occam 2 Toolset
Language and Libraries
Reference Manual

: . 1S
INMOS is mmbe fth SGS-THOMSON Microeiectronics Group



© INMOS Limited 1993. This document may not be copied, in whole or in part, without
prior written consent of INMOS.

MS', IMS, occam and DS-Link are trademarks of INMOS Limited.

437, SE5THOMEEN s a registered trademark of the SGS-THOMSON Microelectronics Group.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TDS 368 01



Contents overview

Contents

Preface

Libraries

1 The occam libraries |Describes the library procedures and functions

supplied with the toolset.
Appendices

A Language extensions |Describes language extensions that are

supported by the occam 2 compiler.

B Implementation of Describes how the compiler allocates memory
occam on the trans- |and gives details of type mapping, hardware
puter dependencies and language.

C Alias and usage Describes the alias checking that is imple-
checking rules mented by the compiler.

72 TDS 368 01 March 1993



72 TDS 368 01 March 1993



Contents

1 The occam libraries

1.1
1.2

1.3

14

1.5

Infroduction ............ ... .
Using the occam libraries . ..............................
1.21 Linking libraries ...............................
1.2.2 Listing librarycontents .........................
123 Libraryconstants ............... ... ... ..l
Compilerlibraries ...............coiiiiiiiiiiiiiiia
1.3.1 Using compiler library routines ..................
132 Mathsfunctions ................ ... .. ...
133 2Dblockmoves ............. . il
1.34 Bit manipulation functions ......................
1.3.5 CRCfunctions ...................iiiiiia...
1.3.6 Floating point arithmetic support functions .. .. ....
1.3.7 Dynamic code loading support ..................
1.38 Transputer-related procedures ..................
1.3.9 Miscellaneous operations ......................
Mathslibraries .............. .. i
1.4.1 Introduction and terminology ...................
14.2 Single and double length elementary function
libraries ..........coiiiiiii i e
1.4.3 IMS T400/T414/T425/T426 elementary function
brary ..o e
Hostfile serverlibrary ............ ... ... ..
1.5.1 Errors and the server run time library ............

1.5.2 Inputtingrealnumbers ............... ... ...l

w

©Cog abhbhbh b0



iv Contents
153 Procedure descriptions ........................ 65

154 Fileaccess ..........ccoviviiiiiiininnnns. 66

155 General hostaccess .......................... 76

156 Keyboardinput ............................... 82

157 Screenoutput ...................... il 86

158 Fileoutput ............ ... i 89

1.5.9 Miscellaneous .......... ...ttt 93

TIMe processing .......c.covevevrenneennernnnns 93

Buffers and multiplexors ....................... 95

Buffering procedures .......................... 96

Multiplexing procedures ........................ 96

1.6 Streamiolibrary .......... ... ... 98
1.6.1 Naming conventions . .......................... 98

1.6.2 Stream processes ........c.ccvvviiienniinnnnn.. 99

1.6.3 Streaminput ............ ... 104

16.4 Streamoutput ...... ... ... 105

1.7 String handling library ...t 111
1.71 Character identification ........................ 112

1.7.2 Stringcomparison ............ ..o, 113

1.73 Stringsearching .................. .. .. ... 114

174 Stringediting ... 115

175 Lineparsing ..........oooiiiiiiiiiniennnnnnn. 117

1.8 String conversionlibrary ............ ..., 119
Procedure definitions .......................... 120

1.9 Block CRCIlibrary .........cccviiiiiiiiiiiiiiiininennn 126
1.9.1 Exampleofuse ...t 126

1.9.2 Function definitions ........................... 127

1.10  Extraordinary link handlinglibrary ........................ 128
1.10.1  Procedure definitions .......................... 128

1.11  Debugging supportlibrary .................. ... ... 130
1.11.1  Procedure definitions .......................... 130

1.12 DOS specific hostiolibrary .............................. 131
1.121 Procedure definitions .......................... 132
Appendices ...... ... i i i 137
A Languageextensions .............c.iiiiiiiiieniinnn. 139
A1 SyNtax ... 139
A1A1 Compilerkeywords .............ccviiiieenn... 139

A1.2 Compiler directives .................cooi.Lt. 139

A13 Stringescapecharacters....................... 139

A14d Tabs ... 140

A15 Relaxationsonsyntax ......................... 140

A2 Channeloperations ...................coiiiin, 140



Contents \
A21 Retypingchannels ............................ 140

A22 Channel constructors .......................... 141

A23 ‘Anarchic’ protocols ................... ..l 141

A3 Low level programming .................. .. .. ... 142
A3.1 ASM e 142

A3.2 PLACE statements ............................ 142

A33 INLINEkeyword ....................ccovinnn.. 143

A4 Countedarrayinput ............. .. i 144
A5 Retypingarrays ............cccoiiiiiiiiiiiiiiiie 145
A6 Obsolescentfeatures ................cccciviiivia., 145
B Implementation of occam on the transputer ........... 147
B.1 Memory allocation by the compiler ....................... 147
B.1.1 Procedurecode ...............ccoiviiiiiiinn, 147

B.1.2 Compilatonmodules .......................... 148

B3 Workspace ..........cooiiiiiiiiiiiee 148

B.14 Vectorspace ...........ccciiiiiiiiiiiiiiii., 150

B.2 TYPE MaPPINg .. oo e 151
B.3 Implementation of channels ............................. 152
B.4 Transputer timers (clocks) ............ ... il 153
B.4.1 TIMER variables ..................ooiiii.. 153

B.4.2 TIMERs as formal parameters .................. 154

B.5 CASEstatement ............... ... ...l 154
B.6 AlLT statement ......... ... .. .. .. ... 154
B.7 Formalparameters ...............cciiiiiiiiiinannnann, 154
B.8 Hardware dependencies .................... ..ol 154
B.9 Summary of implementation restrictions .................. 155
C Alias and usage checkingrules ...................... 157
C.1 Aliaschecking ......... ... .. i 157
C1.1 Infroduction ............ ... .. ...l 157

C12 Rules............ i 157
Scalarvariables ................ ... ..ol 157

AITaYS ... e 158

C.1.3  Aliascheckingdisabled ........................ 159

VAL abbreviations . .......................L 159

Non-VAL abbreviations ........................ 160

Multiple assignment .................. ... ... 161

Procedure parameters ......................... 161

Interaction with usage checking ................. 161

C2 Usagechecking .............ccoiiiiiiiiiiiiiin.., 161

C.21 Infroduction ...........c.cciiiiiiii 162



vi

Contents

c22
Cc23
C24
C.25
C26
c27
C.28

Usagerulesofoccam ......................... 162
Checking of non-array elements ................ 162
Checking of arrays of variables and channels ... .. 162
Arrays as procedure parameters ................ 163
Abbreviating variables and channels.............. 164
Channels ...........cccoiiiiiiiiiiiiiiiin.., 164
Usage checking disabled ...................... 164
......................................... 167



Preface

Host versions

The documentation set which accompanies the occam 2 toolset is designed to
cover all host versions of the toolset:

e IMS D7305 - IBM PC compatible running MS-DOS
e |MS D4305 - Sun 4 systems running SunOS.
* IMS D6305 — VAX systems running VMS.

About this manual

This manual is the Language and Libraries Reference Manual to the occam 2
toolset and provides a language reference for the toolset and implementation data.

The larger part of the manual is contained in one chapter which introduces and
describes the 0occam libraries. Each library is described in a separate section. For
each library, a summary of the procedures it provides, is followed by a detailed
description of each procedure.

Appendices provide:

¢ adescription of the language extensions that are supported by the occam
2 compiler.

» implementation details of the Dx305 occam 2 toolset.

« details of the alias and usage checking rules adopted by the toolset.

72 TDS 368 01 March 1993



viii About the toolset documentation set

About the toolset documentation set
The documentation set comprises the following volumes:

e 72 TDS 366 01 occam 2 Toolset User Guide

Describes the use of the toolset in developing programs for running on the
transputer. The manual is divided into two sections; ‘Basics’ which
describes each of the main stages of the development process and
includes a ‘Getfting started’ tutorial. The ‘Advanced Techniques’ section is
aimed at more experienced users. The appendices contain a glossary of
terms and a bibliography. Several of the chapters are generic to other
INMOS toolsets.

e 72 TDS 367 01 occam 2 Toolset Reference Manual

Provides reference material for each tool in the toolset including command
line options, syntax and error messages. Many of the tools in the toolset
are generic to other INMOS toolset products, e.g. the ANSI C and
FORTRAN toolsets, and the documentation reflects this — examples may
be given in more than one language. The appendices provide details of
toolset conventions, transputer types, the assembler, server protocol,
ITERM files and bootstrap loaders.

e 72 TDS 368 01 occam 2 Toolset Language and Libraries Reference
Manual (this manual)

e 72 TDS 379 00 Performance Improvement with the INMOS Dx305 occam
2 Toolset

This document provides advice about how to maximize the performance
of the toolset. It brings together information provided in other toolset docu-
ments particularly from the Language and Libraries Reference Manual.
Note: details of how to manipulate the software virtual through-routing
mechanism are given in the User Guide.

e 72 TDS 377 00 occam 2 Toolset Handbook
A separately bound reference manual which lists the command line
options for each tool and the library functions. Itis provided for quick refer-
ence and summarizes information provided in more detail in the Tools
Reference Manual and the Language and Libraries Reference Manual.

e 72 TDS 378 00 occam 2 Toolset Master Index
A separately bound master index which covers the User Guide, Toolset

Reference Manual, Language and Libraries Reference Manual and the
Performance Improvement document.

72 TDS 368 01 March 1993



Preface ix

Other documents '

Other documents provided with the toolset product include:
« Delivery manual giving installation data, this document is host specific.
» Release notes, common to all host versions of the toolset.
¢ ‘occam 2 Reference Manual' published by Prentice Hall.

‘A Tutorial Introduction to occam Programming’ published by BSP Profes-
sional Books.

FORTRAN toolset

At the time of writing the FORTRAN toolset product referred to in this document
set is still under development and specific details relating to it are subject to
change.

Documentation conventions

The following typographical conventions are used in this manual:

Bold type Used to emphasize new or special terminology.

Teletype Used to distinguish command line examples, code fragments,
and program listings from normal text.

Italic type In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Braces {} Used to denote optional items in command syntax.

Brackets [ ] Used in command syntax to denote optional items on the
command line.

Ellipsis . . . In general terms, used to denote the continuation of a series. For
example, in syntax definitions denotes a list of one or more
items.

| In command syntax, separates two mutually exclusive alterna-
tives.

72 TDS 368 01 March 1993



X Documentation conventions

72 TDS 368 01 March 1993



Libraries

72 TDS 368 01 March 1993



2 Libraries

72 TDS 368 01 March 1993



1 The occam
libraries

1.1 Introduction

A comprehensive set of occam libraries is provided for use with the toolset. They
include the compiler libraries which the compiler itself uses, and a number of user
libraries to support common programming tasks. The compiler libraries are auto-
matically referenced whereas user libraries must be declared in a #USE directive.
Libraries, including the compiler libraries, must be specified to the linker. Table 1.1

lists the occam libraries.

Library Description Source
provided

Compiler libraries No
occamx.lib Multiple length integer arithmetic

Floating point functions

32-bit IEEE arithmetic functions

64-bit IEEE arithmetic functions

2D block move library

Bit manipulation

CRC functions

Supplementary floating point support

Dynamic code loading support

Transputer-related functions
User libraries
snglmath.lib |Single length mathematical functions Yes
dblmath.lib |Double length mathematical functions Yes
tbmaths.lib |T400/T414/T425/T426 optimized maths Yes
hostio.lib Host file server library Yes
streamio.lib |Stream /O library Yes
string.lib String handling library Yes
convert.lib |String conversion library Yes
cre.lib Block CRC library Yes
xlink.lib Extraordinary link handling library No
debug.lib Debugging support library No
msdos.lib DOS specific hostio library Yes

Table 1.1 occam libraries

72 TDS 368 01 March 1993



4 1.3 Compiler libraries

1.2 Using the occam libraries
User libraries must be declared in a #USE directive. For example:
#USE "hostio.lib”

Any use of a library routine must be in scope with the #USE directive which refer-
ences the associated library. The scope of a library, like any occam declaration,
depends on its level of indentation within the text.

If the library uses a file of predefined constants (see section 1.2.3) then this must
be declared by an # INCLUDE directive, before the associated #USE. For example:

#INCLUDE ”“hostio.inc”

1.2.1 Linking libraries

All libraries used by a program or program module must be linked with the main
program. This includes the compiler libraries even though they are automatically
referenced by the compiler (see section 1.3).

1.2.2 Listing library contents

You can use the ilist tool to examine the contents of a library and determine
which routines are available. The tool displays procedural interfaces for routines
in each library module and the code size and workspace requirements for indi-
vidual modules. It can also be used to determine the transputer types and error
modes for which the code was compiled. (See chapter 10 of the occam 2 Toolset
Reference Manual for details of i1list).

1.2.3 Library constants

Constants and protocols used by the libraries are defined in six include files:

File Description

hostio.inc Constants for the host file server interface (hostio library)
streamio. inc Constants for the stream i/o interface (streamio library)
mathvals.inc Maths constants

linkaddr.inc Addresses of transputer links

ticks.inc Rates of the two transputer clocks

msdos.inc DOS specific constants

Table 1.2 Llbrary constants

Include files should always be declared before the related library.

72 TDS 368 01 March 1993



1 The occam libraries 5

1.3 Compiler libraries

Compiler libraries contain multiple length and floating point arithmetic functions,
IEEE functions, and special transputer functions such as bit manipulation and 2D
block data moves. They are found automatically by the compiler on the path speci-
fied by the ISEARCH host environment variable and do not need to be referenced
by a #USE directive. However, they must be specified to the linker along with all
other libraries that the program uses; this is best done using one of the linker indi-
rect files occam?2 . 1nk, occam8 . 1nk, or occama . 1nk, which specify the correct
libraries for the transputer target.

Separate compiler libraries are supplied for different types and families of proces-
sors. Processor types supported are:

o T2 family
o T8 family
o 32-bit processors

The compiler selects the correct library for the transputer type specified. All error
modes are supported in each library.

File Processor types supported
occam?.1lib T212/T222/T225/M212
occam8.1ib T800/T801/T805
occama.lib T400/T414/T425/T426/TA/TB
occamutl.lib All

virtual.lib All

occamutl . 1ib contains routines which are called from within some of the other
compiler libraries and virtual.lib is used to support interactive debugging.
These two libraries support all processor types and error modes.

File names of the compiler libraries must not be changed. The compiler assumes
these filenames, and generates an error if they are not found. (See section A4 in
the occam 2 Toolset Reference Manual for details of the mechanism for locating
files.)

The compiler ‘E’ option disables all of the compiler libraries except virtual.lib,
which can be disabled by the ‘Y’ option.

The occam 2 Reference Manual contains formal descriptions of many of the
compiler library routines.

1.3.1 Using compiler library routines

Although primarily intended for use by the compiler, some compiler library routines
are available to the programmer. These are listed in sections 1.3.2 through 1.3.9.

72 TDS 368 01 March 1993



6 1.3 Compiler libraries

They can be called directly without referencing them via a #USE statement and are
disabled by the compiler ‘E’ option.

As an example of how they may be used, consider an application which requires
compliance with the IEEE standards for NaNs (‘Not a Number') and Infs (‘t

infinity’). The occam compiler defaults to non-IEEE behavior i.e. NaNs and Infs
are treated as errors, whereas ANSI/IEEE 754-1985 requires there to be error and
overflow handling. To obtain IEEE behavior the appropriate compiler library func-
tion must be called.

The following code fragments show a simple addition can be implemented by
default or using |IEEE-compatible functions.

If A, B, and C are REAL32s and b is a BOOL:

A :=B + C — default occam behavior.

A

REAL320P(B, 0, C) —— IEEE function, round
—- to nearest only. The 0
—— indicates a ‘+’
— operation.

IEEE function with
rounding option. The
1 indicates round to
nearest. The 0
indicates a ‘+’/
operation.

b, A := IEEE320P(B, 1, 0, C)

1.3.2 Maths functions

The following table lists compiler library maths functions available to the
programmer. Further details can be found in appendices K, L, and M of the occam
2 Reference Manual.

Result(s) Function name Parameter specifiers
REAL32 ABS VAL REAL32 x
REAL32 SQRT VAL REAL32 x
REAL32 LOGB VAL REAL32 x
INT, REAL32 FLOATING.UNPACK |VAL REAL32 x
REAL32 MINUSX VAL REAL32 x
REAL32 MULBY2 VAL REAL32 x
REAL32 DIVBY2 VAL REAL32 x
REAL32 FPINT VAL REAL32 x

72 TDS 368 01 March 1993



1 The occam libraries

Result(s) Function name Parameter specifiers
BOOL ISNAN VAL REAL32 x
BOOL NOTFINITE VAL REAL32 x
REAL32 SCALEB VAL REAL32 x, VAL INT n
REAL32 COPYSIGN VAL REAL32 x, y
REAL32 NEXTAFTER VAL REAL32 x, y
BOOL ORDERED VAL REAL32 x, y
BOOL, ARGUMENT.REDUCE |VAL REAL32 x, y, Y.err
INT32,
REAL32
REAL32 REAL320P VAL REAL32 x,
VAL INT op,
VAL REAL32 y
REAL32 REAL32REM VAL REAL32 x, y
BOOL , REAL32 IEEE320P VAL REAL32 x,
VAL INT rm, op,
VAL REAL32 y
BOOL,REAL32 IEEE32REM VAL REAL32 x, y
BOOL REAL32EQ VAL REAL32 x, y
BOOL REAL32GT VAL REAL32 x, y
INT IEEECOMPARE VAL REAL32 x, Y
REAL64 DABS VAL REAL64 x
REAL64 DSQRT VAL REAL64 x
REALG64 DLOGB VAL REAL64 x
INT,REAL64 DFLOATING.UNPACK |VAL REAL64 x
REAL64 DMINUSX VAL REAL64 x
REALG64 DMULBY2 VAL REAL64 x
REAL64 DDIVBY2 VAL REAL64 x
REAL64 DFPINT VAL REAL64 x
BOOL DISNAN VAL REAL64 x
BOOL DNOTFINITE VAL REAL64 x
REAL64 DSCALEB VAL REAL64 x, VAL INT n
REAT.64 DCOPYSIGN VAL REAL64 x, Yy
REAL64 DNEXTAFTER VAL REAL64 x, y
BOOL DORDERED VAL REAL64 x, Yy
BOOL, DARGUMENT .REDUCE |VAL REAL64 x, y, y.err
INT32,
REAL64
72 TDS 368 01 March 1993




8 1.3 Compiler libraries

Result(s) Function name Parameter specifiers

REAL64 REAL640P VAL REAL64 x,
VAL INT op,
VAL REAL64 y

REAL64 REALG64REM VAL REAL64 x, y

BOOL, REAL64 IEEE640P VAL REAL64 x,
VAL INT rm, op,
VAL REAL64 y

BOOL, REAL64 IEEE64REM VAL REAL64 x, y

BOOL REALG64EQ VAL REAL64 x, y

BOOL REAL64GT VAL REAL64 x, y

INT DIEEECOMPARE VAL REAL64 x, y

INT LONGADD VAL INT left, right,
carry.in

INT LONGSUM VAL INT left, right,
carry.in

INT LONGSUB VAL INT left, right,
borrow.in

INT, INT LONGDIFF VAL INT left, right,
borrow.in

INT, INT LONGPROD VAL INT left, right,
carry.in

INT, INT LONGDIV VAL INT dividend.hi,
dividend.lo, divisor

INT, INT SHIFTLEFT VAL INT hi.in, lo.in,
places

INT, INT SHIFTRIGHT VAL INT hi.in, lo.in,
places

INT, INT, INT |NORMALISE VAL INT hi.in, lo.in

INT ASHIFTLEFT VAL INT argument, places

INT ASHIFTRIGHT VAL INT argument, places

INT ROTATELEFT VAL INT argument, places

INT ROTATERIGHT VAL INT argument, places

Notes

SHIFTRIGHT and SHIFTLEFT retumn zeroes when the number of places to shift
is negative, or is greater than twice the transputer’s word length. In this case they
may take a long time to execute.

ASHIFTRIGHT, ASHIFTLEFT, ROTATERIGHT and ROTATELEFT are all invalid
when the number of places to shift is negative or exceeds the transputer’s word

length.

72 TDS 368 01

March 1993




1 The occam libraries 9

1.3.3 2D block moves

This section describes compiler library block move routines available to the
programmer.

Procedure Parameter Specifiers

MOVE2D VAL [][]1BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length

DRAW2D VAL [][]BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length

CLIP2D VAL [][]BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length
MOVE2D

PROC MOVE2D (VAL [] []BYTE Source,
VAL INT sx, sy, [][]1BYTE Dest,
VAL INT dx, dy, width, length)

Moves a data block of size width by length starting at byte
Source [sy] [sx] to the block starting at Dest [dy] [dx].

This is equivalent to:

SEQ y = 0 FOR length
[Dest[y+dy] FROM dx FOR width] :=
[Source[y+sy] FROM sx FOR width]

DRAW2D

PROC DRAW2D (VAL [] []BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only non-zero bytes are transferred.

This is equivalent to:

SEQ line = 0 FOR length
SEQ point = 0 FOR width
VAL temp IS Source[line+sy] [point+sx]
IF
temp <> (0(BYTE))
Dest[line+dy] [point+dx] := temp
TRUE
SKIP

72 TDS 368 01 March 1993



10 1.3 Compiler libraries

CLIP2D

PROC CLIP2D (VAL [][]BYTE Source,
VAL INT sx, sy, [][]1BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only zero bytes are transferred.

This is equivalent to:

SEQ line = 0 FOR length
SEQ point = 0 FOR width
VAL temp IS Source[line+sy] [point+sx]
IF
temp = (0 (BYTE))
Dest[line+dy] [point+dx] := 0 (BYTE)
TRUE
SKIP

1.3.4 Bit manipulation functions

This section describes compiler library bit-based routines available to the
programmer.

Result Function name Parameter Specifiers

INT BITCOUNT VAL INT Word, CountIn
INT BITREVNBITS VAL INT x, n

INT BITREVWORD VAL INT x

BITCOUNT

INT FUNCTION BITCOUNT (VAL INT Word, CountIn)

Counts the number of bits set to 1in Word, adds itto CountIn, and returns
the total.

BITREVNBITS
INT FUNCTION BITREVNBITS (VAL INT x, n)

Returns an INT containing the n least significant bits of x in reverse order.
The upper bits are set to zero. The operation is invalid if n is negative or
greater than the number of bits in a word.

BITREVWORD
INT FUNCTION BITREVWORD (VAL INT x)

Returns an INT containing the bit reversal of x.

72 TDS 368 01 March 1993



1 The occam libraries 1

1.3.5 CRC functions

This section describes compiler library CRC functions available to the
programmer.

Result Function name Parameter Specifiers

INT ‘ CRCWORD VAL INT data, CRCIn,
generator

INT CRCBYTE VAL INT data, CRCIn,
generator

A cyclic redundancy check value is the remainder from modulo 2 polynomial divi-
sion. Consider bit sequences as representing the coefficients of polynomials; for
example, the bit sequence 10100100 (where the leading bit is the most significant
bit) corresponds to P(x) = x7 + x5 + x2. CRCWORD and CRCBYTE calculate the
remainder of the modulo 2 polynomial division:

(x" H(x) + F(x))/G(x)

where: F(x) corresponds to data (the whole word for CRCWORD; only the most
significant byte for CRCBYTE)

G(x) corresponds to generator
H(x) corresponds to CRCIn
nis the word size in bits of the processor used (i.e. nis 16 or 32).

(CRCIn can be viewed as the value that would be pre-loaded into the cyclic
shift register that is part of hardware implementations of CRC generators.)

When representing G(x) in the word generator, note that there is an understood
bit before the msb of generator. For example, on a 16-bit processor, with G(x)
= x16 + x12 + x5 + 1, which is #11021, then generator must be assigned #1021,
because the bit corresponding to x6 is understood. Thus, a value of #9603 for
generator, corresponds to G(x) = x16 + x5 + x12 +x10 + x3 + x + 1, for a 16-bit
processor.

A similar situation holds on a 32-bit processor, so that:
G(X)=x32+X26+x23+X22+X15+x12+x11+x10+x8+x7+x5+x4+X2+X+1
is encoded in generator as #04C11DB7.

Itis gossible to calculate a 16-bit CRC on a 32-bit processor. For example if G(x)
=x16+ x12 + x5+ 1, then generator is #10210000, because the most significant
16 bits of the 32-bit integer form a 16-bit generator and for:

CRCWORD, the least significant 16 bits of CRCIn form the initial CRC value;
the most significant 16 bits of data form the data; and the calculated CRC
is the most significant 16 bits of the result.

72 TDS 368 01 March 1993



12 1.3 Compiler libraries

CRCBYTE, the most significant 16 bits of CRCIn form the initial CRC value;
the next 8 bits of CRCIn (the third most significant byte) form the byte of
data; and the calculated CRC is the most significant 16 bits of the resuit.

CRCWORD

INT FUNCTION CRCWORD (VAL INT data, CRCIn, generator)

Takes the whole of the word data to comrespond to F(x) in the above
formula. This implements the following algorithm:

INT MyData, CRCOut, OldCRC :

VALOF
SEQ
MyData, CRCOut := data, CRCIn
SEQ i = 0 FOR BitsPerWord —-— 16 or 32
SEQ

O1ldCRC := CRCOut
CRCOut, MyData := SHIFTLEFT (CRCOut, MyData, 1)
IF

OldCRC < 0 — MSB of CRC = 1
CRCOut := CRCOut >< generator
TRUE
SKIP
RESULT CRCOut

CRCBYTE
INT FUNCTION CRCBYTE (VAL INT data, CRCIn, generator)

Takes the most significant byte of data to correspond to F(x) in the above
formula. This implements the following algorithm:

INT MyData, CRCOut, OldCRC :
VALOF
SEQ
MyData, CRCOut := data, CRCIn
SEQ i = 0 FOR 8
SEQ
01dCRC := CRCOut
CRCOut, MyData := SHIFTLEFT (CRCOut, MyData, 1)
IF

OldCRC < 0 —— MSB of CRC =1
CRCOut := CRCOut >< generator
TRUE
SKIP
RESULT CRCOut

72 TDS 368 01 March 1993



1 The occam libraries 13

Note: The predefines CRCBYTE and CRCWORD can be chained together to help
calculate a CRC from a string considered as one long polynomial. A simple
chaining would calculate:

(x¥H(x) + F(x))/G(x)

where F(x) corresponds to the string and k is the number of bits in the string. This
is not the same CRC that is calculated by CRCFROMMSB and CRCFROMLSB in
crc.lib, section 1.9, because these latter routines shift the numerator by x".

1.3.6 Floating point arithmetic support functions

Result(s) Function name Parameter Specifiers

INT FRACMUL VAL INT x, y

INT, INT, INT |UNPACKSN VAL INT x

INT ROUNDSN VAL INT Yexp, Yfrac, Yguard
FRACMUL

INT FUNCTION FRACMUL (VAL INT x, y)

Performs a fixed point multiplication of x and y, treating each as a binary
fraction in the range [-1, 1), and retumning their product rounded to the
nearest available representation. The value of the fractions represented by
the arguments and result can be obtained by multiplying their INT value by
2-31(on a 32-bit processor) or 2-79 (on a 16-bit processor). The result can
overflow if both x and y are -1.0.

This routine is compiled inline into a sequence of transputer instructions on
32-bit processors, or as a call to a standard library routine for 16-bit proces-
sors.

UNPACKSN
INT, INT, INT FUNCTION UNPACKSN (VAL INT x)

This retums three parameters; from left to right they are Xfrac, Xexp, and
Type. x is regarded as an |EEE single length real humber (i.e. a RETYPED
REAL32). The function unpacks x into Xexp, the (biased) exponent, and
Xfrac the fractional part, with implicit bit restored. It also returns an integer
defining the Type of x, ignoring the sign bit:

Type |[Reason
0 X is zero
1 X is a normalized or denormalized number
2 Xis Inf
3 X is NaN

72 TDS 368 01 March 1993



14 1.3 Compiler libraries

Examples:

UNPACKSN (#40490FDB) returns #C90FDB0O0 ,#00000080, 1
UNPACKSN (#00000001) returns #00000100 ,#00000001, 1
UNPACKSN (#7FC00001) returns #40000100 ,#000000FF, 3

This routine is compiled inline into a sequence of transputer instructions on
32-bit processors such as the IMS T425, which do not have a floating
support unit, but do have special instructions for floating point operations.
For other 32-bit processors the function is compiled as a call to a standard
library routine. It is invalid on 16-bit processors, since Xfrac cannot fit into
an INT.

ROUNDSN
INT FUNCTION ROUNDSN (VAL INT Yexp, Yfrac, Yguard)

This takes a possibly unnormalized fraction, guard word and exponent, and
returns the IEEE single length floating point value it represents. It takes
care of all the normalization, post-normalization, rounding and packing of
the result. The rounding mode used is round to nearest. The exponent
should already be biased. This routine is not intended for use with Yexp
and Yfrac representing an infinity or a NaN.

Examples:

ROUNDSN (#00000080, #CS0FDB0O, #00000000) retumns #40490FDB
ROUNDSN (#00000080, #C90FDB80, #00000000) returns $40490FDC
ROUNDSN (#00000080, #C90FDA80, #00000000) returns #40490FDA
ROUNDSN (#00000080, #C90FDA80, #00003000) returns #40490FDB
ROUNDSN (#00000001, #00000100, #00000000) retums #00000001

The function normalizes and post-normalizes the number represented by
Yexp, Yfrac and Yguard info local variables Xexp, Xfrac, and Xguard.
it then packs the (biased) exponent Xexp and fraction Xfrac into the
result, rounding using the extra bits in Xguard. The sign bit is set to 0. If
overflow occurs, Inf is returned.

This routine is compiled inline into a sequence of transputer instructions on
32-bit processors such as the IMS T425, which do not have a floating
support unit, but do have special instructions for floating point operations.
For other 32-bit processors the function is compiled as a call to a standard
library routine. it is invalid on 16-bit processors, since Xfrac cannot fit into
an INT.

72 TDS 368 01 March 1993



1 The occam libraries 15

1.3.7 Dynamic code loading support

This section describes compiler library dynamic loading routines available to the
programmer.

Procedures
Procedure Parameter Specifiers
KERNEL . RUN VAL []BYTE code,

VAL INT entry.offset,
[]INT workspace,
VAL INT no.of.parameters

LOAD. INPUT .CHANNEL INT here,
CHAN OF ANY in

LOAD.INPUT.CHANNEL.VECTOR INT here,
[ICHAN OF ANY in

LOAD.OUTPUT.CHANNEL INT here,
CHAN OF ANY out

LOAD.OQUTPUT . CHANNEL . VECTOR INT here,
[JCHAN OF ANY out

LOAD.BYTE.VECTOR INT here,
VAL []BYTE bytes

Functions
Result(s) Function name Parameter Specifiers
INT WSSIZEOF routinename
INT VSSIZEOF routinename
KERNEL . RUN

PROC KERNEL.RUN (VAL []BYTE code,
VAL INT entry.offset,
[JINT workspace,
VAL INT no.of.parameters)

The effect of this procedure is to call the procedure loaded in the code
buffer, starting execution at the location code [entry.offset].

The code to be called must begin at a word-aligned address. To ensure
proper alignment either start the array at zero or realign the code on a word
boundary before passing it into the procedure.

The workspace buffer is used to hold the local data of the called proce-
dure. The required size of this buffer, and the code buffer, must be derived
by visually inspecting the executable code file (. rsc file) to be loaded

72 TDS 368 01 March 1993



16 1.3 Compiler libraries

using the binary lister tool i1ist. Alternatively, a routine can be written to
read this file and pass the information to KERNEL . RUN. The format of the
.rsc file is described in section 3.6 of the Tools Reference Manual.

The parameters passed to the called procedure should be placed at the top
of the workspace buffer by the calling procedure before the call of
KERNEL. RUN. The call to KERNEL . RUN returns when the called procedure
terminates. If the called procedure requires a separate vector space, then
another buffer of the required size must be declared, and its address
placed as the last parameter at the top of workspace. As calls of
KERNEL.RUN are handled specially by the compiler it is necessary for
no.of .parameters to be a constant known at compile time and {o have
avalue > 3.

The workspace passed to KERNEL . RUN must be at least:
[ws.requirement + (no.of.parameters + 2)]INT
where ws . requirement is the size of workspace required, determined
when the called procedure was compiled and stored in the code file, and
no.of .parameters includes the vector space pointer if it is required.
The parameters must be loaded before the call of KERNEL.RUN. The
parameter corresponding to the first formal parameter of the procedure
should be in the word adjacent to the saved Iptr word, and the vector space
pointer or the last parameter should be adjacent to the top of workspace
where the Wptr word will be saved.
LOAD. INPUT.CHANNEL
LOAD.INPUT.CHANNEL (INT here, CHAN OF ANY in)
The variable here is assigned the address of the input channel in.
The normal protocol checking of channel parameters is suppressed; there-
fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.
LOAD. INPUT.CHANNEL.VECTOR

LOAD . INPUT . CHANNEL . VECTOR (INT here,
[ICHAN OF ANY in)

The variable here is assigned the address of the base element of the
channel array in (i.e. the base of the array of pointers).

The normal protocol checking of channel parameters is suppressed; there-

fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.

72 TDS 368 01 March 1993



1 The occam libraries 17

LOAD.OUTPUT .CHANNEL
LOAD.OUTPUT .CHANNEL (INT here, CHAN OF ANY out)
The variable here is assigned the address of the output channel out.

The normal protocol checking of channel parameters is suppressed; there-
fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.

LOAD . OUTPUT . CHANNEL . VECTOR

LOAD . OUTPUT . CHANNEL . VECTOR (INT here,
[JCHAN OF ANY out)

The variable here is assigned the address of the base element of the
channel array out (i.e. the base of the array of pointers).

The normal protocol checking of channel parameters is suppressed; there-
fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.

LOAD.BYTE.VECTOR
LOAD.BYTE.VECTOR (INT here, VAL []BYTE bytes)

The variable here is assigned the address of the byte array bytes. This
can be used in conjunction with RETYPES to find the address of any vari-
able.

WSSIZEOF
INT FUNCTION WSSIZEOF (routinename)

This function returns the number of workspace ‘slots’ (words) required by
the procedure or function routinename. INLINE or predefined routines are
not permitted.

VSSIZEOF
INT FUNCTION VSSIZEOF (routinename)

This function returns the number of vectorspace ‘slots’ (words) required by
the procedure or function routinename. INLINE or predefined routines
are not permitted.

1.3.8 Transputer-related procedures

This section describes compiler library transputer-specific routines available to the
programmer.

72 TDS 368 01 March 1993



18 1.3 Compiler libraries

Procedure Parameter Specifiers
CAUSEERROR ()
RESCHEDULE })
CAUSEERROR
CAUSEERROR ()

Inserts instructions into the program to set the transputer error flag. If the
program is in STOP or UNIVERSAL mode instructions to stop the current
process are also inserted.

The error is then treated in exactly the same way as any other error would
be treated in the error mode in which the program is compiled. For
example, in HALT mode the whole processor will halt and in STOP mode
that process will stop, leaving the transputer error flag set TRUE. If run-time
error checking has been suppressed (e.g. by a command line option), this
stop is suppressed.

The difference between CAUSEERROR () and the STOP process, is that
CAUSEERROR guarantees to set the transputer’s error flag.

RESCHEDULE
RESCHEDULE ()

This causes the current process to be rescheduled by inserting instructions
into the program to cause the current process to be moved to the end of
the current priority scheduling queue. This occurs even if the current
process is a ‘high priority’ process.

RESCHEDULE effectively forces a ‘timeslice’, even in high priority.

1.3.9 Miscellaneous operations

This section describes miscellaneous compiler library routines available to the
programmer.

Procedure Parameter Specifiers
ASSERT VAL BOOL test
ASSERT

PROC ASSERT (VAL BOOL test)
At compile time the compiler will check the value of test and if it is FALSE

the compiler will give a compile time error; if it is TRUE, the compiler does
nothing. If test cannot be checked at compile-time then the compiler will

72 TDS 368 01 March 1993



1 The occam libraries 19

insert a run-time check to detect its status. This run-time check may be
disabled by means of a command line option.

ASSERT is a useful routine for debugging purposes. Once a program is
working correctly the compiler option ‘NA’ can be used to prevent code
being generated to check for ASSERTs at run-time. If possible ASSERTs will
still be checked at compile time.

72 TDS 368 01 March 1993



20 1.4 Maths libraries

1.4 Maths libraries

Elementary maths and trigonometric functions are provided in three libraries, as
follows:

Library Description
snglmath.lib Single length library
dblmath.lib Double length library
tbmaths.lib TB optimized library

The single and double length libraries contain the same set of maths functions in
single and double length forms. The double length forms all begin with the letter
‘D'. All function names are in upper case.

The TB optimized library is a combined single and double length library containing
functions for the T4 series (T400, T414, T425, and T426). The functions have been
optimized for speed. The standard single or double length libraries can be used on
T4 processors but optimum performance will be achieved by using the TB opti-
mized library. The accuracy of the T400/T414/T425/T426 optimized functions is
similar to that of the standard single length functions but results returned may not
be identical because different algorithms are used. If the optimized library is used
in code compiled for any processor except a T400, T414, T425, or T426, the
compiler reports an error.

To obtain the best possible speed performance with the occam maths functions
use the following strategy:

e For networks consisting of only T4 series transputers, use the
tbmaths.1ib library.

* For networks consisting of only T8 series transputers, use the
snglmath.1lib and dblmath. 1ib libraries.

» For networks consisting of a mix of T4 series and T8 series transputers use:

O tbmaths.lib on the T4 series and snglmath.lib or
dblmath.1lib on the T8 series when a consistent level of accu-
racy is not required;

o if accuracy must be the same in the T8 and T4 processes then use
the snglmath.1lib and dblmath.1ib libraries.

Constants for the maths libraries are provided in the include file mathvals. inc.
The elementary function library is also described in appendix N of the occam 2
Reference manual.

1.4.1 Introduction and terminology

This, and the following subsections, contain some notes on the presentation of the
elementary function libraries described in section 1.4.2, and the TB version
described in section 1.4.3.

72 TDS 368 01 March 1993



1 The occam libraries 21

These function subroutines have been written to be compatible with the ANSI stan-
dard for binary floating-point arithmetic (ANSI-IEEE std 754-1985), as imple-
mented in occam. They are based on the algorithms in:

Cody, W. J., and Waite, W. M. [1980]. Software Manual for the Elementary
Functions. Prentice-Hall, New Jersey.

The only exceptions are the pseudo-random number generators, which are based
on algorithms in:

Knuth, D. E. [1981]. The Art of Computer Programming, 2nd. edition,
Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, Mass.

Inputs

All the functions in the library (except RAN and DRAN) are called with one or two
parameters which are binary floating-point numbers in one of the IEEE standard
formats, either ‘single-length’ (32 bits) or ‘double-length’ (64 bits). The param-
eter(s) and the function result are of the same type.

NaNs and infs

The functions will accept any value, as specified by the standard, including special
values representing NaNs (‘Not a Number’) and Infs (‘Infinity’). NaNs are copied
to the result, whilst Infs may or may not be in the domain. The domain is the set
of arguments for which the result is a normal (or denormalized) floating-point
number.

Outputs
Exceptions

Arguments outside the domain (apart from NaNs which are simply copied through)
give rise to exceptional results, which may be NaN, +Inf, or —Inf. Infs mean that
the resultis mathematically well-defined but too large to be represented in the float-
ing-point format.

Error conditions are reported by means of three distinct NaNs:
undefined.NaN

This means that the function is mathematically undefined for this argument, for
example the logarithm of a negative number.

unstable.NaN

This means that a smali change in the argument would cause a large change in
the value of the function, so any error in the input will render the output meaning-
less.

inexact.NaN

This means that although the mathematical function is well-defined, its value is in
range, and it is stable with respect to input errors at this argument, the limitations

72 TDS 368 01 March 1993



22 1.4 Maths libraries

of word-length (and reasonable cost of the algorithm) make it impossible to
compute the correct value.

The implementations will return the following values for these Not-a-Numbers:

Error Single length value Double length value
undefined.NaN #7F800010 #7FF00002 00000000
unstable .NaN #7F800008 #7FF00001 00000000
inexact.NaN #7F800004 #7FF00000 80000000
Accuracy

Range Reduction

Since itis impractical to use rational approximations (i.e. quotients of polynomials)
which are accurate over large domains, nearly all the subroutines use mathemat-
ical identities to relate the function value to one computed from a smaller argument,
taken from the ‘primary domain’, which is small enough for such an approximation
to be used. This process is called ‘range reduction’ and is performed for all argu-
ments except those which already lie in the primary domain.

For most of the functions the quoted error is for arguments in the primary domain,
which represents the basic accuracy of the approximation. For some functions the
process of range reduction results in a higher accuracy for arguments outside the
primary domain, and for others it does the reverse. Refer to the notes on each func-
tion for more details.

Generated Error

If the true value of the function is large the difference between it and the computed
value (the ‘absolute error’) is likely to be large also because of the limited accuracy
of floating-point numbers. Conversely if the true value is small, even a small abso-
lute error represents a large proportional change. For this reason the error relative
to the true value is usually a better measure of the accuracy of a floating-point func-
tion, except when the output range is strictly bounded.

If fis the mathematical function and F the subroutine approximation, then the rela-
tive error at the floating-point number X (provided f(X) is not zero) is:

F&x - %)
J&X
Obviously the relative error may become very large near a zero of f(X). If the zero

is at an irrational argument (which cannot be represented as a floating-point value),
the absolute error is a better measure of the accuracy of the function near the zero.

REX) =

As it is impractical to find the relative error for every possible argument, statistical
measures of the overall error must be used. If the relative error is sampled at a
number of points X;, (n = 1 to N), then useful statistics are the maximum relative
error and the root-mean-square relative error.

72 TDS 368 01 March 1993



1 The occam libraries 23

MRE = max |RE(Xn)

N
RMSRE = _[ > (REQ,)
n=1

Corresponding statistics can be formed for the absolute error also, and are called
MAE and RMSAE respectively.

The MRE generally occurs near a zero of the function, especially if the true zero
is irrational, or near a singularity where the result is large, since the ‘granularity’ of
the floating-point numbers then becomes significant.

A useful unit of relative error is the relative magnitude of the least significant bit in
the floating-point fraction, which is called one ‘unit in the last place’ (ulp), (i.e. the
smallest € such that 1+& = 1). Its magnitude depends on the floating-point format:
for single-lengthitis 2-23=1.19%10~7, and for double-length itis 2-52=2.22%10~16,

Propagated Error

Because of the limited accuracy of floating-point numbers the result of any calcula-
tion usually differs from the exact value. In effect, a small error has been added to
the exact result, and any subsequent calculations will inevitably involve this error
term. Thus it is important to determine how each function responds to errors in its
argument. Provided the erfror is not too large, it is sufficient just to consider the first
derivative of the function (written f’).

If the relative error in the argument X is d (typically a few ulp), then the absolute
error (E) and relative error (¢) in f(X) are:

E=|X"(X)d|= Ad -

(- |20
7®

This defines the absolute and relative error magnification factors 4 and R. When
both are large the function is unstable, i.e. even a small errorin the argument, such
as would be produced by evaluating a floating-point expression, will cause a large
error in the value of the function. The functions return an unstable.NaN in such
cases which are simple to detect.

IERd

The functional forms of both.4 and R are given in the specification of each function.
Test Procedures

For each function, the generated error was checked at a large number of argu-
ments (typically 100 000) drawn at random from the appropriate domain. First the
double-length functions were tested against a ‘quadruple-length’ implementation
(constructed for accuracy rather than speed), and then the single-length functions
were tested against the doubie-length versions.

72 TDS 368 01 March 1993



24 1.4 Maths libraries

In both cases the higher-precision implementation was used to approximate the
mathematical function (called f above) in the computation of the error, which was
evaluated in the higher precision to avoid rounding errors. Error statistics were
produced according to the formulae above.

Symmetry

The subroutines were designed to reflect the mathematical properties of the func-
tions as much as possible. For all the functions which are even, the sign is removed
from the input at the beginning of the computation so that the sign-symmetry of the
function is always preserved. For odd functions, either the sign is removed at the
start and then the appropriate sign set at the end of the computation, or else the
sign is simply propagated through an odd degree polynomial. In many cases other
symmetries are used in the range-reduction, with the result that they will be satis-
fied automatically.

The Function Specifications
Names and Parameters

All single length functions except RAN retum a single result of type REAL32, and
all except RAN, POWER and ATAN2 have one parameter, a VAL REATL32.

POWER and ATAN2 have two parameters which are VAL REAL32s for the two argu-
ments of each function.

RAN returns two results, of types REAL32 and INT32, and has one parameter
which is a VAL INT32.

In each case the double-length version of name is called Dname, returns a REATL64
(except DRAN, which returns REAL64, INT64), and has parameters of type
VAL REALG64 (VAL INT64 for DRAN).

Terms used in the Specifications

A and R Multiplying factors relating the absolute and relative errors in the output
to the relative error in the argument.

Exceptions Outputs for invalid inputs (i.e. those outside the domain), other than
NaN (NaNs are copied directly to the output and are not listed as exceptions).
These are all Infs or NaNs.

Generated Error The difference between the true and computed values of the
function, when the argument is error-free. This is measured statistically and
displayed for one or two ranges of arguments, the first of which is usually the
primary domain (see below). The second range, if present, is chosen to illus-
trate the typical behavior of the function.

Domain The range of valid inputs, i.e. those for which the output is a normal or
denormal floating-point number.

MAE and RMSAE The Maximum Absolute Error and Root-Mean-Square absolute
error taken over a number of arguments drawn at random from the indicated
range.

72 TDS 368 01 March 1993



1 The occam libraries 25

MRE and RMSRE The Maximum Relative Error and Root-Mean-Square relative
error taken over a number of arguments drawn at random from the indicated
range.

Range The range of outputs produced by all arguments in the Domain. The given
endpoints are not exceeded.

Primary Domain The range of arguments for which the result is computed using
only a single rational approximation to the function. There is no argument
reduction in this range.

Propagated Error The absolute and relative error in the function value, given a
small relative error in the argument.

ulp The unit of relative error is the ‘unit in the last place’ (ulp). This is the relative
magnitude of the least significant bit of the floating-point fraction (i.e. the
smallest € such that 1+¢ = 1).

N.B. this depends on the floating-point format.
For the standard single-length format it is 223 = 1.19%10~7.
For the double-length format it is 252 = 2.22+10-16,

This is also used as a measure of absolute error, since such erors can be
considered ‘relative’ to unity.

Specification of Ranges

Ranges are given as intervals, using the convention that a square bracket ‘[’ or /T’
means that the adjacent endpoint is included in the range, whilst a round bracket
‘(" or ') means that it is excluded. Endpoints are given to a few significant figures
only.

Where the range depends on the floating-point format, single-length is indicated
with an S and double-length with a D.

For functions with two arguments the complete range of both arguments is given.
This means that for each number in one range, there is at least one (though some-
times only one) number in the other range such that the pair of arguments is valid.
Both ranges are shown, linked by an x'.

Abbreviations

In the specifications, XMAX is the largest representable floating-point number: in
single-la%r;gth it is approximately 3.4+1038, and in double-length it is approximately
1.8%10°Y,

Pi means the closest floating-point representation of the transcendental number
n, In(2) the closest representation of log,.(2), and so on.

In describing the algorithms, ‘X is used generically to designate the argument, and
‘result’ (or RESULT, in the style of occam functions) to designate the output.

1.4.2 Single and double length elementary function libraries

The versions of the libraries described by this section have been written using only
floating-point arithmetic and pre-defined functions supported in occam. Thus they

72 TDS 368 01 March 1993



26 1.4 Maths libraries

can be compiled for any processor with a full implementation of occam, and give
identical results.

These two libraries will be efficient on processors with fast floating-point arithmetic
and good support for the floating-point predefined functions such as MULBY2 and
ARGUMENT . REDUCE. For 32-bit processors without special hardware for floating-
point calculations the altemative optimized library described in section 1.4.3 using
fixed-point arithmetic will be faster, but will not give identical results.

A special version has been produced for 16-bit transputers, which avoids the use
of any double-precision arithmetic in the single precision functions. This is distin-
guished in the notes by the annotation ‘T2 special’; notes relating to the version for
T8 and TB are denoted by ‘standard’.

Single and double length maths functions are listed below. Descriptions of the func-
tions can be found in succeeding sections.

To use the single length library a program header must include the line
#USE “snglmath.lib”

To use the double length library a program header must include the line
#USE “dblmath.lib”

Result(s) Function |Parameter specifiers

REAL32 ALOG VAL REAL32 X

REAL32 ALOG10 VAL REAL32 X

REAL32 EXP VAL REAL32 X

REAL32 POWER VAL REAL32 X, VAL REAL32 Y
REAL32 SIN VAL REAL32 X

REAL32 cos VAL REAL32 X

REAL32 TAN VAL REAL32 X

REAL32 ASIN VAL REAL32 X

REAL32 ACOS VAL REAL32 X

REAL32 ATAN VAL REAL32 X

REAL32 ATAN2 VAL REAL32 X, VAL REAL32 Y
REAL32 SINH VAL REAL32 X

REAL32 COSH VAL REAL32 X

REAL32 TANH VAL REAL32 X

REAL32,INT32 |RAN VAL INT32 X

REALG64 DALOG VAL REAL64 X

REAL64 DALOG10 VAL REAL64 X

REAL64 DEXP VAL REAL64 X

72 TDS 368 01 March 1993



1 The occam libraries

27

Result(s) Function |Parameter specifiers

REAL64 DPOWER VAL REAL64 X, VAL REAL64 Y
REALG64 DSIN VAL REAL64 X

REAL64 DCOS VAL REAL64 X

REAL64 DTAN VAL REAL64 X

REAL64 DASIN VAL REAL64 X

REAL64 DACOS VAL REAL64 X

REAL64 DATAN VAL REAL64 X

REAL64 DATAN2 VAL REAL64 X, VAL REAL64 Y
REAL64 DSINH VAL REAL64 X

REAL64 DCOSH VAL REAL64 X

REAL64 DTANH VAL REAL64 X

REAL64,INT64 |DRAN VAL INT64 X

Function definitions

ALOG
DALOG

REAL32 FUNCTION ALOG (VAL REAL32 X)
REAL64 FUNCTION DALOG (VAL REAL64 X)

Compute loge(X).

Domain:
Range:

Primary Domain:

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A=1,

R =1/l0ge(X)

Generated Error

Primary Domain Error:

(0, XMAX]
[MinLog, MaxLog] [MinLog, MaxLog] (See note 2)
[v2/2, v/2) =[0.7071, 1.4142)

MRE

Single Length(Standard): 1.7 ulp
Single Length(T2 special): 1.6 ulp
Double Length:

The Algorithm
1 Split X into its exponent N and fraction F.

72 TDS 368 01

1.4 ulp

RMSRE
043 ulp
0.42 ulp
0.38 ulp

March 1993




28

1.4 Maths libraries

2 Find LnF, the natural log of F, with a floating-point rational approxima-
tion.

3 Compute In(2) * N with extended precision and add it to LnF to get
the resuilt.

Notes

1) The term In(2) * N is much easier to compute (and more accurate) than
LnF, and it is larger provided N is not 0 (i.e. for arguments outside the
primary domain). Thus the accuracy of the resultimproves as the modulus
of log(X) increases.

2) The minimum value that can be produced, MinLog, is the logarithm of
the smallest denormalized floating-point number. For single length MinLog
is —103.28, and for double length it is —744.4. The maximum value MaxLog
is the logarithm of XMAX. For single-length it is 88.72, and for double-
length it is 709.78. '

3) Since Inf is used to represent all values greater than XMAX its logarithm
cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

ALOG10
DALOG10

REAL32 FUNCTION ALOG10 (VAL REAL32 X)
REAL64 FUNCTION DALOG10 (VAL REAL64 X)

Compute logqp(X).

Domain: (0, XMAX]
Range: [Min1.10, MaxL10] (See note 2)
Primary Domain: [\/2/2,/2) =[0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A =logiofe), R =logio(e)loge(X)

Generated Error

Primary Domain Error: MRE RMSRE
Single Length (Standard): 1.70ulp 0.45ulp

72 TDS 368 01 March 1993



1 The occam libraries 29

EXP
DEXP

Single Length (T2 special): 1.71ulp 0.46 ulp
Double Length: 1.84 ulp 045ulp

The Algorithm
1 Set temp:= ALOG (X) .

2 Iftemp is a NaN, copy it to the output, otherwise set
result = log(e) * temp

Notes
1) See note 1 for ALOG.

2) The minimum value that can be produced, MinL 10, is the base-10 loga-
rithm of the smallest denormalized floating-point number. For single length
MinL10 is —44.85, and for double length it is —323.3. The maximum value
MaxL10 is the base-10 logarithm of XMAX. For single length MaxL10 is
38.53, and for double-length it is 308.26.

3) Since Inf is used to represent all values greater than XMAX its logarithm
cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

REAL32 FUNCTION EXP (VAL REAL32 X)
REAL64 FUNCTION DEXP (VAL REAL64 X)

Compute eX.
Domain: [-Inf, MaxLog) = [-Inf, 88.72)S, [-Inf, 709.78)D
Range: [0, Inf) (See note 4)

Primary Domain: [-Ln2/2, Ln2/2) = [-0.3466, 0.3466)
Exceptions
All arguments outside the domain generate an Inf.
Propagated error
A=XeX, R=X
Generated error

Primary Domain Error: MRE RMSRE
Single Length(Standard): 099ulp 0.25ulp

72 TDS 368 01 March 1993



30 1.4 Maths libraries

Single Length(T2 special): 1.0ulp 0.25ulp
Double Length: 14ulp 025ulp

The Algorithm
1 Set N = integer part of X/In(2).

2 Compute the remainder of X by In(2), using extended precision arith-
metic.

3 Compute the exponential of the remainder with a floating-point
rational approximation.

4 Increase the exponent of the result by N. If N is sufficiently negative
the result must be denormalized.

Notes

1) MaxLog is log.(XMAX).

2) For sufficiently negative arguments (below —87.34 for single-length and
below —708.4 for double-length) the output is denormalized, and so the
floating-point number contains progressively fewer significant digits, which
degrades the accuracy. In such cases the error can theoretically be a factor
of two.

3) Although the true exponential function is never zero, for large negative
arguments the true result becomes too small to be represented as a float-
ing-point number, and EXP underflows to zero. This occurs for arguments
below —-103.9 for single-length, and below —745.2 for double-length.

4) The propagated error is considerably magnified for large positive argu-
ments, but diminished for large negative arguments.

POWER
DPOWER

REAL32 FUNCTION POWER (VAL REAL32 X, Y)
REAL64 FUNCTION DPOWER (VAL REAL64 X, Y)

Compute XY
Domain: [0, Inf] X [-Inf, Inf]
Range: (-Inf, Inf)

Primary Domain: See note 3.
Exceptions

If the first argument is outside its domain, undefined.NaN is returned. Ifthe
true value of XY exceeds XMAX, Infis returned. In certain other cases other
NaNs are produced: See note 2.

72 TDS 368 01 March 1993



1 The occam libraries 31

Propagated Error
A=YXY1 +log.(X)), R=Y{1=log.(X))(See note 4)

Generated error

Example Range Error: MRE RMSRE (See note 3)
Single Length(Standard): 1.0ulp 0.25ulp
Single Length(T2 special): 63.1ulp 13.9ulp
Double Length: 211ulp 24ulp
The Algorithm

Deal with special cases: either argument = 1, 0, +Inf or —Inf (see note 2).
Otherwise:

(a) For the standard single precision:

1 Compute L = log.(X) in double precision, where X is the first argu-
ment.

2 Compute W=Y x L indouble precision, where Y'is the second argu-
ment.

3 Compute RESULT = e¥ in single precision.
(b) For double precision, and the single precision special version:

1 Compute L = logz(X) in extended precision, where X is the first argu-
ment.

2 Compute W=Y x L in extended precision, where Y is the second
argument.

3 Compute RESULT = 2¥in extended precision.
Notes

1) This subroutine implements the mathematical function x¥ to a much
greater accuracy than can be attained using the ALOG and EXP functions,
by performing each step in higher precision. The single-precision version
is more efficient than using DALOG and EXP because redundant tests are
omitted.

72 TDS 368 01 March 1993



32 1.4 Maths libraries
2) Results for special cases are as follows:
First Input (X) Second Input (Y) Result
<0 ANY undefined.NaN
0 <0 undefined.NaN
0 0 <Y<XMAX 0
0 Inf unstable.NaN
0 <X<1 Inf 0
0<X<«<1 =Inf Inf
1 —XMAX <Y < XMAX 1
1 + Inf unstable.NaN
1 <X < XMAX Inf Inf
1 < X < XMAX —Inf 0
Inf 1<Y=<Inf inf
Inf —Inf <Y < 1 0
Inf -1<Y <1 undefined.NaN
otherwise 0 1
otherwise 1 X
3) Performing all the calculations in extended precision makes the double-
precision algorithm very complex in detail, and having two arguments
makes a primary domain difficult to specify. As an indication of accuracy,
the functions were evaluated at 100 000 points logarithmically distributed
over (0.1, 10.0), with the exponent linearly distributed over (—35.0, 35.0)
(single-length), and (—300.0, 300.0) (double-length), producing the errors
given above. The errors are much smaller if the exponent range is reduced.
4) The error amplification factors are calculated on the assumption that the
relative error in Y'is £ that in X, otherwise there would be separate factors
for both X and Y. It can be seen that the propagated ermror will be greatly
amplified whenever log.(X) or Y is large.
SIN
DSIN

REAL32 FUNCTION SIN (VAL REAL32 X)
REAL64 FUNCTION DSIN (VAL REAL64 X)

Compute sine(X) (where X is in radians).
Domain: [-Smax, Smax] =[-205887.4, 205887 4]S (Standard),

Range:

Primary Domain:

72 TDS 368 01

= [4.2+108, 4.2+105]S (T2 special)
= [4.29+10%, 4.29+10%]D

[-1.0, 1.0]
[Pil2, Pil2]= [-1.57, 1.57]

March 1993



1 The occam libraries 33

Exceptions

All arguments outside the domain generate an inexact.NaN, except 4-Inf,
which generates an undefined.NaN.

Propagated Error
A=Xcos(X), R=Xcot(X)
Generated error (See note 1)

Primary Domain [0, 2Pi]
MRE RMSRE MAE RMSAE
Single Length(Standard): 0.94ulp 0.23ulp 096ulp 0.19ulp
Single Length(T2 special): 0.92ulp 0.23ulp 084 ulp 0.19 ulp
Double Length: 0.9ulp 022ulp 091ulp 0.18 ulp

The Algorithm
1 Set N = integer part of |X| /Pi.

2 Compute the remainder of | X| by P, using extended precision arith-
metic (doubie precision in the standard version).

3 Compute the sine of the remainder using a floating-point polynomial.

4 Adjust the sign of the result according to the sign of the argument and
the evenness of N.

Notes

1) For arguments outside the primary domain the accuracy of the result
depends crucially on step 2. The extra precision of step 2 is lost if N
becomes too large, and the cut-off Smax is chosen to prevent this. In any
case for large arguments the ‘granularity’ of floating-point numbers
becomes a significant factor. For arguments larger than Smax a change in
the argument of 1 ulp would change more than half of the significant bits
of the result, and so the result is considered to be essentially indeterminate.

2) The propagated error has a complex behavior. The propagated relative
error becomes large near each zero of the function (outside the primary
range), but the propagated absolute error only becomes large for large
arguments. In effect, the erroris seriously amplified only in an interval about
each imrational zero, and the width of this interval increases roughly in
proportion to the size of the argument.

3) Since only the remainder of X by Pi is used in step 3, the symmetry
sin{x+ nx ) = £ sin (x) is preserved, although there is a complication due to
differing precision representations of x.

72 TDS 368 01 March 1993



34

1.4 Maths libraries

Cos
DCOsS

4) The output range is not exceeded. Thus the output of SIN is always a
valid argument for ASIN.

REAL32 FUNCTION COS (VAL REAL32 X)
REAL64 FUNCTION DCOS (VAL REAL64 X)

Compute cosine(X) (where X is in radians).

Domain: [-Cmax, Cmax] = [-205887 .4, 205887.4]S (Standard),
= [-12868.0, 12868.0]S (T2 special)
= [-2.1+108, 2.1+108]D

Range: [-1.0, 1.0]
Primary Domain: See note 1.
Exceptions

All arguments outside the domain generate an inexact.NaN, except +Inf,
which generates an undefined.NaN.

Propagated Error
A=-Xsin(X), R=-Xtan(X) (See note 4)
Generated error

[0, Fil4) [0, 2P
MRE  RMSRE MAE  RMSAE

Single Length(Standard): 093 ulp 0.25ulp 0.88ulp 0.18 ulp
Single Length(T2 special): 1.1ulp 03ulp 0.84ulp 0.1Sulp
Double Length: 1.0ulp 0.28ulp 0.90ulp 0.19ulp

The Algorithm
1 SetN =integer part of (| X| + Pi/2)/Pi and compute the remainder of
(|X| +Pi/2) by Pi, using extended precision arithmetic (double preci-
sion in the standard version).
2 Compute the sine of the remainder using a floating-point polynomial.
3 Adjust the sign of the result according to the evenness of N.
Notes

1) Inspection of the algorithm shows that argument reduction always
occurs, thus there is no ‘primary domain’ for COS. So for all arguments the

72 TDS 368 01 March 1993



1 The occam libraries 35

accuracy of the result depends crucially on step 2. The standard single-pre-
cision version performs the argument reduction in double-precision, so
there is effectively no loss of accuracy at this step. For the T2 special
version and the double-precision version there are effectively K extra bits
in the representation of n(K=8 for the former and 12 for the latter). If the
argument agrees with an odd integer multiple of n/2 to more than & bits
there is a loss of significant bits from the computed remainder equal to the
number of extra bits of agreement, and this causes a loss of accuracy in
the result.

2) The difference between COS evaluated at successive floating-point
numbers is given approximately by the absolute error amplification factor,
A. For arguments larger than Cmax this difference may be more than half
the significant bits of the result, and so the resultis considered to be essen-
tially indeterminate and an inexact.NaN is retumed. The extra precision of
step 2 in the double-precision and T2 special versions is lost if N becomes
too large, and the cut-off at Cmax prevents this also.

3) For small arguments the errors are not evenly distributed. As the argu-
ment becomes smaller there is an increasing bias towards negative errors
(which is to be expected from the form of the Taylor series). For the single-
length version and X in [-0.1, 0.1], 62% of the errors are negative, whilst
for X in [-0.01, 0.01], 70% of them are.

4) The propagated error has a complex behavior. The propagated relative
error becomes large near each zero of the function, but the propagated
absolute error only becomes large for large arguments. In effect, the error
is seriously amplified only in an interval about each irrational zero, and the
width of this interval increases roughly in proportion to the size of the argu-
ment.

5) Since only the remainder of ([X]+Pi/2) by Pi is used in step 3, the
symmetry cos(x+ nx ) = 4= cos(x) is preserved. Moreover, since the same
rational approximation is used as in SIN, the relation cos{x) = sin(x+n/2) is
also preserved. However, in each case there is a complication due to the
different precision representations of .

6) The output range is not exceeded. Thus the output of COs is always a
valid argument for ACOS.

TAN
DTAN

REAL32 FUNCTION TAN (VAL REAL32 X)
REAL64 FUNCTION DTAN (VAL REAL64 X)

Compute tan(X) (where X is in radians).

72 TDS 368 01 March 1993



36

1.4 Maths libraries

Domain: [-Tmax, Tmax] = [-102943.7, 102943.7]S(Standard),
= [-2.1%106, 2.1+106]S(T2 special),
= [-2.1%109, 2.1+10°]D

Range: (—Inf, Inf)
Primary Domain: [-Pi/4, Pil4]= [-0.785, 0.785]
Exceptions

All arguments outside the domain generate an inexact.NaN, except 3-Inf,
which generate an undefined.NaN. Odd integer multiples of /2 may
produce unstable.NaN.

Propagated Error
A=X(1+tanX(X)), R=X(1+tan?(X))fan(X) (See note 3)

Generated error

Primary Domain Error: MRE RMSRE (See note 3)
Single Length(Standard): 144 ulp 0.39 ulp

Single Length(T2 special): 137 ulp 0.39 ulp

Double Length: 1.27ulp 0.35ulp
The Algorithm

1 Set N = integer part of X/(Pi/2), and compute the remainder of X by
Pil2, using extended precision arithmetic.

2 Compute two floating-point rational functions of the remainder,
XNum and XDen.

3 If Nis odd, set RESULT = — XDen/XNum, otherwise set RESULT =
XNumiXDen.

Notes

1) R is large whenever X is near to an integer multiple of /2, and so tan
is very sensitive to small errors near its zeros and singularities. Thus for
arguments outside the primary domain the accuracy of the result depends
crucially on step 2, so this is performed with very high precision, using
double precision Pi/2 for the standard single-precision function and two
double-precision floating-point numbers for the representation of n/2 for
the double-precision function. The T2 special version uses two single-pre-
cision floating-point numbers. The extra precision is lost if N becomes too
large, and the cut-off Tmax is chosen to prevent this.

2) The difference between TAN evaluated at successive floating-point
numbers is given approximately by the absolute error amplification factor,

72 TDS 368 01 March 1993



1 The occam libraries 37

ASIN

DASIN

A. For arguments larger than Smax this difference could be more than half
the significant bits of the result, and so the result is considered to be essen-
tially indeterminate and an inexact.NaN is returned.

3) Tan is quite badly behaved with respect to errors in the argument. Near
its zeros outside the primary domain the relative error is greatly magnified,
though the absolute error is only proportional to the size of the argument.
In effect, the error is seriously amplified in an interval about each irrational
zero, whose width increases roughly in proportion to the size of the argu-
ment. Near its singularities both absolute and relative errors become large,
so any large output from this function is liable to be seriously contaminated
with error, and the larger the argument, the smaller the maximum output
which can be trusted. If step 3 of the algorithm requires division by zero,
an unstable.NaN is produced instead.

4) Since only the remainder of X by Pi/2 is used in step 3, the symmetry
tan(x+nx ) = tan(x) is preserved, although there is a complication due to the
differing precision representations of x. Moreover, by step 3 the symmetry
tan(x) = 1fan( /2 —x) is also preserved.

REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)

Compute sine~1(X) (in radians).
Domain: [-1.0, 1.0]
Range: [-Pil2, Pil2]
Primary Domain: [-0.5, 0.5]
Exceptions
All arguments outside the domain generate an undefined.NaN. -
Propagated Error
A=XI\/1-X2, R=Xl/(sin"}X) /1-X2)
Generated Error

Primary Domain [-1.0, 1.0]
MRE RMSRE MAE RMSAE
Single Length: 058ulp 021ulp 135ulp 0.33ulp
Double Length: 0.59ulp 021ulp 1.26ulp 0.27 ulp
The Algorithm

1 If |X] > 0.5, set Xwork:= SQRT ((1 — |X|)/2). Compute Rwork =
arcsine(—2 * Xwork) with a floating-point rational approximation, and
set the result = Rwork + Pil2.

72 TDS 368 01 March 1993



38

1.4 Maths libraries

ACOS
DACOS

2 Otherwise compute the result directly using the rational approxima-
tion.

3 In either case set the sign of the result according to the sign of the
argument.

Notes

1) The error amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result is liable to be contaminated with error: however since both
domain and range are bounded the absolute error in the result cannot be
large.

2) By step 1, the identity sin—1(x) = /2 — 2 sin—(\/(1-x)/2)) is preserved.

REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)

Compute cosine~1(X) (in radians).

Domain: [-1.0,1.0]
Range: [0, Pi]
Primary Domain: [-0.5, 0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A=-XI\/1-X2, R=-XI(sin~"}{(X) v/1-X2)

Generated Error

Primary Domain [-1.0, 1.0]
MRE RMSRE MAE RMSAE
Single Length: 1.06ulp 0.38ulp 237ulp 0.61ulp
Double Length: 096 ulp 0.32ulp 225ulp 053 ulp

The Algorithm

1 If |X] > 0.5, set Xwork:= SQRT ((1 — |X|)/2). Compute Rwork =
arcsine(2 * Xwork) with a floating-point rational approximation. If the
argument was positive, this is the result, otherwise set the result = Pi
— Rwork.

72 TDS 368 01 March 1993



1 The occam libraries 39

2 Otherwise compute Rwork directly using the rational approximation.
If the argument was positive, set result = Pi/2 ~ Rwork, otherwise
result = Pi/2 + Rwork.

Notes

1) The error amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result is liable to be contaminated with error, although this interval is
larger near 1 than near —1, since the function goes to zero with an infinite
derivative there. However since both the domain and range are bounded
the absolute error in the result cannot be large.

2) Since the rational approximation is the same as thatin ASIN, the relation
cos—1(x) = w2 — sin—1(x) is preserved.

ATAN
DATAN

REAL32 FUNCTION ATAN (VAL REAL32 X)
REAL64 FUNCTION DATAN (VAL REAL64 X)

Compute tan—1(X) (in radians).

Domain: [-inf, Inf]

Range: [-Pil2, Pil2)

Primary Domain: [-=,z], z=2-./3=0.2679
Exceptions

None.

Propagated Error
A=XI(1+ X2, R=Xl/(tan~1(X)(1 + X?))
Generated Error

Primary Domain Error: MRE RMSRE

Single Length: 0.56ulp 0.21ulp
Double Length: 0.52ulp 0.21ulp
The Algorithm

1 If X/ > 1.0, set Xwork = 1/|X] , otherwise Xwork = |X].

2 If Xwork > 2—/3, set F = (Xwork*./3 —1)/(Xwork +./3), otherwise F
= Xwork.

72 TDS 368 01 March 1993



40

1.4 Maths libraries

ATAN2

3 Compute Rwork = arctan(F) with a floating-point rational approxima-
tion.

4 If Xwork was reducedin (2), set R = Pi/6 + Rwork, otherwise R = Rwork.

5 If X was reduced in (1), set RESULT = Pi/2 - R, otherwise RESULT
=R.

6 Set the sign of the RESULT according o the sign of the argument.
Notes

1) For |X] > ATmax, |tan—1(X)] is indistinguishable from /2 in the floating-
point format. For single-length, ATmax = 1.68+107, and for double-length
ATmax = 9+1015, approximately.

2) This function is numerically very stable, despite the complicated argu-
ment reduction. The worst errors occur just above 2—,/3, but are no more
than 3.2 ulp.

3) It is also very well behaved with respect to errors in the argument, i.e.
the error amplification factors are always small.

4) The argument reduction scheme ensures that the identities tan—1(X) =
/2 — tan—1(1/X), and tan—1(X) = a/6 + tan~Y((\/3+X-1)/(v/3 + X)) are
preserved.

DATAN2

REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)
REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)

Compute the angular co-ordinate tan—1(YZX) (in radians) of a point whose
X and Y co-ordinates are given.

Domain: [-inf, Inf] x [-Inf, Inf]
Range: (-Pi, Pi}
Primary Domain: See note 2.

Exceptions

(0, 0) and (ZInf,%-Inf) give undefined.NaN.

Propagated Error

A=X(1 £+ V(X2 +Y?2), R=X(1 £ Y)/(tan—(¥IX)(X2 + Y2)) (See note 3)
Generated Error

See note 2.

72 TDS 368 01 March 1993



1 The occam libraries 41

The Algorithm

1 If X, the first argument, is zero, set the result to 4 x /2, according to
the sign of Y, the second argument.

2 Otherwise set Rwork:= ATAN (Y/X). Then if Y < 0 set RESULT =
Rwork — Pi, otherwise set RESULT = Pi — Rwork.

Notes

1) This two-argument function is designed to perform rectangular-to-polar
co-ordinate conversion.

2) See the notes for ATAN for the primary domain and estimates of the
generated error.

3) The error amplification factors were derived on the assumption that the
relative error in Y'is - that in X, otherwise there would be separate factors
for X and Y. They are small except near the origin, where the polar co-ordi-
nate system is singular.

SINH
DSINH

REAL32 FUNCTION SINH (VAL REAL32 X)
REAL64 FUNCTION DSINH (VAL REAL64 X)

Compute sina(X).

Domain: [-Hmax, Hmax] = [-89.4, 89.4]S, [-710.5, 710.5]D
Range: (~Inf, Inf)

Primary Domain: (-1.0, 1.0)

Exceptions

X <-Hmax gives —Inf, and X > Hmax gives Inf.
Propagated Error

A =Xcosh(X), R=Xcoth(X) (See note 3)
Generated Error

Primary Domain [1.0, XBig] (See note 2)
MRE RMSRE MAE RMSAE
Single Length: 0.91 ulp 0.26 ulp 141ulp 0.34 ulp
Double Length: 0.67 ulp 0.22 ulp 1.31 ulp 0.33 ulp

The Algorithm
1 If |X] > XBig, set Rwork:= EXP (|X] —In(2)) .

72 TDS 368 01 March 1993



42

1.4 Maths libraries

COsH
DCOSH

2 IfXBig = |X] 21.0, set temp:= EXP (|X]), and set Rwork = (temp —
1ltemp)I2.

3 Otherwise compute sinh(|X]) with a floating-point rational approxima-
tion.

4 In all cases, set RESULT = + Rwork according to the sign of X.
Notes

1) Hmax is the point at which sinh(X) becomes too large to be represented
in the floating-point format.

2) XBigis the point at which e "1 becomes insignificant compared with el],
(in floating-point). For single-length it is 8.32, and for double-length it is
18.37.

3) This function is quite stable with respect to errors in the argument. Rela-
tive error is magnified near zero, but the absolute error is a befter measure
near the zero of the function and it is diminished there. For large arguments
absolute errors are magnified, but since the function is itself large, relative
error is a better criterion, and relative errors are not magnified unduly for
any argument in the domain, although the output does become less reliable
near the ends of the range.

REAL32 FUNCTION COSH (VAL REAL32 X)
REAL64 FUNCTION DCOSH (VAL REAL64 X)

Compute cosh(X).

Domain: [-Hmax, Hnax] =[-89.4, 894]S, [-710.5, 710.5]D

Range: [1.0, Inf)

Primary Domain: [-XBig, XBigl= [-8.32, 8.32]S
=[-18.37, 18.37]D

Exceptions

|X] > Hmax gives Inf.
Propagated Error
A=Xsinh(X), R=Xtanh(X) (See note 3)

Generated Error

Primary Domain Error:  MRE RMS
Single Length: 124 ulp 0.32ulp
Double Length: 124 ulp 0.33ulp

72 TDS 368 01 March 1993



1 The occam libraries 43

The Algorithm

1 If |X] > XBig, set result:= EXP (|X] - In(2)) .

2 Otherwise, set temp:= EXP (|X]), and set result = (temp + 1/temp)/2.
Notes

1) Hmax is the point at which cosh(X) becomes too large to be represented
in the floating-point format.

2) XBigis the point at which e H1becomes insignificant compared with elX1
(in floating-point).

3) Emors in the argument are not seriously magnified by this function,
although the output does become less reliable near the ends of the range.

TANH
DTANH

REAL32 FUNCTION TANH (VAL REAL32 X)
REAL64 FUNCTION DTANH (VAL REAL64 X)

Compute tanh(X).

Domain: [HInf, Inf]

Range: [-1.0, 1.0]

Primary Domain: [-Log(3)/2, Log(3)/2] = [-0.549, 0.549]
Exceptions

None.

Propagated Error
A =Xlcosh?(X), R = Xisinh(X) cosh(X)
Generated Error

Primary Domain Error:  MRE RMS

Single Length: 0.53ulp 0.2ulp
Double Length: 0.53ulp 0.2ulp
The Algorithm

1 If |IX] > In(3)/2, set temp:= EXP (|X]/2) . Then set
Rwork = 1 — 2/(1+temp).

2 Otherwise compute Rwork = tanh{|X]) with a floating-point rational
approximation.

72 TDS 368 01 March 1993



1.4 Maths libraries

DRAN

3 In both cases, set RESULT = + Rwork according to the sign of X.
Notes

1) As a floating-point number, tanh(X) becomes indistinguishable from its
asymptotic values of 4-1.0 for |X]> HTmax, where HTmax is 8.4 for single-
length, and 19.06 for double-length. Thus the output of TANH is equal to
+1.0 for such X.

2) This function is very stable and well-behaved, and errors in the argument
are always diminished by it.

REAL32,INT32 FUNCTION RAN (VAL INT32 X)
REAL64,INT64 FUNCTION DRAN (VAL INT64 X)

These produce a pseudo-random sequence of integers, or a corre-
sponding sequence of floating-point numbers between zero and one. X is
the seed integer that initiates the sequence.

Domain: Integers (see note 1)
Range: [0.0, 1.0] x Integers
Exceptions

None.

The Algorithm

1 Produce the next integer in the sequence: N1 = (@aNk *+ 1hpod it

2 Treat N+ as a fixed-point fraction in [0,1), and convert it to floating
point.

3 Output the floating point result and the new integer.
Notes

1) This function has two results, the first a real, and the second an integer
(both 32 bits for single-length, and 64 bits for double-length). The integer
is used as the argument for the next call to RAN, i.e. it ‘carries’ the pseudo-
random linear congruential sequence N, and it should be keptin scope for
as long as RAN is used. It should be initialized before the first call to RAN
but not modified thereafter except by the function itself.

2) If the integer parameter is initialized to the same value, the same
sequence (both floating-point and integer) will be produced. If a different
sequence is required for each run of a program it should be initialized to
some ‘random’ value, such as the output of a timer.

72 TDS 368 01 March 1993



1 The occam libraries 45

3) The integer parameter can be copied to another variable or used in
expressions requiring random integers. The topmost bits are the most
random. Arandom integer in the range [0,L] can conveniently be produced
by taking the remainder by (L+1) of the integer parameter shifted right by
one bit. If the shift is not done an integer in the range [-L,L] will be
produced.

4) The modulus M s 232for single-length and 264 for double-length, and the
multipliers, a, have been chosen so that all M integers will be produced
before the sequence repeats. However several different integers can
produce the same floating-point value and so a floating-point output may
be repeated, although the sequence of such will not be repeated until M
calls have been made.

5) The floating-point result is uniformly distributed over the output range,
and the sequence passes various tests of randomness, such as the ‘run
test’, the ‘maximum of 5 test’ and the ‘spectral test'.

6) The double-length version is slower to execute, but ‘more random’ than
the single-length version. If a highly-random sequence of single-length
numbers is required, this could be produced by converting the output of
DRAN to single-length. Conversely if only a relatively crude sequence of
double-length numbers is required, RAN could be used for higher speed
and its output converted to double-length.

1.4.3 IMS T400/T414/T425/T426 elementary function library

To use this library a program header must include the line:
#USE “tbmaths.lib”

The version of the library described by this section has been written for 32-bit
processors without hardware for floating-point arithmetic. Functions from it will
give results very close, but not identical to, those produced by the corresponding
functions from the single and double length libraries.

This is the version specifically intended to derive maximum performance from the
IMS T400, T414, T425, and T426 processors. The single-precision functions make
use of the FMUL instruction available on 32-bit processors without floating-point
hardware. The library is compiled for transputer class TB.

The tables and notes at the beginning of section 1.4 apply equally here. However
all the functions are contained in one library.

Function definitions

ALOG
DALOG

REAL32 FUNCTION ALOG (VAL REAL32 X)
REAL64 FUNCTION DALOG (VAL REAL64 X)

72 TDS 368 01 March 1993



46

1.4 Maths libraries

These compute: log,(X)

Domain: (0, XMAX]
Range: [MinLog, MaxLog] (See note 2)
Primary Domain: [/2/2, \/2) =[0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A =1, R=log(X)

Generated Error

Primary Domain Error:  MRE RMSRE

Single Length: 1.19ulp 0.36 ulp
Double Length: 24ulp 1.0ulp
The Algorithm

1 Split X into its exponent N and fraction F.

2 Find the natural log of F with a fixed-point rational approximation, and
convert it into a floating-point number LnF.

3 Compute In(2) * N with extended precision and add it to LnF to get
the resuilt.

Notes

1) The term In(2) * N'is much easier to compute (and more accurate) than
LnF, and it is larger provided N is not 0 (i.e. for arguments outside the
primary domain). Thus the accuracy of the result improves as the modulus
of log(X) increases.

2) The minimum value that can be produced, MinLog, is the logarithm of
the smallest denormalized floating-point number. For single length MinLog
is —103.28, and for double length it is —744.4. The maximum value MaxLog
is the logarithm of XMAX. For single-length it is 88.72, and for double-
length it is 709.78.

3) Since Infis used to represent all values greater than XMAX its logarithm
cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

72 TDS 368 01 March 1993



1 The occam libraries 47

ALOG10
DALOG10

REAL32 FUNCTION ALOG10 (VAL REAL32 X)
REAL64 FUNCTION DALOG10 (VAL REAL64 X)

These compute: logy(X)

Domain: (0, XMAX]
Range: [MinL10, MaxL 10] (See note 2)
Primary Domain: [\/2/2, \/2) =[0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A = logiofe), R =logio(e)log.(X)

Generated Error

Primary Domain Error: MRE RMSRE

Single Length: 143 ulp 0.39ulp
Double Length: 2.64 ulp 0.96 ulp
The Algorithm

1 Set temp:= ALOG (X).

2 Iftemp is a NaN, copy it to the output, otherwise set
result = log(e) * temp.

Notes
1) See note 1 for ALOG.

2) The minimum value that can be produced, MinL 10, is the base-10 loga-
rithm of the smallest denormalized floating-point number. For single length
MinL10 is —44.85, and for double length it is ~323.3. The maximum value
MaxL10 is the base-10 logarithm of XMAX. For single length MaxL10 is
38.53, and for double-length it is 308.26.

3) Since Infis used to represent all values greater than XMAX its logarithm
cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

72 TDS 368 01 March 1993



48

1.4 Maths libraries

EXP
DEXP

REAT32 FUNCTION EXP (VAL REAL32 X)
REAL64 FUNCTION DEXP (VAL REAL64 X)

These compute: eX

Domain: [-Inf, MaxLog) = [-Inf, 88.03)S, [-Inf, 709.78)D
Range: [0, Inf) (See note 4)
Primary Domain: [-Ln2/2, Ln2/2) = [-0.3466, 0.3466)

Exceptions

All arguments outside the domain generate an Inf.
Propagated Error .
A=XeX R=X

Generated Error

Primary Domain Eror: MRE RMSRE

Single Length: 0.51ulp 0.21ulp
Double Length: 05ulp 021ulp
The Algorithm

1 Set N = integer part of X/In(2).

2 Compute the remainder of X by In(2), using extended precision arith-
metic.

3 Convert the remainder to fixed-point, compute its exponential using
a fixed-point rational function, and convert the result back to floating
point.

4 Increase the exponent of the result by N. If N is sufficiently negative
the result must be denormalized.

Notes

1) MaxLog is log. (XMAX).

2) The analytical properties of e*make the relative error of the result propor-
tional to the absolute error of the argument. Thus the accuracy of step 2,
which prepares the argument for the rational approximation, is crucial to
the performance of the subroutine. It is completely accurate when N = 0,
i.e. in the primary domain, and becomes less accurate as the magnitude

72 TDS 368 01 March 1993



1 The occam libraries 49

of N increases. Since N can attain larger negative values than positive
ones, EXP is least accurate for large, negative arguments.

3) For sufficiently negative arguments (below —87.34 for single-length and
below -708.4 for double-length) the output is denormalized, and so the
floating-point number contains progressively fewer significant digits, which
degrades the accuracy. In such cases the error can theoretically be a factor
of two.

4) Although the true exponential function is never zero, for large negative
arguments the true result becomes too small to be represented as a float-
ing-point number, and EXP underflows to zero. This occurs for arguments
below —103.9 for single-length, and below —745.2 for double-length.

5) The propagated error is considerably magnified for large positive argu-
ments, but diminished for large negative arguments.

POWER
DPOWER

REAL32 FUNCTION POWER (VAL REAL32 X, Y)
REAL32 FUNCTION DPOWER (VAL REAL64 X, Y)

These compute: XY

Domain: [0, Inf] x [-Inf, inf]
Range: (—Inf, Inf)
Primary Domain: See note 3.

Exceptions

Ifthe first argument is outside its domain, undefined.NaN is returned. Ifthe
true value of XY exceeds XMAX, Infis returned. In certain other cases other
NaNs are produced: See note 2.

Propagated Error
A=YXY1 +log.(X)), R=Y(1+log.(X)) (See note 4)
Generated Error

Example Range Error: MRE RMSRE (See note 3)

Single Length: 10ulp 0.24ulp
Double Length: 13.2ulp 1.73ulp
The Algorithm

Deal with special cases: either argument = 1, 0, +Inf or ~Inf (see note 2).
Otherwise:

72 TDS 368 01 March 1993



50

1.4 Maths libraries

(a) For single precision:
1 Compute L = logy(X) in fixed point, where X is the first argument.

2 Compute W=Y Xx L in double precision, where Yis the second argu-
ment.

3 Compute 2% in fixed point and convert to floating-point result.
(b) For double precision:

1 Compute L = logo(X) in extended precision, where X is the first argu-
ment.

2 Compute W=Y x L in extended precision, where Y is the second
argument.

3 Compute RESULT = 2% in extended precision.
Notes

1) This subroutine implements the mathematical function x¥ to a much
greater accuracy than can be attained using the ALOG and EXP functions,
by performing each step in higher precision.

2) Results for special cases are as follows:

First Input (X) Second Input (Y) Result
<0 ANY undefined.NaN
0 <0 undefined.NaN
0 0 <Y<XMAX 0
0 Inf unstable.NaN
0<X<1 Inf 0
0 <X<1 ~Inf Inf
1 -XMAX <Y < XMAX 1
1 + Inf unstable.NaN
1 <X = XMAX Inf Inf
1 <X < XMAX —Inf 0
Inf 1<Ys<Inf Inf
Inf —Inf <Y < 1 0
Inf -1<Y<1 undefined.NaN
otherwise 0 1
otherwise 1 X

3) Performing all the calculations in extended precision makes the double-
precision algorithm very complex in detail, and having two arguments

72 TDS 368 01

March 1993



1 The occam libraries 51

SIN
DSIN

makes a primary domain difficult to specify. As an indication of accuracy,
the functions were evaluated at 100 000 points logarithmically distributed
over (0.1, 10.0), with the exponent linearly distributed over (-35.0, 35.0)
(single-length), and (-300.0, 300.0) (double-length), producing the errors
given above. The errors are much smaller if the exponent range is reduced.

4) The error amplification factors are calculated on the assumption that the
relative error in Yis + that in X, otherwise there would be separate factors
for both X and Y. It can be seen that the propagated error will be greatly
amplified whenever log,(X) or Yis large.

The Algorithm
1 Compute L = log,(X) in fixed point, where X is the first argument.

2 Compute W=Y x L in double precision, where Y'is the second argu-
ment.

3 Compute 2 in fixed point and convert to floating-point result.

4 Compute L = log,(X) in extended precision, where X'is the first argu-
ment.

5 Compute W=Y X L in extended precision, where Y is the second
argument.

6 Compute RESULT = 2% in extended precision.

REAL32 FUNCTION SIN (VAL REAL32 X)
REAL64 FUNCTION DSIN (VAL REAL64 X)

These compute: sine(X) (where X is in radians)

Domain: [-Smax, Smax] = [-12868.0, 12868.0]S,
= [-2.1+108, 2.1+108]D

Range: [-1.0, 1.0]
Primary Domain: [-Pi/2, Pi/2] = [-1.57, 1.57]

Exceptions

All arguments outside the domain generate an inexact.NaN, except £ Inf,
which generates an undefined.NaN.

Propagated Error
A=Xcos(X), R=XcolX)

72 TDS 368 01 March 1993



52

1.4 Maths libraries

Generated Error (See note 3)

Range: Primary Domain [0, 2Pi]
MRE RMSRE MAE RMSAE
Single Length: 0.65ulp 022ulp 0.74ulp 0.18 ulp
Double Length: 056ulp 021ulp 064ulp 0.16ulp
The Algorithm

1 Set N = integer part of |[X]/Pi.

2 Compute the remainder of |X] by Pi, using extended precision arith-
metic.

3 Convert the remainder to fixed-point, compute its sine using a fixed-
point rational function, and convert the result back to floating point.

4 Adjust the sign of the result according to the sign of the argument and
the evenness of N.

Notes

1) For arguments outside the primary domain the accuracy of the result
depends crucially on step 2. The extended precision corresponds to X
extra bits in the representation of x (K = 8 for single-length and 12 for
double-length). If the argument agrees with an integer multiple of x to more
than K bits there is a loss of significant bits in the remainder, equal to the
number of extra bits of agreement, and this causes a loss of accuracy in
the resuit.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off
Smax is chosen to prevent this. In any case for large arguments the ‘granu-
larity’ of floating-point numbers becomes a significant factor. For argu-
ments larger than Smax a change in the argument of 1 ulp would change
more than half of the significant bits of the result, and so the result is consid-
ered to be essentially indeterminate.

3) The propagated error has a complex behavior. The propagated relative
error becomes large near each zero of the function (outside the primary
range), but the propagated absolute error only becomes large for large
arguments. In effect, the error is seriously amplified only in an interval about
each irrational zero, and the width of this interval increases roughly in
proportion to the size of the argument.

4) Since only the remainder of X by Pi is used in step 3, the symmetry sin{x+
nn) == sin(x) is preserved, although there is a complication due to differing
precision representations of .

5) The output range is not exceeded. Thus the output of SIN is always a
valid argument for ASIN.

72 TDS 368 01 March 1993



1 The occam libraries 53

Ccos
DCOs

REAL32 FUNCTION COS (VAL REAL32 X)
REAL64 FUNCTION DCOS (VAL REAL64 X)

These compute: cosine (X) (where X is in radians)

Domain: [-Smax, Smax] = [12868.0, 12868.0]S,
= [-2.1+108, 2.1+108]D

Range: [-1.0, 1.0]
Primary Domain: See note 1.

Exceptions

All arguments outside the domain generate an inexact.NaN, except +Inf,
which generates an undefined.NaN.

Propagated Error
A=-Xsin(X), R=-Xtan(X) (See note4)

Generated Error

Range: [0,Pil4) [0, 2Pi]
MRE RMSRE MAE RMSAE
Single Length: 1.0ulp 0.28ulp 0.81ulp 0.17 ulp
Double Length: 093ulp 026ulp 0.76ulp 0.18 ulp
The Algorithm

1 Set N = integer part of (| X]+Pi/2)/Pi.

2 Compute the remainder of (|X]+Pi/2) by Pi, using extended precision
arithmetic.

3 Compute the remainder to fixed-point, compute its sine using a fixed-
point rational function, and convert the result back to floating point.

4 Adjust the sign of the result according to the evenness of N.
Notes

1) Inspection of the algorithm shows that argument reduction always
occurs, thus there is no ‘primary domain’ for COS. So for all arguments the
accuracy of the result depends crucially on step 2. The extended precision
corresponds to K extra bits in the representation of x (K = 8 for single-length
and 12 for double length). If the argument agrees with an odd integer
multiple of /2 to more than K bits there is a loss of significant bits in the

72 TDS 368 01 March 1993



1.4 Maths libraries

TAN
DTAN

remainder, equal to the number of extra bits of agreement, and this causes
a loss of accuracy in the result.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off
Smax is chosen to prevent this. In any case for large arguments the ‘granu-
larity’ of floating-point numbers becomes a significant factor. For argu-
ments larger than Smax a change in the argument of 1 ulp would change
more than half of the significant bits of the result, and so the result is consid-
ered to be essentially indeterminate.

3) For small arguments the errors are not evenly distributed. As the argu-
ment becomes smaller there is an increasing bias towards negative errors
(which is to be expected from the form of the Taylor series). For the single-
length version and X in [-0.1, 0.1], 62% of the errors are negative, whilst
for X in [-0.01, 0.01], 70% of them are.

4) The propagated error has a complex behavior. The propagated relative
error becomes large near each zero of the function, but the propagated
absolute error only becomes large for large arguments. In effect, the error
is seriously amplified only in an interval about each irrational zero, and the
width of this interval increases roughly in proportion to the size of the argu-
ment.

5) Since only the remainder of ([X]+Pi/2) by Pi is used in step 3, the
symmetry cos(x+ nx ) = + cos(x) is preserved. Moreover, since the same
rational approximation is used as in SIN, the relation cos{x) =sin(x+ n/2) is
also preserved. However, in each case there is a complication due to the
different precision representations of .

6) The output range is not exceeded. Thus the output of COS is always a
valid argument for ACOS.

REAL32 FUNCTION TAN (VAL REAL32 X)
REAL64 FUNCTION DTAN (VAL REAL64 X)

These compute: tan(X) (where Xis in radians)

Domain: [Tmax, Tmax] = [-6434.0, 6434.0]S
= [-1.05+108, 1.05+108]D

Range: (—Inf, Inf)
Primary Domain: [-Pi/4, Pi/4] =[-0.785, 0.785]
Exceptions

All arguments outside the domain generate an inexact.NaN, except &+ Inf,
which generate an undefined.NaN. Odd integer multiples of /2 may
produce unstable.NaN.

72 TDS 368 01 March 1993



1 The occam libraries 55

Propagated Error
A=X(1+tanX)), R=X(1+tan?X))tan(X) (See note 4)
Generated Error

Primary Domain Emor:  MRE RMSRE

Single Length: 35ulp 0.23ulp
Double Length: 0.69ulp 0.23 ulp
The Algorithm

1 Set N = integer part of X/(Pi/2).

2 Compute the remainder of X by Pi/2, using extended precision arith-
metic.

3 Convert the remainder to fixed-point, compute its tangent using a
fixed-point rational function, and convert the result back to floating
point.

4 If N is odd, take the reciprocal.
5 Set the sign of the result according to the sign of the argument.
Notes

1) R is large whenever X is near to an integer multiple of «/2, and so tan
is very sensitive to small errors near its zeros and singularities. Thus for
arguments outside the primary domain the accuracy of the result depends
crucially on step 2. The extended precision corresponds to X extra bits in
the representation of n/2 (K = 8 for single-length and 12 for double-length).
If the argument agrees with an integer multiple of /2 to more than K bits
there is a loss of significant bits in the remainder, approximately equal to
the number of extra bits of agreement, and this causes a loss of accuracy
in the result.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off
Tmax is chosen to prevent this. In any case for large arguments the ‘granu-
larity’ of floating-point numbers becomes a significant factor. For argu-
ments larger than Tmax a change in the argument of 1 ulp would change
more than half of the significant bits of the result, and so the resultis consid-
ered to be essentially indeterminate.

3) Step 3 of the algorithm has been slightly modified in the double-precision
version from that given in Cody & Waite to avoid fixed-point underflow in
the polynomial evaluation for small arguments.

4) Tan is quite badly behaved with respect to errors in the argument. Near
its zeros outside the primary domain the relative error is greatly magnified,

72 TDS 368 01 March 1993



56 1.4 Maths libraries

though the absolute error is only proportional to the size of the argument.
In effect, the error is seriously amplified in an interval about each irrational
zero, whose width increases roughly in proportion to the size of the argu-
ment. Near its singularities both absolute and relative errors become large,
so any large output from this function is liable to be seriously contaminated
with error, and the larger the argument, the smaller the maximum output
which can be trusted. If step 4 of the algorithm requires division by zero,
an unstable.NaN is produced instead.

5) Since only the remainder of X by Pi/2 is used in step 3, the symmetry
tan(x+ nx) = tan(x) is preserved, although there is a complication due to the
differing precision representations of . Moreover, by step 4 the symmetry
tan(x) = 1/ tan( /2 — x) is also preserved.

ASIN
DASIN

REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)

These compute: sin1(X) (in radians)

Domain: [-1.0, 1.0]
Range: [-Pil2, Pil2]
Primary Domain: [-0.5, 0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A=XI\/1-X2, R=Xl(sin"1(X) /1-X?)

Generated Error

Primary Domain [-1.0, 1.0]
MRE RMSRE MAE RMSAE
Single Length: 053ulp 0.21ulp 1.35ulp 0.33ulp
Double Length: 28ulp 14ulp 234ulp 0.64ulp

The Algorithm

1 If [X]> 0.5, set Xwork:= SQRT ((1— |X])/2).
Compute Rwork = arcsine(—2 * Xwork) with a floating-point rational
approximation, and set the result = Rwork + Pil2.

2 Otherwise compute the result directly using the rational approxima-
tion.

72 TDS 368 01 March 1993



1 The occam libraries 57

3 In either case set the sign of the result according to the sign of the
argument.

Notes

1) The error amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result is liable to be contaminated with error: however since both
domain and range are bounded the absolute error in the result cannot be
large.

2) By step 1, the identity sin—1(x) = &/2 — 2 sin—1(,/(1-x)/2)) is preserved.

ACOS
DACOS

REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)

These compute: cosine=1(X) (in radians)

Domain: [-1.0,1.0]
Range: [0, Pi}
Primary Domain: [-0.5, 0.5]
Exceptions
All arguments outside the domain generate an undefined.NaN.
Propagated Error
A=-XI\/1-X2, R=-X/(sin"(X)/1-X?)

Generated Error

Primary Domain [~1.0,1.0]
MRE RMSRE MAE RMSAE
Single Length: 1.1ulp 038ulp 24ulp 0.61ulp
Double Length: 13ulp 034ulp 29ulp 0.78ulp

The Algorithm

1 IfIX]> 0.5, set Xwork:= SQRT ({1- |X})/2) . Compute Rwork = arcsine
(2 * Xwork) with a floating-point rational approximation. If the argu-
ment was positive, this is the result, otherwise set the result = Pi —
Rwork.

2 Otherwise compute Rwork directly using the rational approximation.
If the argument was positive, set result = Pi/2 — Rwork, otherwise
result = Pi/2 + Rwork.

72 TDS 368 01 March 1993



58 1.4 Maths libraries

Notes

1) The error amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result is liable to be contaminated with error, although this interval is
larger near 1 than near -1, since the function goes to zero with an infinite
derivative there. However since both the domain and range are bounded
the absolute error in the result cannot be large.

2) Since the rational approximation is the same as that in ASIN, the relation
cos~1(x) = w2 - sin—1(x)is preserved.

ATAN
DATAN

REAL32 FUNCTION ATAN (VAL REAL32 X)
REAL64 FUNCTION DATAN (VAL REAL64 X)

These compute: tan—1(X) (in radians)

Domain: [Inf, Inf]

Range: [=Pil2, Pil2]

Primary Domain: [-,z], z=2-./3=0.2679
Exceptions

None.

Propagated Error
A= XI(1+X2), R=X/(tan"(X)(1 + X2))
Generated Error

Primary Domain Error: MRE RMSRE

Single Length: 053 ulp 0.21ulp
Double Length: 1.27 ulp 0.52 ulp
The Algorithm

1 If IX] > 1.0, set Xwork = 1/|X], otherwise Xwork = |X].

2 If Xwork > 2—/3, set F = (Xwork+\/3 —1)/(Xwork +,/3), otherwise F
= Xwork.

3 Compute Rwork = arctan(F) with a floating-point rational approxima-
tion.

4 [f Xwork wasreducedin (2), set R=Pil6 + Rwork, otherwise R = Rwork.

72 TDS 368 01 March 1993



1 The occam libraries 59

5 If Xwas reduced in (1), set RESULT = Pil2 — R, otherwise RESULT
=R

6 Set the sign of the RESULT according to the sign of the argument.
Notes

1) For |X] > ATmax, [tan—1(X)| is indistinguishable from /2 in the floating-
point format. For single-length, 4Tmax = 1.68+107, and for double-length
ATmax = 9+1015, approximately.

2) This function is numerically very stable, despite the complicated argu-
ment reduction. The worst errors occur just above 2—/3, but are no more
than 1.8 ulp. 3) Itis also very well behaved with respect to errors in the argu-
ment, i.e. the error amplification factors are always small.

4) The argument reduction scheme ensures that the identities tan—1(X) =
2 - tan~1(1/X), and tan~1(X) = /6 + tan—1((/3+xX-1)/(v/3 + X)) are
preserved.

ATAN2
DATAN2

REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)
REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)

These compute the angular co-ordinate tan—1(Y7X) (in radians) of a point
whose X and Y co-ordinates are given.

Domain: [=Inf, Inf] x [<Inf, Inf]
Range: (—P%, Pi}
Primary Domain: See note 2.

Exceptions

(0, 0) and (+Inf,%Inf) give undefined.NaN.

Propagated Error

A=X(1 £ Y)/(X2+Y2), R=X(1+Y)(tan~(¥/X)(X2 +Y2)) (See note 3)
Generated Error

See note 2.

The Algorithm

1 If X, the first argument, is zero, set the result to &+ n/2, according to
the sign of Y, the second argument.

72 TDS 368 01 March 1993



60

1.4 Maths libraries

SINH
DSINH

2 Otherwise set Rwork:= ATAN (Y/X) . Then if Y < 0 set RESULT =
Rwork — Pi, otherwise set RESULT = Pi — Rwork.

Notes

1) This two-argument function is designed to perform rectangular-to-polar
co-ordinate conversion.

2) See the notes for ATAN for the primary domain and estimates of the
generated error.

3) The error amplification factors were derived on the assumption that the
relative error in Yis 4= that in X, otherwise there would be separate factors
for X and Y. They are small except near the origin, where the polar co-ordi-
nate system is singular.

REAL32 FUNCTION SINH (VAL REAL32 X)
REAL64 FUNCTION DSINH (VAL REAL64 X)

These compute: sinh(X)

Domain:[~Hmax, Hmax] = [-89.4, 89.4]S, [-710.5, 710.5]D

Range: (—Inf, Inf)
Primary Domain: (-1.0,1.0)
Exceptions

X < —Hmax gives —Inf, and X > Hmax gives Inf.
Propagated Error

A=Xcosh(X), R=Xcoth(X) (See note 3)
Generated Error

Primary Domain  [1.0, XBig]

(See note 2)
MRE RMSRE MAE RMSAE
Single Length: 0.89ulp 03ulp 098ulp 031ulp
Double Length: 13ulp 051ulp 10ulp 03ulp

The Algorithm
1 If IX] > XBig, set Rwork:= EXP (|X] — In(2)) .

2 If XBig = |X] = 1.0, set temp:= EXP (|X]), and set
Rwork = (temp — 1/temp)/2.

72 TDS 368 01 March 1993



1 The occam libraries 61

3 Otherwise compute Rwork = sinh{}X]) with a fixed-point rational
approximation.

4 |n all cases, set RESULT = + Rwork according to the sign of X.
Notes

1) Hmax is the point at which sinh(X) becomes too large to be represented
in the floating-point format.

2) XBigis the point at which ¢ X1 becomes insignificant compared with elXI,
(in floating-point). For single-length it is 8.32, and for double-length it is
18.37.

3) This function is quite stable with respect to errors in the argument. Rela-
tive error is magnified near zero, but the absolute error is a better measure
near the zero of the function and itis diminished there. For large arguments
absolute errors are magnified, but since the function is itself large, relative
error is a better criterion, and relative errors are not magnified unduly for
any argument in the domain, although the output does become less reliable
near the ends of the range.

COSH
DCOSH

REAL32 FUNCTION COSH (VAL REAL32 X)
REAL64 FUNCTION DCOSH (VAL REAL64 X)

These compute: cosh(X)

Domain: [-Hmax, Hmax] =[-89.4, 89.4]S, [-710.5, 710.5]D
Range: [1.0, Inf)

PrimaryDomain: [-XBig, XBig] =[-8.32, 8.32]S
=[-18.37, 18.37]D

Exceptions

|X] > Hmax gives Inf.

Propagated Error

A=Xsinh(X), R=Xtanh(X) (See note 3)

Generated Error

Primary Domain Emor: MRE RMS
Single Length: 099 ulp 03ulp
Double Length: 1.23ulp 03 ulp

72 TDS 368 01 March 1993



62 1.4 Maths libraries

The Algorithm
1 If IX] > XBig, set result:= EXP (|X] — In(2)) .
2 Otherwise, set temp:= EXP (|X]) , and set result = (temp + 1/temp)/2.
Notes

1) Hmax is the point at which cosh(X) becomes too large to be represented
in the floating-point format.

2) XBigis the point at which e ~X1becomes insignificant compared with e}
(in floating-point).

3) Errors in the argument are not seriously magnified by this function,
although the output does become less reliable near the ends of the range.

TANH
DTANH

REAL32 FUNCTION TANH (VAL REAL32 X)
REAL64 FUNCTION DTANH (VAL REAL64 X)

These compute: tanh(X)

Domain: [-Inf, Inf]

Range: [-1.0, 1.0]

Primary Domain:  [-Log(3)/2, Log(3)/2] = [-0.549, 0.549]
Exceptions

None.

Propagated Error
A=Xlcosh¥(X), R =X/sinh (X) cosh(X)
Generated Error

Primary Domain Error:  MRE RMS

Single Length: 0.52ulp 0.2ulp
Double Length: 46ulp 26ulp
The Algorithm
1 If |X] > In(3)/2, set temp:= EXP (|X]/2). Then set Rwork = 1 -
2/(1+temp).

2 Otherwise compute Rwork = tanh(|X]) with a floating-point rational
approximation.

72 TDS 368 01 March 1993



1 The occam libraries 63

DRAN

3 In both cases, set RESULT = =+ Rwork according to the sign of X.
Notes

1) As a floating-point number, tanh(X) becomes indistinguishable from its
asymptotic values of +1.0 for |X] > HTmax, where HTmax is 8.4 for single-
length, and 19.06 for double-length. Thus the output of TANH is equal to
+1.0 for such X.

2) This function is very stable and well-behaved, and errors in the argument
are always diminished by it.

REAL32,INT32 FUNCTION RAN (VAL INT32 X)
REAL64,INT64 FUNCTION DRAN (VAL INT64 X)

These produce a pseudo-random sequence of integers, and a corre-
sponding sequence of floating-point numbers between zero and one.

Domain: Integers (see note 1)
Range: [0.0, 1.0] x Integers
Exceptions

None.
The Algorithm

1 Produce the next integer in the sequence: Ni+7 = (@Nt + 1mod M

2 Treat Ni4+; as a fixed-point fraction in [0,1), and convert it to floating
point.

3 Output the floating point result and the new integer.
Notes

1) This function has two results, the first a real, and the second an integer
(both 32 bits for single-length, and 64 bits for double-length). The integer
is used as the argument for the next call to RAN, i.e. it ‘carries’ the pseudo-
random linear congruential sequence N, and it should be kept in scope for
as long as RAN is used. It should be initialized before the first call to RAN
but not modified thereafter except by the function itself.

2) If the integer parameter is initialized to the same value, the same
sequence (both floating-point and integer) will be produced. If a different
sequence is required for each run of a program it should be initialized to
some ‘random’ value, such as the output of a timer.

72 TDS 368 01 March 1993



64

1.4 Maths libraries

3) The integer parameter can be copied to another variable or used in
expressions requiring random integers. The topmost bits are the most
random. A random integer in the range [0,L] can conveniently be produced
by taking the remainder by (L+1) of the integer parameter shifted right by
one bit. If the shift is not done an integer in the range [-L,L] will be
produced.

4) The modulus M is 232 for single-length and 264 for double-length, and the
multipliers, a, have been chosen so that all M integers will be produced
before the sequence repeats. However several different integers can
produce the same floating-point value and so a floating-point output may
be repeated, although the sequence of such will not be repeated until A
calls have been made.

5) The floating-point result is uniformly distributed over the output range,
and the sequence passes various tests of randomness, such as the ‘run
test’, the ‘maximum of 5 test' and the ‘spectral test'.

6) The double-length version is slower to execute, but ‘more random’ than
the single-length version. If a highly-random sequence of single-length
numbers is required, this could be produced by converting the output of
DRAN to single-length. Conversely if only a relatively crude sequence of
double-length numbers is required, RAN could be used for higher speed
and its output converted to double-length.

72 TDS 368 01 March 1993



1 The occam libraries 65

1.5 Host file server library
Library: hostio.lib

The host file server library contains routines that are used to communicate with the
host file server. The routines are independent of the host on which the server is
running. Using routines from this library you can guarantee that programs will be
portable across all implementations of the toolset.

Constant and protocol definitions for the hostio library, including error and return
codes, are provided in the include file hostio. inc.

The result value from many of the routines in this library can take the value =
spr.operation. failed which is a server dependent failure result. It has been
left open with the use of = because future serverimplementations may give more
information back via this byte.

1.5.1 Errors and the server run time library

The hostio routines use functions provided by the host file server. These are
defined in Appendix C in the Toolset Reference Manual. The server is imple-
mented in C and uses routines in a C run time library, some of which are imple-
mentation dependent.

In particular, the hostio routines do not check the validity of stream identifiers, and
the consequences of specifying an incorrect streamid may differ from system to
system. For example, some systems may return an error tag, some may return a
text message. If you use only those stream ids returned by the hostio routines that
open files (so.open, so.open. temp, and so.popen.read), invalid ids are
unlikely to occur. It is also possible in rare circumstances for a program to fail alto-
gether with an invalid streamid because of the way the C library is implemented
on the system. This error can only occur if direct use of the library to perform the
operation would produce the same error.

1.5.2 Inputting real numbers

Routines for inputting real numbers only accept numbers in the standard occam
format for REAL numbers. Programs that allow other ways of specifying real
numbers must convert to the occam format before presenting them to the library
procedure.

For details of the occam syntax for real numbers see the occam 2 Reference
Manual.
1.5.3 Procedure descriptions

In the procedure descriptions, £s is the channel from the host file server, and ts
is the channel fo the host file server. The SP protocol used by the host file server

72 TDS 368 01 March 1993



66

channelsis defined in the include file hostio . inc. The hostio routines are divided
into six groups: five groups that reflect function and use, and a sixth miscellaneous
group. The five specific groups are:

¢ File access and management

General host access

¢ Keyboard input

Screen output
¢ File output.

Each group of routines is described in a separate section. Each section begins with
a list of the routines in the group with their formal parameters. This is followed by
a description of each routine in turn. Note: for those routines which write data to
a stream (including the screen), if the data is not sent as an entire block then it
cannot be guaranteed that the data arrives contiguously at its destination. This is
because another process writing to the same destination may interleave its server
request(s) with those of these routines.

1.5.4 File access

This group includes routines for managing file streams, for opening and closing J
files, and for reading and writing blocks of data.

72 TDS 368 01 March 1993



1 The occam libraries 67

Procedure Parameter Specifiers

so.open CHAN OF SP fs, ts, VAL []BYTE name,
VAL BYTE type, mode, INT32 streamid,
BYTE result

so.open. temp CHAN OF SP fs, ts, VAL BYTE type,

[so.temp.filename.length] BYTE filename,
INT32 streamid, BYTE result

so

.popen.read

CHAN OF SP fs, ts, VAL []BYTE filename,
VAL []BYTE path.variable.name,

VAL BYTE open.type, INT full.len,
[1BYTE full.name, INT32 streamid,

BYTE result

so.close CHAN OF SP fs, ts, VAL INT32 streamid,
BYTE result

so.read CHAN OF SP fs, ts, VAL INT32 streamid,
INT length, []BYTE data

so.write CHAN OF SP fs, ts, VAL INT32 streamid,
VAL []BYTE data, INT length

so.gets CHAN OF SP fs, ts, VAL INT32 streamid,
INT length, []BYTE data, BYTE result

so.puts CHAN OF SP fs, ts, VAL INT32 streamid,
VAL []BYTE data, BYTE result

so.flush CHAN OF SP fs, ts, VAL INT32 streamid,
BYTE result

so.seek CHAN OF SP fs, ts, VAL INT32 streamid,
VAL INT32 offset, origin, BYTE result

so.tell CHAN OF SP fs, ts, VAL INT32 streamid,
INT32 position, BYTE result

so.eof CHAN OF SP fs, ts, VAL INT32 streamid,
BYTE result

so.ferror CHAN OF SP fs, ts, VAL INT32 streamid,
INT32 error.no, INT length,
[IBYTE message, BYTE result

so.remove CHAN OF SP fs, ts, VAL []BYTE name,
BYTE result

sSo.rename CHAN OF SP fs, ts,

VAL []BYTE oldname, newname, BYTE result

S0.

test.exists

CHAN OF SP fs, ts,
VAL []BYTE filename, BOOL exists

72 TDS 368 01

March 1993




68

Procedure definitions

so.open

PROC so.open (CHAN OF SP fs, ts,
VAL []BYTE name,
VAL BYTE type, mode,
INT32 streamid, BYTE result)

Opens the file given by name and retumns a stream identifier streamid for
all future operations on the file until it is closed. If name does not include
a directory then the file is searched for in the current directory. File type is
specified by type and the mode of opening by mode.

type can take the following values:

spt.binary File contains raw bytes only.

spt.text File contains text records separated by
newline sequences.

mode can take the following values:

spm.input Open existing file for reading.

spm.output Open new file, or truncate an existing one,
for writing.

spm. append Open a new file, or append to an existing

one, for writing.
spm.existing.update Open an existing file for update (reading
and writing), starting at beginning of the file.

spm.new.update Open new file, or truncate existing one, for
update.

spm. append.update Open new file, or append to an existing one,
for update.

result can take the following values:

spr.ok The open was successful.
spr.bad.name Null file name supplied.
spr.bad. type Invalid file type.
spr.bad.mode Invalid open mode.

spr.bad.packet.size File name too large
(i.e.>sp.max.openname. size).

>gspr.operation.failed If result = spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

72 TDS 368 01 March 1993



1 The occam libraries 69

so.open. temp

PROC so.open.temp
(CHAN OF SP fs, ts,
VAL BYTE type,
[so.temp.filename.length] BYTE filename,
INT32 streamid, BYTE result)

Opens atemporary file in spm. new . update mode. The first filename tried
is temp 00. If the file already exists the nn suffix on the name temp nn is
incremented up to a maximum of 9999 until an unused number is found.
Ifthe number exceeds 2 digits the last character of temp is overwritten. For
example: if the number exceeds 99 the p is overwritten, as in tem 999; if
the number exceeds 999, the m is overwritten, as in te 9999. File type can
be spt.binaryorspt. text, as with so.open. The name of the file actu-
ally opened is returned in filename. The result returned can take any of the
following values:

spr.ok The open was successful.

spr.notok There are already 10,000 temporary
files.

spr.bad. type Invalid file type specified.

=>spr.operation.failed If result = spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

so.popen.read

PROC so.popen.read
(CHAN OF SP fs, ts,
VAL []BYTE filename,
VAL []BYTE path.variable.name,
VAL BYTE open.type,
INT full.len, []BYTE full.name,
INT32 streamid, BYTE result)

As for so.open, but if the file is not found and the filename does not
include a directory, the routine uses the directory path string associated
with the host environment variable, given in path.variable.name, and
performs a search in each directory in the path in turn. This corresponds
to the searching rules used by the toolset, using the environment variable
ISEARCH, see section 3.10.2 in the occam 2 Toolset User Guide.

File type can be spt .binary or spt . text, as with so . open. The mode
of opening is always spm. input.

The name of the file opened is returned in full.name, and the length of
the file name is returned in full. len. If nofile is opened, full.len and
full.name are undefined, and the result will not be spr. ok.

72 TDS 368 01 March 1993



70

The result returned can take any of the following values:

spr.

spr
spr
spr

spr

ok The open was successful.
.bad.name Null name supplied.
.bad. type Invalid file type specified.

.bad.packet.size File name is too large
(i.e. > sp.max.openname.size) or
path.variable.name is too large
(i.e.> sp.max.getenvname.size).
.buffer.overflow The environment string referenced by
path.variable.name is longer than
507 characters.

=spr.operation.failed If result = spr.operation.failed

so.close

then this denotes a server retumed
failure. (See section C.2 in the Toolset
Reference Manual).

PROC so.close (CHAN OF SP fs, ts,

VAL INT32 streamid,
BYTE result)

Closes the stream identified by streamid. The result retumed can take any
of the following values:

spr

.ok The close was successful.

=spr.operation.failed If result > spr.operation.failed

so.read

then this denotes a server retumned
failure. (See section C.2 in the Toolset
Reference Manual.)

PROC so.read (CHAN OF SP fs, ts,

VAL INT32 streamid,
INT length, []BYTE data)

Reads a block of bytes from the specified stream up to a maximum given
by the size of the array data. If length returned is not the same as the
size of data then the end of the file has been reached or an error has
occurred.

Note: so.read reads in multiples of the packet size defined by
sp.max.readbuffer.size. For greatest efficiency, read requests
should be made in multiples of this size.

72 TDS 368

01 March 1993



1 The occam libraries 71

so.write

PROC so.write (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE data,
INT length)

Writes a block of data to the specified stream. If length is less than the
size of data then an error has occurred.

Note: so.write writes in multiples of the packet size defined by
sp.max.writebuffer.size. For greatest efficiency, write requests
should be made in multiples of this size.

so.gets

PROC so.gets (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT length, []BYTE data,
BYTE result)

Reads a line from the specified input stream. Characters are read until a
newline sequence is found, the end of the file is reached, or
sp.max.readbuffer. size characters have been read. The characters
read are in the first length bytes of data. The newline sequence is not
included in the returned array. If the read fails then either the end of file has
been reached or an error has occurred.

The result returned can take any of the following values:

spr.ok The read was successful.
spr.bad.packet.size Data is too large
(> sp.max.readbuffer.size).
spr.buffer.overflow The line was larger than the buffer data
and has been truncated to fit.
=spr.operation.failed If result=spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

72 TDS 368 01 March 1993



72

so.puts

PROC so.puts (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE data, BYTE result)

Writes a line to the specified output stream. A newline sequence is added
to the end of the line. The size of data must be less than or equal to the
hostio constant sp.max.writebuffer.size.

The result retumed can take any of the following values:

spr.ok The write was successful.
spr.bad.packet.size SIZE data is too large
(> sp.max.writebuffer.size).
=spr.operation.failed If result = spr.operation.failed
then this denotes a server returned

failure. (See section C.2 in the Toolset
Reference Manual.)

so.flush

PROC so.flush (CHAN OF SP fs, ts,
VAL INT32 streamid,
BYTE result)

Flushes the specified output stream. All internally buffered data is written
to the stream. Write and put operations that are directed to standard output
are flushed automatically. The stream remains open.

The result returned can take any of the following values:

spr.ok The flush was successful.
>spr.operation.failed If result=spr.operation.failed
then this denotes a server returned

failure. (See section C.2 in the Toolset
Reference Manual)

72 TDS 368 01 March 1993



1 The occam libraries 73

so.seek

PROC so.seek (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT32 offset, origin,
BYTE result)

Sets the file position for the specified stream. A subsequent read or write
will access data at the new position.

For a binary file the new position will be of£set bytes from the position
defined by origin. For atextfile of £set must be zero or a value returned
by so. tell, in which case origin must be spo.start.

origin may take the following values:

spo.start The start of the file.
spo.current The current position in the file.
spo.end The end of the file.

The result returned can take any of the following values:

spr.ok The operation was successful.
spr.bad.origin Invalid origin.

=spr.operation.failed If result = spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

so.tell

PROC so.tell (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT32 position, BYTE result)

Returns the current file position for the specified stream.

The result returned can take any of the following values:

spr.ok The operation was successful.

=spr.operation.failed If result=spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

so.eof

PROC so.eof (CHAN OF SP fs, ts,
VAL INT32 streamid, BYTE result)

72 TDS 368 01 March 1993



74

Tests whether the specified stream has reached the end of a file. The end
of file is reached when a read operation attempts to read past the end of
file.

The result returned can take any of the following values:

spr.ok End of file has been reached.

>spr.operation.failed If result=spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.) This result will also
be obtained if eof has not been reached.

so.ferror

PROC so.ferror (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT32 error.no, INT length,
[IBYTE message, BYTE result)

Indicates whether an error has occurred on the specified stream. The
integer error.nois a host defined error number. The returned message
isinthe first Length bytes of message. 1ength will be zero if no message
can be provided. If the returned message is longer than 503 bytes then it
is truncated to this size.

The resuit retumed can take any of the following values:

spr.ok . An error has occurred on the specified
stream.

spr.buffer.overflow An error has occurred but the message is
too large formessage and has been trun-
cated to fit.

>spr.operation.failed If result>spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.) This result will also
be obtained if no error has occurred on
the specified stream.

SO.remove

PROC so.remove (CHAN OF SP fs, ts,
VAL []BYTE name, BYTE result)

Deletes the specified file.

The result retumed can take any of the following values:

72 TDS 368 01 March 1993



1 The occam libraries 75

spr.ok The delete was successful.
spr.bad.name Null name supplied.

spr.bad.packet.size SIZE name is too large
(> sp.max.removename.size).

=spr.operation.failed If result=spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

SO.rename

PROC so.rename (CHAN OF SP fs, ts,
VAL []BYTE oldname, newname,
BYTE result)

Renames the specified file.

The result returned can take any of the following values:

spr.ok The operation was successful.
spr.bad.name Null name supplied.

spr.bad.packet.size File names are too large
((SIZE oldname + SIZE newname)
> sp.max.renamename.size).
=spr.operation.failed If result = spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

so.test.exists

PROC so.test.exists (CHAN OF SP fs, ts,
VAL []BYTE filename,
BOOL exists)

Tests if the specified file exists. The value of exists is TRUE if the file
exists, otherwise it is FALSE.

72 TDS 368 01 March 1993



76

1.5.5 General host access

This group contains routines to access the host computer for system information
and services.

Procedure Parameter Specifiers

so.commandline CHAN OF SP fs, ts,
VAL BYTE all, INT length,
[IBYTE string, BYTE result

so.parse.command.line CHAN OF SP fs, ts,

VAL [][]BYTE option.strings,
VAL []INT
option.parameters.required,
[]BOOL option.exists,
[1[2]INT option.parameters,
INT error.len, []BYTE line

so.getenv CHAN OF SP fs, ts,

VAL []BYTE name, INT length,
[IBYTE value, BYTE result
so.system CHAN OF SP fs, ts,

VAL []BYTE command,
INT32 status, BYTE result

so.exit CHAN OF SP fs, ts,
VAL INT32 status
so.core CHAN OF SP fs, ts

VAL INT32 offset,
INT bytes.read,
[1BYTE data, BYTE result

so.version CHAN OF SP fs, ts,
BYTE version, host, os, board

Procedure definitions
so.commandline

PROC so.commandline (CHAN OF SP fs, ts,
VAL BYTE all, INT length,
[IBYTE string, BYTE result)

Returns the command line passed to the serverwhen it was invoked. ifall
has the value sp. short. commandline then all valid server options and
their arguments are stripped from the command line, as is the server
command name. If all is sp.whole.commandline thenthe command
line is returned exactly as it was invoked. The returned command line is in
the first Length bytes of string. Ifthe command line string is longer than
507 bytes then it is truncated to this size. The result returned can take any
of the following values:

72 TDS 368 01 March 1993



1 The occam libraries 77

spr.ok The operation was successful.
spr.buffer.overflow Command line too long for string and
has been truncated to fit.

2spr.operation.failed If result = spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

so.parse.command.line

PROC so.parse.command.line
(CHAN OF SP fs, ts,
VAL [][]1BYTE option.strings,
VAL []INT option.parameters.required,
[]BOOL option.exists,
[1[2]INT option.parameters,
INT error.len, []BYTE line)

This procedure reads the server command line and parses it for specified
options and associated parameters.

The parameter option. strings contains a list of all the possible options
and must be in upper case. Options may be any length up to 256 bytes and
when entered on the command line may be either upper or lower case.
Because all of the strings in option. strings must be the same length,
trailing spaces should be used to pad.

Toread a parameter that has no preceding option (such as afile name) then
the first option string should be empty (contain only spaces). For example,
consider a program to be supplied with a file name, and any of three options
‘A, 'B’ and ‘C’. The array option. strings would look like this:

VAL option.strings IS [” ”, "A”, "B”, "C"]:

The parameter option.parameters.required indicates if the corre-
sponding option (in option. strings) requires a parameter. The values
it may take are:

spopt.never Never takes a parameter.
spopt.maybe Optionally takes a parameter.
spopt.always Must take a parameter.

Continuing the above example, if the file name must be supplied and none
of the options take parameters, except for ‘C’, which may or may not have
a parameter, then option.parameters.required would look like this:

VAL option.parameters.required IS

[spopt.always, spopt.never,
spopt.never, spopt.maybe]:

72 TDS 368 01 March 1993



78

If an option was present on the command line the corresponding element
of option.exists is set to TRUE, otherwise it is set to FALSE.

If an option was followed by a parameter then the position in the array 1ine
where the parameter starts and the length of the parameter are given by
the first and second elements respectively in the corresponding element
in option.parameters.

If an error occurs whilst the command line is being parsed then error. len
will be greater than zero and 1ine will contain an error message of the
given length. If no error occurs then 1ine will contain the command line as
supplied by the host file server.

Most of the possible error messages are self-explanatory, however, it is
worth noting the meaning of the error ‘Command line error: called incor-
rectly’.

This error means that either:
e option.strings was null, or

e SIZE option.exists, SIZE option.parameters or
SIZE option.parameters.required does not equal
SIZE option.strings.

so.getenv

PROC so.getenv (CHAN OF SP fs, ts,
VAL []BYTE name,
INT length, []BYTE value,
BYTE result)

Returns the string defined for the host environment variable name. The
returned string is in the first Length bytes of value. If name is not defined
on the system result takes the value > spr.operation. failed. Ifthe
environment variable's string is longer than 507 bytes then it-is truncated
fo this size.

The result returned can take any of the following values:

spr.ok The operation was successful.
spr.bad.name The specified name is a null string.
spr.bad.packet.size SIZE name is too large

(> sp.max.getenvname. size).

spr.buffer.overflow Environment string too large for value but
has been truncated to fit.

=spr.operation.failed If result =spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

72 TDS 368 01 March 1993



1 The occam libraries 79

so.system

PROC so.system (CHAN OF SP fs, ts,
VAL []BYTE command,
INT32 status, BYTE result)

Passes the string command to the host command processor for execution.
If the command string is of zero length result takes the value spr. ok if
there is a host command processor, otherwise an error is returned.

If command is non-zero in length then status contains the host-specified
value of the command, otherwise it is undefined.

The result returned can take any of the following values:

spr.ok Host command processor exists.

spr.bad.packet.size The array command is too large
(> sp.max.systemcommand.size).

= spr.operation.failed If result = spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

so.exit

PROC so.exit (CHAN OF SP fs, ts,
VAL INT32 status)

Terminates the server, which returns the value of status to its caller. If
status has the special value sps . success then the server will terminate
with a host specific 'success’ result. If status has the special value
sps. failure then the server will terminate with a host specific ‘failure’
result.

so.core

PROC so.core (CHAN OF SP fs, ts,
VAL INT32 offset, INT bytes.read,
[IBYTE data, BYTE result)

Returns the contents of the root transputer’s memory as peeked from the
transputer when iserver is invoked with the analyze (‘SA’) option. The
start of the memory segment is given by offset which is an offset from
the base of memory (and is therefore positive). The number of bytes to be
read is given by the size of the data vector. The number of bytes actually
read into data is given by bytes. read. An error is returned if of £set is
larger than the total amount of peeked memory.

The result returned can take any of the following values:

72 TDS 368 01 March 1993



80

spr.ok The operation was successful.

spr.bad.packet.size The array data is too large
(> sp.max.corerequest.size).
=spr.operation.failed If result=spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

This procedure can also be used to determine whether the memory was
peeked (whether the server was invoked with the ‘SA’ option), by specifying
a size of zero for data and offset. If the result returned is spr. ok the
memory was peeked.

so.version

PROC so.version (CHAN OF SP fs, ts,
BYTE version, host, os, board)

Returns version information about the server and the host on which it is
running. A value of zero for any of the items indicates that the information
is unavailable.

The version of the server is given by version. The value should be divided
by ten to yield the true version number. For example, a value of 15 means
version 1.5.

The host machine type is given by host, and can take any of the following
values:

sph.unknown unknown host type
sph.PC IBM PC

sph.S370 IBM 370 Architecture
sph.NECPC NEC PC

sph.VAX DEC VAX

sph.SUN3 Sun Microsystems Sun 3
sph.BOX.SUN4 Sun Microsystems Sun 4
sph.BOX.SUN386 Sun Microsystems Sun 386i
sph.BOX.APOLLO Apollo

sph.BOX.ATARI Atari STor TT

Values up to 127 are reserved for use by INMOS.

The host operating system is given by os, and can take any of the following
values:

72 TDS 368 01 March 1993



1 The occam libraries 81

spo.unknown unknown OS type
spo .DOS DOS

spo .HELIOS HELIOS
spo.VMS VMS

spo . SUNOS SunOS

spo.CMS CMS

spo.TOS TOS

Values up to 127 are reserved for use by INMOS.

The interface board type is given by board, and can take any of the
following values:

spb. unknown unknown board type
spb.B004 IMS B004
spb.B008 IMS B008
spb.B010 IMS B010
spb.BO11 IMS BO11
spb.B014 IMS B014
spb.B015 IMS B015
spb.B016 IMS B016
spb.DRX11 DRX-11
spb.IBMCAT CAT
spb.QTO Caplin QTO
spb.UDPLINK UDP link
spb.TCPLINK TCP link
spb.ACSILA ACSILA

Values up to 127 are reserved for use by INMOS.

72 TDS 368 01 March 1993



82

1.5.6 Keyboard input

Procedure

Parameter Specifiers

so.pollkey

CHAN OF SP fs, ts,
BYTE key, result

So

.getkey

CHAN OF SP fs, ts,
BYTE key, result

So.

read

.line

CHAN OF SP fs, ts,
INT len, []BYTE line,
BYTE result

S0.

read

.echo.

line

CHAN OF SP fs, ts,
INT len, []BYTE line,
BYTE result

SO.

ask

CHAN OF SP fs, ts,

VAL []BYTE prompt, replies,

VAL BOOL display.possible.replies,
VAL BOOL echo.reply,

INT reply.number

SO

.read.

echo.

int

CHAN OF SP fs, ts, INT n,
BOOL error

S0.

read.

echo.

int32

CHAN OF SP fs, ts, INT32 n,
BOOL error

SO

.read.

echo.

inté64

CHAN OF SP fs, ts, INT64 n,
BOOL error

so

.read.

echo.

hex.int

CHAN OF SP fs, ts, INT n,
BOOL error

So.

read.

echo.

hex.int32

CHAN OF SP fs, ts, INT32 n,
BOOL error

S0O.

read.

echo.

hex.int64

CHAN OF SP fs, ts, INT64 n,
BOOL error

S0.

read.

echo.

any.int

CHAN OF SP fs, ts, INT n,
BOOL error

so

.read.

echo.

real32

CHAN OF SP fs, ts, REAL32 n,
BOOL error

so

.read.

echo.

realé64

CHAN OF SP fs, ts, REAL64 n,
BOOL error

72 TDS 368 01

March 1993



1 The occam libraries 83

Procedure definitions
so.pollkey

PROC so.pollkey (CHAN OF SP fs, ts,
BYTE key, result)

Reads a single character from the keyboard. If no key is available then it
returns immediately with > spr.operation.failed. The key is not
echoed on the screen.

The result returned can take any of the following values:

spr.ok A key was available and has been
returned in key.

>spr.operation.failed If result=spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

so.getkey

PROC so.getkey (CHAN OF SP fs, ts,
BYTE key, result)

As so.pollkey but waits for a key if none is available.
so.read.line

PROC so.read.line (CHAN OF SP fs, ts, INT len,
[IBYTE line, BYTE result)

Reads a line of text from the keyboard, without echoing it on the screen.
The characters read are in the first Len bytes of 1ine. The line is read until
‘RETURN’ is pressed at the keyboard. The line is truncated if 1ine is not
large enough. A newline or carriage return is not included in 1ine.

The result returned can take any of the following values:

spr.ok The read was successful.

=spr.operation.failed If result = spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

72 TDS 368 01 March 1993



84

so.read.echo.line

PROC so.read.echo.line (CHAN OF SP fs, ts,
INT len, []BYTE line,
BYTE result)

As so.read.line, but user input (except newline or carriage return) is
echoed on the screen.

so.ask

PROC so.ask (CHAN OF SP fs, ts,
VAL []BYTE prompt, replies,
VAL BOOL display.possible.replies,
VAL BOOL echo.reply,
INT reply.number)

Prompts on the screen for a user response on the keyboard. The prompt
is specified by the string prompt, and the list of permitted relies by the
string replies. Only single character responses are permitted, and
alphabetic characters are not case sensitive. For example if the permitted
responses are Y’, ‘N’ and ‘Q’ then the replies string would contain the
characters ‘'YNQ’, and 'y, 'n’ and 'q would also be accepted.
reply.number indicates which response was typed, numbered from
zero. ' ? ' is automatically output at the end of the prompt.

If display.possible.replies is TRUE the permitted replies are
displayed on the screen. If echo.reply is TRUE the user’s response is
displayed.

The procedure will not return until a valid response has been typed.
so.read.echo.int

PROC so.read.echo.int (CHAN OF SP fs, ts, INT n,
BOOL error)

Reads a decimal integer typed at the keyboard and displays it on the
screen. The number must be terminated by ‘RETURN'. The boolean
error is set to TRUE if an invalid integer is typed, FALSE otherwise.

so.read.echo.int32

PROC so.read.echo.int32 (CHAN OF SP fs, ts,
INT32 n, BOOL error)

As so.read.echo. int but reads 32-bit numbers.

72 TDS 368 01 March 1993



1 The occam libraries 85

so.read.echo.int64

PROC so.read.echo.int64 (CHAN OF SP fs, ts,
INT64 n, BOOL error)

As so.read.echo. int but reads 64-bit numbers.

so.read.echo.hex.int

PROC so.read.echo.hex.int (CHAN OF SP fs, ts,
INT n, BOOL error)

As so.read.echo. int but reads a number in hexadecimal format. The
number may be in lower or upper case but must be prefixed with either ‘#’,
or ‘$’ which directly indicates a hexadecimal number, or ‘', which means
add MOSTNEG INT to the given hex (using modulo arithmetic). For
example, on a 32-bit transputer $70 is interpreted as #80000070, and on
a 16-bit transputer as #8070. This is useful when specifying transputer
addresses, which are signed and start at MOSTNEG INT.

so.read.echo.hex.int32

PROC so.read.echo.hex.int32 (CHAN OF SP fs, ts,
INT32 n, BOOL error)

As so.read.echo.hex. int but reads 32-bit numbers.

so.read.echo.hex.int64

PROC so.read.echo.hex.int64 (CHAN OF SP fs, ts,
INT64 n, BOOL error)

As so.read.echo.hex. int but reads 64-bit numbers.

so.read.echo.any.int

PROC so.read.echo.any.int (CHAN OF SP fs, ts,
INT n, BOOL error)

As so.read.echo.int but accepts numbers in either decimal or hexa-
decimal format. Hexadecimal numbers may be lower or upper case but
must be prefixed with either ‘#’ or '$’ which specifies the number directly,
or ‘¢’, which means add MOSTNEG INT to the given hex (using modulo
arithmetic). For example, on a 32-bit transputer %70 is interpreted as
#80000070, and on a 16-bit transputer as #8070. This is useful when
specifying transputer addresses, which are signed and start at MOSTNEG
INT.

72 TDS 368 01 March 1993



86

so.read.echo.real32

PROC so.read.echo.real32 (CHAN OF SP fs, ts,
REAL32 n, BOOL error)

Reads a real number typed at the keyboard and displays it on the screen.
The number must conform to occam syntax and be terminated by
‘RETURN'. The boolean variable exrror is setto TRUE if an invalid number
is typed, FALSE otherwise.

so.read.echo.real64

PROC so.read.echo.realé4 (CHAN OF SP fs, ts,
REAL64 n, BOOL error)

As so.read.echo.real32 but for 64-bit real numbers.

1.5.7 Screen output

Procedure Parameter Specifiers
so.write.char CHAN OF SP fs, ts,

VAL BYTE char
so.write.nl CHAN OF SP fs, ts,
so.write.string CHAN OF SP fs, ts,

VAL []BYTE string
so.write.string.nl CHAN OF SP fs, ts,

VAL []BYTE string
so.write.int CHAN OF SP fs, ts,

VAL INT n, width
so.write.int32 CHAN OF SP fs, ts,

VAL INT32 n, VAL INT width
so.write.int64 CHAN OF SP fs, ts,

VAL INT64 n, VAL INT width
so.write.hex.int CHAN OF SP fs, ts,

VAL INT n, width
so.write.hex.int32 CHAN OF SP fs, ts,

VAL INT32 n, VAL INT width
so.write.hex.int64 CHAN OF SP fs, ts,

VAL INT64 n, VAL INT width
so.write.real32 CHAN OF SP fs, ts,

VAL REAL32 r, VAL INT Ip, Dp
so.write.real.64 CHAN OF SP fs, ts,

VAL REAL64 r, VAL INT Ip, Dp

72 TDS 368 01 March 1993



1 The occam libraries 87

Procedure definitions
so.write.char

PROC so.write.char (CHAN OF SP fs, ts,
VAL BYTE char)

Writes the single byte char to the screen.
so.write.nl

PROC so.write.nl (CHAN OF SP fs, ts)

Wirites a newline sequence to the screen.
so.write.string

PROC so.write.string (CHAN OF SP fs, ts,
VAL []BYTE string)

Writes the string string to the screen.
so.write.string.nl

PROC so.write.string.nl (CHAN OF SP fs, ts,
VAL []BYTE string)

As so.write.string, but appends a newline sequence to the end of the
string.

so.write.int

PROC so.write.int (CHAN OF SP fs, ts,
VAL INT n, width)

Writes the value n (of type INT) to the screen as decimal ASCII digits,
padded out with leading spaces and an optional sign to the specified field
width, width. If the field width is too small for the number it is widened as
necessary; a zero value for width specifies minimum width. A negative
value for width is an error.

so.write.int32

PROC so.write.int32 (CHAN OF SP fs, ts,
VAL INT32 n, VAL INT width)

As so.write. int but for 32-bit integers.
so.write.int64

PROC so.write.int64 (CHAN OF SP fs, ts,
VAL INT64 n, VAL INT width)

As so.write. int but for 64-bit integers.

72 TDS 368 01 March 1993



88

so.write.hex.int

PROC so.write.hex.int (CHAN OF SP fs, ts,
VAL INT n, width)

Writes the value n (of type INT) to the screen as hexadecimal ASCII digits,
preceded by the ‘#' character. The number of characters printed is width
+ 1. if width is larger than the size of the number then the number is
padded with leading ‘0’s or ‘F's as appropriate. If width is smaller than the
size of the number, the number is truncated, from the left, to width digits.
A negative value for width is an error.

so.write.hex.int32

PROC so.write.hex.inté4 (CHAN OF SP fs, ts,
VAL INT32 n,
VAL INT width)

As so.write.hex. int but for 32-bit integers.
so.write.hex.int64

PROC so.write.hex.int64 (CHAN OF SP fs, ts,
VAL INT64 n,
VAL INT width)

As so.write.hex.int but for 64-bit integers.
so.write.real32

PROC so.write.real32 (CHAN OF SP fs, ts,
VAL REAL32 r,
VAL INT Ip, Dp)

Wirites the value r (of type REAL32) to the screen as ASCIl characters
formatted using Ip and Dp as described under REAL32TOSTRING (see
section 1.8).

Note: Due to fixed size intemal buffers, this procedure will be invalid if the
string representing the real number is longer than 24 characters. If this is
a problem, it is suggested you write your own procedure to perform this
function. The procedure should include a buffer set to the required size, a
call to REAL32TOSTRING, followed by a call to so.write.

so.write.real64
PROC so.write.real64 (CHAN OF SP fs, ts,

VAL REAL64 r,
VAL INT Ip, Dp)

72 TDS 368 01 March 1993



1 The occam libraries 89

As so.write.real32 but for 64-bit real numbers. The formatting vari-
ables IpandDp are described under REAL32TOSTRING (see section 1.8).

Note : Due to fixed size internal buffers, this procedure will be invalid if the
string representing the real number is longer than 30 characters. If this is
a problem, it is suggested you write your own procedure to perform this
function. The procedure should include a buffer set to the required size, a
call to REAL64TOSTRING, followed by a call to so.write.

1.5.8 File output

These routines write characters and strings to a specified stream, usually a file.
The result returned can take the values spr.ok, spr.notok or, very rarely, >
spr.operation.failed.

Procedure Parameter Specifiers
so.fwrite.char CHAN OF SP fs, ts,
‘ VAL INT32 streamid,
VAL BYTE char, BYTE result ]
so.fwrite.nl CHAN OF SP fs, ts,
VAL INT32 streamid, BYTE result
so.fwrite.string CHAN OF SP fs, ts,

VAL INT32 streamid,
VAL []BYTE string, BYTE result

so.fwrite.string.nl |[CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE string,
BYTE result

so.fwrite.int CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT n, width, BYTE result

so.fwrite.int32 CHAN OF SP fs, ts,
VAL INT32 streamid, n,
VAL INT width,

BYTE result

so.fwrite.inté64 CHAN OF SP fs, ts,

VAL INT32 streamid,

VAL INT64 n, VAL INT width,
BYTE result

so.fwrite.hex.int CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT n, width, BYTE result

so.fwrite.hex.int32 |CHAN OF SP fs, ts,
VAL INT32 streamid, n
VAL INT width, BYTE result

72 TDS 368 01 March 1993



90

Procedure Parameter Specifiers

so.fwrite.hex.int64 |CHAN OF SP fs, ts,

VAL INT32 streamid,

VAL INT64 n, VAL INT width,
BYTE result

so.fwrite.real32 CHAN OF SP fs, ts,

VAL INT32 streamid,

VAL REAL32 r, VAL INT Ip, Dp,
BYTE result

so.fwrite.real6d CHAN OF SP fs, ts,

VAL INT32 streamid,

VAL REAL64 r, VAL INT Ip, Dp,
BYTE result ’

Procedure definitions
so.fwrite.char

PROC so.fwrite.char (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL BYTE char,
BYTE result)

Writes a single character to the specified stream. The result spr.notok
will be returned if the character is not written.

so.fwrite.nl

PROC so.fwrite.nl (CHAN OF SP fs, ts,
VAL INT32 streamid,
BYTE result)

Writes a newline sequence to the specified stream.

If result takes a value 2 spr.operation. failed then this denotes a
server returned failure, details of which are documented in in section C.2
of the Toolset Reference Manual.

so.fwrite.string

PROC so.fwrite.string (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE string,
BYTE result)

Writes a string to the specified stream. The result spr.notok will be
retumned if not all the characters are written.

so.fwrite.string.nl

PROC so.fwrite.string.nl (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE string,
BYTE result)

72 TDS 368 01 March 1993



1 The occam libraries 91

As so. fwrite.string, but appends a newline sequence to the end of
the string.

The result returned can take any of the following values:

spr.ok The operation was successful.

spr.notok Not all of the characters were written.

=spr.operation.failed If result=spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

so.fwrite.int

PROC so.fwrite.int (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT n, width,
BYTE result)

Writes the value n (of type INT) to the specified stream as decimal ASCII
digits, padded out with leading spaces and an optional sign to the specified
field width, width. If the field width is too small for the number it is widened
as necessary; a zero value for width specifies minimum width. A negative
value for width is an error.

The result spr. notok will be returned if not all of the digits are written.
so.fwrite.int32

PROC so.fwrite.int32 (CHAN OF SP fs, ts,
VAL INT32 streamid, n,
VAL INT width,
BYTE result)

As so. fwrite. int but for 32-bit integers.
so.fwrite.inté64

PROC so.fwrite.int64 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT64 n, VAL INT width,
BYTE result)

As so. fwrite. int but for 64-bit integers.
so.fwrite.hex.int

PROC so.fwrite.hex.int (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT n, width,
BYTE result)

72 TDS 368 01 March 1993



92

Writes the value n (of type INT) to the specified stream as hexadecimal
ASCII digits preceded by the ‘#' character. The number of characters
printed is width + 1. If width is larger than the size of the number then
the number is padded with leading ‘0’s or ‘F's as appropriate. If width is
smaller than the size of the number, then the number is truncated, from the
left, to width digits. A negative value for width is an error.

The result spr . notok will be returned if not all the characters are written.
so.fwrite.hex.int32

PROC so.fwrite.hex.int32 (CHAN OF SP fs, ts,
VAL INT32 streamid, n
VAL INT width,
BYTE result)

As so. fwrite.hex. int but for 32-bit integers.
so.fwrite.hex.inté64

PROC so.fwrite.hex.inté4 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT64 n,
VAL INT width,
BYTE result)

As so. fwrite.hex. int but for 64-bit integers.

so.fwrite.real32

PROC so.fwrite.real32 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL REAL32 r,
VAL INT Ip, Dp,
BYTE result)

Writes the value r (of type REAL32) to the specified stream as ASCII char-
acters formatted using Ip and Dp as described under REAL32TOSTRING
(see section 1.8).

The result spr . notok will be returned if not all the characters are written.

Note: Due to fixed size internal buffers, this procedure will be invalid if the
string representing the real number is longer than 24 characters. If this is
a problem, it is suggested you write your own procedure to perform this
function. The procedure should include a buffer set to the required size, a
call to REAL32TOSTRING, followed by a call to so.write.

so.fwrite.realé64

PROC so.fwrite.real64 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL REAL64 r,
VAL INT Ip, Dp,
BYTE result)

72 TDS 368 01 March 1993



1 The occam libraries 93

As so.fwrite.real32 but for 64-bit real numbers. The formatting vari-
ables Ip andDp are described under REAL32TOSTRING (see section 1.8).

Note : Due to fixed size internal buffers, this procedure will be invalid if the
string representing the real number is longer than 30 characters. If this is
a problem, it is suggested you write your own procedure to perform this
function. The procedure should include a buffer set to the required size, a
call to REAL64TOSTRING, followed by a call to so.write.
1.5.9 Miscellaneous
This miscellaneous group includes procedures for:
o Time and date processing
o Buffering and multiplexing

Time processing

Procedure Parameter Specifiers
so.time CHAN OF SP fs, ts,
INT32 localtime, UTCtime
so.time.to.date VAL INT32 input.time,
[so.date.len] INT date
so.date.to.ascii VAL [so.date.len]INT date,

VAL BOOL long.years,
VAL BOOL days.first,
[so.time.string.ien]BYTE string

so.time.to.ascii VAL INT32 time,

VAL BOOL long.years,

VAL BOOL days.first
[so.time.string.len]BYTE string

so.today.date CHAN OF SP fs, ts,
[so.date.len] INT date
so.today.ascii CHAN OF SP fs, ts,

VAL BOOL long.years,
VAL BOOL days.first,
[so.time.string.len]BYTE string

so.time

PROC so.time (CHAN OF SP fs, ts,
INT32 localtime, UTCtime)

Returns the local time and Coordinated Universal Time. Both times are
expressed as the number of seconds that have elapsed since midnight on
1st January, 1970. If UTC time is unavailable then it will have a value of
zero. The times are given as unsigned INT32s.

72 TDS 368 01 March 1993



94

so.time.to.date

PROC so.time.to.date (VAL INT32 input.time,
[so.date.len] INT date)

Converts time (as supplied by so. time) to six integers, stored in the date
array. The elements of the array are as follows:

Element of array |Data

0 Seconds past the minute
Minutes past the hour
The hour (24 hour clock)
The day of the month
The month (1 to 12)
The year (4 digits)

A HB| WD =

so.date.to.ascii

PROC so.date.to.ascii
(VAL [so.date.len] INT date,
VAL BOOL long.years,
VAL BOOL days.first,
[so.time.string.len]BYTE string)

Converts an armray of six integers containing the date (as supplied by
so. time. to.date) into an ASCII string of the form:

HH:MM:SS DD/MM/YYYY

If long. years is FALSE then year is reduced to two characters, and the
last two characters of the year field are padded with spaces. If
days.first is FALSE then the ordering of day and month is changed (to
the U.S. standard).

so.time.to.ascii

PROC so.time.to.ascii
(VAL INT32 time,
VAL BOOL long.years,
VAL BOOL days.first
[so.time.string.len] BYTE string)

Converts time (as supplied by so . time) into an ASCII string, as described
for so.date.to.ascii.

so.today.date

PROC so.today.date (CHAN OF SP fs, ts,
[so.date.len] INT date)

72 TDS 368 01 March 1993



1 The occam libraries

95

Gives today’s date, in local time, as six integers, stored in the array date.
The format of the array is the same as for so. time. to.date. If the date
is unavailable all elements in date are set to zero.

so.today.ascii

PROC so.today.ascii

(CHAN OF SP fs, ts,
VAL BOOL long.years, days.first,
[so.time.string.len]BYTE string)

Gives today’s date, in local time, as an ASCI| string, in the same format as
procedure so.date. to.ascii. Ifthe date is unavailable stringis filled

with spaces.

Buffers and multiplexors

This group of procedures are designed to assist with buffering and multiplexing
data exchange between the program and host.

Procedure

Parameter Specifiers

so.buffer

CHAN OF SP fs, ts,
from.user, to.user,
CHAN OF BOOL stopper

so.overlapped.buffer

CHAN OF SP fs, ts,
from.user, to.user,
CHAN OF BOOL stopper

so.multiplexor

CHAN OF SP fs, ts,
[]JCHAN OF SP from.user,
to.user,

CHAN OF BOOL stopper

so.overlapped.multiplexor

CHAN OF SP fs, ts,
[JCHAN OF SP from.user,
to.user,

CHAN OF BOOL stopper
[1INT queue

so.pri.multiplexor

CHAN OF SP fs, ts,
[JCHAN OF SP from.user,
to.user,

CHAN OF BOOL stopper

so.overlapped.pri.multiplexor

CHAN OF SP fs, ts,
[JCHAN OF SP from.user,
to.user,

CHAN OF BOOL stopper
[1INT queue

72 TDS 368 01

March 1993



96

Buffering procedures

so.buffer

PROC so.buffer (CHAN OF SP fs, ts,
from.user, to.user,
CHAN OF BOOL stopper)

This procedure buffers data between the user and the host. It can be used
by processes on a network to pass data to the host across intervening
processes. Itis terminated by sending either a TRUE or FALSE value on the
channel stopper.

so.overlapped.buffer

PROC so.overlapped.buffer (CHAN OF SP fs, ts,
from.user,
to.user,

CHAN OF BOOL stopper)

Similar to so.buffer, but allows many host communications to occur
simultaneously through a train of processes. This can improve efficiency
if the communications pass through many processes before reaching the
server. It is terminated by either a TRUE or FALSE value on the channel

stopper.

Multiplexing procedures

Note: when pairs of channels are passed as parameters, they are normally passed
asinput then output. Hence all so. ... routines take the first parameters £s, ts (i.e.
from server, to server). The multiplexors take the next two parameters as from user,
to user which will normally correspond with to server, from server.

so.multiplexor

PROC so.multiplexor (CHAN OF SP fs, ts,
[]CHAN OF SP from.user,
to.user,
CHAN OF BOOL stopper)

This procedure multiplexes any number of pairs of SP protocol channels
onto a single pair of SP protocol channels, which may go to the file server
or another SP protocol multiplexor (or buffer). It is terminated by sending
either a TRUE or FALSE value on the channel stopper. For n channels,
each channel is guaranteed to be able to pass on a message for every n
messages that pass through the multiplexor. This is achieved by cycling the
selection priority from the lowest index of £rom.user. However, stopper
always has highest priority.

72 TDS 368 01 March 1993



1 The occam libraries 97

so.overlapped.multiplexor

PROC so.overlapped.multiplexor
(CHAN OF SP fs, ts,
[ICHAN OF SP from.user, to.user,
CHAN OF BOOL stopper,
[TINT queue)

Similar to so.multiplexor, but can pipeline server requests. The
number of requests than can be pipelined is determined by the size of
queue, which must provide one word for each request that can be pipe-
lined. If SIZE queue is zero then the routine simply waits for input from
stopper. Pipelining improves efficiency if the server requests have to
pass through many processes on the way to and from the server. It is termi-
nated by sending either a TRUE or FALSE value on the channel stopper.

The multiplexing is done in the same cyclic manner as in
so.multiplexor. stopper has higher priority thanany of from. user.

so.pri.multiplexor

PROC so.pri.multiplexor
(CHAN OF SP fs, ts,
[]CHAN OF SP from.user, to.user,
CHAN OF BOOL stopper)

As so.multiplexor but the multiplexing is not done in a cyclic manner;
rather there is a hierarchy of priorities amongst the channels —
from.user: from.user[i] is of higher priority than from.user[j],
for i < j. Also stopper is of lower priority than any of from.user.

so.overlapped.pri.multiplexor

PROC so.overlapped.pri.multiplexor
(CHAN OF SP fs, ts,
[]JCHAN OF SP from.user, to.user,
CHAN OF BOOL stopper,
[1INT queue)

As so.overlapped.multiplexor but the multiplexing is done in the
same prioritized manner as in so.pri.multiplexor. stopper has
higher priority than any of from.user.

72 TDS 368 01 March 1993



98 1.6 Streamio library

1.6  Streamio library
Library: streamio.lib

The streamio library contains routines for reading and writing tfo files and to the
terminal at a higher level of abstraction than the hostio library. The file strea-
mio.inc defines the KS and Ss protocols and constants used by the streamio
library routines. The result value from many of the routines in this library can take
avalue > spr.operation. failed which is a server dependent failure result. It
has been left open with the use of > because future server implementations may
give more failure information back via this byte. Names for result values can be
found in the file hostio. inc.

The streamio routines can be classified into three main groups:
e Stream processes
¢ Stream input procedures
e Stream output procedures.

Stream input and output procedures are used to input and output characters in
keystream KS and screen stream SS protocols. KS and SS protocols must be
converted to the server protocol before communicating with the host.

Stream processes convert streams from keyboard or screen protocol to the server
protocol SP or to related data structures. They are used to transfer data from the
stream input and output routines to the host. Stream processes can be run as
parallel processes serving stream input and output routines called in sequential
code. For example, the following code clears the screen of a terminal supporting
ANS]| escape sequences:

CHAN OF SS scrn :
PAR
so.scrstream.to.ANSI (fs, ts, scrn)
SEQ
ss.goto.xy(scrn, 0, 0)
ss.clear.eos(scrn)
ss.write.endstream(scrn)

The key stream and screen stream protocols are identical to those used in the IMS
D700 Transputer Development System (TDS) and facilitate the porting of
programs between the TDS and the toolset.

1.6.1 Naming conventions

Procedure names always begin with a prefix derived from the first parameter.
Stream processes, where the SP channel (listed first) is used in combination with
either the KS or Ss protocols, are prefixed with ‘so.’. Stream input routines, which
use only the KS protocol are prefixed with ‘ks .’, and stream output routines, which

72 TDS 368 01 March 1993



1 The occam libraries

99

use only the SS protocol, are prefixed with ‘ss .". The KS-to-SS conversion routine,
which actually uses both protocols, is prefixed for convenience with ‘ks.".

1.6.2 Stream processes

Procedure

Parameter Specifiers

so.keystream.

from.kbd

CHAN OF SP fs, ts,
CHAN OF KS keys.out,
CHAN OF BOOL stopper,
VAL INT ticks.per.poll

so.keystream.

from.file

CHAN OF SP fs, ts,
CHAN OF KS keys.out,
VAL []BYTE filename,
BYTE result

so.keystream.

from.stdin

CHAN OF SP fs, ts,
CHAN OF KS keys.out,
BYTE result

ks.keystream.

sink

CHAN OF KS keys

ks.keystream.

to.scrstream

CHAN OF KS
CHAN OF SS

keyboard,
scrn

ss.scrstream.

sink

CHAN OF SS scrn

so.scrstream.

to.file

CHAN OF SP
CHAN OF SS
VAL []BYTE
BYTE result

fs, ts,
scrn,
filename,

so.scrstream.

to.stdout

CHAN OF SP fs, ts,
CHAN OF SS scrn,
BYTE result

ss.scrstream.

to.array

CHAN OF SS scrn,
[IBYTE buffer

ss.scrstream.

from.array

CHAN OF SS scrn,
VAL []BYTE buffer

ss.scrstream.

fan.out

CHAN OF SS scrn,
screen.outl,
screen.out2

ss.scrstream.

copy

CHAN OF SS scrn.in, scrn.out

so.scrstream.

to.ANSI

CHAN OF SP fs, ts,
CHAN OF SS scrn

so.scrstream.

to.TVI920

CHAN OF SP fs, ts,
CHAN OF SS scrn

ss.scrstream.

multiplexor

[JCHAN OF SS screen.in,
CHAN OF SS screen.out,
CHAN OF INT stopper

72 TDS 368 01

March 1993




100 1.6 Streamio library

Procedure definitions
so.keystream. from.kbd

PROC so.keystream.from.kbd (CHAN OF SP fs, ts,
CHAN OF KS keys.out,
CHAN OF BOOL stopper,
VAL INT ticks.per.poll)

Reads characters from the keyboard and outputs them one at a time as
integers on the channel keys.out. It is terminated by sending either a
TRUE or FALSE on the boolean channel stopper. The procedure polls the
keyboard at an interval determined by the value of ticks.per.poll,in
transputer clock cycles, unless keys are available, in which case they are
read at full speed. It is an error if ticks.per.poll is less than or equal
to zero.

After FALSE is sent on the channel stopper the procedure sends the
negative value £t. terminated on keys.out.

so.keystream.from.file

PROC so.keystream.from.file (CHAN OF SP fs, ts,
CHAN OF KS keys.out,
VAL []BYTE filename, i
BYTE result)

Reads lines from the specified text file and outputs them on keys. out.
Terminates automatically on error or when it has reached the end of the file
and all the characters have been output on the keys . out channel. A “*¢’
is output to terminate a text line. The negative value £t.terminated is
sent on the channel keys.out to mark the end of the file. The result
returned can take any of the following values:

spr.ok The operation was successful.

spr.bad.packet.size Filename too large i.e. SIZE filename
> sp.max.openname.size.

spr.bad.name Null file name.

=spr.operation.failed The open failed or reading the file failed.
If result=spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

so.keystream. from.stdin
PROC so.keystream.from.stdin (CHAN OF SP fs, ts,

CHAN OF KS keys.out,
BYTE result)

72 TDS 368 01 March 1993



1 The occam libraries 101

As so.keystream.from.file, but reads from the standard input
stream. The standard input stream is normally assigned to the keyboard,
but can be redirected by the host operating system. End of file from
keyboard will terminate this routine. The result returned may take any ofthe
following values:

spr.ok The operation was successful.

=spr.operation.failed Reading standard input failed. If result
= spr.operation.failed then this
denotes a server returned failure. (See
section C.2 in the Toolset Reference
Manual.)

ks.keystream.sink

PROC ks.keystream.sink (CHAN OF KS keys)

Reads word length quantities until £t.terminated is received, then
terminates.

ks.keystream.to.scrstream

PROC ks.keystream.to.scrstream (CHAN OF KS keyboard,
| CHAN OF SS scrn)

Converts key stream protocol to screen stream protocol. The value
ft.terminated on keyboard terminates the procedure.

ss.scrstream.sink
PROC ss.scrstream.sink (CHAN OF SS scrn)

Reads screen stream protocol and ignores it except for the stream termi-
nator from ss.write.endstream which terminates the procedure.

so.scrstream.to.file

PROC so.scrstream.to.file (CHAN OF SP fs, ts,
CHAN OF SS scrn,
VAL []BYTE filename,
BYTE result)

Creates a new file with the specified name and writes the data sent on
| channel scrn to it. The scrn channel uses the screen stream protocol
' which is used by all the stream output library routines (and is the same as

the INMOS TDS screen stream protocol). It terminates on receipt of the

stream terminator from ss.write.endstream, or on an error condition.

The result returned can take any of the following values:

72 TDS 368 01 March 1993



102 1.6 Streamio library

spr.ok The data sent on scrn was successfully
written to the file.

spr.bad.packet.size Filename too large i.e. SIZE filename
> sp.max.openname.size.

spr.bad.name Null file name.

=spr.operation.failed If result=spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

If used in conjunction with so . scrstream. fan. out this procedure may
be used to file a copy of everything sent to the screen.

so.scrstream. to.stdout

PROC so.scrstream.to.stdout (CHAN OF SP fs, ts,
CHAN OF SS scrn,
BYTE result)

Performs the same operation as so.scrstream. to.file, but writes to
the standard output stream. The standard output stream goes to the
screen, but can be redirected to a file by the host operating system. The
result returned can take any of the following values:

spr.ok The data sent on scrn was successfully
written to standard output.

>spr.operation.failed If result=spr.operation.failed
then this denotes a server returned
failure. (See section C.2 in the Toolset
Reference Manual.)

ss.scrstream.to.array

PROC ss.scrstream.to.array (CHAN OF SS scrn,
[1BYTE buffer)

Buffers a screen stream whose total size does not exceed the capacity of
buffer, for debugging purposes or subsequent onward transmission
using so.scrstream.from.array. The procedure terminates on
receipt of the stream terminator from ss.write.endstream.

ss.scrstream.from.array

PROC ss.scrstream.from.array (CHAN OF SS scrn,
VAL []BYTE buffer)

Regenerates a screen stream buffered in buffer by a previous call of

so.scrstream. to.array. Terminates when all buffered data has been
sent.

72 TDS 368 01 March 1993



1 The occam libraries 103

ss.scrstream.fan.out

PROC ss.scrstream.fan.out (CHAN OF SS scrn,
screen.outl,
screen.out2)

Sends copies of everything received on the input channel scrn to two
output channels. The procedure terminates on receipt of the stream termi-
nator from ss.write.endstream without passing on the terminator.

ss.scrstream.copy

PROC ss.scrstream.copy (CHAN OF SS scrn.in,
scrn.out)

Copies screen stream protocol input on scrn.in to sern.out. Termi-
nates on receipt of the end-stream terminator from ss.write.ends-
tream, which is not passed on.

so.scrstream. to.ANSI

PROC so.scrstream.to.ANSI (CHAN OF SP fs, ts,
CHAN OF SS scrn)

Converts screen stream protocol into a stream of BYTEs according to the
requirements of ANSI terminal screen protocol. Not all of the screen stream
commands are supported.

The following tags are ignored:

st.ins.char st.reset st.terminatest.help st.claim
st.key.raw st.key.cooked st.release st.initialise

The procedure terminates on receipt of the stream terminator from
ss.write.endstream.

so.scrstream.to.TVI920

PROC so.scrstream.to.TVI920 (CHAN OF SP fs, ts,
CHAN OF SS scrn)

Converts screen stream protocol into a stream of BYTEs according to the
requirements of TVI 920 (and compatible) terminals. Not all of the screen
stream commands are supported. The following tags are ignored:

st.reset st.terminate st.help st.initialise
st.key.raw st.key.cooked st.release st.claim

The procedure terminates on receipt of the stream terminator from
ss.write.endstream.

72 TDS 368 01 March 1993



104

1.6 Streamio library

ss.scrstream.multiplexor

PROC ss.scrstream.multiplexor ([]JCHAN OF SS screen.in,

CHAN OF SS screen.out,
CHAN OF INT stopper)

This procedure multiplexes up to 256 screen stream channels onto a single
screen stream channel. Each change of input channel directs output to the
next line of the screen, and each such line is annotated at the left with the
array index of the channel used followed by *>'. The tag st.endstream
is ignored. The procedure is terminated by the receipt of any integer on the
channel stopper. For n channels, each channel is guaranteed to be able
to pass on a message for every n messages that pass through the multi-
plexor. This is achieved by cycling from the lowest index of screen. in.
However, stopper always has highest priority.

1.6.3 Stream input

These routines read characters and strings from the input stream, in KS protocol.

Procedure

Parameter Specifiers

ks.read.char

CHAN OF KS source, INT char

ks.read.line

CHAN OF KS source, INT len,
[IBYTE line, INT char

ks.read.int

CHAN OF KS source,
INT number, char

ks.read.inté64

CHAN OF KS source,
INT64 number, INT char

ks.read.real32

CHAN OF KS source,
REAL32 number, INT char

ks.read.real64

CHAN OF KS source,
REAL64 number, INT char

Procedure definitions

ks.read.char

PROC ks.read.char (CHAN OF KS source, INT char)

Returns in char the next word length quantity from source.

ks.read.line

PROC ks.read.line (CHAN OF KS source, INT len,

[IBYTE line, INT char)

Reads text into the array line up to but excluding ‘*¢’, or up to and
excluding any error code. Any “*n’ encountered is thrown away. 1en gives

72 TDS 368 01

March 1993



1 The occam libraries 105

the number of characters in 1ine. If there is an error its code is returned
as char, otherwise the value of char will be INT ‘*¢'. If the array is filled
before a ‘*¢’ is encountered all further characters are ignored.

ks.read.int

PROC ks.read.int (CHAN OF KS source,
INT number, char)

Skips input up to a digit, #, + or -, then reads a sequence of digits to the
first non-digit, retumed as char, and converts the digits to an integer in
number. char must be initialized to the first character of the input. If the
first significant character is a ‘#’ then a hexadecimal number is input,
thereby allowing the user the option of which number base to use. The
hexadecimal may be in upper or lower case.

char is returned as £t .number. error if the number overflows the INT
range.

ks.read.int64

PROC ks.read.int64 (CHAN OF KS source,
INT64 number, INT char)

As ks.read. int, but for 64-bit integers.
ks.read.real32

PROC ks.read.real32 (CHAN OF KS source,
REAL32 number, INT char)

Skips input up to a digit, + or -, then reads a sequence of digits with optional
decimal point and exponent) up to the first invalid character, returned as
char. Converts the digits to a floating point value in number . char must
be initialized to the first character of the input. If there is an error in the
syntax of the real, if it is * infinity, or if more than 24 characters read then
char is returned as £t .number.error.

ks.read.real64

PROC ks.read.real64 (CHAN OF KS source,
REAL64 number, INT char)

As ks .read.real32, but for 64-bit real numbers. Allows for reading up
to 30 characters.
1.6.4 Stream output

These routines write text, numbers and screen control codes to an output stream
in Ss protocol.

72 TDS 368 01 March 1993



106

1.6 Streamio library

Procedure

Parameter Specifiers

ss.write.char

CHAN OF SS scrn, VAL BYTE char

ss.write.nl

CHAN OF SS scrn

ss.write.string

CHAN OF SS scrn, VAL []BYTE str

ss.write.endstream

CHAN OF SS scrn

ss.write.text.line

CHAN OF SS scrn, VAL []BYTE str

ss.write.int

CHAN OF SS scrn,
VAL INT number, width

ss.write.int64

CHAN OF SS scrn, VAL INT64 number,
VAL INT width

ss.write.hex.int

CHAN OF SS scrn,
VAL INT number, width

ss.write.hex.int64

CHAN OF SS scrn, VAL INT64 number,
VAL INT width

ss.write.real32

CHAN OF SS scrn, VAL REAL32 number,
VAL INT Ip, Dp

ss.write.real64d

CHAN OF SS scrn, VAL REAL64 number,
VAL INT Ip, Dp

ss.goto.xy

CHAN OF SS scrn, VAL INT x, y

ss.clear.eol

CHAN OF SS scrn

ss.clear.eos

CHAN OF SS scrn

ss.beep CHAN OF SS scrn
ss.up CHAN OF SS scrn
ss.down CHAN OF SS scrn
ss.left CHAN OF SS scrn
ss.right CHAN OF SS scrn

ss.insert.char

CHAN OF SS scrn, VAL BYTE ch

ss.delete.chr

CHAN OF SS scrn

ss.delete.chl

CHAN OF SS scrn

ss.ins.line

CHAN OF SS scrn

ss.del.line

CHAN OF SS scrn

Procedure definitions

ss.write.char

PROC ss.write.char (CHAN OF SS scrn,

VAL BYTE char)

Sends the ASCII value char on scrn, in scrstreanm protocol, to the
current position in the output line.

72 TDS 368 01

March 1993



1 The occam libraries 107

ss.write.nl
PROC ss.write.nl (CHAN OF SS scrn)
Sends "*c*n” to scrn.

ss.write.string

PROC ss.write.string (CHAN OF SS scrn,
VAL []BYTE str)

Sends all characters in str to scrn.
ss.write.endstream

PROC ss.write.endstream (CHAN OF SS scrn)

Sends a special stream terminator value to scrn.
ss.write.text.line

PROC ss.write.text.line (CHAN OF SS scrn,
VAL []BYTE str)

Sends all of str to scrn ensuring that, whether or not the last character
of str is “*c’, the last two characters sent are "*c*n”.

ss.write.int

PROC ss.write.int (CHAN OF SS scrn,
VAL INT number, width)

Converts number into a sequence of ASCII decimal digits padded out with
leading spaces and an optional sign to the specified field width, width, if
necessary. If the number cannot be represented in width characters it is
widened as necessary; a zero value for width will give minimum width.
The converted number is sent to scrn. A negative value for width is an
error.

ss.write.inté64
PROC ss.write.int64 (CHAN OF SS scrn,
VAL INT64 number,
VAL INT width)
As ss.write. int but for 64-bit integers.

ss.write.hex.int

PROC ss.write.hex.int (CHAN OF SS scrn,
VAL INT number, width)

72 TDS 368 01 March 1993



108

1.6 Streamio library

sSs

sSs

sSs

ss

Converts number into a sequence of ASCIl hexadecimal digits, using
upper case letters, preceded by ‘#'. The total number of characters sent is
always width + 1, padding out with ‘0’ or ‘F’ on the left if necessary. The
number is truncated at the left if the field is too narrow, thereby allowing the
less significant part of any number to be printed. The converted number is
sent to scrn. A negative value for width is an ermror.

.write.hex.inté64

PROC ss.write.hex.int64 (CHAN OF SS scrn,
VAL INT64 number,
VAL INT width)

As ss.write.hex. int but for 64-bit integer values.

.write.real32

PROC ss.write.real32 (CHAN OF SS scrn,
VAL REAL32 number,
VAL INT Ip, Dp)

Converts number into an ASCII string formatted using Ip and Dp, as
described for REAL32TOSTRING (see section 1.8). The converted number
is sentto scrn. Ifthe formatted form of number is larger than 24 characters
then this procedure acts as an invalid process.

write.real64

PROC ss.write.real64 (CHAN OF SS scrn,
VAL REAL64 number,
VAL INT Ip, Dp)

As for ss.write.real32 but for 64-bit real values. See section 1.8,
REAL32TOSTRING for details of the formatting effect of Ip and Dp. If the
formatted form of number is larger than 30 characters then this procedure
acts as an invalid process.

.goto.xy

PROC ss.goto.xy (CHAN OF SS scrn, VAL INT x, y)

Sends the cursor to screen position (x,y). The origin (0,0) is at the top left
corner of the screen.

.clear.eol

PROC ss.clear.eocl (CHAN OF SS scrn)
Clears screen from the cursor position to the end of the current line.

.clear.eos

PROC ss.clear.eos (CHAN OF SS scrn)

Clears screen from the cursor position to the end of the current line and all
lines below.

72 TDS 368 01 March 1993



1 The occam libraries 109

Ss.

sSs

Ss

Ss.

ss

Ss.

ss

beep
PROC ss.beep (CHAN OF SS scrn)
Sends a bell code to the terminal.
.up
PROC ss.up (CHAN OF SS scrn)
Sends a command to the terminal to move the cursor one line up the
screen.
.down
PROC ss.down (CHAN OF SS scrn)
Sends a command to the terminal to move the cursor one line down the
screen.
left
PROC ss.left (CHAN OF SS scrn)
Sends a command to the terminal to move the cursor one place left.
.right
PROC ss.right (CHAN OF SS scrn)
Sends a command to the terminal to move the cursor one place right.
insert.char

PROC ss.insert.char (CHAN OF SS scrn,
VAL BYTE ch)

Sends a command to the terminal to move the character at the cursor and
all those to the right of it one place to the right and inserts char at the
cursor. The cursor moves one place right.

.delete.chr

PROC ss.delete.chr (CHAN OF SS scrn)

Sends a command to the terminal to delete the character at the cursor and
move the rest of the line one place to the left. The cursor does not move.

.delete.chl

PROC ss.delete.chl (CHAN OF SS scrn)

Sends a command to the terminal to delete the character to the left of the
cursor and move the rest of the line one place to the left. The cursor also
moves one place left.

72 TDS 368 01 March 1993



110 1.6 Streamio library

ss.ins.line
PROC ss.ins.line (CHAN OF SS scrn)

Sends a command to the terminal to move all lines below the current line
down one line on the screen, losing the boftom line. The current line

becomes blank.
ss.del.line
PROC ss.del.line (CHAN OF SS scrn)

Sends a command to the terminal to delete the current line and move all
lines below it up one line. The bottom line becomes blank.

72 TDS 368 01 March 1993



1 The occam libraries 111

1.7  String handling library

This library contains functions and procedures for handling strings and scanning
lines of text. They assist with the manipulation of character strings such as names,
commands, and keyboard responses. The library provides routines for;

|
\
\
|
|
|
‘ Library: string.1lib
~ ¢ |dentifying characters
e Comparing strings
e Searching strings
¢ Editing strings

¢ Scanning lines of text

Result Function Parameter specifiers
BOOL is.in.range VAL BYTE char, bottom, top
BOOL is.upper VAL BYTE char
BOOL is.lower VAL BYTE char
/ BOOL is.digit VAL BYTE char
BOOL is.hex.digit VAL BYTE char
BOOL is.id.char VAL BYTE char
INT compare.strings |VAL []BYTE strl, str2
BOOL egstr VAL []BYTE sl, s2
INT string.pos VAL []BYTE search, str
INT char.pos VAL BYTE search
VAL []BYTIE str
INT, BYTE search.match VAL []BYTE possibles, str
INT, BYTE search.no.match |VAL []BYTE possibles, str

72 TDS 368 01 March 1993



112 1.7 String handling library
Procedure Parameter Specifiers
str.shift [IBYTE str,

VAL INT start, len, shift,
BOOL not.done

delete.string

INT len, []BYTE str,
VAL INT start, size,
BOOL not.done

insert.string

VAL []BYTE new.str,
INT len, []BYTE str,
VAL INT start, BOOL not.done

to.upper.case

[IBYTE str

to.lower.case

[IBYTE str

append.char

INT len, []BYTE str,
VAL BYTE char

append. text

INT len, []BYTE str,
VAL []BYTE text

append.int

INT len, []BYTE str,
VAL INT number, width

append.inté4

INT len, []BYIE str,
VAL INT64 number, VAL INT width

append.hex.int

INT len, []BYTE str,
VAL INT number, width

append.hex.int64

INT len, []BYTE str,
VAL INT64 number,
VAL INT width

append.real32

INT len, []BYTE str,
VAL REAL32 number,
VAL INT Ip, Dp

append.realé4

INT len, []BYTE str,
VAL REAL64 number,
VAL INT Ip, Dp

next.word.from.line

VAL []BYTE line,
INT ptr, len,
[1BYTE word, BOOL ok

next.int.from.line

VAL []BYTE line,
INT ptr, number, BOOL ok

1.7.1 Character identification

is.in.range

BOOL FUNCTION is.in.range (VAL BYTE char, bottom, top)

Returns TRUE if the value of char is in the range defined by bottom and
top inclusive, otherwise returns FALSE.

72 TDS 368 01

March 1993



1 The occam libraries 113

is.upper

BOOL FUNCTION is.upper (VAL BYTE char)

Returns TRUE if char is an ASCII upper case letter, otherwise returns
FALSE.

is.lower

BOOL FUNCTION is.lower (VAL BYTE char)

Returns TRUE if char is an ASCII lower case letter, otherwise returns
FALSE.

is.digit

BOOL FUNCTION is.digit (VAL BYTE char)
Returns TRUE if char is an ASCII decimal digit, otherwise returns FALSE.

is.hex.digit

BOOL FUNCTION is.hex.digit (VAL BYTE char)

Returns TRUE if char is an ASCIl hexadecimal digit, otherwise returns
FALSE. Upper or lower case letters A—F are allowed.

is.id.char

1.7.2

BOOL FUNCTION is.id.char (VAL BYTE char)

Returns TRUE if char is an ASCII character which can be part of an occam
name; otherwise retums FALSE.

String comparison

These two procedures allow strings to be compared for order or for
equality.

compare.strings

INT FUNCTION compare.strings (VAL []BYTE strl, str2)

This general purpose ordering function compares two strings according to
the lexicographic ordering standard. (Lexicographic ordering is the
ordering used in dictionaries etc., using the ASCI| values of the bytes). It
returns one of the 5 results 0, 1, ~1, 2, or -2, as follows:

0 The strings are exactly the same in length and content.
1 str2 is a leading substring of stril

-1 strl is a leading substring of str2
2 strl is lexicographically later than str2

-2 str2 is lexicographically later than stri1

72 TDS 368 01 March 1993



114 1.7 String handling library

Soif s is “abed”:

compare.strings (”abc”, [s FROM 0 FOR 3]) =0
compare.strings (”abc”, [s FROM 0 FOR 2]) =1
compare.strings (”abc”, s) =-1
compare.strings (”bc”, s) =2
compare.strings (”ad”, s) ==2

egstr
BOOL FUNCTION eqgstr (VAL []BYTE sl,s2)

This is an optimized test for string equality. It retums TRUE if the two strings
are the same size and have the same contents, FALSE otherwise.

1.7.3 String searching

These procedures allow a string to be searched for a match with a single
byte or a string of bytes, for a byte which is one of a set of possible bytes,
or for a byte which is not one of a set of bytes. Searches insensitive to
alphabetic case should use to .upper.case or to. lower. case on both
operands before using these procedures.

string.pos
INT FUNCTION string.pos (VAL []BYTE search, str)

Returns the position in str of the first occurrence of a substring which
exactly matches search. Retumns —1 if there is no such match.

char.pos

INT FUNCTION char.pos (VAL BYTE search,
VAL []BYTE str)

Returns the position in str of the first occurrence of the byte search.
Returns —1 if there is no such byte.

search.match

INT, BYTE FUNCTION search.match
(VAL []BYTE possibles, str)

Searches str for any one of the bytes in the array possibles. If one is
found its index and identity are returned as results. If none is found then
-1,255(BYTE) are returned.

search.no.match

INT, BYTE FUNCTION search.no.match
(VAL []BYTE possibles, str)

72 TDS 368 01 March 1993



1 The occam libraries 115

1.7.4

Searches str for a byte which does not match any one of the bytes in the
array possibles. If one is found its index and identity are returned as
results. If none is found then —1,255(BYTE) are returned.

String editing

These procedures allow strings to be edited. The string to be edited is
stored in an array which may contain unused space. The editing operations
supported are: deletion of a number of characters and the closing of the
gap created; insertion of a new string starting at any position within a string,
which creates a gap of the necessary size.

These two operations are supported by a lower level procedure for shifting
a consecutive substring left or right within the array. The lower level proce-
dure does exhaustive tests against overflow.

str.shift

PROC str.shift ([]BYTE str, VAL INT start,
len, shift, BOOL not.done)

Takes a substring [str FROM start FOR len], and copies it to a position
shift places to the right. Any implied actions involving bytes outside the
string are not performed and cause the error flag not . done to be set to
TRUE. Negative values of shift cause leftward moves.

delete.string

PROC delete.string (INT len, []BYTE str,
VAL INT start, size,
BOOL not.done)

Deletes size bytes from the string str startingat str[start]. There are
initially 1en significant characters in str and it is decremented appropri-
ately. If start is outside the string, or start + size is greater than len,
then no action occurs and not . done is set to TRUE.

insert.string

PROC insert.string (VAL []BYTE new.str, INT len,
[IBYTE str, VAL INT start,
BOOL not.done)

Creates a gap in str after str[start] and copies the string new.str
into it. There are initially 1en significant characters in str and len is
incremented by the length of new.str inserted. Any overflow of the
declared size of str results in truncation at the right and setting not . done
to TRUE. This procedure may be used for simple concatenation on the right
by setting start = len or on the left by setting start = 0. This method

72 TDS 368 01 March 1993



116 1.7 String handling library

of concatenation differs from that using the append procedures in that it
can never cause the program to stop.

to.upper.case
PROC to.upper.case ([]BYTE str)

Converts all alphabetic characters in str to upper case. All other charac-
ters are left unaltered.

to.lower.case
PROC to.lower.case ([]BYTE str)

Converts all alphabetic characters in str to lower case. All other charac-
ters are left unaltered.

append.char

PROC append.char (INT len, []BYTE str,
VAL BYTE char)

Writes a byte char into the array str at str[len]. 1lenis incremented by
1. Behaves like STOP if the array overflows.

append. text

PROC append.text (INT len, []BYTE str,
VAL []BYTE text)

Writes a string text into the array str, starting at str[len] and computing
a new value for 1en. Behaves like STOP if the array overflows.

append.int

PROC append.int (INT len, []BYTE str,
VAL INT number, width)

Converts number into a sequence of ASCII decimal digits padded out with
leading spaces and an optional sign to the specified field width, width, if
necessary. If the number cannot be represented in width characters it is
widened as necessary. A zero value for width will give minimum width.
The converted number is written into the array str starting at str[len]
and len is incremented. Behaves like STOP if the array overflows or if
width <0.

append.inté64

PROC append.int64 (INT len, []BYTE str,
VAL INT64 number,
VAL INT width)

As append. int but for 64-bit integers.

72 TDS 368 01 March 1993



1 The occam libraries 117

append.hex.int

PROC append.hex.int (INT len, []BYTE str,
VAL INT number, width)

Converts number into a sequence of ASCIl hexadecimal digits, using
upper case letters, preceded by ‘#. The total number of characters set is
always width+1, padding out with ‘0’ or 'F’ on the left if necessary. The
number is truncated at the left if the field is too narrow, thereby allowing the
less significant part of any number to be printed. The converted number is
written into the array str starting at str[len] and len is incremented.
Behaves like STOP if the array overflows or if width < 0.

append.hex.int64
PROC append.hex.int64 (INT len, []BYTE str,
VAL INT64 number,
VAL INT width)
As append.hex. int but for 64-bit integers.
append.real32

PROC append.real32 (INT len, []BYTE str,
VAL REAL32 number,
VAL INT Ip, Dp)

Converts number into a sequence of ASCII characters formatted using Ip
and Dp as described under REAL32TOSTRING (see section 1.8).

The converted number is written into the array str starting at str{len]
and len is incremented. Behaves like STOP if the array overflows.

append.realé64
PROC append.real64 (INT len, []BYTE str,
VAL REAL64 number,
VAL INT Ip, Dp)
As append.real32, but for 64-bit real values. The formatting variables
Ip and Dp are described under REAL32TOSTRING (see section 1.8).
1.7.5 Line parsing
Depending on the initial value of the variable ok these two procedures
either read a line serially, returning the next word and next integer respec-

tively, or the procedures act almost like a SKIP (see below). The user
should initialize the variable ok as appropriate.

72 TDS 368 01 March 1993



118 1.7 String handling library

next.word.from.line

PROC next.word.from.line (VAL []BYTE line,
INT ptr, len,
[1BYTE word,
BOOL ok)

If ok is passed in as TRUE, on entry to the procedure, skips leading spaces
and horizontal tabs and reads the next word from the string 1ine. The
value of ptr is the starting point of the search. A word continues until a
space or tab or the end of the string 1ine is encountered. If the end of the
string is reached without finding a word, the boolean ok is set to FALSE,
and len is 0. If a word is found but is too large for word, then ok is set to
FALSE, but 1en will be the length of the word that was found; otherwise the
found word will be in the first 1en bytes of word. The index ptr is updated
to be that of the space or tab immediately after the found word, or is SIZE
line. If ok is passed in as FALSE, len is set to 0, ptr and ok remain
unchanged, and word is undefined.

next.int.from.line

PROC next.int.from.line (VAL []BYTE line,
INT ptr, number,
BOOL ok)

If ok is passed in as TRUE, on entry to the procedure, skips leading spaces
and horizontal tabs and reads the next integer from the string 1ine. The
value of ptr is the starting point of the search. The integer is considered
to start with the first non-space, non-tab character found and continues
until a space or tab or the end of the string 1ine is encountered. If the first
sequence of non-space, non-tab characters does not exist, does not form
an integer, or forms an integer that overflows the INT range then ok is set
to FALSE, and number is undefined; otherwise ok remains TRUE, and
number is the integer read. A ‘+’ or -’ may be the first character of the
integer. The index ptr is updated to be that of the space or tab immediately
after the found integer, oris SIZE line. If ok is passed in as FALSE, then
ptr and ok remain unchanged, and number is undefined.

72 TDS 368 01 March 1993



1 The occam libraries 119

1.8  String conversion library
Library: convert.1lib

This library contains procedures for converting numeric values to strings and vice
versa. String to numeric conversions return two results, the converted value and
a boolean error indication. Numeric to string conversions return the converted
string and an integer which represents the number of significant characters written
into the string.

These routines are also described in appendix O of the occam 2 Reference
Manual.

Procedure Parameter Specifiers

INTTOSTRING INT len, []BYTE string, VAL INT n
INT16TOSTRING INT len, []BYTE string, VAL INT16 n
INT32TOSTRING INT len, []BYTE string, VAL INT32 n
INT64TOSTRING INT len, []BYTE string, VAL INT64 n
HEXTOSTRING INT len, []BYTE string, VAL INT n
HEX16TOSTRING INT len, []BYTE string, VAL INT16 n
HEX32TOSTRING INT len, []BYTE string, VAL INT32 n
HEX64TOSTRING INT len, []BYTE string, VAL INT64 n

REAL32TOSTRING |INT len, []BYTE string, VAL REAL32 X,
VAL INT Ip, Dp

REAL64TOSTRING |INT len, []BYTE string, VAL REAL64 X,
VAL INT Ip, Dp

BOOLTOSTRING INT len, []BYTE string, VAL BOOL b
STRINGTOINT BOOL Error, INT n, VAL []BYTE string
STRINGTOINT16 BOOL Error, INT16 n, VAL []BYTE string
STRINGTOINT32 BOOL Error, INT32 n, VAL []BYTE string
STRINGTOINT64 BOOL Error, INT64 n, VAL []BYTE string
STRINGTOHEX BOOL Error, INT n, VAL []BYTE string
STRINGTOHEX16 BOOL Error, INT16 n, VAL []BYTE string
STRINGTOHEX32 BOOL Error, INT32 n, VAL []BYTE string
STRINGTOHEX64 BOOL Error, INT64 n, VAL []BYTE string

STRINGTOREAL32 BOOL Error, REAL32 X, VAL []BYTE string
STRINGTOREAL64 BOOL Error, REAL64 X, VAL []BYTE string
STRINGTOBOOL BOOL Error, b, VAL []BYTE string

72 TDS 368 01 March 1993



120 1.8 String conversion library

Procedure definitions
INTTOSTRING

PROC INTTOSTRING (INT len, []BYTE string,
VAL INT n)

Converts an integer value to a string. The procedure returns the decimal
representation of n in string and the number of characters in the repre-
sentation, in len. If string is not long enough to hold the representation
then this routine acts as an invalid process.

Similar procedures are provided for the types INT16, INT32, and INT64.
INT16TOSTRING

PROC INT16TOSTRING (INT len, [}BYTE string,
VAL INT16 n)

As INTTOSTRING but for 16-bit integers.
INT32TOSTRING

PROC INT32TOSTRING (INT len, []BYTE string,
VAL INT32 n)

As INTTOSTRING but for 32-bit integers.
INT64TOSTRING

PROC INT64TOSTRING (INT len, []BYTE string,
VAL INT64 n)

As INTTOSTRING but for 64-bit integers.
HEXTOSTRING

PROC HEXTOSTRING (INT len, []BYTE string,
VAL INT n)

The procedure returns the hexadecimal representation of nin stringand
the number of characters in the representation, in 1en. All the bits of n, (in
4-bit wide word lengths) are output so that leading zeroes or ‘F’s are
included. The number of characters will be the number of bits in an INT
divided by four. A ‘#' is not output by the HEXTOSTRING procedure. If
stringis notlong enough to hold the representation then this routine acts
as an invalid process.

Similar procedures are provided for the types HEX16, HEX32 and HEX64.
HEX16TOSTRING

PROC HEX16TOSTRING (INT len, []BYTE string,
VAL INT16 n)

As HEXTOSTRING but for 16-bit integers.

72 TDS 368 01 March 1993



1 The occam libraries 121

HEX32TOSTRING

PROC HEX32TOSTRING (INT len, []BYTE string,

VAL INT32 n)

As HEXTOSTRING but for 32-bit integers.

HEX64TOSTRING

PROC HEX64TOSTRING (INT len, []BYTE string,

VAL INT64 n)

As HEXTOSTRING but for 64-bit integers.

REAL32TOSTRING

PROC REAL32TOSTRING (INT len, []BYTE string,

VAL REAL32 X,
VAL INT Ip, Dp)

Converts a 32-bit real number (represented in single precision IEEE
format) to a string of ASCII characters. 1len is the number of characters
(BYTESs) of string used for the formatted decimal representation of the
number. (The following description applies to and notes the differences
between this procedure and REAL64TOSTRING).

The string must match the format for occam real literals as defined in the
occam 2 Reference Manual, p 123, for example, 1.2E+2.

Depending on the value of X and the two formatting variables Ip and Dp
the procedure will use either a fixed or exponential format for the output
string. These formats are defined as follows:

Fixed :

Exponential :

First, either a minus sign or space (an explicit plus sign
is not used), followed by a fraction in the form
<digits> . <digits>. Padding spaces are added to the left
of the sign indicator, as necessary. (Ip gives the number
of places before the point and Dp the number of places
after the point).

First, either a minus sign or space (again, an explicit plus
sign is not used), followed by a fraction in the form
<digit> . <digits>, the exponential symbol (E), the sign of
the exponent (explicitly plus or minus), then the expo-
nent, which is two digits for a REAL32 and three digits for
a REAL64. (Dp gives the number of digits in the fraction
(1 before the decimal point and the others after)).

Possible combinations of Ip and Dp fall into three categories, described
below. Note: the term ‘Free format’ means that the procedure may adopt
either fixed or exponential format, depending on the actual value of X.

72 TDS 368 01

March 1993



122 1.8 String conversion library

1 If 1p=0, Dp=0, then free format is adopted. Exponential format is used
if the absolute value of X is less than 1074, but non-zero, or greater
than 10° (for REAL32), or greater than 1077 (for REAL64); otherwise
fixed format is used.

The value of 1en is dependent on the actual value of X with trailing
zeroes suppressed. The maximum length of the result is 15 or 24,
depending on whether it is REAL32 or REAL64 respectively.

If X is ‘Not-a-Number’ or infinity then the string will contain one of the
following: ‘Inf’, ‘~Inf’ or ‘NaN’, (excluding the quotes).

2 [f 1p>0, Dp>0, fixed format is used, unless the value needs more than
Ip significant digits before the decimal point, in which case, exponen-
tial format is used. If exponential does not fit either, then a signed
string ‘ov’ is produced. The length is always Ip + Dp + 2 when Ip>0,
Dp>0.

If X is ‘Not-a-Number’ or infinity then the string will contain one of the
following: ‘Inf’, ‘~Inf’ or ‘NaN’, (excluding the quotes) and padded
out by spaces on the right to fill the field width.

3 If 1p=0, Dp>0, then exponential format is always used. The length of
the result is Dp + 6 or Dp + 7, depending on whether X is a REAL32
or REAL64, respectively.

If Ip=0, Dp=1, then a special result is produced consisting of a sign,
a blank, a digit and the exponent. The length is 7 or 8 depending on
whether X is aREAL32 orREAL64. Note: this result does not conform
to the occam format for a REAL.

If X is ‘Not-a-Number’ or infinity then the string will contain one of the
following: 'Inf’, ‘~Inf’ or ‘NaN’, (excluding the quotes) and padded
out by spaces on the right to fill the field width.

All other combinations of Ip and Dp are errors.

If string is not long enough to hold the requested formatted real number as
a string then these routines act as invalid processes.

REAL64TOSTRING
PROC REAL64TOSTRING (INT len, []BYTE string,
VAL REAL64 X,
VAL INT Ip, Dp)

As REAL32TOSTRING but for 64-bit numbers.

72 TDS 368 01 March 1993



1 The occam libraries 123

BOOLTOSTRING

PROC BOOLTOSTRING (INT len, []BYTE string,
VAL BOOL b)

Converts a boolean value to a string. The procedure returns ‘TRUE’ in

string if b is TRUE and ‘FALSE’ otherwise. 1len contains the number of

characters in the string returned. If string is not long enough to hold the

representation then this routine acts as an invalid process.
STRINGTOINT

PROC STRINGTOINT (BOOL Error, INT n,
VAL []BYTE string)

Converts a string to a decimal integer. The procedure returns in n the value
represented in string. error is set to TRUE if a non-numeric character
is found in string or if string is empty. + or a - are allowed in the first
character position. n will be the value of the portion of string up to any
illegal characters, with the convention that the value of an empty string is
0. error is also set to TRUE if the value of string overflows the range of
INT, in this case n will contain the low order bits of the binary representation
of string. error is set to FALSE in all other cases.

Similar procedures are provided for the types INT16, INT32, and INT64.

STRINGTOINT16

PROC STRINGTOINT16 (BOOL Error, INT16 n,
VAL []BYTE string)

As STRINGTOINT but converts to a 16-bit integer.
STRINGTOINT32
PROC STRINGTOINT32 (BOOL Error, INT32 n,
VAL []BYTE string)
As STRINGTOINT but converts to a 32-bit integer.
STRINGTOINT64

PROC STRINGTOINT64 (BOOL Error, INT64 n,
VAL []BYTE string)

As STRINGTOINT but converts to a 64-bit integer.

72 TDS 368 01 March 1993



124 1.8 String conversion library

STRINGTOHEX

PROC STRINGTOHEX (BOOL Error, INT n,
VAL []BYTE string)

The procedure returns in n the value represented by the hexadecimal
string. No‘# is allowed in the input and hex digits must be in upper case
(A to F) rather than lower case (a to £). error is set to TRUE if a non-hexa-
decimal character is found in string, orif string is empty. n will be the
value of the portion of string up to any illegal character with the conven-
tion that the value of an empty string is 0. error is also set to TRUE if the
value represented by string overflows the range of INT. In this case n
will contain the low order bits of the binary representation of string. In all
other cases error is set to FALSE.

Similar procedures are provided for the types HEX16, HEX32, and HEX64.
STRINGTOHEX16

PROC STRINGTOHEX16 (BOOL Error, INT16 n,
VAL []BYTE string)

As STRINGTOHEX but converts to a 16-bit integer.
STRINGTOHEX32

PROC STRINGTOHEX32 (BOOL Error, INT32 n,
VAL []BYTE string)

As STRINGTOHEX but converts to a 32-bit integer.
STRINGTOHEX64

PROC STRINGTOHEX64 (BOOL Error, INT64 n,
VAL []BYTE string)

As STRINGTOHEX but converts to a 64-bit integer.
STRINGTOREAL32

PROC STRINGTOREAL32 (BOOL Error, REAL32 X,
VAL []BYTE string)

Converts a string to a 32-bit real number. This procedure takes a string
containing a decimal representation of a real number and converts it into
the corresponding real value. If the value represented by string over-
flows the range of the type then an appropriately signed infinity is returned.
Errors in the syntax of string are signalled by a ‘Not-a-Number’ being
returned and error being set to TRUE. The string is scanned from the left
as far as possible while the syntax is still valid. If there are any characters
after the end of the longest correct string then error is set to TRUE, other-
wise it is FALSE. For example if string was “12.34E+2+1.0” then the
value returned would be 12.34 x 102 with error set to TRUE-

72 TDS 368 01 March 1993



1 The occam libraries 125

STRINGTOREALG64

PROC STRINGTOREAL64 (BOOL Error, REAL64 X,
VAL []BYTE string)

As STRINGTOREAL32 but converts to a 64-bit number.
STRINGTOBOOL

PROC STRINGTOBOOL (BOOL Error, b,
VAL []BYTE string)

Converts a string to a boolean value. The procedure returns TRUE in b if
the first four characters of string are "TRUE' and FALSE if the first five
characters are ‘FALSE'; b is undefined in other cases. TRUE is returned in
error if string is not exactly ‘TRUE' or ‘FALSE’.

72 TDS 368 01 March 1993



126 1.9 Block CRC library

1.9 Block CRC library
Library: crc.1ib

The block CRC library provides two functions for calculating cyclic redundancy
check values from byte strings. Such values can be of use in, for example, the
generation of the frame check sequence (FCS) in data communications.

A cyclic redundancy check value is the remainder from modulo 2 polynomial divi-
sion. Consider bit sequences as representing the coeflicients of polynomials; for
example, the bit sequence 10100100 (where the ieading bit is the most significant
bit (msb)) corresponds to P(x) = x7 + x®+ x2. The routines in the library calculate
the remainder of the modulo 2 polynomial division:

(x**n H(x) + x" F(x))/G(x)
where: F(x) corresponds to InputString
G(x) corresponds to PolynomialGenerator
H(x) corresponds to 01dCRC
k is the number of bits in InputString
n is the word size in bits of the processor used (i.e. nis 16 or 32).

(O1dCRC can be viewed as the value that would be pre-loaded into the cyclic shift
register that is part of hardware implementations of CRC generators.).

When representing G(x) in the word PolynomialGenerator, note that there is
an understood bit before the msb of PolynomialGenerator. For example, on
a 16-bit processor, with G(x) =x6+ x72+ x5+ 1, which is #11021, then Polyno-
mialGenerator must be assigned #1021, because the bit comesponding to x6
is understood. Thus, a value of #9603 for PolynomialGenerator, coresponds
to G(x) = x16+ x75+ x12+x10 + x9 + x + 1, for a 16-bit processor.

A similar situation holds on a 32-bit processor, so that:
G(X) = x32+ x26+ x23 +x22+ x16+ x12+ x11 + x10+ x8+ x7+ x5+x4+ X2+ x+1
is encoded in PolynomialGenerator as #04C11DB7.

It is possible, however, to calculate a 16-bit CRC on a 32-bit processor. For
example, if G(x) =x76+ x72+ x5+ 1, then PolynomialGenerator is #10210000.
This is because the most significant 16 bits of the 32-bitinteger form a 16-bit gener-
ator; the least significant 16 bits of 01dCRC form the initial CRC value; and the
calculated CRC is the most significant 16 bits of the result from CRCFROMMSB and
the least significant 16 bits of the result from CRCFROMLSB.

1.9.1 Example of use

Suppose it is required to transmit information between two 32-bit transputers, and
the message that is to be transmitted is the byte array [data FROM 4 FOR

72 TDS 368 01 March 1993



1 The occam libraries 127

size.message], where there are size.message bytes in the message. Both
the transmitter and receiver use the same 32-bit generating polynomial and
01dCRC value. There are two methods for the receiver to check messages:

First CRCFROMMSB is given the message as an input string, the result is placed into
the first four bytes of data and the message is sent. The receiver can either:

Give the received data (which is (size.message + 4) bytes long) to
CRCFROMMSB and expect a result of zero,

or:
Give the received [data FROM 4 FOR (size.message)] to

CRCFROMMSB and check that the result is equal to the INT contained in the
received [data FROM 0 FOR 4].

These methods of checking are equivalent. If the check fails then the transmitted
data was corrupted and re-transmission can be requested; if the check passes
then it is most probable that the data was transmitted without corruption - just how
probable depends on many factors, associated with the transmission media.

Note: The occam predefines CRCBYTE and CRCHORD can be chained together
to help calculate a CRC from a byte string, and this is indeed the use to which they
are putin CRCFROMMSB and CRCFROMLSB. However, because these latter routines
shift the polynomial F(x) corresponding to InputString by x”, these routines
should not be chained together over segments of a byte string to find its CRC; the
whole string must be used in a single call to CRCFROMMSB or CRCFROMLSB.

1.9.2 Function definitions
CRCFROMMSB

INT FUNCTION CRCFROMMSB (VAL []BYTE InputString,
VAL INT PolynomialGenerator,
VAL INT OldCRC)

This routine is intended for strings in normal transputer format (little-en-
dian). The most significant bit of the given string is taken to be bit-16 or
bit-32, depending, that is, on the word size of the processor, of
InputString[(SIZE InputString) - 1].

PolynomialGenerator, O1dCRC and the result are all also in normal
transputer format (little-endian).

CRCFROMLSB

INT FUNCTION CRCFROMLSB (VAL []BYTE InputString,
VAL INT PolynomialGenerator,
VAL INT OldCRC)

This routine accommodates strings in big-endian format. The most signifi-
cant bit of InputString is taken to be bit 0 of InputString[0]. The
generated CRC is given in big-endian format. PolynomialGenerator
and O1dCRC are taken to be in little-endian format.

72 TDS 368 01 March 1993



128 1.10 Extraordinary link handling library

1.10 Extraordinary link handling library
Library: x1ink.1ib

The extraordinary link handling library contains routines for handling communica-
tion failures on a link. Four procedures are provided to allow failures on input and
output channels to be handled by timeout or by signalling the failure on another
channel. A fifth procedure allows the channel to be reset. Use of these routines is
described in section 13.5 of the User Guide.

Procedure Parameter Specifiers

InputOrFail.t |CHAN OF ANY ¢, []BYTE mess,
TIMER t, VAL INT time, BOOL aborted

OutputOrFail.t [CHAN OF ANY ¢, VAL []BYTE mess,
TIMER t, VAL INT time, BOOL aborted

InputOrFail.c |CHAN OF ANY c, []BYTE mess
CHAN OF INT kill, BOOL aborted

OutputOrFail.c |CHAN OF ANY ¢, VAL []BYTE mess,
CHAN OF INT kill, BOOL aborted

Reinitialise CHAN OF ANY c

CAUTION:

Use of the routines in x1ink. 1ib during interactive debugging will lead to unde-
fined results.

1.10.1 Procedure definitions

The first four of these procedures take as parameters a link channel ¢ (on which
the communication is to take place), a byte vector mess (the object of the commu-
nication), and the boolean variable aborted. The choice of a byte vector for the
message allows an object of any type to be passed along the channel providing
it is retyped first. aborted is set to TRUE if the communication times out or is
aborted; otherwise it is set to FALSE.

Note: In rare circumstances aborted may be set to TRUE even though the
communication is successful. This happens if the communication terminates
successfully in the interval between the timeout/abort and channel renitialization.
The likelihood of this event is very small.

InputOrFail.t

PROC InputOrFail.t (CHAN OF ANY c, []BYTE mess,
TIMER t, VAL INT time,
BOOL aborted)

This procedure is used for communication where failure is determined by
a timeout. It takes a timer parameter t, and an absolute time time. The
procedure treats the communication as having failed when the time as
measured by the timer t is AFTER the specified time time. If the timeout
occurs then the channel c is reset and this procedure terminates.

72 TDS 368 01 March 1993



1 The occam libraries 129

OutputOrFail.t

PROC OutputOrFail.t (CHAN OF ANY c,
VAL []BYTE mess,
TIMER t, VAL INT time,
BOOL aborted)

This procedure is used for communication where failure is determined by
a timeout. It takes a timer parameter t, and an absolute time time. The
procedure treats the communication as having failed when the time as
measured by the timer t is AFTER the specified time time. If the timeout
occurs then the channel ¢ is reset and this procedure terminates.

InputOrFail.c

PROC InputOrFail.c (CHAN OF ANY c, []BYTE mess,
CHAN OF INT kill,
BOOL aborted)

This procedure provides, through an abort control channel, for communica-
tion failure on a channel expecting an input. This is useful if failure cannot
be detected by a simple timeout. Any integer on the channel kill will
cause the channel ¢ to be reset and this procedure to terminate.

OutputOrFail.c

PROC OutputOrFail.c (CHAN OF ANY c,
VAL []BYTE mess,
CHAN OF INT kill,
BOOL aborted)

This procedure provides, through an abort control channel, forcommunica-
tion failure on a channel attempting to output. This is useful if failure cannot
be detected by a simple timeout. Any integer on the channel kill will
cause the channel ¢ to be reset and this procedure to terminate.

Reinitialise
PROC Reinitialise (CHAN OF ANY c)

This procedure may be used to reinitialize the link channel c after it is
known that all activity on the link has ceased.

Reinitialise must only be used to reinitialize a link channel after
communication has finished. If the procedure is applied to a link channel
which is being used for communication the transputer’s error flag will be set
and subsequent behavior is undefined.

72 TDS 368 01 March 1993



130 1.11 Debugging support library

1.11 Debugging support library
Library: debug.lib

The debugging support library provides four procedures. Two procedures are
provided to stop a process, one on a specified condition. The third procedure is
used to insert debugging messages and the fourth procedure is a timer process
for analyzing deadlocks.

Procedure Parameter Specifiers
DEBUG. STOP ()

DEBUG.ASSERT VAL BOOL assertion
DEBUG.MESSAGE |VAL []BYTE message
DEBUG. TIMER CHAN OF INT stop

1.11.1 Procedure definitions
DEBUG.ASSERT
PROC DEBUG.ASSERT (VAL BOOL assertion)
If a condition fails this procedure stops a process and notifies the debugger.

If assertion evaluates FALSE, DEBUG.ASSERT stops the process and
sends process data to the debugger. If assertion evaluates TRUE no
action is taken.

If the program is not being run within the breakpoint debugger and the
assertion fails, then the procedure behaves like DEBUG. STOP.

DEBUG.MESSAGE
PROC DEBUG.MESSAGE (VAL []BYTE message)

This procedure sends a message to the debugger which is displayed along
with normal program output. Note: that only the first 83 characters of the
message are displayed.

If the program is not being run within the breakpoint debugger the proce-
dure has no effect.

DEBUG. STOP
PROC DEBUG.STOP ()
This procedure stops the process and sends process data to the debugger.

If the program is not being run within the breakpoint debugger then the
procedure stops the process or processor, depending on the error mode
that the processor is in.

72 TDS 368 01 March 1993



1 The occam libraries

131

DEBUG.TIMER

PROC DEBUG.TIMER (CHAN OF INT stop)

A timer process for use when analyzing deadlocks in occam programs.
The procedure remains on the timer queue until receipt of any integer value
on the channel stop, whereupon it will terminate. For an example of this
form of usage see section 9.14.6 in the User Guide.

1.12 DOS specific hostio library

Library: msdos.1ib

The MSDOS host file server library allows programs to use some facilities specific
to the IBM PC. A set of constants for the library are provided in the include file

msdos . inc

Caution: Programs that use this DOS specific library will not be portable to
versions of the toolset on other hosts.

Procedure

Parameter Specifiers

dos.receive.block

CHAN OF SP fs, ts,

VAL INT32 locatioen,

INT bytes.read, []BYTE block,
BYTE result

dos.send.

block

CHAN OF SP fs, ts,
VAL INT32 location,
VAL []BYTE block,
INT len, BYTE result

dos.call.

interrupt

CHAN OF SP fs, ts,

VAL INT16 interrupt,
VAL[dos.interrupt.regs.size]BYTE
register.block.in,

BYTE carry.flag,
[dos.interrupt.regs.size] BYTE
register.block.out,

BYTE result

dos.read.

regs

CHAN OF SP fs, ts,
[dos.read.regs.size] BYTE registers,
BYTE result

dos.port.

read

CHAN OF SP fs, ts,
VAL INT16 port.location,
BYTE value, result

dos.port.

write

CHAN OF SP fs, ts,
VAL INT16 port.location,
VAL BYTE value, BYTE result

72 TDS 368

01

March 1993



132 1.12 DOS specific hostio library

1.12.1 Procedure definitions
dos.receive.block

PROC dos.receive.block (CHAN OF SP fs, ts,
VAL INT32 location,
INT bytes.read,
[IBYTE block,
BYTE result)

Reads a block of data, starting at location, from host memory.
location is aranged as the segment in the top two bytes and the offset
in the lower two bytes, both unsigned. The number bytes requested is
SIZE[block];the number of bytes readis returnedin bytes . read. The
result returned can take any of the following values:

spr.ok The read operation was successful.
spr.bad.packet.size Too many bytes were requested to be read:
(SIZE[block]) >

dos.max.receive.block.buffer.size.

>spr.operation.failed The read failed, so bytes.read = 0. If
result > spr.operation.failed then
this denotes a server returned failure. (See
section C.2 in the Toolset Reference
Manual.)

dos.send.block

PROC dos.send.block (CHAN OF SP fs, ts,
VAL INT32 location,
VAL []BYTE block,
INT len, BYTE result)

Writes a block of data to host memory, starting at Llocation. The location
is arranged as the segment in the top two bytes and the offset in the lower
two bytes, both unsigned.

The number of bytes requested to be written is SIZE [block]; the number
of bytes written is retumed in 1en. The result returned can take any of the
following values:

spr.ok The write operation was successful.

spr.bad.packet.size Too many bytes were requested to be
written: (SIZE [block]) >
dos.max.send.block.buffer.size.

>spr.operation.failed The write failed. If result takes a value >
spr.operation.failed then this
denotes a server returned failure. (See
section C.2 in the Toolset Reference
Manual)

72 TDS 368 01 March 1993



1 The occam libraries 7 133

dos.call.interrupt

PROC dos.call.interrupt
(CHAN OF SP fs, ts,
VAL INT16 interrupt,
VAL [dos.interrupt.regs.size] BYTE register.block.in,
BYTE carry.flag,
[dos.interrupt.regs.size] BYTE register.block.out,
BYTE result)

Invokes an interrupt call on the host PC, with the processor’s registers
initialized to requested values. On return from the interrupt the values
stored in the processor's registers are returned in
register.block. out, along with the value of the carry flag on the PC,
which is stored in carry. flag.

The interrupt number is specified by interrupt. The registers are repre-
sented by a block of bytes called register.block. in. This block stores
the values to be written to the registers. Each register value occupies 4
bytes of a block. On the IBM PC the 2 most significant bytes are ignored
as this machine has only 2 byte registers (16 bit registers). The layout of
registers in the block is as follows:

Register | Start position in block | End position in block

(least significant byte) | (most significant byte)
ax 0 3
bx 4 7
cx 8 1
dx 12 15
di 16 19
si 20 23
cs 24 27
ds 28 31
es 32 35
ss 36 39

Note, however, that the c¢s and ss registers cannot be set.

The result returned can take any of the following values:

spr.ok The interrupt was successful.

>spr.operation.failed The interrupt failed. If result takes a value
> spr.operation.failed then this
denotes a server returned failure. (See
section C.2 in the Toolset Reference
Manual)

72 TDS 368 01 March 1993



134 ] 1.12 DOS specific hostio library

dos.read.regs

PROC dos.read.regs
(CHAN OF SP fs, ts,
[dos.read.regs.size] BYTE registers,
BYTE result)

Reads the current values of some registers of the PC. The values of the
registers are returned as a block of bytes, each register occupying 4 bytes

of the block:
Register |Start position in block |End position in block
(least significant byte) |(most significant byte)
ax 0 3
bx 4 7
cx 8 11
dx 12 15

On the IBM PC the 2 most significant bytes are ignored as this machine has
only 2 byte registers (16 bit registers).

The result retumed can take any of the following values:

spr.ok The read was successful.

>spr.operation.failed The read failed. If result takes a value >
spr.operation.failed then this
denotes a server returned failure. (See
section C.2 in the Toolset Reference
Manual.)

dos.port.read

PROC dos.port.read (CHAN OF SP fs, ts,

VAL INT16 port.location,

BYTE value, result)
Reads the value at the port, specified by the port address
port.location. The port address being in the input/output space of the
PC is an unsigned number between 0 and 64K.
No check is made to ensure that the value received from the port (if any)
is valid. The value returned in value is that of the given address at the
moment the port is read by the host file server.

The result returned can take any of the following values:

72 TDS 368 01 March 1993



1 The occam libraries

135

spr.ok

2spr.operation.failed

dos.port.write

The read was successful.

The read failed. If result takes a value >
spr.operation.failed then this
denotes a server returned failure. (See
section C.2 in the Toolset Reference
Manual.)

PROC dos.port.write (CHAN OF SP fs, ts,

VAL INT16 port.location,
VAL BYTE value, BYTE result)

Writes value to the port specified by the port address port.location.
The port address being in the input/output space of the PC is an unsigned

number between 0 and 64K.

No check is made to ensure that the value written to the port has been
correctly read by the device connected to the port (if any).

The result returned can take any of the following values:

spr.ok

2spr.operation. failed

72 TDS 368 01

The write was successful.

The write failed. If result takes a value >
spr.operation.failed then this
denotes a server returned failure. (See
section C.2 in the Toolset Reference
Manual.)

March 1993



136 1.12 DOS specific hostio library

72 TDS 368 01 March 1993



Appendices

72 TDS 368 01 March 1993



138 Appendices

72 TDS 368 01 March 1993



A Language
extensions

This appendix describes language extensions that are supported by the occam
2 compiler.

Note: These extensions are compiler-dependent and do not extend the syntax of
the occam 2 language as defined in the occam 2 Reference Manual.

A.1 Syntax

A.1.1 Compiler keywords
The following additional keywords are supported by the occam 2 compiler:

ASM GUY IN INLINE VECSPACE WORKSPACE

A.1.2 Compiler directives
The following directives are supported by the occam 2 compiler:
#INCLUDE #USE #COMMENT #IMPORT #OPTION #PRAGMA

For more information see section 1.12 of the Toolset Reference Manual.

A.1.3 String escape characters

The syntax of the non-printable character ‘*’, as defined in section I of the occam
2 Reference Manual has been extended. The first character of a literal string may
now take the value “*1’ or ‘*I., which is used to represent the length of the string,
excluding the character itself. For example, the following statements define the
same string:

VAL stringl is ”*1Fred” :
VAL string2 is "*#04Fred” :

‘*]1' (or ‘*L’) is illegal if the string (excluding the **1) is longer than 255 bytes,
and will be reported as an error.

72 TDS 368 01 March 1993



140 A.2 Channel operations

The characters *, ’ and ” may be used in the following form:

*c *C carriage return = |*#0D
*1 *L string length < | *#FF
*n *N newline = [*#0A
*t *T tab = [*#08
*g *S space = | *#20
*/ quotation mark

> double quotation mark

** asterisk

Any byte value can be represented by *# followed by two hexadecimal digits.

A.1.4 Tabs

+ The compiler expands tabs in source files to be every eighth character
position. Tabs are permitted anywhere in a line but are not expanded within
strings or character constants.

A.1.5 Relaxations on syntax

» There is no limit on the number of significant characters in identifiers, and
the case of characters is significant. )

A.2 Channel operations
The following operations on channels are now permitted:
« Channels can be retyped .
« Channels can be constructed from other channels (‘channel constructors’)

o Protocols of type ANY can be named (‘anarchic protocols’)

A.2.1 Retyping channels
Channels may be retyped:
« to and from data items
» between protocols of different types.

Data items map onto a pointer to the channel word. This can be used, for example,
to determine the address of the channe!l word, or to create an array of channels
pointing at particular addresses:

CHAN OF protocol c :
VAL INT x RETYPES ¢ : -- Must be a VAL RETYPE
use x as the address of the channel word

72 TDS 368 01 March 1993



A Language extensions 141

Note: This operation (retyping a channel to a data item) can be achieved more
portably by means of the LOAD . INPUT . CHANNEL predefine. See sections 13.4 of
the occam 2 Toolset User Guide and 1.3.7 in this manual.

The following code demonstrates how to create a channel array whose channels
point at arbitrary addresses.

[1I0]INT x :
SEQ
initialise elements of x to the addresses of
... the channel words
[10]CHAN OF protocol c RETYPES x :
use channel array c

Retyping between channel protocols allows the protocol on a channel to be
changed, for example, in order to pass it as a parameter to another routine:

PROTOCOL PROT32 IS INT32 :
PROC p (CHAN OF INT32 x)
x ! 99(INT32)

PROC ql (CHAN OF PROT32 y)

SEQ
p (y) — this is jillegal
CHAN OF INT32 z RETYPES y :
p (z) —~ this is legal

This facility should be used with care; further details are given in section 13.2 of
the occam 2 Toolset User Guide.

A.2.2 Channel constructors

Arrays of channels may be constructed out of a list of other channels, see section
13.2 of the occam 2 Toolset User Guide. For example:

PROC p (CHAN OF protocol a, [2]CHAN OF protocol b)
[3]CHAN OF protocol c¢ IS [a, b[0], b[1]]
—— channel constructor
ALT i = 0 FOR SIZE c
c[i] ? data

A.2.3 ‘Anarchic’ protocols

PROTOCOLS may now be declared of type ANY. This means that a channel of that
protocol can communicate a single item of any type. Sequential protocols can

72 TDS 368 01 March 1993



142 A.3 Low level programming

include an item of type ANY. This suppresses type-checking of a single element in
a communication list. Note that these should be contrasted against CHAN OF
ANY, where the keyword ANY matches any number of items.

The following addition is made to the occam syntax in the occam 2 Reference
Manual:

simple.protocol = ANY
For example:

PROTOCOL p0 IS ANY :
CHAN OF p0 c0 :

SEQ
cO ! 88
c0 ! b’
cO ! 6 :: "heaven”

PROTOCOL pl IS INT ; ANY :
CHAN OF pl cl :

SEQ
cl ! 0; 88
cl !t 1; ’'b’
cl ! 2; 6 :: "heaven”

Note: CHAN OF ANY is now considered obsolescent and the named protocol
construct described above should be used in preference.

CHAN OF ANY

The facility which allows a channel declared as CHAN OF ANY can be passed as
an actual parameter in place of a formal channel parameter of any protocol is still
supported but is obsolescent. A channel of a specific protocol cannot be passed
in place of a formal channel parameter of CHAN OF ANY. Communications on a
channel declared as CHAN OF ANY must be identical at both ends of the channel.

A.3 Low level programming

A31 AsM

The keyword AsM introduces a section of transputer assembly code. See appendix
D of the occarm 2 Toolset User Guide.

A.3.2 PLACE statements

The PLACE statement in 0cCam allows a channel, a variable, an array, or a input/
output channel for a memory mapped device (port), to be placed at an absolute
focation in memory, workspace, or vector space.

72 TDS 368 01 March 1993



A Language extensions 143

The syntax of the supported PLACE statements extends the definition of an alloca-
tion as defined in the occam 2 Reference Manual:

allocation = PLACE name AT expression
| PLACE name AT WORKSPACE expression
|  PLACE name IN WORKSPACE
| PLACE name IN VECSPACE

The PLACE statement must be inserted immediately following the declaration of
the variable to which it refers e.g.

int x, y, z :

PLACE x .....

PLACE Y ..... is correct
int x

int y

PLACE X ..... is incorrect

The address used in a PLACE allocation is converted to a transputer address by
considering the address to be a word offset from MOSTNEG INT.

For example, in order to access a BYTE memory mapped peripheral located at
machine address #1234, on a 32-bit processor:

PORT OF BYTE peripheral :
PLACE peripheral AT (#1234 >< (MOSTNEG INT)) >> 2 :
peripheral ! 0 (BYTE)

The numbers used as PLACE addresses are word offsets from the bottom of
address space. For example, PLACE scalar channel AT n places the channel word
at that address, and PLACE array of channels AT n, places the array of pointers
at that address.

The PLACE name IN WORKSPACE and PLACE name IN VECSPACE statements
place variables explicitly in program workspace and vector space respectively.
The allocation of workspace and vectorspace by the compiler is described in
Appendix B of this manual. Section 13.1 of the 0occam 2 Toolset User Guide also
describes allocation.

A.3.3 INLINE keyword

INLINE may be used immediately before the PROC or FUNCTION keyword of any
procedure or function declaration. It will cause the body of the procedure or func-
tion to be expanded inline in any call, and the declaration will not be compiled as
a normal routine. Use of INLINE procedures or functions may increase the size
of the object module but will also avoid the overheads incurred in executing extra
calls.

72 TDS 368 01 March 1993



144 A.4 Counted array input

The INLINE statement extends the syntax of a definition as defined in the occam
2 Reference Manual:

definition = PROTOCOL name 1S simple.protocol:
| PROTOCOL name 1S sequential.protocol:
| PROTOCOL name
CASE
{tagged.protocol}

| [INLINE]PROC name ({p, formal})
procedure.body

| {, primitive type } [ INLINE] FUNCTION name
( { , formal } ) function.body

I {, primitive type } [INLINE] FUNCTION name
({, formal} ) 18 expression.list:

| specifier name RETYPES element:

| VAL specifier name RETYPES expression:

Examples:
INT INLINE FUNCTION sum3 (VAL INT x, y, z,) IS x + (y + z):

INLINE PROC seterror ()
error := TRUE
A call to the FUNCTION sum3:
so.write.int (fs, ts, sum3(p,q,r),0)

would be expanded by the compiler thus:
so.write.int(fs, ts, p + (@ + r),0)

Note: the declaration is marked with the keyword, but the call is affected. This
means that you cannot inline expand procedures and functions which have been
declared by a #USE directive; to achieve that effect you may put the source of the
routine, marked with the INLINE keyword, in a separate file, and include this file
with an # INCLUDE directive.

A.4 Counted array input

The semantics of counted array input are extended from those described in the
occam 2 Reference Manual.

72 TDS 368 01 March 1993



A Language extensions 145

The new semantics are as follows:
message ? len :: buffer

This input receives an integer value which is assigned to the variable 1en, and that
number of components, which are assigned to the first components of the array
buffer. The assignments to 1en and buffer happen in parallel and therefore
the same rules apply as for parallel assignment. That is, the name 1en may not
appear free in buffer, and vice versa.

In occam 2 the count was input first and the parallel assignment rules did not
apply. Some occam 2 programs are invalidated by the new rule.

As a concession to backwards compatibility, the compiler permits communications
of the form:

channel.exp ? name :: [ array.exp FROM 0 FOR name }
These are transformed by the compiler into the equivalent modern form:

channel.exp ? name .. array.exp

A.5 Retyping arrays

Multi-dimensional arrays defined by a RETYPES definition may have one element
whose value is not explicitly stated. This may be any one of the elements. For
example:

[6]INT a, £ :
[2]1[ 1INT b RETYPES a :
[ 1{3]INT c RETYPES f :

[24]INT d
[2][ 1[6] e RETYPES d :

A.6 Obsolescent features

The following language constructs are considered to be obsolescent, and may be
removed in future versions of the compiler:

* CHAN OF ANY as defined in the occam 2 Reference Manual is obsoles-
cent. It should be replaced by a named PROTOCOL (which may be of type
ANY), to give greater security. Any declaration of a channel of type CHAN
OF ANY will be flagged by a warning by the compiler.

» The language extension which provides the ability to pass an actual
parameter of type CHAN OF ANY to a procedure whose formal parameter
is of a different channel type is obsolescent. Channel RETYPE should be
used to make the type conversion explicit.

72 TDS 368 01 March 1993



146 A.6 Obsolescent features

¢ The ability to write the following counted array input is obsolescent.
channel.exp ? name :: [ array.exp FROM 0 FOR name ]
The following equivalent construct should be used instead.
channel.exp ? name : : array.exp

¢ The GUY construct is obsolescent; the ASM construct should be used
instead.

72 TDS 368 01 March 1993



B Implementation of

occam on the
transputer

This appendix defines the toolset implementation of occam on the transputer. It
describes how the compiler allocates memory and gives details of type mapping,
hardware dependencies and language. The appendix ends with the syntax defini-
tion of the language extensions implemented by the occam compiler.

B.1 Memory allocation by the compiler

The code for a whole program occupies a contiguous section of memory. When a
program is loaded onto a transputer in a network, memory is allocated in the
following order starting at MemStart: workspace; code; separate vector space.
This is shown below:

Higher addfress
Free memory
Vector space
Code
'
Lower address Workspace
MemStart -

B.1.1 Procedure code

The compiler places the code for any nested procedures at higher addresses
(nearer MOSTPOS INT) than the code for the enclosing procedure. Nested proce-
dures are placed at increasingly lower addresses in the order in which their defini-
tions are completed. For the code in the following example:

72 TDS 368 01 March 1993



148 B.1 Memory allocation by the compiler

PROC P()
PROC Q ()
code for Q

PROC R ()
code for R

code for P

the layout of the code in memory is:

MOSTPOS INT

Higher address
Code for Q
Code for R
Code for P

Lower address

MOSTNEG INT

B.1.2 Compilation modules

The order in which compilation modules are placed in memory, including those
referenced by a #?RAGMA LINKAGE directive, is controlled by a linker directive.
Modules are placed in priority order, with the highest priority module being placed
at the lowest available address.

Note: the compiler will attempt to optimize floating point routines such as
REAL320P and REAL320PERR by giving them a high priority. This can be over-
ridden by using the compiler directive #PRAGMA LINKAGE in conjunction with the
linker directive #section.

B.1.3 Workspace

Workspace is placed lowest in memory, before the arithmetic handling library, so
that it has priority usage of the on-chip RAM, if the processor is configured to have
any.

Workspace is allocated from higher to lower address (i.e. the workspace for a
called procedure is nearer MOSTNEG INT than the workspace for the caller). For
example:

72 TDS 368 01 March 1993



B The implementation of occam on the transputer 149

PROC P ()
code

here
code

PROC Q ()
P ()

In the above example when Q is called, it will in turn call P. At the point labelled
here, the data layout in memory will be:

Higher address
Workspace for Q

Workspace for P

Lower address

In a PAR or PRI PAR construct the last textually defined process is allocated the
lowest addressed workspace. For example:

PAR
. P1

. P2
. P3

the workspace layout for the parallel processes will be:

Higher address|
Workspace for P1

Workspace for P2

Workspace for P3

Lower address

In areplicated PAR construct the instance with the highest replication count is allo-
cated the lowest workspace address. For example:

PAR i = 0 FOR 3
P [i]

72 TDS 368 01 March 1993



150 B.1 Memory allocation by the compiler

the workspace layout for the parallel processes will be:

Higher address
Workspace for P[0]

Workspace for P[1]

Workspace for P[2]

Lower address

Unless separate vector space is disabled, most arrays are allocated in a separate
data space, known as vector space, see section B.1.4. The allocation is done in
a similar way to the allocation of workspace, except that the data space for a called
procedure is at a higher address than the data space of its caller.

The variables within a single procedure or parallel process are allocated on the
basis of their estimated usage. The variables which the compiler estimates will be
used the most, are allocated lower addresses in the current workspace.

From within a called procedure the parameters appear immediately above the
local variables. When an unsized vector is declared as a formal procedure param-
eter an extra VAL INT parameter is also allocated to store the size of the array
passed as the actual parameter. This size is the number of elements in the array.
One extra parameter is supplied for each dimension of the array unsized in the call,
in the order in which they appear in the declaration.

If a procedure requires separate vector space, it is supplied by the calling proce-
dure. A pointer to the vector space supplied is given as an additional parameter.
If the procedure is at the outer level of a compilation unit, the vector space pointer
is supplied after all the actual parameters. Otherwise it is supplied before all the
actual parameters.

B.1.4 Vectorspace

By default, arrays larger than 8 bytes are allocated into a separate stack known as
the vectorspace. This scheme optimizes use of the workspace, creating more
compact and quicker code. It can also make better use of a transputer’s on-chip
RAM. The default scheme may be overridden by an option on the command line,
a directive in the source code, or, for specific variables only, by a place statement.

This can be overridden per compilation unit by the v command line switch or
$OPTION ~v~ directive. This will force all variables into the workspace.
Secondly, the current ‘default’ may be overridden on an array-by-array basis by
using extra allocations as follows:

72 TDS 368 01 March 1993



B The implementation of occam on'the transputer 151

[100]BYTE a :
PLACE a IN WORKSPACE : —— forces a to reside in
workspace

[100]BYTE b :
PLACE b IN VECSPACE : —— forces b to reside in
vectorspace

Only arrays may be placed in vectorspace; scalar variables must reside in work-
space. Arrays smaller than 8 bytes may be explicitly placed in vectorspace.

It may be desirable to change the default vectorspace allocation for various
reasons. Using vectorspace can actually slow down execution, since an extra
parameter is passed to each subroutine which requires it. However, this cost is
normally overwhelmed by the reduction in workspace size, and the associated
compaction in the number of prefix instructions required to address local variables.
In certain circumstances it may be useful to place a commonly used array into
workspace, particularly if it is heavily used in array assignment (block moves).
Alternatively it may be useful to place most arrays in workspace, but move any
large arrays into vectorspace.

B.2 Type mapping

This section defines all the occam types and how they are represented on the
each target processor.

All objects are word aligned, i.e. the lowest byte of the objectis on a word boundary.
For objects of type BOOL and BYTE, the padding above the object is guaranteed
to be all bits zero: for all other objects, the value of any padding bytes is undefined.

Arrays are packed, i.e. there are no spaces between the elements. (Note: that an
object of type BOOL has one byte for each element).

Table A.1 summarizes the type mapping, for further information on data types see
Section 3 of the occam 2 Reference Manual.

Protocol tags are represented by 8-bit values. The compiler allocates tag values
for each protocol from 0 (BYTE) upwards in order of declaration.

Values accessed through RETYPES must be aligned to the natural alignment for
that data type; BYTEs and BOOLs may be aligned to any byte; INT16s on a 32 bit
processor must be aligned to a half-word boundary and all other data types must
be alighed to a word boundary. This will be checked at run-time if it cannot be
checked at compile time. For example:

[20] BYTE array: —— This will be word aligned

INT32 x RETYPES [array FROM 1 FOR 4] : -- Run-time check is inserted
INT32 y RETYPES [array FROM i FOR 4] : -- Run—time check is inserted
INT32 z RETYPES [array FROM 8 FOR 4] : -— No run-time check inserted

72 TDS 368 01 March 1993



152 B.3 Implementation of channels

Channels may be RETYPEd. This allows the protocol on a channel to be changed,
in order to pass it as a parameter to another routine. This facility should be used
with care, see section A.2.1.

Type Storage | Range of values

BOOL 1byte |FALSE, TRUE

BYTE 1byte |[0to255

INT16 2 bytes |-32768 to 32767

INT32 4 bytes |-2,147,483,648 to 2,147,483,647
INT64 8 bytes (—263to (263-1)

INT (On 32-bit processors) |4 bytes |[-2,147,483,648 to 2,147,483,647
INT (On 16-bit processors) |2 bytes |-32768 to 32767

REAL32 4 bytes |IEEE single precision format
REALG64 8 bytes |IEEE double precision format
CHAN (On 32-bit processors) |8 bytes |[Channels are implemented as a
CHAN (On 16-bit processors) |4 bytes |pointer to a channel word.

PORT OF D As for D
TIMER None

Table A.1 occam data types

B.3 Implementation of channels
The data type of a channel is ‘pointer to channef. When mapping channels to
specific transputer links, the channel word is placed at the specified address for
scalar channels. Arrays of channels are mapped as arrays of pointers to channels.
As a result of this PLACEing arrays of channels is implemented such that:
PLACE array.of.channels AT n:
places the array of pointers at that address.
PLACE scalar.channel AT n:

places the channel word at that address.

An example of the placement of channels on links is given in Chapter 13 of the User
Guide.

Arrays of channels may be constructed out of a list of other channels. For example:

72 TDS 368 01 March 1993



B The implementation of occam on the transputer 153

PROC p (CHAN OF protocol a, [2]CHAN OF protocol b)
[3]CHAN OF protocol c¢ IS [a, b[0], b[1]]
—— channel constructor

ALT i = 0 FOR SIZE c
c[i] ? data

Channel constructors extend the facilities for manipulating channels; further
information is given in section 13.2 of the User Guide.

B.4 Transputer timers (clocks)

The transputer has two timers which can be accessed by the programmer. They
are used for real time programming, timing events, data logging, timing out, delays
and so on.

Two timers are provided to give low and high resolution timing. The timers them-
selves are word length registers which are incremented regularly and related to the
speed of the input clock. The low resolution timer goes 64 times slower than the
high resolution timer. These speeds are independent of transputer model,
processor speed, and word length.

Priority Low High
Time between ticks 64ps 1us
Ticks per sec 15625 1000000
Approx. cycle time (16 bit) 4s 65ms
Approx. cycle time (32 bit) 76h 1h 10m

The high resolution timer is always used by high priority processes, so is often
called the high priority timer. The low resolution timer is always used by low priority
processes.

B.4.1 TIMER variables

TIMER variables in occam give access to the transputer timers. The syntax of
timer input is similar to channel input.

Timers can have only one of two possible values, corresponding to the high and
low priority transputer clocks. The clock which is read depends on the priority of
the enclosing process. When comparing clock values the same timer variable
should be used, and the value must be input from the same process or from a
process of the same priority. If the same timer is used in processes with different
priorities, the results are undefined.

A common use of timers is to time a process, for example, a channel input:

72 TDS 368 01 March 1993



154 B.5 CASE statement

TIMER clock:
SEQ
clock ? start
chan ? y
clock ? end
delay := end MINUS start

The MINUS operator performs a ‘modulo’ subtraction and is used to give a relative
difference because the transputer timers operate on a wrap-around principle. The
maximum period that can be timed is limited to clock-cycle-time divided by 2 i.e.
on 16 bit transputers, about 33ms at high priority and 2s at low priority. If the period
being measured is likely to be greater than this then a delay period based on multi-
ples of clock cycles should be built in.

B.4.2 TIMERs as formal parameters

When calling occam from C, any formal TIMER parameter in the occam proce-
dure or function must be ignored by the calling C code, and no actual parameter
should be passed. When calling occam routines from other 0ccam routines an
actual parameter should be passed in the normal way.

B.5 CASE statement
The CASE statement is implemented as a combination of explicit test, binary
searches, and jump tables, depending on the relative density of the selection
values. The choice has been made to optimize the general case where each selec-
tion is equally probable. The compiler does not make any use of the order of the
selections as they are written in the source code.
B.6 ALT statement
No assumption can be made about the relative priority of the guards of an ALT
statement; if priority is required, you must use a PRI ALT.
B.7 Formal parameters
If aname is used more than once in a single formal parameter list, the /ast definition
is used.
B.8 Hardware dependencies

+ The number of priorities supported by the transputer is 2, (i.e. high and

low), so a PRI PAR may have two component processes. The compiler
does not permit a PRI PAR statement to be nested inside the high priority

72 TDS 368 01 March 1993



B The implementation of occam on the transputer 155

B.9

branch of another. This is checked at compile time, even across separately
compiled units.

The low priority clock increments at a rate of 15 625 ticks per second, or
one tick = 64 microseconds (IMS T212, T222, T225, M212, T400, T414,
T425, T800, T801 and T805).
The high priority clock increments at a rate of 1 000 000 ticks per second,
or one tick = 1 microsecond (IMS T212, T222, T225, M212, T400, T414,
T425, T800, T801 and T805).

TIMER channels cannot be placed in memory with a PLACE statement.

Summary of implementation restrictions
FUNCTIONs may not return arrays, not even with fixed sizes.
Multiple assignment of arrays of unknown size is not permitted.
Replicated PAR count must be constant.

There must be exactly two branches in a PRI PAR.

Replicated PRI PARs are not permitted.

Nested PRI PARs are not permitted.

PLACE statements must immediately follow the declaration of the variable
to which they refer.

Compiler pragmas SHARED and PERMITALIASES must immediately
follow the declaration of the variable to which they refer.

Table sizes must be known at compile time, for example:

PROC p ([]INT a, []INT b)
VAL [] []INT x IS [a] : =-- this is illegal
VAL [JINT y IS b : —— this is legal

Constant arrays which are indexed by replicator variables are not consid-
ered to be constants for the purposes of compiler constant folding, even if
the start and limit of the replicator are also constant. This restriction does
not apply during usage checking.

FUNCTIONSs which use ALT replicator variables as free variables may not
be called in the guard of the same ALT. An error is reported at compile time
if this occurs. Example:

72 TDS 368 01 March 1993



156 B.9 Summary of implementation restrictions

PROC P([10]CHAN OF INT c
ALT i = 0 FOR 10
INT FUNCTION £() IS 9 — i :

INT x:
c[f()] ? x —— call of ‘f£()’ is illegal
SEQ
ALT
c[f£()] ? x —- this is legal.

This can be resolved by passing the replicator variable into the FUNCTION
as a parameter:

PROC P([10]CHAN OF INT c
ALT i = 0 FOR 10
INT FUNCTION £(VAL INT i) IS 9 - i :
INT x:
c[f(i)] ? x - call of ‘f(i)’ is legal
SKIP

o Maximum array size is 64 Kbytes on 16-bit processors, 2 Gbytes on 32-bit
processors. No dimension of any array may exceed MOSTPOS INT.

o Maximum filename length is 128 characters.
¢ Maximum 256 tags allowed in PROTOCOLS.

¢ Maximum number of lexical levels is 254. (Applies to nested PROCs and
replicated PARs).

e The compiler places restrictions on the syntax which is permitted at the
outermost level of a compilation unit; i.e. not enclosed by any function or
procedure.

— No variable declarations are permitted.

- No abbreviations containing function calls or VALOF's are allowed, even
if they are actually constant. For example:

VAL x IS (VALOF

SKIP
RESULT 99
: —— This is illegal.
VAL m IS max (27, 52) : —-- This is also illegal.

72 TDS 368 01 March 1993



C Alias and usage
checking rules

C.1 Alias checking

This section describes the alias checking that is implemented by the compiler.

In the following text ‘assigned to’ means ‘assigned to by assignment or input'.

C.1.1 Introduction

Alias checking is the name given to the series of checks made by the compiler on
occam ‘abbreviations’ to ensure that an object is known by a single name within
a given scope i.e. no ‘aliases’ exist. In practice this means that:

¢ named abbreviations must be used correctly within the code

¢ expressions used to define abbreviations (plus any subscripts within them)
must be valid and within range

» variables in defining expressions must not be changed.

The same rules apply to refyped names, since retyping is simply another form of
abbreviation.

Alias checking is governed by a strict set of rules. This enables many checks to be
done at compile time, reducing the need for runtime checking code. Some checks,
however, can only be performed at runtime.

Alias checking can be disabled in a compilation unit or for specific variables. It is
then up to the programmer to ensure that the rules are complied with, or the
behavior of the program is undefined.

The formal rules for alias checking are set out below. For further details see the
occam 2 Reference Manual.

C.1.2 Rules

Scalar variables

(Rule 1) If a scalar variable appears in the abbreviated expression of a VAL
abbreviation, for example:

xiNVAL a IS x + 2 :

72 TDS 368 01 March 1993



158 C.1 Alias checking

then that variable may not be assigned to or abbreviated by a non-VAL abbrevi-
ation anywhere within the scope of the VAL abbreviation.

(Rule 2) If a scalar variable is abbreviated in a non-VAL abbreviation, for example:
x ina IS x :

then that variable may not be referenced anywhere within the scope of the abbrevi-
ation.

Arrays

The rules for arrays attempt to treat each element of the array as an individual
scalar variable. They allow the maximum freedom possible without introducing run
time checking code except at points of abbreviation. In the following text the word
constant means any expression that can be evaluated at compile time. If an array
is referenced in the expression of a VAL abbreviation, for example:

x iNVAL a IS x[i]

then the following rules apply to the use of the array within the scope of the abbrevi-
ation:

(Rule 3) If the subscript is constant then elements of the array may be
assigned to as long as they are only subscripted by constant values
different from the abbreviated subscript. Any element of the array may also
appear anywhere in the expression of a VAL abbreviation. Any other
elements of the array may be non-VAL abbreviated, and run time checking
code is generated if subscripts used in the abbreviation are not constant.

(Rule 4) If the subscript is not constant then no element of the array may
be assigned to unless it is first non-VAL abbreviated. The non-VAL abbrevi-
ation will have to generate run time code to check that it does not overlap
the VAL abbreviation. The array may be used in the expression of a VAL
abbreviation.

Elements of the array may be accessed anywhere within the scope of the
abbreviation except where restricted by further abbreviations. if an array
is abbreviated in a non-VAL abbreviation, for example:

x ina IS x[i]

then the following rules apply to the use of the array within the scope of the
abbreviation:

(Rule 5) If the subscript is constant then elements of the array may be read
and assigned to as long as they are accessed by constant subscripts
different from the abbreviated subscript. Other elements of the array may
be abbreviated in further VAL and non-VAL abbreviations, and run time
checking code is generated if subscripts used in the abbreviation are not
constants.

72 TDS 368 01 March 1993



C Alias and usage checking rules 159

(Rule 6) If the subscript is not constant then the array may not be refer-
enced at all except in abbreviations where run time checking code is
needed to check that the abbreviations do not overlap.

(Rule 7) Variables used in subscripts of the array being abbreviated act as
if they have been VAL abbreviated. In the above example ‘i’ acts as if it has
been VAL abbreviated and cannot be altered in the scope of the abbrevi-
ation. Where elements of the array being abbreviated are used in the
subscript of the array then the abbreviation is checked as if the subscript
expression was VAL abbreviated just before the non-VAL abbreviation. For
example:

a IS x[x[2]]
is checked as if it was written:

VAL subscript IS x[2]
a IS x[subscript]

which (by Rule 6 above) will generate run time checking code.

C.1.3 Alias checking disabled

Note: the compiler will be able to generate the most efficient code when all alias
checks are enabled.

When alias checking is disabled, either on a compilation unit or on specific vari-
ables, the compiler cannot guarantee no aliasing on the affected variables. It is
then the programmer’s responsibility to ensure that the following rules are not
broken.

The set of ‘aliasable’ variables consists of either the set of all variables declared
in the compilation unit (if the whole compilation unit has alias checking turned off
by the ‘A’ command line option or the #OPTION A" directive), or the set of all vari-
ables which have been marked by the pragma PERMITALIASES. See chapter 1
in the Toolset Reference Manual.

In the presence of ‘aliasable’ variables, the behavior of a program is defined in the
intuitive model, where all reads and assignments to ‘aliasable’ variables are
executed strictly in the order in which they are written; they may not be re-ordered
by an optimizer. Note also that because of retyping it cannot be assumed that a
write to an ‘aliasable’ variable of one type will not affect an ‘aliasable’ variable of
another type.

When variables are ‘aliasable’ the following rules apply.
VAL abbreviations

Suppose we have a VAL abbreviation of the form:

72 TDS 368 01 March 1993



160 C.1 Alias checking

VAL name 1S expression :
If name is ‘aliasable’, then

all component variables of expression are automatically inferred to be
‘aliasable’ by the compiler and may be modified in the scope of the abbrevi-
ation,

and therefore:

name must not be used after any component variable of expression is
modified.

If this constraint is not met, the behavior of the program is undefined, and results
will be implementation-dependent. »

For example:

VAL x IS afi] :
#PRAGMA PERMITALIASES x

SEQ
use ‘x’ —— This is OK
modify ‘i’ or ‘a[i]’ -— This is OK if ‘x’ is
—— ‘aliasable’
use ‘x’ —— This is undefined

Non-VAL abbreviations

Suppose we have a non-VAL abbreviation of the form:
name IS element :
If name is ‘aliasable’, then:

any variable used in a subscript to select a component or components of
an array reference in element may be modified in the scope of the abbrevi-
ation. (All such variables are automatically inferred to be ‘aliasable’ by the
compiler.)

and therefore:

name must not be used after a variable used in a subscript to select a
component or components of an array referenced in element has been
modified.

If this constraint is not met, the behavior of the program is undefined, and results
will be implementation-dependent.

If the base variable of element is ‘aliasable’ then:

the actual element referred to by such an abbreviation may be modified
within the scope of the abbreviation. name is automatically inferred to be

72 TDS 368 01 March 1993



C Alias and usage checking rules 161

‘aliasable’ by the compiler, and the abbreviation is implemented as though
name is a pointer to the element.

An alias may subsequently be created, either by referring to element explicitly in
the scope of the abbreviation, or by using another abbreviation within the scope.

Multiple assignment

In a multiple assignment, the destinations of the assignment are written to as
though they are in parallel. Therefore:

variables listed as the left hand side of a multiple assignment must not be
aliased.

It is up to the programmer to ensure that this rule is complied with. If it is not, the
behavior of the program is undefined.

Note that it is perfectly legal for the destinations of an assignment to alias expres-
sions used on the right hand side of an assignment. Thus destination variables may
be aliased with actual parameters to a FUNCTION.

Procedure parameters

It is assumed that only (non-VAL) formal parameters of a procedure which are
‘aliasable’ may be aliased, either with each other, with the VAL parameters, or with
‘aliasable’ free variables.

If an actual parameter to a procedure aliases another actual parameter, or aliases
a free variable used by the procedure, then:

the formal parameter must be marked as ‘aliasable’. Note that this also
applies across separately compiled units.

Since the rules for procedure parameters derive from those for abbreviations, the
following constraint applying to VAL abbreviations also applies. That is:

any variable used in an actual parameter corresponding to a VAL formal
parameter must not be modified in the body of the procedure prior to the
final read of the formal parameter.

It is up to the programmer to ensure that these rules are complied with. If they are
not, the behavior of the program is undefined.

Interaction with usage checking

Since the usage checking algorithms rely on lack of aliasing, any ‘aliasable’ vari-
able is automatically inferred to be ‘shared’, see section C.2.8.

C.2 Usage checking

This section describes the usage checking that is implemented by the compiler.

72 TDS 368 01 March 1993



162 C.2 Usage checking

C.2.1 Introduction

Usage checking is the name given to the series of checks made by the compiler
to ensure that parallel processes do not share variables, channels span only two
processes, and communication down channels is unidirectional. Using a set of
rules means that many checks can be done at compile time, reducing the need for
runtime checking code.

C.2.2 Usage rules of occam

The usage checking rules of occam 2 are as follows:

o No variable assigned to, orinput to, in any component of a parallel may be
used in any other component.

¢ No channel may be used for input in more than one component process
of a parallel.

¢ No channel may be used for output in more than one component of a
parallel.

¢ Avariable which is named on the right hand side of a non-VAL abbreviation
is considered to be modified, whether or not it actually is.

« Formal array parameters of a routine are considered to be wholly accessed
if any component of the array is accessed, whether or not by a constant
subscript. Similarly, free arrays (i.e. arrays which are accessed non-localiy)
of any routine are also considered to be wholly accessed if any component
of the array is accessed.

C.2.3 Checking of non-array elements

Variables and channels which are not elements of arrays are checked according
to the rules of occam 2.

C.2.4 Checking of arrays of variables and channels

Where possible, the compiler treats each element of an array as an independent
variable. This makes it possible to assign to the first and second elements of an
array in parallel.

For usage checking to operate in this way, it must be possible for the compiler to
evaluate all possible subscript values of an array. The compiler is capable of
evaluating expressions consisting entirely of constant values and operators (but
not function calls). Where a replicator is used in an expression the compiler can
evaluate the expression for all values of the index provided that the replicator’s
base and count can be evaluated. Note: however, that as each iteration of the
routine is checked, this can slow the compiler down.

72 TDS 368 01 March 1993



C Alias and usage checking rules 163

Where an array subscript contains variables, a function call, or the index of a repli-
cator where the base or the count cannot be evaluated, the compiler assumes that
all possible subscripts of the array may be used. This may cause a spurious error.
For example, consider the following program fragment

x :=1

PAR
a[0] :=1
a[x] := 2

The compiler reports the assignment to a [x] as a usage error. The fragment could
be changed to:

VAL x IS 1:
PAR
a[0o] :=1
a[x] = 2

This would be accepted by the compiler because x can be evaluated at compile
time.

The compiler checks segments of arrays similarly to simple subscripts. Where the
base and count of a segment can be evaluated, each segment is treated as though
it has been used individually. Where the base or count cannot be evaluated, the
compiler behaves as if the whole array has been used. For example, the following
code is accepted without generating an error:

PAR
[a FROM 4 FOR 4] :=x
a[8] := 2
[a FROM 9 FOR 3] :=y

C.2.5 Arrays as procedure parameters

Any variable array which is the parameter of a procedure is treated as a single
entity. That is, if any element of the array is referenced, the compiler treats the
whole array as being referenced. Similarly, if any variable array, or element of a
variable array is used free in a procedure then the compiler treats it as if every
element were used. For example, the compiler reports an error in the following
code because it considers every element of a to have been used when p (a)
occurred.

PROC p([]1INT a)
af[l] := 2
PAR
p(a)
a[0] := 2

72 TDS 368 01 March 1993



164 C.2 Usage checking

Similarly, where one element of an array of channels is used for input or output
within a procedure, the compiler treats the array as if all elements were used in the
same way. For example, the compiler reports an emor in the following code
because it considers an output has been performed on every element of c when
p () occurred.

PROC p()

cl[l} ' 2 -— c free in p
PAR

p()

c[0] ' 1

C.2.6 Abbreviating variables and channels

The compiler treats an element which is abbreviated in an element abbreviation
as if it had been assigned to, whether or not it is actually updated. If this causes
an apparently correct program to be rejected the program should be altered to use
a VAL abbreviation. For example, the compiler reports an error in the following
code because it considers the first component of the PAR to have been assigned
tob.

PAR
a IS
x

b :
a
y b

R

This could be changed to:

PAR
VAL a IS b :
X := a
y :=b

Where a channel is an abbreviation of a channel array element, the compiler
behaves as if the whole of the channel array had been used unless the element
is an array element with constant subscripts, a constant segment of an array (j.e.
with constant base and count) or a constant segment with constant subscripts.

C.2.7 Channels

A channel formal parameter, or a free channel of a procedure, may not be used for
both input and output in a procedure. This check is disabled if usage checking is
disabled.

C.2.8 Usage checking disabled

Note: the compiler will be able to generate the most efficient code when all usage
checks are enabled.

72 TDS 368 01 March 1993



C Alias and usage checking rules 165

The compiler supports two switches which can be used to disable either Usage
checking only, or both Alias and Usage checking together. Usage checking can be
disabled on a compilation unit by the ‘N' command line switch or argument to the
#OPTION compiler directive. Usage checking can also be turned off on specific
variables using the SHARED pragma. See chapter 1 in the Toolset Reference
Manual for more details.

When usage checking is disabled it is the programmer’s responsibility to ensure
that variables and channels are used correctly according to certain rules. if they
are not the behavior of the program is undefined.

The set of ‘shared’ variables consists of either the set of all variables declared in
the compilation unit, if the whole compilation unit has usage checking disabled, or
the set of all variables which have been marked by the pragma SHARED.

The effects of disabling usage checking are best defined by what happens at a
synchronization point — a point where the relative progress of two processes is
known. A synchronization point is defined to be one of the following:

¢ A communication (on a channel, timer, or port)
¢ The beginning or end of a PAR construct.
A program using shared variables is valid provided that:

o If between two synchronization points of a process, a process reads a
shared variable, then the variable is not updated by any other process at
any time between these two points.

(This means that an implementation is at liberty to read the shared variable
from memory after the first synchronization point, and then to ‘cache’ a
local copy of the variable, if it wishes.)

o If between two synchronization points of a process, a process updates a
shared variable, then the variable is neither read nor updated by any other
process at any time between these two points.

(This means that an implementation is at liberty to read the shared variable
from memory after the first synchronization point, and then to ‘cache’ a
local copy of the variable, if it wishes, as long as it ensures that the variable
is written back to memory before the second synchronization point.)

o Each element of an array is considered to be a separate variable for the
purpose of these rules.

If either of these constraints is broken, the behavior of the program is undefined.
It is up to the programmer to ensure that these constraints are met.

Channels may be considered ‘shared’ in the same way that variables may be. A
program using shared channels is valid provided that:

72 TDS 368 01 March 1993



166 C.2 Usage checking

o If a process communicates on a shared channel, then the channel is not
used for communication in the same direction by any other process at any
time between the previous and the following synchronization points.

e No branch of a PAR may use a channel for both input and output.

e Each element of an array is considered to be a separate channel for the
purpose of these rules.

If either of these constraints is broken, the behavior of the program is undefined.
It is up to the programmer to ensure that these constraints are met.

If any variable or channel which is shared is passed as an actual parameter to a
procedure or function, then the corresponding formal parameter must also be
marked as shared. Note: that this also applies across separately compiled units.
Itis up to the programmer to ensure that this is done, otherwise the behavior of the
program is undefined.

72 TDS 368 01 March 1993



Index

Symbols

#COMMENT, 139
#IMPORT, 139
#INCLUDE, 139
#OPTION, 139

#PRAGMA, 139
LINKAGE, 148
SHARED, 165

#section, 148
#USE, 3, 4, 139

Numbers
2D block move, 5

A

Abbreviation, checking, 164

Accuracy of floating point arith-
metic, 22

ACOS, 38, 57

Alias checking, 157
arrays, 158
effect of disabling, 159
rules, 157

Alignment, 151

ALOG, 27,45

ALOG10, 28, 47

ALT, 154

ANSI screen protocol, 103
ANSI-IEEE standard 754, 21
Apollo, 80

append.char, 116
append.hex.int, 117

72 TDS 368 01

append.hex.inté64, 117

append. int, 116
append.inté64, 116
append.real32, 117
append.realé64, 117
append. text, 116
Argument reduction, 22

Arithmetic functions
floating point support,
IEEE behavior, 6
occam, 6

Array
alias checking, 158
channel, 152
constant, 155
counted input, 144
of pointers, 152
retyping, 145
unknown size, 155
usage checking, 162

ASIN, 37,56

AsM, 139, 142
Assembly code, 142
ASSERT, 18

ATAN, 39, 58
ATAN2, 40, 59

B

Binary byte stream, 68
Bit manipulation, 5, 10
BITCOUNT, 10
BITREVNBITS, 10
BITREVWORD, 10
Block CRC library, 126
BOOL, 152

13

March 1993




168

Index

BOOLTOSTRING, 123
Buffers, 95
BYTE, 152

Cc

C run time library, 65
Caplin QTO, 81
CASE, 154

CAT, 81
CAUSEERROR, 18
CHAN OF ANY, 142

Channel
array, 152
array constructors, 141
implementation, 152
place, 143
protocols, 141
retyping, 140
usage checking, 162

char.pos, 114

Character identification, 112
CLIP2D, 10

Clock rate, 155

CMS, 81

Code, allocation in memory, 147
Command line, server, 76, 77
Communication. See Channel
compare.strings, 113

Compiler
directives, 139
implementation restrictions, 155
language keywords, 139
libraries, 5
user functions, 5
memory allocation, 147

Constant arrays, 155
Constants, 4
convert.lib, 3, 119

72 TDS 368 01

cos, 34, 53

COSH, 42, 61

CRC functions, 11, 126
crc.lib, 3

CRCBYTE, 12
CRCFROMLSB, 127
CRCFROMMSB, 127
CRCWORD, 12

D

DACOS, 38, 57

DALOG, 27, 45
DALOG10, 28, 47
DASIN, 37, 56

DATAN, 39, 58

DATAN2, 40, 59

Date, 94

dblmath.1lib, 3, 20, 26
DCoS, 34, 53

DCOSH, 42, 61
DEBUG.ASSERT, 130
debug. 1ib, 3, 130
DEBUG.MESSAGE, 130
DEBUG. STOP, 130
DEBUG. TIMER, 131
Debugging support library, 130
DEC VAX, 80
delete.string, 115
DEXP, 29, 48

DOS, 81
specific library, 131

dos.call.interrupt, 133
dos.port.read, 134
dos.port.write, 135
dos.read.regs, 134
dos.receive.block, 132

March 1993



Index 169

dos.send.block, 132 compiler optimization, 148
DPOWER, 30, 49 representation, 21
DRAN, 44, 63 FMUL, 45
DRAW2D, 9 FRACMUL, 13
DRX-11, 81
DSIN, 32, 51 G
DSINH, 41, 60 Generated error, 22, 24
DTAN, 35, 54 GUY, 139, 146
DTANH, 43, 62
D)1/gamic code loading, procedures, H
HELIOS, 81
E HEX16TOSTRING, 120

HEX32TOSTRING, 121
HEX64TOSTRING, 121
HEXTOSTRING, 120

Echoed keyboard input, 84
Elementary functions, 20, 25, 45

End of file, 73 Host

Environment variables, 78 access, 76

egstr, 114 systgm call': 79

Escape characters, 139 versions, Vi

E P | INLINE, 144 Host file server, library, 65
X:mng ez’s ! hostio.lib, 3

EXB, 239, Hyperbolic functions, 41

Extended data types, 5

Extensions, to occam, 139 |

Extraordinary link handling library,
128 IBM 370, 80

IEEE floating point arithmetic, 5
F ilist, 4

Fil Implementation
Ia eccess 66 channels, 152
access,errors, 74 Occz.m.]’ 147
deletion, 74 restrictions, 155
name, length, 156 IMS B004, 81
outr;tgt, ?99 7 IMS B008, 81
positioning,
renaming, 75 IMS B010, 81

Floating point IMS BO11, 81
arithmetic, 5 IMS B014, 81

72 TDS 368 01 March 1993



170 Index
IMS B015, 81 ks.keystream.sink, 101
IMS B016, 81 ks.keystream. to.scrstrean,
101
IMS D700, 98 ks.read.char, 104
IN, 139 ks.read. int, 105
inexact.NaN, 21 ks.read.inté4, 105
Infinity, 21 ks.read.line, 104

INLINE, 139, 143
InputOrFail.c, 129
InputOrFail.t, 128
insert.string, 115
INT, 152

INT16, 152
INT16TOSTRING, 120
INT32, 152
INT32TOSTRING, 120
INT64, 152
INT64TOSTRING, 120
INTTOSTRING, 120
is.digit, 113
is.hex.digit, 113
is.id.char, 113
is.in.range, 112
is.lower, 113
is.upper, 113
ISEARCH, 69

K

KERNEL.RUN, 15

Keyboard
input, 82, 100
polling, 83

Keystream
input, 104
protocol, 98

ks, 98, 99

72 TDS 368 01

ks.read.real32, 105
ks.read.realé64, 105

L

Language extensions, 139
Lexical levels, 156
Library, 3
block CRC, 126
compiler, 5
debugging support, 130
displaying, 4
DOS specific, 131
extraordinary link handling, 128
host file server, 65
maths, 20
optimized T4 series, 20, 45
streamio, 98
string handling, 111
type conversion, 119
Line parsing, 117
Link, failure, 128
Link handling library, 128
LOAD.BYTE.VECTOR, 15, 17
LOAD. INPUT.CHANNEL, 15, 16
LOAD. INPUT.CHANNEL.VECTOR,
15, 16
LOAD.OUTPUT . CHANNEL, 15, 17
LOAD.OUTPUT.CHANNEL. VECTOR,
15,17
Long reals, 26
Lower case, 113, 116

M

Maths
functions, 6

March 1993



Index

171

libraries, 20
Memory, allocation, 147
MemStart, 147
MOSTNEG INT, 148
MOSTPOS INT, 147, 148, 156
MOVE2D, 9
Moving the cursor, 109

MS-DQOS, library, 131
introduction, 3

Multidemensional array, nult
element, 145

Multiplexors, 95, 96

N

NaN, 21
NEC PC, 80
next.int.from.line, 118

next.word.from.line, 118

Not a number. See NaN

0]

occam
implementation, 147
language extensions, 139
libraries, 3
obsolescent features, 145

OutputOrFail.c, 129
OutputOrFail.t, 129

P

PAR, 149, 155
Parsing command line, 77

PLACE, 143, 152, 155
syntax, 143

Placement
array of channels, 143

72 TDS 368 01

at address, 142
channels, 143

in vector space, 143
in workspace, 143
variables, 143

Pointer to channel, 152
Port, place at address, 142
POWER, 30, 49

PRI ALT, 154

PRI PAR, 149, 154, 1565
nested, 155
replicated, 155

Priority, 154

Propagated error, 23, 25
PROTOCOL, 156
Protocol, tag, 151

R

RAN, 44, 63

Random number generation, 44

Range reduction, 22
REAL, 65

Real numbers, 65
REAL32TOSTRING, 121

' REAL64TOSTRING, 122

Reinitialise, 129
Replicated PAR, 149, 155
RESCHEDULE, 18
Resetting links, 128

Restrictions, implementation, 155

RETYPES, 145, 151
Retyping, arrays, 145
ROUNDSN, 14

S

Scalar channels, 152

Screenstream
output, 105

March 1993



172

Index

protocol, 98
Search path, 69
search.match, 114
search.no.match, 114

Server
command line, 76, 77
termination, 79

SIN, 32, 51

SINH, 41, 60
snglmath.lib, 3, 20, 26
so, 98

so.ask, 84

so.buffer, 96
so.close, 70
so.commandline, 76
so.core, 79
so.date.to.ascii, 94
so.eof, 73

so.exit, 79
so.ferror, 74
so.flush, 72
so.fwrite.char, 90
so.fwrite.hex.int, 91
so.fwrite.hex.int32, 92
so.fwrite.hex.inté64, 92
so.fwrite.int, 91
so.fwrite.int32, 91
so.fwrite.int64, 91
so.fwrite.nl, 90
so.fwrite.real32, 92
so.fwrite.realé64, 92
so.fwrite.string, 90
so.fwrite.string.nl, 90
so.getenv, 78

so.getkey, 83

72 TDS 368 01

so

= 1e]

=1e]

S0

.gets, 71
.keystream. from. file, 100
.keystream. from.kbd, 100
.keystream. from.stdin,

100

so

So.

so.

SO.

S0

97

S0.

.multiplexor, 96

open, 68

open. temp, 69
overlapped.buffer, 96
.overlapped.multiplexor,

overlapped.pri.multiplexor,

97

so

S0.

S0.

so
so

SO.

S0.

80

so

sSo.

SO.

so
sSo

So.
so.
so.

so

sSo.

SO.

S0.

SO.

SO.

S0.

S0.

.parse.command. line, 77
pollkey, 83

popen. read, 69
.pri.multiplexor, 97
.puts, 72

read, 70
read.echo.any. int, 85

.read.echo.hex. int, 85
.read.echo.hex.int32, 85

read.echo.hex.int64, 85
read.echo.int, 84, 85
.read.echo.int32, 84
.read.echo.int64, 85
read.echo.line, 84
read.echo.real32, 86
read.echo.realé4, 86

.read.line, 83

remove, 74

rename, 75

scrstream. to.ANSI, 103
scrstream.to.file, 101
scrstream. to.stdout, 102
scrstream. to.TVI920, 103
seek, 73

March 1993



Index

173

so.system, 79
so.tell, 73
so.test.exists, 75
so.time, 93
so.time.to.ascii, 94
so.time.to.date, 94
so.today.ascii, 95
so. today.date, 94
so.version, 80
so.write, 71
so.write.char, 87
so.write.hex.int, 88
so.write.hex.int32, 88
so.write.hex.inté64, 88
so.write.int, 87
so.write.int32, 87
so.write.inté64, 87
so.write.nl, 87
so.write.real32, 88
so.write.realé64, 88
so.write.string, 87
so.write.string.nl, 87
ss, 99

ss.beep, 109
ss.clear.eol, 108
ss.clear.eos, 108
ss.del.line, 110
ss.delete.chl, 109
ss.delete.chr, 109
ss.down, 109
ss.goto.xy, 108
ss.ins.line, 110
ss.insert.char, 109
ss.left, 109
ss.right, 109

72 TDS 368 01

ss.scrstream. copy, 103
ss.scrstream. fan.out, 103
ss.scrstream. from.array, 102

ss.scrstream.multiplexor

104
ss.scrstream.sink, 101
ss.scrstream. to.array, 102
ss.up, 109
ss.write.char, 106
ss.write.endstream, 107
ss.write.hex.int, 107
ss.write.hex.inté64, 108
ss.write.int, 107
ss.write.inté4, 107
ss.write.nl , 107
ss.write.real32, 108
ss.write.realé4, 108
ss.write.string, 107
ss.write.text.line, 107
str.shift, 115
Streamio library, 98
streamio.lib, 3
Streams, 66

String handling
comparison, 113
editing, 115
library, 111

introduction, 3
searching, 114

string.pos, 114
STRINGTOBOOL, 125
STRINGTOHEX, 124
STRINGTOHEX16, 124
STRINGTOHEX32, 124
STRINGTOHEX64, 124
STRINGTOINT, 123
STRINGTOINT16, 123

March 1993



174

Index

STRINGTOINT32, 123
STRINGTOINT64, 123
STRINGTOREAL32, 124
STRINGTOREALG64, 125
Sun, host types, 80
SunOs, 81

System call, 79

T

T4 series, optimized library, 20, 45
T8 series, maths libraries, 26
Tabs, in occam source, 140

TAN, 35, 54

TANH, 43, 62

TB, 45

tbmaths.lib, 3, 20,45

TDS, 98

Text
reading, 71
stream, 68
writing, 72

Time, 93, 94
See also Clock; Date
transputer clock, 155

Timeout, 128
channel input, 128
channel output, 129

TIMER, channels, 155
Timer, 153

to.lower.case, 116
to.upper.case, 116

Toolset, documentation, vii, viii
conventions, ix

Transputer, timer, 153

Transputer Development System,
98

Trigonometric functions, 27

72 TDS 368 01

TVI920, 103
Type conversion library, 119
Type mapping, 151

U

UDPIink, 81
undefined.NaN, 21
UNPACKSN, 13
unstable.NaN, 21
Upper case, 113, 116

Usage checking, 161
arrays, 162
channels, 162
disabled, 164

\'

Variable
place at address, 142
place in memory, 143

VECSPACE, 139, 143
Vector space, 147, 150
VMS, 81

VSSIZEOF, 15, 17

W

WORKSPACE, 139, 143
Workspace, 147, 148
WSSIZEOF, 15, 17

X

xlink.1lib, 3, 128

March 1993



	Contents overview
	Contents
	Preface
	Host versions
	About this manual
	About the toolset documentation set
	Other documents
	FORTRAN toolset
	Documentation conventions

	Libraries
	1 The occam libraries
	1.1 Introduction
	1.2 Using the occam libraries
	1.2.1 Linking libraries
	1.2.2 Listing library contents
	1.2.3 Library constants

	1.3 Compiler libraries
	1.3.1 Using compiler library routines
	1.3.2 Maths functions
	1.3.3 2D block moves
	1.3.4 Bit manipulation functions
	1.3.5 CRC functions
	1.3.6 Floating point arithmetic support functions
	1.3.7 Dynamic code loading support
	1.3.8 Transputer-related procedures
	1.3.9 Miscellaneous operations

	1.4 Maths libraries
	1.4.1 Introduction and terminology
	1.4.2 Single and double length elementary function libraries
	1.4.3 IMS T400/T414/T425/T426 elementary function library

	1.5 Host file server library
	1.5.1 Errors and the server run time library
	1.5.2 Inputting real numbers
	1.5.3 Procedure descriptions
	1.5.4 File access
	1.5.5 General host access
	1.5.6 Keyboard input
	1.5.7 Screen output
	1.5.8 File output
	1.5.9 Miscellaneous
	Time processing
	Buffers and multiplexors
	Buffering procedures
	Multiplexing procedures


	1.6 Streamio library
	1.6.1 Naming conventions
	1.6.2 Stream processes
	1.6.3 Stream input
	1.6.4 Stream output

	1.7 String handling library
	1.7.1 Character identification
	1.7.2 String comparison
	1.7.3 String searching
	1.7.4 String editing
	1.7.5 Line parsing

	1.8 String conversion library
	Procedure definitions

	1.9 Block CRC library
	1.9.1 Example of use
	1.9.2 Function definitions

	1.10 Extraordinary link handling library
	1.10.1 Procedure definitions

	1.11 Debugging support library
	1.11.1 Procedure definitions

	1.12 DOS specific hostio library
	1.12.1 Procedure definitions


	Appendices
	A Language extensions
	A.1 Syntax
	A.1.1 Compiler keywords
	A.1.2 Compiler directives
	A.1.3 String escape characters
	A.1.4 Tabs
	A.1.5 Relaxations on syntax

	A.2 Channel operations
	A.2.1 Retyping channels
	A.2.2 Channel constructors
	A.2.3 'Anarchic' protocols

	A.3 Low level programming
	A.3.1 ASM
	A.3.2 PLACE statements
	A.3.3 INLINE keyword

	A.4 Counted array input
	A.5 Retyping arrays
	A.6 Obsolescent features

	B Implementation of occam on the transputer
	B.1 Memory allocation by the compiler
	B.1.1 Procedure code
	B.1.2 Compilation modules
	B.1.3 Workspace
	B.1.4 Vectorspace

	B.2 Type mapping
	B.3 Implementation of channels
	B.4 Transputer timers (clocks)
	B.4.1 TIMER variables
	B.4.2 TIMERs as formal parameters

	B.5 CASE statement
	B.6 ALT statement
	B.7 Formal parameters
	B.8 Hardware dependencies
	B.9 Summary of implementation restrictions

	C Alias and usage checking rules
	C.1 Alias checking
	C.1.1 Introduction
	C.1.2 Rules
	Scalar variables
	Arrays

	C.1.3 Alias checking disabled
	VAL abbreviations
	Non-VAL abbreviations
	Multiple assignment
	Procedure parameters
	Interaction with usage checking


	C.2 Usage checking
	C.2.1 Introduction
	C.2.2 Usage rules of occam
	C.2.3 Checking of non-array elements
	C.2.4 Checking of arrays of variables and channels
	C.2.5 Arrays as procedure parameters
	C.2.6 Abbreviating variables and channels
	C.2.7 Channels
	C.2.8 Usage checking disabled


	Index

