
.-- ®• lis,.
~

i I
I I

,; I'.. •[] .. IIlll!"l'

ANSI C
Optimizing Compiler
User Guide

INMOS Limited

~ SGS-1HOMSON
~.,I® ~o©oo@rn[brn©lJOO@~O©$
INMOS is a member of the SGS-THOMSON Microelectronics Group

72 TDS 348 01 October 1992

20 2 User Interface

variable identifier declared but not used

The variable was declared, but not used anywhere in the program.

(possible error): >= number lines of macro arguments

There are a surprisingly large number of lines ofarguments to a macro; this
may indicate a syntax error.

2.4.6 Recoverable errors

These messages are prefixed by the words 'Error -' .

#ident is not in ANSI·C

#ident is not a recognized preprocessor directive.

first or last token in #define body

The II preprocessor operator must be preceded by a preprocessor token,
and succeeded by a preprocessor token.

I,' (not I;') separates formal parameters

A semicolon has been used to separate the formal parameters in a function
definition (as in Pascal) instead of a comma.

'register' attribute for identifier ignored when address taken

An attempt was made to take the address of a variable with 'register' stor­
age class. The register attribute will be ignored allowing the address to be
taken.

<int> op <pointer> treated as <int> op (int) <pointer>

The expression involving a integer and a pointer will result in the pointer
being converted (cast) to an integer.

function marked as side effect free assigns to a global variable

An assignment to a global variable is a side effect.

function marked as side effect free assigns to static

An assignment to a static variable, other than an initialization, is a side
effect.

function marked as side effect free calls function which is not side effect free

The call of a function which is not side effect free is a side effect.

function marked as side effect free uses volatile variable

The read of or write to a volatile variable is a side effect.

instruction may not have a size specified

An _asm pseudo-instruction may not be explicitly sized.

72 TDS 348 01 October 1992

2.4 Messages 21

object identifier may not be function - assuming pointer

An attempt was made to use a function where it was not expected, typically
when a function is included as a component within a structure.

op : cast to non-equal type illegal

A structure or union has been cast into a structure or union of a different
type. The cast is illegal and will be ignored.

op : illegal cast to type

An illegal cast has been attempted. The cast is illegal and will be ignored.

op : implicit cast of type to lint'

A non-integer object has been used where an int was expected, for
example, attempting to use a double as an argument to a switch state­
ment (which requires an integer type).

op : implicit cast of non-O int to pointer

Evaluation of the expression will result in the cast of an integer to a pointer.

op : implicit cast of pointer to lint'

Evaluation of the expression will result in the cast of the pointer to an inte­
ger.

op : implicit cast of pointer to non-equal pointer

Evaluation of the expression will result in the cast of one pointer type to
another.

op may not have whitespace in it

Two-character operators such as '+=' must not contain spaces.

<pointer> operator <int> treated as (int) <pointer> operator <int>

Evaluation of the expression will result in the cast of the pointer to an inte­
ger.

Ancient form of initialisation, use '='
A } , rather than =, was used to introduce an initializer, this is no longer legal
c.

ANSI C does not support 'long float'

An object has been declared of type long float, this is illegal in ANSI e,
which supports float, double, or long double.

Array of type illegal - assuming pointer

An array of functions or void objects has been declared. The compiler
treats this as an array of pointers to functions or void objects.

72TDS 348 01 October 1992

22 2 User Interface

Array [0] found

An empty array has been defined and will be set up instead as an array with
one element.

assignment to 'const' object identifier

The expression contains an assignment to a constant. The assignment will
be carried out.

const typedef identifier has const respecified

A typedef which is already qualified with const, has been qualified with
const.

comparison op of pointer and int: literal 0 (for == and 1=) is only legal case.

The specified operatorwas used to compare an object oftype int and one
of a type pointer. The only legal comparison of this type is between a
pointer and 0 using either = or ! =.

declaration with no effect

No name has been declared for the object. Specifying only the type of an
object generates this error.

differing redefinition of #define macro identifier

The named macro has been defined more than once. The definitions are
not identical.

Digit 8 or 9 found in octal number

8 and 9 are meaningless in an octal number.

duplicate macro formal parameter: 'identifier'

The function macro has two formal parameters with the same name.

duplicate member identifier1 of identifier2

Two fields of structure or union identifier2 have the name identifier1.

ellipsis (...) cannot be only parameter

A function declared to take a variable number of parameters must have at
least one known parameter.

enumeration constant identifier too large to represent as lint' - 0 assumed

The value of an enumeration constant has overflowed the range of ints.

extern identifier mismatches top-level declaration

An extern declaration of identifier within a function definition does not
match an extern declaration of identifier at the top level.

72TDS 34801 October 1992

2.4 Messages 23

expected symbol1 or symbol2 -inserted symbol1 before symbol3

symbol1 or symbol2 was expected before symbol3, but neither was found.
symbol1 is suggested as the most appropriate choice and the compiler has
changed the code accordingly.

formal name missing in function definition

The type of a formal parameter has been omitted in a function definition.

function identifier may not be initialised -assuming function pointer

Initializers cannot be used in function declarations or definitions.

function prototype formal identifier needs type or class - 'int' assumed

The type of a formal parameter has been omitted in a function declaration
and int has been assumed.

function returning type illegal - assuming pointer

The user has appeared to declare a function which returns a function or an
array.

hex number cannot have exponent

A hex numberending in e may not be immediately followed by +or -; sepa­
rate the number and the additive operator with white space.

illegal bit field type type - 'int' assumed

Bit fields cannot be setwithin non integral variables. The compiler assumes
an int instead.

illegal option -0 identifier identifier

The compiler D option must be specified for each assignment.

illegal string escape '\char' - treated as char

The character following \ does not form part of a valid string escape. The
compiler treats the sequence \char as char.

illegal [] member: identifier

An open array may not be a member of a structure or union.

junk at end of #identifier line - ignored

The text following the directive is invalid and will be ignored.

linkage disagreement for identifier - treated as store class

The storage class of a previously defined static or extern object or
function disagrees with the current declaration. The object will be treated
as though it is in storage class store class.

L'...' needs exactly 1 wide character

A wide character constant should contain exactly one wide character.

72 TDS 348 01 October 1992

24 2 User Interface

Missing newline before EOF - inserted

A blank line should have been inserted before the end-of-file character.

Missing type specification - 'int' assumed

A type specification is missing. The object will be assumed to be of type
into

more than 4 chars in character constant

More than 4 ASCII characters were used to represent a character
constant. When using the single quote syntax for character constants a
maximum number of 4 characters is permitted in order to accommodate
the octal representation of a character. The first 4 characters will be used.

Negative numbers and zero are not allowed in #line

ANSI C forbids negative numbers or zero in a #Iine directive.

no chars in character constant"

No characters or character codes have been specified for the character
constant. A NULL character is assumed.

no initializer list in braced initializer

There must be at least one entry in the initializer list of a braced initializer.

number illegally followed by letter

A numerical constant may not be followed immediately by a letter.

number missing in #line

There is no line number following the preprocessor 'line directive.

Numbers greater than 32767 are not allowed in #line

ANSI C forbids numbers greater than 32767 in a #line directive.

objects that have been cast are not I-values

An object that has been cast in I-value context; ANSI has made this illegal.

Omitted type before formal declarator - 'int' assumed

No type was specified; type int will be assumed.

operand of # not macro formal parameter: 'identifier'

The operand to the It preprocessor operator must be a formal parameter
of the function macro containing it.

overlarge escape '\number1' treated as '\number2'

An octal number in an escape sequence is too large to be represented in
the target architecture.

72 TDS 34801 October 1992

2.4 Messages 25

overlarge escape '\xnumber1' treated as '\xnumber2'

A hexadecimal number in an escape sequence is too large to be repre­
sented in the target architecture.

parentheses (...) inserted around expression following text

Parentheses were expected after the specified text, for example, around
a conditional expression such as an if statement.

prototype and old-style parameters mixed

It is illegal to mix new (prototype) and old-style parameter declarations.

return expression illegal for void function

A return statement with an expression was found within a void function.
The return statement is ignored.

signed constant overflow: op

Overflow occurred when performing op upon signed, constant operands.

size of 'void' required - treated as 1

'void' was used as an argument to sizeof. The compiler assumes the size
of void to be 1.

size of a [] array required, treated as [1]

The array is of unspecified size. In these circumstances sizeof return the
size of the array type.

size of function required - treated as size of pointer

A function name was passed to the sizeof function. In these circum­
stances sizeof returns the size of the pointer to the function.

sizeof bit field illegal - sizeof(int) assumed

A bit field was passed to the sizeoffunction.ln these circumstances sizeof
casts the bit field to an integer and then returns its size.

Small (single precision) floating value converted to 0.0

The number is too small to represent in a single word (32 bit) floating point
format, and has been rounded to 0.0.

Small floating point value converted to 0.0

The number is too small to represent in a double word (64 bit) floating point
format, and has been rounded to 0.0.

Spurious #elif ignored

The #elif directive could not be matched with a corresponding if direc­
tive and has been ignored.

72 TDS 34801 October 1992

26 2 User Interface

Spurious #else ignored

The 'else directive could not be matched with a corresponding if direc­
tive and has been ignored.

Spurious #endif ignored

The 'endif directive could not be matched with acorresponding if direc­
tive and has been ignored.

static function identifier not defined -treated as extern

A function was defined as static in the function prototype, but the com­
piler was unable to find the function definition. An extern function is
assumed.

string initialiser longer than char [count]

A character array has been initialized with more characters than the array
can accommodate. Since the compiler adds a terminating NULL character
to strings, string initializers should always contain one less element than
the array.

struct has no members

A structure definition must contain at least one member.

struct member identifier may not be function - assuming pointer

A structure member was declared of function type; the compiler treats this
as pointer to function type.

struct tag identifier not defined

A structure has been referenced before being defined.

Translation unit contains no external declarations

A translation unit must contain at least one external declaration.

type or class needed (except in function definition) -lint' assumed

The type or storage class has been omitted from the function declaration.

Undeclared name, inventing 'extern int identifier'

An undeclared identifier was encountered and will be given the storage
class extern.

union has no members

A union definition must contain at least one member.

union member identifier may not be function - assuming pointer

A union member was declared of function type; the compiler treats this as
pointer to function type.

72 lOS 34801 October 1992

2.4 Messages 27

union tag identifier not defined

A union has been referenced before being defined.

unprintable char number found - ignored

An unprintable character was found in the source text.

volatile typedef identifier has vola-tile respecified

A typedef which is already qualified with volatile, has been qualified
with volatile.

wrong number of parameters to function

A function was called with the wrong number of arguments.

2.4.7 Serious errors

These messages are prefixed by the words 'Serious -' .

\space and \tab are invalid string escapes

Whitespace ('\space' or '\tab') was found within a string. All characters up
to the first non-whitespace character are ignored; if the first non-white­
space character is a newline character, this will also be ignored.

{} must have 1 element to initialise scalar or auto

When initializing a scalar quantity or auto variable only one initializer
should be specified within the enclosing braces.

#error encountered string

The 'error directive was found.

#include file filename wouldn't open

The file filename could not be opened.

op : cast to non-equal type illegal

A structure or union has been cast into a structure or union of a different
type. The cast is illegal and will be ignored.

op : illegal cast of type to pointer

A variable has been cast into a pointer type. The cast is illegal and will be
ignored.

op : illegal cast to type

An illegal cast has been attempted. The cast is illegal and will be ignored.

context: illegal use in pointer initialiser

An object of type auto, or its address, cannot be initialized.

72 TDS 348 01 October 1992

28 2 User Interface

(...) must have exactly 3 dots

An ellipsis must consist of three dots.

'break' not in loop or switch - ignored

A break statement was encountered outside the scope of a loop or switch
statement. A break at this point is illegal and will be ignored.

'case' not in switch - ignored

A case prefix has been encountered outside the body of a switch state­
ment. A case statement at this point is illegal and will be ignored.

'continue' not in loop - ignored

A continue statement has been encountered outside the body of a loop. A
continue statement at this point is illegal and will be ignored.

'default' not in switch - ignored

A default prefix has been encountered outside the body of a switch state­
ment. A default prefix at this point is illegal and will be ignored.

'goto' not followed by label - ignored

The text following a goto statement does not represent a label.

'void' values may not be arguments

Formal parameters in function definitions or declaration cannot be of type
void.

'while' expected after 'do' - found text

The while statement is missing from ado ... while construct. text marks
the position.

'f of function body expected - found text

The opening brace in the body of a function is missing.

'{' or <identifier> expected after type, but found text

The opening brace following a struct, union or enum is missing. text
marks the position.

<asm-directive> expected but found a text

text indicates where the _asm directive was expected.

<command> expected but found a text

Statements such as swi tch or if should be followed by a command. text
indicates where the command was expected.

<expression> expected but found text

text indicates where the expression was expected.

72 TDS 348 01 October 1992

2.4 Messages 29

<identifier> expected but found text in 'enum' definition

The compiler was expecting to read an enumeration constant when it
found symbol. This may be because there is a spurious comma at the end
of a list of enumeration constants.

function has pragma nolink specified, but accesses static data

The specified function has been specified not to receive a static link (via
INS nolink), but attempts to use static data. It is only possible to use
static data when a static link is available.

identifier is not a label-Idlabeldiff ignored

The operands to the Idlabeldiff pseudo-instruction must be labels.

identifier1 has pragma nolink specified, but accesses static identifier2

Function identifier1 has had the INS nolink pragma applied to it, which
means it cannot access static data. -

identifier1 has pragma nolink specified, but addresses static identifier2

Function identifier1 has had the INS nolink pragma applied to it, which
means it cannot address static data:-

instruction not followed by label- ignored

A load or store _asm instruction must have a constant or label operand.

store class variables may not be initialised

Some types of C variables, such as those decloared as extern, cannot be
initialized.

Array size count illegal - 1 assumed

Arrays cannot be larger than Oxflfflf on a 32-bit target, or 65535 on a 16-bit
target.

attempt to apply a non-function

A name notdeclared as afunction has been used in acontext where afunc­
tion should be.

attempt to include struct/union identifier object/member within itself

A structure or union declaration may not contain a field of the structure or
union type, or a field which references another field.

bit fields do not have addresses

Elements of type bit field in C structures cannot be addressed.

Bit size size illegal - 1 assumed

Bit sizes greater than 32 are set to 1.

72 TDS 348 01 october 1992

30 2 User Interface

Cannot address built-in variable identifier

identifier is a built-in name, such as _Isb or ""params, which cannot be
addressed.

Cannot call function (it requires a static link)

An attempt has been made to call the specified function which requires a
static link, from a function which has been specified not to receive a static
link (via IMS_DoIink).

Cannot do indirect call (it requires a static link)

An attempt has been made to call a function from afunction which has been
specified not to receive a static link (via IMS DoIink). All calls through
function pointers are assumed to require a static link.

Cannot write to built-in variable identifier

identifier is a built-in name, such as _Isb or ""params, which cannot be
assigned to.

char and wide (L"...") strings do not concatenate

A char string and a wide char string appear adjacently in the source text.
NormallY,adjacent strings in the source text are concatenated; however,
this is not possible here, as they have different types.

Digit required after exponent marker

Exponents of floating point numbers must be followed by a numeric char­
acter. The numeric character may be preceded by '+' or '_'.

duplicate 'default' case ignored

The default prefix has already been specified for the switch construct. The
original definition will be used.

duplicate definition of identifier

The named identifier has already been defined.

duplicate definition of structlunion tag identifier

The named structure or union identifier has already been used.

duplicate definition of label identifier - ignored

The specified identifier has already been used. The original definition will
be used.

duplicate type specification of formal parameter parameter

The specified parameter has been listed more than once in the function's
formal parameter list.

duplicated case constant: constant

The constant has been specified more than once in the same case state­
ment.

72TDS 34801 October 1992

2.4 Messages 31

EOF in comment

The end-of-file was detected inside a comment.

EOF in string

The end-of-file was detected within a string.

EOF in string escape

The end-of-file was detected within a string escape sequence.

EOF not newline after #if ...

The end-of-filewas found after the 'Iif' directive; a newline character was
expected.

expected symbol

symbol was expected.

expected symbol1 - inserted before symbol2

symbol1 was expected before symbol2 and the compiler has changed the
code accordingly. For example, in the code "if (TRUE printf () ;" the
compiler would expect to find ')' before 'printf'.

expected symbol1 or symbol2

Either symbol1 or symbol2 was expected.

Expected <identifier> after operator but found text

The specified operator must be followed by an identifier. This error may
occur after the structure member operator'.' and the structure pointer
operator '->'.

Expecting <declarator> or <type>, but found text

An identifier or type was expected at text. For example, the declaration
'typedef int * [3] test;' generates this error.

Grossly over-long floating point number

There are too many digits in the floating point number. The compiler reads
the maximum number of digits allowed and discards the rest.

Grossly over-long hexadecimal constant

There are too many digits in the hexadecimal number. The compiler reads
the maximum number of digits allowed and discards the rest.

Grossly over-long number

There are too many digits in the decimal number. The compiler reads the
maximum number of digits allowed and discards the res!.

Hex digit needed after Ox or OX

The hexadecimal specifier Ox must be followed by a valid hexadecimal
digit. The compiler assumes a zero digit.

72 TDS 34801 October 1992

32 2 User Interface

Identifier (name) found in <abstract declarator> - ignored

An identifier should not be used in an abstract declarator. This error is gen­
erated, for example, if sizeof (int *test [3]) ;is used instead of the
correct form sizeof (int * [3]) ;.

illegal character (number = 'char ') in source
illegal character (hex code number) in source

An unexpected character was found in the source code. The ASCII code
of the character (if printable), and the character itself, are given.

illegal in context: error

Illegal expressions such as those involving division by zero generate this
error.

illegal in expression: non constant identifier

A constant is required in certain expressions, for example after a case
prefix.

Illegal in I-value: 'enum' constant identifier

Enumeration constants cannot be used as I-values in an expression.

Illegal in Ivalue: function or array identifier

Arrays and function declarators cannot be used as I-values. This error
would be generated, for example, by attempting to assign a value to a func­
tion declarator.

Illegal in the context of an I-value: op

The operator op cannot appear in I-value context.

Illegal types for operands: operator

The operator has been used with an invalid type. For example, it is illegal
to use the structure member operator I.' with a variable of type into

Illegal 'void' member/object: identifier

An object or member of a structure or union cannot be declared as being
of type void.

incomplete tentative declaration of identifier

The declaration of identifier has gone out of scope before the declaration
has been completed.

Invalid command line option (text)

text is not ~ recognized command line option.

Invalid source file name (fi/ename)

fi/ename is not a valid source file name. (Source file names may not contain
hyphens.)

72 TDS 34801 October 1992

2.4 Messages 33

1/0 error writing filename

An error occurred when writing to the named file.

Junk after #if expression

The 'if directive must be terminated by a newline character.

Junk after #include filename

The 'include directive must be terminated by a newline character.

label identifier has not been set

A label has been referenced but not set. This message will be generated
if goto is used with an undefined label.

Idlabeldiff not followed by label • ignored

The operands to the ldlabeldiff pseudo-instruction must be labels.

Misplaced 'else' ignored

An else statement was found where it was not expected. Itwill be ignored.

Misplaced '{' at top level - ignoring block

An opening brace was found at the top level of a program when it was not
expected, for example when not used as part of a function or structure defi­
nition.

Misplaced preprocessor character char

A preprocessor directive character (' or \) was found where it was not
expected. .

Missing #endif at EOF

An 'endif directive is missing. This error will not be generated until the
last of the currently open files is about to be closed (ANSI standard does
not require 'if and 'else statements to match in included files).

Missing char in preprocessor command line

A 'quote' character is missing from a preprocessorcommand line. The mis­
sing character could be " <, >, or ".

Missing I)' after identifier (... on line number

A closing parenthesis is missing from the macro which will be substituted
at line number.

Missing ',' or I)' after #define identifier (...

The list of parameters in a macro definition is either incomplete or has not
been correctly terminated by a closing parenthesis.

Missing < or " after #include

The opening 'quote' character which introdUces the filename is missing.

72TDS 348 01 October 1992

34 2 User Interface

Missing hex digit(s} after \x

The hexadecimal introducer sequence \x was found, but no hexadecimal
digit was specified. The compiler assumes that the letter x was intended.

Missing identifier after #define

The definition is empty. 'define must be followed by an identifier.

Missing identifier after #ifdef

'ifdef must be followed by an identifier.

Missing identifier after 'ifndef

'ifndef must be followed by an identifier

Missing identifier after #undef

'undef must be followed by an identifier.

Missing include directory name

The J command line option must be followed by a directory name.

Missing map file name

The P command line option must be followed by a map file name.

Missing object file name

The 0 command line option must be followed by an object file name.

Missing parameter name in #define identifier (...

A parameter is missing from the specified macro definition. This error
would be generated by a definition of the form 'define tes t (arg ,) .

Newline or end of file within string

A newline or end-of-file character was encountered within a string.

No I}' after #if defined(...

The closing parenthesis is missing from the directive.

No file name given

No source file was specified on the command line.

No identifier after #if defined

'if defined must be followed by an identifier.

Non-formal identifier in parameter-type-specifier

The parameter identifierwas included in the declarator list ofa function, but
not in the parameter list. For example, a definition such as int foo () int
x; {} would generate this error.

72 TDS 348 01 October 1992

2.4 Messages 35

non-static address identifier in pointer initialiser

Pointers cannot be initialized with the address of an object of type auto.

Number number too large for 32-bit implementation

The specified number is too large to be represented in 32 bits.

objects of type 'void' can not be initialised

Initializing objects of type void is illegal.

only const and volatile can qualify a pointer: found type

The only type qualifiers ofa pointer are const and volati le but type was
found instead.

Operand number to instruction is larger than a word

The arguments to an asm load or store pseudo-instruction must fit in a
machine word. -

Operand number to instruction is not word-sized

The arguments to an asm store pseudo-instruction must fit exactly in a
machine word. -

Operand to instruction must be a constant or local variable

An illegal operand has been given to an _asm Idl or stl instruction.

Operand to instruction is larger than a word

The operand to a primary instruction inside asm must fit in a machine
word. -

Out of memory
Out of store (for error buffer)
Out of store (in cc_ alloc)

The compiler ran out of available memory.

Overlarge (single precision) floating point value found

The number is too large to represent in single word (32 bit) floating point
format.

Overlarge floating point value found

The number is too large to represent in double-word (64 bit) floating point
format.

quote (char) inserted before newline

The specified quote character was found before a newline character. This
may indicate a a spurious character or a missing closing quote.

re-using structJunion tag identifier as union/struct tag

The named identifier has been used to identify two different types ofobject.

72TDS 34801 October 1992

36 2 User Interface

size of struct identifier needed but not yet defined
size of union identifier needed but not yet defined

The size of the structure/union has not yet been defined. This error can
occur when an undefined structure/union is used as an argument to the
sizeof function and when an undefined structure/union is used in the
dedaration of a variable. In the second case the error occurs because the
compiler attempts to determine the size of the structure/union for memory
allocation purposes.

storage class store class incompatible with store class - ignored

Two incompatible storage dasses have been used in a declaration. For
example, extern static foo; generates this error because extern
and static are incompatible types.

storage class store class not pennitted in context context - ignored

The specified storage class is not permitted in the context in which it has
been used. This error would be generated, for example, if storage class
auto were to be used at the top level.

struct identifier has no identifier field

The structure contains no field of that name.

struct identifier must be defined for (static) variable declaration

An undefined structure has been used in a variable declaration.

struct identifier not yet defined -cannot be selected from

A reference was made to an undefined structure.

Too few operands for instruction

A load or store _ asm pseudo-instruction has too few arguments.

Too few arguments to macro identifier(. .. on line number

There are too few arguments to the macro which will be substituted at line
number.

Too many operands for instruction

A load or store _asm pseudo-instruction has too many arguments.

Too many arguments to macro identifier(. .. on line number

There are too many arguments to the macro which will be substituted at
line number.

Too many errors

After 100 Serious errors, the compilation aborts.

too many initialisers in {} for aggregate

An aggregate type, for example an array, has been initialized with more val­
ues than can be accommodated.

72 TDS 34801 October 1992

2.4 Messages 37

type type1 inconsistent with type2

Two incompatible type identifiers are being used in the declaration of a
single object. For example, the declaration double int x; would gener­
ate this error.

type disagreement for identifier

The specified identifier has already been assigned a different type.

typedef name type used in expression context

A type definition has been used in an expression.

type qualifier type qualifier not allowed to qualify type qualifier type

'const' may not be repeated in the qualifying list of a type, and similarly
for 'volatile'.

undefined structlunion identifier1 member/object: identifier2

The structure or union is, at present, undefined.

Uninitialised static [] arrays illegal

Static arrays of unspecified size must be initialized.

union identifier has no identifier field

The union contains no field of that name.

union identifier must be defined for (static) variable declaration

An undefined union has been used in a variable declaration.

union identifier not yet defined ~annot be selected from

A reference was made to an undefined union.

Unknown directive: #identifier

identifier is not a valid preprocessor directive. Check spelling and/or syn­
tax.

unknown instruction instruction

instruction is not a defined transputer instruction.

zero width named bit field - 1 assumed

Named bit fields must be at least one bit wide.

72 TOS 348 01 - October 1992

38

72 TDS 348 01

2 User Interface

October 1992

Appendices

- 72 TDS 348 01 October 1992

40

72TDS 348 01

Appendices

October 1992

A Local optimization
examples

This appendix briefly describes each of the local optimizations available.

A.1 Peephole optimization

This optimization is performed by the compiler at assembly code level. The com­
pilerscans the assembly code for sequences of instructions which may be reduced
to a single instruction.

Example:

If a source code instruction generated the following assembly code instructions:

ldc x
ldc y
and

then they could be reduced to the following single instruction:

Idc x , y

where: the expression x , y is evaluated by the compiler (since x and y are
constants).

In a similar manner, the sequence:

Idl n
stl n

could be removed altogether.

A.1.1 Summary of effects:

• Slight improvement to execution time: some instructions are no longer
executed.

• Slight improvement to code size: some instructions are no longer coded.

A.2 Flowgraph optimizations

Flowgraph optimizations cover a wide range of local optimizations which are per­
formed on short sequences of code.

72 TOS 348 01 October 1992

42 A.2 Flowgraph optiniizations

The following examples describe typical optimizations of this type.

A.2.1 Branch-ehaining optimization

When the destination of one jump is to anotherjump, then the first jump is replaced
with a jump to the destination of the second jump.

This optimization cannot be performed at source code level and is best demon­
strated in assembly code:

j L1

L1: j L2

becomes:

j L2

L1: j L2

A.2.2 Dead code elimination

Dead code elimination is the removal of statements which cannot be reached and
is another type of flowgraph optimization. For example:

void p(void)
{

while (1)
...Ioop body - contains no break statements
s; /* This statement cannot be reached*/

With dead code elimination, this code segment would be transformed to:

void p(void)
{

while (1)
...Ioop body - contains no break statements

The statement IS' is deleted.

A.2.3 Summary of effects of flowgraph optimizations:

The effect on both execution time and code size varies on the particular optimiza­
tion performed. For the examples shown above the results are:

• Branch-ehaining -Improved execution time and a slight reduction in code
size.

72 TDS 348 01 October 1992

A Local optimization examples

• Dead code elimination - code size is improved.

A.3 Redundant store elimination

43

Assignments to variables which are not subsequently used, are deleted by an opti­
mization called redundant store elimination.

Example:

void p(void)
{

int X;
... some code
X = 27;
... some more code which does not read x

With redundant store elimination, this segment of code would be transformed to:

void P (void)
{

int X;
... some code
... some more code which does not read x

The assignment of a value to x is removed.

A.3.1 Summary of effects:

• Slight improvement to execution time.

• Slight improvement in code size.

72 TOS 348 01 October 1992

44

72TDS 34801

A.3 Redundant store elimination

October 1992

B Global optimization
examples

This appendix briefly describes each of the global optimizations available.

B.1 Common subexpression elimination

The purpose ofcommon subexpression elimination is to remove from the program
any redundant computations. An expression is redundant where it is identical to
and computes the same value as another expression whose value is still available
for use.

Such commonality is not restricted to explicit computations in the source code but
may include implicit computations such as array element address calculation.
Subscripted expressions often repeat in blocks of code. Where this happens it is
often more efficient to extract expressions which occur more than once so that they
are evaluated once only.

Example:

Code segment before common subexpression elimination is applied:

int a [10] [10], i, j;
for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)
a[i] [j] = a[i] [j] + t;

}

Code segment after common subexpression elimination is applied:

int a[10] [10], i, j;
for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)
{

int *temp3 = &a[i] [j];
*temp3 = *temp3 + t;

Notice that the subscripted variable in the summation has been replaced by a
single variable *temp3 .

Common subexpression elimination is achieved by saving the result ofa computa­
tion in a temporary location rather than recomputing the expression.

72 TDS 348 01 october 1992

46

B.1.1 Summary of effects:

B.2 Loop-invariant code optimization

• Improvement to execution time: expressions which were evaluated sev­
eral times are now only evaluated once.

• Improvement to code size: expressions which were coded several times
are now only coded once.

• Increase in workspace size: expressions which were evaluated several
times now have their value stored in a temporary variable in workspace.

The compiler evaluates each potential case and only applies the optimization if it
is worthwhile.

B.2 Loop-invariant code optimization

This optimization removes expressions which remain constant during the execu­
tion of a loop, to outside the loop so that they are executed once only. Invariant
expressions often include subscripting calculations as well as computations in the
source code.

Example:

Code segment before loop-invariant code optimization is applied:

int a[10] [10], i, j;
for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)
a[i] [j] = a[i] [j] + t;

Code segment after loop-invariant code optimization is applied:

int a [10] [10], i, j;
for (i = 0; i < 10; i++)

{
int *temp1
int *temp2
for (j = 0

temp1[j]

= &a[i];
= &a[i];

j < 10; j++)
= temp2[j] + t

In this example the value of i remains constant during iterations of the inner loop
which increments j. The calculation of &a [i] can therefore be moved outside the
inner loop.

72 TDS 34801 October 1992

8 Global optimization examples

8.2.1 Summary of effects:

47

• Improvement to execution time: expressions which were evaluated on
every loop iteration are now only evaluated once.

• Slight increase in code size: extra code has to be inserted to store the result
of an expression in a temporary.

• Increase in workspace size: expressions which were evaluated on every
loop iteration are now evaluated into a temporary variable outside of the
loop.

B.3 Global optimization example

This example is based on the source code used in the previous two sections and
shows what happens when both global subexpression elimination and loop-in­
variant code optimization are applied:

int a [10] [10], i, j;
for (i = 0; i < 10; i++)

{
int *temp1 = &a[i];
for (j = 0; j < 10; j++)

{
int *temp3 = temp1[j];
*temp3 = *temp3 + t;

B.4 Tail-call and tail recursion optimization

The purpose of these optimizations is to make function calls more efficient. When
the last operation performed by a function is to call another function, tail--call opti­
mization may be applied. In C programs a function may in fact, call itself, in which
case the optimization is called tail recursion optimization.

The optimization is achieved by substituting a jump instruction instead of the call
instruction. This optimization cannot be performed at source code level.

When a jump instruction is used, the return from the other function will return the
caller to the caller of the current function, thereby saving one return sequence. The
called function's workspace is also laid on top of the current function's workspace,
thus saving stack size.

72TDS 348 01 October 1992

48 8.4 Tail-eall and tail recursion optimization

8.4.1 Example: (Tail-eall optimization)

Take the following code segment:

void p(int x)
{

...body ofp
q(x+l);

}

Without optimization the code generated for routine 'p' would be:

p:
ajw -3
... body of p
ldl 2 -x
adc 1
ldl 1 -<static_link>
call $q
ajw 3
ret

After tail-eall optimization, the code generated is:

p:
ajw -3
... body of P
ldl 2 ~x

adc 1
stl 2 -x
ajw 3
j $q

Note: that the workspace for routine 'q' is overlaid on the workspace for routine
'p'.

8.4.2 Summary of effects: (Tail-eall optimization)

• Little effect on execution time.

• Workspace requirements are reduced as the called function's workspace
is overlaid on the calling function's workspace.

72 TDS 348 01 October 1992

8 Global optimization examples 49

8.4.3 Example: (Tail-recursion optimization)

void p (int x)
(

...body of p
p(x+l);

)

This code segment when compiled without optimization would cause the following
code to be generated for routine p.

p:
ajw -3
... body of p
Id!.
adc
ldl
call
ajw
ret

2
1
1
$p
3

-x

-<static_link>

After tail-recursion optimization. the code generated is:

p:

.. 3:
ajw -3

... body of P
ldl 2 -x
adc 1
stl 2 -x
j .. 3

Note: that the workspace for the second invocation of cp' is laid on top of the work­
space for the first invocation of cp'. Also note that the second invocation of cp' does
not re-execute the routine entry code (in this example. an Cajw -3' instruction).

8.4.4 Summary of effects: (Tail-recursion optimization)

• Execution time is improved as the called function's entry sequence is
already evaluated. In addition. it may not be necessary to assign the actual
parameters to the formal parameters of the function called.

• Workspace requirements are reduced as the called routine's workspace
is overlaid on the calling routine's workspace.

8.5 Workspace allocation by coloring

This method of workspace allocation can be performed when the lifetimes of two
variables. ca' and Cb' do not overlap. When this is the case ca' and Cb' may be allo-
cated in the same workspace slot.

72TDS 348 01 October 1992

50 8.5 Workspace allocation by coloring

For example, in the following segment of code, variables 'a' and 'b' can be placed
in the same workspace slot because their values are never required at the same
time:

int a, b:
a = funcl(27);
procl(a);
procl(a);
/* 'a' is not used after this point, 'b' is not

used before this point */
b = func2(34);
proc2(b);

When optimization is enabled, the compiler will use this method of workspace
allocation, provided the code is suitable.

If workspace is allocated by coloring, then the compiler calculates a usage count
for each variable, and places the most frequently used variables at lower work-
space positions. '

When the command line option '00' is used Le. when optimization is disabled, all
variables are allocated their own unique workspace slot.

72 TDS 34801 October 1992

Index

Symbols

#pragma, 8
IMS_nosideeffects,8

_asm, use when optimizing, 9

A
ANSIC

compiler, optimizing, 3
language, use when optimizing, 7
trigraphs, 12

B
Branch-ehaining optimization, 42

c
Command line options, optimizing

compiler, 5

Common subexpression elimina­
tion,45

Compiler
diagnostics, terminology, 10
optimizing, 3

command line options, 5
global optimizations, 45
information messages, 7
language considerations, 7
local optimizations, 41
messages, 10
running, 5

const,8

D
Dead code elimination, 42

72TDS 348 01

E
Error messages, optimizing com­

piler,10

F
Flowgraph optimization, 41

G
Global compiler optimizations, 45

H
Host, versions, iii

ice, optimizing compiler, 3
command line options, 5
global optimizations, 45
information messages, 7
language considerations, 7
local optimizations, 41
messages, 10
running, 5

L
Local compiler optimizations, 41
Loop-invariant code, optimization,

46

M
Messages. See Error messages

o
Object code, optimizing, 3

October 1992

52

Optimizing object code
for space, 6, 45
for time, 6, 45
global optimizations, 45
language considerations, 7
local optimizations, 41
using icc, 3

p

Peephole optimization, 41

Performance improvement, using
optimizing compiler, 3

Pragmas, optimizing compiler, 8

R
Redundant store elimination, 43

register, 8

5
Space, optimizing .compilation,; 6

T
Tail recursion optimization, 47

Tail-eall optimization, 47

Time, optimizing compilation, 6

Toolset, documentation, iii
conventions, v

Trigraphs, 12

v
volatile,8

w
Warnings. See Error messages

Workspace, allocation,
optimizing, 49

72 TOS 348 01

Index

October 1992

