
occam 2 Toolset
Language and Libraries
Reference Manual

~•• SGS-1IIOMSOII
.J.®~_

INMOS is a member of the SGS-THOMSON Microelectronics Group

© INMOS Limited 1993. This document may not be copied, in whole or in part, without
prior written consent of INMOS.

• ,omrnos·, IMS, occam and DS-Link are trademarks of INMOS Limited.

~&~em is a registered trademark of the SGS-THOMSON Microelectronics Group.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 lDS 368 01

Contents overview

Contents

Preface

Libraries

The occam libraries Describes the library procedures and functions
supplied with the toolse1.

Appendices

A Language extensions Describes language extensions that are
supported by the occam 2 compiler.

S Implementation of Describes how the compiler allocates memory
occam on the trans- and gives details of type mapping, hardware
puler dependencies and language.

C Alias and usage Describes the alias checking that is imple-
checking rules mented by the compiler.

72 TDS 36801 March 1993

ii

72 TDS 368 01 March 1993

I Contents

Contents overview • . • • • • . • • . • • • • . . • • . . • . . . • . . . • • • • • •

Contents •••••••••••••••••••••..•••••••••••••..•••••..•••• Hi

Preface •••••••••••••••••.••••.••.•••.•.••..••••••••...•.• vii

Host versions vii
About this manual vii
About the toolset documentation set viii
Other documents . ix
FORTRAN toolset ix

Documentation conventions . ix

Libraries. 1

1 The occam libraries 3

1.1 Introduction . 3
1.2 Using the occam libraries . 4

1.2.1 Linking libraries . 4
1.2.2 Listing library contents . 4
1.2.3 Library constants 4

1.3 Compiler libraries . 5
1.3.1 Using compiler library routines 5
1.3.2 Maths functions . 6
1.3.3 20 block moves 9
1.3.4 Bit manipulation functions . 10
1.3.5 CRC functions . 11
1.3.6 Floating point arithmetic support functions. 13
1.3.7 Dynamic code loading support.. . 15
1.3.8 Transputer-related procedures. 17
1.3.9 Miscellaneous operations 18

1.4 Maths libraries 20
1.4.1 Introduction and terminology 20
1.4.2 Single and double length elementary function

libraries. 25
1.4.3 IMS T400fT414fT425fT426 elementary function

library......... 45
1.5 Host file server library . 65

1.5.1 Errors and the server run time library 65
1.5.2 Inputting real numbers . 65

iv Contents

1.5.3 Procedure descriptions 65
1.5.4 File access . 66
1.5.5 General host access 76
1.5.6 Keyboard input 82
1.5.7 Screen output............................... . 86
1.5.8 File output ".................... 89
1.5.9 Miscellaneous 93

Time processing 93
Buffers and multiplexors 95
Buffering procedures 96
Multiplexing procedures. 96

1.6 Streamio library 98
1.6.1 Naming conventions. 98
1.6.2 Stream processes. 99
1.6.3 Stream input 104
1.6.4 Stream output. 105

1.7 String handling library .. 111
1.7.1 Character identification 112
1.7.2 String comparison .. 113
1.7.3 String searching 114
1.7.4 String editing 115
1.7.5 Line parsing.................................. 117

1.8 String conversion library .. 119
Procedure definitions. 120

1.9 Block CRC library 126
1.9.1 Example of use 126
1.9.2 Function definitions 127

1.10 Extraordinary link handling library .. 128
1.10.1 Procedure definitions.......................... 128

1.11 Debugging support library 130
1.11.1 Procedure definitions 130

1.12 DOS specific hostio library .. 131
1.12.1 Procedure definitions 132

Appendices 137

A Language extensions 139

A.1 Syntax 139
A.1.1 Compiler keywords .. 139
A.1.2 Compiler directives .. 139
A.1.3 String escape characters .. 139
A.1.4 Tabs. .. 140
A.1.5 Relaxations on syntax 140

A.2 Channel operations .. 140

4 1.3 Compiler libraries

1.2 Using the occam libraries

User libraries must be declared in a 'USE directive. For example:

fUSE "hostio.lib"

Any use of a library routine must be in scope with the 'USE directive which refer­
ences the associated library. The scope of a library, like any occam declaration,
depends on its level of indentation within the text.

If the library uses a file of predefined constants (see section 1.2.3) then this must
be declared by an #INCLUDE directive, before the associated 'USE. For example:

'INCLUDE "hostio.inc"

1.2.1 Linking libraries

All libraries used by a program or program module must be linked with the main
program. This includes the compiler libraries even though they are automatically
referenced by the compiler (see section 1.3).

1.2.2 Listing library contents

You can use the ilist tool to examine the contents of a library and determine
which routines are available. The tool displays procedural interfaces for routines
in each library module and the code size and workspace requirements for indi­
vidual modules. It can also be used to determine the transputer types and error
modes for which the code was compiled. (See chapter 10 of the occam 2 Toolset
Reference Manual for details of ilist).

1.2.3 Library constants

Constants and protocols used by the libraries are defined in six include files:

File Description

hostio.inc Constants for the host file server interface (hostio library)

streamio.inc Constants for the stream i/o interface (streamio library)

mathvals.inc Maths constants

linkaddr.inc Addresses of transputer links

ticks.inc Rates of the two transputer clocks

msdos.inc DOS specific constants

Table 1.2 Library constants

Include files should always be declared before the related library.

72 TDS 368 01 March 1993

1 The occam libraries 5

1.3 Compiler libraries

Compiler libraries contain multiple length and floating point arithmetic functions,
IEEE functions, and special transputer functions such as bit manipulation and 20
block data moves. They are found automatically by the compiler on the path speci­
fied by the I SEARCH host environment variable and do not need to be referenced
by a IUSE directive. However, they must be specified to the linker along with all
other libraries that the program uses; this is best done using one of the linker indi­
rect files occam2 . Ink, occamB . Ink, or occama . Ink, which specify the correct
libraries for the transputer target.

Separate compiler libraries are supplied for different types and families of proces­
sors. Processor types supported are:

• T2 family

• T8 family

• 32-bit processors

The compiler selects the correct library for the transputer type specified. All error
modes are supported in each library.

File Processor types supported
occam2.lib T212fT222fT2251M212
occamB.lib T800fT801fT805
occama.lib T400fT414fT425fT426fTAJTB
occamutl.lib All
virtual.lib All

occamutl.lib contains routines which are called from within some of the other
compiler libraries and virtual. lib is used to support interactive debugging.
These two libraries support all processor types and error modes.

File names of the compiler libraries must not be changed. The compiler assumes
these filenames, and generates an error if they are not found. (See section A.4 in
the occam 2 Toolset Reference Manual for details of the mechanism for locating
files.)

The compiler 'E' option disables all of the compiler libraries exceptvirtual. lib,
which can be disabled by the 'y' option.

The occam 2 Reference Manual contains formal descriptions of many of the
compiler library routines.

1.3.1 Using compiler library routines

Although primarily intended for use by the compiler, some compiler library routines
are available to the programmer. These are listed in sections 1.3.2 through 1.3.9.

72 TOS 368 01 March 1993

6 1.3 Compiler libraries

They can be called directly without referencing them via a 'USE statement and are
disabled by the compiler 'E' option.

As an example of how they may be used, consider an application which requires
compliance with the IEEE standards for NaNs ('Not a Number') and Infs ('±
infinity'). The occam compiler defaults to non-IEEE behavior i.e. NaNs and Infs
are treated as errors, whereas ANSIIIEEE 754-1985 requires there to be error and
overflow handling. To obtain IEEE behavior the appropriate compiler library func­
tion must be called.

The following code fragments show a simple addition can be implemented by
default or using IEEE-compatible functions.

If A, B, and Care REAL32s and b is a BOOL:

A := B + C - defaul t occam behavior.

A := REAL320P(B, 0, C) - IEEE function, round
- to nearest only. The 0
-- indicates a ,+,
- operation.

b, A . - lEEE320P (B, 1, 0, C) - IEEE function vi th
-- rounding option. The
- 1 indicates round to
-- nearest. The 0
- indicates a ,+,
- operation.

1.3.2 Maths functions

The following table lists compiler library maths functions available to the
programmer. Further details can be found in appendices K, L, and Mofthe occam
2 Reference Manual.

Result(s) Function name Parameter specifiers

REAL32 ASS VAL REAL32 x

REAL32 SQRT VAL REAL32 x
REAL32 LOGB VAL REAL32 x
INT, REAL32 FLOATING. UNPACK VAL REAL32 x

REAL32 MlNUSX VAL REAL32 x

REAL32 MULBY2 VAL REAL32 x

REAL32 DIVBY2 VAL REAL32 x

REAL32 FPINT VAL REAL32 x

72 TDS 36801 March 1993

1 The occam libraries 7

Result(s) Function name Parameter specifiers
BOOL ISNAN VAL REAL32 x
BOOL NOTFINITE VAL REAL32 x
REAL32 SCALES VAL REAL32 x, VAL INT n

REAL32 COPYSIGN VAL REAL32 x, y

REAL32 NEXTAFTER VAL REAL32 x, Y
BOOL ORDERED VAL REAL32 x, y
BOOL, ARGUMENT. REDUCE VAL REAL32 x, y, y.err
INT32 ,
REAL32

REAL32 REAL320P VAL REAL32 x,
VAL INT op,
VAL REAL32 Y

REAL32 REAL32REM VAL REAL32 x, y
BOOL,REAL32 lEEE320P VAL REAL32 x,

VAL INT rID, op,
VAL REAL32 Y

BOOL,REAL32 lEEE32REM VAL REAL32 x, Y
BOOL REAL32EQ VAL REAL32 x, Y
BOOL REAL32GT VAL REAL32 x, y
INT IEEECOMPARE VAL REAL32 x, y
REAL64 DABS VAL REAL64 x
REAL64 DSQRT VAL REAL64 x

REAL64 DLOGB VAL REAL64 x

INT,REAL64 DFLOATING.UNPACK VAL REAL64 x
REAL64 DMlNUSX VAL REAL64 x
REAL64 DMULBY2 VAL REAL64 x
REAL64 DDIVBY2 VAL REAL64 x

REAL64 DFPINT VAL REAL64 x
BOOL DISNAN VAL REAL64 x

BOOL DNOTFINITE VAL REAL64 x
REAL64 DSCALES VAL REAL64 x, VAL INT n

REAL64 DCOPYSIGN VAL REAL64 x, y

REAL64 DNEXTAFTER VAL REAL64 x, y

BOOL DORDERED VAL REAL64 x, Y

BOOL, DARGUMENT.REDUCE VAL REAL64 x, y, y.err
INT32 ,
REAL64

72 TDS 36801 March 1993

8 1.3 Compiler libraries

Result(s) Function name Parameter specifiers

REAL64 REAL640P VAL REAL64 x,
VAL INT op,
VAL REAL64 Y

REAL64 REAL64REM VAL REAL64 x, y

BOOL, REAL64 IEEE640P VAL REAL64 x,
VAL INT rDl, op,
VAL REAL64 Y

BOOL, REAL64 IEEE64REM VAL REAL64 x, y

BOOL REAL64EQ VAL REAL64 x, y

BOOL REAL64GT VAL REAL64 x, y

INT DIEEECOMPARE VAL REAL64 x, y

INT LONGADD VAL INT left, right,
carry. in

INT LONGSUM VAL INT left, right,
carry. in

INT LONGSUB VAL INT left, right,
borrow. in

INT, INT LONGDIFF VAL INT left, right,
borrow. in

INT, INT LONGPROD VAL INT left, right,
carry. in

INT, INT LONGDIV VAL INT dividend.hi,
dividend. la, divisor

INT, INT SHIFTLEFT VAL INT hi. in, lo.in,
places

INT, INT SHIFTRIGHT VAL INT hi.in, lo.in,
places

INT, INT, INT NORMALISE VAL INT hi. in, lo.in

INT ASHIFTLEFT VAL INT argument, places

INT ASHIFTRIGHT VAL INT argument, places
INT ROTATELEFT VAL INT argument, places

INT ROTATERIGHT VAL INT argument, places

Notes

SHIFTRIGHT and SHIFTLEFT return zeroes when the number of places to shift
is negative, or is greater than twice the transputer's word length. In this case they
may take a long time to execute.

ASHIFTRIGHT, ASHIFTLEFT, ROTATERIGHT and ROTATELEFT are all invalid
when the number of places to shift is negative or exceeds the transputer's word
length.

72 TDS 368 01 March 1993

1 The occam libraries 9

1.3.3 20 block moves

This section describes compiler library block move routines available to the
programmer.

Procedure Parameter Specifiers
MOVE2D VAL [] []BYTE Source,

VAL INT BX, BY, [] []BYTE Dest,
VAL INT dx, dy, width, length

DRAW2D VAL [] []BYTE Source,
VAL INT BX, .y, [] []BYTE Dest,
VAL INT dx, dy, width, length

CLIP2D VAL [] []BYTE Source,
VAL INT BX, .y, [] []BYTE Dest,
VAL INT dx, dy, width, length

MOVE2D

PROC MOVE2D (VAL [] []BYTE Source,
VAL INT SX, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

Moves a data block of size width by length starting at byte
Source [sy] [sx] to the block starting at Dest [dy] [dx].

This is equivalent to:

SEQ Y = 0 FOR length
[Dest [y+dy] FROM dx FOR width] .­
[Source [y+sy] FROM sx FOR width]

DRAW2D

PROC DRAW2D (VAL [] [] BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only non-zero bytes are transferred.

This is equivalent to:

SEQ line = 0 FOR length
SEQ point = 0 FOR width

VAL temp IS Source [line+sy] [point+sx]
IF

temp <> (O(BYTE»
Dest[line+dy] [point+dx] .- temp

TRUE
SKIP

72 TDS 36801 March 1993

10

CLIP2D

1.3 Compiler libraries

PROC CLIP2D (VAL [] []BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only zero bytes are transferred.

This is equivalent to:

SEQ line = 0 FOR length
SEQ point = 0 FOR width

VAL temp IS Source [line+sy] [point+sx]
IF

temp = (0 (BYTE))
Dest[line+dy] [point+dx] := 0 (BYTE)

TRUE
SKIP

1.3.4 Bit manipulation functions

This section describes compiler library bit-based routines available to the
programmer.

Result Function name Parameter Specifiers
INT BITCOUNT VAL INT Word, Countln

INT BITREVNBITS VAL INT x, n

INT BITREVWORD VAL INT x

BITCOUNT

INT FUNCTION BITCOUNT (VALINT Word, Countln)

Counts the number of bits set to 1 in Word, adds it to CountIn, and returns
the total.

BITREVNBITS

INT FUNCTION BITREVNBITS (VAL INT x, n)

Returns an INT containing the n least significant bits of x in reverse order.
The upper bits are set to zero. The operation is invalid if n is negative or
greater than the number of bits in a word.

BITREVWORD

INT FUNCTION BITREVWORD (VAL INT x)

Returns an INT containing the bit reversal of x.

72 TDS 368 01 March 1993

1 The occam libraries 11

1.3.5 eRe functions

This section describes compiler library CRC functions available to the
programmer.

Result Function name Parameter Specifiers

INT CRCWORD VAL INT data, CRCln,
generator

INT CRCBYTE VAL INT data, CRCln,
generator

A cyclic redundancy check value is the remainder from modulo 2 polynomial divi­
sion. Consider bit sequences as representing the coefficients of polynomials; for
example, the bit sequence 10100100 (where the leading bit is the most significant
bit) corresponds to P(x) =x7 + x5 + x2. CRCWORD and CRCBYTE calculate the
remainder of the modulo 2 polynomial division:

(xn H(x) + F(x))/G(x)

where: F(x) corresponds to data (the whole word for CRCWORD; only the most
significant byte for CRCBYTE)

G(x) corresponds to generator

H(x) corresponds to CRCln

n is the word size in bits of the processor used (i.e. n is 16 or 32).

(CRCln can be viewed as the value that would be pre-Ioaded into the cyclic
shift register that is part of hardware implementations of CRC generators.)

When representing G(x) in the word generator, note that there is an understood
bit before the msb of generator. For example, on a 16-bit processor, with G(x)
=x16 + x12 + x5 + 1, which is #11021, then generator must be assigned #1021.
because the bit corresponding to x16 is understood. Thus, a value of #9603 for
generator, corresponds to G(x) =x16 + X15 + x12 +x10 + id + x + 1. for a 16-bit
processor.

A similar situation holds on a 32-bit processor. so that:

G(x) =x32 + x26 + x23 +x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 +x4 + x2 + X + 1

is encoded in generator as #04C11DB7.

It is possible to calculate a 16-bit CRC on a 32-bit processor. For example if G(x)
=x16 + x12 + x5 + 1, then generator is #10210000. because the most significant
16 bits of the 32-bit integer form a 16-bit generator and for:

CRCWORD, the least significant 16 bits of CRCln form the initial CRC value;
the most significant 16 bits ofdata form the data; and the calculated CRC
is the most significant 16 bits of the result.

72 TDS 36801 March 1993

12 1.3 Compiler libraries

CRCBYTE, the most significant 16 bits of CRCIn form the initial CRe value;
the next 8 bits of CRCIn (the third most significant byte) form the byte of
data; and the calculated CRC is the most significant 16 bits of the result.

CRCWORD

INT FUNCTION CRCWORD (VAL INT data, CRCIn, generator)

Takes the whole of the word data to correspond to F(x) in the above
formula. This implements the following algorithm:

INT MyData, CRCOut, OldCRC :
VALOF

SEQ
MyData, CRCOut := data, CRCIn
SEQ i = 0 FOR BitsPerWord -- 16 or 32

SEQ
OldCRC := CRCOut
CRCOut, MyData := SBIFTLEF'l' (CRCOut, MyData, 1)
IF

OldCRC < 0 -- MSB of CRC = 1
CRCOut := CRCOut X generator

TRUE
SKIP

RESULT CRCOut

CRCBYTE

INT FUNCTION CRCBYTE (VAL I1ft data, CRCIn, generator)

Takes the most significant byte of data to correspond to F(x) in the above
formula. This implements the following algorithm:

INT MyData, CRCOut, OldCRC :
VALOF

SEQ
MyData, CRCOut := data, CRCln
SEQ i = 0 FOR 8

SEQ
OldCRC := CRCOut
CRCOut, MyData := SBIFTLEFT (CRCOut, MyData, 1)
IF '

OldCRC < 0 -- MSB of CRe = 1
CRCOut := CRCOut X generator

TRUE
SKIP

RESULT CRCOut

72 TDS 368 01 March 1993

1 The occam libraries 13

Note: The predefines CRCBYTI: and CRCWORD can be chained together to help
calculate a CRC from a string considered as one long polynomial. A simple
chaining would calculate:

(x k H(x) + F(x))/G(x)

where F(x) corresponds to the string and k is the number of bits in the string. This
is not the same CRC that is calculated by CRCFROMMSB and CRCFROMLSB in
ere • lib, section 1.9, because these latter routines shift the numerator by x".

1.3.6 Floating point arithmetic support functions

Result(s) Function name Parameter Specifiers

INT FRACMUL VAL INT x, Y

INT,INT,INT UNPACKSN VAL INT x
INT ROUNDSN VAL INT Yexp, Yfrae, Yguard

INT FUNCTION FRACMOL (VAL INT x, y)

Performs a fixed point multiplication of x and y, treating each as a binary
fraction in the range [-1, 1), and returning their product rounded to the
nearest available representation. The value of the fractions represented by
the arguments and result can be obtained by multiplying their INT value by
2-31 (on a 32-bit processor) or 2-15 (on a 16-bit processor). The result can
overflow if both x and y are -1.0.

This routine is compiled inline into a sequence oftransputer instructions on
32-bit processors, or as a call to a standard library routine for 16-bit proces­
sors.

UNPACKSN

INT, INT, INT FUNCTION UNPACKSN (VAL INT x)

This returns three parameters; from left to right they are Xfrac, Xexp, and
Type. x is regarded as an IEEE single length real number (Le. a RETYPED
REAL32). The function unpacks x into Xexp, the (biased) exponent, and
Xfrac the fractional part, with implicit bit restored. It also returns an integer
defining the Type of x, ignoring the sign bit:

Type Reason

0 X is zero

1 X is a normalized or denormalized number

2 X is Inf

3 X is NaN

72 TDS 36801 March 1993

14 1.3 Compiler libraries

Examples:

UNPACKSN (,40490FDB) r~urns'C90FDBOO ,100000080, 1
UNPACKSN ('00000001) returns '00000100 , '00000001, 1
UNPACKSN ('7FC00001) returns '40000100 ,IOOOOOOFF, 3

This routine is compiled inline into asequence oftransputer instructions on
32-bit processors such as the IMS T425, which do not have a floating
support unit, but do have special instructions for floating point operations.
For other 32-bit processors the fundion is compiled as a call to a standard
library routine. It is invalid on 16-bitprocessors, since Xfrac cannot fit into
an INT.

ROUNDSN

INT FUNCTION ROUNDSN (VAL nrr Yexp, Yfrac, Yguard)

This takes apossibly unnormalized fraction, guard word and exponent, and
returns the IEEE single length floating point value it represents. It takes
care of all the normalization, post-normalization, rounding and packing of
the result. The rounding mode used is round to nearest. The exponent
should already be biased. This routine is not intended for use with Yexp
and Yfrac representing an infinity or a NaN.

Examples:

ROONDSN (#00000080, 'C90FDBOO, '00000000) returns '4049OFDB
ROUNDSN ('00000080, 'C90FDB80, '00000000) returns '40490FDC
ROUNDSN ('00000080, 'C90FDA80, '00000000) returns '40490FDA
ROUNDSN ('00000080, IC90FDABO, '00003000) returns 140490FDB
ROUNDSN <'00000001, '00000100, '00000000) returns '00000001

The function normalizes and post-normalizes the number represented by
Yexp, Yfrac and Yguard into local variables Xexp, Xfrac, and Xguard.
It then packs the (biased) exponent Xezp and fraction Xfrac into the
result, rounding using the extra bits in Xguard. The sign bit is set to O. If
overflow occurs, Inf is returned.

This routine is compiled inline into a sequence oftransputer instructions on
32-bit processors such as the IMS T425, which do not have a floating
support unit, but do have special instructions for floating point operations.
For other 32-bit processors the function is compiled as a call to a standard
library routine. It is invalid on 16-bitprocessors, since Xfrac cannot fit into
an INT.

72 TDS 36801 March 1993

1 The occam libraries 15

1.3.7 Dynamic code loading support

This section describes compiler library dynamic loading routines available to the
programmer.

Procedures

Procedure Parameter Specifiers
KERNEL.RUN VAL [] BYTE code,

VAL INT entry. offset,
[]INT workspace,

VAL INT no.of.parameters
LOAD. INPUT. CHANNEL INT here,

CHAN OF ANY in
LOAD. INPUT. CHANNEL .VECTOR INT here,

[] CBAN OF ANY in
LOAD.OUTPUT.CHANNEL INT here,

CHAN OF ANY out

LOAD.OUTPUT.CHANNEL.VECTOR INT here,
[]CHAN OF ANY out

LOAD.BYTE.VECTOR INT here,
VAL [] BYTE bytes

Functions

Result(s) Function name Parameter Specifiers

INT WSSIZEOF routinename
INT VSSIZEOF routinename

KERNEL.RUN

PROC KERNEL. RUN (VAL []BYTE code,
VAL INT entry.offset,
[]INT workspace,
VAL INT no.of.parameters)

The effect of this procedure is to call the procedure loaded in the code
buffer, starting execution at the location code [entry. offset].

The code to be called must begin at a word-aligned address. To ensure
proper alignment either start the array at zero or realign the code on a word
boundary before passing it into the procedure.

The workspace buffer is used to hold the local data of the called proce­
dure. The required size of this buffer, and the code buffer, must be derived
by visually inspecting the executable code file (. rsc file) to be loaded

72 TDS 368 01 March 1993

16 1.3 Compiler libraries

using the binary listertool ilist. Alternatively, a routine can be written to
read this file and pass the information to KERNEL. RUN. The format of the
. rsc file is described in section 3.6 of the Tools Reference Manual.

The parameters passed to the called procedure should be placed at the top
of the vorkspace buffer by the calling procedure before the call of
KERNEL. RUN. The call to KERNEL. RUN returns when the called procedure
terminates. If the called procedure requires a separate vector space, then
another buffer of the required size must be declared, and its address
placed as the last parameter at the top of vorkspace. As calls of
KERNEL •RUN are handled specially by the compiler it is necessary for
no. of . parameters to be a constant known at compile time and to have
a value ~ 3.

The workspace passed to KERNEL. RUN must be at least:

[ws.requirement + (no.of.parameters + 2) lINT

where vs . requirement is the size of workspace required, determined
when the called procedure was compiled and stored in the code file, and
no . of . parameters includes the vector space pointer if it is required.

The parameters must be loaded before the call of KERNEL.RUN. The
parameter corresponding to the first formal parameter of the procedure
should be in the word adjacent to the saved Iptrword, and the vectorspace
pointer or the last parameter should be adjacent to the top of workspace
where the Wptr word will be saved.

LOAD. INPUT. CHANNEL

LOAD.INPUT.CRAHNEL (IBT here, CHAR OP ANY in)

The variable here is assigned the address of the input channel in.

The normal protocol checking ofchannel parameters is suppressed; there­
fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.

LOAD. INPUT. CHANNEL.VECTOR

LOAD. INPUT. CIIADEL.VECTOR (Drr here,
[]CBAR or ANY in)

The variable here is assigned the address of the base element of the
channel array in (i.e. the base of the array of pointers).

The normal protocol checking ofchannel parameters is suppressed; there­
fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.

72 TDS 36801 March 1993

1 The occam libraries

LOAD.OUTPUT.CHANNEL

17

LOAD.OUTPUT.CHANNEL (lNT here, CHAN OF ANY out)

The variable here is assigned the address of the output channel out.

The normal protocol checking ofchannel parameters is suppressed; there­
fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.

LOAD.OUTPOT.CHANNEL.VECTOR

LOAD. OUTPUT. CHANNEL. VECTOR (lNT here,
[]CHAN OF ANY out)

The variable here is assigned the address of the base element of the
channel array out (Le. the base of the array of pointers).

The normal protocol checking ofchannel parameters is suppressed; there­
fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.

LOAD.BYTE.VECTOR

LOAD. BYTE. VECTOR (INT here, VAL [] BYTE bytes)

The variable here is assigned the address of the byte array bytes. This
can be used in conjunction with RETYPES to find the address of any vari­
able.

WSSIZEOF

INT rJNCTION WSSlZEOF (routinename)

This function returns the number of workspace 'slots' (words) required by
the procedure or function routinename. INLlNE or predefined routines are
not permitted.

VSSlZEOF

INT FUNCTION VSSIZEOF (routinename)

This function returns the number ofvectorspace 'slots' (words) required by
the procedure or function routinename. INLlNE or predefined routines
are not permitted.

1.3.8 Transputer-related procedures

This section describes compiler library transputer-specific routines available to the
programmer.

72 TDS 36801 March 1993

18 1.3 Compiler libraries

Procedure Parameter Specifiers

CAUSEERROR ()

RESCHEDULE ()

CAUSEERROR

CAUSEERROR ()

Inserts instructions into the program to set the transputer error flag. If the
program is in STOP or UNIVERSAL mode instructions to stop the current
process are also inserted.

The error is then treated in exactly the same way as any other error would
be treated in the error mode in which the program is compiled. For
example, in HALT mode the whole processor will halt and in STOP mode
that process will stop, leaving the transputer error flag set TRUE. If run-time
error checking has been suppressed (e.g. by a command line option), this
stop is suppressed.

The difference between CAUSEERROR () and the STOP process, is that
CAUSEERROR guarantees to set the transputer's error flag.

RESCHEDULE

RESCHEDULE ()

This causes the current process to be rescheduled by inserting instructions
into the program to cause the current process to be moved to the end of
the current priority scheduling queue. This occurs even if the current
process is a 'high priority' process.

RESCHEDULE effectively forces a 'timeslice', even in high priority.

1.3.9 Miscellaneous operations

This section describes miscellaneous compiler library routines available to the
programmer.

Procedure

ASSERT

ASSERT

Parameter Specifiers

VAL BOOL test

PROC ASSERT (VAL BOOL test)

At compile time the compiler will check the value of tes t and if it is FALSE
the compiler will give a compile time error; if it is TRUE, the compiler does
nothing. If test cannot be checked at compile-time then the compiler will

72 TDS 368 01 March 1993

1 The occam libraries 19

insert a run-time check to detect its status. This run-time check may be
disabled by means of a command line option.

ASSERT is a useful routine for debugging purposes. Once a program is
working correctly the compiler option 'HA,' can be used to prevent code
being generated to check for ASSERTs at run-time. If possible ASSERTs will
still be checked at compile time.

72 TDS 36801 March 1993

20 1.4 Maths libraries

1.4 Maths libraries

Elementary maths and trigonometric functions are provided in three libraries, as
follows:

Library Description
snglmath.lib Single length library

dblmath.lib Double length library

tbmaths .lib TB optimizedlibrary

The single and double length libraries contain the same set of maths functions in
single and double length forms. The double length forms all begin with the letter
ID'. All function names are in upper case.

The TB optimized library is a combined single and double length library containing
functions for the T4 series (T400, T414, T425, andT426). The functions have been
optimized for speed. The standard single or double length libraries can be used on
T4 processors but optimum performance will be achieved by using the TB opti­
mized library. The accuracy of the T400rr414fT425fT426 optimized functions is
similar to that of the standard single length functions but results returned may not
be identical because different algorithms are used. If the optimized library is used
in code compiled for any processor except a T400, T414, T425, or T426, the
compiler reports an error.

To obtain the best possible speed performance with the occam maths functions
use the following strategy:

• For networks consisting of only T4 series transputers, use the
tbmaths . lib library.

• For networks consisting of only T8 series transputers, use the
snglmath.lib and dblmath.lib libraries.

• For networks consisting ofa mix ofT4 series and T8 series transputers use:

o tbmaths.lib on the T4 series and snglmath.lib or
dblmath.lib on the T8 series when a consistent level of accu­
racy is not required;

o if accuracy must be the same in the T8 and T4 processes then use
the snglmath.lib and dblmath.lib libraries.

Constants for the maths libraries are provided in the include file mathvals . inc.

The elementary function library is also described in appendix N of the occam 2
Reference manual.

1.4.1 Introduction and terminology

This, and the following subsections, contain some notes on the presentation of the
elementary function libraries described in section 1.4.2, and the TB version
described in section 1.4.3.

72 TDS 36801 March 1993

1 The occam libraries 21

These function subroutines have been written to be compatible with the ANSI stan­
dard for binary floating-point arithmetic (ANSI-IEEE std 754-1985), as imple­
mented in occam. They are based on the algorithms in:

eody, W. J., and Waite, W. M. [1980]. Software Manual for the Elementary
Functions. Prentice-Hall, New Jersey.

The only exceptions are the pseudo-random number generators, which are based
on algorithms in:

Knuth, D. E. [1981]. The Art of Computer Programming, 2nd. edition,
Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, Mass.

Inputs

All the functions in the library (except RAN and DRAN) are called with one or two
parameters which are binary floating-point numbers in one of the IEEE standard
formats, either 'single-length' (32 bits) or 'double-length' (64 bits). The param­
eter(s) and the function result are of the same type.

NaNs and Infs

The functions will accept any value, as specified by the standard, including special
values representing NaNs ('Not a Number') and Infs ('Infinity'). NaNs are copied
to the result, whilst Infs mayor may not be in the domain. The domain is the set
of arguments for which the result is a normal (or denormalized) floating-point
number.

Outputs

Exceptions

Arguments outside the domain (apart from NaNs which are simply copied through)
give rise to exceptional results, which may be NaN, +Inf, or -Inf. Infs mean that
the result is mathematicallywell-defined but too large to be represented in the float­
ing-point format.

Error conditions are reported by means of three distinct NaNs:

undefined.NaN

This means that the function is mathematically undefined for this argument, for
example the logarithm of a negative number.

unstable.NaN

This means that a small change in the argument would cause a large change in
the value of the function, so any error in the input will render the output meaning­
less.

inexact.NaN

This means that although the mathematical function is well-defined, its value is in
range, and it is stable with respect to input errors at this argument, the limitations

72 TDS 36801 March 1993

22 1.4 Maths libraries

of word-length (and reasonable cost of the algorithm) make it impossible to
compute the correct value.

The implementations will return the following values for these Not-a-Numbers:

Error Single length value Double length value
undefined.NaN #7F800010 #7FF00002 00000000
unstable.NaN #7F800008 #7FF00001 00000000
inexact.NaN #7F800004 #7FFOOOOO 80000000

Accuracy

Range Reduction

Since it is impractical to use rational approximations (i.e. quotients of polynomials)
which are accurate over large domains, nearly all the subroutines use mathemat­
ical identities to relate the function value to one computed from asmallerargument,
taken from the 'primary domain', which is small enough for such an approximation
to be used. This process is called 'range reduction' and is performed for all argu­
ments except those which already lie in the primary domain.

For most of the functions the quoted error is for arguments in the primary domain,
which represents the basic accuracy of the approximation. Forsome functions the
process of range reduction results in a higher accuracy for arguments outside the
primary domain, and for others it does the reverse. Refer to the notes on each func­
tion for more details.

Generated Error

If the true value of the function is large the difference between it and the computed
value (the 'absolute error') is likely to be large also because of the limited accuracy
of floating-point numbers. Conversely if the true value is small, even a small abso­
lute error represents a large proportional change. For this reason the error relative
to the true value is usually a bettermeasure of the accuracy ofafloating-point func­
tion, except when the output range is strictly bounded.

If/is the mathematical function andFthe subroutine approximation, then the rela­
tive error at the floating-point numberX (provided f(X) is not zero) is:

RE(X) == (F(X) - f(X))
f(X)

Obviously the relative error may become very large near a zero off(X). If the zero
is at an irrational argument (which cannot be represented as afloating-point value),
the absolute error is a better measure of the accuracy of the function near the zero.

As it is impractical to find the relative error for every possible argument, statistical
measures of the overall error must be used. If the relative error is sampled at a
number of points~ (n =1 to N), then useful statistics are the maximum relative
error and the root-mean-square relative error:

72 TDS 368 01 March 1993

1 The occam libraries

MRE = max !RE(Xn)I·
I~,,~N

N

RMSRE = I (RE(X,,))2
11-1

23

Corresponding statistics can be formed for the absolute error also, and are called
MAE and RMSAE respectively.

The MRE generally occurs near a zero of the function, especially if the true zero
is irrational, or near a singularity where the result is large, since the 'granularity' of
the floating-point numbers then becomes significant.

A useful unit of relative error is the relative magnitude of the least significant bit in
the floating-point fraction, which is called one 'unit in the last place' (ulp), (Le. the
smallest E such that 1+£ ;II! 1). Its magnitude depends on the floating-point format:
for single-length it isZ-23 =1.19*10-7, and for double-length it is Z-52 =2.22*10-16.

Propagated Error

Because ofthe limited accuracy offloating-point numbers the result of any calcula­
tion usually differs from the exact value. In effect, a small error has been added to
the exact result, and any subsequent calculations will inevitably involve this error
term. Thus it is important to determine how each function responds to errors in its
argument. Provided the error is not too large, it is sufficient just to consider the first
derivative of the function (written f').

If the relative error in the argument X is d (typically a few ulp), then the absolute
error (E) and relative error (e) inf(X) are:

E = IXj(X)dl == Ad·

= IXj(X)d I = Rde f(X) -

This defines the absolute and relative error magnification factors A and R. When
both are large the function is unstable, Le. even a small error in the argument, such
as would be produced by evaluating a floating-point expression, will cause a large
error in the value of the function. The functions return an unstable.NaN in such
cases which are simple to detect.

The functional forms of bothA and R are given in the specification ofeach function.

Test Procedures

For each function, the generated error was checked at a large number of argu­
ments (typically 100 000) drawn at random from the appropriate domain. First the
double-length functions were tested against a 'quadruple-length' implementation
(constructed for accuracy rather than speed), and then the single-length functions
were tested against the double-length versions.

72 TDS 368 01 March 1993

24 1.4 Maths libraries

In both cases the higher-precision implementation was used to approximate the
mathematical function (called/above) in the computation of the error, which was
evaluated in the higher precision to avoid rounding errors. Error statistics were
produced according to the formulae above.

Symmetry

The subroutines were designed to reflect the mathematical properties of the func­
tions as much as possible. Forall the functions which are even, the sign is removed
from the input at the beginning of the computation so that the sign-symmetry of the
function is always preserved. For odd functions, either the sign is removed at the
start and then the appropriate sign set at the end of the computation, or else the
sign is simply propagated through an odd degree polynomial. In many cases other
symmetries are used in the range-reduction, with the result that they will be satis­
fied automatically.

The Function Specifications

Names and Parameters

All single length functions except RAN return a single result'of type REAL32, and
all except RAN, POWER and ATAN2 have one parameter, a VAL REAL32.

POWER and ATAN2 have two parameters which are VAL REAL32s for the two argu­
ments of each function.

RAN returns two results, of types REAL32 and INT32, and has one parameter
which is a VAL INT32.

In each case the double-length version ofname is called Dname, returns aREAL64
(except DRAN, which returns REAL64, INT64), and has parameters of type
VAL REAL64 (VAL INT64 for DRAN).

Terms used in the Specifications

A and R Multiplying factors relating the absolute and relative errors in the output
to the relative error in the argument.

Exceptions Outputs for invalid inputs (Le. those outside the domain), other than
NaN (NaNs are co~ed directly to the output and are not listed as exceptions).
These are all Infs or NaNs.

Generated Error The difference between the true and computed values of the
function, when the argument is error-free. This is measured statistically and
displayed for one or two ranges of arguments, the first ofwhich is usually the
primary domain (see below). The second range, if present, is chosen to illus­
trate the typical behavior of the function.

Domain The range of valid inputs, Le. those for which the output is a normal or
denormal floating-point number.

MAE and RMSAE The Maximum Absolute Errorand Root-Mean-Square absolute
error taken over a number of arguments drawn at random from the indicated
range.

72 TDS 368 01 March 1993

