve resetting the root transputer. This is best illustrated by an example
as shown below (for a network wired subs):

iskip 2 -r -e
iserver -se -ss -se iskip.btl 0

(UNIX based toolsets)

iskip 2 /r /e (MS-DOSNMS based toolsets)
iserver /se /ss /se iskip.btl 0

iskip .btl is the transputer bootable component of iskip, it may be found in the
i tools directory of this toolset release. For details of toolset directories see the
delivery manual supplied with this toolset.

15.2.3 Loading a program

Once iskip has been invoked to prepare the network, the program is loaded by
invoking iserver with the 'SE', 'SS' and 'se' options. iserver must be invoked
with the 'SE' option if the error flag is required to be monitored. This applies whether
the iskip 'E' option is used or not. For example:

iserver -se -ss -se myproq.btl
iserver /se /ss /se myproq.btl

(UNIX toolsets)
(MS-DOSNMS toolsets)

Note: After using the skip tool the root transputer must not be reset or analyzed,
that is, iserver must not be invoked with the 'SR', 'SB', or 'sA' options, while
iskip is required to run.

15.2.4 Monitoring the error status - option E

The iskip 'E' option should only be used when the sub-network is connected to
the Subsystem port of the root transputer Le. 'wired subs '. When the sub-network
is connected to the Down port on the root transputer Le. 'wired Down', the 'E' option
must not be used.

The 'E' option instructs i skip to monitor the subsystem error status and terminate
when it becomes set. When it terminates it sets its own error flag in order that the
server may detect that an error in the subsystem has occurred. This allows the pro­
gram to be debugged.

If the subsystem error status is not properly monitored when the program is run,
the server may become suspended when a program error occurs. In these circum­
stances the server can be terminated using the host system BREAK key.

72 TOS 34601 October 1992

15 iskip - skip loader 321

Note: There is a delay of one second after iskip is invoked with the 'E' option
before monitoring of the subsystem error status begins; if the program fails before
this the server may not terminate correctly and the host system BREAK key should
be used.

15.2.5 Clearing the error flag

If either iskip or iserver detect that the error flag is set immediately a program
starts executing it is likely that the network consists of more processors than are
currently being used and that one or more of the unused processors has its error
flag set.

On transputer boards the network may be reset using network check programs.
such as ispy, which clear all error flags.

The ispy program is provided as part of the support software for some INMOS iq
systems products. These products are available separately through your local
INMOS distributor.

An alternative to using a network check program to clear the network is to load a
dummy process onto each processor. In the act of loading the process code the
error flag is cleared.

15.3 Error messages

This section lists error messages that can be generated by the skip tool.

Called incorrectly

Command line error. Check command line syntax and retry.

Cannot read server's command line

Syntax error. Retry the command.

Duplicate option: option

option was supplied more than once on the command line.

No filename supplied

No filename was supplied on the command line.

This option must be followed by a parameter: option

The option specified requires a parameter. Check syntax and retry.

72 TDS 346 01 October 1992

322 15.3 Error messages

Unknown option: option

The specified option is invalid. Check option list and retry.

You must specify a link number (0 to 3)

A link number is required. Specify the number of the root transputer link to
which the network is connected. If you specify the host link an error is
reported.

72 TDS 346 01 October 1992

Appendices

72 TDS 34601 October 1992

324

72 TDS 34601

Appendices

October 1992

A Toolset conventions
and defaults

This appendix describes the standards and conventions used by INMOS toolsets
for:

• Command line syntax

• Filenames

• Search paths

• File extensions

• Error message format

A.1 Command line syntax

All tools in the toolsets conform to a common command line format.

A.1.1 General conventions

• Commands, and their parameters and options, obey host system stan­
dards.

• Filenames, either directly specified on the command line or as arguments
to options, must conform to the host system naming conventions.

• Options must be prefixed with the standard option prefix character for the
operating system ('-' for Unix based toolsets and •I' for VMS and MS-DOS
based toolsets).

• Command line parameters and options can be specified in any order but
must be separated by spaces.

• Lists of arguments to options, where allowed, must be enclosed in paren­
theses, and the items in the list must be separated by commas.

• If no parameters or options are specified the tool displays a help page that
explains the command syntax.

A.1.2 Standard options

Standard command line options used in the toolsets have the same action for all
tools. Standard options and their descriptions are given below.

72TDS 346 01 October 1992

326 A.2 Unsupported options

Option Description

F Specifies an indirect file (command script).

I Displays progress data in full.

0 Specifies an output file.

A.2 Unsupported options

A number of tools have various command line options beginning with 'z'. These
options are used by INMOS for development purposes and have not been
designed for users. As such they are unsupported and should not be used. INMOS
cannot guarantee the results obtained from such options nor their continued pres­
ence in future toolset releases.

A.3 Filenames

File names generally follow the naming and character set conventions of the host
operating system except that the following directory separator characters cannot
be used within a filename:

• Colon ':'

• Semi--eolon';'

• Forward slash 'I'

• Backslash '\' Cv' for Japanese MS-DOS)

• Square brackets' [] ,

• Round brackets' () ,

• Angle brackets '<>'

• Exclamation mark'!'

• Equals sign '='

A.4 Search paths

The tools locate files by searching"a specified directory path on the host system.
The path is specified using the host environment variable ISEARCH. The search
rules for all tools are as follows:

If the filename contains a directory specification then the filename is used
as given. Relative directory names are treated as relative to the directory
in which the tool is invoked.

72 TDS 346 01 October 1992

A Toolset conventions and defaults 327

2 If no directory is specified the directory in which the tool is invoked is
assumed.

3 If the file is not present in the current directory, the path specified by the
environment variable (or logical name) ISEARCH is searched. If there are
several files of the same name on this path, the first occurrence is used.

4 If the file is not found using the above rules, then the file is assumed to be
absent, and an error is reported.

If no search path has been set up then only rules 1 and 2 apply.

By default all files are written to the current directory.

A.5 Standard file extensions

The INMOS toolsets use a standard set of file extensions for source and object
files. In most cases these extensions must be specified on the command line for
input files. They are automatically created for output files, unless an alternative file­
name is specified on the command line.

A separate set of extensions for object files must be used where imakef is used
to build programs for mixed processor networks. These are described separately
in section A.6.

72TDS 34601 october 1992

328

A.5.1 Main source and object files

A.5 Standard file extensions

Extension Description
.btl Bootable file which can be loaded onto a transputer or transputer

network. Created by icollect directly from a .lku file (single
transputer programs) or from a .cfb file. Bootable files can be sent
down a link by iserver for immediate execution. Contains
information used by iserver to control the host link for execution.
Also read by idebug*.

. c C source files. Assumed by icc, the ANSI C compiler.

.cfb Configuration binary file containing a description of how code is to
be placed on a network, adescription of the route to be used to load
the network, and the parameters to be passed to each of the pro-
cesses. Created by the configurer from a user-defined configura-
tion description and read by icollect to prepare a bootable file
and by idebug* to load a network for debugging.

.cfs Configuration description file. This is a text file, created by the user
and describes the hardware and software networks and the map-
ping between them. It also references the linked units and is used
as input to the C configurer icconf.

.f77 FORTRAN source files. Assumed by if77, the FORTRAN-77
compiler.

. h Header files for use in C source code.

.lku Linked unit. Created by ilink as an executable process with no
external references. Used as input to icollect (single transputer
programs) or within a configuration description. Also read by ide-
bug*.

.lib Library file containing a collection of binary modules. Created by
ilibr.

. occ occam source files. Assumed by oc, the occam 2 compiler.

.pgm occam configuration description file. This is a text file, created by
the user and describes the hardware and software networks and
the mapping between them. It also references the linked units and
is used as input to the occam configurer occonf.

.tco Compiled binary module produced by all INMOS TCOFF compil-
ers. Used as input to ilink and ilibr. Also read by idebug*.

* Not applicable to the FORTRAN toolset

72 TDS 346 01 October 1992

A Toolset conventions and defaults

A.5.2 Indirect input files (script files)

329

Extension Description

.inc Include files named in 'INCLUDE compiler directives for occam,
or 'include statements in configuration descriptions or in FOR-
TRAN-77 statements.

.lbb Library build files which specify the components of a library to
ilibr.

. liu Library usage files. Created and used by imakef.

. Ink Linker indirect files which specify the components of a program to
be linked. Also used by imakef when creating Makefiles.

A.5.3 Files read by the memory map tool imap

Extension Description

.DlXX Map file output by the compiler. The characters'xx'are determined
by the 2nd and 3rd characters of the extension given to the compiler
object file. For example if the compiler object file takes the default
extension . teo, the information file is given the extension .meo.

.dxx Map file output by the linker. The characters 'xx' are determined by
the 2nd and 3rd characters of the extension given to the linker
object file. For example if the linker object file takes the default
extension .lku, the information file is given the extension . dku.

.map Map file output by the collector.

Note: These extensions also satisfy imakef's requirements, see section A.6.

A.5.4 Other output files

Extension Description

.bin Binary format files produced by ieprom for loading into ROM.

.btr Executab!e code without a bootstrap. Created by icolleet and
used as input to ieprom.

.clu Configuration object file, created by the occam configurer
occonf.

.hex A hex dump of a file for loading onto a ROM by a custom ROM
loader tool.

. ihx Intel hex format files produced by ieprom for loading into ROM.

.mot Motorola 'srecord' files produced by ieprom for loading into ROM.

.rse An . rsc file contains the code of a process togetherwith a descrip-
tion of its requirements for data areas and parameters. It is created
by the collector from a linked unit. The format is described in chap-
ter 3.. rse files are suitable for using with either the occam or C
functions which support dynamic code loading.

72 TDS 346 01 October 1992

330

A.5.5 Miscellaneous files

A.6 Extensions required for imakef

Extension Description

.dmp* Memory dump and network dump files. Created by idump for
debugging code on the root transputer (memory dump) or by ide-
bug for off-line analysis ofa program on a network (network dump).
Read by the debugger for post-mortem debugging.

.itm ITERM files containing information about the terminal. Used by
tools such as idebug to handle the screen in a device-independent
manner. Can also be created by users for other terminals. The file
is referenced via the environment variable ITERM.

•male Makefile generated by imakef. This file may be input to a "make"
utility to build the target file. May also be edited by the user.

* Not applicable to the FORTRAN toolset

A.6 Extensions required for imakef

The standard set of file extensions are adequate for simple programs executing
on a single transputer, or on a network of transputers all of the same type. If the
network is heterogeneous and a particular source file needs to be compiled for
more than one transputer type, the following scheme can be used to identify the
individual processor types and error modes.

If imakef is used to build the program, this scheme must be used.

The extended system uses extensions of the form . (pe:

where: (denotes the type of file and can take the following values:

t for . tco equivalents.

1 for .lnk equivalents.

c for .lku equivalents.

r for . rsc equivalents.

p denotes the transputer target type or class. This can take the fol­
lowing values:

2 - T212, T222, M212

3 - T225

4 - T414

5 - T425, T400, T426

8 - T800

9 - T801, T805

a - T400, T414, T425, T800, T801, T805

72 TDS 34601 October 1992

A Toolset conventions and defaults

b - T400, T414, T425

e denotes the execution error mode. The values it can take are:

h - on execution, an error will immediately halt the transputer.

s - when an error occurs, the transputer's error flag will be set.

x - the program can be executed in either HALT or STOP
mode.

A.7 Message handling

331

All tools in the toolsets display diagnostic messages in a standard format. This has
certain advantages:

The tool generating the message can be identified even when the tool is
run out of contact with the terminal.

2 User programs or system utilities can be used to detect and manipulate
errors. Some host system editors permit automatic location of errors.

A.7.1 Message format

Diagnostic messages are displayed in a standard format by all tools. The general­
ized format can be expressed as follows:

severity - toolname - filename (linenumber) -message

where: severity indicates the severity level. Severity categories are described
below.

toolname is the standard toolset name for the tool. Names defined
using host system abbreviations and batch files are not displayed.

filename and linenumber indicate the file and line where an error
occurred. They are only displayed if the error occurs in a file. They
are commonly displayed when files of the wrong format are speci­
fied on the command line, for example, a source file is specified
where an object file is expected.

message explains the error and may recommend an action.

A.7.2 Severities

The severity attached to the message indicates the importance of the diagnostic
to the operation of the tool. It also implies a certain action taken by the tool.

Five severity categories are recognized:

Information Warning Error Serious Fatal

72 TDS 346 01 October 1992

332 A.7 Message handling

Information messages provide the user with information about the functioning or
performance of the tool. They do not indicate an error and no useraction is required
in response.

Warning messages identify minor logical inconsistencies in code, or warn of the
impending generation of more serious errors. The tool continues to run and may
produce usable output if no serious errors are encountered subsequently.

Error messages indicate errors from which the tool can recover in the short-term
but may cause further errors to be generated which may lead to termination. The
tool may continue to run but further errors are likely and the tool is likely to abort
eventually. No output is produced.

Serious errors are errors from which no recovery is possible. Further processing
is abandoned and the tool aborts immediately. No output is produced.

Fatal errors indicate internal inconsistencies in the software and cause immediate
termination of the operation with no output. Fatal errors are unlikely to occur but
if they do the fact should be reported to your local INMOS distributor or field
applications engineer.

A.7.3 Runtime errors

Errors which prevent the program from being run are detected by the runtime sys­
tem at startup or during program execution. These errors are displayed in a similar
format to that used by the tools. All runtime errors are generated at Fatal severity
and cause immediate termination of the program.

72 TDS 34601 October 1992

B Transputer types
and classes

This appendix first identifies the INMOS transputer types supported by this toolset.
It then explains the concept of transputer classes in terms of developing programs
for multiple transputer targets. This includes compiling and linking program mod­
ules. The examples given are based on the 'Hello world' program, written in C and
compiled with the ice compiler.

It also explains the command line options which can be used to specify a target
processor or transputer class.

Note: the information given in this appendix covers the current range of INMOS
transputers and language compilers; readers should ignore details of transputer
types or languages which do not apply to this particular toolset.

B.1 Transputer types supported by this toolset

The ANSI C and occam 2 toolsets can be used to develop programs targetted at
the following INMOS transputer types:

IMS M212, T212, T222, T225, T400, T414, T425, T426, T800, T801, T805.

The FORTRAN toolset can only be used to develop programs targetted at 32-bit
transputers. This includes the following INMOS transputer types:

IMS T400, T414, T425, T426, T800, T801, T805.

The default type assumed by various tools, if none is specified on the command
line, is T414.

B.2 Transputer types and classes

This section describes the meaning of transputer types and classes and how
selection of the target processor affects the compilation and linking stages of pro­
gram development. The section describes how to compile and link code targeted
at a single processor type and then describes how to compile and link programs
so that they can be executed on different processor types.

8.2.1 Single transputer type

For those who have a single transputer or indeed a network of transputers all of
the same type, the compilation and linking stages of program development are
very straightforward. Simply compile and link all your modules for the required pro­
cessor.

72TDS 346 01 October 1992

334 B.2 Tr~nsputer types and classes

(UNIX)

Example: to compile and link for a T800:
ice hello -t800
ilink hello.tco -t800 -f cstartup.lnk (UNIX)

ice hello It800
ilink hello. tco It800 If cstartup . Ink (MS-DOS and VMS)

For a T414 the command lines are simpler:
ice hello
ilink hello.tco -f cstartup.lnk

ice hello
ilink hello.tco If cstartup.Ink (MS-DOS and VMS)

B.2.2 Creating a program which can run on a range of transputers

The compiler and linker use the concept of transputer class to enable programs
to be developed which may be run on different transputer types without the need
to recompile.

A transputer class identifies an instruction set which is common to all the proces­
sors in that class. When a program is compiled and linked for a transputer class
it may be run on any member of that class.

Note: Code created for a transputer class will often be less efficient than code
created for a specific processor type. Therefore, creating. code for a transputer
class is discouraged in situations where program efficiency is a primary concern;
it should only be performed where there is a genuine need to produce code which
will run on a range of transputers or to reduce the size of a support library, where
program efficiency is not a major concern.

Table B.1 lists all the transputer classes which the compiler and linker support and
indicates which processors the program can be run on.

Transputer Processors which class can be run on

T2 * T212,M212, T222,T225

T3 * T225
T4 T414, T400, T425, T426

T5 T400, T425, T426

T8 T800, T801, T805

T9 T801, T805

TA T400, T414, T425, T426, T800, T801, T805

TB T400, T414, T425, T426

* Not applicable to the FORTRAN toolset

Table B.1 Transputer classes and target processor

72 TDS 346 01 October 1992

B Transputer types and classes 335

In order to develop a program which will run on different processor types, perform
the following steps:

Identify the processors on which the program is to run.

2 Using Table B.1 select the class which may be run on all the target proces­
sors.

3 Compile and link all the program modules for this class.

For example, to create a program which will run on both a T400 and a T425, com­
pile and link for transputer class T5:

iee hello -tS
ilink hello.teo -tS -f estartup.lnk

iee hello ItS
ilink hello.teo ItS If estartup.lnk

(UNIX)

(MS-DOS and VMS)

Alternatively to create a program which will run on aT400, T425 or a T800, compile
and link for transputer class TA:

iee hello -ta
ilink hello.teo -ta -f estartup.lnk

iee hello Ita
ilink hello.teo Ita If estartup.lnk

(UNIX)

(MS-DOS and VMS)

Code compiled for a T414 (class T4) may be run on a T400 or T425, which form
class T5.

Programs compiled for the T212, M212, or T222 transputers Le. class T2, can be
run on a T225 (class T3) because a T225 has a similar but larger instruction set
than class T2 transputers. Similarly the T400, T425 and T426 have additional
instructions to those of the T414. Likewise, code compiled for a T800 (class T8)
may be run on a T801 orT805, which form class T9. Again the T801 and T805 have
additional instructions to those of the T800. See section B.2.4.

8.2.3 Linked file containing code compiled for different targets

This section describes how object code compiled for one target processor or trans­
puter class can be linked with code compiled for different transputer types or
classes.

The ability to do this provides the user with greater flexibility in the use of program
modules:

• An individual module can be compiled once e.g. for class T4, and then
linked with separate programs to run on different processor types e.g.
T414 and T425.

72 TDS 346 01 October 1992

336 8.2 Transputer types and classes

• When the user is preparing a library for use by programs intended to run
on different processor types, a single copy of code compiled for a trans­
puter class can be inserted instead of multiple copies for specific transput­
ers.

When linking a collection of compiled units together into a single linked unit, the
user must select a specific transputer type or transputer class on which the linked
unit is to run. As before, this determines the set of transputer types on which the
code will run. When linking for a particular type or class, the linker will accept com­
pilation units compiled for a compatible class. Table B.2 shows which transputer
types and classes the linker will accept when linking for a particular class.

Link class Transputer classes which may be linked

T2 * T2

T3 * T3, T2

T4 T4, TB, TA

T5 T5, T4,TB, TA

T8 T8

T9 T9, T8

TB TB, TA

TA TA

* Not applicable to the FORTRAN toolset

Table B.2 Linking transputer classes

For example, if the target processors are a T400 and a T425 the user may compile
for classes T5 and TB and link the code for for class T5. Code for a different trans­
puter class can be included in the final linked unit, as long as:

• It uses the instruction set or a subset, of the instruction set of the link class

• The calling conventions are the same.

Classes T8 and T9 cannot be linked with class TA. This is a change from early
toolset releases e.g. the Dx11 C toolsets, the Dx05 occam toolsets and the
Dx13 3L FORTRAN toolsets.

The reason why these classes cannot be linked together is explained in sec­
tion B.2.4. which gives details of the differences between the instruction sets, as
additional information.

A library can be made, consisting of the same modules compiled for different trans­
puter types or classes. The user then needs only to specify the library file to the

72 TDS 346 01 October 1992

B Transputer types and classes 337

linker, and the linker will choose a version of a required routine which is suitable
for the system being linked.

The linker uses the rules given in Table B.2 to determine whether a compiled mod­
ule, found in a library, is suitable for linking with the current system. So, for exam­
ple, to create a library which may be linked with any transputer class or specific
transputer type, all routines could be compiled for dasses T2, TA and T8.

If there are a number of possible versions of a module in a library the best one (Le.
the most specific for the system being linked) is chosen.

occam object files targetted at different targets

For occam programs the above rules must also be applied during the program
design stage when deciding which modules should call each other. Code for a dif­
ferent transputer class can be called provided that it uses the instruction set or a
subset of the instruction set of the calling class. (This is because the compiler
needs to know which modules to select from libraries containing copies for differ­
ent processor types).

Table 8.2 can be used as guide, by regarding the 'link class' as the 'calling class'
and the 'transputer classes which may be linked', as the 'transputer classes which
may be called'.

Note: classes TB and T9 cannot call class TA.

8.2.4 Classes/instruction sets - additional information

The instruction sets of the transputer classes differ in the followinOg ways:

• Classes T2 and T3 support 16-bit transputers whereas all the other trans­
puter classes support 32-bit transputers.

• Class T3 is the same as class T2 except that T3 has some extra instruc­
tions to perform CRC and bit operations and includes special debugging
functions.

• Class T5 is the same as class T4 except that T5 has extra instructions to
perform CRC, 2D block moves, bit operations, special debugging functions
and also includes the dup instruction.

• Class T9 is the same as class TB except T9 has additional debugging
instructions.

• The TBOO, TB01 and T805 processors use an on-chip floating point proces­
sor to perform REAL arithmetic. Thus a large number of floating point
instructions are available for these transputers and for their associated
classes TB and T9. These instructions are listed in the instruction set
appendix of the User Guide.

72 TDS 346 01 october 1992

338 B.2 Transputer types and classes

• For the T414, T400, T425 and T426 processors Le. transputer classes T4
and T5 the implementation of REAL arithmetic is in the software. These
transputers make use of a small number of floating point support instruc­
tions. Details can be found in the instruction set appendix of the User
Guide.

• The instruction set of class TA only uses instructions which are common
to the T400, T414, T425, T426, T800, T801 and T805 transputers. There­
fore it does not use the floating point instructions, the floating point support
instructions or the extra instructions to perform CRC, 20 block moves or
special debugging or bit operations and it does not use the dup instruction.

• The instruction set of class TB only uses instructions which are common
to the T400, T414, T425 and T426 processors. Therefore it uses the float­
ing point support instructions, but does not use the extra instructions to per­
form CRC, 20 block moves or special debugging or bit operations and it
does not use the dup instruction.

When considering the similarities and differences in the instruction sets of different
transputer classes it helps to divide them into the separate structures as shown
in Figure B.1.

Figure B.1 structures for mixing transputer types and classes

By comparison with Table B.2 it can be seen that a module may only be linked with
modules compiled for a transputer class which belongs to the same structure.

Classes T2 and T3 are targetted at 16-bit transputers so it is obvious that they can­
not be linked with the other classes which ar all targetted at 32-bit transputers.

The reason why classes T8 and T9 cannot be linked with classes TA, TB, T5 or
T4 is because floating point results from functions are returned in a floating point

72 TOS 346 01 October 1992

B Transputer types and classes 339

register for T8 and T9 code and in an integer register for all other32-bit processors.
Even if your code does not perform real arithmetic, linking code compiled for a T9
or T8 with code compiled for any of the other classes is not permitted.

To summarize, compiling code for the transputer classes TA and TB enables it to
be run on a large number of transputer types, however, the code may not be as
efficient as code compiled for one of the other transputer classes or for a specific
transputer type. For example compiling code for class T5 enables the CRC and
20 block move instructions to be used, whereas these instructions are not avail­
able to code compiled for classes TA and TB.

B.3 Transputer type command line options

This section lists the command line options used to specify a target processor or
transputer class. The options can be used with the following tools:

icc The ANSI C compiler.

oc - The occam 2 compiler.

if?? - The FORTRAN-77 compiler.
ilink - The toolset linker.

Option Description
TA Specifies target transputer class TA (T400, T414, T425,

T426, T800, T801, T805).
TB Specifies target transputer class TB (T400, T414, T425,

T426)
T2l2 Specifies a T212 target processor.
T222 Specifies a T222 target processor. Same as T2l2
M2l2 Specifies a M212 target processor. Same as T2l2

T2 Same as T2l2, T222 and M2l2
T22S Specifies a T225 target processor.

T3 Same as T22S.
T400 Specifies a T400 target processor. Same as T42S.
T4l4 Specifies a T414 target processor. This is the default pro-

cessor type and may be omitted when the target processor
is a T414 processor.

T4 Same as T4l4 (default).
T42S Specifies a T425 target processor.
T426 Specifies a T426 target processor.

TS Same as T400, T42S and T426.
T800 Specifies a T800 target processor.

T8 Same as T800.
T80l Specifies a T801 target processor. Same as T80S.
T80S Specifies a T805 target processor.

T9 Same as T80l and T80S.

Table B.3 Transputer type command line options

72 TDS 346 01 October 1992

340

72 TDS 34601

B.3 Transputer type command line options

October 1992

C Using the assembler
This appendix describes the assembler supplied with the ANSI C toolset. The
appendix explains how to invoke the assembler and describes the use and syntax
of assembly directives. The chapter ends with a list of assembler diagnostic mes­
sages which may be obtained.

C.1 Introduction

The assembler is supplied as an integral part of the ANSI C compiler ice and is
normally run as the final stage of compilation. The command line interface of the
compiler enables the user to invoke the assembler directly. This suppresses the
compilation phase of the compiler and the input file is passed directly to the assem­
bler.

The assembler is a cross-assembler which enables a source file written in assem­
bly code to be translated into object code. The assembler accepts as input a single
ASCII text file consisting of transputer instructions and assembler directives.

If required the compiler preprocessor can be run on an assembler source file and
the output file generated by the preprocessor used as input to the assembler.

The assembler generates an object file in Transputer Common Object File Format
(TCOFF). This file may then be linked with otherTCOFF object files or library mod­
ules, configured, loaded onto a transputer network and the application executed.

C.2 Running the assembler

The assembler is invoked by using the 'AS' option on the ANSI C compiler ice.

The assembler is invoked to assemble a source file by one of the following com­
mand lines:

ice filename.ext -as {options} (UNIX)
ice filename.ext /as {options} (MS-DOSNMS)

where: filename.ext is the filename and extension of the assembler source file,
see section C.2.1.

options is a list of ice command line options, see section C.2.2.

A list of error messages which may be generated by the assembler is given in sec­
tion C.6.

C.2.1 Specifying the source filename

The full filename including extension must always be supplied on the compiler
command line when the 'AS' option is used. Ifan extension is not supplied the com-

72 TDS 346 01 october 1992

342 C.2 Running the assembler

piler assumes a C source file is to be compiled and searches for an input file which
has the appropriate name and ' .e' file extension.

C.2.2 Use of ice command options with the assembler

Many of the ice command line options have no meaning if used with the assem­
bler and will be ignored. The only options which have meaning are:

• Any option to select the target transputertype e.g. TeOS, T400 (see appen­
dix B).

• 'I' - Displays progress information as the tool runs.

• '0 filename' - Specifies an output filename.

ice command line options are documented in full in chapter 1.

C.2.3 Using the pre-processor with the assembler

Preprocessor directives may be included in assembler source files, pragma direc­
tives, however, should not.

When preprocessor directives are used, the compiler preprocessor must be run
on an assembler source file prior to using the assembler. The output file generated
by the preprocessor is then used as input to the assembler. The preprocessor is
invoked using the compiler command line option 'PP'.

For example:

UNIX based toolsets:

iee testos -pp> tempos
iee temp.s -as -0 test.teo

VMS based toolsets:

DEFINE SYS$OUTPUT temp.s
iee test.s Ipp
DEASSIGN SYS$OOTPUT
iee tempos las 10 test.teo

MS-DOS based toolsets:

iee test.s Ipp > temp.s
iee tempoS las 10 test.teo

The first time ice is run, the 'pp' option is used to invoke the preprocessor. The
preprocessor sends output to stdout by default. In the UNIX and MS-DOS ver­
sions of the example, output is redirected by the redirection operator '>' to a tempo­
raryoutput file. In the VMS version, system output is defined to be a temporary file.
(It is reset later by using the $DEASSIGN command).

The temporary file is input on the compiler command line and the assembler is run.
The '0' is used to specify an output file for the assembled code.

72 TDS 346 01 October 1992

C Using the assembler

C.3 Language

343

An assembler source file is made up of lines of ASCII text. Each line can contain
the following:

• A label definition.

• Assembler commands separated by semi-colons or new lines.

• A comment.

None of the above may extend to more than one line.

An assembler command is one of the following:

• A transputer instruction mnemonic (with its operand, if any)

• An assembler directive.

C.3.1 Label definitions

Label names can contain alphanumeric characters and the characters ' . ' (full­
stop) and '_' (underscore). A label is defined by terminating its name by a colon:

label:

A label is used by giving its name without the colon, e.g.

j label -- j"UDq) to label

Labels are also referred to as code symbols.

C.3.2 Symbols

There are three kinds of symbols in the assembler. They are as follows:

• Code symbols : These are labels as defined above.

• Data symbols: These are symbols introduced by the data or common
directives.

• Defined symbols: These are symbols defined using the defsym directive.

Once a symbol has been defined as one kind of symbol it cannot be redefined to
another.

C.3.3 Expressions

The assembler can recognize simple integer expressions constructed from opera­
tors, operands and parentheses. An operator performs a mathematical or logical

72 TDS 34601 October 1992

344 C.3 Language

operation on the operand(s) in the expression. Allowable operators are listed in
table C.1.

Operator Meaning Precedence
- unary minus 1
"", bitwise not 1

* multiplication 2

/ division 2

% modulus 2

+ addition 3
- subtraction 3
& bitwise and 4

I bitwise or 4
A bitwise exclusive or 4

< logical left shift 5
> logical right shift 5

Table C.1 Operators

Evaluation is left-to-right, except for unary operations where the operator closest
to the operand binds more tightly, with precedence rules as follows. The lower the
number in the precedence column of the table, the higher the precedence of the
operator. Parentheses, (...), may be used to alter the order of evaluation of an
expression.

All calculations are done in 32 bits regardless of the word size of the target
machine. Overflow in expression generation in the assembler is avoided by per­
forming addition, subtraction and multiplication as modulo operations. Division
and modulus by zero will result in a serious error being reported. The special case
ofMOSTNEG_INT / -1 also results in a serious error message.

Table C.2 indicates the different types of operand which may appear within expres­
sions:

Operand Value

Number Its numerical value.

Defined symbol The value assigned to the symbol using defsym.

Code symbol The offset in bytes from the end of the instruction contain-
ing the expression to the symbol.

Data symbol The word offset of this symbol in the data area.

Table C.2 Operands

Note: code and data symbols may not appear in the same expression and they
may only appear in expressions which are operands to primary transputer instruc­
tions, as defined in appendix A of the ANS/ C Too/set User Guide.

72 TDS 346 01 October 1992

C Using the assembler 345

C.3.4 Transputer instruction mnemonics

The transputer instructions supported by the assembler are listed in appendix A
of the ANS/ C Too/set User Guide; detailed information is given in the 'Transputer
instruction set - a compiler writer's guide'. Note: no check is made that the trans­
puter instructions used in the source code are supported by the transputer target
selected on the compiler command line.

C.3.5 Comments

A comment is introduced by the characters -. If a comment needs to be split over
more than one line, each line must start with the characters --. All text appearing
on the same line and to the right of these characters is interpreted as a comment.
For example:

- A comment on a line of its own
j fred -- A comment at the end of a line

72 TDS 346 01 October 1992

346 C.4 Assembler directives

C.4 Assembler directives

This section·briefly describes each assembler directive and provides an example
where appropriate. Directives appear in alphabetical order.

Table C.3 summarizes the directives available.

Directive Description

align Aligns byte to word boundary.

blkb Generates a block of bytes.

blkw Generates a block of words.

byte Generates a sequence of bytes set to specified values.

comment Causes a comment to be written to the object file.

common Defines a FORTRAN common block.

data Defines a symbol to be a data symbol.

debug Generates a debug information record.

defsym Assigns a value to a symbol. Used only for local symbols
within an assembler file.

descriptor Creates an occam style descriptor in the object file.

extern Declares a symbol to be external to the module.

global Defines a symbol to be globally visible.

init Defines a member of the static initialization chain.

language Defines the language of the current module.

maininit Used to find the start of the static initialization chain.

map1 Generates text information for a memory map file.

map2 Generates symbol information for a memory map file.

patch Generates a patch. Six patch types are available.

size Pads out an instruction so that it occupies a specified num-
ber of bytes.

sourcefile Overrides the default source file name with the specified
name.

textname Replaces the default code section name for the current
module with the specified name.

toolname Overrides the record of the tool used to create the object
file, with the specified tool name.

word Generates a sequence of words set to specified values.

Table C.3 Assembler directives

The names of assembler directives are reserved keywords.

72 TDS 346 01 October 1992

C Using the assembler

align

Syntax:

align

347

Description:

The align directive causes the next generated byte in the code section to be
aligned on the next word boundary as defined by the target word length of the pro­
cessor.

72 TDS 34601 October 1992

348

blkb

Syntax:

C.4 Assembler directives

blkb <expr> [, <expr_or_string>l

Description:

The blkb directive generates a block of bytes. The number of bytes to be gener­
ated is given by the first expression, the size. The value of the bytes is given by
the operands which follow the first expression.

If no operands are given then size zero bytes are generated.

If the operand is an expression and its value is too large to fit in a byte then an error
is reported. See section C.6.

If the operand is a string then the characters of the string are written to consecutive
bytes of memory.

If the length of the string exceeds the specified size then the trailing bytes are
ignored.

If too few expressions are given then the remaining bytes are set to zero. It is an
error to give too many expressions to the blkb directive.

Example:'

blkb 10, "hello", 6, 7, 8, 9, 10

This generates the byte values 'h', 'e', 'I', 'I', '0',6,7,8,9,10 to consecutive bytes
of memory.

72 TDS 346 01 October 1992

C Using the assembler

blkw

Syntax:

349

blkw <expr> [, <expr>]

Description:

The blkw directive generates a block of words. The number of words to be gener­
ated is given by the first expression, the size. The value of the words is given by
the operands which follow the first expression.

If no operands are given then size zero words are generated. This result is also
obtained if the size given is '0' or a negative quantity.

If too few expressions are given then the remaining words are set to zero. It is an
error to give too many expressions to the blkw directive. Each word is stored in
little-endian format.

Example:

blkw 3 + 4, 1, 2, 3, 4, 5, 6, 7

The above generates 7 words in memory with the values 1, 2, 3, 4, 5, 6 and 7.

72TDS 34601 october 1992

350

byte

Syntax:

C.4 Assembler directives

byte <expr_or_string> [, <expr_or_string>l

Description:

The byte directive generates a sequence of bytes each ofwhich takes on the val­
ues of the following operands.

If the operand is an expression and the result of the expression is too large to fit
in a byte then an error is generated. See section C.6.

If the operand is a string then the characters of the string are assigned to consecu­
tive bytes of memory.

Example:

byte "hello", 6, 7, 8, 9, 10

This generates the byte values JhJ• Je'. JIJ• JI'. '0'.6.7.8.9.10 to consecutive bytes
of memory.

72 TDS 346 01 October 1992

C Using the assembler

comment
Syntax:

comment <string>

351

Description:

This directive causes the string to be written to the object file as a TCOFF com­
ment. The comment is printable but cannot be copied so it will not appear in a
linked unit.

A comment can be seen by using the listertool on an object file. The ilist com­
mand line option 'm' is used.

Example:

To write the comment "Hello" to the object file:

comment "Hello"

72 TDS 346 01 October 1992

352

common

Syntax:

common <symbol> <expr>

C.4 Assembler directives

Description:

The common directive defines a FORTRAN common block denoted by the symbol
symbol, with size in words given by the expression. A common block resides in
a TCOFF section of its own.

The final size of a common block is given by the common directive for a given sym­
bol with the greatest size which is present in the link.

This directive is included for completeness, it has no application in C programs.

72 TOS 346 01 October 1992

C Using the assembler

data

Syntax:

353

data <symbol> <expr>

Description:

The data directive defines symbol as adata symbol. The size in words of the data
item is given by the expression and this much space is reserved in the current mod­
ule's data area. The space is allocated from above the last data symbol or from
the start of the area if there were no previous data symbols. The value of a data
symbol is its word offset into the current module's data area.

Example:

To define a data symbol fred, 1 word long and to make it visible outside of this
module:

data fred 1
global fred

72 TDS 34601

-- define the data symbol, 1 word long
-- make it global

October 1992

354

debug

C.4 Assembler directives

The debug directive defines a debug information record and is designed for use
by compilers and other programs generating assembly language output. It is listed
here for completeness.

72 TDS 346 01 October 1992

C Using the assembler

defsym
Syntax:

355

defsym <symbol> <expr>

Description:

This directive allows a numeric value to be assigned to the symbol. The value is
given by the expression. This symbol can then be used in expressions as if it were
the value itself.

This is only for use internally to an assembler file. These symbols cannot be made
global and used in other files. A symbol which is defined using a defsym directive
must not have been previously defined as a code or data symbol and vice versa.

Code and data symbols may not appear in the expression, only symbols defined
using defsym are permissible. Any symbol used in the expression must have been
previously defined.

Example:

To set the symbol 'one' to be the value 1:

defsym one 1

one can now be used in expressions as if it were the value 1.

72 TDS 34601 October 1992

356

descriptor
Syntax:

C.4 Assembler directives

descriptor <symbol> <string> <language_type> <expr> <expr> <string>

Description:

This directive causes an occam style descriptor to be output to the object file. It
also causes two symbols to be defined which are used by some other tools, includ­
ing the toolset collector, to obtain workspace and vector space information.

The symbol is a code symbol denoting the routine for which the descriptor is to
be created.

The first string is used as a prefix for two symbols which contain the workspace and
vector space requirements, (in words) for the routine.

language type is a language type of the same form as that for the language
directive. The convention is that the language type denotes the source language
used in the interface description contained in the descriptor string, however a lan­
guage type must still be supplied even if the descriptor string is an empty string.

The next two expressions are the workspace and vector space requirements
respectively and the last string is the descriptor string itself.

Example:

To define an occam descriptor for the routine FRED which requires 42 words of
workspace, no vector space and has the following definition:

PROC FRED([18]INT ProcessData)
SEQ

. .. lots of work

use the following directive:

FRED:
qlobal FRED
descriptor fred "FRED" occam 42 0 "PROC FRED([18]INT ProcessData)\n SEQ\n:"

This generates the following TCOFF records:

00000053 SYMBOL EXP ONI "FRED'ws" id: 3
0000005E SYMBOL EXP ONI "FRED'vs" id: 4
00000069 DEFINE SYMBOL id: 3 42
0000006E DEFINE-SYMBOL id: 4 0
00000073 DESCRIPTOR id: 2 lanq: OCCAM
ws: 42 vs: 0
PROC FRED([18]INT ProcessData)

SEQ

TCOFF records can be listed with ilist, using the command line It' option.

72 TDS 346 01 October 1992

C Using the assembler

extern

Syntax:

extern <symbol>

357

Description:

The extern directive is used to declare the symbol symbol as external to the cur­
rent module. An example of its use is to call an external routine (see the description
of the patch directive for an actual example).

72TDS 346 01 October 1992

358

global

C.4 Assembler directives

Syntax:

global <symbol>

Description:

The global directive is used to cause the symbol to become available outside of
the current module. It causes the symbol to become globally visible so that it can
be accessed by the linker.

The operand to a global directive Le. the symbol, may be a code or data symbol.
Note: it must not be a symbol defined by the defsym directive. The global direc­
tive can appear before the definition of its operand.

Example:

To create a routine called fred which can be called from external modules:

fred:
global fred
-- do freds operations

72TDS 34601 October 1992

C Using the assembler

init
Syntax:

init

359

Description:

The ini t directive is used to define a member of the static initialization chain. The
static initialization chain is a list ofroutines which are called by the runtime initializa­
tion code, in order to set up the static area.

Each routine in the list is introduced by the ini t directive, which defines the loca­
tion of a word in memory which is used to link the members of the chain together.
After linking, this word holds the byte offset to the next ini t word or zero if it is
the end of the chain. The byte directly following the ini t word is the first execut­
able byte of the initialization routine.

Note: that ini t does not itself reserve the word in memory. It is necessary to fol­
low the ini t directive immediately with a directive or dummy instructions to
reserve the space. INMOS initialization routines are called with one parameter, a
pointer to the start of the static area.

Example:

For a 32 bit machine:

align
init
byte
ldc 1

ldc 2
ret

-- init directive
'20, '20, '20, '20 -- space reserved for init word

-- first executable instruction of
-- initialization routine.

-- end of initialization routine

72T08 34601 October 1992

360

language

Syntax:

C.4 Assembler directives

language <language_type>

Description:

Sets the language for the current module. language_type is one of the following:

• unknown

• occam

• ansi c

• fortran

• isoyascal

• modula2

• ada

• assembler

• occam harness

If no language directive appears in the input file then the language defaults to
assembler. The language type is written into the TCOFF START_MODULE record.

occam harness is aspecial language type used to define language runtime sys­
tem marn entry points for use by the configurer.

Example:

To set the language type for the current file to be ada:

language ada

72 TOS 346 01 October 1992

C Using the assembler

maininit

Syntax:

maininit

361

Description:

The mainini t directive is used to find the start of the static initialization chain. The
mainini t directive defines the location of a word in memory into which the linker
will patch the byte offset to the first routine in the static initialization chain. In other
words, after linking, the word defined by the mainini t patch contains the byte
offset to the location of the first init word in the static initialization chain.

Note: that mainini t does not itself reserve the word in memory. It is necessary
to follow the mainini t directive immediately with a directive or dummy instruc­
tions to reserve the space.

Note: In order to use a mainini t directive, an init directive must be present
somewhere in the link. If this is not the case then the link will fail.

Example:

To obtain the start of the initialization chain on a 32 bit machine:

align
.mainlab: -- label so we can find this

-- word
maininit -- maininit directive
byte '20, '20, '20, '20 -- space reserved for maininit

-- word
ldc (.mainlab - . label) -- load the address of the

-- maininit word
ldpi -- load a pointer to this

-- address
. label:

ldnl °

72 TDS 346 01

-- load the contents of the
-- maininit word
-- into the A register

October 1992

362

map1

C.4 Assembler directives

Description:

This directive is used internally by the compiler to generate text information for a
map file. It is listed here for completeness and is not intended for use in customers'
assembly source files.

72 TOS 346 01 October 1992

C Using the assembler

map2

363

Description:

This directive is used internally by the compiler to generate symbol information for
a map file. It is listed here for completeness and is not intended for use in custom­
ers' assembly source files.

72 TDS 34601 october 1992

364

patch

Overview:

C.4 Assembler directives

There are six different types of patch directive. They are:

• CODEFIX

• DATAFIX

• EXTOFFSET

• LIMIT

• MODNUMBER

• STATICFIX

Each is discussed in detail below. Note: that no space is reserved by the patch
directive. The appropriate number of bytes should be reserved following the
patch directive using other directives or dummy instructions.

Each of the six types of patch can come in three forms, they are:

Instruction. Denoted by the patch directive containing a primary
instruction mnemonic. In this case the value of the patch becomes the
operand to the instruction and this instruction/operand combination is
patched into the hole in the code. If the instruction/operand combination
is shorter than the number of bytes reserved in the patch directive then
it occupies the start of the reserved space and the unused trailing bytes are
filled with pfix 0 instructions (hex 20).

• Short. Denoted by the patch directive containing the word short. In this
case the value of the patch is patched directly into the hole in the code
reserved for it. The value patched will occupy 2 bytes irrespective of the
target processor word length and the hole reserved must reflect this.

• Long. Denoted by the patch directive containing the word long. In this
case the value of the patch is patched directly into the hole in the code
reserved for it. The value patched will occupy 4 bytes irrespective of the
target processor word length and the hole reserved must reflect this.

The first operand of a patch directive is the patch size in bytes. The size of a patch
must be between one and 255 bytes inclusive. An attempt to issue a patch with a
size outside this range will result in an error being reported. Also the size given for
a short patch must be two bytes and the size given for a long patch must be four
bytes otherwise an error is reported.

72 TDS 346 01 October 1992

C Using the assembler

patch - codefix

Syntax:

patch <expr> <instruction> codefix <symbol> <expr>

365

Description:

This creates a patch of size n bytes, where n is given by the first expression in the
directive. The value of this patch is given by the offset between the byte following
the patched instruction orvalue and the address ofthe symbol symbol. In the case
where the patch is an instruction patch and the patched instruction does not
entirely fill the reserved space, the value of the instruction operand is the offset
between the first unused trailing byte and the address of the symbol. The symbol
must be a code symbol.

The final expression is an offset which is added to the value of the patch.
instruction is a transputer primary instruction or the tokens short or long
(see the overview of the patch directive for an explanation of these).

Example:

To call an external function

extern
patch
byte

_IMS-printf -- declare an external symbol
6 j codefix _IMS-printf ° -- do the patch
'20, '20, '20, '20, '20, '20 -- hole for the patch

In the above example the patch is six bytes long. The patch produces a j Oump)
instruction, the operand of which is the offset between the instruction after the
patch and the symbol_IMS-printf. Therefore the jump instruction will transfer
control to the instruction at the address of the _ IMS-printf symbol. The offset
zero in this example, causes a jump directly to the symbol.

72TDS 346 01 October 1992

366

patch - datafix

Syntax:

C.4 Assembler directives

patch <expr> <instruction> datafix <symbol> <expr>

Description:

This creates a patch of size n bytes, where n is given by the first expression in the
directive. The value of this patch is given by the offset, in words, between the start
of the local static area for this module and the symbol symbol, plus the value of
the second expression, the offset.

The offset can be used to access elements of structures etc. The symbol must be
a data symbol. instruction is a transputer primary instruction or the tokens
short or long (see the overview of the patch directive for an explanation of
these).

Example:

To obtain the offset of fred from the start of the local static area for this module:

extern fred
patch 4 long datafix fred °
byte #20, #20, #20, #20

The above example patches the offset, in words, from the start of the local static
area to the location of fred, into the four byte hole.

72 TOS 34601 October 1992

C Using the assembler

patch - extoffset
patch <expr> <instruction> extoffset <symbol> <expr>

367

Description:

This creates a patch of size n bytes, where n is given by the first expression in the
directive. The value of this patch is given by the offset to the symbol symbol from
the start of the section containing it. If the symbol is a code symbol this offset is in
bytes. If the offset is a data symbol the offset is in words. The final expression is
an offset which is added to the value of the patch.

instruction is a transputer primary instruction or the tokens short or long
(see the overview of the patch directive for an explanation of these).

Example:

To obtain the byte offset to main from the start of the text section:

extern main -- declare an external symbol
symbol

patch 4 long extoffset main 0 -- do the patch
byte '20, '20, '20, '20 -- hole for the patch

In the above example the patch is 4 bytes long. The offset ofmain in the text section
is patched into the 4 byte hole.

72TDS 346 01 October 1992

368

patch - limit

patch <expr> <instruction> limit

C.4 Assembler directives

Description:

This creates a patch of size n bytes, where n is given by the first expression in the
directive. The value of this patch is given by the size, in words, of the global static
area for the entire link. Note: that this includes any common blocks which are
defined.

instruction is a transputer primary instruction or the tokens short or long
(see the overview of the patch directive for an explanation of these).

Example:

To obtain the static size for the program:

patch 6 ldc limit
byte #20, #20, #20, #20, #20, #20

The above example patches a ldc instruction into the 6 byte hole. The operand
of the instruction is the size of static used by the program in words.

72 TDS 346 01 October 1992

C Using the assembler

patch - modnumber

patch <expr> <instruction> modnumber

369

Description:

This creates a patch of size n bytes, where n is given by the first expression in the
directive. The value of this patch is given by the current module number. Each
module is identified by a unique module number within a link.

instruction is a transputer primary instruction or the tokens short or long
(see the overview of the patch directive for an explanation of these).

Example:

To obtain the module number for the current module:

patch 6 ldc modnumber
byte #20, #20, #20, #20, #20, #20

The above example patches a ldc instruction into the 6 byte hole. The operand
of the instruction is the current module number.

72 TDS 346 01 October 1992

370

patch - staticfix
patch <expr> <instruction> staticfix

C.4 Assembler directives

Description:

This creates a patch of size n bytes, where n is given by the first expression in the
directive. The value of this patch is given by the offset between the start of the local
static area for this module and the global static area for the program.

instruction is a transputer primary instruction or the tokens short or long
(see the overview of the patch directive for an explanation of these).

Example:

To obtain the offset between the local static area for this module and the start of
the global static area:

patch 4 long staticfix
byte '20, #20, #20, #20

The above example patches the offset, in words, from the start of the global static
area to the start of the local static area, for the current module, into the four byte
hole.

72 TDS 34601 October 1992

C Using the assembler

size
Syntax:

size <expr> <instruction>

371

The size directive causes the instruction following to be encoded in exactly n
bytes, where n is given by the expression in the directive. If the instruction can be
encoded in less bytes then padding is added after the instruction to increase the
size of the instruction to n bytes. The padding used is prefix zero instructions.

An error is reported if the size given is too small for the instruction.

Example:

To force a jump instruction to occupy 4 bytes:

size 4 j label

72 TOS 34601 October 1992

372

sourcefile

Syntax:

sourcefile <string>

C.4 Assembler directives

Description:

The VERSION TCOFF record which appears at the start of all TCOFF object files
contains a string which holds the name of the source file used to create the object
file. The sourcefile directive causes this name to be changed to the name given
by its string operand.

If no sourcefile directive appears in the input then the source file name defaults
to the filename given on the command line by the user.

Example:

To enter the filename fred. s:

sourcefile "fred.s"

72 TDS 346 01 October 1992

C Using the assembler

textname

Syntax:

textname <string>

373

Description:

The textname directive replaces the default code section name for the current
module with the name given in the string. This is required in order to perform
priority linkage (see chapter 9).

If no textname directive appears in the input then the text section name defaults
to text%base.

Example:

To change the name of the text section to fred:

textname "fred"

72TDS 34601 October 1992

374

toolname

Syntax:

toolname <string>

C.4 Assembler directives

Description:

The VERSION TCOFF record which appears at the start of all TCOFF object files
contains a string which holds the name of the tool used to create the object file.
The toolname directive causes this name to be changed to the name given by
its string operand.

If no toolname directive appears in the input then the tool name string defaults
to'iasm'.

Example:

To set the tool name to be fred:

toolname "fred"

72TDS 34601 October 1992

C Using the assembler

word

Syntax:

word <expr> [, <expr>]

375

Description:

The word directive generates a sequence of words containing the values of the
expressions. Each word is stored in little-endian format.

Example:

word 3, 3 + 4

This stores the values 3 and 7 to the next two consecutive words in the code sec­
tion.

72 TOS 34601 October 1992

376 C.5 BNF grammar for assembler language

C.5 BNF grammar for assembler language

assembler-file

line

label-de'

command-list

separator

command

comment

tp-instruction

primary-op

secondary-op

directive

72 TDS 34601

= line {nl line }

= [label-de'] [command-list] [comment]

= symbol:

= command { separator command}

= nl

= tp-instruction
directive

= -- string

= primary-op expression
secondary-op

= <any primary instruction (in lower case»

= <any secondary instruction (in lower case»

= align
blkb expression { , expr-or-string}
blkw expression { , expression }
byte expr-or-string { , expr-or-string}
comment string
common symbol expression
data symbol expression
debug number , number { , number-or-string}
defsym symbol expression
descriptor symbol string language-type
expression expression string
extern symbol
global symbol
init
language language-type
maininit
mapl string
map2 string expression
patch expression patch-instruction patch-type
size expression tp-instruction
sourcefile string
textname string
toolname string
word expression { , expression }

October 1992

C Using the assembler 377

patch-instruction = primary-op
short
long

patch-type = codefix symbol expression
datafix symbol expression
staticfix
modnumber
limit
extoffset symbol expression

language-type = unknown
occam
ansi c
fortran
iso""pascal
modula2
ada
assembler
occam harness

expr-or-string = expression
string

number-or-string = number
string

expression = number
symbol
monadic-expression
dyadic-expression
(expression)

dyadic-expression = expression dyadic-operator expression

monadic-expression = monadic-operator expression

dyadic-operator = *
I /
I %

I +
I -
I &

I I
I A

I <
I >

monadic-operator =
I "-

72 TDS 34601 October 1992

378

number =

decimal-number =
hex-number =
hex-intro =

C.5 BNF grammar for assembler language

decimal-number
hex-number

<any base 10 number>

hex-intro <any base 16 number>

11
Ox
ox

symbol

string

= <any alphanumeric characters>
I .
I _ (underscore)

= "<any sequence ofprintable ASCII characters> "

A full list of the primary-op and secondary-op supported is given in appendix A of
the ANSI C Toolset User Guide.

72 lDS 34601 October 1992

C Using the assembler

C.6 Errors

379

There are three levels of errors which can occur in the assembler: Error, Serious
and Fatal. These messages adhere to the standard format for error messages pro­
duced by the toolset. This format is documented in appendix A.

C.6.1 Fatal Errors

These are runtime errors within the assembler. They usually indicate a fault in the
assembler. The assembler outputs the error message followed by a banner direct­
ing users to seek support. The assembler then exits.

The banner is as follows:

* The assembler has detected an internal inconsistency. *
* Please contact your supplier who may be able to help *
* you immediately and will be able to report a suspected *
* assembler fault to Inmos Limited. *

Note: that if the error occurred before 'the file was opened then the filename and
line number are omitted.

C.6.2 Serious Errors

These are errors from which the assembler cannot recover, e.g. not being able to
open a file or out of memory. The assemblerwill output the error message and then
exit.

Note: if the error occurred before the file was opened then the filename and
line number are omitted from the message.

Arithmetic overflow in expression operator

The expression generator has discovered an operation which may result
in overflow. The only instance of this at present is the following expression:
MOSTNEG_INT / -1. Currently operator can only be /.

Attempt to divide by 0 in expression operator

An attempt to divide by zero has been detected in the expression genera­
tor. operator can be either / or %.

Cannot open filename for input

The file filename could not be opened for reading.

Cannot open filename for output

The file filename could not be opened for writing.

72 TDS 34601 October 1992

380 C.6 Errors

Cannot open VM file filename for output

The assembler's internal virtual memory system has tried to open a file for
output and failed.

Error writing object file

A file system error has been detected while writing the object file.

Found a map directive with no mapfile

A map directive, map! or map2 has been found but no map file is open.

Out of memory

The assembler is unable to allocate any more memory.

Token too large: string

The token string is greater than 1024 characters. Only the first 32 charac­
ters of the token are given.

VM file operation failure

An operation on the virtual memory file failed (One of seek, read, write).

C.6.3 Errors

These are errors which the assembler will attempt to recover from. They generally
occur while reading the input file. Usually the assembler, on detecting the error, will
restart assembly from the next command after the command in which the error
occurred. No object file is produced if an error occurs.

position operand to directive-name must be a numeric expression

The directive given by directive-name has been given an incorrect oper­
and. The operand should be a numeric expression. Which operand is erro­
neous is given by position.

'symbol-name' has already been defined with DEFSYM

The symbol symbol-name has been defined using defsym and has now
been discovered in a label definition context. This is illegal.

'symbol-name' may not be redefined using DEFSYM

The symbol symbol-name has been previously defined somehow. It is now
appears in a defsym directive. This is illegal.

Cannot mix Code and Data symbols in same expression

An expression has been discovered where code and data symbols are
mixed. This is illegal.

72 TDS 34601 October 1992

C Using the assembler 381

Colon missing - assumed

The assembler was expecting a colon. It assumes one existed and contin­
ues.

Data symbol re-defined as code symbol 'symbol-name'

The data symbol, symbol-name, has been redefined as a code symbol.

Debug: variable dims should be 0

The dimension field of a debug variable record should be zero. A non-zero
value has been found.

Duplicate definition of symbol 'symbol-name'

The symbol symbol-name has been previously defined.

Duplicate label definition 'symbol-name'

The label given by symbol-name has been redefined.

Error in data mapping

A data item has been encountered twice at the mapping stage.

Expected number in directive-name directive got symbol

A number was expected in the directive given by directive-name, instead
we got the symbol given by symbol.

Expected string in directive-name directive got symbol

A string was expected in the directive given by directive-name, instead we
got the symbol given by symbol.

Illegal position operand to directive-name directive

The directive given by directive-name has been given an incorrect oper­
and. Which operand is erroneous is given by position.

Illegal patch size number

A patch directive has been encountered with a size operand which is out­
side the range of legal patch sizes, less than one or greater than 255. The
patch size encountered is given by number.

Illegal symbol in directive-name directive: 'symbol-name'

The directive given by directive-name contains an illegal symbol (given by
symbol-name).

instruction won't fit in number byte(s)

The size of an instruction requested with the size directive is too small.

72 TDS 34601 October 1992

382 C.6 Errors

Malformed expression

A badly formed expression has been encountered by the expression
parser.

Only numeric expressions or strings allowed in directive-name

An operand to the directive. directive-name. (one of byte or blkb) has
been found which is not a string or a number.

Symbol symbol-name is undefined

The symbol given by symbol-name has been encountered and it is unde­
fined.

symbol in DESCRIPTOR must be global

The symbol in the descriptor directive must be declared as global.

Undefined symbol 'symbol-name' as operand to directive-name

The symbol given by symbol-name is undefined and has been used in the
directive given by directive-name. This is illegal.

Unexpected symbol: 'symbol' hex-number

The symbol given by symbol and hex-numberwas encountered in the main
loop of the assembler parser.

Unexpected symbol 'symbor in expression

The symbol symbol has been found in an expression by the expression
parser. It shouldn't be there.

Value hex-number out of range for directive-name directive

The value given by hex-number has been encountered in the directive
given by directive-name (one ofbyte orblkb) and is not in the range of
a byte value.

Wrong length for patch-type patch - should be number

The length specified for the patch given by patch-type (one of long or
short) is incorrect. It should be that given by number.

72 TDS 346 01 October 1992

o iserver protocol

This appendix provides a technical description of the host file server protocol for
version 1.5 ofthe iserver. It also describes the basic set ofserverfunctions which
all versions of iserver must support and includes a set of extensions which may
be present in some versions of iserver.

0.1 iserver packets

Every communication, both to and from the server, is a packet comprising a
counted array of bytes. The first two bytes are a (little endian) count ofthe following
message length. This is followed by a tag byte which specifies the iserver com­
mand. The remaining bytes are parameters to the command. Results returned by
the iserver have a result value in place of the tag byte.

s1 s2 I tag I parameters

I-message of length (s1 + (256 * s2» bytes-l

In occam this protocol is defined as:

INT16:: []BYTE

In the to-server direction, there is a minimum packet length of 8 bytes (Le. a mini­
mum message length of6 bytes). In both to and from directions there is a maximum
packet length of 1040 bytes. The packet size must always be an even number of
bytes. If the number of bytes is an odd a dummy byte must be added to the end
of the packet and the packet byte count rounded up by one.

The server code on the host can take advantage of the fact that it will always be
able to read 8 bytes from the link at the start of a transaction.

0.2 Server commands

The functions implemented by the server are separated into five groups:

• File commands

• Record Structured file commands

• Host commands

• Server commands

• Reserved and Third Party commands

72TDS 34601 October 1992

384 0.2 Server commands

The following sections contain descriptions of each command under each of the
five groups.

In the descriptions the arguments and results of server calls are listed in the order
that they appear in the data part of the protocol packet. The length of a packet is
the length of all the items concatenated together, rounded up to an even number
of bytes.

occam types are used to define the format of data items in the packet. All integer
types are communicated least significant byte first. Negative integers are repre­
sented in 2s complement. Strings and other variable length blocks are introduced
by a 16 bit signed count.

All server calls return a result byte as the first item in the return packet. If the opera­
tion succeeds the result byte will be zero. If the operation fails the result byte will
be non-zero. The result will be one (1) in the special case where the operation failed
because it was not implemented. If the result is not zero, some or all of the return
values may not be present, resulting in a smaller return packet than if the call was
successful. All server calls will use, where possible, a failure code from Table D.1
to give details of the failure. 1

Value Name Description

0 Success Success.

1 NoCommand Command not implemented.

128 Reserved Unknown error.

129 Failed Unknown error.

130 Reserved Never generated.

131 NoPriv Insufficient privilege.

132 NoResource Insufficient system resources available.

133 NoFile File not found.

134 Truncated Data truncated.

135 Badld A bad file id was specified.

136 NoPosn File position has been lost.

137 NotAvailable The requested configuration can not be provided.

138 EOF An end of file mark has been encountered.

139 Reserved Reserved for use by Linkops.

140 Reserved Reserved for use by Linkops.

141 BadParas Invalid or inconsistent parameters.

Table D.1 iserver failure codes

1. Result values between 2 and 127 are defined to have particular meanings by occam server
libraries, result values of 128 or above are specific to the implementation of a server.

72 TDS 346 01 October 1992

D iserver protocol

0.3 File commands

385

Open files are identified with 32 bit descriptors. There are three predefined open
files:

o standard input
1 standard output
2 standard error

If one of these is closed it may not be reopened.

If an application is both reading and writing to a file, then no read operation can be
followed directly with a write operation and vice versa. Fseek must be called
between a readlwrite or write/read, otherwise the error code NoPosn will be
returned.

When reading from a file open in text mode, the host's newline sequence will be
translated into the single character LlNEFEED(OxOa). No translation will be per­
formed on binary files.

When writing to a file open in text mode, the single character LlNEFEED (OxOa)
will be translated into the host's newline sequence. No translation will be performed
on binary files.

0.3.1 Fopen - Open a file

Synopsis: Streamld = Fopen(Name, Type, Mode)

To server: BYTE
INT16: : [] BYTE
BYTE
BYTE

From server: BYTE
INT32

Tag = 10
Name
Type = 1 or 2
Mode = 1 ... 6

Result
Streamld

Fopen opens the file Name and, if successful, returns a stream identifier
Streamld.

Type can take one of two possible values:

Value Name Description

1 Binary The file will contain raw binary bytes.

2 Text The file will be stored as text records.
Text files are host-specified.

72 TDS 346 01 October 1992

386

Mode can have 6 possible values:

0.3 File commands

Value Name Description

1 Input Open an existing file for input

2 Output Create a new file, or truncate an existing one, for
output

3 Append Create a new file, or append to an existing one, for
output

4 ExistingUpdate Open an existing file for update (both reading and
writing), starting at the beginning of the file

5 NewUpdate Create a new file, or truncate an existing one, for
update

6 AppendUpdate Create a new file, or append to an existing one, for
update

When a file is opened for update (one of the last three modes above) then the
resulting stream may be used for input or output. There are restrictions however;
an output operation may not follow an input operation without an intervening
Fseek, Ftell or Fflush operation.

The number of streams that may be open at one time is host-specified, but will not
be less than eight (including the three predefines).

Return Codes

Success Failed NoPriv NoResource NoFile

0.3.2 Fclose - Close a file

Synopsis: Fclose(Streamld

To server: BYTE
INT32

From server: BYTE

Tag = 11
Streamld

Result

Fclose closes a stream Streamld which should be open for input or output.
Fclose flushes any unwritten data and discards any unread buffered input before
closing the stream.

Return Codes

Success Failed Badld NoResource

72 TDS 346 01 October 1992

D iserver protocol

D.3.3 Fread - Read a block of data

Synopsis: Data = Fread(Streamld, Count

To server: BYTE Tag = 12
INT32 Streamld
INT16 Count

From server: BYTE Result
INT16:: []BYTE Data

387

This function should not be used. It has been included only for compatibility pur­
poses. A replacement routine, FGetBlock, has been provided, which is described
in 0.3.5.

Fread reads Count bytes of binary data from the specified stream. Input stops
when the specified number of bytes are read, or the end of file is reached, or an
error occurs. IfCount is less than one then no input is done. The stream is left posi­
tioned immediately after the data read. If an error occurs the stream position is
undefined.

Result is always zero. The actual number of bytes returned may be less than
requested and Feof and FerrStat should be used to check for status.

Return Codes

Success

0.3.4 Fwrite - Write a block of data

Synopsis: Written = Fwrite(Streamld, Data)

To server: BYTE
INT32
INT16: : [] BYTE

From server: BYTE
INT16

Tag = 13
Streamld
Data

Result
Written

This function should not be used. It has been included only for compatibility pur­
poses. A replacement routine, FPutBlock, has been provided, which is described
in 0.3.6.

Fwrite writes a given number of bytes of binary data to the specified stream, which
should be open for output. If the length of Oata is less than zero then no output is
done. The position of the stream is advanced by the number of bytes actually writ­
ten. If an error occurs then the resulting position is undefined.

72 TOS 346 01 October 1992

388 0.3 File commands

Fwrite returns the number of bytes actually output in Written. Resul t is always
zero. The actual number of bytes returned may be less than requested and Feof
and FerrStat should be used to check for status.

If the Streamld is 1 (standard output) then the write is automatically flushed.

Return Codes

Success

0.3.5 FGetBlock - Read a block of data and return success

Synopsis: Data = FGetBlock(Streamld, Count)

To server: BYTE Tag = 23
INT32
INT16 Count

From server: BYTE Result
INT16:: []BYTE Data

FGetBlock reads Count bytes of binary data from the specified stream. Input
stops when the specified number of bytes are read, or the end of file is reached,
or an error occurs. If Count is less than one then no input is done. The stream is
left positioned immediately after the data read. If an error occurs the stream posi­
tion is undefined.

The actual number of bytes returned may be less than requested. This is consid­
ered a failure. Resul t will contain 0 to indicate success, anything else failure, in
which case Feot and FerrStat should be used to check for status.

This function is preferred over the Freadfunction which should no longer be used.

Return Codes

Success Failed Truncated Badld

72 TDS 346 01 October 1992

D iserver protocol

D.3.6 FPutBlock - Write a block of data and return success

389

Synopsis: Written = FPutBlock(Streamld, Data

To server: BYTE
INT32
INT16: : [] BYTE

From server: BYTE
INT16

Tag = 24
Streamld
Data

Result
Written

FPutBlock writes a given number of bytes of binary data to the specified stream,
which should be open for output. If the length of Data is less than or equal to zero
then no output is done. The position of the stream is advanced by the number of
bytes actually written. If an error occurs then the resulting position if undefined.

FPutBlock returns the number of bytes actually output in Written. The actual
number of bytes returned may be less than requested. Resul t will contain 0 to
indicate success, anything else failure, in which case Feof and FerrStat should be
used to check for status.

If the Slreamld is 1 (standard output) then the write is automatically flushed.

This function is preferred over the Fwrite function which should no longer be used.

Return Codes

Success Failed NoResource Badld NoPosn

D.3.7 Fgets - Read a line

Synopsis: Data = Fgets(Streamld, Count

To server: BYTE Tag = 14
INT32 Streamld
INT16 Count

From server: BYTE Result
INT16: : [] BYTE Data

Fgets reads a line from astream which must be open for input. Characters are read
until end of file is reached, a newline is seen or the number of characters read is
equal to Count.

If the input is terminated because a newline is seen then the newline sequence is
not included in the returned array.

72 TDS 346 01 October 1992

390 0.3 File commands

If end of file is encountered and nothing has been read from the stream then Fgets
fails.

Return Codes

Success Failed Badld NoPosn

0.3.8 Fputs - Write a line

Synopsis: Fputs(Streamld, String)

To server: BYTE
INT32
INT16: : [] BYTE

From server: BYTE

Tag =15
Streamld
String

Result

Fputs writes a line of text to a stream which must be open for output. The host-spe­
cified convention for newline will be appended to the line and output to the file. The
maximum line length is host-specified.

Return Codes

Success Failed NoResource Badld NoPosn

0.3.9 Fflush - Flush a stream

Synopsis: Fflush(Streamld

To server: BYTE
INT32

From server: BYTE

Tag = 16
Streamld

Result

Fflush flushes the specified stream, which should be open for output. Any inter­
nally buffered data is written to the destination device. The stream remains open.

Return Codes

Success Failed NoResource Badld

72TDS 346 01 October 1992

D iserver protocol

0.4 Record structured file commands

391

This section describes the commands for record structured files. File formats are
discussed in Section 0.8.

D.4.1 FopenRec - Open a record structured file

Synopsis: Streamld,RealMrs = FopenRec(Name, Type, Mode,
Mrs)

To server: BYTE
INT16: : [] BYTE
BYTE
BYTE
BYTE
BYTE
INT32

From server: BYTE
INT32
INT32
BYTE

Tag = 26
Name
Organisation = 3 ... 4
Mode = 1 ... 6
Type = 0 •.. 2
Format = 0 ... 1
Mrs

Result
RealMrs
Streamld
RealType

FopenRec opens the file Name and, if successful, returns a stream identifier
Streamld.

Organisation can take one of two possible values:

Value Name Description

3 Variable The file will be organized in records of variable length.
The maximum record size is contained in the Mrs field.

4 Fixed The file will be organized in records of fixed length. The
size of a record is supplied in the Mrs field. Record
files are implemented in a host-specific way.

For each organization, Type can have one of the following values:

Value Name Description

0 DontCare Use Whatever type is most natural, and return the type
in RealType.

1 Stream Use streams.

2 Record Use record oriented files.

72TDS 346 01 October 1992

392 0.4 Record Structured file commands

Format can take one of two possible values:

Value Name Description

0 Formatted Formatted record structured file
1 Unformatted Unformatted record structured file

Mode can have 6 possible values:

Value Name Description
1 Input Open an existing file for input
2 Output Create a new file, or truncate an existing one, for out-

put

3 Append Create a new file, or append to an existing one, for
output

4 ExistingUpdate Open an existing file for update (both reading and
writing), starting at the beginning of the file

5 NewUpdate Create a new file, or truncate an existing one, for
update

6 AppendUpdate Create a new file, or append to an existing one, for
update

When a file is opened for update (one of the last three modes above) then the
resulting stream may be used for input or output. There are restrictions however;
an output operation may not follow an input operation without an intervening
Fseek, Ftell or Fflush operation.

When an existing file is opened, the record size supplied in the open request is
compared with that stored in the file if possible (some hosts do not record this
information). If they are different then the open fails. If the real record size is not
available, it is considered to be the same as the requested record size, and so the
open can succeed. The actual record size for the file is returned in RealMrs.

The number of streams that may be open at one time is host-specified, but will not
be less than eight (including the three predefines).

Return Codes

Success Failed
NotAvailable

72 TDS 34601

NoPriv NoResource NoFile

October 1992

o iserver protocol

0.4.2 FGetRec - Read a record

Synopsis: Data = FGetRec(Streamld

To server: BYTE Tag = 27
INT32 Streamld
INT16 ChunkSize
INT32 Offset
BYTE PerformRead

From server: BYTE Result
INT32 RecordSize
INT16: : [] BYTE Data

393

FGetRec reads a record from a record stream which must be open for input.

If an end offile record is encountered then FGetRec fails. If PerformRead is non­
zero, then a record is transferred from the file specified by Streamld into the serv­
er's buffer, otherwise, data from the previous FGetRec is transferred. If
PerformRead is zero, and no records have ever been read from Streamld, then
FGetRec fails. ChunkSize specifies the number of bytes to be transferred, start­
ing at byte number Offset from the record buffer.

Return Codes

Success Failed Badld NoPosn EOF

0.4.3 FPutRec - Write a record

Synopsis: FPutRec(Streamld, Record

To server: BYTE
INT32
INT32
INT16
INT32
BYTE
INT16: : [] BYTE

From server: BYTE

Tag = 28
Streamld
RecordSize
ChunkSize
Offset
PerformWrite
Record

Result -

FPutRec writes a record to a record stream which must be open for output.
ChunkSize specifies the number of bytes to be transferred, starting at byte num­
ber Offset into the record buffer. RecordSize specifies the size of the entire
record. If PerformWri te is non-zero, then a record is transferred to the file speci­
fied by Streamld from the server's buffer, otherwise, data from a previous record
is transferred.

72 TDS 346 01 October 1992

394

Return Codes

0.4 Record Structured file commands

Success Failed Badld NoPosn

0.4.4 FputEOF - Write an end of file record

Synopsis: FputEOF (Streamld)

To server: BYTE
INT32

From server: BYTE

Tag = 29
Streamld

Result

FPutEOF writes an end of file record to a record structured file. When the file is
closed, the file will be truncated after the first end-of-file record and data after it will
be lost.

Return Codes

Success Failed Badld

0.4.5 Fseek - Set position in a file

Synopsis: Fseek(Streamld, Offset, Origin)

To server: BYTE Tag = 17
INT32 Streamld
INT32 Offset
INT32 Origin

From server: BYTE Result

Fseek sets the file position for the specified stream. A subsequent read or write
will access data at the new position.

For a binary file the new position will be Offset characters from Origin which
may take one of three values:

Value Name Description

1 Set The beginning of the file.

2 Current The current position in the file.

3 End The end of the file.

For a text stream, Offset must be zero or a value returned by Ftell. If the latter
is used then Origin must be set to 1. For a record structured file Offset is the
number of records to seek from Origin.

72 TDS 346 01 October 1992

D iserver protocol

Return Codes

395

Success Failed Badld

D.4.6 Ftell - Find out position in a file

Synopsis: Position = Ftell (Streamld

To server: BYTE Tag = 18
INT32 Streamld

From server: BYTE Result
INT32 Position

Ftell returns the current file position for Streamld. For record structured files, the
Position is the record number relative to the start of the file.

Return Codes

Success Failed Badld

D.4.7 Feof - Test for end of file

Synopsis: Feof(Streamld

To server: BYTE
INT32

From server: BYTE

Tag = 19
Streamld

Result

Feof succeeds if the end of file indicator for Streamld is set. Note that the defini­
tion of 'end of file' is any attempt to read past the last byte in the file. Le. Reading
the last byte in a file will not set EOF; attempting to read the next byte will.

Return Codes

Success Failed Badld

72 TDS 346 01 October 1992

396

0.4.8 Ferror - Get file error status

0.4 Record Structured file commands

Synopsis: ErrorNo, Message = Ferror(Streamld)

To server: BYTE
INT32

From server: BYTE
INT32
INT16: : [] BYTE

Tag = 20
Streamld

Result
ErrorNo
Message

This function should not be used. It has been included only for compatibility pur­
poses. A replacement routine, FGetBlock, has been provided, which is described
in 0.3.5.

Ferror succeeds if the error indicator for Streamld is set. If it is, Ferror returns
a host-defined error number and a (possibly null) message corresponding to the
last file error on the specified stream. The maximum size of Message will be
restricted to 506 bytes for compatibility purposes. If the message is longer, then
it will be truncated to fit and Ferror will fail.

Return Codes

Success Failed

0.4.9 Remove - Delete a file

Synopsis: Remove(Name

To server: BYTE Tag = 21
INT16: : []BYTE Name

From server: BYTE Resul t

Remove deletes the named file.

Return Codes

Success Failed NoPriv NoFile

72 TOS 346 01 October 1992

D iserver protocol

D.4.10 Rename - Rename a file

397

Synopsis: Rename (OldName, NewName

To server: BYTE
INT16: : [] BYTE
INT16: : [] BYTE

From server: BYTE

Tag = 22
OldName
NewName

Result

Rename changes the name of an existing file OldName to NewName.

Return Codes

Success Failed NoPriv NoFile

D.4.11 Isatty - Discover if a stream is connected to a terminal

Synopsis: Isatty (StreamId)

To server: BYTE Tag = 25
INT32 StreamId

From server: BYTE Result
BYTE Istty

Isatty determines if the stream specified by StreamId is connected to a terminal.
Any non-zero value in Isatty indicates that the stream is connected to a terminal.

Return Codes

Success Failed Badld

7210534601 october 1992

398 0.4 Record structured file commands

0.4.12 FileExists - Check to see if a file exists

Synopsis: Exists := FileExists(Name

To server: BYTE Tag = 80
INT16:: []BYTE Name

From server: BYTE Resul t
BYTE Exists

FileExists checks to see if the file Name exists. Any non-zero value in Exists indi­
cates that the file does exist.

Return Codes

Success Failed

0.4.13 FerrStat - Get file error status

Synopsis: ErrorNo, Message = FerrStat(Streamld)

To server: BYTE
INT32
INT16

From server: BYTE
INT32
INT16: : [] BYTE

Tag = 82
Streamld
MessLen

Result
ErrorNo
Message

FerrStat succeeds if the error indicator for Streamld is set. If it is, FerrStat returns
a host-defined error number and a (possibly null) message corresponding to the
last file error on the specified stream. The maximum size ofMessage is restricted
to MessLen bytes. If the message is longer, then it will be truncated to fit and
FerrStat will fail with status of Truncated.

Return Codes

Success Failed Truncated

72 TDS 34601 October 1992

D iserver protocol

0.5 Host commands

D.5.1 Getkey - Get a keystroke

399

Synopsis: Key = GetKey ()

To server: BYTE

From server: BYTE
BYTE

Tag = 30

Result
Key

GetKey gets a single character from the keyboard. The keystroke is waited on
indefinitely and will not be echoed. The effect on any buffered data in the standard
input stream is host-defined. It should be noted that GetKey will only get one char­
acterfrom the keyboard stream; ifa single key-press results in more than one char­
acter being generated, then GetKey/Pollkey should be called as many times as
required to read them all.

Return Codes

Success Failed

D.5.2 Pollkey - Test for a key

Synopsis: Key = PollKey ()

To server: BYTE

From server: BYTE
BYTE

Tag = 31

Result
Key

PolIKey gets a single character from the keyboard. If a keystroke is not available
then PolIKey returns immediately with a non-zero result. Ifa keystroke is available
it will not be echoed.The effect on any buffered data in the standard input stream
is host-defined. It should be noted that PolIKey will only get one character from the
keyboard stream; if a single key-press results in more than one character being
generated, then GetKey/PolIKey should be called as many times as required to
read them all.

Return Codes

Success Failed

72 TOS 34601 October 1992

400 0.5 Host commands

0.5.3 RequestKey - Request a single keyboard 'event'

Synopsis: Result = RequestKey()

To server: BYTE

From server: BYTE

Tag = 36

Result

This command should never be generated by an application. It may be used
by the linkops server to improve performance over a network.

Once iserver has received one of these requests, it monitors the keyboard and if
a key is pressed, it generates a keyboard 'event' across the link. This event will
never reach the application since it will have been filtered out by the 1 inkops
server. Each RequestKey command will only solicit one keyboard event. The
'event' that iserver generates looks exactly like the reply to the GetKey command.
It will only be generated while iserver is idle (waiting for another iserver request to
arrive).

Return Codes

Success & Failed

0.5.4 Getenv - Get environment variable

Synopsis: Value = Getenv(Name

To server: BYTE Tag = 32
INT16:: []BYTE Name

From server: BYTE Resul t
INT16:: []BYTE Value

This function should not be used. It has been included only for compatibility pur­
poses. A replacement routine, Translate, has been provided, which is described
in 0.5.7.

Getenv returns a host-defined environment string for Name. If Name is undefined
then Result will be non-zero. If the resultant environment string for Name is longer
than 509 bytes, then it will be truncated to fit and Getenv will fail.

Return Codes

Success Failed

72 TDS 346 01 October 1992

D iserver protocol

D.5.5 Time - Get the time of day

401

Synopsis: LocalTime, UTCTime = Time()

To server: BYTE Tag = 33

From server: BYTE Resul t
UNSIGNED INT32 LocalTime
UNSIGNED INT32 UTCTime

Time returns the local time and Coordinated Universal Time if it is available. Both
times are expressed as the number of seconds that have elapsed since midnight
on 1st January, 1970. If UTC time is unavailable then it will have a value of zero.

Return Codes

Success Failed

0.5.6 System - Run a command

Synopsis: Status = System(Command

To server: BYTE Tag = 34
INT16:: []BYTE Command

From server: BYTE Result
INT32 status

System provides access to the host's command processor, if one is available. If
the length of Command is zero, then the command processor will not be invoked
(and the empty string therefore not executed), and System will succeed only if a
command processor is available. The value of Status is undefined in this case.
If the length ofCommand is non-zero, then the string is passed to the command pro­
cessor, which will attempt to execute it. In this case Status is the return value of
the command, which is host-defined.

Return Codes

Success Failed NoResource

72 TDS 34601 october 1992

402

0.5.7 Translate - Translate an environment variable

0.5 Host commands

Synopsis: Value = Translate(Name, Length

To server: BYTE
INT32
INT16
INT16::[]BYTE

From server: BYTE
INT32
INT16: : []BYTE

Tag = 81
Offset
Length
Name

Result
TotalLength
Value

Translate returns a host-defined environment string for Name. IfName is undefin'ed
then Result will be non-zero. Data is transferred from the resultant string starting
at Offset for Length bytes. If Offset is beyond the end of the string, then an
empty (zero length) string will be returned. The TotalLength field of the reply
contains the total length of the translated string.

Return Codes

Success Failed

72 TDS 34601 October 1992

D iserver protocol

0.6 Server commands

D.6.1 Exit - Terminate the server

403

Synopsis: Exit(Status)

To server: BYTE
INT32

From server: BYTE

Tag = 3S
Status

Result

Exit terminates the server, which exits returning Status to its caller.

If Status has the special value 999999999 then the server will terminate with a
host-specific 'success' result.

If Status has the special value -999999999 then the server will terminate with a
host-specific 'failure' result.

Return Codes

Success

D.6.2 CommandLine - Retrieve the server command line

Synopsis: String = CommandLine (All

To server: BYTE
BYTE

From server: BYTE
INT16: : [] BYTE

Tag = 40
All

Result
String

This function should not be used. It has been included only for compatibility pur­
poses. A replacement routine, CommandArgs, has been provided, which is
described in 0.6.6.

CommandLine obtains the command line passed to the server. The server is
passed the command line arguments as a numberof discrete items. The items are
built into a command string using the following rules.

• The individual items are concatenated together into a string, with a single
space (Ox20) being inserted between each item.

• Any quote character (0x22) found in any item is quoted. e.g. JJ becomes JU'.

• Any command line item found to contain whitespace (Ox20 or Ox09) has a
quote character prefixed to it and another added after it.

72 TOS 346 01 October 1992

404 0.6 Server commands

CommandLine returns the command line passed to the server on invocation. On
certain operating systems it is possible to quote arguments on the command line.
The quotes themselves have been removed by the time iserver gets to see the
arguments. When building the command line to pass on to the application,
iserver places quotes (Ox22) around any argument containing whitespace. Any
genuine quote characters in the command line are quoted. e.g. JJ becomes m,.

IfAll is zero the returned string is the command line, with the server name, argu­
ments that the server recognized (including any parameters to the arguments)
removed.

IfAll is non-zero then the string returned is the entire command vector as passed
to the server on startup, including the name of the server command itself.

Return Codes

Success Failed

0.6.3 Core - Read peeked memory

Synopsis Data = Core (Offset, Length

To server: BYTE Tag = 41
INT32 Offset
INT16 Length

From server: BYTE Result
INT16: : [] BYTE Core

Core returns the contents of the root transputer's memory, as peeked from the
transputer when the server was invoked with the analyze option.

Core fails if Offset is larger than the amount of memory peeked from the trans­
puter or if the transputer was not analyzed.

If (Offset + Length) is larger than the total amount of memory that was peeked
then as many bytes as are available from the given offset are returned.

If Offset and Length are both zero, the the result of this function will indicate if
the transputer was analyzed and peeked by the server.

Return Codes

Success Failed

72TDS 34601 October 1992

D iserver protocol

D.6.4 Version - Find out about the server

405

Synopsis: Id = Version ()

To server: BYTE

From server: BYTE
BYTE
BYTE
BYTE
BYTE

Tag = 42

Result
Version
Host
OS
Board

Use of this function is discouraged. To obtain similar information in a more portable
manner, use the function Getlnfo (0.6.5).

Version returns four bytes containing identification information about the server
and the host it is running on.

If any of the bytes has the value 0 then that information is not available.

Version identifies the server version. The byte value should be divided by ten to
yield a version number

Host identifies the host box. Currently 8 are defined:

Value Host Value Host

1 PC 2 NEC-PC

3 VAX 4 Sun 3

5 IBM 370 6 Sun 4

7 Sun 386i 8 Apollo

OS identifies the host environment. Currently 5 are defined:

Value Operating system Value Operating system

1 DOS 2 Helios

3 VMS 4 SunOS

5 CMS

72TDS 34601 October 1992

406 0.6 Server commands

Board identifies the interface board. Currently 12 are defined:

Value Board Value Board

1 IMS BOO4 2 IMS B008

3 IMS B010 4 IMS B011

5 IMS B014 6 ORX-11

7 Caplin aTO 8 IMS B015

9 IBM CAT 10 IMS B016

11 UOP 12 TCPlink

INMOS reserves numbers up to and including 127 for these three fields.

Return Codes

Success Failed

0.6.5 Getlnfo - Obtain information about the host and server

Synopsis: NoOfBytes = GetInfo (Item, Buffer)

To server: BYTE Tag = 43
BYTE Item
INT16 ReplySize

From server: BYTE Result
Item specific result

Getlnfo is used to obtain host and server specific information in as portable a fash­
ion as possible. ReplySize specifies the maximum size of the reply in bytes. If
the reply exceeds this value, it will be truncated and an appropriate failure status
will be returned. Values for Item and their representation are shown in Table 0.2.

Value Name Returned as Description

1 SwitchChar BYTE The switch character used by the
host.

2 EndOfLine INT16: : [] BYTE The end of line sequence.

3 Stderr BOOL A boolean value indicating whether or
not the standard error stream can be
redirected.

4 Serverld INT16: : [] BYTE A string identifying the server.

5 ServerMaj INT32 The server's major version number.

6 ServerMin INT32 The server's minor version number.

7 PacketSize INT32 The server's maximum packet size.

Table 0.2 Results of Getlnfo command

72TOS 34601 October 1992

D iserver protocol 407

A BOOL will be represented as a single byte, with any non-zero value meaning
TRUE, and zero FALSE.

Return Codes

Success Failure NoPriv Truncated

D.6.6 CommandArgs - Retrieve the server command line arguments

Synopsis: String = CommandArgs (Argno, Length)

To server: BYTE
INT16
INT16

From server: BYTE
INT16
BYTE
INT16: : [] BYTE

Tag = 83
Argno
Length

Result
NumArgs
ServerArg
String

CommandArgs provides access to the server's command line. Argno specifies
the command line argument numberand is used as an index into the server's argv
array. Length specifies the maximum length of String. If String is too big, it
will be truncated to fit, and a status of Truncated will be returned. If ServerArg
is non-zero, it indicates that String was recognized as a server argument, and
should be ignored by the application. NumArgs is the highest argument number
which may be requested, and is the equivalent of the C variable argc. Argument
number zero is always present.

Return Codes

Success Failed Truncated

72TDS 34601 October 1992

408 0.7 Reserved Tags and Third Party Tags

0.7 Reserved Tags and Third Party Tags

The following tags have been reserved for specific applications or by Third Parties
for use in their own servers. Their use is not encouraged, since the third party tags
will not be present in the standard INMOS server.

0.7.1 MSDOS - Perform MS-DOS specific function

Synopsis: MsDos(Command)

To server: BYTE Tag = 50
BYTE Function code
Function specific data

From server: BYTE Resul t
Function specific results.

MSDOS is used to perform a number of MS-DOS specific functions. This is used
to support some early INMOS PC-based programs. Use of this function is discour­
aged for portability reasons. The functions supported are shown in Table D.3.

Value Name Description

0 SendBlock Write a block of data anywhere in the PC's memory map.

1 GetBlock Read a block of data from anywhere in the PC's memory
map.

2 Call1nt Invoke a software interrupt.

3 GetRegs Read the segment registers.

4 PortWrite Write to a port.

5 PortRead Read from a port.

Table D.3 MS-DOS functions

Return Codes

Success Failed

72 TDS 346 01 October 1992

o iserver protocol

0.7.2 SocketA - make a socket library call

Synopsis: BYTE Tag = 70
BYTE Socket operation
Function specific data.

From server: BYTE Resul t
Function specific results.

This function allows an application to make a socket library call.

Return Codes

409

Success Failed

0.7.3 SocketM - make a socket library call

Synopsis: BYTE Tag = 71
BYTE Socket operation
Function specific data.

From server: BYTE Resul t
Function specific results.

This function allows an application to make a socket library call.

Return Codes

Success Failed

0.7.4 ALSYS - Perform Alsys specific function

Synopsis: AlSys(...)

To server: BYTE Tag = 100
Function specific data

From server: BYTE Resul t
Function specific results

Alsys is used to perform a number ofAlsys specific functions. This is used to sup­
port the Alsys compilers.

72 TDS 34601 October 1992

410 0.8 Record Structured file format

0.7.5 KPAR - Perform Kpar specific function

Synopsis: Kpar(...)

To server: BYTE Tag = 101
Fun~tion specific data

From server: BYTE Result
Function specific results

This is used to perform a number of Kpar specific functions. This is used to support
Kpar tools.

0.8 Record structured file format

Under VAXNMS, record structured files are implemented using the VAX Record
Management Service (VAXlRMS). Under all other hosts record structured files are
implemented using binary files. Files created are of a similar format to that used
by Sun FORTRAN.

0.8.1 SunOS and MS-DOS

Formatted Sequential

Each record in a Formatted Sequential file has a linefeed character (OxOa)
appended to it. Thus an extra byte per record is required. Le.

I record data llinefeed I
Unformatted Sequential

Unformatted Sequential files are implemented by prefixing and suffixing each
record with a four byte length field, most significant byte first. The length field is the
length of the data, not the data plus the length fields. This means an extra eight
bytes per record are required. Le.

I data length

Formatted Direct

length bytes of data I data length I

The record size is specified at open.

Unformatted Direct

The record size is specified at open.

72 TDS 346 01 October 1992

o iserver protocol

0.9 Termination codes

411

There are various circumstances under which iserver can terminate. iserver
1.5 makes it possible for a controlling script to distinguish between the following
cases

• Terminated properly on receipt of an sps . success token.

• Terminated properly on receipt of an sps . failure token.

• Terminated properly with any other value.

• Terminated on receipt of a user break.

• Terminated on seeing the transputer error flag set.

• Any other termination.

The values used are shown in Table 0.4.

Host Termination User Break Error Any
Flag Other

Success Failure Other

MS-DOS 0 255 exit code 254 253 252
Helios 0 255 exit code 254 253 252
VAXNMS 1 4 exitcode x 16 10 2 12
error class success fatal warning information error fatal

SunOS 0 255 exit code 254 253 252

Table D.4 iserver termination codes

The values chosen for VAXNMS have been designed to generate different
'classes' of error.

Under all operating systems apart from VAXNMS, error codes between 240 and
255 are reserved for use by iserver.

72 TDS 34601 October 1992

412

72 TDS 34601

0.9 Termination codes

October 1992

E ITERM files

This appendix describes the format of ITERM files; it is included for people who
need to write their own ITERM because they are using terminals that are not sup­
ported by the standard ITERM file supplied with the toolset.

Standard ITERM files for this release are provided in the i terms directory, which
is a subdirectory of the main toolset installation directory. These files may be used
as templates and tailored to suit your own needs. It is recommended that the instal­
lation files are not changed in any way, and that modifications are only made to
copies of the files.

E.1 Introduction

ITERMs are ASCII text files that describe the control sequences required to drive
terminals. Screen oriented applications that use ITERM files are terminal indepen­
dent.

ITERM files are similar in function to the UNIX termcap database and describe
input from, as well as output to, the terminal. They allow applications that use func­
tion keys to be terminal independent and configurable.

Within the toolset, the ITERM file is only used by the debugger tool idebug and
the T425 simulator tool isim.

A default ITERM file may be defined in the I TERM environment variable. Fordetails
see section E.8 and the Delivery Manual for the release.

E.2 The structure of an ITERM file

An ITERM file consists of three sections. These are the host, screen and keyboard
sections. Sections are introduced by a line beginning with the section letters 'H',
's' or 'K'. Case is unimportant and the rest of the line is ignored. Sections consist
of a number of lines beginning with a digit. A section is terminated by a line begin­
ning with the letter 'E'. The host section must appear first; other sections may
appear in any order in the file. Sections must be separated by at least one blank
line.

The syntax of the lines that make up the body of a section is best described in an
example:

3:34,56,23,7. comments

Each line starts with the index number followed by a colon and a list of numbers
separated by commas. Each line is terminated by a full stop (' . ') and anything fol-

72TDS 34601 October 1992

414 E.3 The host definitions

lowing it is treated as a comment. Spaces are not allowed in the data string and
an entry cannot be split across more than one line.

Comment lines, beginning with the character "', may be placed anywhere in an
ITERM file. Extra blank lines in the file are ignored.

The index numbers in each section correspond to an agreed meaning for the data.
In the following sections the meaning of the data in each of the three sections is
described in detail.

E.3 The host definitions

E.3.1 ITERM version

This item identifies an ITERM file by version. It provides some protection against
incompatible future upgrades.

e.g. 1:2.

E.3.2 Screen size

This item allows applications to find out the size of the terminal at startup time. The
data items are the number of columns and rows, in that order, available on the cur­
rent terminal.

e.g. 2: 80 ,25.

Screen locations should be numbered from 0, 0 by the application. Terminals
which use addressing from 1, 1 can be compensated for in the definition of goto
X,Y.

E.4 The screen definitions

The lists of values in the screen section represent control codes that perform cer­
tain operations; the data values are ASCII codes to send to the display device.

ITERM version 2 defines the indices given in table E.1. These definitions are used
in the example ITERM file; for a complete listing of the file see section E.8.

72TDS 346 01 October 1992

E ITERM files

Index Screen operation

1 cursor up

2 cursor down

3 cursor left

4 cursor right

5 goto x Y
6 insert character

7 delete character at cursor

8 clear to end of line

415

Index Screen operation

9 clear to end of screen

10 insert line

11 delete line

12 ring bell

13 home and clear screen

20 enhance on (not used)

21 enhance off (not used)

Table E.1 ITERM screen operations

For example, an entry like: '8: 27 , 91 ,75 . ' indicates that an application should
output the ASCII sequence 'ESC [K' to the terminal output stream to clearto end
of line.

E.4.1 Goto X Y processing

The entry for 5, 'goto X y', requires further interpretation by the application. A typi­
cal entry for 'goto X Y' might be:

5:27,-11,32,-21,32

The negative numbers relate to the arguments required for X and Y.

... , -ab, nn, ...

where: a is the argument number (Le. 1 for X, 2 for V).

b controls the data output format.

If b =1 output is an ASCII byte (e.g. 33 is output as !).

If b =2 output is an ASCII number (e.g. 33 is output as 33).

nn is added to the argument before output.

As a complete example, consider the following ITERM entry in the screen section:

5:27,91,-22,1,59,-12,1,72. ansi cursor control

This would instruct an application wishing to move the terminal cursor to X=14, Y=8
(relative to 0,0) to output the following bytes to the screen:

Bytes in decimal: 27 91 57 59 49 53 72
Bytes in ASCII: ESC [9 1 5 H

72TDS 346 01 October 1992

416 E.5 The keyboard definitions

E.5 The keyboard definitions

Each index represents a single keyboard operation. The data specified after each
index defines the keystroke associated with that operation. Multiple entries for the
same index indicate alternative keystrokes for the operation.

ITERM version 2 defines the indices given in table E.2. These definitions are used
in the example ITERM file; for a complete listing of the file see section E.8.

Index Function

2 delete character

6 cursor up

7 cursor down

8 cursor left

9 cursor right

12 delete line

14 start of line

15 end of line

18 line up

19 line down

20 page up

21 page down

26 enter file

27 exit file

28 refresh

29 change file

31 finish

34 help

36 get address

Index Function

39 goto line

40 backtrace

41 inspect

42 channel

43 top

44 retrace

45 relocate

46 info

47 modify

48 resume

49 monitor

50 word left

51 word right

55 top of file

56 end of file

62 toggle hex

65 continue from

66 toggle breakpoint

67 search

Table E.2 ITERM key operations

E.6 Setting up the ITERM environment variable

To use an ITERM the application has to find and read the file. An environment vari­
able (or logical name on VMS) called ITERM should be set up with the pathname
of the file as its value. For example, under MS-DOS the command would be:

C:\> set ITERM=C:\ITOOLS\TOOLS\PCANSI.ITM

72 TDS 346 01 October 1992

E ITERM files 417

Under Unix you would set an environment variable. For example, the command
for csh users might be:

% setenv ITERM ~/.iterm

Under VMS you would define a logical name. For example:

$ DEFINE ITERM SYS$LOGIN:VT100.ITM

For more details about setting environment variables see the Delivery Manual that
accompanies the release.

E.7 Iterms supplied with a toolset

The following ITERM files are supplied with the toolset:

File Description

ansi.itm Generic ANSI iterm

ncd.itm NCD X terminal iterm

necansi.itm NEC PC iterm

pcansi.itm PC iterm (requires ANSI.SYS)

sun. itm SunView iterm

vt100.itm vt100 iterm

Table E.3 ITERM files supplied

ansi . i tm is likely to be the most portable in that it will work unchanged with most
hosts. However, because of this it may only use the normal (alpha-numeric keys)
of a keyboard. This means that some keys (when used in conjunction with the
CNTL or SHIFT key) are associated with more than one operation. Specific host
iterms make use of known function keys etc. which leads to less overloading of
keys.

Each iterm file may be treated as an example; you may create and use your own
iterm file if you wish.

72 TDS 34601 October 1992

418 E.8 An example ITERM

E.8 An example ITERM

Created
Modified

(RD)
(NB)

Vl.O 16 November 1990
Vl.1 11 January 1991

ANSI ITERM for any ANSI terminal
Support for idebug and is~

This is the generic toolset ITERM file for an ANSI terminal.

, --,,
I,,,,
I --

host section
1:2.
2:80,24.
~~d of host section

version
screen size

I screen control characters

screen section
I
1:27,91,65.
2:27,91,66.
3:27,91,68.
4:27,91,67.
5:27,91,-22,1,59,-12,1,72.
#6.
'7.
8:27,91,75.
9:27,91,74.
'10 ansi terminals do
'11 not have these
12:7.
13:27,91,50,74.
end of screen section

DEBUGGER

cursor left

goto x y
insert char
delete char
clear to eol
clear to eos
insert line
delete line
bell
clear screen

SIMULATOR
cursor up
cursor down
cursor left
cursor right
goto x y
insert char
delete char
clear to eol
clear to eos
insert line
delete line
bell
clear screen

keyboard section

* KEY DEBUGGER SIMULATOR,
2:127. , DELETE del char
2:8. , BACKSPACE del char
6:27,91,65. , UP cursor up cursor up
7:27,91,66. I DOWN cursor down cursor down
8:27,91,68. I LEFT cursor left cursor left
9:27,91,67. # RIGHT cursor right cursor right
12:21. I Crtl-U delete line
14:1. I CTRL-A start of line start of line
15:5. , CTRL-E end of line end of line
18:27,85. , ESC U line up
18:27,117. , ESC u line up
19:27,68. , ESC D line down
19:27,100. # ESC d line down
20:27,86. , ESC V page up page up
20:27,118. # ESC v page up page up
21:27,87. , ESC W page down page down
21:27,119. I ESC W page down page down
26:14. , CTRL-N enter file

72 TDS 346 01 October 1992

E ITERM files 419

27:24. , CTRL-X exit file
28:12. , CTRL-L refresh refresh
28:23. , CTRL-W refresh refresh
29:27,70. , ESC F change file
29:27,102. , ESC f change file
31:27,88. , ESC X finish
34:27,72. , ESC H help help
34:27,104. , ESC h help help
36:27,65. , ESC A get address
36:27,97. , ESC a get address
39:7. , CTRL-G goto line
40:27,48. , ESC 0 backtrace
41:27,49. , ESC 1 inspect
41:9. *CTRL-I inspect
42:27,50. *ESC 2 channel
43:27,51. *ESC 3 top
44:27,52. *ESC 4 retrace
45:27,53. *ESC 5 relocate
46:27,54. # ESC 6 info
47:27,55. # ESC 7 modify
48:27,56. *ESC 8 resume
49:27,57. *ESC 9 monitor
50:11. , CTRL-K word left
51:16. *CTRL-P word right
55:27,60. , ESC < top of file
56:27,62. *ESC > end of file
62:27,116. *ESC t toggle hex
62:27,84. , ESC T toggle hex
65:27,67. , ESC C continue from
65:27,99. , ESC c continue from
66:2. , CTRL-B toggle break
67:6. , CTRL-F search (Find)
end of keyboard section, idebug 'key that isn't really part of iteDm but its here all the, same!

*, INTERRUPT CTRL A IDEBUG

* THAT'S ALL FOLKS

72 TDS 34601 October 1992

420

72 TDS 346 01

E.8 An example ITERM

October 1992

F Bootstrap loaders

F.1 Introduction

Special loading procedures can be created for the program and used in place of,
or in addition to, the standard INMOS bootstrap. The file containing the new boot­
strap is specified by invoking the collector with the 'B' and 'T' options.

User defined bootstraps must perform all the necessary operations to initialize the
transputer, load the network, and set up the software environment for the applica­
tion program.

Bootstraps are output to the program bootable file as the first section of code in
the bootable file. The bootstrap, consisting of the primary and secondary bootstrap
sequences, is followed by the standard INMOS network loader program, which is
output in small packets, each packet consisting ofa maximum of 60 bytes. The last
packet of the network loader is followed by a length byte of zero.

In most cases a custom bootstrap will interface directly with the standard INMOS
Network Loader, which places various pieces of code and data within the trans­
puter memory in a controlled way. However, it is possible to skip the standard
loader by sinking its code packets and following the commands used by the net­
work loader that are output after the network loader.

The general format of a custom bootstrap is a concatenated sequence ofbootstrap
code segments each preceded by a length byte. The sequence can be any length.
The bootstrap program must be contained in a single file.

The source of the standard INMOS Network Loader is supplied with the toolset and
is fully commented. See the accompanying Delivery Manual for details of source
directories supplied.

F.1.1 The example bootstrap

The example bootstrap loader provided on the toolset examples/userboot
directory is a combination of several files used in the standard INMOS bootstrap
scheme. The files have been combined into a single file to illustrate how to create
a user-defined bootstrap; the functionality is the same as that used in the the stan­
dard INMOS scheme based on multiple files.

The program is written in transputer code and consists of two parts:

• Primary bootstrap - performs processor setup operations such as initializ­
ing the transputer links

72TDS 34601 October 1992

422 F.1 Introduction

• Secondary bootstrap - sets up the software environment and interfaces to
the Network Loader.

Transfer of control

The calling sequence in the standard INMOS scheme is as follows:

The primary loader calls the secondary loader, which then calls the Network
Loader. When the Network Loader has completed its work control returns to the
secondary loader, which calls the application program via data set up by the Net­
work Loader.

Custom bootstraps should follow the same sequence.

F.1.2 Writing bootstrap loaders

Bootstrap loader programs should be written to perform the same operations as
the standard scheme, that is, hardware initialization, setting up the software envi­
ronment, and calling the Network Loader. Ifyou skip the Network Loader by sinking
its code bytes then you must ensure its function is reproduced in your own code.
If you do use the Network Loader you must ensure the interface to it is correct by
setting up the invocation stack. The method by which this is achieved can be
deduced from the example program source.

If you wish to make only a few small changes to the standard loader, for example,
insert code to initialize some D-to-A convertors, then the example code can be
used and the required code can be inserted between the Primary and Secondary
Loader code as an additional piece of bootstrap code in the sequence of boot­
straps. The rest of the code can be used as it stands.

Ifyou decide to devise your own loading scheme and rewrite the Primary and Sec­
ondary Loaders then you should be familiar with the design of the Transputer and
its instruction set. For engineering data about the transputer consult the 'Trans­
puter Databook ' and for information about how to use the instruction set see the
'Transputer Instruction Set: a compiler writer's guide'.

72 lDS 34601 October 1992

Index

Symbols
I,idebug, 135, 138, 145, 159

::, idebug, 149

#
idebug,119
idump, 175
isim,306

'alias, 220

'define
linker directive, 221
syntax, 12

'elif, syntax, 12

'else, 13
syntax, 12

'endif,13
syntax, 12

'error, syntax, 13

'if, syntax, 13

'ifdef, syntax, 13

'ifndef, syntax, 13

'include
filename synta~, 14
ice directive, 14
linker directive, 221
nesting ice directives, 14

'line, syntax, 14

'mainentry,221

'PRAGMA,LINKAGE,222

'pragma
INS codepatchsize, 15
INS-descriptor,15,17

parameters, 18
INS linkage, 15,222
INS-modpatchsize, 15
INS:nolink,15,17

72 TDS 34601

INS off, 15
parameters, 16

INS on, 15
parameters, 16

IMS translate, 15
syntax, 14

'reference, 221
'section, 222
'undef, syntax, 19
$

idebug,119
idump, 175

%
idebug, 119, 150
imap,273
isim,306

@, iserver, 293
+,idebug,160
++,idebug,159
*,idebug, 126,150,155,157,162
**, i debug, 157, 162
\, in filenames, 14
_asm,21
_lsb,20
""params,20

A
Action strings, in makefiles, 267
align, 346, 347
Analyse, 116, 117
ANSIC

compiler, 3
trigraphs, 24

Arithmetic right shift, 8

Arrays,subranges, 149, 159

October 1992

424

Assembler, 341
directives, 346
errors, 379
invoking, 7, 341
language, 343

syntax, 376
transputer instrunctions, 345

B
B004,317

B008,317

Backslash, in filenames, 14

I BACKTRACE /, 146

binary. See output. format

Binary lister, 237
command line, 238
errors, 251

Binary output, ieprom, 202

blkb, 346, 348

blkw, 346, 349

Block mode, ieprom, 203

Block move, 21

Boards, wiring, 108

boards.inc,53

Boot from link, 177
collector memory map, 94, 97
default collector output, 86

Boot from ROM, 92, 177, 195
configurer options, 52

Bootable code, 81

bootable.file,198

Bootstrap
alternatives, 93
example, 421
loaders, 93, 422

Break key, 320

Breakpoint debugging, methods,
109

72 TDS 34601

Index

Breakpoints, 124,308
commands, 124
menu, 124

Building libraries, 211

Built-in functions, 21

byte, 346, 350

byte. select, 200

c
C, implementation, compatibility

issues, 8

call_without_gsb,17

Capability, 287, 291
specific host, 293

I CHANGE FILE I, 147

Change processor,
debugging, 137

ICHANNEL I, 144

char, signedness, 8

Character, signedness, 8

Checking a network, 125

Clearing error flags, 166, 321

Code
listing, 242
position in memory, 54, 86, 88

Collector
command line, 82
error messages, 100
input files, 85
output files, 85

non-bootable, 91

Command line, 325

Command line options
icc,4,5
icconf,51,52
icollect,84
idebug,111
iemit, 178
ieprom, 197
ilibr,208
ilink,219

October 1992

Index

ilist,239
imakef,258
imap,273
iserver,285
ism, 304
iskip,318
optimizing compiler, 6
specify transputer target, 339

comment, 346, 351

Comments
in assembly code, 345
in EPROM control files, 197

common, 346, 352

Compare memory, debugging, 125

Compatibility, other C implementa-
tions,8

Compiler, 3
command line, 3

default, 7
diagnostics, 22

implementation data, 331
recoverable errors, 31
serious errors, 38
terminology, 22
warnings, 24

error modes, 7
memory map, 9
options, 4, 5, 6
pragmas,15
predefines, 19

macros, 19
preprocessor directives, 12
selective loading of libraries, 210

Compiling, for a range of transput­
ers,334

Configuration
description, example files, 53
language, implementation, 50

Configurer, 49
advanced toolset options, 52
command line, 50
default command line, 52
diagnostics

recoverable errors, 60

72 TDS 34601

425

serious errors, 75
warnings, 57

errors, 55
information messages, 56
memory map, 54
search paths, 54
standard definitions, 53

Connection database, 292
example, 295
format, 294

1CONTINUE FROM I, 145

Conventions
command line options, 325
command line syntax, 325
error messages, 331
filenames, 326
imakef file extensions, 330
search paths, 326
standard file extensions, 327

Core dump, 311
listing, 250

Current location,
in debugger, 146

Cursor positioning, 415

D
Data, listing all, 248

data, 346, 353

Debug,
support functions, 131, 145

debug, 346, 354

Debugger, 107
command line, 109
environment variables, 112
errors, 166
monitor commands

definitions, 123-142
editing functions, 120
mapped by ITERM, 120
summary, 120-122

monitor page
commands, 119
scroll keys, 122

October 1992

426

symbolic commands, 122
program hangs, 166
scroll keys, 119
symbolic functions, 142

Debugging
See also Monitor page
8004 boards, 116
current location, 146
inspecting channels, 144
inspecting memory, 159
interactive, 228
options,

for different boards, 118
program termination, 113
single step, 312
TRAMs, 116

defsym, 346, 355

DELETE, 260

descriptor,346,356

Directives
assembler, 346
linker,220
preprocessor, 12

Directory path, 326

Disassemble memory, 126

Display memory in hex, 129

Display reference, 248

Displaying object code, 237

DRAM timimg parameters, 187

Dynamic code loading, listing files,
250

E
Early write, 185

Editing functions, 120

Editing makefiles, 267

EMI,177
clock period, 185

I END OF FILE I, 123, 147

72 TDS 34601

Index

end. offset, 200

I ENTER FILE " 147

Environment variables, 416
accessing through iserver, 402
IBOARDSIZE,87
ICCARG, 7
ICCONFARG,52
ICOLLECTARG,85
ICONDB,286,293
ILIBRARG,208
ILINKARG,219
ILISTARG,240
ISESSION,286
ISIMBATCH,313
I TERM, 116, 305
TRANSPUTER,286,292
used by idebug, 112

EPROM, 52, 92
code layout, 200
devices, 204

EPROM program convertor, 195
binary output, 202
block mode, 203
command line, 196
control file, 197
errors, 206
hex dump, 202
Intel extended hex format, 203
Intel hex format, 203
Motorola S-record format, 203
output files, 202

EPROM programming, 195

eprom.space,198

Error
handling, 331
modes, 7,223

selectiveJoading of libraries,
210

runtime, 332
severities, 331

Error flag
clearing in a network, 166, 321
detection in interactive

debugging, 117

Error messages
assembler, 379

October 1992

Index

format, 331
ice, 22
icconf,55
icollect, 100
idebug, 166
idump, 176
iemit,191
ieprom,206
ilibr,214
ilink,230
ilist,251
imakef,268
imap,281
iserver, 298

additional, 300
isim,314
iskip,321

Ethemet, 283

Event, 133,311

Examples
bootstrap loader, 421
configuration files, 53
connection database, 295
ieprom control file, 205
imakef,260

occam,263
skipping a single processor, 319
skipping multiple transputers, 319

I EXIT FILE I, 147

Exported names, listing, 244

Extensions, file, 254, 327

extern, 346, 357

External memory interface, 177

External references, listing, 251

extintel. See output. format

Extraction of library modules, 224

F
File

extensions, 327
imakef,254,330

72TDS 346 01

427

imap source files, 273
identification, 249,327

Filename conventions, 326

I FINISH I, 148

G
I GET ADDRESS I, 147

global, 346, 358

Go to process, 129

GOTO LINE I, 146

H
Heap area, 87

position in memory, 54, 86

I HELP I, 122, 142, 147

hex. See output. format

Hexadecimal
arguments to idump, 175
listing, 244

Hexadecimal format,
for EPROM, 202

Host
for capability, 293
versions, xix

Host file server, 283
terminating, 320

IBOARDSIZE,87,113
errors, 89

ice, 3
channel-pointers, 16
checking
printf,16
scanf,16
stack, 16

command line options, 4, 5, 6
file extension defaults, 7

October 1992

428

inline ops, 16
memory-map, 9
search path, 7
syntax, 3

ICCARG, 7

icconf,49
command line, 50
error messages, 55

ICCONFARG, 52

icollect
comand line, options, 84
command line, 82
environment variables, 85, 87
errors, 100

ICOLLECTARG,85

ICONDB,286,293

idebug,107
command line, 109

options, 111
environment variables, 112
errors, 166
interactive mode, 115
post-mortem debugging, 113
restarting, 115

IDEBUGSIZE, 113
errors, 166

idump, 108,175,287,317
errors, 176

iemit,177
command line, 178
DRAM timing parameters, 187
errors, 191
index page, 180
input parameters, 182
memory read cycle, 188 .
memory write cycle, 189
timing information, 186

ieprom,195
command line, 196
control file, 197
errors, 206

ilibr, 207, 209
command line, 208

72 TDS 34601

Index

command line options, 208
error messages, 214

ILIBRARG,208

ilink,217
command line, 218
indirect files, 219

ILINKARG,219

ilist,237
command line, 238
command line options, 239
errors, 251

ILISTARG,240

imakef,230,253
command line, 257
command line options, 258
deleting intermediate files, 260
errors, 268
examples, 260
file extensions, 254, 330
file formats, 266
linker indirect files, 257, 259
occam examples, 263
target files, 254

imap,271
command line, 272
command line options, 273
errors, 281
output file structure, 275

Implementation,
compiler diagnostics, 331

IMS 8004,317

IMS 8008,317

IMS 8404, 117

IMS_descriptor, 17

IMS_nolink, 17

~,144

init,346,359

Inline functions, 21

INMOS C, implementation,
compatibility issues, 8

I INSPECT I, 143

October 1992

Index

Inspect memory, 130

intel. See output. format

Intel extended hex format,
ieprom, 202

Intel hex format, ieprom, 202

Interactive debugging,
collector option, 99

I INTERRUPT I, 145

I SEARCH, 14,54,326

iserver,283, 317
accessing transputers, 292
capability, 287
command line, 284
command line options, 284
connection manager, 297
environment variables, 286
error codes, 298
error messages, 298
exit codes, 298
functions, 283
halt system error mode, 287
loading programs, 286
new features, 297
passing parameters to a

program, 287
protocol, 383

file commands, 385
Fclose - close a file, 386
Feof - test for end of file, 395
Ferror - get file error status,

396
FerrStat - Get file error status,

398
Fflush - flush a stream, 390
FGetBlock, 388
FGetRec - read a record, 393
Fgets - read a line, 389
FileExists, 398
Fopen - open a file, 385
FopenRec, 391
FPutBlock, 389
FPutEOF, 394
FPutRec - write a record, 393
Fputs - write a line, 390

72TDS 34601

429

Fread - read block of data,
387

Fseek - set position in a file,
394

Ftell- find position in a file,
395

Fwrite - write block of data,
387

Isatty,397
Remove - delete a file, 396
Rename - Rename a file, 397

host commands
Getenv - get environment vari-

able, 400
Getkey, 399
Po11key, 399
System - run a command, 401
Time - get the time of day, 401
Translate - translate an envi-

ronment variable, 402
packets, 383
record structured file com­

mands, 391
record structured file format, 41 0
reserved commands

ALSYS, 409
KPAR, 410
MSDOS, 408
SocketA, 409
SocketM, 409

server commands, 383
CommandArgs, 407
CommandLine, 403
Core - read peeked

memory, 404
Exit - exit the server, 403
Getlnfo, 406
Version - find out about the

server, 405
termination codes, 411

record structured files, 298
session manager, 284, 288, 297

customising interface, 290
specifying the transputer to use,

287
stream identifier validation, 298
subsystem reset, 286
terminating, 287

on error, 287

october 1992

430

user interrupt, 297

ISESSION,286,288

isim,303
command line, 303
command line options, 304
errors, 314

ISIMBATCH,313

iskip,108,317
command line, 318
command line options, 318
errors, 321

ispy,166,321

ITERM, 113,116,305,416

ITERM file
example listing, 418
format, 413
keyboard, 416
screen, 414
use by simulator, 305, 306
version, 414

J
JEDEC, symbol, 186,188

Jump instructions, in ROM, 201

Jump into program, 131

K
Keyboard definitions, 416

L
language, 346, 360

Late write, 185

LFF files, listing, 250

Librarian, 207
command line, 208
concatenated input, 207
linked object input, 209
options, 208

72TD5 346 01

Index

Library
building, 211
building optimized, 211
extraction of modules, 224
index, 207, 210
indirect files, 207, 209

imakef,257
linking supplied libraries, 220
listing inde~, 246
modules, 209
selective loading of, 210
usage files, 210

imakef,257

I LINE DOWN I, 123

I LINE UP I, 122

Link map, 228

Linker,217
command line, 218
compatible transputer classes,

222
directives, 220
errors, 230
extraction of library modules, 224
indirect files, 219

imakef,257,259
LFF output, 223
selective loading of libraries, 210
TCOFF output, 223

Linking, transputer targets, 333

Links, 133, 31f

Lister. See ilist

Loading programs
iserver, 283
iskip,320

LoadSlart,54, 55,94, 96

localhost,293

Location, in debugger, 146

Logical name, 416

M
Macros

definition, 12

October 1992

Index

in makefiles, 266

Main entry point, 227

maininit, 346, 361

Make programs, 253
Borland, 253
Gnu, 253
Microsoft, 253
Unix, 253

Makefile generator, 253
command line, 257
errors, 268

Makefiles
delete rule, 267
editing, 267
formats, 266
macros, 266

map1, 346, 362

map2,346,363

MemConfig, 177

MemnotWrDO, 177

Memory
configuration

ASCII output, 180
customized, 177
file, 192
in PAL, 177
in ROM, 177,200
PostScript output, 180
standard, 177, 185
table, 190

configurer, 177
command line, 178
default configuration, 180
errors, 191
input parameters, 182
interactive operation, 180
output files, 180

disassembly, 308
Hex display, 129
inspecting, 310
interface, configurable, T4 and T8

series, 177
mapper, 271

command line, 272

72TDS 34601

431

errors, 281
read cycle, 188
write cycle, 189

Memory dumper, 175
command line, 175
error messages, 176

Memory map, 134,311
boot from link (network), 97
boot from link (single processor),

94
boot from ROM, 98
collector output, 93
configurer, 54

memory. configuration, 198

MemStart, 94

MemWait, 185, 189
connection error, 191

I MODIFY I, 145

Module data, listing, 245

I MONITOR I, 148

Monitor page
See also Debugging
commands, 119
default address, 119
display virtual links, 141
Enter post-mortem, 140
exit, 140
simulator, 305

Monitoring the error status, 320

Motorola S-record format, ieprom,
202

MS-DOS, 325,416

N
Network, dump, 135

listing, 250

Next error, 127

Non-bootable files, format, 91

Non-eonfigured programs.
See icol1ect

notMemRd, 184

October 1992

432

notMemSO, 184
notMemS4, 184
notMemWrB, 184
Numerical parameters,

interpretation by isim, 306

o
Object code, displaying, 237
Options

specify transputer target, 339
standard, 325
unsupported, 326

Out of memory errors,
idebug, 166

output. address, 200
output. all, 199
output.block,199
output. format, 199

p

I PAGE DOWN I, 123

I PAGE UP I, 123

patch, 346, 364
codefix,365
datafix,366
extoffset,367
limit, 368
modnumber,369
staticfix,370

Path searching, 326
Porting C, 8

Pragmas
See also 'pragma
ice, 15

Preprocessor
directives, 12
use with assembler, 342

Priority, 138

72 TDS 34601

Index

ProcClockOut, 184, 185
Procedural interface data, listing,

247
Process

memory map, 139
queue, 312

displaying, 138
Processor

names, 133
types, 333

Protocol, iserver, 383

Q
Queues

process, 138,312
timer, 312

Quit
debugger, 138
simulator, 311

R
R-mode programs, 108
RAM, 92, 98
Read, strobe, 184

I REFRESH I, 122,142

Refresh period, 184
Registers

assigning value, 312
memory dump, 176

IRELOCATE I, 122,141,146

Reset, 116
I RESUME I, 122,142,145

Resume program
from debugger, 132
from simulator, 310

I RETRACE I, 122, 141, 146

Right shift, 8

ROM, 92, 98, 195

October 1992

Index

Root transputer
debugging, 107
loading over, 317

root.processor.type, 198

Run queues, displaying, 138,312

5
Scalar workspace, 92

Scheduling lists.
See Process queues;
Run queues

Screen definitions, 414

Screen size, 414

I SEARCH I, 147

Search path
'include, 14
configurer, 54
conventions, 326
icc, 7

Select process, 136

Select source file, 127

Selective linking, 228

Selective loading, libraries, 210

Session manager, 284, 288
configuration file, 286

setconf.inc, 53

Shift right, 8

Show debugging messages, 139

Signedness of char, 8

Simulator, 303
batch command files, 313
batch commands, 313
batch mode, 313
booting program, 311
command

definitions, 307-313
summary, 307

command line, 303
commands, 306
errors, 314

72 TDS 34601

433

options, 304
starting a program, 309

size,346,371

Skip loader, 317
command line,318
command line options, 318
errors, 321

sourcefile, 346, 372

srecord.Seeoutput.format

Stack
checking, 5,16
position in memory, 54, 86

stack.buffer,89

Standard memory configuration,
185

Standards, file extensions, 327

start. offset, 200

Static area, position in memory, 54,
86

Static data, 87;
memory maR, 9

Static variables, memory map, 271

Subsystem
connecting, 116
reset, 318

Symbol data, Ilisting, 241

Symbolic debugging, 142

T
T-mode programs, 108

T4 series, configurable memory
interface, 177

T8 series, configurable memory
interface, ~ 77

Target, transputer, 333

Target files, for imakef, 254

Target transputer, command line
options, 339

TCOFF, listing files, 250

Text files, listing, 250

October 1992

434

textname,346,373

Timer queues, displaying, 139,312

Timing data, 186

Tm,184

ITOGGLE BREAK I, 145

I TOGGLE HEX I, 147

toolname, 346, 374

Toolset
documentation, xx

conventions, xxi
standards, 325

~, 122, 141, 146

I TOP OF FILE I, 123, 147

Traceback information,
in ROM, 202

TRAM, 317

trams.inc,53

TRANSPUTER, 286, 287,292

Transputer
accessing, 284

on a remote host, 293
onthe~c~hos~293

inline code, 21
simulator, 303
targets, 6, 333

command line options, 339

Trigraphs, 24

u
UNIVERSAL, 7

Unix, 325,417

Unresolved references, 228

Unsupported options, 326

Update registers, 139

User link, 284, 291

72 TDS 346 01

Index

v
Vector space, 92

position in memory, 54, 88

Virtual memory, 227

Virtual routing, disable, 52

VMS, 325,416,417

w
Wait

connection, 185
race, 185

error, 191
states, 185

Warnings
See also Error messages
selective suppression, ice, 16

Waveform diagrams. 188

Wired down, 116

Wired subs. 116

word, 346. 375

Write
mode, 185
strobe. 184
to memory, in idebug, 140

z
z. command line option, 326

October 1992

	Contents overview
	Contents
	Preface
	Tools
	1 icc - ANSI C compiler
	1.1 Introduction
	1.2 Running the compiler
	Examples of use
	1.2.1 Optimizing compiler options
	1.2.2 Transputer targets
	1.2.3 Error modes
	1.2.4 Default command line options
	1.2.5 File extension defaults
	1.2.6 Search paths
	1.2.7 Using the assembler
	1.2.8 Compatibility with other C implementations
	Arithmetic right shifts
	Signedness of char

	1.2.9 Software quality check

	1.3 Memory map
	1.4 Compiler directives
	1.4.1 #define
	1.4.2 #elif constant_expression
	1.4.3 #else
	1.4.4 #endif
	1.4.5 #error
	1.4.6 #if
	1.4.7 #ifdef
	1.4.8 #ifndef
	1.4.9 #include
	Relative directory names
	Backslash character in filenames

	1.4.10 #line
	1.4.11 #pragma
	Pragma IMS_nolink
	Pragma IMS_descriptor

	1.4.12 #undef

	1.5 Compiler predefinitions
	1.5.1 Macro names
	1.5.2 Other predefines

	1.6 Transputer inline code
	1.6.1 Inlined functions

	1.7 Compiler diagnostics
	1.7.1 Message format
	1.7.2 Severities
	1.7.3 Standard terms
	abstract declarator

	1.7.4 ANSI trigraphs
	1.7.5 Warning diagnostics
	1.7.6 Recoverable errors
	1.7.7 Serious errors

	2 icconf - configurer
	2.1 Introduction
	2.2 Configuration language implementation
	2.3 Running the configurer
	2.3.1 Default command line
	2.3.2 Virtual routing processes
	2.3.3 Support for the Advanced Toolset
	2.3.4 Boot from ROM options
	2.3.5 Mixed language programming
	2.3.6 Configurer library file
	2.3.7 Standard include files
	Defaults file setconf.inc
	Other include files

	2.3.8 Configuration description examples
	2.3.9 Search paths
	2.3.10 Default memory map
	2.3.11 LoadStart
	2.3.12 System processes

	2.4 Configurer messages
	2.4.1 Information
	2.4.2 Warnings
	2.4.3 Errors
	2.4.4 Serious messages
	2.4.5 Fatal errors

	3 icollect - code collector
	3.1 Introduction
	Unconfigured program (using 'T' option)
	Configured processor program

	3.2 Running the code collector
	3.2.1 Examples of use
	3.2.2 Default command line
	3.2.3 Input files
	3.2.4 Output files
	Single processor non-configured case (T option)
	Configured programs
	Memory map files
	Debug data file

	3.3 Memory allocation for unconfigured programs
	3.3.1 C and FORTRAN programs
	3.3.2 occam programs
	3.3.3 Memory initialization errors
	3.3.4 Small values of IBOARDSIZE

	3.4 Parity-checked memory
	3.5 Non-bootable files created with the K option
	3.5.1 File format

	3.6 Boot-from-ROM output files
	3.7 Alternative bootstrap loaders for unconfigured programs
	3.8 Alternative bootstrap schemes
	3.9 The memory map file
	3.9.1 Unconfigured (single processor), boot from link
	Program targetted at transputer type
	Program targetted at transputer class

	3.9.2 Configured program boot from link
	3.9.3 Boot from ROM programs
	Unconfigured (single processor), boot from ROM, run in RAM
	Unconfigured (single processor), boot from ROM, run in ROM
	Configured program, boot from ROM, run in RAM
	Configured program, boot from ROM, run in ROM

	3.10 Disabling interactive debugging - 'Y' option
	3.11 Error messages
	3.11.1 Warnings
	3.11.2 Serious errors
	3.11.3 Fatal errors

	4 idebug - network debugger
	4.1 Introduction
	4.2 Debugging the root transputer
	4.2.1 Board wiring
	4.2.2 Post-mortem debugging R-mode programs
	4.2.3 Post-mortem debugging T-mode programs
	4.2.4 Post-mortem debugging from a network dump file
	4.2.5 Debugging a dummy network
	4.2.6 Methods for interactive breakpoint debugging

	4.3 Running the debugger
	4.3.1 Toolset file types read by the debugger
	4.3.2 Environment variables
	4.3.3 Program termination

	4.4 Post-mortem mode invocation
	4.4.1 Debugging T-mode programs - option 'T'
	4.4.2 Debugging R-mode programs - option 'R'
	4.4.3 Debugging a network dump file - option 'N'
	4.4.4 Debugging a previous breakpoint session - option 'M'
	4.4.5 Reinvoking the debugger on single transputer programs
	4.4.6 Debugging boot from ROM programs

	4.5 Interactive mode invocation
	4.6 Function key mappings
	4.7 Debugging programs on INMOS boards
	4.7.1 Subsystem wiring
	4.7.2 Debugging options to use with specific board types
	4.7.3 Detecting the error flag in interactive mode

	4.8 Debugging programs on non-INMOS boards
	4.9 Monitor page commands
	4.9.1 Command format
	4.9.2 Specifying transputer addresses
	4.9.3 Scrolling the display
	4.9.4 Editing functions
	4.9.5 Commands mapped by ITERM
	4.9.6 Summary of commands
	4.9.7 Symbolic-type commands
	4.9.8 Scroll keys
	4.9.9 Monitor page command descriptions
	4.9.10 Symbolic-type commands

	4.10 Symbolic functions
	4.10.1 Symbolic functions
	4.10.2 Interactive mode functions
	4.10.3 Locating functions
	4.10.4 Cursor and display control functions
	4.10.5 Miscellaneous functions

	4.11 INSPECT/MODIFY expression language for C
	4.11.1 Syntax not supported
	4.11.2 Extensions to C syntax
	Subarrays
	Scope resolution operator
	Hex constants
	Address constant indirect

	4.11.3 Automatic expression pickup
	4.11.4 Editing functions
	4.11.5 Warnings
	4.11.6 Types
	Type compatibility when using MODIFY

	4.12 Display formats for source code symbols
	4.12.1 Notation
	4.12.2 Basic Types
	4.12.3 Default type of "plain" char
	4.12.4 Enumerated types
	4.12.5 Pointers
	4.12.6 Function Pointers
	4.12.7 Structs
	4.12.8 Unions
	4.12.9 Addressof operator &
	4.12.10 Arrays
	4.12.11 Channels

	4.13 Example displays
	4.14 INSPECT/MODIFY expression language for occam
	4.14.1 Inspecting memory
	4.14.2 Inspecting arrays
	4.14.3 Type compatibility when using MODIFY

	4.15 Display formats for source code symbols
	4.15.1 Notation
	4.15.2 Basic Types
	4.15.3 Channels
	4.15.4 Arrays
	4.15.5 Procedures and functions

	4.16 Example displays
	4.17 Error messages
	4.17.1 Out of memory errors
	4.17.2 If the debugger hangs
	4.17.3 Error message list

	5 idump - memory dumper
	5.1 Introduction
	5.2 Running the memory dumper
	5.2.1 Example of use

	5.3 Error messages

	6 iemit - memory interface configurer
	6.1 Introduction
	6.2 Running iemit
	6.3 Output files
	6.4 Interactive operation
	6.4.1 Page 0
	6.4.2 Page 1
	6.4.3 Page 2
	6.4.4 Page 3
	6.4.5 Page 4
	6.4.6 Page 5
	6.4.7 Page 6

	6.5 iemit error and warning messages
	6.6 Memory configuration file

	7 ieprom - ROM program convertor
	7.1 Introduction
	7.2 Prerequisites to using the ieprom tool
	7.3 Running ieprom
	7.3.1 Examples of use

	7.4 ieprom control file
	7.5 What goes into the EPROM
	7.5.1 Memory configuration data
	7.5.2 Parity registers
	7.5.3 Jump instructions
	7.5.4 Bootable file
	7.5.5 Traceback information

	7.6 ieprom output files
	7.6.1 Binary output
	7.6.2 Hex dump
	7.6.3 Intel hex format
	7.6.4 Intel extended hex format
	7.6.5 Motorola S-record format

	7.7 Block mode
	7.7.1 Memory organization
	7.7.2 When to use block mode
	7.7.3 How to use block mode

	7.8 Example control files
	7.8.1 Simple output
	7.8.2 Using block mode

	7.9 Error and warning messages

	8 ilibr - librarian
	8.1 Introduction
	8.2 Running the librarian
	Example
	8.2.1 Default command line
	8.2.2 Library indirect files
	8.2.3 Linked object input files
	8.2.4 Library files as input

	8.3 Library modules
	8.3.1 Selective loading
	8.3.2 How the librarian sorts the library index

	8.4 Library usage files
	8.5 Building libraries
	8.5.1 Rules for constructing libraries
	8.5.2 General hints for building libraries
	8.5.3 Optimizing libraries
	All libraries
	Libraries containing occam modules
	Semi-optimized library build targeted at all transputer types
	Optimized library targeted at all transputer types
	Library build targeted at specific transputer types

	8.6 Error Messages
	8.6.1 Warning messages
	8.6.2 Serious errors

	9 ilink - linker
	9.1 Introduction
	9.2 Running the linker
	9.2.1 Default command line

	9.3 Linker indirect files
	9.3.1 Linker indirect files supplied with the toolset

	9.4 Linker directives
	9.4.1 #alias basename {aliases}
	9.4.2 #define symbolname value
	9.4.3 #include filename
	9.4.4 #mainentry symbolname
	9.4.5 #reference symbolname
	9.4.6 #section name

	9.5 Linker options
	9.5.1 Processor types
	9.5.2 Error modes - options H, S and X
	9.5.3 TCOFF and LFF output files - options T, LB, LC
	9.5.4 Extraction of library modules - option EX
	Example: Extraction from a user library
	Example: Extraction from a user library, using the run-time library
	Example: Extraction from a user library, for multiple processor types
	Example: Generation of a completely linkable library
	Extraction using #define

	9.5.5 Display information - option I
	9.5.6 Virtual memory - option KB
	9.5.7 Main entry point - option ME
	9.5.8 Link map filename - option MO
	9.5.9 Linked unit output file - O
	9.5.10 Permit unresolved references - option U
	9.5.11 Disable interactive debugging - Y

	9.6 Selective linking of library modules
	9.7 The link map file
	9.7.1 MODULE record
	9.7.2 SECT record
	9.7.3 MAP record
	9.7.4 Value record

	9.8 Using imakef for version control
	9.9 Error messages
	9.9.1 Warnings
	9.9.2 Errors
	9.9.3 Serious errors
	9.9.4 Embedded messages

	10 ilist - binary lister
	10.1 Introduction
	10.2 Data displays
	10.2.1 Modular displays
	10.2.2 Example displays used in this chapter

	10.3 Running the binary lister
	10.3.1 Options to use for specific file types
	10.3.2 Output device
	10.3.3 Default command line

	10.4 Specifying an output file - option O
	10.5 Symbol data - option A
	10.5.1 Specific section attributes
	10.5.2 General symbol attributes
	10.5.3 Example symbol data display

	10.6 Code listing - option C
	10.6.1 Example code listing display

	10.7 Exported names - option E
	10.7.1 Example exported names display

	10.8 Hexadecimal/ASCII dump - option H
	10.8.1 Example hex dump display

	10.9 Module data - option M
	10.9.1 Example module data display

	10.10 Library index data - option N
	10.10.1 Example library index display

	10.11 Procedural interface data - option P
	10.11.1 Example procedural data display

	10.12 Specify reference - option R
	10.13 Full listing - option T
	10.13.1 Example full data display
	10.13.2 Configuration data files

	10.14 File identification - option W
	10.14.1 Example file identification display

	10.15 External reference data - option X
	10.15.1 Example external reference data display

	10.16 Error messages
	10.16.1 Warning messages
	10.16.2 Serious errors

	11 imakef - makefile generator
	11.1 Introduction
	11.2 How imakef works
	11.3 File extensions for use with imakef
	11.3.1 Target files

	11.4 Linker indirect files
	11.5 Library indirect and library usage files
	11.6 Running the makefile generator
	11.6.1 Example of use
	11.6.2 Specifying language mode
	11.6.3 Configuration description files
	11.6.4 Disabling debug data
	11.6.5 Removing intermediate files
	11.6.6 Files found on ISEARCH
	11.6.7 Map file output for imap

	11.7 imakef examples
	11.7.1 C examples
	Single transputer program
	Multitransputer program

	11.7.2 occam examples
	Single transputer program
	Multitransputer program

	11.7.3 Mixed language program

	11.8 Format of makefiles
	11.8.1 Macros
	11.8.2 Rules
	Example
	Action strings

	11.8.3 Delete rule
	11.8.4 Editing the makefile
	Adding options
	Re-running imakef

	11.9 Error messages

	12 imap - memory mapper
	12.1 Introduction
	12.2 Running the map tool
	12.2.1 Source files required by imap
	12.2.2 Re-directing imap's output

	12.3 Output format
	12.3.1 imap memory map structure
	12.3.2 Process types
	12.3.3 User processes
	12.3.4 Module memory usage
	12.3.5 Other processes
	12.3.6 Symbol table

	12.4 Example
	12.5 Error messages
	12.5.1 Serious errors
	12.5.2 Fatal errors

	13 iserver - host file server
	13.1 Introduction
	13.2 Loading programs
	13.3 Host interface
	13.4 Access to transputer networks
	User links
	The session manager

	13.5 Running the iserver
	13.5.1 Examples of use
	13.5.2 Server environment variables
	13.5.3 Loading programs
	Running a program using the iserver - option SB
	Sending data down a user link - option SC
	Running programs which do not use the server
	Analyzing a transputer network - option SA
	Terminating the server

	13.5.4 Supplying parameters to a program
	13.5.5 Specifying the transputer resource - option SL
	13.5.6 Terminating on error - option SE
	13.5.7 Terminating the server
	13.5.8 Specifying the session manager configuration file

	13.6 Using the session manager interface
	13.6.1 Session manager commands
	13.6.2 The options command
	13.6.3 The iserver command
	13.6.4 User-defined commands
	Running the debugger from the session manager

	13.6.5 Host OS commands

	13.7 Connecting transputers to computer networks
	13.7.1 Capabilities
	13.7.2 The connection database
	13.7.3 Using a specific node

	13.8 The connection database
	13.8.1 Connection databases
	Capability names

	13.8.2 Connection database format
	13.8.3 Example connection databases
	PC development system
	Sun workstation
	IMS B300

	13.9 New server features
	13.9.1 Session manager
	13.9.2 Connection manager
	13.9.3 New command line options
	13.9.4 User interrupt
	13.9.5 Exit codes
	13.9.6 Error codes
	13.9.7 Stream identifier validation
	13.9.8 Record structured file support

	13.10 Error messages
	13.10.1 Additional error messages

	14 isim - T425 simulator
	14.1 Introduction
	14.2 Running the simulator
	14.2.1 Passing in parameters to the program
	14.2.2 Example of use
	14.2.3 ITERM file

	14.3 Monitor page display
	14.4 Simulator commands
	14.4.1 Specifying numerical parameters
	14.4.2 Keys mapped by ITERM
	14.4.3 Command summary
	14.4.4 Command descriptions

	14.5 Batch mode operation
	14.5.1 Setting up ISIMBATCH
	14.5.2 Input command files
	14.5.3 Output
	14.5.4 Batch mode commands

	14.6 Error messages

	15 iskip - skip loader
	15.1 Introduction
	15.1.1 Uses of the skip tool

	15.2 Running the skip loader
	15.2.1 Skipping a single transputer
	Subsystem wired down
	Subsystem wired subs

	15.2.2 Skipping multiple transputers
	15.2.3 Loading a program
	15.2.4 Monitoring the error status - option E
	15.2.5 Clearing the error flag

	15.3 Error messages

	Appendices
	A Toolset conventions and defaults
	A.1 Command line syntax
	A.1.1 General conventions
	A.1.2 Standard options

	A.2 Unsupported options
	A.3 Filenames
	A.4 Search paths
	A.5 Standard file extensions
	A.5.1 Main source and object files
	A.5.2 Indirect input files (script files)
	A.5.3 Files read by the memory map tool imap
	A.5.4 Other output files
	A.5.5 Miscellaneous files

	A.6 Extensions required for imakef
	A.7 Message handling
	A.7.1 Message format
	A.7.2 Severities
	A.7.3 Runtime errors

	B Transputer types and classes
	B.1 Transputer types supported by this toolset
	B.2 Transputer types and classes
	B.2.1 Single transputer type
	B.2.2 Creating a program which can run on a range of transputers
	B.2.3 Linked file containing code compiled for different targets
	occam object files targetted at different targets

	B.2.4 Classes/instruction sets - additional information

	B.3 Transputer type command line options

	C Using the assembler
	C.1 Introduction
	C.2 Running the assembler
	C.2.1 Specifying the source filename
	C.2.2 Use of icc command options with the assembler
	C.2.3 Using the pre-processor with the assembler

	C.3 Language
	C.3.1 Label definitions
	C.3.2 Symbols
	C.3.3 Expressions
	C.3.4 Transputer instruction mnemonics
	C.3.5 Comments

	C.4 Assembler directives
	align
	blkb
	blkw
	byte
	comment
	common
	data
	debug
	defsym
	descriptor
	extern
	global
	init
	language
	maininit
	map1
	map2
	patch
	patch - codefix
	patch - datafix
	patch - extoffset
	patch - limit
	patch - modnumber
	patch - staticfix

	size
	sourcefile
	textname
	toolname
	word

	C.5 BNF grammar for assembler language
	C.6 Errors
	C.6.1 Fatal Errors
	C.6.2 Serious Errors
	C.6.3 Errors

	D iserver protocol
	D.1 iserver packets
	D.2 Server commands
	D.3 File commands
	D.3.1 Fopen - Open a file
	D.3.2 Fclose - Close a file
	D.3.3 Fread - Read a block of data
	D.3.4 Fwrite - Write a block of data
	D.3.5 FGetBlock - Read a block of data and return success
	D.3.6 FPutBlock - Write a block of data and return success
	D.3.7 Fgets - Read a line
	D.3.8 Fputs - Write a line
	D.3.9 Fflush - Flush a stream

	D.4 Record structured file commands
	D.4.1 FopenRec - Open a record structured file
	D.4.2 FGetRec - Read a record
	D.4.3 FPutRec - Write a record
	D.4.4 FputEOF - Write an end of file record
	D.4.5 Fseek - Set position in a file
	D.4.6 Ftell - Find out position in a file
	D.4.7 Feof - Test for end of file
	D.4.8 Ferror - Get file error status
	D.4.9 Remove - Delete a file
	D.4.10 Rename - Rename a file
	D.4.11 Isatty - Discover if a stream is connected to a terminal
	D.4.12 FileExists - Check to see if a file exists
	D.4.13 FerrStat - Get file error status

	D.5 Host commands
	D.5.1 Getkey - Get a keystroke
	D.5.2 Pollkey - Test for a key
	D.5.3 RequestKey - Request a single keyboard 'event'
	D.5.4 Getenv - Get environment variable
	D.5.5 Time - Get the time of day
	D.5.6 System - Run a command
	D.5.7 Translate - Translate an environment variable

	D.6 Server commands
	D.6.1 Exit - Terminate the server
	D.6.2 CommandLine - Retrieve the server command line
	D.6.3 Core - Read peeked memory
	D.6.4 Version - Find out about the server
	D.6.5 Getlnfo - Obtain information about the host and server
	D.6.6 CommandArgs - Retrieve the server command line arguments

	D.7 Reserved Tags and Third Party Tags
	D.7.1 MSDOS - Perform MS-DOS specific function
	D.7.2 SocketA - make a socket library call
	D.7.3 SocketM - make a socket library call
	D.7.4 ALSYS - Perform Alsys specific function
	D.7.5 KPAR - Perform Kpar specific function

	D.8 Record structured file format
	D.8.1 SunOS and MS-DOS
	Formatted Sequential
	Unformatted Sequential
	Formatted Direct
	Unformatted Direct

	D.9 Termination codes

	E ITERM files
	E.1 Introduction
	E.2 The structure of an ITERM file
	E.3 The host definitions
	E.3.1 ITERM version
	E.3.2 Screen size

	E.4 The screen definitions
	E.4.1 Goto X Y processing

	E.5 The keyboard definitions
	E.6 Setting up the ITERM environment variable
	E.7 Iterms supplied with a toolset
	E.8 An example ITERM

	F Bootstrap loaders
	F.1 Introduction
	F.1.1 The example bootstrap
	Transfer of control

	F.1.2 Writing bootstrap loaders

	Index

