occam 2.1 Toolset
User Guide

ST i

August 1995

© SGS-THOMSON Microelectronics Limited 1995. This document may not be copied, in whole or in part,
without prior written consent of SGS-THOMSON Microelectronics.

®
a ®
, iNMOSs , IMS, occam and DS-Link® are trademarks of SGS-THOMSON Microelectronics
Limited.

7.

e

s is a registered trademark of the SGS-THOMSON Microelectronics Group.
Windows is a trademark of Microsoft Corporation.

This product incorporates innovative techniques which were developed with support from the European
Commission under the ESPRIT Projects:

¢ P2701 PUMA (Parallel Universal Message-passing Architectures)

* P5404 GPMIMD (General Purpose Multiple Instruction Multiple Data Machines).
¢ P7250 TMP (Transputer Macrocell Project).

¢ P7267 OMI/STANDARDS.

Document Number: 72 TDS 366 02

Contents overview

Basics

1

Introduction to

An introduction to transputers and transputer

transputers programming.
2 | Overview of the An introduction to the occam 2.1 toolset and its
toolset features including descriptions of the tools provided.
3 | Getting started Shows the command sequences to generate a
simple occam 2.1 program using the toolset.
4 | Developing programs | An overview of the program development cycle using
for the transputer the toolset.
5 |An example program |Describes an example program for a single
transputer, showing how it is built and run.
6 | Programming in Gives further information on program development,
occam assuming a single transputer target.
7 | Configuring Describes the configuration language and how to
transputer programs | use it to configure software on transputer networks.
8 | Loading application Describes how to load programs onto the target
programs transputer network.
9 |Access to host Describes the access to host i/o using the libraries.
services

Advanced techniques

10 |Advanced use of the |Describes additional facilities provided by the
configurer configurer.

11 | Mixed language Describes how to mix C and occam code at source
programming and configuration levels.

12 |Low level Describes techniques such as code insertion,
programming dynamic code load and extraordinary use of links.

13 | EPROM programming | Describes converting a program into EPROM code.

14 | ST20450 memory Describes how to configure the memory interface of
interface configuration | the ST20450.

15 | Performance Describes how to maximize the performance of
improvement occam transputer programs.

Appendices

A | Equivalent data types |Lists type equivalents in C and occam.

B | Transputer code Defines the assembly code insertion facilities.
insertion

C | Glossary A glossary of terms. _

D | Bibliography Lists literature and documentation for further reading.

£ SGS-THOMSON
Y/, MICROELECTRONIGS

Contents overview

ESGSTH

®

MICROELECTRONICS

Contents

CoNtents OVEIVIBWcciiiiiicneieeninnsssiessssscannssnnnnssans i
Contentscciiiiiiiiiiiiiii i iiiti st s e st a s iii
o = £ T vii
Part 1: Basics ceeees creerrenaaes ceienn Creeerrreaas 1
1 Introductiontotransputerscociiiiiiiiiiiii it es 3
1.1 L= 1] 1] (=Y £ 3
1.2 Programming modelscoiiiiiiiiiiiiiiiiii e 6
1.3 Transputer productscoiiiiiiiii i i 6
2 Overviewofthetoolsetcoiiiiiiiiiiiiiiiiiiiinnness 9
2.1 Introduction ...t 9
2.2 Toolsetfeaturesccoiiiiiiiiii it 9
2.3 Standard objectfileformat i, 10
2.4 occam2.icompiler ...ttt e i 10
25 Multi-language linker 12
2.6 Configuration systemoiiiiiiiiiiiiiiiiiiiiiie 12
2.7 Mixed language programmingccovviinenninnnneennn. 13
2.8 Toolset SUMMArYviiiiiiii i i 13
3 Gettingstartedccoiiiiiiiii i it e, 15
3.1 Introduction ...t e e 15
3.2 Runningtheexamplesccoiiiiiiiiiiniiiinenn. 15
3.3 The example programovvvitiii ittt iinnes 16
3.4 Compiling and linking for other transputer types 20
35 Using the Makefile generator e 21
4 Developing programs for the transputer00ee, 23
4.1 Program development using the toolsets 23
4.2 Compiling ... 27
4.3 Tools for building executablecode 28
4.4 Loading and running programscoihiiiiiiiiiiean 31
4.5 Program developmentand supportc.coiiiiiiinn 32
4.6 EPROM programmingc.coiiiiiiiiiiininnininnneinnns 33
4.7 Mixed language programmingccoeeeiiiininnnnneennns 33
4.8 File types and filename extensions 34
49 Errorreportingoiiiiiiiiii e 37
410 Hostdependenciesoiiiiiiiiiiiiiiiiiiiiiiiee 37
4.1 Unsupported optionsccoiiiiiiiiii ittt i 40

£ SGS-THOMSON
Y/, ICROELECTROMICS

2 Overview of the toolset

Directives supported are #INCLUDE, #USE, #COMMENT, #IMPORT, #OPTION and
#PRAGMA. #PRAGMA supports a number of compiler-dependent functions, including
foreign language code import and name translation. These are fully described in section
3.13 of the Toolset Reference Manual.

Other language extensions supported by the compiler are:
¢ assembly code insertion;
¢ memory placement;
¢ extended channel retyping.
See Appendix A of the occam 2.1 Toolset Language and Libraries Reference Manual
for details.
2.4.3 occam libraries

A comprehensive set of libraries and include files is supplied with the toolset. They
include the compiler libraries which form part of the standard support for the occam
language and a set of user libraries for use by the applications programmer.

The compiler libraries are used internally by the compiler; they are not intended for
general use by the programmer, although some routines have been made visible (see
Chapter 2 in the occam 2.1 Toolset Language and Libraries Reference Manual). The
compiler automatically loads the correct set of routines for the selected error mode and
transputer type. Compiler libraries are specified to the linker by means of target-specific
linker indirect files; see section 4.3.1.

The user libraries provide application-level support. There are libraries to support:
¢ single length, double length, and T4-optimized maths;
e file-based and stream-based i/o;
e string handling;
* type conversion;
e link error handling;
¢ CRC coding;
¢ debugging.
Constants and definitions are supplied in include files. See the occam 2.1 Toolset
Language and Libraries Reference Manual for details.
2.4.4 Low level programming

Sequences of transputer instructions can be embedded in 0ccam code using the AsM
construct. This can be useful for optimizing critical sections of code, but the facility
should not be over used because it reduces the compiler’s opportunity to check code.

11

£ SGS-THOMSON
Y7, iCRoELECTRONIGS

2.5 Multi-language linker

A setof procedures is provided which enables a separately compiled and linked occam
procedure to be loaded and called at run-time and incorporated in a running occam
program. This facility is aimed at experienced toolset users.

Full descriptions of these facilities are given in Chapter 12.

2.5 Multi-language linker

The toolset linker takes compiled code and libraries and generates a linked unit in
TCOFF format. Input code can be generated by any compiler which generates TCOFF
code, for example, the ANSI C compiler icc. Linker indirect files (command scripts to
the linker) may be used to specify operations to the linker; for example, as in the linker
indirect files provided with the toolset for referencing the compiler libraries; see section
4.3.1.

Linker directives, which must be referenced using linker indirect files, may be used to
modify the content of the linked unit. Linker directives are described in section 10.4 of
the Toolset Reference Manual.

2.6 Configuration system

The configurer occonf generates configuration information for transputer networks
from a textual configuration description containing separate descriptions of hardware
and software. Mapping of software to hardware is performed according to a mapping
description written by the user, while the mapping of channels to links can be performed
automatically by the configurer or be specified by the user.

The tool prepares the program for configuring on a specific arrangement of transputers
by analyzing the configuration file and creating a configuration data file for the code
collector tool to read. The code collector then generates the program image which may
be loaded onto the hardware.

The configuration language used to write the configuration description is an extension
of occam. It allows software and hardware networks to be described separately and
joined by an optional software-to-hardware description. The language is a simple
declarative language incorporating high-level constructs such as replication and condi-
tional statements.

2.6.1 Software routing and multiplexing

The configurer uses software routing and multiplexing software to implement channel
communication over virtual links. This allows many virtual channels to use a single
physical link between processors and enables processes on non-adjacent processors
to communicate directly.

Software routing and multiplexing is performed automatically by the configurer and
requires no intervention on the part of the programmer. Generally, existing configuration

12 -THOMSON
I’I@ 5

2 Overview of the toolset

code can be reused - virtual routing will be employed where required unless virtual
routing is specifically disabled by the configurer NV option.

2.6.2 Code and data placement

Normally, the configurer will use up the available memory accessible to a processor by
allocating the various parts of the application from the lowest address upwards.
However, it is sometimes necessary to specify exactly where a piece of code or data
should reside. The configurer allows the user to state where the code, workspace
(stack) or vectorspace of an occam program must be placed in memory.

The transputer has some very fast RAM which the application may be required to use
in a special way. The configurer can also be told to avoid this area of memory so that
the user has free access to it.

2.7 Mixed language programming

The use of standard TCOFF format allows compiled and linked modules from different
language sources e.g. C and occam, to be mixed in the same system. Individual linked
units in TCOFF format can be mixed in any combination and placed on any processor
in the network.

Calling modules written in other languages is also possible. For example, occam can
call C by using library routines to set up and terminate the static and heap areas. C can
call occam using the IMS_nolink pragma which directs the C code to be compiled
without a static base parameter, or a dummy static base parameter can be declared in
the occam code.

In all mixed language calls, parameters and return values passed must be of the correct
type. Lists of type equivalents between C, and occam are given in chapter 11. Where
character sets differ between languages, translate pragmas available in the compilers
can be used to create acceptable aliases.

2.8 Toolset summary
The components of the toolset, excluding the INQUEST tools, are summarized in

table 2.1. Descriptions of the tools can be found in chapter 4 which also describes the
main stages of program development.

13

£ SGS-THOMSON
Y/, NMICROEUECTRONICS

2.8 Toolset summary

Tool Description

icollect |The toolset code collector. Collects linked units into a single file for loading on a
transputer network. Takes as input a configuration data file or a single linked unit.

iemit The transputer memory configuration tool. Used for evaluating and defining memory
configurations for later incorporation into ROM programs.

ieprom The EPROM program formatter tool. Formats transputer bootable code for input to
ROM programmers.

ilaunch The Windows launch tool. Used for setting Windows environment parameters.

ilibr The toolset librarian. Builds libraries of compiled code.

ilink The toolset linker. Resolves external references and links separately compiled units
into a single file.

ilist The binary lister. Disassembles and decodes object code and displays information in a
readable form.

imakef The Makefile generator. Generates Makefiles for input to make programs.

imap The map tool which gives the addresses of functions and variables used by the
program.

imemd 50 The memory configuration tool for T450 targets. Used for evaluating and defining the
memory configuration.

irun The application loader. Used for loading built programs onto the target.

iset The Windows parameter tool. Used for setting Windows environment parameters.

oc The occam 2.1 compiler. Compiles code for the current range of transputers.

occonf The occam configurer. Reads a configuration description and produces a

configuration data file for the code collector.

14

Table 2.1 The occam 2.1 toolset

£ SGS-THOMSON
Y/, NVICROELECTROMICS

3 Getting started

This chapter contains a tutorial that shows you how to compile, link, and run a simple
example program on a single transputer.

A more complex programming example illustrating separate compilation can be found
in chapter 5. A detailed description of program development is given in chapter 4.
chapter 7 provides examples of multi-transputer programming.

3.1 Introduction

In order to create and run a transputer executable file, the following steps must be
followed:

1 The source files are compiled with the occam 2.1 compiler. The compiler
creates from each source file an object file.

2 The object files are linked together along with any libraries required, to create
a file known as a linked unit. Each linked unit contains the code and data neces-
sary to execute as a main program.

3 The linked units are then configured onto a transputer network and collected to
create a bootable program. In the case of a single program on a single trans-
puter, there is a short cut available here. However, it is strongly recommended
that development is made by using the full facilities of the configurer. The
INQUEST tools do not support unconfigured programs, and there are many
other advantages to configuring which will become apparent as the procedures
are described.

4 The program is then loaded and run from the host by using irun. The bootable
program contains everything necessary for execution on the transputer network
and it will start automatically after it has been loaded.

3.2 Running the examples

In the following examples, the programs are compiled and executed on a single IMS
T425 with 1Mbyte of memory available. If you have a different model of transputer, then
you should make the necessary changes to the command lines and configuration file
as indicated. Command line options for specifying other transputer types are listed in
appendix B of the Toolset Reference Manual.

The examples assume the existence of

e an environment variable TRANSPUTER which defines the name of a connection
to a target network on which to load the program, and

. 15
by, 255 THONSN

3.3 The example program

e an AServer database file to define that connection.

See the Delivery Manual which accompanies this toolset and the irun documentation
(chapter 15 of the Toolset Reference Manual) for more details.

The examples also assume the existence of the environment variable ISEARCH, which
gives the tools a search path to find libraries and include files which are not in the current
directory. See the Delivery Manual for details.

The tutorial assumes that you have a boot from link board. If you have a boot from ROM
board or other non-standard hardware, refer to the manufacturer’s documentation.

3.2.1 Sources

Source files for the example used in this chapter are supplied with the toolset under the
examples directory.

3.3 The example program

The example program is contained in the file simple.occ. simple.occ reads aname
from the keyboard and displays a greeting on the screen. The program uses the library
hostio.1lib and the include file hostio. inc. The configuration description is in the
file simple.pgm.

The program is listed below with line numbers.

1. #INCLUDE “hostio.inc” -- contains SP protocol
2. PROC simple (CHAN OF SP fs, ts)

3 #USE ”hostio.lib”

4, [1000]BYTE buffer :

5. BYTE result:

6. INT length:

7

8

SEQ
so.write.string (fs, ts,
”"pPlease type your name :”
9. so.read.echo.line (fs, ts, length, buffer, result)
10. so.write.nl (fs, ts)
1. so.write.string (fs, ts, "Hello ”)
12. so.write.string.nl (fs, ts,
[buffer FROM 0 FOR length])

13. so.exit (£s, ts, sps.success)

14. :

Line 1 in the program includes the file hostio. inc. This file contains the definition of
the protocol sPp, used to communicate with the host file server, and a number of
constants that are used in conjunction with the host i/o library. This line must be the first
line because line 2 refers to the sP protocol defined in hostio. inc.

The procedure simple is then declared. All the working code is contained within this
procedure. The host i/o library hostio.1lib is referenced by the #USE directive in

16

£ SGS-THOMSON
Y/, MICROELECTRONICS

3 Getting started

line 3. This library contains all the procedures used by the program. See chapter 4 in
the occam 2.1 Toolset Language and Libraries Reference Manual for descriptions of
these routines.

Before the body of the procedure, a number of variables are declared. buffer holds
the input string, 1ength refers to the number of characters in the name read from the
keyboard, and result is used by the library routine to indicate whether or not the read
was successful. The result is ignored by this example for the sake of simplicity; it is
assumed that screen writes and keyboard reads always succeed. The working code is
contained within a SEQ, indicating that the statements which follow are to be executed
sequentially. All of the statements are calls to library routines in hostio.1ib. The code
prompts for a name on line 8, reads the name from the keyboard on line 9, and displays
a greeting on the screen in lines 11 and 12.

The last statement, on line 13, calls a library procedure which terminates the host file
server, returning control to the host operating system. Without this statement the
program would finish and appear to hang, and the server would have to be terminated
explicitly by interrupting from the keyboard.

3.3.1 Compiling the program

In order to compile the program for an IMS T425 use the following command line:

oc simple -t425

The compiler performs the necessary syntax, alias and usage checks, inserts code to
perform run-time error checking, and creates a file called simple.tco. Because the
source file has the default extension of .oce you can omit the extension on the
command line.

The target processor is given as an IMS T425; for information about compiling for other
transputer types, see section 3.4.

By default, the compiler enables interactive debugging with INQUEST and compiles the
program in HALT mode; see chapter 3 of the Toolset Reference Manualfor a description
of the modes.
3.3.2 Linking the program
To use the result of your compilation it must be linked with the libraries that it uses.
To link the program type:

ilink simple.tco hostio.lib -t425 -f occama.lnk
This program uses hostio.lib and various target-specific compiler libraries.

hostio.lib is directly specified on the command line. The correct compiler libraries
are referenced in the linker indirect file occama . 1nk which is specified by the F option.

X 17
Ly7. 253 THOME0N

3.3 The example program

The F option introduces a linker indirect file which is used to link in the correct compiler
libraries. For more details see chapter 10 in the Toolset Reference Manual. If interactive
debugging were required then the debugging libraries should be linked in, as described
in the INQUEST User and Reference Manual.

It is necessary to specify to the linker what the transputer target is. The toolset can
produce code for a range of transputers and the linker must then be told which the actual
target will be. In this example the chosen target is an IMS T425.

The linked program will be written to the file simple. 1ku. As no output file is specified,
the file is named after the input file and the default link extension . 1ku is added. By
default the program is linked in HALT mode.

In more complex programs, libraries may be dependent on other files and libraries. To
ensure all necessary libraries are linked into a program, the imake £ tool may be used
with a suitable make program, as described in section 3.5.

3.3.3 Configuring the program

In order to configure the program, a description is required of the network it is to run on.
The file simple.pgm contains such a description.

You should look at this file and edit it if it does not correspond to the hardware you
actually have. For example check which link is connected to the host, the transputer
type, and memory size.

The file simple.pgm contains the following:

NODE p :
ARC hostarc :
NETWORK
DO
SET p(type, memsize := ”T425”, 1024 * 1024)
CONNECT p[link] [0] TO HOST WITH hostarc

#INCLUDE “hostio.inc”
#USE ”simple.lku”

CONFIG
CHAN OF SP fs, ts :
PLACE fs, ts ON hostarc :
PROCESSOR p
simple(fs, ts)
In order to configure the application for the network, the configurer is invoked as follows:

occonf simple.pgm

18

£ SGS-THOMSON
Y/, MICROELECTRONICS

3 Getting started

This produces a file called simp1le . c£b which contains all the information about where
the different parts of the program are to be placed.

3.3.4 Collecting the program

The final build stage is to collect all the parts of the program with the bootstrap and
loading and routing code and combine them into a file which can be loaded onto the
transputer for execution. This is done by the collector tool icollect. The collector is
invoked as follows:

icollect simple.cfb

The result is the executable bootable file simple.btl.

3.3.5 Running the program on a transputer board

To load the bootable file onto a transputer board and run it, use the application loader
tool irun.

On a Sun, the irun command line can be entered at a SunOS prompt. On a PC running
Windows, the irun command may be entered on the command line of a DOS window
if ilaunch is running. Alternatively irun may be started in the normal Windows
manner using the file manager Run.. command or an icon.

The irun command line is:
irun simple.btl

The connection to the transputer board is taken from the TRANSPUTER environment
variable.

The command line specifies the file to be booted. The command has the effect of
resetting the target network, opening communication between the host and the target,
and loading the program onto the target network. For further information about irun
options see chapter 15 in the Toolset Reference Manual.

Figure 3.1 shows an example of the screen display obtained by running simple.bt1l
for a user called John. v

Please type your name :John
Hello John

Figure 3.1 Example output produced by running simple.bt1l

3.3.6 A short cut to creating a bootable file

For single-transputer programs booted from transputer links attached to a host, an
alternative method can be used to create the .bt1 file. This method is not applicable

o7 SGS-THOMSON 19
Y/, MICROELESTRONICS

3.4 Compiling and linking for other transputer types

to stand-alone systems nor to systems which boot from ROM, and requires the program
to be contained within a single linked unit. The INQUEST debugger cannot be used to
debug programs created in this way. This facility is provided for compatibility with
previous versions of the toolset and is not recommended.

Non-configured programs require a fixed procedural interface, because the parameters
cannot be defined in the configuration description. Line 2 of simple.occ on page 16
would therefore become:

PROC simple (CHAN OF SP fs, ts, []INT free.memory)

The free .memory parameter represents the spare memory not allocated by the tools.
The total size of the memory available is taken from the environment variable
IBOARDSIZE.

Unconfigured programs must always use a similar parameter list. A modified version of
the program can be found in the examples directory under the name simple3.occ.

To make use of the short cut, compile and link the simple3.occ in the same way as
in the previous example. Then, omitting the configurer stage, invoke the collector
directly on the linked unit, adding the T option to the command line. The T option directs
the collector to build a bootable file from a single linked unit.

icollect simple3.lku -t

The bootable file simple3.bt1 is created. This can be loaded and run in the same way
using irun.

3.4 Compiling and linking for other transputer types

If you are using a transputer other than an IMS T425 you should specify the appropriate
target transputer type for the compilation and linking operations. Appendix B in the
Toolset Reference Manual describes the options available. The same processor type
must be specified to the compiler, linker, and in configuration description, otherwise an
error is reported. In addition, you must specify the correct linker indirect file for the
selected target, in order to link in the correct compiler libraries; see chapter 10 of the
Toolset Reference Manual).

For example, to compile and link the program simple.occ so that it will run on a T800,
T801 or T805:

oc simple -t800
ilink simple.tco hostio.lib -f occam8.lnk -t800

Similarly for an ST20450:

oc simple -t450
ilink simple.tco hostio.lib -f occam450.lnk -t450

Modify simple.pgm to match the transputer type and memory size of your hardware
and run occon£ on the modified file. Then collect and load the program as before.

20

‘ SGS-THOMSON
Y/, MICROELECTRONICS

3 Getting started

3.5 Using the Makefile generator

As an alternative method of program building, the toolset Makefile generator imakef
can be used. This tool can produce a Makefile for any type of file that can be built with
the toolset tools. See chapter 12 in the Toolset Reference Manual for a full description
of the tool.

imakef serves two purposes:

¢ Itenables the userto generate a makefile which can be used to generate a target
file automatically (e.g. a bootable file) without having to manually request the
intermediate stages of program development, i.e. compiling, linking, configuring
etc.

* For more complex programs, comprising several modules, it simplifies the incor-
poration of changes to the program by identifying dependencies and incorpo-
rating them into the Makefile so that only the affected parts need to be rebuilt.

In order that imake £ can identify file types, target processor types and error modes, a
different system of file extensions must be used to that used in the examples above. See
section 12.3 in the Toolset Reference Manual for a description of the system.

To create a Makefile for the configured simple program, use the following command:
imakef simple2.btl

This directs imake£ to build a makefile to create a bootable file simple2.btl. The
.bt1 extension tells imakef to refer to a configuration description file simple2.pgm.
This file can be found under the examples directory. Within the .pgm file, the correct
file extension is used to reference the linked unit for imake£. For example:

#USE ”simple.c5h”

tells imakef that the Makefile must compile the program for an IMS T425 in HALT error
mode. For other transputer types and error modes use different suffixes, as described
in section 12.3 in the Toolset Reference Manual.

imakef generates the Makefile simple2.mak. To build the program run your make
program using the Makefile simple2 .mak:

make -f simple2.mak

This creates the bootable file simple2.bt1 which can be run in the normal way using
irun.

21

‘ SGS-THOMSON
Y/, MICROELESTRONIGS

3.5 Using the Makefile generator

% 74

®

S$GS-THOMSON
MICROELECTRONICS

4 Developing programs for the
transputer

This chapter gives an overview of the program development cycle using the occam 2.1
toolset. It briefly describes the purpose of each tool and outlines how to use them in
developing, configuring, loading and running transputer programs from the host system.
The chapter also gives brief details of environment variables, and host dependencies.
Chapter 8 describes loading and running the built application on the target hardware.

Further information about the tools for building and loading code can be found in the
Toolset Reference Manual. The INQUEST debugging, profiling and analysis tools are
described in the INQUEST User and Reference Manual.

41 Program development using the toolsets

Programs are developed on the user’s host system before down-loading for execution
on either a single transputer or a network of transputers.

Executable code may be loaded onto a transputer either from ROM or from the host
system. Code from the host file system is loaded via a single transputer link from the host
to the root transputer, i.e. the transputer connected to the host. Code is propagated to
any other transputers in the network via the interconnecting transputer links.

Creation of executable code for a transputer or transputer network takes several stages
involving the use of specific tools at each stage. Figure 4.1 summarizes the main
development stages and figure 4.2 illustrates how the tools are used to build a program.

The following sections concentrate on how to develop programs which are loaded from
the host system. Any system that is to be loaded from ROM when completed, is normally
loaded from the host during development and then converted to loading from ROM as
a final development stage. Developing programs for loading from ROM is described
briefly in section 4.6 and more fully in chapter 13.

1 Software design
The software designer can specify the components of a system in terms of
communicating processes. The overall design can be directly expressed using

the support provided for multi-tasking and parallel programming.

Alternatively conventional sequential programs can be developed for running on
a single transputer.

23

Lyy SGS-THOMSON
Y/, MiICROELEGTRONIGS

4.1 Program development using the toolsets

Write source
Compile source and library Build any user libraries from
modules compiled source
[T 1
Link
Configure
Make executable, using the
collector
OR
Use irunto Use ieprom to prepare ROM
load onto network via link. loadable input.

24

Figure 4.1 Main development stages

Write the source

Source code can be written using any ASCI| editor available on the host system.
Code can be divided between any number of source files. Source code must
conform to the syntax required by the particular language compiler used. For C
this is the ANSI standard; occam source code must conform to the occam 2.1
language definition.

Compile the source

Each source file is compiled using the appropriate language compiler to produce
one or more compiled object files in TCOFF format. Each file must be compiled
for the appropriate transputer type or for a transputer class covering several
compatible types. (More information about transputer types and classes is given
in the Appendix B of the accompanying Toolset Reference Manual). Commonly
used object code can be combined into libraries using the toolset librarian
ilibr.

£ SGS-THOMSON
Y/, MICROELECTRONICS

4 Developing programs for the transputer

Compiler Librarian
Source —
code iccoroc ilibr
Linker
ilink
Configurer Collector
Configuration 3
source iccont or icollect
occonf
Memory EPROM *
configuration Memory formatting EPROM
tool configuration tool tool
iemit or N control
imemd450 eprom

O Source files

Target file

« See section 4.6.

Figure 4.2 Program build model
4 Link the compiled units

The compiled object files and libraries are linked together using the toolset linker
ilink. This generates a single file called a linked unit in which all external
references are resolved. The linking operation links in the library modules
required by the program, which are selected by transputer type from the
compiled library code. Object files for input to the linker can be generated by any
TCOFF compatible compiler.

Programs developed for the transputer may comprise one or more linked units,
created from separately compiled code and library modules. Linked units are
assigned to run on a single transputer or one processor of a network of trans-
puters during configuration. A linked unit is the smallest unit of code which may
be placed on a transputer.

25

£ SGS-THOMSON
Y/, NiCRoELESTRONICS

