
.. III
(1!J

•
I I
I

.. ••--

ANSI C Toolset
Handbook

INMOS Limited

~ SGS-1HOMSON
~.,I ® ~D©OO@~n.rn©'ii'OO@IiWD~
INMOS is a member of the SG8-THOMSON Microelectronics Group

72 TDS 355 00 october 1992

© INMOS Limited 1992. This document may not be copied, in whole or in part, without
prior written consent of INMOS.

e®,nl1ilmOS®J IMS and occam are trademarks of INMOS Limited.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

!fi.1~ is a registered trademark of the SGS-THOMSON Microelectronics Group.

The Ccompiler implementation was developed from the Perihelion Software "C" Compiler
and the Codemist Norcroft "c" Compiler.

INMOS Document Number: 72 TDS 355 00

.~~ ~

.~- ~
I

.r~
I

.:,~.. -~:-~

I

"I~,
.~~

..]~

.1~
J... ~
J..~~
i

.I-~
")

"I~

·i~
.~:~

i

.~~

.~~
J

"I_(~

J

·1·~..~~
J

.~:(~
I

I

~L~

IContents

Contents .

Preface iii

Host"versions iii
Toolset documentation set . iii
Documentation conventions . iii

ANSI C toolset 1

Standard file extensions 2

Tools... 3

Transputer targets - options for icc & ilink 24

Debugger commands .. 25

Debugger symbolic functions. 25
Debugger monitor page commands . 26

Simulator commands .. 28

Runtime Library .. 29

ii

Preface

In addition a host specific Delivery Manual and a set ofgeneric Release Notes are
provided.

Documentation conventions

The following typographical conventions are used in this manual:

October 1992

Used to emphasize new or special terminology.

Used to distinguish command line examples, code fragments,
and program listings from normal text.
In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.
Used to denote optional items in command syntax.
Used in command syntax to denote optional items on the com­
mand line.
In general terms, used todenote the continuation ofa series. For
example, in syntax definitions denotes a list of one or more
items.
In command syntax, separates two mutually exclusive alterna­
tives.

Italic type

Bold type

Teletype

Braces {}
Brackets []

Ellipsis ...

Host versions

The documentation set which accompanies the ANSI C toolset is designed to
cover all host versions of the toolset:

• IMS 07314 -IBM PC compatible running MS-DOS

• IMS 04314 - Sun 4 systems running SunOS.

• IMS 06314 - VAX systems running VMS.

Toolset documentation set

The documentation set comprises the following volumes:

• 72 TDS 345 01 ANSI C Toolset User Guide

• 72 TDS 346 01 ANSI C Toolset Reference Manual

• 72 TDS 34701 ANSI C Language and Libraries Reference Manual

• 72 TDS 348 01 ANSI C Optimizing Compiler User Guide

• 72 TDS 354 00 Performance Improvement with the DX314 ANSI C Toolset

• 72 TDS 355 00 ANSI C Toolset Handbook (this document)

• 72 TDS 360 00 ANSI C Toolset Master Index

72TDS 355 00

.~-~
I

Contents • - ~ ~
----------------------_..=.=..=...=.=~

.~~

.-~

e=!-~.. ~.. ~..._~... ~
j

..]~... ~

.]~
I•..~

.~~

.~~

.J~
J

.~~
i

.II-~
I.~~
I

Tool Description
ice Full ANSI C standard compiler with concurrency support. Generates

object code for specific transputer targets or transputer classes.

icconf The configurer which generates configuration binary files from config-
uration descriptions.

icollect The code collector which generates executable code files.
idebug The network debugger which provides post-mortem and interactive

debugging of transputer programs.

idump The memory dumper tool which dumps root transputer memory for
post mortem debugging.

iemit The memory configurer tool which helps to con-figure the transputer
memory interface.

ieprom The EPROM formatter tool which creates executable files for loading
into ROM.

ilibr The toolset librarian which creates libraries from compiled code files.
ilink The toolset linkerwhich links compiled code and libraries into a single

unit.
ilist The binary lister which displays binary files in a readable form.
imakef The Makefile generator which creates Makefiles for toolset compila-

tions.
imap The map tool which generates a memory map for an executable file.

iserver The host file server which loads programs onto transputer hardware
and provides host communication.

isim The T425 simulator which allows programs to be run without hard-
ware.

iskip The skip loader tool which loads programs over the root transputer.

iv Preface ~-~ ~

~~~

.~~

.--~~

• ~.~~.-~
I

.I~
]•. ~
j•. ~,

.i~

J•..~,
.i·~]•. ~

J

·l~.~~
I

I

I

.I(~

I

~~'~
I

.I'~
I

"I(~

"I~I~

"i~i~
72 TOS 35500 October 1992

~I~i~

~~~

ANSI C toolset

72TOS 355 00 October 1992

Standard file extensions I

Extension Description

.btl Bootable file which can be loaded onto a transputer or transputer
network. Created by ieolleet.

.btr Executable code without a bootstrap. Created by ieolleet and
used as input to ieprom.

. e C source files.

. efb Configuration binary file. Created by ieeC?nf.

.efs Configuration description source file. Created by the user as a text
'file. Input to ieeonf.

. h Header files for use in C source code.

.lbb Library build files which specify the components of a library to
ilibr.

.lib Library file containing a collection of binary modules. Created by
ilibr.

. lku Linked unit. Created by ilink.

. Ink Linker indirect files which specify the components of a program to
be linked to ilink.

. map Map file output by the collector.

. rse Dynamically loadable file. Created by ieolleet.

. teo Compiled code file. Created by ice.

72TDS 35500 October 1992

,
e-'~~

e~~

e-~

e!)

e !)

e-~

e--~

ej~

e·~
~•. ~
~•. ~
~

..~~

"j~... ~
.L~,

.I

.~~

.I_~

I

~~-~

.I_~

.u ,~

I..~~
.4 ..~
J>~
J
~:~

Tools

72TDS 35500 October 1992

Option Description

J dir Adds dirto the list ofdirectories to be searched for source files
incorporated with the 'include directive in extended search
paths.

KS Enables stack checking.

o outputfile Specifies an output file. If no filename is given the compiler
derives the output filename from the input filename stem and
adds the . tco extension.

p mapfile Produces a map ofworkspace for each function defined in the
file, and a map of the static area of the whole file. The map is
written to the file mapfile.

pp Lists the preprocessed source file to stdout.

S Compiles the source file to assembly language and writes it
to a file. Assembly is suppressed and no object code is pro-
duced. The file is named after the input file and given the . s
extension.

u symbol Disables a symbol definition. Equivalent to #undef symbol at
the start of the source file.

WA Suppresses messages warning of 1=' in conditional expres-
sions.

WO Suppresses messages warning of deprecated function dec-
larations.

WF Suppresses messages warning of implicit declarations of
extern int().

WN Suppresses messages warning of implicit narrowing or lower
precision.

WT Suppresses messages warning of the possibility of less effi-
cient code when compiled for a transputer class.

WV Suppresses messages warning of non-declaration of void
functions

4 Tools

ice - ANSI C compiler

Compiles C source code.

Syntax: ice filename {options}

where: filename is the C program source code.

Options:

Option Description .

Transputer type See page 22 for a list of options to specify transputer type.
AS Assemble the input file to produce and object file. The com-

piler phase is suppressed.

C Performs a syntax check only. Generates no object code. This
option is ignored by the optimizing compiler.

D symbol Defines a symbol. Same as #define symbol 1 at the start of
the source file.

D symbol=value Defines a symbol and assigns a value. Same as #define
symbol value at the start of the source file.

EC Disables checks for invalid type casts. ANSI compliance
check.

EP Disables checks for invalid text after 'else or 'endif. ANSI
compliance check.

EZ Disables checks for zero-sized arrays. ANSI compliance
check.

FC Change the signedness property of plain char to be signed.
The default is to compile chars as unsigned.

FH Performs a number of software quality checks.

FM Generates warning messages on 'defined but unused
macros.

FS Directs the compiler to treat right-shifts of signed integers as
arithmetic shifts.

FV Reports all externally visible functions and variables which
are declared but unreferenced, and have file scope.

G Generates comprehensive debugging data. The default is to
produce minimal debugging data. Debugging data is required
for the correct operation of idebug.

HELP Displays full help information for the tool.

I Displays detailed progress information at the terminal as the
compiler runs.

72 TDS 355 00 October 1992

e- ~

e !~ ~

e-~

.-~. ~. ~

.--~

.!~

J•. ~
j... ~,

.I~
]... ~
l

.I~
1

I

.~~

1... ~
l

.I~

.:~

.~-~

.;~

.l:~..~-~

.~-~
I

.~~~

.~~

Tools

72TDS 355 00

5

October 1992

Option Description

C Checks the configuration description only. No configuration data
file is generated.

G This option is used when postmortem or interactively debugging
and disables any ordering of process memory segments in the
configuration code by the order and location process attrib-
utes.

The Goption significantly modifies the runtime behavior of the con-
figured program because virtual though routing is used for all
channel communication between processors. This results in a
memory overhead and reduction in performance of communica-
tions.

This option cannot be used with the GA, GP, RA or RO options.

GA Generates a configuration which can be debugged using the
Advanced Too/set debugger. This option has the same side effects
as the G option except that the order and location attributes are not
disabled. This option cannot be used with the G or GP options.

GP This option is used when postmortem debugging and disables any
ordering of process memory segments in the configuration code
by the order and location process attributes.

The runtime behavior of the application will be little different to the
default behavior Le. when no options are specified. Virtual routing
is enabled and may be used. This option may be used with the RA
option but not with the G, GA or RO options.

I Displays extra information as the tool runs.

NV Generates a configuration without virtual routing.

o filename Specifies an output filename. If no output file is specified the con-
figuration data file is given the base name of the input file and the
. cfb extension is added.

P procname Specifies the name of the root processor when configuring for
EPROMs. procname must not be an element from an array of pro-
cessors.

Generates configuration binary files from configuration descriptions

Tools 7

PRE Generates a configuration which can be profiled using the
Advanced Too/set network execution profiler. This option has the
same side effects as the GA option. Note: this option cannot be
used with the GA or PRU options.

PRU Generates a configuration which can be profiled using the
Advanced Too/set network utilization profiler. This option has the
same side effects as the GA option. Note: this option cannot be
used with the GA or PRE options.

RA Creates a file suitable for a boot-from-ROM application in which
the user and system processes for the root processor and all other
processors are loaded into RAM to execute.

RO Creates a file suitable for a boot-from-ROM application in which
the user and system processes for the root processor execute in
ROM and for all other processors the user and system processes
are loaded into RAM to execute.

RS romsize Specifies the size of ROM on the root processor. Only valid when
used with the 'RA' or 'RO' options. romsize is speci'fied in decimal
format and can be followed by 'K' or ')i' to indicate kilobytes or
megabytes.

w Disables configurer messages of severity Warning.

WP Generates additional pedantic Warning messages.

October 199272TDS 355 00

ft- ~ ~·~.~

.-'~.-~.. ~· -~

.--~.. ~

.j~

I

.'1 !)

"I~
.. I.~

I

.,~

.1-~
I.': ~

.'!l· ~

.I,-~

"I~

",~.. ,-~.

..-~

~:,

~--=-~

Tools

October 1992

icconf - configurer

where: fi/ename is the configuration description file.

Options:

Syntax: icconf filename {options}

72 TDS 355 00

6

Syntax: icollect filename {options}

Generates bootable code files. Also used to generate non-bootable files for
dynamic loading or booting from ROM.

where: filename is a configuration data file created by a configurer or a single
linked unit created by ilink.

9

October 1992

Tools

72TDS 35500

Option Description
K Creates a single transputer file with no bootstrap code. If no file

is specified the output file is named after the input filename and
given the. rsc extension.'

This option can only be used with the 'T' option (unconfigured
mode).

M memorysize Specifies the memory size available (in bytes) on the root pro-
cessor for single transputer programs. memorysize is specified
in bytes and may be given in decimal format (optionally fol-
lowed by 'K' or ')I' to indicate Kilobytes or Megabytes respec-
tively), or it may be specified in hexadecimal using the '" or '$'
prefixes.

This option can only be used with the 'T' option (unconfigured
mode) and results in a smaller amount of code being produced
(see section 3.3).

o filename Specifies the output file. A filename must be supplied and is
used as given. (See section 3.2.4).

p filename Specifies a name for the memory map file. A filename must be
supplied and is used as given. The file extension .map should
be used when the file is to be used as input to imap, see chapter
12.

RA Creates a file for processing by ieprom into a boot from ROM
file to run in RAM. If no output file is specified the filename is
taken from the input file and given the .btr extension.

This option is only necessary when using the 'T' option (uncon-
figured mode) to create a ROM code file.

RO Creates a file for processing by ieprom into a boot from ROM
file to run in ROM. If no output file is speci'fied the filename is
taken from the input file and given the .btr extension.

This option is only necessary when using the 'T' option (uncon-
figured mode) to create a ROM code file.

RS romsize Specifies the size of ROM on the root processor in bytes. Only
valid when used with the 'RA' or 'RO' options.

romsize is specified in bytes and may be given in decimal for-
mat (optionally followed by 'K' or ')I' to indicate Kilobytes or
Megabytes respectively), or it may be specified in hexadecimal
using the '#' or '$' prefixes.

This option is only necessary when using the 'T' option (uncon-
figured mode) to create a ROM code file.

." t!JI

I"-j ~
I

"I~I
.. 1- ~

I
~i~
• I~

I.. ~.. ~.. ~.. ~

• ,t!t. ~
I

I

'•• t!J
1

~"~

~ ~

~ ~

i~ ~

~-~.. (~.. -(~

.-~

.:~

,e~~

Tools

October 1992

icollect - code collector

8

Options:

72TDS 35500

Option Description
B filename Uses a user-defined bootstrap loader program in place of the

standard bootstrap. The program is specified by filename and
must conform to the rules described in appendix F.

This option can only be used with the 'T' option (unconfigured
mode) and cannot be used with the 'RA' and 'RO' options.

BM Instructs the tool to use a different bootstrapping scheme,
which uses the bottom of memory, see section 3.8.

This option is only valid for configured programs Le. when the
'T' option is not used.

C filename Specifies a name for the debug data file. A filename must be
supplied and is used as given.

This option can only be used with the 'T' option (unconfigured
mode) and cannot be used with the 'D' or 'K' options.

CM Instructs the collector to add a bootstrap which will clear
memory during the booting and loading of the transputer net-
work. Intended for use with parity-ehecked memory (see sec-
tion 3.4).

D Disables the generation of the debug data file for single trans-
puter programs. This option can only be used with the 'T' option
(unconfigured mode).

E Changes the setting of the transputer Halt On Error flag. HALT
mode programs are converted so that they not stop when the
error flag is set, and non HALT mode programs to stop when
the error flag is set.

This option can only be used with the 'T' option (unconfigured
mode).

I Displays progress information as the collector runs.

Option Description
S stacksize Specifies the extra runtime stack size in words for single trans-

puter programs.

stacksize is specified in words and may be given in decimal for-
mat (optionally followed by 'K' or 'M' to indicate Kilowords or
Megawords respectively), or it may be specified in hexadecimal
using the '" or '$' prefixes.
This option can only be used with the 'T' option.

T Creates a bootable file for a single transputer. The input file
speci'fied on the command line must be a linked unit. This
option can not be used for programs linked with the reduced
runtime library.

y Disables interactive debugging with idebug and reduces the
amount of memory used. (See section 3.10).

This option can only be used with the 'T' option (unconfigured
mode).

Option Description

A Assert INMOS subsystem Analyse. Directs the debugger to
assert Analyse on the sub-network connected to the root pro-
cessor.

Required when using 8004 type boards.

AP A replacement for the A option when running programs on
boards from certain vendors. Asserts Analyse on the network
connected to the root processor.

Contact your supplier to see whether this option is applicable
to your hardware. It does not apply to boards manufactured
by INMOS.

B linknumber Interactive breakpoint debug a network that is connected to
the root processor via link linknumber. idebug executes on
the root processor.

Must be accompanied by the iserver 'SR' option.

C type Specify a processor type (e.g. T425) instead of a class (e.g.
TA) for programs that have not been configured.

D Dummy debugging session. Can be used for familiarization
with the debugger or establishing memory mappings.

Must be accompanied by the iserver 'SR' option.

GXX Improves symbolic debugging support for C++ source code.

Shoold be specified when debugging C++ programs.

I Display debugger version string.

Must be accompanied by the iserver 'SR' option.

idebug - network debugger

10

72TDS 35500

Tools

October 1992

I
@j.

I
~i.

I
~j.

I
~~i If)

tal If)
I

~ If)

.~ ..
~ ..
,~ ~.. ~

e;~. ~
I

• J~
I

I

.'~." ~.:.~

.I.~

I

.I.~

• !.i~
I

.. II~

.. !: ..~

~ I~.!)

I~ .~~.,

Tools

Provides post-mortem and breakpoint debugging.

Syntax: idebug bootablefile {options}

where: bootablefile is the bootable file to be debugged

Options:

72TDS 355 00

11

October 1992

Option Description

J , hexdigits Takes a hexadecimal digit sequence of up to 16 digits and
replicates it throughout the data regions of a program (stack,
static, heap and vectorspace as appropriate) when interactive
debugging. The digit sequence must be preceded by a hash,
"', character.

Used when breakpoint debugging configured T426 programs.

K #hexdigits As the J option but includes freespace.

Used when interactive debugging non-configured T426 pro-
grams.

M linknumber Postmortem debug a previous interactive debugging session.
idebug executes on the root processor.

Must be accompanied by the iserver 'sA' option.

N filename Postmortem debug a program from a network dump file file-
name, created by idebug. The file is assumed to have the
extension. dmp if none is specified.

Must be accompanied by the iserver 'SR' option.

Q variable Specify environment variable used to specify the ITERM file.
The default is "ITERM".

R filename Postmortem debug a program that uses the root transputer.
filename is the file that contains the contents of the root pro-
cessor (created by idump or isim). The file is assumed to
have the extension . dmp if none is supplied.

S Ignore subsystem signals when interactive debugging.

T linknumber Postmortem debug a program that does not use the root pro-
cessor, on a network that is connected to link linknumber of
the root processor. idebuq executes on the root processor.

Must be accompanied by the iserver 'sA' option.

XQ Causes t.he debugger to request confirmation of the Quit com-
mand.

Syntax: idump filename memorysize [{ star/offset length }]

Writes the root transputer's memory to a file. Used in debugging programs that use
the root transputer.

where: filename is the name of the dump file to be created.

memorysize is the number of bytes, starting at the bottom of memory, to
be written to the file.

starloffset is an offset in bytes from the start of memory.

length is the amount of memory in bytes, starting at startoffset, to be
dumped in addition to memorysize.

13

October 1992

idump - memory dumper

Tools

72TDS 355 00

~- ~

~ ~

~I~

'-:i ~
·i~

·i~
.-~

I

·1~

·1~

·1-!)
·1-!)
·i~
.I~

.J~

..]-3

.]~
l

"I_~

..J~
].. ~-~
J..~~

I

"Ii~I

~f~
I

.. :~
~~~

Tools

October 1992

12

72 TDS 35500



Option Description

A Produce ASCII output file.

E Invoke interac~ive mode.

F filename Specify input ternary configuration file.

I Select verbos,e mode. In this mode the user will receive status
information about what the tool is doing during operation for
example, reading or writing to a file.

a filename Specify output filename.
p Produce PostScript output file.

iemi t - memory interface configurer ieprom - EPROM program convertor

Option Description
I Selects verb'ose mode. In this mode the user will receive status

information about what the tool is doing during its operation, for
example reading or writing to a file.

R Directs ieprom to display the absolute address of the code ref-
erence point. This address can be used to locate within the
memory map created by the icollect 'p' option.

15

October 1992

Tools

Formats bootable code for installation by ROM loaders.

where: filename is the name of the control file.

Syntax: ieprom filename {options}

Options:

72TDS 355 00

~~~

.-~

.-~. ~. ~

.-~

.--~

·I~
·i~
.;~

I
i

.J~

I

·i~
i

.~ ,~
i

.~I ,~
I

.;II~

~Ii~

\~:i~

I~;:_I~

.~_:~

.~;I~

.tl-'~
~~-I~

~I~"~

!~~~
I

Tools

October 1992

14

Evaluates memory configurations.

Options:

Syntax: iemi t options

72 TDS 35500

Option Description
F filename Specifies a library indirect file.

I Displays progress information as the library is built.
o filename ~pecifies an output file. If no output file is specified the name

IS taken from the first input file and a .lib extension is
added.

Links object files together, resolving external references to create a single linked
unit.

Option Description
Transputer type See page 22 for a list of options to specify transputer type.

EX Allows the extraction of modules without linking them.
F filename Specifies a linker indirect file.

H Generates the linked unit in HALT mode. This is the default
mode for the linker and may be omitted for HALT mode pro-
grams. This option is mutually exclusive with the's' option.

I Displays progress information as the linking proceeds.
KB memorysize Specifies virtual memory required in Kilobytes.

LB Specifies that the output is to be generated in LFF format, for
use with the iboot bootstrap tool and iconf configurer tool
used in earlier INMOS toolse15. (See footnote 2).

Le Specifies that the output is to be generated in LFF format, for
use with the iconf tool used in earlier INMOS toolsets. (See
footnote 2).

ME entryname Specifies the name of the main entry point of the program and
is equivalent to the #mainentry linkerdirective (See below).

MO filename Generates a module information file with the specified name.
o filename Specifies an output file.

S Generates the linked unit in STOP mode. This option is mutu-
ally exclusive with the 'H' option.

T Specifies that the output is to be generated in TCOFF format.
This format is the default format.

U Allows unresolved references.
X Generates the linked unit in UNIVERSAL error mode, which

can be mixed with HALT and STOP modes.
y Disables interactive debugging for occam code. Used when

linking in occam modules compiled with interactive debug-
ging disabled.

16

ilibr -librarian

Builds libraries of code from separate files.

Syntax: ilibr filenames {options}

where: filenames is a list of input files separated by spaces.

Options:

72TDS 35500

Tools

October 1992

.-~ ~

.-~

.~~

,--,. ~
.. !~

.. ~...~~

.~. ~
I

I

"I~1•. ~
l

•• !t
J•. ~
l

.I~
I

I

·1!t
".!t!

.I~

.:~

• >~•. ~•. ~.. ~

~~~

~:~

~~~

Tools

ilink -linker

Syntax: ilink [filenames] {options}

where: filenames is a list of compiled files or library files.

Options:

72TDS 355 00

17

October 1992

Decodes and displays information from object files and bootable files.

18 Tools

Option Description

A Displays all the available information on the symbols used
within the specified modules.

C Displays the code in the specified file as hexadecimal. This
option also invokes the 'T' option by default.

E Displays all exported names in the specified modules.

H Displays the specified file(s) in hexadecimal format.

I Displays full progress information as the lister runs.

M Displays module data.

N Displays information from the library index.

o filename Specifies an output file. If more than one file is specified the last
one specified is used.

p Displays any procedural interfaces found in the specified mod-
ules.

R reference Displays the library module{s) containing the specified refer-
ence. This option is used in conjunction with other option to dis-
play ~ata for a specific symbol. If more than one library file is
speCified the last one specified is used.

T Displays a full listing of a file in any file format.

W Causes the lister to identify a file. The filename (including the
search path if applicable) is displayed followed by the file type.
This is the default option.

X Displays all external references made by the specified modules.

where: filenames is a list of target files for which makefiles are to be generated.

19

October 199272TDS 35500

Option Description

C This option is used when incorporating C or FORTRAN modules
into the program. It specifies that the list of files to be linked is to be
read from a linker indirect file. This option must be specified for cor-
rect C or FORTRAN operation.

D Disables the generation of debugging information in compilations.
The default is to compile with full debugging information.

I Displays full progress information as the tool runs.

M Produce compiler, linker and collector map files for imap.

NI Files in the directories in ISEARCH are not put into the makefile.
This means that system 'files are not present, making it much easier
to read.

o filename Specifies an output file. If no file is specified the output file is named
after the target file and given the. mak extension.

R Writes a deletion rule into the makefile.
y Disables interactive (breakpoint) debugging in all compilations.

The default is to compile with full breakpoint debugging informa-
tion.

Tools

imakef - Makefile generator

Options:

Syntax: imakef filenames {options}

Creates Makefiles for toolset compilations.

e-~ .~

.~~

.-~

~_.~

.. ~

.. -~

.-~

.~~
I

.:~
I

·i~

·i~•. ~
'1

·i~
·i~
.~~

.:~
I

.-~

.I~

",-~.. ~

.-~

~-~

~:~

~l~
I

October 1992

ilist - binary lister

Syntax: ilist { filenames} {options}

where: filenames is a list of one or more files to be displayed.

Options:

72 TDS 355 00

where: filename is the name of the file containing the map output from the collec­
tor.

20

Generates a memory map for an executable file.

21

i server - server/loader

Tools

Loads programs onto transputers and transputer boards and serves host commu­
nications.

Syntax: iserver {options}

Options:

Option Description

SA Analyses the root transputer and peeks 8K of its memory.

SB filename Boots the program contained in the named file.

se filename Copies the named file to the root transputer link.

SE Terminates the server if the transputer error flag is set or a
control link error message is received.

SI Displays progress information as the program is loaded.

SK interval Specifies the number of seconds between attempts to access
the resource.

SL name Specifies the capability name.

SM Invokes the session manager interface.

SP n Sets the size of memory to peek on Analyse to n Kbytes.

SR Resets the root transputer and its subsystem.

SS Serves the link, Le. provides host system support to pro-
grams communicating on the host link.

ST All of the following command line is passed directly to the
booted program as parameters.

Option'SB filename' is equivalent to 'SR SS SI se filename'.

I
~··i~

~I~

·1~

·1~.. ~

.. -~

.. -~

.. ~~
I

·i~
I

·l~..'!)
J•. -~

l
"i~
..~~

~~~

~I~

@:~

Tools

Description
Displays the list of symbols produced by the linker, includ­
ing those symbols the linker identifies as not being used.
This option will not override the 'R' option if it is used.

Displays progress information as imap processes
information from the input files, s'uch as the filenames of
files as they are opened and closed.
Specifies an output file.
This option reduces the amount of detail generated by
imap in two ways:

• the Module memory usage table only displays
details for user modules i.e. 'USER' and
'SHARED_USER' processes.

• the Symbol table excludes those symbols containing
a '%' character in their name. Such symbols are nor­
mally internal symbols e.g. C runtime library sym­
bols.

This option is only applicable to, and must be specified for,
code targetted at ROM. It enables a hexadecimal offset to
be specified which represents the start address of the
code in ROM. This offset will be added to the start
address of any code which is to run in ROM, in imap's
output.

Option
A

I

o filename
R

ROM hex offset

imap - memory mapper

Syntax: imap filename { options}

Options:

72TDS 35500 October 1992

~-_t~

t!- ~I~

~~i~

72TDS 355 00 October 1992



where: program is the program bootable file.

programparameters is a list of parameters to the program. The list of
parameters may follow the isim ·N' option and parameters must be sepa­
rated by spaces.

Option Description

B Batch mode operation. The simulator runs in line mode Le. full
display data is not provided. Commands are read in from the
input stream e.g. the keyboard and executed. The commands
are not echoed to the output stream e.g. the display screen, as
they are executed.

BQ Batch Quiet mode. The simulator automatically executes the
program specified on the command line and then terminates. If
an error occurs, the appropriate message will be displayed. The
debugging facilities of the simulator are not available in this
mode.

BV Batch Verify mode. Similar to batch mode, except that the com-
mands and prompts displayed when running the simulator in
interactive mode are echoed to the output stream e.g. the dis-
play.

I Displays information about the simulator as it runs.

N No more options for the simulator. Any options entered after this
option will be assumed to be program parameters to be passed
to the program running on the simulator.

Syntax: isim program [programparameters] {options}
Syntax: iskip linknumber {options}

23

October 1992

iskip - skip loader

Tools

Allows programs to be loaded onto transputer networks beyond the root trans­
puter.

where: linknumber is the link on the root transputer to which the target transputer
network is connected.

Options:

Option Description

E Directs iskip to monitor the subsystem error status and termi-
nates when it becomes set.

I Displays detailed progress information as the tool loads.

R Reset subsystem.Resets all transputers connected downstream
of link linknumber. Does not reset the root transputer.

RP A replacement for the R option when running programs on
boards from certain vendors.

Contact your supplier to see whether this option is applicable to
your hardware. It does not apply to boards manufactured by
INMOS.

72TDS 355 00

@I ~

f! ~

f!1~
~.; ISJ

~ ~

f!-~

~--~

~ ~

~:~

.'I~I

.:~
I

I

~~~

.': I~
• I •.~

~13

~I~

t! _'~

@I!~

f!1_1~~

f!1 :~

.I'!~
~-{~

~>I~

~~~

Tools

October 1992

isim - T425 simulator

Simulates the execution of a program on the IMS T425.

22

Options:

72TDS 35500



Transputer targets
options for ice &ilink

Option Description
TA Specifies target transputer class TA (T400, T414, T425,

T426, T800, T801, T805).
TB Specifies target transputer class TB (T400, T414, T425,

T426)
T212 Specifies a T212 target processor.
T222 Specifies a T222 target processor. Same as T212
M212 Specifies a M212 target processor. Same as T212

T2 Same as T212, T222 and M212
T22S Specifies a T225 target processor.

T3 Same as T22S.
T400 Specifies a T400 target processor. Same as T425.
T4l4 Specifies a T414 target processor. This is the default pro-

cessor type and may be omitted when the target processor
is a T414 processor.

T4 Same as T414 (default).
T42S Specifies a T425 target processor.
T426 Specifies a T426 target processor.

TS Same as T400, T42S and T426.
T800 Specifies a T800 target processor.

T8 Same as T800.
T80l Specifies a T801 target processor. Same as T80S.
T80S Specifies a T805 target processor.

T9 Same as T80l and T80S.

Debugger commands

October 1992

Resume a process stopped at a breakpoint.

Undo a1BACKTRACE I·
Search for a specified string.

Set or clear a breakpoint on the current line.

Enables/disables hex-oriented display of constants and
variables for C.

Locate back to the error or last source code location.

Go to the first line in the file.

TOGGLE BREAK It
TOGGLE HEX I

MODIFY It
MONITOR I
RELOCATE I
RESUME It
RETRACE I
SEARCH I

72TDS 355 00

Note: t =Functions only available in interactive mode.

I TOP OF FILE

Debugger symbolic functions

BACKTRACE I Locate to the calling function or procedure.

END OF FILE I Go to the last line in the file.

CHANGE FILE 1 Display a different source file.

CHANNEL 1 Locate to the process waiting on a channel.

CONTINUE FROM It Restart a stopped process from the current line.

ENTER FILE 1 Change to an included source file.

EXIT FILE 1 Return to the enclosing source file.

FINISH 1 Quit the debugger.

GET ADDRESS I Display the location of a source line in memory.

GOTO LINE Go to a specific line in the file.

I HELP 1 Display a summary of commonly used symbolic functions.

I INFO 1 Display process information (e.g. instruction pointer, pro-
cess descriptor, process name).

Display the type and value of a source code symbol.

Force the debugger into the Monitor page without stopping
the program.

Change the value of a variable in memory.

Change to the monitor page.

Locate back to the last location line.

I INSPECT I
I INTERRUPT It

. ~

@ ~

@I~

~i~.. ~.. ~

.. I!J

.. -!t

.. -!t
I

·I~
.~~

I

·i~.. ~. ~
I

I

"l~
I

·'1 ~

.'~•. ~. ~. ~.-~.-~.-~

~:~

~~~

October 199272TDS 355 00

Key Meaning Description

A* ASCII View a region of memory in ASCII.

Bt* Breakpoint Display the Breakpoint menu enabling breakpoints
to be set, cleared or listed.

C Compare Compare the code on the network with the code that
should be there to ensure that the code has not
been corrupted.

D* Disassemble Display the transputer instructions at a specified
area of memory.

E Next Error Switch the current display information to that of the
next processor in the network which has halted with
its error flag set.

F* Select file Select a source file for symbolic display using the
filename of the object file produced for it.

G Goto process Goto symbolic debugging for a particular process.

H* Hex View a region of memory in hexadecimal.

1* Inspect View a region of memory in a symbolic type. Types
are expressed as standard occam types.

Jt* Jump Start or resume the application program.

K Processor Display the names and types of all processors in the
names network.

L Links Display instruction pointers and process descriptors
for the processes currently waiting for input or out-
put on a transputer link, or for a signal on the Event
pin.

M Memory map Display the memory map of the current processor.

N* Network dump Copy the entire state of the transputer network into
a 'network dump' file in order to allow continued (off-
line) debugging at a later date.

0* Specify process Resume the source level symbolic features of the
debugger for a particular process.

P* Processor Switch the current display information to that of
another processor.

Q Quit Leave the debugger and return to the host operating
system.

t = Interactive mode only.
* =String editing functions available for these commands.

Key Meaning Description

R Run queues Display instruction pointers and process descriptors
of the processes on either the high or low priority
active process queue.

st Show messages Display the Messages menu enabling the default
actions of the debugger to debug support functions
to be changed.

T Timer queues Display instruction pointers, the process descriptors
and the wake-up times of the processes on either
the high or low priority timer queue.

ut Update Update the monitor page display to re'nect the cur-
rent state of the processor.

V Process names Display the memory map of processes on the cur-
rent processor.

Wt* Write Write to any portion of memory in a symbolic type.
Types are expressed as standard occam types.

X Exit Return to symbolic mode.

yt Postmortem Change an interactive breakpoint debugging ses-
sion into a post-mortem debug session.

Z Virtual links Display instruction pointers and process descriptors
for processes waiting on the configurer's software
virtual links.

? Help Display help information.

t =Interactive mode only.
* =String editing functions available for these commands.

26

Debugger monitor page commands

72TDS 35500

Debugger commands

October 1992

.!-.
I

·:i-'
• -I ..

I•-1". ~.. ~

.. -~.. ~.. ~.. ~

.. '~
j

"J!t

.. !~.. ~.. ~.. ~

.-~.. ~I. ~

lit- ~

~. - ~

(~-~I. ~.
{~ ~~

Debugger commands

72TDS 355 00

27

October 1992

Simulator commands

Key Meaning Description

A ASCII Displays a portion of memory in ASCII.

S Break points Breakpoint menu.

D Disassemble Displays transputer instructions at a specified area
of memory.

G Go Runs (or resumes) the program.

H Hex Displays a portion of memory in hexadecimal.

I Inspect Displays a portion of memory in any occam type.

J Jump into pro- Runs (or resumes) the program. Same as G.
gram

L Links Displays Iptr and Wptr for processes waiting for
input or output on a link, or for a signal on the
Event pin.

M Memory map This option is not supported for the current toolset.

N Create dump file Creates a core. dump file.
p Program boot Simulates a program 'boot' onto the transputer.

Q Quit Quits the simulator.

R Run queue Displays Iptr and Wptr for processes on the high
or low priority active process queues.

S Single step Executes the next transputer instruction.

T Timer queue Displays Iptr. Wptr. and wake-up times for pro-
cesses on the high or low priority timer queues.

U Assign register Assigns a value to a register.

? Help Displays help information.

?t Query state Displays values of registers and queue pointers.

.t Where Displays next Iptr and transputer instruction.

t Batch mode commands.

72 TDS 35500

IREFRESH I Redraw the screen.

October 1992

Inserts diagnostic messages.

Calculates the arc sine of the argument.

Calculates the arc sine of a float number.

Converts a broken-down-time structure to an ASCII string.

Calculates the arc cosine of a float number.

Calculates the arc cosine of the argument.

Allocates a block of host memory. MS-DOS only.

Calculates the absolute value of an integer.

Aborts the program.

Runtime Library

'include <assert.h>
void assert(int expression);

'include <mathf.h>
float asinf(float x);

'include <math.h>
double asin(double x);

'include <time.h>
char* asctime(const struct tm *timeptr);

'include <stdlib.h>
void abort(void);

'include <mathf.h>
float acosf(float x);

'include <dos.h>
pcpointer alloc86 (int n);

'include <math.h>
double acos(double x);

'include <stdlib.h>
int abs(int j);

72TDS 355 00

assert

asin

asinf

acosf

asctime

abort

abs

acos

alloc86

I
~~I'I
@~I.

I@ -I •

I
~~~i ..
~I"

I
~ ~

@ ~

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

Ea ~

~-~

~-~

~~

~-~

~ t!t
~ -~;

~-~

i

~[~
- I

e]-~:

I

October 1992

Quit the simulator.

[IJ.OO. I PAGE UP I. I PAGE DOWN I Scroll the display.

I HELP I, [I] Display help information.

I FINISH I



a tan2 f Calculates arc tangent of ylx where both are floats.

'include <mathf.h>
float atan2f(float y, float x);

72 TDS 35500

'include <mathf.h>
float atanf(float x);

'include <math.h>
double atan (double x);

31

October 1992

Reverse the order of the least significant bits of

an integer.

Count the number of bits set.

Count the number of bits set and sum with an integer.

Copy a block of memory

Searches a sorted array for a given object.

'include <misc.h>
int BitCnt(int word);

'include <misc.h>
int BitCntSum(int word, int count_in);

Allocates memory space for an array of items and

initializes the space to zeros.

'include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Runtime library

'include <misc.h>
void call_without_g'sb( void o(*fnytr) (void),

int number_of_words_foryarameters,
... )

'include <stdlib.h>
void *bsearch(const void *key,

const void *base,
size t nmemb, size t size,
int 1*compar) (const void *,

const void *»;

'include <misc.h>
void BlockMove(void *dest, const void *source, size_t n);

'include <misc.h>
int BitRevNBits (int numbits, int data) ;

BitCnt

BitCntSum

BitRevNBits

BitRevWord Reverse the order of the bits in an integer.

'include <misc.h>
int BitRevWord(int data) ;

BlockMove

bsearch

call_wi thout _gsb Calls the pointed to function without passing

the gsb.

7210835500

calloc

~ ~

. ~ .
~I·

f!a~i •
~i·
~I.

I

~;.

~ .
~ ~

~ ~

~ ~

~ ~

~ ~

~ -!t

£I ~

~ ~

~--!t

~ ~. ~. ~.-~

~-~

f!'~~

~)-~
I

October 1992

Runtime library

Calculates the arc tangent of the argument.

Calculates the arc tangent of y/x.

Calculates the arc tangent of a float number.

Specifies a function to be called when the program ends.

Converts a string of characters to a double.

Converts a string of characters to an into

Converts a string of characters to a long integer.

Performs a simple MS-DOS function. MS-DOS only.

30

'include <stdlib.h>
double atof(const char *nptr);

'include <stdlib.h>
long int atol(const char *nptr);

'include <math.h>
double atan2(double y, double x);

'include <stdlib.h>
int atexit(void (*func) (void»;

'include <stdlib.h>
int atoi(const char *nptr);

'include <dos.h>
int bdos(int dosfn, int dosdx, int dosal);

atan

atan2

atanf

atexit

atof

atoi

atol

bdos



'include <channel.h>
int Chanlnlnt(Channel *c);

'include <channel.h>
Channel *ChanAlloc(void);

'include <channe1.h>
void Chanln(Channel *c, void *cp, int count);

Chanlni t Initializes a channel pointer.

'include <channel.h>
void Chanlnit (Channel *chan);

33

October 1992

Outputs data on a channel.

Clears error and end of file indicators for a file stream.

Resets a channel.

Determines the amount of processor time used.

Closes a file. File handling primitive.

'include <channel.h>
void ChanOut(Channel *c, void *cp, int count);

'include <channel.h>
int ChanOutChanFail (Channel *chan , void *cp,

int count, Channel *fai1chan);

'include <channel.h>
void ChanOutChar(Channel *c, unsigned char ch) ;

'include <channel.h>
void ChanOutlnt(Channel *c, int n);

'include <channel.h>
int ChanOutTimeFail (Channel *chan , void *cp,

int count, int time);

'include <time.h>
clock_t clock(void);

'include <stdio.h>
void clearerr(FlLE *stream);

'include <channel.h>
int ChanReset(Channel *c);

'include <iocntrl.h>
int close (int fd); ,

72TDS 35500

Runtime library

ChanOutChar Outputs one byte on a channel.

clearerr

ChanOut

ChanOutChanFai1 Outputs data or aborts on failure.

ChanOutlnt Outputs an integer on a channel.

close

ChanOutTimeFail Outputs data on a channel or times out.

clock

ChanReset

e ..
~ ..
~ ..
@~I ..

I
~I.

I

~i"
~ ..
~ ~

~ ~

~ ~. ~

~ ~

~ ~

~ ~

~ (~

t!t l~

~ ~

e-~

~ ,
~ \~

~ ~i~

~ ~l~

la: ,~

(I~.~

October 1992

Runtime library

Allocates and initializes a channel.

Inputs data on a channel.

Inputs an integer on a channel.

Calculates the smallest integer not less than the £10at

argument.

'include <mathf.h>
float ceilf(float x);

ceilf

32

Chanln

ChanAlloc

cei1 Calculates the smallest integer not less than the
argument.

'include <math.h>
double ceil(double x);

ChanlnChanFail Inputs data on a link channel or aborts.

'include <channel.h>
int ChanlnChanFail (Channel *chan , void *cp,

int count, Channel *failchan);

ChanlnChar Inputs one byte on a channel.

'include <channel.h>
unsigned char ChanlnChar (Channel *c);

Chanlnlnt

ChanlnTimeFai1 Inputs data on a channel or times out.

'include <channel.h>
int ChanlnTimeFail (Channel *chan , void *cp,

int count, int time);

72TDS 35500



'include <mathf.h>
float coshf(float x);

'include <math.h>
double cosh(double x);

'include <misc.h>
int CrcWord(int data, int crc_in, int generator);

35

October 1992

Outputs data on a'channel.

Stops process/alerts debugger if condition fails.

Inputs data on a channel.

Converts a calendar time value to a string.

Calculates the difference between two calendar times.

Runtime library

ctime

'include <channel.h>
void DirectChanOut(Channel *c, void *cp, int count);

'include <channel.h>
unsigned char DirectChanlnChar (Channel *c);

'include <channel.h>
void DirectChanln(Channel *c, void *cp, int count);

'include <time.h>
char *ctime (const time_t *timer);

'include <time.h>
double difftime(time_t time!, time_t timeO);

'include <channel.h>
int DirectChanlnlnt(Channel *c);

'include <misc.h>
void debug_assert(const int exp);

debug_message Inserts a debugging message.

'include <misc.h>
void debug_message(const char *message);

debug_s top Stops a process and notifies the debugger.

'include <misc.h>
void debug_stop(void);

difftime

72TDS 355 00

DirectChanln

DirectChanlnChar Input one byte on a channel.

DirectChanlnlnt Inputs an integer on a channel.

DirectChanOut

.-~ .~

~~~

~ ~

~-~

~. ~. ~.--~.. ~

• '!t

.,!}

.. I~

~I~

.. !}

.. !l

Er '~

~ ~

~ ~

~'-~

f!I-~

~ ~.. .~

~-.~

~ ~I~

~~~

October 1992

Runtime library

Calculates the cosine of the argument.

Calculates the cosine of a float number.

Calculates the hyperbolic cosine of the argument.

Calculates the hyperbolic cosine of a float number.

Calculate CRC of most significant byte of an integer.

Calculate CRC of an integer.

Creates a file for writing. File handling primitive.

'include <math.h>
double cos(double x);

'include <mathf.h>
float cosf(float x);

34

cos

cosf

cosh

coshf

'include <iocntrl.h>
int creat(char *name , int flag);

CrcByte

'include <misc.h>
int CrcByte(int data, int crc_in, int generator);

CrcFromLsb Calculates the CRC of a byte sequence starting at the
least significant bit.

'include <misc.h>
int CrcFromLsb (const char *string, size t length,

intgenerator, intold_crc);

CrcFromMsb Calculates the CRC of a byte sequence starting at the
most significant bit.

'include <misc.h>
int CrcFromMSb(const char *string, size t length,

int generator, int old_crc);

CrcWord

creat

72TDS 35500



'include <stdlib.h>
void exit(int status);

'include <stdlib.h>
div_t div(int numer, int denom) ;

'include <misc.h>
void exit_terminate(int status);

exp Calculates the exponential function of the argument.

'include <math.h>
double exp (double x);

37

October 1992

Reads a line from a file stream.

Obtains the value of the file position indicator.

Reads a character from a file stream.

Flushes an output stream.

Tests for a file error.

Tests for end of tile.

Closes a file stream.

Calculates the absolute value of a float number.

Calculates the absolute value of a floating point nurrlber.

'include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

'include <stdio.h>
int fgetpos(FlLE *stream, fpos_t *pos);

'include <stdio.h>
int fgetc(FILE *stream);

'include <stdio.h>
int fflush(FILE *stream);

'include <stdio.h>
int ferror(FILE *stream);

'include <stdio.h>
int feof(FILE *stream);

'include <stdio.h>
int fclose(FILE *stream);

'include <mathf.h>
float fabsf(float x);

'include <math.h>
double fabs(double x);

72TDS 35500

fqets

fqetpos

fqetc

fflush

ferror

fabsf

feof

fclose

fabs

Runtime librarye~~

e~~

e ~

~-~

~ ~

~ ~

~-'~

~ ~

.,!l

.I·!l
I

• il~

"I"~I

.I:~

."(~

.,(~

~'i~

~_I~

~I_(~

• I~

• II~

.,-(~

.I-I~

~I>~

~~~

October 1992

Runtime library

Version of exi t for configured processes.

Calculates the quotient and remainder of a division.

Terminates a program.

Calculates the exponential function of a float nurrlber.

'include <mathf.h>
float expf(float x);

36

exit

DirectChanOutChar Outputs one byte on a channel.

'include <channel.h>
void DirectChanOutChar(Channel *c, unsigned char ch) ;

exi t noterminate Version of exit for configured processes.

'include <misc.h>
void exit_noterminate(int status);

exi t _repeat Terminates a program so that it can be restarted.

'include <misc.h>
void exit_repeat(int status);

div

DirectChanOutlntoutputs an integer on a channel.

'include <channel.h>
void DirectChanOutInt(Channel *c, int n);

exit terminate

expf

72TDS 35500

'include <mathf.h>
float floorf(float x);

'include <stdio.h>
int fputc(int c, FILE *stream);

'include <mathf.h>
float fmodf(float x, float y);

'include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);

39

Odober 1992

Reads records from a file.

Freesanareaofmemo~

Opens a file that may already be open.

Reads formatted input from a file stream.

Transfers host memory to the transputer. MS-DOS only.

Frees host memory space allocated byalloc86.
MS-DOS only.

'include <dos.h>
void free86(pcpointer p);

Separates a floating point number into a fraction and an
integral power of 2.

'include <math.h>
double frexp(double value, int *exp);

Separates a floating point number of type float into a
fraction and an integral power of 2.

'include <mathf.h>
float frexpf(float value, int *exp);

'include <stdio.h>
size t fread(void *ptr, size t size, size_t nmemb

- FILE *stream); -

'include <dos.h>
int from86(int len, pcpointer there, char *here);

'include <stdlib.h>
void free(void *ptr);

'include <stdio.h>
FILE *freopen(const char *filename, const char *mode,

FILE *stream);

'include <stdio.h>
int fscanf(FlLE *stream, CODst char *format, ...);

Runtime library

fread

free

free86

freopen

frexp

frexpf

from host link Retrieve the channel coming from the host.

'include <hostlink.h>
Channel* from_host_link(void)

72TDS 355 00

from86

fscanf

I
~-) 9

I
@-'9

I
@-I~

I
~i~
t!1.

I
t!1.

I

~ ~

~ ~

t! ~

t! ~

.. -!t

.,~

I

t! ~

t! !l

E- ~

~ 4!}

~-~

~~. ~. ~.~-~

~--~

~ ~-~

,~~~

October 1992

Runtime library

float form of floor.

Calculates the floating point remainder of xly.

Opens a file.

Calculates the floating point remainder of xly.

Writes a formatted string to a file.

Writes a character to a file stream.

Writes a string to a file stream.

Calculates the largest integer not greater than the
argument.

'include <math.h>
double floor(double x);

'include <stdio.h>
FILE *fopen(const char *filename,

const char *mode);

'include <math.h>
double fmod(double x, double y);

38

'include <stdio.h>
int fputs(const char *s, FILE *stream);

filesize Determines the size of a file. File handling primitive.

'include <iocntrl.h>
long int filesize(int fd);

floor

floorf

fmod

fmodf

fopen

fprintf

fputc

72 lDS 35500

fputs

'include <stdio.h>
lonq int ftell(FILE *stream);

get_ bootlink_channels Obtains the channels associated with

the boot link.

'include <stdio.h>
int fseek(FILE *stream, lonq int offset,

int whence);

'include <bootlink.h>
int qet_bootlink_channels(Channel** in-ptr,

Channel** out-ptr

41

October 1992

Reads parameters from the configuration level. Applies

only to con-figured processes.

Gets a character from a file.

gets a character from s tdin

Returns a pointer to the string associated with a host

environment variable.

'include <stdlib.h>
char *qetenv(const char *name);

'include <misc.h>
int get_details_of_free_JDeJDOry (void** base_of_free_memory,

size_t* size_of_free_memory

'include <misc.h>
void *qet-param(int n);

'include <stdio.h>
int qetchar(void);

'include <stdio.h>
int qetc(FILE *stream);

'include <misc.h>
void get_details_of_free_stack_space (void** stack_limit""ptr,

size_t* remaining_stack_space....ptr)

'include <fnload.h>
int get code details from memory(const void* addr of file image,

- - - - fn info* fn details, - - -
size t* file hdr size,
loaded_fn""pt'i* fUnction....p0inter)

Runtime library

get_code_details_from_ memoryRetrieves details from the

image of a dynamically loadable file which is stored in internal memory .

get_details_of_free_memory Reports the details of memory

considered by the configurer to be unused.

get_details_of_free_stack_spaceReports the limits of

free space on current stack.

get""param

getc

getchar

72TDS 355 00

getenv

I
@J9

I
~~I 9

If! -19
I

~-I"

f! ..

f!1"
I

~J-"
I

f! ~

f! ~

.. !t

• !t· ~.. ~· ~
Ea ~

~ ~

~ ~

~~

~ ~

~-~

~-~

~-~

~ ~ ..~

e- ~J!t

October 1992

Runlime library

Sets the file position indicator to a specified offset.

Returns the position of the file position indicator for a file

stream.

Writes records from an array into a file.

Sets the file position indicator to an fpos_t value

obtained from fqetpos.

'include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

fseek

fsetpos

ftell

40

fwrite

'include <stdio.h>
size t fwrite(const void *ptr, size t size,

- size_t nmemb, FILE *stream);

get_code_details_from_channel Retrieves details from a

dynamically loadable file that is transmitted over a channel.

'include <fnload.h>
int qet_code_details_from_channel(Channel* in_channel,

fn_info* fn_details)

get_code_details_from_file Retrieves details from a

dynamically loadable file which is stored on disc.

'include <fnload.h>
int qet code details from file(const char* filename,

- - - - fn info* fn details,
size_t* file_hdr_size)

72TDS 355 00

#include <host.h>
void host_info(int *host, int *os, int *board);

#include <dos.h>
int int86(int intno, union REGS *inregs,

union REGS *outregs);

hal t -'processor Halts the processor

#include <misc.h>
void halt-processor(void);

43

October 1992

Tests whether a character is alphanumeric.

Tests whether a character is alphabetic.

Tests whether a character is a lower-case letter.

Tests whether a character is a control character.

Tests whether a character is printable (includes space).

Tests for a terminal stream.

Tests whether a character is a decimal digit.

Tests whether a character is printable (non-space).

#include <ctype.h>
int iscntrl(int c);

#include <ctype.h>
int isprint(int c);

#include <ctype.h>
int isgraph(int c);

'include <ctype.h>
int isalnum(int c) ;

MS-DOS interrupt with segment register setting. MS-DOS

only.

'include <dos.h>
int intdosx(union REGS *inregs,

union REGS *outregs,
struct SREGS *segregs);

'include <ctype.h>
int isalpha(int c);

'include <iocntrl.h>
int isatty(int fd);

'include <ctype.h>
int isdigit(int c);

'include <ctype.h>
int islower(int c);

72TDS 35500

Runtime library

intdosx

isalnum

isatty

isalpha

iscntrl

isdigit

isprint

islower

~ ~

@I~

~ ~

~--~

~ ~

~I~

~ ~

~I~

~ ~.. ~.

~ ~

~ ~

.. ~I

~ -!t'

E- ~I

~ ~

~ -!t

~ ~

(I ~

.j-~

I

.-~
I

.(~

I

~ ~
I

~~~
I

I

I

October 1992

Runtime library

Reads a character from the keyboard.

Reads a line from from stdin

Gets data about the host system.

Performs a MS-DOS software interrupt. MS-DOS only.

Performs an MS-DOS interrupt. MS-DOS only.

#include <iocntrl.h>
int getkey(void);

#include <stdio.h>
char *gets(char *s);

Converts a calendar time to a broken-down time.

expressed as a UTC time.

#include <time.h>
struct tm *gmtime(const time_t *timer);

Software interrupt with segment register setting. MS-DOS
only.

#include <dos.h>
int int86x(int intno, union REGS *inregs,

union REGS *outregs,
struct SREGS *segregs);

#include <dos.h>
int intdos(union REGS *inregs,

union REGS *outregs);

42

getk.ey

gets

gmtime

host info

int86

int86x

72TDS 35500

intdos



#include <mathf.h>
float ldexpf(float x, int exp);

'include <stdlib.h>
long int labs(long int j);

'include <ctype.h>
int isspace(int c);

'include <ctype.h>
int isupper(int c);

October 1992

Calculates the natural logarithm of the double argument.

Converts a calendar time into a broken-down time,
expressed as local time.

'include <time.h>
struct tm *localtime(const time_t *timer);

local time

log

'include <fnload.h>
loaded_fn-ptr load_code_from_file(const char* filename,

const fn info* fn details,
size t fIle hdr sIze,
void. dest)- -

localeconv Gets numeric formatting data for the current locale.

'include <locale.h>
struct lconv *localeconv(void);

Runtime library 45

'include <math.h>
double log(double x);

load_code_from_memory Transfers code from a dynamically
loadable file from one area of internal memory to another.

'include <fnload.h>
loaded_fn-ptr load_code_from_JDemory(const void* src,

const fn info* fn details,
size t fIle hdr sIze,
void. dest)- -

load code from file Transfers code from a dynamically

loadable file to internal memory.

logf Calculates the natural logarithm of a float number.

'include <mathf.h>
float logf(float x);

loglO Calculates the base-10 logarithm of the double
argument.

'include <math.h>
double log10(double x);

loglOf Calculates the base-10 logarithm of a float number.

'include <mathf.h>
float log10f(float x) ;

72TDS 355 00

I
@i~

@1~

@i~

@-r~

I
~i!§

~ !§
@ ~

~I~

~!~
- I

~_ i~

- I

~ I~

- I

~- !~
I

~ I

@1- I~
[

~- I~

- I

~ I~

~:
~ l~

~_ I

~ r>
~~
~~

I

~- ~

f~
~ - ::)

1-

~. ~

L~

October 1992

Runtime library

Tests to see if a character is a punctuation character.

Tests to see if a character is one which affects spacing.

Tests whether a character is an upper-case letter.

Calculates the absolute value of a long integer.

Tests to see if a character is a hexadecimal digit.

Multiplies a floating point number by an integer power of

two.

Multiplies a float number by an integral power of two.

Calculates the quotient and remainder of a long division.

ispunct

'include <ctype.h>
int isxdigit(int c);

'include <math.h>
double ldexp(double x, int exp);

'include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom) ;

'include <fnload.h>
loaded_fn-ptr load_code_from_channel(Channel* in_chann~l

const fn_info* fn_details, v01d* dest)

'include <ctype.h>
int ispunct(int c);

44

isspace

isupper

labs

isxdigit

ldexp

ldexpf

ldiv

load code from channel Receives the code block of a

dynamically loadable file 'from a channel and copies it into internal memory.

72 TDS 35500



'include <stdlib.h>
void *malloc(size_t size);

'include <stdlib.h>
int mblen(const char *s, size_t n);

'include <setjmp.h>
void longjmp(jmp_buf env, int val);

'include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

47

October 1992

Two-dimensional block move of non-zero bytes.

Copies characters from one area of memory to another.

Fills a given area of memory with the same character.

Converts a broken-down time into a calendar time.

Splits a double number into fractional and integral parts.

Two-dimensional block move.

Copies characters from one area of memory to another

(no memory overlap allowed).

'include <string.h>
void *memcpy(void *sl, const void *s2, size_t n);

'include <strinq.h>
void *memmove(void *sl, const void *s2, size_t n);

'include <strinq.h>
void *memset(void *s, int c, size_t n);

'include <time.h>
time_t mktime(struct tm *timeptr);

Splits the float argument into fractional and integral

parts.

'include <mathf.h>
float modff(float value, float *intptr);

Runtime library

memcpy

memmove

'include <misc.h>
void Move2D(const void *src, void *dst, int width,

int nrows, int srcwidth, int dstwidth);

'include <misc.h>
void Move2DNonZero(const void *src, void *dst, int width,

int nrows, int srcwidth, int dstwidth) ;

'include <math.h>
double modf(double value, double *intptr);

memset

mktime

modf

modff

Move2D

7210835500

Move2DNonZero

Move2DZero Two-dimensional block move of zero bytes.

'include <misc.h>
void MOve2DZero(const void *src, void *dst, int width,

int nrows, int srcwidth, int dstwidth);

r­
@ •

~ .
~ .
@ •

~ .
~ .
~. I •

~ .
~ ~.. ~. ~

~-!t

"-!t
.. ~

.E- ~

.. .~

.. ~

~ .~

I" ~
'.. -~

.-~

'~-I~

~~~

~~~~

October 1992

Runtime library

Performs a non-local jump to the given environment.

Allocates an area of memory.

Converts multibyte sequence to wchar_t sequence.

Determines the number of bytes in a multibyte character.

Converts multibyte character to type wchar_ t.

Compares characters in two areas of memory.

Repositions the current file position. File handling

primitive.

'include <iocntrl.h>
int lseek(int fd, long int offset, int origin);

Finds first occurrence of a character in an area of

memory.

'include <string.h>
void *memchr(const void *s, int c, size_t n);

'include <string.h>
int memcmp(const void *sl, const void *s2,

size_t n);

'include <stdlib.h>
size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

46

longjmp

lseek

malloe

max_staek_usage Report runtime stack usage.

'include <misc.h>
long max_stack_usage(void);

mbstowes

mblen

mbtowe

memchr

72 TDS 35500

memcmp



ProcAllocClean Cleans up after a process setup using ProcAlloc.

'include <process.h>
Process *ProcAlloc(void (*func) (),

int wsize, int param_words, ... );

'include <stdio.h>
void perror(const char *s);

#include <iocntrl.h>
int open(char *name , int flags);

49

October 1992

Waits for input on one of a number of channels.

Changes process arguments.

Starts a group of processes in parallel.

Sets up a parallel process.

Waits for a number of asynchronous processes to

terminate.

'include <process.h>
void ProcParam(Process *p, ... );

'include <process.h>
int Proclnit(Process *p, void (*func) (), int *ws,

int wsize, int param_words, ... );

'include <process.h>
void ProcPar(Process *p1, ... );

'include <process.h>
int ProcAlt(Channel *c1, ... );

'include <process.h>
int ProcJoin(Process *p1, ... );

'include <process.h>
int ProcAltList(Channel **clist);

'include <process.h>
void ProclnitClean(Process *p);

'include <process.h>
int ProcGetPriority(void);

'include <process.h>
int ProcJoinList(Process **p);

72TDS 355 00

Runtime library

ProcAlt

ProcGetPriority Returns the priority of the calling process.

ProcAltLis t Waits for input on one of a list of channels.

ProcJoin

Proclnit

ProcParam

ProclnitClean Cleans up after a process set up using Proclnit.

ProcJoinList Waits for a number of asynchronous processes to

terminate.

ProcPar

I@-,

@ •

@ •

@ •

@ ..

@ ..

@I~

@ ..

~ ..
~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

~-~

~~

~ ~

~-,

~ ~

~-,

~~~

l!-~~

October 1992

Runtime library

Opens a file stream. File handling primitive.

Writes an error message to standard error.

Gets a character from the keyboard.

Calculates x to the power y.

Calculates x to the power of y where both x and y are

floats.

Writes a formatted string to standard output.

Blocks a process until a specified transputer clock time.

Allocates the space for and sets up a parallel process.

'include <process.h>
void ProcAllocClean(Process *p);

'include <iocntrl.h>
int pollkey(void);

'include <math.h>
double pow(double x, double y);

'include <process.h>
void ProcAfter(int time);

'include <mathf.h>
float powf(float x, float y);

'include <stdio.h>
int printf(const char *format , ...);

48

open

perror

pollkey

pow

powf

printf

ProcAfter

ProcAlloc

72TDS 355 00

ProcSkipAltLi s t Checks a list of channels for ready input.

'include <process.h>
int ProcSkipAltList(Channel **clist);

ProcPri Par Starts a pair of processes at high and low priority.

'include <process.h>
void ProcPriPar(Process ·phigh, Process *plow)

72TDS 35500

50 51

October 1992

Adds two transputer clock values.

Checks input channels with time out.

Determines the transputer clock time.

Suspends a process for a specified time.

Writes a character to a file stream.

Writes a character to standard output.

'include <process.h>
int ProcTime(void);

'include <process.h>
int ProcTimeAfter(const int time1, const int time2);

'include <process.h>
int ProcTimeMinus(const int time1, const int time2);

'include <process.h>
int ProcTimePlus(const int time1, const int time2);

'include <process.h>
int ProcTimerAlt(int time, Channel *c1, ...);

'include <process.h>
int ProcTimerAltList(int time, Channel **clist)

'include <process.h>
void ProcWait(int time);

'include <stdio.h>
int putc(int c, FILE *stream);

'include <stdio.h>
int putchar(int c);

Runtime library

ProcTime

ProeTimeAfter Determines the relationship between clock values.

ProeTimeMinus Subtracts two transputer clock values.

ProeTimePlus

ProeTimerAlt

ProcTimerAl tListChecks a list of channels for input with time out.

ProeWait

72TDS 355 00

putc

putchar

I
4!~1 ..

I
~-I",

~-I.
I

@-, ..

I
@, ..

I

~I"
I

@_I"
I

@I"
I

@ ..

@ ~

~ ~

~ ~

@ ~

~ ~

~ ~

~ .
~_.~

ea~

ea ~

~.-.

~-~

e-.
ea~ ..
~~~

October 1992

Runtime library

Starts a process at the current priority.

De-schedules a process.

ProcParLis t Starts a group of parallel processes.

'include <process.h>
void ProcParList(Process ••plist);

ProcReschedule Reschedules a process.

'include <process.h>
void ProcReschedule(void);

'include <process.h>
void ProcRun(Process .p);

'include <process.h>
void ProcRunLow(Process .p);

'include <process.h>
void ProcRunHigh(Process .p);

'include <process.h>
void ProcStop(void);

ProcRun

ProcRunHigh Starts a high priority process.

ProcRunLow Starts a low priority process.

ProcSkipAl t Checks specified channels for ready input.

'include <process.h>
int ProcSkipAlt(Channel .c1, ... );

ProcStop



'include <iocntrl.h>
int read(int fd, char *buf, int n);

'include <stdio.h>
int rename(const char *old, const char *new);

'include <stdlib.h>
int rand(void);

'include <stdio.h>
int remove(const char *filename);

53

October 1992

Sets/queries action taken by abort.

Controls file buffering.

Acquires a semaphore.

Releases a semaphore.

Initializes an existing semaphore.

Allocates and initializes a semaphore.

Reads host processor segment registers. MS-DOS only.

Reads formatted data from standard input.

72TDS 35500

'include <stdio.h>
void setbuf (FILE *stream, char *buf);

'include <misc.h>
int set_abort_action(int mode);

'include <semaphor.h>
void SemWait(Semaphore *sem);

'include <semaphor.h>
Semaphore *SemAlloc(int value);

'include <semaphor.h>
void SemSignal(Semaphore *sem);

'include <stdio.h>
int scanf(const char *format , ... );

'include <dos.h>
void segread(struct SREGS *segregs);

'include <semaphor.h>
void SemInit(Semaphore *sem, int value);

setbuf

set abort action

server_transaction Calls any iserver function.

'include <iocntrl.h>
int server transaction(char *message, int length,

- char *reply);

SemWait

SemSignal

Semlnit

segread

Runtime library

SemAlloc

scanf

@ •

~ .
~I"
@, ..

I

~ ..
~- ..
~- ..
~ ..
~ ..
~ ~

~ ~

~ ~

~i~
I
I

~ -~ ~

~!~
I

~: ..
I

~i~

~I~

~!~

~I~

~ ~

erl~
ea]~

I

e-J~
,

October 1992

Runtime library

Writes a line to standard output.

Forces a pseudo-exception via a signal handler.

Generates a pseudo-random number.

Reads bytes from a file. File handling primitive.

Changes the size of an object previously allocated using

malloc, calloc or realloc.

Removes a file.

Sets the file position indicator to the start of a file stream.

Renames a file.

'include <stdio.h>
int puts (const char *s);

'include <stdio.h>
void rewind(FILE *stream);

'include <stdlib.h>
void *realloc(void *ptr, size_t size);

'include <signal.h>
int raise(int sig);

52

puts

qsort Sorts an array of objects.

'include <stdlib.h>
void qsort(void *base, size t nmemb, size t size,

int (*compar) (const void *, const void *»;

raise

rand

read

realloc

remove

rename

72TDS 35500

rewind



'include <mathf.h>
float sinf(float x);

'include <mathf.h>
float sinhf(float x);

'include <stdio.h>
int setvbuf(FlLE *stream, char *buf, int mode,

size_t size);

55

October 1992

Calculates the square root of the argument.

Calculates the square root of the float argument.

Sets the seed for pseudo-random numbers generated by
rand.

Reads formatted data from a string.

Appends one string to another.

Finds the first occurrence of a character in a string.

Compares two strings.

Copies a string into an array.

'include <math.h>
double sqrt(double x);

'include <mathf.h>
float sqrtf(float x) ;

Compares two strings (transformed according to the

program's locale).

'include <string.h>
int strcoll(const char *sl, const char *s2);

'include <string.h>
char *strchr(const char *8, int c);

'include <string.h>
char *strcat(char *sl, const char *s2);

'include <stdio.h>
int sscanf(const char *s, const char *format , ... );

'include <stdlib.h>
void srand(unsigned int seed);

'include <string.h>
int strcmp(const char *sl, const char *s2);

'include <string.h>
char *8trcpy(char *81, const char *82);

Runtime library

sqrt

sqrtf

srand

sscanf

strcat

strchr

strcmp

721DS 35500

strcoll

strcpy

October 1992

Runtime library

Defines the way that a file stream is buffered.

Calculates the sine of a float number.

Calculates the hyperbolic sine of a float number.

Writes a formatted string to another string.

54

setjmp Sets up a non-local jump.

'include <setjmp.h>
int setjmp(jmp_buf env);

setlocale Sets or interrogates part of the program's locale.

'include <locale.h>
char *setlocale(int category, const char *locale);

'include <stdio.h>
int sprintf(char *s, const char *format, ... );

setvbuf

signal Defines the way that errors and exceptions are handled.

'include <signal.h>
void (*signal(int sig, void (*func) (int») (int);

s in Calculates the sine of the argument.

'include <math.h>
double sin(double x);

sinf

sinh Calculates the hyperbolic sine of the argument.

'include <math.h>
double sinh(double X)i

sinhf

sprintf

7210835500



'include <string.h>
int strncmp(const char *sl, const char *s2, size_t n);

'include <string.h>
size_t strlen(const char *s);

s trerror Maps an error number to an error message string.

'include <string.h>
char *strerror(int errnum);

57

October 1992

Finds the last occurrence of a given character in a string.

Finds the first occurrence of one string in another.

Converts a delimited string into a series of string tokens.

'include <string.h>
char *strrchr(const char *s, int c);

Counts the number of characters at the start of a string

which are also in another string.

'include <string.h>
size_t strspn(const char *sl, const char *s2);

'include <string.h>
char *strstr(const char *sl, const char *s2);

Converts the initial part of a string to a double and saves a

pointer to the rest of the string.

'include <stdlib.h>
double strtod(const char *nptr, char **endptr);

'include <string.h>
char *strtok(char *sl, const char *s2);

Converts the initial part of a string to a long int and
saves a pointer to the rest of the string.

'include <stdlib.h>
long int strtol(const char *nptr,

char **endptr, int base);

Converts the initial part of a string to an

unsigned long int and saves a pointer to the rest of

the string.

'include <stdlib.h>
unsigned long int strtoul(const char *nptr,

char **endptr, int base);

Transforms a string according to the locale and copies it

into an array (up to a maximum number of characters).

'include <string.h>
size_t strxf~(char *sl, const char *s2, size_t n);

Runtime library

strrchr

strspn

strstr

strtod

strtok

72TDS 355 00

strtol

strtoul

strxfrm

@-.
f! •

f!1~
@-I~

I

~i~

~i~

~i~

~i~
~I~

- I

~i~
~'I~

I

~i~

~i~

~i~
el~

~I~

~ ~

f!ti~

~i~
~ ~

~ ~

~I~
@ ~, ~

I

f!a~~
I

October 1992

Runtime library

Calculates the length of a string.

Compares the first n characters of two strings.

Counts the number of characters at the start of a string

which do not match any of the characters in another
string.

'include <string.h>
size_t strcspn(const char *sl, const char *s2);

Does a formatted conversion of a broken-down time to a
string.

'include <time.h>
size_t strftime(char *s, size_t maxsize,

const char *fo~t,

const struct tm *timeptr);

Appends one string onto another (up to a maximum
number of characters).

'include <string.h>
char *8trncat(char *81, con8t char *s2, size_t n);

Copies a string into an array (to a maximum number of

characters).

'include <string.h>
char *strncpy(char *sl, const char *s2, size_t n);

Finds the first character in one string present in another

string.

'include <string.h>
char *strpbrk(const char *sl, const char *s2);

56

strcspn

strftime

strlen

strncat

strncmp

strpbrk

strncpy

72TDS 35500



72TDS 35500

'include <hostlink.h>
Channel* to_host_link( void)

59

October 1992

Transfers transputer memory to the host. MS-DOS only.

Converts upper-case letter to its lower-case equivalent.

Converts lower-case letter to its upper-case equivalent.

Pushes a character back onto a file stream.

Deletes a file.

Cleans up after accessing variable arguments.

'include <dos.h>
int to86(int len, char *here, pcpointer there);

Accesses a variable number of arguments in a function

definition.

'include <ctype.h>
int tolower(int c);

'include <ctype.h>
int toupper(int c);

'include <stdio.h>
int ungetc(int c, FILE *stream);

'include <iocntrl.h>
int unlink(char *name);

'include <stdarg.h>
type va_arg(va_list ap, type);

'include <stdarg.h>
void va_end(va_list ap);

Initializes a pointer to a variable number of function

arguments in a function de'finition.

'include <stdarg.h>
void va_start(va_list ap, parmN);

An alternative form of fprintf. Which accepts a variable

argument list in va_list form.

'include <stdio.h>
int vfprintf(FILE *stream, const char *format ,

va_list arg);

Runtime library

to86

tolower

toupper

ungetc

unlink

va end

72 TDS 355 00

va start

vfprintf

October 1992

Retrieve the channel going to the host.

Runtime library

Passes a command to host operating system for
execution.

Calculates the tangent of the argument.

Calculates the tangent of a float number.

Calculates the hyperbolic tangent of the argument.

Calculates the hyperbolic tangent of a float number.

Creates a temporary binary file.

Creates a unique filename.

Reads the current time.

'include <stdio.h>
FILE *tmpfile(void);

'include <time.h>
time_t time(time_t *timer);

'include <stdio.h>
char *tmpnam(char *s);

'include <math.h>
double tan (double x);

'include <mathf.h>
float tanhf(float x);

'include <mathf.h>
float tanf(float x);

'include <math.h>
double tanh (double x) ;

'include <stdlib.h>
int system(const char *string);

tan

system

tanf

58

tanh

tanhf

time

tmpfile

tmpnam

to host link



'include <stdlib.h>
int wctomb(char *s, wchar_t wchar) i

'include <stdlib.h>
size_t wcstombs(char *s, const wchar_t *pWC8, size_t n)i

Runtime library

Converts wchar_t sequence to multibyte sequence.

Converts type wchar_t to multibyte character.

Writes bytes to a file. File handling primitive.

An alternative form of printf. Which accepts a variable

argument list in the form of a va_list.

'include <stdio.h>
int/vprintf(const char *format , va_list arg);

An alternative form of sprintf. Which accepts a variable

argument list in the form of a va_li8t.

'include <stdio.h>
int vsprintf(char *8, const char *format,

va_list arg);

60

vprintf

vsprintf

wcstombs

wctomb

write

'include <iocntrl.h>
int write(int fd, char *buf, int n)i

~_I

72T05 35500 October 1992


	Contents
	Preface
	Host versions
	Toolset documentation set
	Documentation conventions

	ANSI C toolset
	Standard file extensions
	Tools
	icc - ANSI C compiler
	icconf - configurer
	icollect - code collector
	idebug - network debugger
	idump - memory dumper
	iemit - memory interface configurer
	ieprom - EPROM program convertor
	ilibr - librarian
	ilink - linker
	ilist - binary lister
	imakef - Makefile generator
	imap - memory mapper
	iserver - server/loader
	isim - T425 simulator
	iskip - skip loader

	Transputer targets - options for icc & ilink
	Debugger commands
	Debugger symbolic functions
	Debugger monitor page commands

	Simulator commands
	Runtime Library



