
occam 2.1 Toolset
Language and

Libraries Reference
Manual

August 1995

© SGS-THOMSON Microelectronics Limited 1995. This document may not be copied, in whole or in part,
without prior written consent of SGS-THOMSON Microelectronics.

•
®c .@,umrnos ,IMS, occam and DS-Link® are trademarks of SGS-THOMSON Microelectronics Limited.

~~~~Zm~~~p~, is a registered trademark of the SGS-THOMSON Microelectronics Group.

Windows is a trademark of Microsoft Corporation.

X Window System is a trademark of MIT.

OSF/Motif is a trademark of the Open Software Foundation, Inc.

This product incorporates innovative techniques which were developed with support from the European
Commission under the ESPRIT Projects:

• P2701 PUMA (Parallel Universal Message-passing Architectures)

• P5404 GPMIMO (General Purpose Multiple Instruction Multiple Data Machines).

• P7250 TMP (Transputer Macrocell Project).

• P7267 OMI/STANDARDS.

• P6290 HAMLET (High Performance Computing for Industrial Applications)

Document Number: 72 TOS 368 02



Contents overview

Contents

Preface

Libraries

1 The occam libraries Describes the libraries supplied with the toolset.

2 Compiler libraries Describes the functions and procedures in the
compiler library.

3 Mathematics libraries Describes the maths library functions.

4 Host file server library Describes the host server i/o library procedures.

5 Stream i/o library Describes the stream i/o library procedures.

6 String handling library Describes the string handling library functions and
procedures.

7 String conversion Describes the string conversion library procedures.
library

8 Block CRC library Describes the block CRe library functions.

9 Extraordinary link Describes the extraordinary link handling library
handling library procedures.

10 Debugging support Describes the interactive debugging support library
library procedures.

Appendices

A Language extensions Describes language extensions that are supported
by the occam 2.1 compiler.

S Implementation of Describes how the compiler allocates memory and
occam on the gives details of type mapping, hardware
transputer dependencies and language.

C Alias and usage Describes the alias and usage checking that is
checking rules implemented by the compiler.

Index

-----------~~t-.~ ------------



Contents overview

_ii L.,~litl"A\\~ _



Contents

Contents overview .

Contents iii

Preface............................................................... v

Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 The occam libraries 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Using the occam libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Compiler libraries 5

2.1 Using compiler library routines 6
2.2 Mathematics functions 6
2.3 2D block moves . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Bit manipulation functions 9
2.5 CRC functions 10
2.6 Floating point arithmetic support functions 12
2.7 Dynamic code loading support 14
2.8 Transputer-related procedures 17
2.9 Assertion test procedure 18

3 Mathematics libraries... .... .. .. . . .. .. .. .. . .. .. . . .. .. .. .. . .. 19

3.1 Introduction and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Single and double length elementary function libraries . . . . . . . . . . . 25
3.3 T4 elementary function library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Host file server library 67

4.1 Errors and the server run time library . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Reading real numbers 67
4.3 Procedure descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Host i/o procedures arranged by purpose . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Host i/o procedure definitions 72

5 Stream i/o library.................... .. .. .. .. .. 101

5.1 Naming conventions . . . . . . . . . . . . . . . . . . . . . .. 101
5.2 Stream i/o procedures 101
5.3 Stream i/o procedure definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 104



Contents

6 String handling library 115

6.1 String handling procedures 115

6.2 String handling procedure definitions . . . . . . . . . . . . . . . . . . . . . . . . .. 117

7 String conversion library .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 125

7.1 Procedure definitions 126

8 Block CRC library 133

8.1 Example of use 134

8.2 Function definitions 134

9 Extraordinary link handling library .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 137

9.1 Procedure definitions 137

10 Debugging support library 141

10.1 Procedure definitions 141

Appendices . . . . . .. . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 143

A Language extensions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... 145

B Implementation of occam on the transputer 151

C Alias and usage checking................................ 165

Index 175



Preface

Host versions

The documentation set which accompanies the occam 2.1 toolset is designed to cover
all host versions of the toolset:

IBM 386 PC compatible running MS-DOS

Sun 4 systems running SunOS or Solaris.

About this manual

This manual is the occam 2. 1 Language and Libraries Reference Manual for the
occam 2.1 Toolset.

The manual provides a language reference for the toolset and implementation data. A
list of the library functions provided is followed by detailed information about each
function. Details of extensions to the language are given in an appendix.

About the toolset documentation set

The toolset documentation set comprises the following volumes:

~
L.J-J

User Guide

[D
' '.:
, . .
, . .
, . .
..............:

Toolset Reference

frT'BI
L.J-J

Language and Libraries

occam 2. 1 Toolset User Guide

Describes the use of the toolset in developing programs for running on IMS
T2xx, T4xx and T8xx transputers. The manual is divided into two sections;
Basics which describes each of the main stages of the development process,
how to compile, link and configure programs for the transputer. It also includes
a Getting started tutorial. The Advanced Techniques section is aimed at more
experienced users. The appendices contain a glossary of terms and a bibliog­
raphy. Some chapters are generic to other toolsets e.g. Developing programs
for the transputer and Mixed language programming.

Toolset Reference Manual

Provides reference material for each tool in the occam 2.1 and ANSI C Toolsets,
including command line options, syntax and error messages. Many of the tools
in the Toolsets are generic to several toolset products, e.g. the occam 2.1
toolset and the ANSI C toolset, and the documentation reflects this. The appen-

____________ E;ilit_fi©~ v



Preface

dices provide details of toolset conventions, transputer types, memory configu­
ration files and the configuration languages.

• occam 2. 1 Language and Libraries Reference Manual (this manual)

Other documents

Other documents provided with your toolset product include:

Delivery manual

This document gives installation data and is host specific.

occam 2.1 Reference Manual

Transputer targets supported by this toolset

The documentation set provided with this toolset tends to be generic, Le. it covers
different transputer types and hosts. The occam 2.1 toolset supports occam 2.1
running on IMS T2xx, T4xx and Taxx transputers, including the ST20450. References
in the documentation to other languages and transputer targets should be ignored.

The first generation of IMS T2xx, T4xx and Taxx transputers are referred to as the
'T2ff4ffa-series'. The new product family based around the IMS T9000 transputer is
referred to as the 'T9-series'. The ST20450 may be called an ST20 or the T450
depending on the context, and is included in the T2ff4fTa-series family unless other­
wise stated.

Documentation conventions

The following notational and typographical conventions are used in this manual:

Bold type

Teletype

Italic type

Brackets []

Braces {}

Ellipsis .•.

Used to emphasize new or special terminology.

Used to distinguish command line examples, code fragments, and
program listings from normal text.

In command syntax definitions, used to stand for an argument of a
particular type. Used within text for emphasis and for book titles.

Used in command syntax to denote optional items on the command
line.

Used to denote optional items in a command syntax which may be
repeated.

Used to denote a range or the continuation of a series. For example,
in syntax definitions denotes a list of one or more items.

In command syntax, separates two mutually exclusive alternatives.

_vi L~£~i~~':~~lf _



I Libraries

--------- Efl~tm'&yJl---------



Libraries

_2 ~1~t.,9lt _



1 The occam libraries

1.1 Introduction

A comprehensive set of occam libraries is provided for use with the toolset. They
include the compiler libraries which the compiler itself uses, and a number of user
libraries to support common programming tasks. The compiler libraries are automati­
cally referenced whereas user libraries must be declared in a IUSE directive. Libraries,
including the compiler libraries, must be specified to the linker. Table 1.1 lists the occam
libraries.

Library Description Source Uses include
provided file

Compiler libraries

occamx.lib Multiple length integer arithmetic No
Floating point functions
32-bit IEEE arithmetic functions
54-bit IEEE arithmetic functions
20 block move library
Bit manipulation
CRC functions
Supplementary floating point support
Dynamic code loading support
Transputer-related functions

User libraries

snglmath.lib Single length mathematical functions Yes mathvals.inc

dblmath.lib Double length mathematical functions Yes mathvals.inc

tbmaths.lib T400fT414fT425/ST20450 optimized maths Yes mathvals.inc

hostie.lib Host file server library Yes hestie.inc

streamio.lib Stream I/O library Yes streamie.inc

string. lib String handling library Yes

convert. lib String conversion library Yes

ere. lib Block CRC library Yes

xlink.lib Extraordinary link handling library No

debug. lib Debugging support library No

Table 1.1 occam libraries

1.2 Using the occam libraries

Libraries other than the compiler library must be referenced in a JUSE directive. For
example:

IUSE "hostio.lib"

-----------lifll~tnfl~9©~ 3



1.2 Using the occam libraries

Any use of a library routine must be in -scope with the IUSE directive which references
the associated library. The scope of a library, like any occam declaration, depends on
its level of indentation within the text.

If the library uses an include file of predefined constants (see section 1.2.3), as listed in
the right hand column of Table 1.1, then this must be referenced by an IINCLUDE
directive before the associated IUSE. For example:

IINCLUDE "hostio.inc"
IUSE "hostio.lib"

1.2.1 Linking libraries

All libraries used by a program or program module must be linked with the main program.
This includes the compiler libraries even though they are automatically referenced by
the compiler (see Chapter 2).

1.2.2 Listing library contents

You can use the ilist tool to examine the contents of a library and determine which
routines are available. The tool displays procedural interfaces for routines in each library
module and the code size and workspace requirements for individual modules. It can
also be used to determine the transputer types and error modes for which the code was
compiled. See Chapter 11 of the Toolset Reference Manual for details of ilist.

1.2.3 Library constants

Constants and protocols used by the libraries are defined in the include files listed in
Table 1.2.

File Description Related libraries

hostio.inc Constants for the host file server interface (hostio library) hostio.lib

streamio.inc Constants for the stream i/o interface (streamio library) streamio.lib

mathvals.inc Maths constants snglmath.lib
dblmath.lib
tbmaths.lib

linkaddr.inc Addresses of transputer links

ticks. inc Rates of the two transputer clocks

Table 1.2 Include files

Include files should always be referenced before the related library.



2 Compiler libraries

Compiler libraries contain multiple length and floating point arithmetic functions, IEEE
functions, and special transputer functions such as bit manipulation and 20 block data
moves. They are found automatically by the compiler on the path specified by the
ISEARCH host environment variable and do not need to be referenced by a lOSE direc­
tive. However, they must be specified to the linker along with all other libraries that the
program uses; this is best done using one of the linker indirect files occam2. Ink,
occam8 • Ink, occama • Ink or occam450 • Ink, which specify the correct libraries for
the transputer target.

Separate compiler libraries are supplied for different types and classes of processors.
Processor types supported are:

• T2 series

• T4 series

• ST20450

• T8 series

• All 32-bit processors

The compiler selects the correct library for the transputer type specified. All error modes
are supported in each library.

File Processor types supported

occam2.lib T212,T222,T22S,M212

occam8.lib T800, T801, T80S

occama.lib T400,T414,T42S,TA,TB

occam450.lib ST204S0
occamutl.lib All

virtual. lib All

occamutl.lib contains routines which are called from within some of the other
compiler libraries and virtual. I ib is used to support software virtual routing. These
two libraries support all processor types and error modes.

File names of the compiler libraries must not be changed. The compiler assumes these
filenames, and generates an error if they are not found. See Section A.4 in the Toolset
Reference Manual for details of the mechanism for locating files.

The compiler E option disables all of the compiler libraries except virtual. lib, which
can be disabled by the Y option.

The occam2. 1Reference Manualcontains formal descriptions of many of the compiler
library routines.

___________ iiii~i~@B&~©~ 5



2.1 Using compiler library routines

2.1 Using compiler library routines

Although primarily intended for use by the compiler, some compiler library routines are
available to the programmer. These are listed in sections 2.2 through 2.9. They can be
called directly without referencing a library via a IUSE statement. They are disabled by
the compiler E option.

As an example of how they may be used, consider an application which requires
compliance with the IEEE standards for NaNs (floating point Not-a-Numbers) and Infs
(floating point infinities). The occam compiler defaults to non-IEEE behavior, Le. NaNs
and Infs are treated as errors, whereas ANSI/IEEE 754-1985 requires there to be error
and overflow handling. To obtain IEEE behavior the appropriate compiler library function
must be called.

The following code fragments show a simple addition can be implemented by default or
using IEEE-compatible functions.

If A, B, and care REAL32s and b is a BOOL:

A .- B + C Default occam behavior.

IEEE function, round to nearest only.A .- REAL320P (B, 0, C)
The 0 indicates add.

b, A : = IEEE320P (B, 1, 0, C) IEEE function with rounding option.
The 1 indicates round to nearest, and the 0 indicates add.

2.2 Mathematics functions

Tables 2.1 to 2.3 list the compiler library mathematics functions available to the
programmer. Further details can be found in Appendices J, K and L of the occam 2. 1
Reference Manual.

Result(s) Function name Parameter specifiers

INT LONGADD VAL INT left, right, carry. in

INT LONGSOM VAL INT left, right, carry. in

INT LONGSUB VAL INT left, right, borrow. in

INT, INT LONGDIFF VAL INT left, right, borrow. in

INT, INT LONGPROD VAL INT left, right, carry. in

INT, INT LONGDIV VAL INT dividend.hi, dividend. 10, divisor

INT, INT SHIFTLEFT VAL INT hi. in, 1e.in, places

INT, INT SHIFTRIGHT VAL INT hi. in, 1e.in, places

INT, INT, INT NORMALISE VAL INT hi. in, 1e.in

INT ASHIFTLEFT VAL INT argument, places

INT ASHIFTRIGHT VAL INT argument, places

INT ROTATELEFT VAL INT argument, places

INT ROTATERIGHT VAL INT argument, places

Table 2.1 Multiple length arithmetic functions

_6 ~li~@n9L. _



2 Compiler libraries

Notes on multiple length arithmetic functions

SHIFTRIGHT and SHIFTLEFT return zeroes when the number of places to shift is
negative, or is greater than twice the word length of the transputer. In this case they may
take a long time to execute.

ASHIFTRIGHT, ASHIFTLEFT, ROTATERIGHT and ROTATELEFT are all invalid when the
number of places to shift is negative or exceeds the word length of the transputer.

Result(s) Function name Parameter specifiers

REAL32 ABS VAL REAL32 x

REAL64 DABS VAL REAL64 x

REAL32 SQRT VAL REAL32 x

REAL64 DSQRT VAL REAL64 x

BOOL :ISNAN VAL REAL32 x

BOOL DISNAN VAL REAL64 x

BOOL NOTFINITE VAL REAL32 x

BOOL DNOTFINITE VAL REAL64 x

REAL32 SCALEB VAL REAL32 x, VAL INT n

REAL64 DSCALEB VAL REAL64 x, VAL INT n

REAL32 LOGB VAL REAL32 x

REAL64 DLOGB VAL REAL64 x

INT, REAL32 FLOATING. UNPACK VAL REAL32 x

INT,REAL64 DFLOATING.UNPACK VAL REAL64 x

REAL32 MINUSX VAL REAL32 x

REAL64 DMINUSX VAL REAL64 x

REAL32 COPYSIGN VAL REAL32 x, y

REAL64 DCOPYSIGN VAL REAL64 x, y

REAL32 NEXTAFTER VAL REAL32 x, y

REAL64 DNEXTAFTER VAL REAL64 x, y

BOOL ORDERED VAL REAL32 x, y

BOOL DORDERED VAL REAL64 x, y

BOOL,INT32,REAL32 ARGUMENT.REDOCE VAL REAL32 x, y, y.err

BOOL,:INT32,REAL64 DARGOMENT.REDOCE VAL REAL64 x, y, y.err

REAL32 MOLBY2 VAL REAL32 x

REAL64 DMULBY2 VAL REAL64 x

REAL32 D:IVBY2 VAL REAL32 x

REAL64 DDIVBY2 VAL REAL64 x

REAL32 FPINT VAL REAL32 x

REAL64 DFPINT VAL REAL64 x

Table 2.2 Floating point functions

___________ i.Tl~i~@m'l9©~ 7



2.3 20 block moves

Result(s) Function name Parameter specifiers

REAL32 REAL320P VAL REAL32 x, VAL 1NT op, VAL REAL32 Y

REAL64 REAL640P VAL REAL64 x, VAL 1NT op, VAL REAL64 y

REAL32 REAL32REM VAL REAL32 x, y

REAL64 REAL64REM VAL REAL64 x, y

BOOL, REAL32 1EEE320P VAL REAL32 x, VAL 1NT rm, op, VAL REAL32 Y

BOOL, REAL64 1EEE640P VAL REAL64 x, VAL 1NT rm, op, VAL REAL64 Y

BOOL,REAL32 1EEE32REM VAL REAL32 x, y

BOOL, REAL64 1EEE64REM VAL REAL64 x, y

BOOL REAL32EQ VAL REAL32 x, y

BOOL REAL64EQ VAL REAL64 x, y

BOOL REAL32GT VAL REAL32 x, y

BOOL REAL64GT VAL REAL64 x, y

1NT 1EEECOMPARE VAL REAL32 x, y

1NT D1EEECOMPARE VAL REAL64 x, y

Table 2.3 Full IEEE floating point arithmetic

2.3 20 block moves

This section describes compiler library block move procedures available to the
programmer.

Procedure Parameter specifiers

MOVE2D VAL [] []BYTE Source,
VAL 1NT sx, sy, [] [] BYTE Dest,
VAL 1NTdx, dy, width, length

DRAW2D VAL [][]BYTE Source,
VAL 1NT sx, sy, [] []BYTE Dest,
VAL 1NT dx, dy, width, length

CL1P2D VAL [] []BYTE Source,
VAL 1NT sx, sy, [] []BYTE Dest,
VAL 1NT dx, dy, width, length

Table 2.4 20 block move functions

CLIP2D

PROC CLIP2D (VAL [] []BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only bytes with value zero are transferred.

-8-----------1.Yili~@~91-----------



2 Compiler libraries

This is equivalent to:

SEQ line = 0 FOR length
SEQ point = 0 FOR width

VAL temp IS Source [line+sy] [point+sx]
IF

temp = (O(BYTE»
Dest[line+dy] [point+dx] .- O(BYTE)

TRUE
SKIP

DRAW2D

PROC DRAW2D (VAL [] []BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only non-zero bytes are transferred. This is equivalent to:

SEQ line = 0 FOR length
SEQ point = 0 FOR width

VAL temp IS Source [line+sy] [point+sx]
IF

temp <> (O(BYTE»
Dest[line+dy] [point+dx] .- temp

TRUE
SKIP

MOVE2D

PROC MOVE2D (VAL [] []BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

This is equivalent to:

SEQ y = 0 FOR length
[Dest[y+dy] FROM dx FOR width] :=
[Source [y+sy] FROM sx FOR width]

2.4 Bit manipulation functions

This section describes compiler library bit-based functions available to the programmer.

Result Function name Parameter specifiers

J:NT BJ:TCOONT VAL J:NT Word, CountJ:n

J:NT BJ:TREVNBJ:TS VAL J:NT x, n

J:NT BJ:TREVWORD VAL J:NT x

Table 2.5 Bit manipulation functions

9------------ iiillil@moo.9©~------------



2.5 CRC functions

BITCOUNT

INT FUNCTION BITCOUNT (VAL INT Word, CountIn)

Counts the number of bits set to 1 in Word, adds it to CountIn, and returns the total.

BITREVNBITS

INT FUNCTION BITREVNBITS (VAL INT x, n)

Returns an INT containing the n least significant bits of x in reverse order. The upper
bits are set to zero. The operation is invalid if n is negative or greater than the number
of bits in a word.

BITREVWORD

INT FUNCTION BITREVWORD (VAL INT x)

Returns an INT containing the bit reversal of x.

2.5 CRC functions

This section describes compiler library CRC (cyclic redundancy check) functions avail­
able to the programmer. Two further functions CRCFROMMSB and CRCFROMLSB are
described in Chapter 8, and are provided in the library ere .lib for calculating CRC
values from byte strings.

Result Function name Parameter specifiers

INT CRCWORD VAL INT data, CRCIn, generator

INT CRCBYTE VAL INT data, CRCIn, generator

Table 2.6 CRC functions

Two functions are provided, CRCWORD and CRCBYTE, as listed in Table 2.6. CRCWORD
calculates the CRC of an integer, while CRCBYTE calculates the CRC of the most
significant byte of an integer.

A cyclic redundancy check value is the remainder from modulo 2 polynomial division.
Consider bit sequences as representing the coefficients of polynomials; for example, the
bit sequence 10100100 (where the leading bit is the most significant bit) corresponds
to P(x) =x7 +~ + ~. CRCWORD and CRCBYTE calculate the remainder of the following
modulo 2 polynomial division:

xn H(x) + F(x)
G(x)

where: F(x) corresponds to data (the whole word for CRCWORD; only the mostsignificant
byte for CRCBYTE)

_10 ~~i~@.'~~I-----------



2 Compiler libraries

G(x) corresponds to generator

H(x) corresponds to CRCln

n is the word size in bits of the processor used (Le. n is 16 or 32).

CRCIn can be viewed as the value that would be pre-loaded into the cyclic shift register
that is part of hardware implementations of CRC generators.

When representing G(x) in the word generator, note that there is an understood bit
before the most significant bit of generator. For example, on a 16-bit processor, with
G(x) = x16 + x12 + x5 + 1, which is #11021, then generator must be assigned #1021 ,
because the bit corresponding to x16 is understood. Thus, a value of #9603 for gener­
ator, corresponds to G(x) =x16 + x15 + x12 +x10 + x9 + x + 1, for a 16-bit processor.

A similar situation holds on a 32-bit processor, so that:

G(x) =x 32 +x26 + x23 +x22 +x16 + x 12 + x 11 + x 10 +xB+ x 7 + x 5 +x4 +x2 + X + 1
is encoded in generator as #04C11DB7.

It is possible to calculate a 16-bit CRC on a 32-bit processor. For example, if:
G(x)=x16+x12+x5+ 1,

then generator is #10210000, because the most significant 16 bits of the 32-bit integer
form a 16-bit generator.

For CRCWORD, the least significant 16 bits of CRCln form the initial CRC value; the most
significant 16 bits of data form the data; and the calculated CRC is the most significant
16 bits of the result.

For CRCBYTE, the most significant 16 bits of CRCIn form the initial CRC value; the next
8 bits of CRCln (the third most significant byte) form the byte of data; and the calculated
CRC is the most significant 16 bits of the result.

CRCWORD

INT FUNCTION CRCWORD (VAL INT data, CRCIn, generator)

Takes the whole of the word data to correspond to F(x) in the above formula. This
implements the following algorithm:

INT MyData, CRCOut, OldCRC :
VALOF

SEQ
MyData, CRCOut := data, CRCIn
SEQ i = 0 FOR BitsPerWord 16 or 32

SEQ
OldCRC := CRCOut
CRCOut, MyData := SHIFTLEFT (CRCOut, MyData, 1)
IF

OldCRC < 0 -- MSB of CRC = 1
CRCOut := CRCOut >< generator

TRUE
SKIP

RESULT CRCOut

___________ ~~U@.~y©~ 1_1



2.6 Floating point arithmetic support functions

CRCBYTE

INT FUNCTION CRCBYTE (VAL INT data, CRCln, generator)

Takes the most significant byte of data to correspond to F(x) in the above formula.
This implements the following algorithm:

INT MyData, CRCOut, OldCRC
VALOF

SEQ
MyData, CRCOut := data, CRCln
SEQ i = 0 FOR 8

SEQ
OldCRC := CRCOut
CRCOut, MyData := SHIFTLEFT (CRCOut, MyData, 1)
IF

OldCRC < 0 -- MSB of CRe = 1
CRCOut := CRCOut >< generator

TRUE
SKIP

RESULT CRCOut

Note: The predefines CRCBYTE and CRCWORD can be chained together to help calculate
a CRC from a string considered as one long polynomial. A simple chaining would
calculate:

xl< H(x) + F(x)
G(x)

where F(x) corresponds to the string and k is the number of bits in the string. This is not
the same CRC that is calculated by CRCFROMMSB and CRCFROMLSB in ere. lib, as
described in Chapter 8, because these latter routines shift the numerator by ~.

2.6 Floating point arithmetic support functions

Result(s) Function name Parameter specifiers

INT FRACMOL VAL INT x, y

I NT, I NT, INT UNPACKSN VAL INT x

INT ROUNDSN VAL INT Yexp, Yfrac, Yguard

Table 2.7 Floating point arithmetic support functions

FRACMUL

INT FUNCTION FRACMUL (VAL INT x, y)

Performs a fixed point multiplication of x and y, treating each as a binary fraction in
the range [-1, 1), and returning their product rounded to the nearest available repre-

_12 ii;i~i~tt&&'.lf ----------_



2 Compiler libraries

sentation. The value of the fractions represented by the arguments and result can
be obtained by multiplying their INT value by 2-31 (on a 32-bit processor) or 2-15(on
a 16-bit processor). The result can overflow if both x and yare -1.0.

This routine is compiled inline into a sequence of transputer instructions on 32-bit
processors, or as a call to a standard library routine for 16-bit processors.

ONPACKSN

INT, INT, INT FUNCTION UNPACKSN (VAL INT x)

This returns three parameters; from left to right they are Xfrac, Xexp, and Type.
x is regarded as an IEEE single length real number (Le. a RETYPED REAL32). The
function unpacks x into Xexp, the (biased) exponent, and Xfrac the fractional part,
with implicit bit restored. It also returns an integer defining the Type of x, ignoring
the sign bit, coded as shown in Table 2.8.

Type Reason
0 x is zero

1 x is a normalized or denormalized number

2 xis J:nf

3 x is NaN

Table 2.8 unpacksn result type codes

Examples:

UNPACKSN (140490FDB) returns IC90FDBOO ,100000080, 1
UNPACKSN (100000001) returns 100000100 ,100000001, 1
UNPACKSN (17FC00001) returns 140000100 ,IOOOOOOFF, 3

This routine is compiled inline into a sequence of transputer instructions on 32-bit
processors such as the IMS T4 2 5, which do not have a floating support unit, but do
have special instructions for floating point operations. For other 32-bit processors
the function is compiled as a call to a standard library routine. It is invalid on 16-bit
processors, since Xfrac cannot fit into an INT.

ROUNDSN

INT FUNCTION ROUNDSN (VAL INT Yexp, Yfrac, Yguard)

This takes fraction (possibly not normalized), guard word and exponent, and returns
the IEEE single length floating point value it represents. It takes care of all the
normalization, post-normalization, rounding and packing of the result. The rounding
mode used is round to nearest. The exponent should already be biased. This routine
is not intended for use with Yexp and Yfrac representing an infinity or a NaN.

____________ ~fi~©_~~~©, 1_3



2.7 Dynamic code loading support

Examples:

ROUNDSN (#00000080, #C90FDBOO, #00000000) returns #40490FDB
ROUNDSN (#00000080, #C90FDB80, #00000000) returns #40490FDC
ROUNDSN (#00000080, #C90FDA80, #00000000) returns #40490FDA
ROUNDSN (#00000080, #C90FDA80, #00003000) returns #40490FDB
ROUNDSN (#00000001, #00000100, 100000000) returns 100000001

The function normalizes and post-normalizes the number represented by Yexp,
Yfrac and Yguard into local variables Xexp, Xfrac, and Xguard. It then packs
the (biased) exponent Xexp and fraction Xfrac into the result, rounding using the
extra bits in Xguard. The sign bit is set to o. If overflow occurs, Inf is returned.

This routine is compiled inline into a sequence of transputer instructions on 32-bit
processors such as the IMS T425, which do not have a floating support unit, but do
have special instructions for floating point operations. For other 32-bit processors
the function is compiled as a call to a standard library routine. It is invalid on 16-bit
processors, since Xfrac cannot fit into an INT.

2.7 Dynamic code loading support

This section describes compiler library dynamic loading routines available to the
programmer. The use of these routines for dynamic code loading is described in
section 12.4 of the occam 2. 1 Toolset User Guide.

Procedure Parameter specifiers

KERNEL.RUN VAL [ ] BYTE code,
VAL INT entry.offset,
[]INT workspace,
VAL INT no.of.parameters

LOAD.INPUT.CHANNEL INT here,
CHAN OF ANY in

LOAD.INPUT.CHANNEL.VECTOR INT here,
[ ] CHAN OF ANY in

LOAD. OUTPUT. CHANNEL INT here,
CHAN OF ANY out

LOAD. OUTPUT. CHANNEL. VECTOR INT here,
[]CHAN OF ANY out

LOAD.BYTE.VECTOR INT here,
VAL []BYTE bytes

Table 2.9 Dynamic code loading procedures

Result(s) Function name Parameter specifiers

INT WSSIZEOF routinename

INT VSSIZEOF routinename

Table 2.10 Dynamic code loading functions

_14 ii;ilitBtf9~~ _



2 Compiler libraries

KERNEL. RUN

PROC KERNEL.RUN (VAL []BYTE code,
VAL INT entry.offset,
[]INT workspace,
VAL INT no.of.parameters)

The effect of this procedure is to call the procedure loaded in the code buffer, starting
execution at the location code [entry.offset]. The use of this procedure for
dynamic code loading is described in section 12.4 of the occam 2. 1 Toolset User
Guide.

The code to be called must begin at a word-aligned address. To ensure proper
alignment either start the array at zero or realign the code on a word boundary before
passing it into the procedure.

The workspace buffer is used to hold the local data of the called procedure. The
required size of this buffer, and the code buffer, must be derived by visually
inspecting the executable code file (. rsc file) to be loaded using the binary lister tool
ilist. Alternatively, a routine can be written to read this file and pass the informa­
tion to KERNEL. RUN. The format of the .rsc file is described in section 5.6 of the
Toolset Reference Manual.

The parameters passed to the called procedure should be placed at the top of the
workspace buffer by the calling procedure before the call of KERNEL. RUN. The call
to KERNEL. RUN returns when the called procedure terminates. If the called proce­
dure requires a separate vector space, then another buffer of the required size must
be declared, and its address placed as the last parameter at the top of workspace.
As calls of KERNEL. RUN are handled specially by the compiler it is necessary for
no.of •parameters to be a constant known at compile time and to have a value
not less than 3.

The workspace passed to KERNEL. RUN must be at least:

[ws.requirement + (no.of.parameters + 2)]INT

where ws • requirement is the size of workspace required, determined when the
called procedure was compiled and stored in the code file, and
no. of •parameters includes the vector space pointer if it is required.

The parameters must be loaded before the call of KERNEL. RUN. The parameter
corresponding to the first formal parameter of the procedure should be in the word
adjacent to the saved Iptr word, and the vector space pointer or the last parameter
should be adjacent to the top of workspace where the Wptr word will be saved.

LOAD. INPUT. CHANNEL

PROC LOAD.INPUT.CHANNEL (INT here, CHAN OF ANY in)

-----------lfii~~~@_,~~JI 15_



2.7 Dynamic code loading support

The variable here is assigned the address of the input channel in.

The normal protocol checking of channel parameters is suppressed; therefore chan­
nels of any protocol may be passed to this routine. The channel parameter is
considered by the compiler to have been used for input.

LOAD.INPUT.CHANNEL.VECTOR

PROC LOAD. INPUT. CHANNEL. VECTOR (INT here,
[]CHAN OF ANY in)

The variable here is assigned the address of the base element of the channel array
in (i.e. the base of the array of pointers).

The normal protocol checking of channel parameters is suppressed; therefore chan­
nels of any protocol may be passed to this routine. The channel parameter is
considered by the compiler to have been used for input.

LOAD. OUTPUT. CHANNEL

PROC LOAD. OUTPUT. CHANNEL (INT here, CHAN OF ANY out)

The variable here is assigned the address of the output channel out.

The normal protocol checking of channel parameters is suppressed; therefore chan­
nels of any protocol may be passed to this routine. The channel parameter is
considered by the compiler to have been used for input.

LOAD. OUTPUT. CHANNEL. VECTOR

PROC LOAD.OUTPUT.CHANNEL.VECTOR (INT here,
[]CHAN OF ANY out)

The variable here is assigned the address of the base element of the channel array
out (Le. the base of the array of pointers).

The normal protocol checking of channel parameters is suppressed; therefore chan­
nels of any protocol may be passed to this routine. The channel parameter is
considered by the compiler to have been used for input.

LOAD.BYTE.VECTOR

PROC LOAD.BYTE.VECTOR (INT here, VAL []BYTE bytes)

The variable here is assigned the address of the byte array bytes. This can be
used in conjunction with RETYPES to find the address of any variable.

_16 L'T£eit~©' -----------



2 Compiler libraries

WSSIZEOF

INT FUNCTION WSSIZEOF (routine_name)

This function returns the number of workspace slots (words) required by the proce­
dure or function routine_name. INLINE or predefined routines are not permitted.

VSSIZEOF

INT FUNCTION VSSIZEOF (routine_name)

This function returns the number of vectorspace slots (words) required by the proce­
dure or function routine_name. INLINE or predefined routines are not permitted.

2.8 Transputer-related procedures

This section describes compiler library transputer-specific routines available to the
programmer.

Procedure Parameter specifiers

CAUSEERROR none

RESCHEDULE none

Table 2.11 Transputer-related procedures

CAUSEERROR

PROC CAUSEERROR()

Inserts instructions into the program to set the transputer error flag. If the program
is in STOP or UNIVERSAL mode instructions to stop the current process are also
inserted.

The error is then treated in exactly the same way as any other error would be treated
in the error mode in which the program is compiled. For example, in HALT mode the
whole processor will halt and in STOP mode that process will stop, leaving the
transputer error flag set TRUE. If run-time error checking has been suppressed (e.g.
by a command line option), this stop is suppressed.

The difference between CAUSEERROR ( ) and the STOP process, is that
CAUSEERROR guarantees to set the transputer error flag.

RESCHEDULE

PROC RESCHEDULE()

so 17------------ E;i~il@_@~n©~------------



2.9 Assertion test procedure

This causes the current process to be rescheduled by inserting instructions into the
program to cause the current process to be moved to the end of the current priority
scheduling queue. This occurs even if the current process is a high priority process.

RESCHEDULE effectively forces a timeslice, even in high priority.

2.9 Assertion test procedure

This section describes the compiler library debugging assertion test routine available to
the programmer for use when INQUEST is not present. Further debugging support
procedures for use when debugging interactively are provided in the debugging support
library described in Chapter 10.

Procedure

ASSERT

ASSERT

Parameter specifiers

VAL BOOL test

Table 2.12 Assertion test procedure

PROC ASSERT (VAL BOOL test)

At compile time the compiler will check the value of test and if it is FALSE the
compiler will give a compile time error; if it is TRUE, the compiler does nothing. If test
cannot be checked at compile-time then the compiler will insert a run-time check to
detect its status. This run-time check may be disabled by means of a command line
option.

ASSERT is a useful routine for debugging purposes. Once a program is working
correctly the compiler option NA can be used to prevent code being generated to
check for ASSERTS at run-time. If possible ASSERTS will still be checked at compile
time.

_1_8 ~Ii~©.,~~' _



3 Mathematics libraries

Elementary mathematics and trigonometric functions are provided in three libraries, as
listed in Table 3.1.

Library Description

snglmath.lib Single length library

dblmath.lib Double length library

tbmaths.lib T400/ T414 / T425 / ST20450 optimized library

Table 3.1 Mathematics libraries

The single and double length libraries contain the same set of mathematics functions
in single and double length forms. The double length forms all begin with the letter D. All
function names are in upper case.

The T4 optimized library is a combined single and double length library containing
functions for the T4 series (IM5 T400, T414, T425) and the 5T20450. The functions
have been optimized for speed and are implemented using fixed point floating point. The
standard single or double length libraries can be used on T4 processors but optimum
performance will be achieved by using the T8 optimized library. The accuracy of the T4
optimized functions is similar to that of the standard single length functions but results
returned may not be identical because different algorithms are used. If the optimized
library is used in code compiled for any processor except a T4 then the compiler reports
an error.

To obtain the best possible speed performance with the occam mathematics functions
use the following strategy:

• For networks consisting of only T4 series transputers, use the tbmaths .lib
library.

For networks consisting of only T8 series transputers, use the snglmath.lib
and dblmath.lib libraries.

• For networks consisting of a mix of T4 series and T8 series transputers use:

o tbmaths .lib on the T4 series and snglmath.lib or dblmath.lib on
the T8 series when a consistent level of accuracy is not required;

o if accuracy must be the same in the T8 and T4 processes then use the
snglmath.lib and dblmath.lib libraries.

Constants for the mathematics libraries are provided in the include file mathvals . inc.

The elementary function library is also described in Appendix M of the occam 2. 1
Reference Manual.

-----------liil~I@~\~ 1_9



3.1 Introduction and terminology

3.1 Introduction and terminology

This, and the following subsections, contain some notes on the presentation of the
elementary function libraries described in section 3.2, and the TB version described in
section 3.3.

These function subroutines have been written to be compatible with the ANSI standard
for binary floating-point arithmetic (ANSI-IEEE std 754-1985), as implemented in
occam. They are based on the algorithms in:

Cody, W. J., and Waite, W. M. [1980]. Software Manual for the Elementary
Functions. Prentice-Hall, New Jersey.

The only exceptions are the pseudo-random number generators, which are based on
algorithms in:

Knuth, D. E. [1981]. The Art of Computer Programming, 2nd. edition, Volume2:
Seminumerical Algorithms. Addison-Wesley, Reading, Mass.

3.1.1 Inputs

All the functions in the library (except RAN and DRAN) are called with one or two parame­
ters which are binary floating-point numbers in one of the IEEE standard formats, either
single-length (32 bits) or double-length (64 bits). For each function, the parameters and
the function result are of the same type.

NaNs and Infs

The functions will accept any value, as specified by the standard, including special
values representing NaNs (Not-a-Numbers) and Infs (Infinities). Generally if a NaN is
used as an argument then the result is the same NaN. Infs mayor may not be in the
domain. The domain is the set of arguments for which the result is a normal (or
de-normalized) floating-point number.

3.1.2 Outputs

Exceptions

Arguments outside the domain (apart from NaNs which are simply copied through) give
rise to exceptional results, which may be NaN, +Inf, or -Inf. Infs mean that the result
is mathematically well-defined but too large to be represented in the floating-point
format.

Error conditions are reported by means of three distinct NaNs:

undefined.NaN

This means that the function is mathematically undefined for this argument, for example
the logarithm of a negative number.



3 Mathematics libraries

unstable.NaN

This means that a small change in the argument would cause a large change in the value
of the function, so any error in the input will render the output meaningless.

inexact.NaN

This means that although the mathematical function is well-defined, its value is in range,
and it is stable with respect to input errors at this argument, the limitations of word-length
(and reasonable cost of the algorithm) make it impossible to compute the correct value.

The implementations will return the values in Table 3.2 for these Not-a-Numbers:

Error Single length value Double length value

undefined. NaN #7F800010 #7FF00002 00000000

unstable.NaN #7F800008 #7FFOOO01 00000000

inexact.NaN #7F800004 #7FFOOOOO 80000000

Table 3.2 Not-a-Number values

3.1.3 Accuracy

Range Reduction

Since it is impractical to use rational approximations (Le. quotients of polynomials) which
are accurate over large domains, nearly all the subroutines use mathematical identities
to relate the function value to one computed from a smaller argument, taken from the
primary domain, which is small enough for such an approximation to be used. This
process is called range reduction and is performed for all arguments except those which
already lie in the primary domain.

For most of the functions the quoted error is for arguments in the primary domain, which
represents the basic accuracy of the approximation. For some functions the process of
range reduction results in a higher accuracy for arguments outside the primary domain,
and for others it does the reverse. Refer to the notes on each function for more details.

Generated Error

If the true value of the function is large the difference between it and the computed value
(the absolute errory is likely to be large also because of the limited accuracy of floating­
point numbers. Conversely if the true value is small, even a small absolute error repre­
sents a large proportional change. For this reason the error relative to the true value is
usually a better measure of the accuracy of a floating-point function, except when the
output range is strictly bounded.

If f is the mathematical function and F the subroutine approximation, then the relative
error at the floating-point number X (provided f(X) is not zero) is:

RE(X) = (F(X) - f(X»)
f(X)

-----------IF;i~il@.l~~©~ 2_1



3.1 Introduction and terminology

Obviously the relative error may become very large near a zero of f(X). If the zero is at
an irrational argument (which cannot be represented as a floating-point value), the
absolute error is a better measure of the accuracy of the function near the zero.

As it is impractical to find the relative error for every possible argument, statistical
measures of the overall error must be used. If the relative error is sampled at a number
of pointsXn (n = 1 to N), then useful statistics are the maximum relative error(MRE) and
the root-mean-square relative error (RMSRE). These measures are defined by the
following formulae:

MRE = max IRE(Xn)I 0

lSnSN

RMSRE =

Corresponding statistics can be formed for the absolute error also, and are called MAE
and RMSAE respectively.

The MAE generally occurs near a zero of the function, especially if the true zero is
irrational, or near a singularity where the result is large, since the granularity of the
floating-point numbers then becomes significant.

A useful unit of relative error is the relative magnitude of the least significant bit in the
floating-point fraction, which is called one unit in the last place (ulp), (Le. the smallest
E such that 1+E ~ 1). Its magnitude depends on the floating-point format: for single­
length it is 2-23 =1.19*10-7, and for double-length it is 2-52 =2.22*10-16.

Propagated Error

Because of the limited accuracy of floating-point numbers the result of any calculation
usually differs from the exact value. In effect, a small error has been added to the exact
result, and any subsequent calculations will inevitably involve this error term. Thus it is
important to determine how each function responds to errors in its argument. Provided
the error is not too large, it is sufficient just to consider the first derivative of the function
(written f).

If the relative error in the argument X is d (typically a few ulp), then the absolute error
(E) and relative error (e) in f(X) are:

E = I Xf'(X)dl == Ad 0

= IXf'(X)d I == d
e f(X) R

This defines the absolute and relative error magnification factors A and R. When both
are large the function is unstable, Le. even a small error in the argument, such as would
be produced by evaluating a floating-point expression, will cause a large error in the
value of the function. The functions return an unstable.NaN in such cases which are
simple to detect.

_22 L.,~ ~i~@ltIIfJ1©~ -----------



3 Mathematics libraries

The functional forms of both A and R are given in the specification of each function.

3.1.4 Test Procedures

For each function, the generated error was checked at a large number of arguments
(typically 100000) drawn at random from the appropriate domain. First the double­
length functions were tested against a quadruple-length implementation (constructed
for accuracy rather than speed), and then the single-length functions were tested
against the double-length versions.

In both cases the higher-precision implementation was used to approximate the mathe­
matical function (called/above) in the computation of the error, which was evaluated
in the higher precision to avoid rounding errors. Error statistics were produced according
to the formulae above.

3.1.5 Symmetry

The subroutines were designed to reflect the mathematical properties of the functions
as much as possible. For all the functions which are even, the sign is removed from the
input at the beginning of the computation so that the sign-symmetry of the function is
always preserved. For odd functions, either the sign is removed at the start and then the
appropriate sign set at the end of the computation, or else the sign is simply propagated
through an odd degree polynomial. In many cases other symmetries are used in the
range-reduction, with the result that they will be satisfied automatically.

3.1.6 The Function Specifications

Names and Parameters

All single length functions except RAN return a single result of type REAL32, and all
except RAN, POWER and ATAN2 have one parameter, a VAL REAL32.

POWER and ATAN2 have two parameters which are VAL REAL32s for the two arguments
of each function.

RAN returns two results, of types REAL32 and INT32, and has one parameter which is
a VAL INT32.

In each case the double-length version of name is called Dname, returns a REAL64
(except DRAN, which returns REAL64 , INT64), and has parameters of type VAL REAL64
(VAL INT64 for DRAN).

Terms used in the Specifications

A and R Multiplying factors relating the absolute and relative errors in the output to the
relative error in the argument.

Exceptions Outputs for invalid inputs (Le. those outside the domain), other than NaN
(NaNs are copied directly to the output and are not listed as exceptions). These
are all Infs or NaNs.

___________ J;..,~~~~@_~©~ 2_3



3.1 Introduction and terminology

Domain The range of valid inputs, Le. those for which the output is a normal or de-normal
floating-point number.

Primary Domain The range of arguments for which the result is computed using only
a single rational approximation to the function. There is no argument reduction in
this range.

Range The range of outputs produced by all arguments in the domain. The given
endpoints are not exceeded.

Generated Error The difference between the true and computed values of the function,
when the argument is error-free. This is measured statistically and displayed for
one or two ranges of arguments, the first of which is usually the primary domain
(see below). The second range, if present, is chosen to illustrate the typical
behavior of the function.

MAE and RMSAE The Maximum Absolute Error and Root-Mean-Square absolute error
taken over a number of arguments drawn at random from the indicated range.

MRE and RMSRE The Maximum Relative Error and Root-Mean-Square relative error
taken over a number of arguments drawn at random from the indicated range.

Propagated Error The absolute and relative error in the function value, given a small
relative error in the argument.

ulp The unit of relative error is the unit in the lastplace (ulp). This is the relative magni­
tude of the least significant bit of the floating-point fraction (Le. the smallest E such
that 1+E ;I!; 1).

N.B. this depends on the floating-point format.

For the standard single-length format it is 2-23 =1.19*10-7.

For the dOUble-length format it is 2-52 =2.22*10-16.

This is also used as a measure of absolute error, since such errors can be consid­
ered relative to unity.

Specification of Ranges

Ranges are given as intervals, using the convention that a square bracket ([ or]) means
that the adjacent endpoint is included in the range, whilst a round bracket « or» means
that it is excluded. Endpoints are given to a few significant figures only.

Where the range depends on the floating-point format, single-length is indicated with an
S and double-length with a D.

For functions with two arguments the complete range of both arguments is given. This
means that for each number in one range, there is at least one (though sometimes only
one) number in the other range such that the pair of arguments is valid. Both ranges are
shown, linked by an x.

Abbreviations

In the specifications,XMAXis the largest representable floating-point number: in single­
length it is approximately 3.4*1038, and in double-length it is approximately 1.8*10308.

_24 iFii~i~~m"91-----------



3 Mathematics libraries

Pi means the closest floating-point representation of the transcendental number 3t, In(2)
the closest representation of loge(2), and so on.

In describing the algorithms, X is used generically to designate the argument, and result
(or RESULT, in the style of occam functions) to designate the output.

3.2 Single and double length elementary function libraries

The versions of the libraries described by this section have been written using only
floating-point arithmetic and pre-defined functions supported in occam. Thus they can
be compiled for any processor with a full implementation of occam, and give identical
results.

These two libraries will be efficient on processors with fast floating-point arithmetic and
good support for the floating-point predefined functions such as MULBY2 and
ARGUMENT. REDUCE. For 32-bit processors without special hardware for floating-point
calculations the alternative optimized library described in section 3.3 using fixed-point
arithmetic will be faster, but will not give identical results.

A special version has been produced for 16-bit transputers, which avoids the use of any
double-precision arithmetic in the single precision functions. This is distinguished in the
notes by the annotation T2 special; notes relating to the version for T8 and TB are
denoted by standard.

Single and double length mathematics functions are listed below. Descriptions of the
functions can be found in succeeding sections.

To use the single length library a program header must include the line

IUSE "snglmath.lib"

To use the double length library a program header must include the line

IUSE "dblmath.lib"

Result(s) Function Parameter specifiers

REAL32 ALOG VAL REAL32 X

REAL32 ALOGi0 VAL REAL32 X

REAL32 EXP VAL REAL32 X

REAL32 POWER VAL REAL32 x, VAL REAL32 Y

REAL32 SIN VAL REAL32 X

REAL32 COS VAL REAL32 X

REAL32 TAN VAL REAL32 X

REAL32 ASIN VAL REAL32 X

REAL32 ACOS VAL REAL32 X

REAL32 ATAN VAL REAL32 X

REAL32 ATAN2 VAL REAL32 x, VAL REAL32 Y

____________ JFiili~@_'~~©~ 2_5_



3.2 Single and double length elementary function libraries

Result(s) Function Parameter specifiers

REAL32 SINH VAL REAL32 X

REAL32 COSH VAL REAL32 X

REAL32 TANH VAL REAL32 X

REAL32,INT32 RAN VAL INT32 X

REAL64 DALOG VAL REAL64 X

REAL64 DALOG1O VAL REAL64 X

REAL64 DEXP VAL REAL64 X

REAL64 DPOWER VAL REAL64 X, VAL REAL64 Y

REAL64 DSIN VAL REAL64 X

REAL64 DCOS VAL REAL64 X

REAL64 DTAN VAL REAL64 X

REAL64 DASIN VAL REAL64 X

REAL64 DACOS VAL REAL64 X

REAL64 DATAN VAL REAL64 X

REAL64 DATAN2 VAL REAL64 X, VAL REAL64 Y

REAL64 DSINH VAL REAL64 X

REAL64 DCOSH VAL REAL64 X

REAL64 DTANH VAL REAL64 X

REAL64,INT64 DRAN VAL INT64 X

Table 3.3 Elementary functions

_26 J::;ilit~~~' ------ _



3 Mathematics libraries

ACOS,DACOS

REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)

Compute cosine-l(X) (in radians).

Domain:

Range:

Primary domain:

[-1.0,1.0]

[0, Pi]

[-0.5,0.5]

Exceptions
All arguments outside the domain generate an undefined.NaN.

Propagated Error
A = -X1v1 -x2, R = -XI(sin-l(X) yl1 -x2)

Generated Error

Single Length:

Double Length:

Primary Domain [-1.0, 1.0]

MRE RMSRE MAE RMSAE

1.06 ulp 0.38 ulp 2.37 ulp 0.61 ulp

0.96 ulp 0.32 ulp 2.25 ulp 0.53 ulp

The Algorithm

Step 1 If IXI > 0.5, set Xwork:= SQRT «(1 - IXI )/2) . Compute Rwork =arcsine(2 *
Xwork) with a floating-point rational approximation. If the argument was positive,
this is the result, otherwise set the result =Pi - Rwork.

Step 2 Otherwise compute Rwork directly using the rational approximation. If the argu­
ment was positive, set result =Pil2 - Rwork, otherwise result =Pil2 + Rwork.

Notes
Note 1 The error amplification factors are large only near the ends of the domain. Thus

there is a small interval at each end of the domain in which the result is liable to
be contaminated with error, although this interval is larger near 1 than near -1 ,
since the function goes to zero with an infinite derivative there. However since
both the domain and range are bounded the absolute error in the result cannot
be large.

Note 2 Since the rational approximation is the same as that in ASIN, the relation
cos-l(x) =rrJ2 - sin-lex) is preserved.

-----------lFiil~I@m&'~~~ 27_



3.2 Single and double length elementary function libraries

ALOG,DALOG

REAL32 FUNCTION ALOG (VAL REAL32 X)
REAL64 FUNCTION DALOG (VAL REAL64 X)

Compute 10ge(X)'

Domain: (0, XMAX]

Range: [MinLog, MaxLog] [MinLog, MaxLog] (See note 2)

Primary domain: h/212, y'2) = [0.7071,1.4142)

RMSRE

0.43 ulp

0.42 ulp

0.38 ulp

MRE

1.7 ulp

1.6 ulp

1.4 ulp

Exceptions
All arguments outside the domain generate an undefined.NaN.

Propagated Error

A == 1, R =1/1oge(X)

Generated Error

Primary domain error:

Single Length (Standard):

Single Length (T2 special):

Double Length:

The Algorithm

Step 1 Split X into its exponent N and fraction F.

Step 2 Find LnF, the natural log of F, with a floating-point rational approximation.

Step 3 Compute In(2) * N with extended precision and add it to LnF to get the result.

Notes
Note 1 The term In(2) *Nis much easier to compute (and more accurate) thanLnF, and

it is larger provided N is not 0 (Le. for arguments outside the primary domain).
Thus the accuracy of the result improves as the modulus of 10g(X) increases.

Note 2 The minimum value that can be produced, MinLog, is the logarithm of the
smallest de-normalized floating-point number. For single length MinLog is
-103.28, and for double length it is -744.4. The maximum value MaxLog is the
logarithm of XMAX. For single-length it is 88.72, and for dOUble-length it is
709.78.

Note 3 Since Inf is used to represent allvalues greaterthanXMAXits logarithm cannot
be defined.

Note 4 This function is well-behaved and does not seriously magnify errors in the argu­
ment.

_28 Eii~~~@MluR©' _



MRE RMSRE

1.70 ulp 0.45 ulp

1.71 ulp 0.46 ulp

1.84 ulp 0.45 ulp

3 Mathematics libraries

ALOG10,DALOG10

REAL32 FUNCTION ALOG10 (VAL REAL32 X)
REAL64 FUNCTION DALOG10 (VAL REAL64 X)

Compute log10(X).

Domain: (0, XMAX]

Range: [MinL 10, MaxL 10] (See note 2)

Primary domain: h/2/2, yl2) = [0.7071,1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A = log10(e),

Generated Error

Primary domain error:

Single Length (Standard):

Single Length (T2 special):

Double Length:

The Algorithm

Step 1 Set temp:= ALOG(X).

Step 2 If temp is a NaN, copy it to the output, otherwise set
result =log(e) * temp

Notes
Note 1 See note 1 for ALOG.

Note 2 The minimum value that can be produced, MinL 10, is the base-10 logarithm of
the smallest de-normalized floating-point number. For single length MinL 10 is
-44.85, and for double length it is -323.3. The maximum value MaxL 10 is the
base-10 logarithm of XMAX. For single length MaxL 10 is 38.53, and for double­
length it is 308.26.

Note 3 Since Inf is used to represent aI/values greater thanXMAXits logarithm cannot
be defined.

Note 4 This function is well-behaved and does not seriously magnify errors in the argu­
ment.

___________ E;i~~tlr£"~~©~ 29_



3.2 Single and double length elementary function libraries

ASIN,DASIN

REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)

Compute sine-1(X) (in radians).

Domain: [-1.0, 1.0]

Range: [-Pu2,Pu2]
Primary domain: [-0.5, 0.5]

Exceptions
All arguments outside the domain generate an undefined.NaN.

Propagated Error

A =X/v 1 -X2, R =X/(sin-1(X) ....11 -X2)
Generated Error

Primary Domain [-1.0, 1.0]

MRE RMSRE MAE RMSAE

Single Length:

Double Length:

0.58 ulp 0.21 ulp

0.59 ulp 0.21 ulp

1.35 ulp 0.33 ulp

1.26 ulp 0.27 ulp

The Algorithm

Step 1 If IXI > 0.5, set Xwork:= SQRT «1 - IXI)/2). Compute Rwork =arcsine(-2 *
Xwork) with a floating-point rational approximation, and set the result =Rwork +
Pi/2.

Step 2 Otherwise compute the result directly using the rational approximation.

Step 3 In either case set the sign of the result according to the sign of the argument.

Notes
Note 1 The error amplification factors are large only near the ends of the domain. Thus

there is a small interval at each end of the domain in which the result is liable to
be contaminated with error: however since both domain and range are bounded
the absolute error in the result cannot be large.

Note 2 By step 1, the identity sin-1(x) ='Jt/2 - 2 sin-1(V(1-x)/2» is preserved.

_3_0 ~~it-,~~' _



MRE RMSRE

0.56 ulp 0.21 ulp

0.52 ulp 0.21 ulp

3 Mathematics libraries

ATAN,DATAN

REAL32 FUNCTION ATAN (VAL REAL32 X)
REAL64 FUNCTION DATAN (VAL REAL64 X)

Compute tan-1(X) (in radians).

Domain: [-Inf, Inf]

Range: [-PiI2, Pi/2]

Primary domain: [-z, z], z =2 - v!3 =0.2679

Exceptions

None.

Propagated Error

A = X/(1 + X2), R = XI(tan- 1(X)(1 + X2»
Generated Error

Primary domain error:

Single Length:

Double Length:

The Algorithm

Step 1 If /XI> 1.0, set Xwork =1/00 , otherwise Xwork = lXI.

Step 2 If Xwork > 2-v!3, set F =(Xwork*yl3 -1 )/(Xwork +v!3), otherwise F =Xwork.

Step 3 Compute Rwork =arctan(F) with a floating-point rational approximation.

Step 4 If Xwork was reduced in (2), set R = Pil6 + Rwork, otherwise R = Rwork.

Step 5 If X was reduced in (1), set RESULT =Pi/2 - R, otherwise RESULT =R.

Step 6 Set the sign of the RESULT according to the sign of the argument.

Notes
Note 1 For IX) > ATmax, Itan-1(X)1 is indistinguishable from 'Jt!2 in the floating-point

format. For single-length, ATmax = 1.68*107, and for double-length ATmax =
9*1015, approximately.

Note 2 This function is numerically very stable, despite the complicated argument
reduction. The worst errors occur just above 2-v!3, but are no more than 3.2 ulp.

Note 3 It is also very well behaved with respect to errors in the argument, Le. the error
amplification factors are always small.

Note 4 The argument reduction scheme ensures that the identities tan- 1(X) =rrJ2 ­
tan-1(1/X), and tan-1(X) ='Jt!6 + tan-1«yl3*X-1 )/(v!3 + X» are preserved.

___________ J;..,£ ~~@_,~y©~ 3_1



3.2 Single and double length elementary function libraries

ATAN2,DATAN2

REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)

REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)

Compute the angular co-ordinate tan-ley/X) (in radians) of a point whose X and y
co-ordinates are given.

Domain: [-Inf, Inf] x [-Inf, Inf]

Range: (-fl,fll

Primary domain: See note 2.

Exceptions
(0,0) and (±lnf,±lnf) give undefined.NaN.

Propagated Error
A =X(1 ± Y)/(P + Yl), R=X(1 ± Y)/(tan-l(y/X)(p + Yl)) (See note 3)

Generated Error

See note 2.

The Algorithm

Step 1 If X, the first argument, is zero, set the result to ± 3t /2, according to the sign of
1': the second argument.

Step 2 Otherwise set Rwork:= ATAN (Y/X) . Then if Y < 0 set RESULT = Rwork - Pi,
otherwise set RESULT = Pi - Rwork.

Notes
Note 1 This two-argument function is designed to perform rectangular-to-polar co-ordi­

nate conversion.

Note 2 See the notes for ATAN for the primary domain and estimates of the generated
error.

Note 3 The error amplification factors were derived on the assumption that the relative
error in Y is ± that in X, otherwise there would be separate factors for X and Y:
They are small except near the origin, where the polar co-ordinate system is
singular.

_32 JJ..~£ ~it_'JI-----------



3 Mathematics libraries

COS,DCOS

REAL32 FUNCTION COS (VAL REAL32 X)
REAL64 FUNCTION DCOS (VAL REAL64 X)

Compute cosine(X) (where X is in radians).

Domain: [-Cmax, Cmax] =[-205887.4, 205887.4]S (Standard),
=[-12868.0, 12868.0]S (T2 special)
=[-2.1 *108,2.1*108]0

Range:

Primary domain:

[-1.0,1.0]

See note 1.

Exceptions
All arguments outside the domain generate an inexact.NaN, except ±Inf, which
generates an undefined.NaN.

Propagated Error
A =-Xsin (X), R = -X tan (X) (See note 4)

Generated error

[0, Pi/4) [0,2Pi]

MRE RMSRE MAE RMSAE

Single Length (Standard): 0.93 0.25 0.88 0.18
ulp ulp ulp ulp

Single Length (T2 special): 1.1 0.3 0.94 0.19
ulp ulp ulp ulp

Double Length: 1.0 0.28 0.90 0.19
ulp ulp ulp ulp

The Algorithm

Step 1 Set N = integer part of (IXI +Pi/2)/Pi and compute the remainder of
(IXI +Pi/2) by Pi, using extended precision arithmetic (double precision in the
standard version).

Step 2 Compute the sine of the remainder using a floating-point polynomial.

Step 3 Adjust the sign of the result according to the evenness of N.

Notes
Note 1 Inspection of the algorithm shows that argument reduction always occurs, thus

there is no primary domain for COS. SO for all arguments the accuracy of the
result depends crucially on step 2. The standard single-precision version
performs the argument reduction in double-precision, so there is effectively no
loss of accuracy at this step. For the T2 special version and the double-precision
version there are effectively K extra bits in the representation of 3t(K=8 for the
former and 12 for the latter). If the argument agrees with an odd integer multiple
of rr/2 to more than k bits there is a loss of significant bits from the computed

___________ i1;i~~~@_'9©' 3_3



3.2 Single and double length elementary function libraries

remainder equal to the number of extra bits of agreement, and this causes a loss
of accuracy in the result.

Note 2 The difference between cos evaluated at successive floating-point numbers is
given approximately by the absolute error amplification factor, A. For arguments
larger than Cmax this difference may be more than half the significant bits of the
result, and so the result is considered to be essentially indeterminate and an
inexact.NaN is returned. The extra precision of step 2 in the double-precision
and T2 special versions is lost if N becomes too large, and the cut-off at Cmax
prevents this also.

Note 3 For small arguments the errors are not evenly distributed. As the argument
becomes smaller there is an increasing bias towards negative errors (which is
to be expected from the form of the Taylor series). For the single-length version
and X in [-0.1, 0.1], 620/0 of the errors are negative, whilst for X in [-0.01, 0.01],
700/0 of them are.

Note 4 The propagated error has a complex behavior. The propagated relative error
becomes large near each zero of the function, but the propagated absolute error
only becomes large for large arguments. In effect, the error is seriously amplified
only in an interval about each irrational zero, and the width of this interval
increases roughly in proportion to the size of the argument.

Note 5 Since only the remainder of (IXI+Pi/2) by Pi is used in step 3, the symmetry
cos(x+ nn ) =± cos(x) is preserved. Moreover, since the same rational approxi­
mation is used as in SIN, the relation cos(x) = sin(x+3tl2) is also preserved.
However, in each case there is a complication due to the different precision
representations of n.

Note 6 The output range is not exceeded. Thus the output of COS is always a valid
argument for ACOS.

_34 ii;ili~@BlJI-----------



MRE RMSRE

1.24 ulp 0.32 ulp

1.24 ulp 0.32 ulp

3 Mathematics libraries

COSH,DCOSH

REAL32 FUNCTION COSH (VAL REAL32 X)
REAL64 FUNCTION DCOSH (VAL REAL64 X)

Compute cosh(X).

Domain: [-Hmax, Hmax] = [-89.4, 89.4]5, [-710.5, 710.5]0

Range: [1.0, Inf)

Primary domain: [-XBig, XBig] =[-8.32, 8.32]5
= [-18.37,18.37]0

Exceptions

lXI > Hmax gives Inf.

Propagated Error

A =X sinh(X) , R =X tanh(X) (See note 3)

Generated Error

Primary domain error:

Single Length:

Double Length:

The Algorithm

Step 1 If IXI > XBig, set result:= EXP ( lXI - In(2)) .

Step 2 Otherwise, set temp:= EXP (IXI) , and set result = (temp + 1/temp)/2.

Notes
Note 1 Hmax is the point at which cosh(X) becomes too large to be represented in the

floating-point format.

Note 2 XBig is the point at which e-1X1 becomes insignificant compared with elX1 (in
floating-point) .

Note 3 Errors in the argument are not seriously magnified by this function, although the
output does become less reliable near the ends of the range.

O 35----------- LTLI~t~'~D©'-----------



3.2 Single and double length elementary function libraries

EXP, DEXP

[-Inf, MaxLog) = [-Inf, 88.72)S, [-Inf, 709.78)0

[0, Inf) (See note 4)

[-Ln2/2, Ln2/2) =[-0.3466, 0.3466)

Range:

Primary domain:

REAL32 FUNCTION EXP (VAL REAL32 X)
REAL64 FUNCTION DEXP (VAL REAL64 X)

Compute eX.

Domain:

MRE RMSRE

0.99 ulp 0.25 ulp

1.0 ulp 0.25 ulp

1.4 ulp 0.25 ulp

Exceptions
All arguments outside the domain generate an Inf.

Propagated error

A =Xex, R=X

Generated error

Primary domain error:

Single Length (Standard):

Single Length (T2 special):

Double Length:

The Algorithm

Step 1 Set N =integer part of X/ln(2).

Step 2 Compute the remainder of X by In(2), using extended precision arithmetic.

Step 3 Compute the exponential of the remainder with a floating-point rational approxi­
mation.

Step 4 Increase the exponent of the result by N. If N is sufficiently negative the result
must be de-normalized.

Notes
Note 1 MaxLog is 10ge(XMAX).

Note 2 For sufficiently negative arguments (below -87.34 for single-length and below
-708.4 for double-length) the output is de-normalized, and so the floating-point
number contains progressively fewer significant digits, which degrades the
accuracy. In such cases the error can theoretically be a factor of two.

Note 3 Although the true exponential function is never zero, for large negative argu­
ments the true result becomes too small to be represented as a floating-point
number, and EXP underflows to zero. This occurs for arguments below -103.9
for single-length, and below -745.2 for double-length.

Note 4 The propagated error is considerably magnified for large positive arguments, but
diminished for large negative arguments.

_36 E;ili~@MI9I-----------



3 Mathematics libraries

POWER, DPOWER

[0, Inf] x [-Inf, Inf]

(-lnf,lnf)

See note 3.

Range:

Primary domain:

REAL32 FUNCTION POWER (VAL REAL32 X, Y)
REAL64 FUNCTION DPOWER (VAL REAL64 X, Y)

ComputeX~

Domain:

Exceptions
If the first argument is outside its domain, undefined.NaN is returned. If the true
value of XY exceeds XMAX, Inf is returned. In certain other cases other NaNs are
produced: See note 2.

Propagated Error

A =YXY(1 ± 10ge(X», R =Y(1 ± 10ge(X» (See note 4)

Generated error

MRE RMSRE (See note 3)

1.0 ulp 0.25 ulp

63.1 ulp 13.9 ulp

21.1 ulp 2.4 ulp

Example range error:

Single Length (Standard):

Single Length (T2 special):

Double Length:

The Algorithm

Deal with special cases: either argument =1,0, +Inf or -Inf (see note 2). Otherwise:

(a) For the standard single precision:

Step 1 Compute L =10ge(X) in double precision, where X is the first argument.

Step 2 Compute W = Y x L in double precision, where Y is the second argument.

Step 3 Compute RESULT =eW in single precision.

(b) For double precision, and the single precision special version:

Step 1 Compute L =log2(X) in extended precision, where X is the first argument.

Step 2 Compute W = Y x L in extended precision, where Y is the second argument.

Step 3 Compute RESULT = 2win extended precision.

Notes
Note 1 This subroutine implements the mathematical function xY to a much greater

accuracy than can be attained using the ALOG and EXP functions, by performing
each step in higher precision. The single-precision version is more efficient than
using DALOG and EXP because redundant tests are omitted.

Note 2 Results for special cases are as given in Table 3.4.
Note 3 Performing all the calculations in extended precision makes the double-preci­

sion algorithm very complex in detail, and having two arguments makes a

___________ ~~i©.'~~©~ 3_7



3.2 Single and double length elementary function libraries

primary domain difficult to specify. As an indication of accuracy, the functions
were evaluated at 100 000 points logarithmically distributed over (0.1, 10.0),
with the exponent linearly distributed over (-35.0, 35.0) (single-length), and
(-300.0, 300.0) (double-length), producing the errors given above. The errors
are much smaller if the exponent range is reduced.

Note 4 The error amplification factors are calculated on the assumption that the relative
error in Yis ± that in X, otherwise there would be separate factors for both X and
1': It can be seen that the propagated error will be greatly amplified whenever
lo~ (X) or Y is large.

First Input (X) Second Input (Y) Result

<0 ANY undefined.NaN

0 ~o undefined.NaN

0 o<Y~XMAX 0

0 Int unstable.NaN

o <x <1 Int 0

0< X <1 -Int Int

1 -XMAX~Y~ XMAX 1

1 ± Int unstable.NaN

1 <X~XMAX Int Int

1 <X~XMAX -Int 0

Int 1 ~ Y ~ Int Int

Int -Int ~y ~ -1 0

Int -1 < Y <1 undefined. NaN

otherwise 0 1

otherwise 1 X

Table 3.4 Power special cases

38 ~SGS.1HOMSON------------ ...,£ It:':ilO©OO@~~@~O©~------------



3 Mathematics libraries

RAN, DRAN

REAL32,INT32 FUNCTION RAN (VAL INT32 X)
REAL64,INT64 FUNCTION DRAN (VAL INT64 X)

These produce a pseudo-random sequence of integers, or a corresponding
sequence of floating-point numbers between zero and one. x is the seed integer that
initiates the sequence.

Domain: Integers (see note 1)

Range: [0.0, 1.0] x Integers

Exceptions None.

The Algorithm

Step 1 Produce the next integer in the sequence: Nk+l =(aNk + 1hnodM

Step 2 Treat Nk+1 as a fixed-point fraction in [0,1), and convert it to floating point.

Step 3 Output the floating point result and the new integer.

Notes
Note 1 This function has two results, the first a real, and the second an integer (both 32

bits for single-length, and 64 bits for double-length). The integer is used as the
argument for the next call to RAN, Le. it carries the pseudo-random linear
congruential sequence Nk, and it should be kept in scope for as long as RAN is
used. It should be initialized before the first call to RAN but not modified thereafter
except by the function itself.

Note 2 If the integer parameter is initialized to the same value, the same sequence (both
floating-point and integer) will be produced. If a different sequence is required
for each run of a program it should be initialized to some 'random' value, such
as the output of a timer.

Note 3 The integer parameter can be copied to another variable or used in expressions
requiring random integers. The topmost bits are the most random. A random
integer in the range [O,L] can conveniently be produced by taking the remainder
by (L+1) of the integer parameter shifted right by one bit. If the shift is not done
an integer in the range [-L,L] will be produced.

Note 4 The modulus Mis 232 for single-length and 264 for double-length, and the multi­
pliers, a, have been chosen so that all M integers will be produced before the
sequence repeats. Several different integers can produce the same floating­
point value, so a floating-point output may be repeated, although the sequence
will not be repeated until M calls have been made.

Note 5 The floating-point result is uniformly distributed over the output range, and the
sequence passes various tests of randomness, such as the run test, the
maximum of 5 test and the spectral test.

Note 6 The double-length version is slower to execute, but 'more random' than the
single-length version. If a highly-random sequence of single-length numbers is
required, this could be produced by converting the output of DRAN to single­
length. Conversely if only a relatively crude sequence of double-length numbers
is required, RAN could be used for higher speed and its output converted to
double-length.

___________ ~~I~I~~©' 39_



3.2 Single and double length elementary function libraries

SIN, DSIN

REAL32 FUNCTION SIN (VAL REAL32 X)
REAL64 FUNCTION DSIN (VAL REAL64 X)

Compute sine(X) (where X is in radians).

Domain: [-Smax, Smax] = [-205887.4, 205887.4]S (Standard),
= [-4.2*106, 4.2*106]5 (T2 special)
= [-4.29*109, 4.29*109]0

Range:

Primary domain:

[-1.0,1.0]

[-PiI2, PiI2]= [-1.57,1.57]

Exceptions
All arguments outside the domain generate an inexact.NaN, except ± Inf, which
generates an undefined.NaN.

Propagated Error
A =Xcos(X), R =Xcot(X)

Generated error (See note 1)

[0,2Pi]

RMSAE

0.19
ulp

0.19
ulp

0.18
ulp

MAE

0.96
ulp

0.94
ulp

0.91
ulp

Primary Domain

MRE RMSRE

0.94 0.23
ulp ulp

0.92 0.23
ulp ulp

0.90 0.22
ulp ulp

Double Length:

Single Length (T2 special):

Single Length (Standard):

The Algorithm

Step 1 Set N = integer part of lXI/Pi.
Step 2 Compute the remainder of IXI by Pi, using extended precision arithmetic

(double precision in the standard version).

Step 3 Compute the sine of the remainder using a floating-point polynomial.

Step 4 Adjust the sign of the result according to the sign of the argument and the
evenness of N.

Notes
Note 1 For arguments outside the primary domain the accuracy of the result depends

crucially on step 2. The extra precision of step 2 is lost if N becomes too large,
and the cut-off Smax is chosen to prevent this. In any case for large arguments
the granularity of floating-point numbers becomes a significant factor. For argu­
ments larger than Smax a change in the argument of 1 ulp would change more
than half of the significant bits of the result, and so the result is considered to be
essentially indeterminate.

_40 Efi5~@_,91-----------



3 Mathematics libraries

Note 2 The propagated error has a complex behavior. The propagated relative error
becomes large near each zero of the function (outside the primary range), but
the propagated absolute error only becomes large for large arguments. In effect,
the error is seriously amplified only in an interval about each irrational zero, and
the width of this interval increases roughly in proportion to the size of the argu­
ment.

Note 3 Since only the remainder of X by Pi is used in step 3, the symmetry:

sin (x + n:Jr ) =± sin (x)

is preserved, although there is a complication due to differing precision repre­
sentations of 3t.

Note 4 The output range is not exceeded. Thus the output of SIN is always a valid
argument for ASIN.

-----------lFii51@m'&~~ 4_1



3.2 Single and double length elementary function libraries

SINH,DSINH

REAL32 FUNCTION SINH (VAL REAL32 X)
REAL64 FUNCTION DSINH (VAL REAL64 X)

Compute sinh(X).

Domain: [-Hmax, Hmax] = [-89.4, 89.4]S, [-710.5, 710.5]0

Range: (-Inf, Inf)

Primary domain: (-1.0, 1.0)

Exceptions

X < -Hmax gives -Inf, andX > Hmax gives Inf.

Propagated Error

A = X cosh(.X), R = X coth(X) (See note 3)

Generated Error

Single Length:

Double Length:

Primary Domain

MRE RMSRE

0.91 ulp 0.26 ulp

0.67 ulp 0.22 ulp

[1 .0, XBig] (See note 2)

MAE RMSAE

1.41 ulp 0.34 ulp

1.31 ulp 0.33 ulp

The Algorithm

Step 1 If IXI > XBig, set Rwork:= EXP (1X1 - In(2) ) .

Step 2 If XBig;;::: 1X1;;::: 1.0, set temp:= EXP (1X1) , and set Rwork = (temp - 1/temp)/2.

Step 3 Otherwise compute sinh(lXI) with a floating-point rational approximation.

Step 4 In all cases, set RESULT = ± Rwork according to the sign of X.

Notes
Note 1 Hmax is the point at which sinh(X) becomes too large to be represented in the

floating-point format.

Note 2 XBig is the point at which e-1XI becomes insignificant compared with e lXl , (in
floating-point). For single-length it is 8.32, and for double-length it is 18.37.

Note 3 This function is quite stable with respect to errors in the argument. Relative error
is magnified near zero, but the absolute error is a better measure near the zero
of the function and it is diminished there. For large arguments absolute errors
are magnified, but since the function is itself large, relative error is a better
criterion, and relative errors are not magnified unduly for any argument in the
domain, although the output does become less reliable near the ends of the
range.

42 ~SGS-1HOMSON----------- ..~£ ~O©OO@~ILrn©'ii'OO@~O~~-----------



3 Mathematics libraries

TAN,DTAN

REAL32 FUNCTION TAN (VAL REAL32 X)
REAL64 FUNCTION DTAN (VAL REAL64 X)

Compute tan(X) (where X is in radians).

Domain:

Range:

Primary domain:

[-Tmax, Tmax] =[-102943.7, 102943.7]S(Standard),
= [-2.1*106, 2.1*106]S(T2 special),
=[-2.1*109,2.1*109]0

(-lnf,lnf)

[-Pi/4, Pi/4]= [-0.785,0.785]

MRE RMSRE (See note 3)

1.44 ulp 0.39 ulp

1.37 ulp 0.39 ulp

1.27 ulp 0.35 ulp

Exceptions
All arguments outside the domain generate an inexact.NaN, except ± Inf, which
generate an undefined.NaN. Odd integer multiples of rrJ2 may produce
unstable.NaN.

Propagated Error

A = X(1 + tan2(X», R = X(1 + tan2 (X»/tan(X) (See note 3)

Generated error
Primary domain error:

Single Length (Standard):

Single Length (T2 special):

Double Length:

The Algorithm

Step 1 Set N =integer part of X/(Pi/2) , and compute the remainder of X by Pi/2, using
extended precision arithmetic.

Step 2 Compute two floating-point rational functions of the remainder, XNum and
XDen.

Step 3 If N is odd, set RESULT=- XDen/XNum, otherwise set RESULT=XNum/XDen.

Notes
Note 1 R is large whenever X is near to an integer multiple of rrJ2, and so tan is very

sensitive to small errors near its zeros and singularities. Thus for arguments
outside the primary domain the accuracy of the result depends crucially on step
2, so this is performed with very high precision, using double precision Pil2 for
the standard single-precision function and two double-precision floating-point
numbers for the representation of rrJ2 for the double-precision function. The T2
special version uses two single-precision floating-point numbers. The extra
precision is lost ifN becomes too large, and the cut-off Tmax is chosen to prevent
this.

Note 2 The difference between TAN evaluated at successive floating-point numbers is
given approximately by the absolute error amplification factor,A. For arguments



3.2 Single and double length elementary function libraries

larger than Smax this difference could be more than half the significant bits of the
result, and so the result is considered to be essentially indeterminate and an
inexact.NaN is returned.

Note 3 Tan is quite badly behaved with respect to errors in the argument. Near its zeros
outside the primary domain the relative error is greatly magnified, though the
absolute error is only proportional to the size of the argument. In effect, the error
is seriously amplified in an interval about each irrational zero, whose width
increases roughly in proportion to the size of the argument. Near its singularities
both absolute and relative errors become large, so any large output from this
function is liable to be seriously contaminated with error, and the larger the
argument, the smaller the maximum output which can be trusted. If step 3 of the
algorithm requires division by zero, an unstable.NaN is produced instead.

Note 4 Since only the remainder of X by Pil2 is used in step 3, the symmetry:

tan (x + n:n ) =tan (x )

is preserved, although there is a complication due to the differing precision
representations of 3t. Moreover, by step 3 the symmetry:

tan (x ) = 1/ tan ( :n/2 - x )

is also preserved.

_44 ~lilmtt&.lf~~I-----------



MRE RMSRE

0.53 ulp 0.2 ulp

0.53 ulp 0.2 ulp

3 Mathematics libraries

TANH,DTANH

REAL32 FUNCTION TANH (VAL REAL32 X)
REAL64 FUNCTION DTANH (VAL REAL64 X)

Compute tanh(X).

Domain: [-ln1, Inf]

Range: [-1.0, 1.0]

Primary domain: [-Log(3)/2, Log(3)/2] = [-0.549, 0.549]

Exceptions
None.

Propagated Error

A = X/cosh2(X), R = X/sinh(X) cosh(X)

Generated Error

Primary domain error:

Single Length:

Double Length:

The Algorithm

Step 1 If 00 > In(3)/2, set temp:= EXP (00/2) . Then set
Rwork =1 -2/(1+temp).

Step 2 Otherwise compute Rwork =tanh(lXI) with a floating-point rational approxima­
tion.

Step 3 In both cases, set RESULT =± Rwork according to the sign of X.

Notes
Note 1 As a floating-point number, tanh(X) becomes indistinguishable from its asymp­

totic values of ±1.0 for 00> HTmax, where HTmax is 8.4 for single-length, and
19.06 for double-length. Thus the output of TANH is equal to ±1.0 for such X.

Note 2 This function is very stable and well-behaved, and errors in the argument are
always diminished by it.

___________ LTLI~t~~~ 4_5



3.3 T4 elementary function library

3.3 T4 elementary function library

To use this library a program header must include the line:

lOSE "tbmaths.lib"

The version of the library described by this section has been written for 32-bit processors
without hardware for floating-point arithmetic. Functions from it will give results very
close, but not identical to, those produced by the corresponding functions from the single
and double length libraries.

This is the version specifically intended to derive maximum performance from the IMS
T400, T414, T425 and ST20450 processors. The single-precision functions make use
of the FMUL instruction available on 32-bit processors without floating-point hardware.
The library is compiled for transputer class TB and the processor ST20450.

The tables and notes at the beginning of this chapter apply equally here. However all
the functions are contained in one library.



3 Mathematics libraries

ACOS,DACOS

REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)

These compute: cosine- 1(X) (in radians)

Domain: [-1.0, 1.0]

Rang~ ~,~]

Primary domain: [-0.5, 0.5]

Exceptions
All arguments outside the domain generate an undefined.NaN.

Propagated Error
A =-X1V1 -X2, R =-XI(sin-1(X) '.11 -X2)

Generated Error

Single Length:

Double Length:

Primary Domain [-1.0, 1.0]

MRE RMSRE MAE RMSAE

1.1 ulp 0.38 ulp 2.4 ulp 0.61 ulp

1.3 ulp 0.34 ulp 2.9 ulp 0.78 ulp

The Algorithm

Step 1 If 00 > 0.5, setXwork:= SQRT ((1-00)/2) . Compute Rwork =arcsine (2 *Xwork)
with a floating-point rational approximation. If the argument was positive, this is
the result, otherwise set the result =Pi - Rwork.

Step 2 Otherwise compute Rwork directly using the rational approximation. If the argu­
ment was positive, set result = Pil2 - Rwork, otherwise result = Pil2 + Rwork.

Notes
Note 1 The error amplification factors are large only near the ends of the domain. Thus

there is a small interval at each end of the domain in which the result is liable to
be contaminated with error, although this interval is larger near 1 than near -1 ,
since the function goes to zero with an infinite derivative there. However since
both the domain and range are bounded the absolute error in the result cannot
be large.

Note 2 Since the rational approximation is the same as that in AS IN, the relation
cos-1(x) = rrJ2 - sin-1(x)is preserved.

___________ iTll~I@m&"9©~ 4_7



3.3 T4 elementary function library

ALOG,DALOG

REAL32 FUNCTION ALOG (VAL REAL32 X)
REAL64 FUNCTION DALOG (VAL REAL64 X)

These compute: lo~ (X)

Domain:

Range:

Primary domain:

(O,XMAX]

[MinLog, MaxLog] (See note 2)

[v2l2, y'2) =[0.7071, 1.4142)

MRE RMSRE

1.19 ulp 0.36 ulp

2.4 ulp 1.0 ulp

Exceptions
All arguments outside the domain generate an undefined.NaN.

Propagated Error

A == 1, R =10~(X)

Generated Error
Primary domain error:

Single Length:

Double Length:

The Algorithm

Step 1 Split X into its exponent N and fraction F.

Step 2 Find the natural log of F with a fixed-point rational approximation, and convert
it into a floating-point number LnF.

Step 3 Compute In(2) * N with extended precision and add it to LnF to get the result.

Notes
Note 1 The term In(2) *Nis much easier to compute (and more accurate) thanLnF, and

it is larger provided N is not 0 (Le. for arguments outside the primary domain).
Thus the accuracy of the result improves as the modulus of 10g(X) increases.

Note 2 The minimum value that can be produced, MinLog, is the logarithm of the
smallest de-normalized floating-point number. For single length MinLog is
-103.28, and for double length it is -744.4. The maximum value MaxLog is the
logarithm of XMAX. For single-length it is 88.72, and for double-length it is
709.78.

Note 3 Since Inf is used to represent aI/values greaterthanXMAXits logarithm cannot
be defined.

Note 4 This function is well-behaved and does not seriously magnify errors in the argu­
ment.

_48 ii;llitel£~©' _



3 Mathematics libraries

ALOG10,DALOG10

REAL32 FUNCTION ALOG10 (VAL REAL32 X)
REAL64 FUNCTION DALOG10 (VAL REAL64 X)

These compute: IOg10(X)

Domain:

Range:

Primary domain:

(O,XMAX]

[MinL 10, MaxL 10] (See note 2)

['.1212, '.12) =[0.7071,1.4142)

MRE RMSRE

1.43 ulp 0.39 ulp

2.64 ulp 0.96 ulp

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A == loglo(e), R = 10glo(e)/loG?(X)

Generated Error

Primary domain error:

Single Length:

Double Length:

The Algorithm

Step 1 Set temp:=ALOG(X).

Step 2 If temp is a NaN, copy it to the output, otherwise set
result = log(e) * temp.

Notes
Note 1 See note 1 for ALOG.

Note 2 The minimum value that can be produced, MinL 10, is the base-10 logarithm of
the smallest de-normalized floating-point number. For single length MinL 10 is
-44.85, and for double length it is -323.3. The maximum value MaxL 10 is the
base-10 logar.ithm of XMAX. For single length MaxL 10 is 38.53, and for double­
length it is 308.26.

Note 3 Since Inf is used to represent allvalues greater than XMAX its logarithm cannot
be defined.

Note 4 This function is well-behaved and does not seriously magnify errors in the argu­
ment.

___________ LTLIfJ@_I9©~ 49_



3.3 T4 elementary function library

ASIN,DASIN

REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)

These compute: sin-1(X) (in radians)

Domain: [-1.0, 1.0]

Range: [-PiI2, Pi/2]

Primary domain: [-0.5, 0.5]

Exceptions
All arguments outside the domain generate an undefined.NaN.

Propagated Error
A =XI..../1 -X2, R =X/(sin- l (X)..../1 -X2)

Generated Error

Single Length:

Double Length:

Primary Domain [-1.0, 1.0]

MRE RMSRE MAE RMSAE

0.53 ulp 0.21 ulp 1.35 ulp 0.33 ulp

2.8 ulp 1.4 ulp 2.34 ulp 0.64 ulp

The Algorithm

Step 1 If IXI> 0.5, setXwork:= SQRT ((1 -1XI)/2).
Compute Rwork =arcsine(-2 *Xwork) with a floating-point rational approxima­
tion, and set the result =Rwork + Pi/2.

Step 2 Otherwise compute the result directly using the rational approximation.

Step 3 In either case set the sign of the result according to the sign of the argument.

Notes
Note 1 The error amplification factors are large only near the ends of the domain. Thus

there is a small interval at each end of the domain in which the result is liable to
be contaminated with error: however since both domain and range are bounded
the absolute error in the result cannot be large.

Note 2 By step 1, the identity sin-lex) =rr/2 - 2 sin- l (v(1-x)/2)) is preserved.

_50 ifllii@nm&saI-----------



MRE RMSRE

0.53 ulp 0.21 ulp

1.27 ulp 0.52 ulp

3 Mathematics libraries

ATAN,DATAN

REAL32 FUNCTION ATAN (VAL REAL32 X)
REAL64 FUNCTION DATAN (VAL REAL64 X)

These compute: tan- 1(.X) (in radians)

Domain: [-ln1, Inf]

Range: [-Pi/2, Pi/2]

Primary domain: [-z, z], z =2 - v'3 =0.2679

Exceptions

None.

Propagated Error
A = X/(1 +P), R =X/(tan- 1(X)(1 +XZ))

Generated Error

Primary domain error:

Single Length:

Double Length:

The Algorithm

Step 1 If IXI > 1.0, setXwork =1/00, otherwiseXwork = LXI.

Step 2 If Xwork > 2-v'3, set F = (Xwork*v'3 -1)/(Xwork +v'3), otherwise F =Xwork.

Step 3 Compute Rwork =arctan(F) with a floating-point rational approximation.

Step 4 If Xwork was reduced in (2), set R =Pi/6 + Rwork, otherwise R =Rwork.

Step 5 If X was reduced in (1), set RESULT =Pi/2 - R, otherwise RESULT =R.

Step 6 Set the sign of the RESULT according to the sign of the argument.

Notes

Note 1 For IX) > ATmax, Itan-1(.X)1 is indistinguishable from 'Jt!2 in the floating-point
format. For single-length, ATmax = 1.68*107, and for double-length ATmax =
9*1015, approximately.

Note 2 This function is numerically very stable, despite the complicated argument
reduction. The worst errors occur just above 2-v'3, but are no more than 1.8 ulp.
3) It is also very well behaved with respect to errors in the argument, Le. the error
amplification factors are always small.

Note 3 The argument reduction scheme ensures that the identities tan- 1(.X) ='Jt!2 ­
tan- l (1/X), and tan-leX) ='Jt!6 + tan- 1«v'3*X-1)/(v'3 +X)) are preserved.



3.3 T4 elementary function library

ATAN2,DATAN2

REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)
REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)

These compute the angular co-ordinate tan-1(y/X) (in radians) of a point whose X
and Y co-ordinates are given.

Domain:

Range:

Primary domain:

[-Inf, Int] x [-Inf, Int]

(-Pi, Pi]

See note 2.

Exceptions
(0, 0) and (±lnf,±lnf) give undefined.NaN.

Propagated Error
A =X(1 ± Y)/(X2 + y2), R =X(1 ± Y)/(tan-l(y/X)~ + JIl)) (See note 3)

Generated Error
See note 2.

The Algorithm

Step 1 IfX, the first argument, is zero, set the result to ± rrJ2, according to the sign of
1': the second argument.

Step 2 Otherwise set Rwork:= ATAN (Y/X) . Then if Y < 0 set RESULT =Rwork - Pi,
otherwise set RESULT =Pi - Rwork.

Notes
Note 1 This two-argument function is designed to perform rectangular-to-polar co-ordi­

nate conversion.

Note 2 See the notes for ATAN for the primary domain and estimates of the generated
error.

Note 3 The error amplification factors were derived on the assumption that the relative
error in Y is ± that in X, otherwise there would be separate factors for X and 1':
They are small except near the origin, where the polar co-ordinate system is
singular.

_52 ii;i ~i~@miJ)lf~~~-----------



3 Mathematics libraries

COS,DCOS

REAL32 FUNCTION COS (VAL REAL32 X)
REAL64 FUNCTION DCOS (VAL REAL64 X)

These compute: cosine (X) (where X is in radians)

Domain: [-Smax, Smax] = [-12868.0, 12868.0]S,
= [-2.1 *108, 2.1 *108]D

Range:

Primary domain:

[-1.0,1.0]

See note 1.

Exceptions
All arguments outside the domain generate an inexact.NaN, except ±Inf, which
generates an undefined.NaN.

Propagated Error
A =-X sin(X), R =-X tan(.X) (See note 4)

Generated Error

Range:

Single Length:

Double Length:

[0,Pi/4) [0, 2Pi]

MRE RMSRE MAE RMSAE

1.0 ulp 0.28 ulp 0.81 ulp 0.17 ulp

0.93 ulp 0.26 ulp 0.76 ulp 0.18 ulp

The Algorithm

Step 1 Set N = integer part of (IXI+Pi/2)/Pi.

Step 2 Compute the remainder of (IXI+Pi/2) by Pi, using extended precision arithmetic.

Step 3 Compute the remainder to fixed-point, compute its sine using a fixed-point
rational function, and convert the result back to floating point.

Step 4 Adjust the sign of the result according to the evenness of N.

Notes
Note 1 Inspection of the algorithm shows that argument reduction always occurs, thus

there is no primary domain for COS. SO for all arguments the accuracy of the
result depends crucially on step 2. The extended precision corresponds to K
extra bits in the representation of 3t (K =8 for single-length and 12 for double
length). If the argument agrees with an odd integer multiple of 'JT12 to more than
K bits there is a loss of significant bits in the remainder, equal to the number of
extra bits of agreement, and this causes a loss of accuracy in the result.

Note 2 The extra precision of step 2 is lost if N becomes too large, and the cut-off Smax
is chosen to prevent this. In any case for large arguments the granularity of
floating-point numbers becomes a significant factor. For arguments larger than
Smax a change in the argument of 1 ulp would change more than half of the
significant bits of the result, and so the result is considered to be essentially
indeterminate.

___________ ii;ilii©M~~~~ 5_3



3.3 T4 elementary function library

Note 3 For small arguments the errors are not evenly distributed. As the argument
becomes smaller there is an increasing bias towards negative errors (which is
to be expected from the form of the Taylor series). For the single-length version
and X in [-0.1, 0.1], 620/0 of the errors are negative, whilst for X in [-0.01, 0.01],
700k of them are.

Note 4 The propagated error has a complex behavior. The propagated relative error
becomes large near each zero of the function, but the propagated absolute error
only becomes large for large arguments. In effect, the error is seriously amplified
only in an interval about each irrational zero, and the width of this interval
increases roughly in proportion to the size of the argument.

Note 5 Since only the remainder of (IXI+Pi/2) by Pi is used in step 3, the symmetry
cos(x+ nn ) =± cos(x) is preserved. Moreover, since the same rational approxi­
mation is used as in SiN, the relation cos(x) =sin(x+ 3tl2) is also preserved.
However, in each case there is a complication due to the different precision
representations of n.

Note 6 The output range is not exceeded. Thus the output of COS is always a valid
argument for ACOS.

_54 ~Iil@~.©' _



MRE RMSRE

0.99 ulp 0.3 ulp

1.23 ulp 0.3 ulp

3 Mathematics libraries

COSH,DCOSH

REAL32 FUNCTION COSH (VAL REAL32 X)
REAL64 FUNCTION DCOSH (VAL REAL64 X)

These compute: cosh(X)

Domain: [-Hmax, Hmax] =[-89.4, 89.4]S, [-710.5, 710.5]0

Range: [1 .0, Inf)

Primary domain: [-XBig, XBig] = [-8.32, 8.32]S
=[-18.37, 18.37]0

Exceptions

lXI > Hmax gives Inf.

Propagated Error

A = X sinh(X) , R = X tanh(X) (See note 3)

Generated Error

Primary domain error:

Single Length:

Double Length:

The Algorithm

Step 1 If lXI > XBig, set result:= EXP ( lXI - In(2») .

Step 2 Otherwise, set temp:= EXP ( IXI) , and set result = (temp + 1/temp)/2.

Notes

Note 1 Hmax is the point at which cosh(X) becomes too large to be represented in the
floating-point format.

Note 2 XBig is the point at which e -IXI becomes insignificant compared with e lXI (in
floating-point).

Note 3 Errors in the argument are not seriously magnified by this function, although the
output does become less reliable near the ends of the range.

___________ i'T£~tm'. 55_



MRE RMSRE

0.51 ulp 0.21 ulp

0.5 ulp 0.21 ulp

3.3 T4 elementary function library

EXP,DEXP

REAL32 FUNCTION EXP (VAL REAL32 X)
REAL64 FUNCTION DEXP (VAL REAL64 X)

These compute: eX

Domain: [-Inl, MaxLog) = [-Inl, 88.03)8, [-Inl, 709.78)0

Range: [0, Inl) (See note 4)

Primary domain: [-Ln2l2, Ln2l2) =[-0.3466, 0.3466)

Exceptions
All arguments outside the domain generate an Inl.

Propagated Error
A=Xex, R=X

Generated Error
Primary domain error:

Single Length:

Double Length:

The Algorithm

Step 1 Set N = integer part of Xlln(2).

Step 2 Compute the remainder of X by In(2), using extended precision arithmetic.

Step 3 Convert the remainder to fixed-point, compute its exponential using a fixed-point
rational function, and convert the result back to floating point.

Step 4 Increase the exponent of the result by N. If N is sufficiently negative the result
must be de-normalized.

Notes
Note 1 MaxLog is 10~(XMAX).

Note 2 The analytical properties of eX make the relative error of the result proportional
to the absolute error of the argument. Thus the accuracy of step 2, which
prepares the argument for the rational approximation, is crucial to the perfor­
mance of the routine. It is completely accurate when N =0, i.e. in the primary
domain, and becomes less accurate as the magnitude of N increases. Since N
can attain larger negative values than positive ones, EXP is least accurate for
large, negative arguments.

Note 3 For sufficiently negative arguments (below -87.34 for single-length and below
-708.4 for double-length) the output is de-normalized, and so the floating-point
number contains progressively fewer significant digits, which degrades the
accuracy. In such cases the error can theoretically be a factor of two.

Note 4 Although the true exponential function is never zero, for large negative argu­
ments the true result becomes too small to be represented as a floating-point
number, and EXP underflows to zero. This occurs for arguments below -103.9
for single-length, and below -745.2 for double-length.

_56 ~lit1tl~lf~~©' _



3 Mathematics libraries

Note 5 The propagated error is considerably magnified for large positive arguments, but
diminished for large negative arguments.

___________ i:ii~I@_'~~©~ 5_7



3.3 T4 elementary function library

POWER, DPOWER

REAL32 FUNCTION POWER (VAL REAL32 X, Y)
REAL32 FUNCTION DPOWER (VAL REAL64 X, Y)

These compute: XY

Domain: [0, In1] x [-Inf, In1]

Range: (-lnf,lnf)

Primary domain: See note 3.

RMSRE (See note 3)

0.24 ulp

1.73 ulp

MRE

1.0 ulp

13.2 ulp

Exceptions
If the first argument is outside its domain, undefined.NaN is returned. If the true
value of XY exceeds XMAX, Inf is returned. In certain other cases other NaNs are
produced: See note 2.

Propagated Error

A =lXY(1 ± 10~(X», R =Y(1 ± 10~(X» (See note 4)

Generated Error

Example range error:

Single Length:

Double Length:

The Algorithm
Deal with special cases: either argument =1,0, +Inf or-Inf (see note 2). Otherwise:

(a) For single precision:

Step 1 Compute L = log2(X) in fixed point, where X is the first argument.

Step 2 Compute W =Y x L in double precision, where Y is the second argument.

Step 3 Compute 2W in fixed point and convert to floating-point result.

(b) For double precision:

Step 1 Compute L =IOg2(X) in extended precision, where X is the first argument.

Step 2 Compute W =Y x L in extended precision, where Y is the second argument.

Step 3 Compute RESULT = 2W in extended precision.

Notes
Note 1 This subroutine implements the mathematical function xY to a much greater

accuracy than can be attained using the ALOG and EXP functions, by performing
each step in higher precision.

Note 2 Results for special cases are as given in Table 3.5.

Note 3 Performing all the calculations in extended precision makes the double-preci­
sion algorithm very complex in detail, and having two arguments makes a
primary domain difficult to specify. As an indication of accuracy, the functions
were evaluated at 100000 points logarithmically distributed over (0.1, 10.0),
with the exponent linearly distributed over (-35.0, 35.0) (single-length), and

_5_8 iTili~©l"~'cf~I-----------



3 Mathematics libraries

(-300.0, 300.0) (double-length), producing the errors given above. The errors
are much smaller if the exponent range is reduced.

Note 4 The error amplification factors are calculated on the assumption that the relative
error in Yis ± that inX, otherwise there would be separate factors for both X and
1': It can be seen that the propagated error will be greatly amplified whenever
loge (X) or Y is large.

First Input (X) Second Input (Y) Result

<0 ANY undefined.NaN

0 ~O undefined.NaN

0 o <Y~XMAX 0

0 Inl unstable.NaN

o <x <1 Inl 0

o <X <1 -Inf Inf

1 -XMAX ~ Y ~ XMAX 1

1 ± Inl unstable.NaN

1 <X~XMAX Inl Inf

1 <X~XMAX -Inf 0

Inf 1 ~ Y ~ Inl Inf

Inf -Inf ~y ~ -1 0

Inf -1 < Y <1 undefined.NaN

otherwise 0 1

otherwise 1 X

Table 3.5 Power special cases

___________ ~1~I©llIIi~©' 59_



3.3 T4 elementary function library

RAN, DRAN

REAL32,INT32 FUNCTION RAN (VAL INT32 X)
REAL64,INT64 FUNCTION DRAN (VAL INT64 X)

These produce a pseudo-random sequence of integers, and a corresponding
sequence of floating-point numbers between zero and one.

Domain: Integers (see note 1)

Range: [0.0, 1.0] x Integers

Exceptions None.

The Algorithm

Step 1 Produce the next integer in the sequence: Nk+1 = (aNk + 1>mod M

Step 2 Treat Nk+1 as a fixed-point fraction in [0,1), and convert it to floating point.

Step 3 Output the floating point result and the new integer.

Notes
Note 1 This function has two results, the first a real, and the second an integer (both 32

bits for single-length, and 64 bits for double-length). The integer is used as the
argument for the next call to RAN, Le. it carries the pseudo-random linear
congruential sequence Nk' and it should be kept in scope for as long as RAN is
used. It should be initialized before the first call to RAN but not modified thereafter
except by the function itself.

Note 2 If the integer parameter is initialized to the same value, the same sequence (both
floating-point and integer) will be produced. If a different sequence is required
for each run of a program it should be initialized to some 'random' value, such
as the output of a timer.

Note 3 The integer parameter can be copied to another variable or used in expressions
requiring random integers. The topmost bits are the most random. A random
integer in the range [O,L] can conveniently be produced by taking the remainder
by (L+1) of the integer parameter shifted right by one bit. If the shift is not done
an integer in the range [-L,L] will be produced.

Note 4 The modulus M is 232 for single-length and 264 for double-length, and the multi­
pliers, a, have been chosen so that all M integers will be produced before the
sequence repeats. However several different integers can produce the same
floating-point value and so a floating-point output may be repeated, although the
sequence of such will not be repeated until M calls have been made.

Note 5 The floating-point result is uniformly distributed over the output range, and the
sequence passes various tests of randomness, such as the run test, the
maximum of 5 test and the spectral test.

Note 6 The double-length version is slower to execute, but 'more random' than the
single-length version. If a highly-random sequence of single-length numbers is
required, this could be produced by converting the output of DRAN to single­
length. Conversely if only a relatively crude sequence of double-length numbers
is required, RAN could be used for higher speed and its output converted to
double-length.

_60 E;i~i~@mIU©' _



3 Mathematics libraries

SIN,DSIN

REAL32 FUNCTION SIN (VAL REAL32 X)
REAL64 FUNCTION DSIN (VAL REAL64 X)

These compute: sine(X) (where X is in radians)

Domain: [-Smax, Smax] =[-12868.0, 12868.0]S,
= [-2.1 *108, 2.1 *108]D

Range:

Primary domain:

[-1.0,1.0]

[-Pi/2, Pi/2] =[-1.57, 1.57]

Primary Domain [0, 2Pi]

MRE RMSRE MAE RMSAE

0.65 ulp 0.22 ulp 0.74 ulp 0.18 ulp

0.56 ulp 0.21 ulp 0.64 ulp 0.16 ulp

Exceptions

All arguments outside the domain generate an inexact.NaN, except ± Inf, which
generates an undefined.NaN.
Propagated Error

A =Xcos(X), R =Xcot(X)
Generated Error (See note 3)

Range:

Single Length:

Double Length:

The Algorithm

Step 1 Set N = integer part of IXl/Pi.

Step 2 Compute the remainder of IXl by Pi, using extended precision arithmetic.

Step 3 Convert the remainder to fixed-point, compute its sine using a fixed-point rational
function, and convert the result back to floating point.

Step 4 Adjust the sign of the result according to the sign of the argument and the
evenness of N.

Notes
Note 1 For arguments outside the primary domain the accuracy of the result depends

crucially on step 2. The extended precision corresponds to K extra bits in the
representation of 11: (K = 8 for single-length and 12 for double-length). If the
argument agrees with an integer multiple of 11: to more than K bits there is a loss
of significant bits in the remainder, equal to the number of extra bits of agree­
ment, and this causes a loss of accuracy in the result.

Note 2 The extra precision of step 2 is lost if N becomes too large, and the cut-off Smax
is chosen to prevent this. In any case for large arguments the granularity of
floating-point numbers becomes a significant factor. For arguments larger than
Smax a change in the argument of 1 ulp would change more than half of the
significant bits of the result, and so the result is considered to be essentially
indeterminate.

-----------IF;iIfi~~~~©' 6_1



3.3 T4 elementary function library

Note 3 The propagated error has a complex behavior. The propagated relative error
becomes large near each zero of the function (outside the primary range), but
the propagated absolute error only becomes large for large arguments. In effect,
the error is seriously amplified only in an interval about each irrational zero, and
the width of this interval increases roughly in proportion to the size of the argu­
ment.

Note 4 Since only the remainder of X by Pi is used in step 3, the symmetry:

sin (x + nn ) = ± sin (x )

is preserved, although there is a complication due to differing precision repre­
sentations of 3t.

Note 5 The output range is not exceeded. Thus the output of SIN is always a valid
argument for ASIN.



3 Mathematics libraries

SINH,DSINH

REAL32 FUNCTION SINH (VAL REAL32 X)
REAL64 FUNCTION DSINH (VAL REAL64 X)

These compute: sinh(X)

Domain:

Range:

Primary domain:

[-Hmax, Hmax] = [-89.4, 89.4]S, [-710.5, 710.5]0

(-lnl, Inl)

(-1.0, 1.0)

Exceptions

X < -Hmax gives -lnl, and X> Hmax gives Inf.

Propagated Error

A =X cosh(X), R =X coth(X) (See note 3)

Generated Error

Single Length:

Double Length:

Primary Domain [1.0, XBig]
(See note 2)

MRE RMSRE MAE RMSAE

0.89 ulp 0.3 ulp 0.98 ulp 0.31 ulp

1.3 ulp 0.51 ulp 1.0 ulp 0.3 ulp

The Algorithm

Step 1 If IXI > XBig, set Rwork:= EXP ( IXI - In(2)) .

Step 2 If XBig ~ IXI ~ 1.0, set temp:= EXP ( lXI) , and set
Rwork =(temp - 1/temp)/2.

Step 3 Otherwise compute Rwork =sinh(lXI) with a fixed-point rational approximation.

Step 4 In all cases, set RESULT =± Rwork according to the sign of X.

Notes

Note 1 Hmax is the point at which sinh(X) becomes too large to be represented in the
floating-point format.

Note 2 XBig is the point at which e-1X1 becomes insignificant compared with e1X1 , (in
floating-point). For single-length it is 8.32, and for double-length it is 18.37.

Note 3 This function is quite stable with respect to errors in the argument. Relative error
is magnified near zero, but the absolute error is a better measure near the zero
of the function and it is diminished there. For large arguments absolute errors
are magnified, but since the function is itself large, relative error is a better
criterion, and relative errors are not magnified unduly for any argument in the
domain, although the output does become less reliable near the ends of the
range.

___________ iJil51@-~~~©~ 63_



3.3 T4 elementary function library

TAN,DTAN

REAL32 FUNCTION TAN (VAL REAL32 X)
REAL64 FUNCTION DTAN (VAL REAL64 X)

These compute: tan(X) (where X is in radians)

Domain: [-Tmax, Tmax] =[-6434.0, 6434.0]S
= [-1.05*108, 1.05*108]0

Range:

Primary domain:

(-lnf,lnf)

[-Pi/4, Pi/4] =[-0.785, 0.785]

MRE RMSRE

3.5 ulp 0.23 ulp

0.69 ulp 0.23 ulp

Exceptions

All arguments outside the domain generate an inexact.NaN, except ± Inf, which
generate an undefined.NaN. Odd integer multiples of 'Jt!2 may produce
unstable.NaN.

Propagated Error

A = X(1 + tan2(X), R =X(1 + tan2(X)/tan(X) (See note 4)

Generated Error

Primary domain error:

Single Length:

Double Length:

The Algorithm

Step 1 Set N =integer part of X/(Pi/2).

Step 2 Compute the remainder of X by Pil2, using extended precision arithmetic.

Step 3 Convert the remainder to fixed-point, compute its tangent using a fixed-point
rational function, and convert the result back to floating point.

Step 4 If N is odd, take the reciprocal.

Step 5 Set the sign of the result according to the sign of the argument.

Notes
Note 1 R is large whenever X is near to an integer multiple of 'Jt!2, and so tan is very

sensitive to small errors near its zeros and singularities. Thus for arguments
outside the primary domain the accuracy of the result depends crucially on step
2. The extended precision corresponds to K extra bits in the representation of
1'r,/2 (K=8 for single-length and 12 for double-length). If the argument agrees with
an integer multiple of 'Jt!2 to more than K bits there is a loss of significant bits in
the remainder, approximately equal to the number of extra bits of agreement,
and this causes a loss of accuracy in the result.

Note 2 The extra precision of step 2 is lost if N becomes too large, and the cut-off Tmax
is chosen to prevent this. In any case for large arguments the granularity of
floating-point numbers becomes a significant factor. For arguments larger than
Tmax a change in the argument of 1 ulp would change more than half of the

-6-4----------lFfile@mwlJlI-----------



3 Mathematics libraries

significant bits of the result, and so the result is considered to be essentially
indeterminate.

Note 3 Step 3 of the algorithm has been slightly modified in the double-precision version
from that given in Cody &Waite to avoid fixed-point underflow in the polynomial
evaluation for small arguments.

Note 4 Tan is quite badly behaved with respect to errors in the argument. Near its zeros
outside the primary domain the relative error is greatly magnified, though the
absolute error is only proportional to the size of the argument. In effect, the error
is seriously amplified in an interval about each irrational zero, whose width
increases roughly in proportion to the size of the argument. Near its singularities
both absolute and relative errors become large, so any large output from this
function is liable to be seriously contaminated with error, and the larger the
argument, the smaller the maximum output which can be trusted. If step 4 of the
algorithm requires division by zero, an unstable.NaN is produced instead.

Note 5 Since only the remainder of X by Pi/2 is used in step 3, the symmetry tan(x+ nn:)
= tan(x) is preserved, although there is a complication due to the differing preci­
sion representations of 31:. Moreover, by step 4 the symmetry tan(x) =1/ tan( rrJ2
-x) is also preserved.

----------- /,;...,£~~t_cf9c1-----------6-5



MRE RMS

0.52 ulp 0.2 ulp

4.6 ulp 2.6 ulp

3.3 T4 elementary function library

TANH,DTANH

REAL32 FUNCTION TANH (VAL REAL32 X)
REAL64 FUNCTION DTANH (VAL REAL64 X)

These compute: tanh(X)

Domain: [-Inf, Inf]

Range: [-1.0, 1.0]

Primary domain: [-Log(3)/2, Log(3)/2] =[-0.549, 0.549]

Exceptions

None.

Propagated Error

A = X/cosh2(X) , R = X/sinh (X) cosh(X)

Generated Error

Primary domain error:

Single Length:

Double Length:

The Algorithm

Step 1 If IXI > In(3)/2, set temp:= EXP (1XI/2) . Then set Rwork = 1 - 2/(1 +temp).

Step 2 Otherwise compute Rwork = tanh(lX1) with a floating-point rational approxima-
tion.

Step 3 In both cases, set RESULT =± Rwork according to the sign of X.

Notes
Note 1 As a floating-point number, tanh(X) becomes indistinguishable from its asymp­

totic values of ±1.0 for IXI > HTmax, where HTmax is 8.4 for single-length, and
19.06 for double-length. Thus the output of TANH is equal to ±1.0 for such X.

Note 2 This function is very stable and well-behaved, and errors in the argument are
always diminished by it.

_66 ~~I©_cf£~ _



4 Host file server library

Library: hostio.lib

Constants: hostio. inc

The host file server library contains routines that are used to communicate with the host
file server plus support routines. The routines are independent of the host on which the
server is running. Using routines from this library you can guarantee that programs will
be portable across all implementations of the toolset.

Constant and protocol definitions for the host i/o library, including error and return codes,
are provided in the include file hostio. inc.

The result value from many of the routines in this library can take the value not less than
spr. operation. failed, which is a server dependent failure result. It has been left
open with the use of greater values because future server implementations may give
more information back via this byte.

The routines are listed in groups according to function in section 4.4 and described in
full in the alphabetical list in section 4.5.

4.1 Errors and the server run time library

The host i/o routines use support provided by the host file server. The server is imple­
mented in C and uses routines in a C run time library, some of which are implementation
dependent.

In particular, the host i/o routines do not check the validity of stream identifiers given in
the parameter s treamid, and the consequences of specifying an incorrect stream
identifier may differ from system to system. For example, some systems may return an
error tag, while some may return a text message. If you use only those stream identifiers
returned by the host i/o routines that open files (so. open, so. open. temp, and
so. popen. read), invalid identifiers are unlikely to occur. It is also possible in rare
circumstances for a program to fail altogether with an invalid stream identifier because
of the way the C library is implemented on the system. This error can only occur if direct
use of the library to perform the operation would produce the same error.

4.2 Reading real numbers

Routines for reading real numbers only accept numbers in the standard occam format
for REAL numbers. Programs that allow other ways of specifying real numbers must
convert to the occam format before presenting them to the library procedure.

For details of the occam syntax for real numbers see the occam 2. 1 Reference
Manual.

67----------- ~fitD~~©'------------



4.3 Procedure descriptions

4.3 Procedure descriptions

When pairs of channels are passed as parameters, by convention they are normally
passed in the order input channel then output channel. Hence all the routines which
interact with the host server take fs and ts (from serverand to server) as the first two
parameters. f s is the channel from the host file server, and ts is the channel to the host
file server. The Sp protocol used by the host file server channels is defined in the include
file hostio. inc. The multiplexors take the next two parameters as from user, to user
which will normally correspond with to server, from server.

Note: for those routines which write data to a stream (including the screen), if the data
is not sent as an entire block then it cannot be guaranteed that the data arrives contigu­
ouslyat its destination. This is because another process writing to the same destination
may interleave its server requests with those of these routines.

4.4 Host i/o procedures arranged by purpose

The host i/o routines may be divided into eight groups:

• general host access (Table 4.1);

• keyboard input (Table 4.2);

• screen output (Table 4.3);

file access and management (Table 4.4);

file output (Table 4.5);

buffers (Table 4.6);

multiplexors (Table 4.7);

• time and date processing (Table 4.8).

4.4.1 General host access

This group contains routines to access the host computer for system information and
services.

Procedure Description

so. system Passes a command to the host operating system.

so.exit Terminates the server.

so.getenv Returns host environment variables.

so.conunandline Returns the server command line.

so.parse.conunand.line Returns the server command line and interprets it.

so.version Returns information about the server and host.

Table 4.1 General host access procedures

_68 i:iili~@mIL\\' _



4 Host file server library

4.4.2 Keyboard input

Procedure Description

so.ask Prompts on the screen for a user response on the keyboard.

so.read.echo.line Reads and echoes a line from the keyboard.

so.read.line Reads a line from the keyboard without echo.

so.getkey Waits for and fetches the next byte from the keyboard.

so.pollkey Fetches the next byte from the keyboard if there is one.

so.read.echo.any.int Reads and echoes any integer from the keyboard.

so.read.echo.int Reads and echoes a decimal INT from the keyboard.

so.read.echo.int32 Reads and echoes a decimal INT32 integer from the keyboard.

so.read.echo.int64 Reads and echoes a decimal INT64 integer from the keyboard.

so. read. echo.hex. int Reads and echoes a hexadecimal INT from the keyboard.

so.read.echo.hex.int32 Reads and echoes a hexadecimal INT32 integer from the keyboard.

so.read.echo.hex.int64 Reads and echoes a hexadecimal INT64 integer from the keyboard.

so.read.echo.rea132 Reads and echoes a REAL32 from the keyboard.

so.read.echo.rea164 Reads and echoes a REAL64 from the keyboard.

Table 4.2 Keyboard input procedures

4.4.3 Screen output

Procedure Description

so.write.char Displays a single character on the screen.

so.write.nl Displays a new line sequence on the screen.

so.write.string Displays a string on the screen.

so.write.string.nl Displays a string on the screen followed by a new line.

so.write.int Displays an INT as decimal on the screen.

so.write.int32 Displays an INT32 as decimal on the screen.

so.write.int64 Displays an INT64 as decimal on the screen.

so.write.hex.int Displays an INT as hexadecimal on the screen.

so.write.hex.int32 Displays an INT32 as hexadecimal on the screen.

so.write.hex.int64 Displays an INT64 as hexadecimal on the screen.

so.write.rea132 Displays a REAL32 on the screen.

so.write.rea164 Displays a REAL64 on the screen.

Table 4.3 Screen output procedures

4.4.4 File access and management

This group includes routines for managing file streams, for opening and closing files, and
for reading and writing blocks of data.

____________ iiii~it_I9©' 6_9_



4.4 Host i/o procedures arranged by purpose

Procedure Description

so.open Opens a file.

so.open.temp Opens a temporary file.

so.popen.read Searches for and opens an input file.

so.close Closes a file.

so.test.exists Tests whether a file exists.

so.read Reads a block of bytes from a file stream.

so.write Writes a block of bytes to a file stream.

so.gets Reads a line from a file stream.

so.puts Writes a line to a file stream.

so.flush Flushes an output stream.

so.seek Sets the file position.

so.tell Returns the current file position.

so.eof Tests whether the end of the file has been reached.

so.ferror Indicates whether an error has occurred in a file stream

so.remove Deletes a file.

so. rename Renames a file.

Table 4.4 File access and management procedures

4.4.5 File output

These routines write characters and strings to a specified stream, usually a file. The
result returned can take the values spr •ok, spr •notok or, very rarely, ~

spr.operation.failed.

Procedure Description

so.fwrite.char Writes a single character to a file stream.

so.fwrite.nl Writes a new line sequence to a file stream.

so.fwrite.string Writes a string to a file stream.

so. fwrite. string.nl Writes a string followed by a new line to a file stream.

so.fwrite.int Writes an:INT to a file stream as decimal ASCII.

so.fwrite.int32 Writes an :INT32 to a file stream as decimal ASCII.

so.fwrite.int64 Writes an :INT64 to a file stream as decimal ASCII.

so.fwrite.hex.int Writes an:INT to a file stream as hexadecimal ASCII.

so. fwrite.hex. int32 Writes an :INT32 to a file stream as hexadecimal ASCII.

so.fwrite.hex.int64 Writes an :INT64 to a file stream as hexadecimal ASCII.

so.fwrite.real32 Writes a REAL32 to a file stream as ASCII.

so.fwrite.real64 Writes a REAL64 to a file stream as ASCII.

Table 4.5 File output procedures

-70-----------lF;i~itmgl~lf~" -----------



4 Host file server library

4.4.6 Server protocol buffers

This group of procedures is designed to assist with buffering data exchange between
the program and host. Each procedure is a complete process, containing a loop which
will run until explicitly stopped by sending a signal on the stopper channel. The
procedures are normally called once in parallel with the rest of the program.

Procedure Description

so.buffer Creates a server protocol buffer process.

so.overlapped.buffer Creates an overlapping server protocol buffer process.

Table 4.6 Buffering procedures

4.4.7 Server protocol multiplexors

This group of procedures is designed to assist with multiplexing data exchange between
the program and host. Each procedure is a complete process, containing a loop which
will run until explicitly stopped by sending a signal on the stopper channel. The
procedures are normally called once in parallel with the rest of the program.

Procedure Description

so.multiplexor Creates a server protocol multiplexor process.

so.overlapped.multiplexor Creates an overlapping server protocol multiplexor
process.

so.pri.multiplexor Creates a prioritized server protocol multiplexor process.

so.overlapped.pri.multiplexor Creates a prioritized overlapping server protocol
multiplexor process.

Table 4.7 Multiplexing procedures

4.4.8 Host date and time

Procedure Description

so.time Returns the packed local and UTC time.

so.time.to.date Converts a packed time into an array of integers.

so.date.to.ascii Converts an array of integers into ASCII time.

so.time.to.ascii Converts a packed time into ASCII time.

so.today.date Returns local time as an array of integers.

so.today.ascii Returns local time as ASCII.

Table 4.8 Time and date processing procedures

___________ ~~~~©m.~©~ 7_1_



4.5 Host i/o procedure definitions

4.5 Host i/o procedure definitions

so. ask

PROC so.ask (CHAN OF SP fs, ts,
VAL []BYTE prompt, replies,
VAL BOOL display.possible.replies,
VAL BOOL echo. reply,
INT reply.number)

Prompts on the screen for a user response on the keyboard. The prompt is specified
by the string prompt, and the list of permitted relies by the string replies. Only
single character responses are permitted, and alphabetic characters are not case
sensitive. For example if the permitted responses are Y, Nand Q then the replies
string should contain the string "YNQ", and y, nand q would also be accepted.
reply. number indicates which response was typed, numbered from zero. Aques­
tion mark (?) is automatically displayed at the end of the prompt.

If display.possible. replies is TRUE the permitted replies are displayed on
the screen. If echo. reply is TRUE the user's response is displayed.

The procedure will not return until a valid response has been typed.

so.buffer

PROC so.buffer (CHAN OF SP fs, ts, from. user, to. user,
CHAN OF BOOL stopper)

This procedure buffers data between the user processes and the host, as shown in
Figure 4.1 . It can be used by processes on a network to pass data to the host across
intervening processors.

stopper

ts

fs

~ CHAN OF SP

- - -~ CHAN OF BOOL

so.buffer
from. user

to.user

Figure 4.1 Channels of SO.buffer

_72 ~lil@n'IJ)lf~©' _



4 Host file server library

This procedure is a complete process, containing a loop which will run until explicitly
stopped by sending either a TRUE or FALSE value on the atopper channel. The
procedure is normally called once in parallel with the rest of the program.

so.close

PROC so.close (CHAN OF SP fs, ts,
VAL INT32 streamid,
BYTE result)

Closes the stream identified by streamid. The result returned can take any of
the following values:

spr.ok The close was successful.
~ spr.operation. failed If result ~ apr. operation. failed then this

denotes a server returned failure.

so.commandline

PROC so.commandline (CHAN OF SP fs, ta,
VAL BYTE all, INT length,
[] BYTE string,
BYTE result)

Returns the command line passed to the server when it was invoked. If all has the
value sp. short. commandl ine then all valid server options and their arguments
are stripped from the command line, as is the server command name. If all is
sp.whole.commandline then the command line is returned exactly as it was
invoked. The returned command line is in the first length bytes of string. If the
command line string is longer than 507 bytes then it is truncated to this size.

The result returned can take any of the following values:

spr. ok The operation was successful.
spr.buffer.overflow Command line too long for string and has been

truncated to fit.
~ spr. operation. failed If result ~ apr. operation. failed then this

denotes a server returned failure.

so.eof

PROC so.eof (CHAN OF SP fa, ts,
VAL INT32 streamid,
BYTE result)

Tests whether the specified stream has reached the end of a file. The end of file is
reached when a read operation attempts to read past the end of file.

____________ JFii~~t_~~©, 7_3



4.5 Host i/o procedure definitions

The resul t returned can take any of the following values:

spr. ok End of file has been reached.
~ spr.operation. failed If result ~ spr.operation. failed then this

denotes a server returned failure. This result will
also be obtained if eof has not been reached.

so.exit

PROC so.exit (CHAN OF SP fs, ts,
VAL INT32 status)

Terminates the server, which returns the value of status to its caller. If status has
the special value sps. success then the server will terminate with a host specific
success result. If status has the special value sps. failure then the server will
terminate with a host specific failure result.

so.ferror

PROC so.ferror (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT32 error.no, INT length,
[]BYTE message, BYTE result)

Indicates whether an error has occurred on the specified stream. The integer
error. no is a host defined error number. The returned message is in the first
length bytes of message. length will be zero if no message can be provided. If
the returned message is longer than 503 bytes then it is truncated to this size.

The result returned can take any of the following values:

spr. ok An error has occurred on the specified stream.
apr. buffer. overf low An error has occurred but the message is too large

for message and has been truncated to fit.
~ spr. operation. failed If result ~ spr. operation. failed then this

denotes a server returned failure. This result will
also be obtained if no error has occurred on the
specified stream.

so.flush

PROC so. flush (CHAN OF SP fs, ts,
VAL INT32 streamid,
BYTE result)

Flushes the specified output stream. All internally buffered data is written to the
stream. Write and put operations that are directed to standard output are flushed
automatically. The stream remains open.

_74 Efili~@_cf9I------------



4 Host file server library

The result returned can take any of the following values:

spr. ok The flush was successful.
~ spr. operation. failed If result ~ spr.operation. failed then this

denotes a server returned failure.

so.fwrite.char

PROC so.fwrite.char (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL BYTE char,
BYTE result)

Writes a single character to the specified stream. The result spr.notok will be
returned if the character is not written.

so.fwrite.hex.int

PROC so.fwrite.hex.int (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT n, width,
BYTE result)

Writes the value n (of type INT) to the specified stream as hexadecimal ASCII digits
preceded by the # character. The numbe·r of characters printed is width + 1. If
width is larger than the size of the number then the number is padded with leading
Os or FS as appropriate. If width is smaller than the size of the number, then the
number is truncated, from the left, to width digits. A negative value for width is an
error.

The result spr. notok will be returned if not all the characters are written.

so.fwrite.hex.int32

PROC so.fwrite.hex.int32 (CHAN OF SP fs, ts,
VAL INT32 streamid, n
VAL INT width,
BYTE result)

Writes the value n (of type INT32) to the specified stream as hexadecimal ASCII
digits preceded by the # character. The number of characters printed is width +
1. If width is larger than the size of the number then the number is padded with
leading Os or FS as appropriate. If width is smaller than the size of the number, then
the number is truncated, from the left, to width digits. A negative value for width
is an error.

The result spr. notok will be returned if not all the characters are written.

____________ J.ul~Im_~~~ 75_



4.5 Host i/o procedure definitions

so.fwrite.hex.int64

PROC so.fwrite.hex.int64 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT64 n,
VAL INT width,
BYTE result)

Writes the value n (of type INT64) to the specified stream as hexadecimal ASCII
digits preceded by the # character. The number of characters printed is width +
1. If width is larger than the size of the number then the number is padded with
leading Os or FS as appropriate. Ifwidth is smaller than the size of the number, then
the number is truncated, from the left, to width digits. A negative value for width
is an error.

The result spr. notok will be returned if not all the characters are written.

so.fwrite.int

PROC so.fwrite.int (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT n, width,
BYTE result)

Writes the value n (of type INT) to the specified stream as decimal ASCII digits,
padded out with leading spaces and an optional sign to the specified field width,
width. If the field width is too small for the number it is widened as necessary; a zero
value for width specifies minimum width. A negative value for width is an error.

The result spr. notok will be returned if not all of the digits are written.

so.fwrite.int32

PROC so.fwrite.int32 (CHAN OF SP fs, ts,
VAL INT32 streamid, n,
VAL INT width,
BYTE result)

Writes the value n (of type INT32) to the specified stream as decimal ASCII digits,
padded out with leading spaces and an optional sign to the specified field width,
width. If the field width is too small for the number it is widened as necessary; a zero
value for width specifies minimum width. A negative value for width is an error.

The result spr. notok will be returned if not all of the digits are written.

so.fwrite.int64

PROC so.fwrite.int64 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT64 n,
VAL INT width,
BYTE result)



4 Host file server library

Writes the value n (of type INT64) to the specified stream as decimal ASCII digits,
padded out with leading spaces and an optional sign to the specified field width,
width. If the field width is too small for the number it is widened as necessary; a zero
value for width specifies minimum width. A negative value for width is an error.

The result spr. notok will be returned if not all of the digits are written.

so.fwrite.nl

PROC so.fwrite.nl (CHAN OF SP fs, ts,
VAL INT32 streamid,
BYTE result)

Writes a newline sequence to the specified stream.

If result takes a value ~ spr.operation.failed then this denotes a server
returned failure.

so.fwrite.rea132

PROC so.fwrite.real32 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL REAL32 r,
VAL INT Ip, Dp,
BYTE result)

Writes the value r (of type REAL3 2) to the specified stream as ASCII characters
formatted using Ip and Dp as described under REAL32TOSTRING (see section 7).

The result spr.notok will be returned if not all the characters are written.

Note: Due to fixed size internal buffers, this procedure will be invalid if the string
representing the real number is longer than 24 characters. If this is a problem, it is
suggested you write your own procedure to perform this function. The procedure
should include a buffer set to the required size, a call to REAL32TOSTRING, followed
by a call to so.wri teo

so.fwrite.rea164

PROC so.fwrite.real64 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL REAL64 r,
VAL INT Ip, Dp,
BYTE result)

As so. fwri te. real32 but for 54-bit real numbers. The formatting variables Ip
and Dp are described under REAL32TOSTRING (see section 7).

____________ E;ili~@B~~©~ 7_7_



4.5 Host i/o procedure definitions

Note: Due to fixed size internal buffers, this procedure will be invalid if the string
representing the real number is longer than 30 characters. If this is a problem, it is
suggested you write your own procedure to perform this function. The procedure
should include a buffer set to the required size, a call to REAL64TOSTRING, followed
by a call to so.write.

so.fwrite.string

PROC so.fwrite.string (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE string,
BYTE result)

Writes a string to the specified stream. The result spr. notok will be returned if not
all the characters are written.

The resul t returned can take any of the following values:

spr. ok The operation was successful.

spr . notok Not all of the characters were written.
~ spr.operation. failed If result ~ spr.operation. failed then this

denotes a server returned failure

so.fwrite.string.nl

PROC so.fwrite.string.nl (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE string,
BYTE result)

Writes a string to the specified stream followed by a newline sequence. The result
spr.notok will be returned if not all the characters are written.

The result returned can take any of the following values:

spr. ok The operation was successful.
spr. notok Not all of the characters were written.
~ spr. operation. fai led If result ~ spr. operation. failed then this

denotes a server returned failure

so.getenv

PROC so.getenv (CHAN OF SP fs, te,
VAL [ ] BYTE name,
INT length,
[]BYTE value,
BYTE result)



4 Host file server library

Returns the string defined for the host environment variable name. The returned
string is in the first length bytes of value. If name is not defined on the system
resul t takes the value ~ spr. operation. failed. If the environment variable's
string is longer than 507 bytes then it is truncated to this size.

The result returned can take any of the following values:

spr. ok The operation was successful.
spr •bad. name The specified name is a null string.

spr.bad.packet.size SIZE name is too large
(> sp.max.getenvname.size).

spr. buffer. overflow Environment string too large for value but has
been truncated to fit.

~ spr. operation. failed If result ~ spr. operation. failed then this
denotes a server returned failure.

so.getkey

PROC so.getkey (CHAN OF SP fs, ts,
BYTE key, result)

Reads a single character from the keyboard. If no key is available then it waits until
a key is pressed. The key is not echoed on the screen.

The result returned can take any of the following values:

spr. ok A key has been returned in key.

~ spr. operation. failed If result ~ spr. operation. failed then this
denotes a server returned failure.

so.gets

PROC so.gets (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT length,
[] BYTE data,
BYTE result)

Reads a line from the specified input stream. Characters are read until a newline
sequence is found, or sp.max.readbuffer. size characters have been read or
the end of the file is reached. The characters read are in the first length bytes of
datao The newline sequence is not included in the returned array. If the read fails
then either the end of file has been reached or an error has occurred.

The result returned can take any of the following values:

spr. ok The read was successful.
spr •bad. packet. size Data is too large

(> sp •max •readbuffer. size).



4.5 Host i/o procedure definitions

spr. buffer. overflow The line was larger than the buffer data and has
been truncated to fit.

~ spr.operation. failed If result ~ spr.operation. failed then this
denotes a server returned failure.

so.multiplexor

PROC so.multiplexor (CHAN OF SP fs, ts,
[]CHAN OF SP from. user, to.user,
CHAN OF BOOL stopper)

This procedure multiplexes any number of pairs of SP protocol channels onto a
single pair of SP protocol channels, as shown in Figure 4.2.

stopper

from.user[i]

ts

fs

--. CHAN OF SP

- - -~ CHAN OF BOOL

Figure 4.2 Channels of so.multiplexor

The channel pair fs and ts may connect to the file server or another SP protocol
multiplexor or buffer. For n input channels, each channel is guaranteed to be able
to pass on a message for every n messages that pass through the multiplexor. This
is achieved by cycling the selection priority from the lowest index of from.user.
However, stopper always has highest priority.

This procedure is a complete process, containing a loop which will run until explicitly
stopped by sending either a TRUE or FALSE value on the stopper channel. The
procedure is normally called once in parallel with the rest of the program.

so.open

PROC so. open (CHAN OF SP fs, ts,
VAL [ ] BYTE name,
VAL BYTE type, mode,
INT32 streamid,
BYTE result)

_80 iifi5~@_.©' _



spm.append

spm.existing.update

spm.new.update
spm.append.update

4 Host file server library

Opens the file given by name and returns a stream identifier streamid for all future
operations on the file until it is closed. If name does not include a directory then the
file is searched for in the current directory. File type is specified by type and the
mode of opening by mode.

type can take the following values:

spt •binary File contains raw bytes only.
spt. text File contains text records separated by newline

sequences.

mode can take the following values:

spm. input Open existing file for reading.
spm. output Open new file, or truncate an existing one, for

writing.
Open a new file, or append to an existing one, for
writing.
Open an existing file for update (reading and
writing), starting at beginning of the file.
Open new file, or truncate existing one, for update.
Open new file, or append to an existing one, for
update.

resul t can take the following values:

spr. ok The open was successful.
spr.bad.name Null file name supplied.
spr. bad. type Invalid file type.
spr.bad.mode Invalid open mode.
spr. bad.packet. size File name too large

(i.e.>sp .max. openname. size).
~ spr. operation. failed If result ~ spr. operation. failed then this

denotes a server returned failure.

so.open.temp

PROC so. open. temp (CHAN OF SP fs, ts,
VAL BYTE type,
[so.temp.filename.length]BYTE filename,
INT32 streamid,
BYTE result)

Opens a temporary file in spm.new. update mode. The first filename tried is
temp 00. If the file already exists the nn suffix on the name temp nn is incremented
up to a maximum of 9999 until an unused number is found. If the number exceeds
2 digits the last character of temp is overwritten. For example: if the number exceeds
99 the p is overwritten, as in tem 999; if the number exceeds 999, the m is over-



4.5 Host i/o procedure definitions

written, as in te9999. File type can be spt.binary or spt.text, as with
so. open. The name of the file actually opened is returned in filename. The result
returned can take any of the following values:

spr. ok The open was successful.

spr. notok There are already 10,000 temporary files.

spr •bad. type Invalid file type specified.

~ spr.operation. failed If result ~ spr.operation. failed then this
denotes a server returned failure.

so.overlapped.buffer

PROC so. overlapped. buffer (CHAN OF SP fe, ts,
from. user, to.user,

CHAN OF BOOL stopper)

This procedure buffers data between the user processes and the host, as shown in
Figure 4.3. It can be used by processes on a network to pass data to the host across
intervening processors.

The so. overlapped. buffer procedure is a complete process, containing a loop
which will run until explicitly stopped by sending either a TRUE or FALSE value on
the stopper channel. The procedure is normally called once in parallel with the rest
of the program.

This procedure is similar to so. buffer, but allows many host communications to
occur simultaneously through a train of processes. This can improve efficiency if the
communications pass through many buffer or multiplexor processes before
reaching the server. It is terminated by either a TRUE or FALSE value on the channel
stopper.

stopper

to.userfs

~_t_s__-i so.overlapped. ~_f_ro_m_._u_ser

buffer

----. CHAN OF SP

- - -~ CHAN OF BOOL

Figure 4.3 Channels of so. overlapped. buffer

_82 J:iii~~@m&,'~~JI-----------



4 Host file server library

so.overlapped.multiplexor

PROC so.overlapped.multiplexor (CHAN OF SP fs, ts,
[]CHAN OF SP from. user,

to.user,
CHAN OF BOOL stopper,
[ ] INT queue)

This procedure multiplexes any number of pairs of SP protocol channels onto a
single pair of SP protocol channels, as shown in Figure 4.4. The channel pair f sand
ts may connect to the file server or another SP protocol multiplexor or buffer. For
n channels, each channel is guaranteed to be able to pass on a message for every
n messages that pass through the multiplexor. This is achieved by cycling the
selection priority from the lowest index of from. user. However, stopper always
has highest priority.

stopper

from.user[i]

ts

fs

-------. CHAN OF SP

- - -~ CHAN OF BOOL

Figure 4.4 Channels of so. overlapped. mul tiplexor

so. overlapped. multiplexor is a complete process, containing a loop which
will run until explicitly stopped by sending either a TRUE or FALSE value on the
stopper channel. The procedure is normally called once in parallel with the rest of
the program.

This procedure is similar to so.multiplexor, but can pipeline server requests.
The number of requests than can be pipelined is determined by the size of queue,
which must provide one word for each request that can be pipelined. If SIZE queue
is zero then the routine simply waits for input from stopper. Pipelining improves
efficiency if the server requests have to pass through many processes on the way
to and from the server. It is terminated by sending either a TRUE or FALSE value on
the channel stopper.

___________ L.,~I~~@_£y©, 83_



4.5 Host i/o procedure definitions

so.overlapped.pri.multiplexor

PROC so.overlapped.pri.multiplexor (CHAN OF SP fs, ts,
[]CHAN OF SP from.user,

to.user,
CHAN OF BOOL stopper,
[]INT queue)

This procedure multiplexes any number of pairs of sp protocol channels onto a
single pair of SP protocol channels, as shown in Figure 4.5. The channel pair fs and
ts may connect to the file server or another SP protocol multiplexor or buffer.

stopper

from.user[i]

ts

fs

--. CHAN OF SP

- - -~ CHAN OF BOOL

so. overlapped.
pri.multiplexor

I

I
I

/

Figure 4.5 Channels of so.overlapped.pri.multiplexor

This procedure is a complete process, containing a loop which will run until explicitly
stopped by sending either a TRUE or FALSE value on the stopper channel. The
procedure is normally called once in parallel with the rest of the program.

The multiplexing is not cyclic but uses a hierarchy of priorities between the input
channels. Within the array from.user, from.user[i] is of higher priority than
from. user [j ] , for i < j. The channel stopper has higher priority than any channel
in the array from. user.

so.parse.command.line

PROC so.parse.command.line (CHAN OF SP fs, ts,
VAL [] []BYTE option. strings,
VAL []INT option.parameters.required,
[]BOOL option. exists,
[] [2]INT option.parameters,
INT error. len,
[] BYTE line)

_84 iiflli~©mwl9©' _



4 Host file server library

This procedure reads the server command line and parses it for specified options
and associated parameters.

The parameter option. strings contains a list of all the possible options and must
be in upper case. Options may be any length up to 256 bytes and when entered on
the command line may be either upper or lower case. Because all of the strings in
option. strings must be the same length, trailing spaces should be used to pad.

To read a parameter that has no preceding option (such as a file name) then the first
option string should be empty (contain only spaces). For example, consider a
program to be supplied with a file name, and any of three options A, Band c. The
array option. strings would look like this:

VAL option.strings IS [" ", "A", "B", nCR]:

The parameter option. parameters. required indicates whether the corre­
sponding option (in option. strings) requires a parameter. The values it may
take are:

spopt •never Never takes a parameter.
spopt •maybe Optionally takes a parameter.
spopt. always Must take a parameter.

Continuing the above example, if the file name must be supplied and none of the
options take parameters, except for option c, which mayor may not have a param­
eter, then option. parameters. required would look like this:

VAL option.parameters.required IS
[spopt.always, spopt.never, spopt.never, spopt.maybe]:

If an option were present on the command line the corresponding element of
option. exists is set to TRUE, otherwise it is set to FALSE.

If an option was followed by a parameter then the position in the array line where
the parameter starts and the length of the parameter are given by the first and
second elements respectively in the corresponding element in
option. parameters.

If an error occurs whilst the command line is being parsed then error. len will be
greater than zero and line will contain an error message of the given length. If no
error occurs then line will contain the command line as supplied by the host file
server.

Most of the possible error messages are self-explanatory. The error message
Command line error: called incorrectly means that either:

• option. strings was null, or

SIZE option.exists, SIZE option. parameters or
SIZE option. parameters. required does not equal
SIZE option. strings.

___________ Efi~L_&~©' 8_5



4.5 Host i/o procedure definitions

so.pollkey

PROC so.pollkey (CHAN OF SP fs, ts,
BYTE key, result)

Reads a single character from the keyboard. If no key is available then it returns
immediately with ~ spr.operation.failed. The key is not echoed on the
screen.

The resul t returned can take any of the following values:

spr. ok A key was available and has been returned in key.
~ spr.operation. failed If result ~ spr.operation. failed then this

denotes a server returned failure.

so.popen.read

PROC so.popen.read (CHAN OF SP fs, ts,
VAL []BYTE filename,
VAL []BYTE path.variable.name,
VAL BYTE open. type,
INT full. len,
[]BYTE full.name,
INT32 streamid,
BYTE result)

Opens the file given by name and returns a stream identifier s treamid for all future
operations on the file until it is closed. If name does not include a directory then the
file is searched for in the current directory. If the file is not found and the filename
does not include a directory, the routine uses the directory path string associated
with the host environment variable given in path.variable. name, and performs
a search in each directory in the path in turn. This corresponds to the searching rules
used by the toolset, using the environment variable I SEARCH, as described in
section 4.10.2 in the occam 2. 1 Toolset User Guide.

The name of the file opened is returned in full. name, and the length of the file
name is returned in full. len. If no file is opened, full. len and full.name are
undefined, and the result will not be spr. ok.

The file type is specified by type and the mode of opening by mode. The mode of
opening is always spm. input. type can take the following values:

spt •binary File contains raw bytes only.
spt. text File contains text records separated by newline

sequences.

The resul t returned can take any of the following values:

spr. ok The open was successful.
spr. bad. name Null name supplied.

_86 E;ilitmsl£~I-----------



spr.buffer.overflow

spr.bad.type

spr.bad.packet.size

4 Host file server library

Invalid file type specified.
File name is too large (Le. > sp.max.open­
name. size) or path.variable.name is too
large (Le.> sp.max.getenvname.size).

The environment string referenced by
path.variable. name is longer than 507 char-
acters.

~ spr.operation. failed If result ~ spr.operation. failed then this
denotes a server returned failure.

so.pri.multiplexor

PROC so.pri.multiplexor (CHAN OF SP fs, ts,
[]CHAN OF SP from.user, to.user,
CHAN OF BOOL stopper)

This procedure multiplexes any number of pairs of SP protocol channels onto a
single pair of SP protocol channels, as shown in Figure 4.6.

stopper

from.user[i]

ts

fs

-----. CHAN OF SP

- - -~ CHAN OF BOOL

Figure 4.6 Channels of so.pri .multiplexor

The channel pair fs and ts may connect to the file server or another SP protocol
multiplexor or buffer. For n channels, each channel is guaranteed to be able to pass
on a message for every n messages that pass through the multiplexor.

This procedure is a complete process, containing a loop which will run until explicitly
stopped by sending either a TRUE or FALSE value on the channel stopper. The
procedure is normally called once in parallel with the rest of the program.

The multiplexing is not cyclic but uses a hierarchy of priorities between the input
channels. Within the array from.user, from. user [i] is of higher priority than
from. user [j ] , for i < j. The channel stopper is of lower priority than any channel
in the array from. user.

____________ iiil~l@mYI&~©~ 8_7



4.5 Host i/o procedure definitions

so.puts

PROC so.puts (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL [] BYTE data,
BYTE result)

Writes a line to the specified output stream. A newline sequence is added to the end
of the line. The size of data must be less than or equal to the host i/o constant
sp.max.writebuffer.size.

The result returned can take any of the following values:

spr. ok The write was successful.
spr.bad.packet.size SIZE data is too large

(> sp.max.writebuffer.size).

~ spr. operation. failed If result ~ spr. operation. failed then this
denotes a server returned failure.

so.read

PROC so. read (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT length, []BYTE data)

Reads a block of bytes from the specified stream up to a maximum given by the size
of the array data. If length returned is not the same as the size of data then the
end of the file has been reached or an error has occurred.

Note: so. read reads in multiples of the packet size defined by
sp.max.readbuffer.size. For greatest efficiency, read requests should be
made in multiples of this size.

so.read.echo.any.int

PROC so.read.echo.any.int (CHAN OF SP fa, ts,
INT n,
BOOL error)

Reads an integer typed at the keyboard, displays it on the screen and interprets it
as an INT. The number must be terminated by a return character. The boolean
error is set to TRUE if an invalid integer is typed, FALSE otherwise.

so. read. echo. any. int accepts numbers in either decimal or hexadecimal
format. Hexadecimal numbers may be lower or upper case but must be prefixed with
either # or $ to indicate a hexadecimal number, or %, which means add MOSTNEG
INT to the given hexadecimal, using modulo arithmetic. For example, on a 32-bit
transputer %70 is interpreted as #80000070, and on a 16-bit transputer as #8070.

88 ~SGS-1HOMSON------------ "'T~ ~O©OO@~~@[R!]O©®------------



4 Host file server library

This is useful when specifying transputer addresses, which are signed and start at
MOSTNEG INT.

so.read.echo.hex.int

PROC so.read.echo.hex.int (CHAN OF SP fs, ts,
INT n,
BOOL error)

Reads a hexadecimal integer typed at the keyboard, displays it on the screen and
interprets it as an INT. The number must be terminated by a return character. The
boolean error is set to TRUE if an invalid integer is typed, FALSE otherwise.

The hexadecimal digits may be in lower or upper case but must be prefixed with
either #, or $ to indicate a hexadecimal number, or %, which means add MOSTNEG
INT to the given hexadecimal, using modulo arithmetic. For example, on a 32-bit
transputer %70 is interpreted as #80000070, and on a 16-bit transputer as #8070.
This is useful when specifying transputer addresses, which are signed and start at
MOSTNEG INT.

so.read.echo.hex.int32

PROC so.read.echo.hex.int32 (CHAN OF SP fs, ts,
INT32 n,
BOOL error)

As so. read. echo. hex. int but reads 32-bit numbers.

Reads a hexadecimal integer typed at the keyboard, displays it on the screen and
interprets it as an INT32. The number must be terminated by a return character. The
boolean error is set to TRUE if an invalid integer is typed, FALSE otherwise.

The hexadecimal digits may be in lower or upper case but must be prefixed with
either #, or $ to indicate a hexadecimal number, or %, which means add MOSTNEG
INT to the given hexadecimal, using modulo arithmetic. For example, on a 32-bit
transputer %70 is interpreted as #80000070, and on a 16-bit transputer as #8070.
This is useful when specifying transputer addresses, which are signed and start at
MOSTNEG INT.

so.read.echo.hex.int64

PROC so.read.echo.hex.int64 (CHAN OF SP fs, ts,
INT64 n,
BOOL error)

Reads a hexadecimal integer typed at the keyboard, displays it on the screen and
interprets it as an INT64. The number must be terminated by a return character. The
boolean error is set to TRUE if an invalid integer is typed, FALSE otherwise.



4.5 Host i/o procedure definitions

The hexadecimal digits may be in lower or upper case but must be prefixed with
either #, or $ to indicate a hexadecimal number, or %, which means add MOSTNEG
INT to the given hexadecimal, using modulo arithmetic. For example, on a 32-bit
transputer %70 is interpreted as #80000070, and on a 16-bit transputer as #8070.
This is useful when specifying transputer addresses, which are signed and start at
MOSTNEG INT.

so.read.echo.int

PROC so.read.echo.int (CHAN OF SP fs, ts,
INT n,
BOOL error)

Reads a decimal integer typed at the keyboard, displays it on the screen and
interprets it as an INT. The number must be terminated by a return character. The
boolean error is set to TRUE if an invalid integer is typed, FALSE otherwise.

so.read.echo.int32

PROC so.read.echo.int32 (CHAN OF SP fa, ts,
INT32 n,
BOOL error)

Reads a decimal integer typed at the keyboard, displays it on the screen and
interprets it as an INT3 2. The number must be terminated by a return character. The
boolean error is set to TRUE if an invalid integer is typed, FALSE otherwise.

so.read.echo.int64

PROC so.read.echo.int64 (CHAN OF SP fa, ts,
INT64 n,
BOOL error)

Reads a decimal integer typed at the keyboard, displays it on the screen and
interprets it as an INT64. The number must be terminated by a return character. The
boolean error is set to TRUE if an invalid integer is typed, FALSE otherwise.

so.read.echo.line

PROC so.read.echo.line (CHAN OF SP fs, ts,
INT len,
[] BYTE line,
BYTE result)

Reads a line of text from the keyboard, echoing it on the screen. The characters read
are placed in the first len bytes of line. The line is read until the Return key is

_9_0 ~5i@.£~©' -----------



4 Host file server library

pressed at the keyboard. The line is truncated if line is not large enough. A newline
or carriage return is not included in line.

The result returned can take any of the following values:

spr. ok The read was successful.
~ spr. operation. failed If result ~ apr .operation. failed then this

denotes a server returned failure.

so.read.echo.rea132

PROC so.read.echo.real32 (CHAN OF SP fa, ts,
REAL32 n,
BOOL error)

Reads a real number typed at the keyboard, displays it on the screen and interprets
it as a REAL32. The number must conform to occam syntax and be terminated by
a return character. The boolean variable error is set to TRUE if an invalid number
is typed, FALSE otherwise.

so.read.echo.rea164

PROC so.read.echo.real64 (CHAN OF SP fs, ts,
REAL64 n,
BOOL error)

Reads a real number typed at the keyboard, displays it on the screen and interprets
it as a REAL64. The number must conform to occam syntax and be terminated by
a return character. The boolean variable error is set to TRUE if an invalid number
is typed, FALSE otherwise.

so.read.line

PROC so.read.line (CHAN OF SP fs, ts,
INT len,
[]BYTE line,
BYTE result)

Reads a line of text from the keyboard, without echoing it on the screen. The
characters read are placed in the first len bytes of 1 ine. The line is read until the
Return key is pressed at the keyboard. The line is truncated if line is not large
enough. A newline or carriage return is not included in line.

The result returned can take any of the following values:

spr. ok The read was successful.
~ spr. operation. failed If result ~ spr. operation. failed then this

denotes a server returned failure.

91
----------- i'Y£ I~I@_&Y©' ------------



4.5 Host i/o procedure definitions

so. remove

PROC so.remove (CHAN OF SP fs, ts ,
VAL [ ] BYTE name,
BYTE result)

Deletes the specified file.

The result returned can take any of the following values:

spr. ok The delete was successful.

spr •bad. name Null name supplied.
spr.bad.packet.size SIZE name is too large

(> sp.max.removename. size).

~ spr. operation. failed If resul t ~ spr. operation. failed then this
denotes a server returned failure.

so. rename

PROC so.rename (CHAN OF SP fs, ts,
VAL []BYTE oldname, newname,
BYTE result)

Renames the specified file.

The result returned can take any of the following values:

spr. ok The operation was successful.
spr. bad. name Null name supplied.
spr. bad. packet •size File names are too large

«SIZE oldname + SIZE newname)
> sp.max.renamename.size).

~ spr.operation. failed If result ~ spr.operation. failed then this
denotes a server returned failure.

so.seek

PROC so. seek (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT32 offset, origin,
BYTE result)

Sets the file position for the specified stream. A subsequent read or write will access
data at the new position.

For a binary file the new position will be offset bytes from the position defined by
origin. For a text file offset must be zero or a value retumed by so. tell, in
which case origin must be spo. start.

_92 ~lil@DI£~©~ _



4 Host file server library

origin may take the following values:

spo. s tart The start of the file.
spo. current The current position in the file.
spo. end The end of the file.

The result returned can take any of the following values:

spr.ok The operation was successful.
spr.bad.origin Invalid origin.
~ spr.operation. failed If result ~ spr.operation. failed then this

denotes a server returned failure.

so. system

PROC so. system (CHAN OF SP fs, ts,
VAL []BYTE command,
INT32 status,
BYTE result)

Passes the string command to the host command processor for execution. If the
command string is of zero length resul t takes the value spr. ok if there is a host
command processor, otherwise an error is returned.

If command is non-zero in length then status contains the host-specified value of
the command, otherwise it is undefined.

The result returned can take any of the following values:

spr. ok Host command processor exists.
spr. bad. packet. size The array command is too large

(> sp.max. systemcommand. size).
~ spr. operation. failed If result ~ spr. operation. failed then this

denotes a server returned failure.

so.tell

PROC so. tell (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT32 position, BYTE result)

Returns the current file position for the specified stream.

The result returned can take any of the following values:

spr. ok The operation was successful.
~ spr. operation. failed If result ~ spr. operation. failed then this

denotes a server returned failure.

so.test.exists

PROC so.test.exists (CHAN OF SP fs, ts,
VAL []BYTE filename,
BOOL exists)

___________ iiii~~t_.~ 9_3



4.5 Host i/o procedure definitions

Tests if the specified file exists. The value of exists is TRUE if the file exists,
otherwise it is FALSE.

so. time

PRoe so.time (CHAN OF SP fs, ts,
INT32 localtime, UTCtime)

Returns the local host time and Coordinated Universal Time. Both times are
expressed as the number of seconds that have elapsed since midnight on 1st
January, 1970. If UTC time is unavailable then it will have a value of zero. The times
are given as unsigned INT32S.

so.time.to.ascii

PROC so.time.to.ascii
(VAL INT32 time,
VAL BOOL long.years,
VAL BOOL days. first
[so.time.string.len]BYTE string)

Converts host time (as supplied by so. time) into an ASCII string, as described for
so.date.to.ascii.

so.time.to.date

PROC so.time.to.date (VAL INT32 input.time,
[so.date.len]INT date)

Converts host time (as supplied by so. time) to six integers, stored in the date
array. The elements of the array are given in Table 4.9.

Element of array Data

0 Seconds past the minute

1 Minutes past the hour

2 The hour (24 hour clock)

3 The day of the month

4 The month (1 to 12)

5 The year (4 digits)

Table 4.9 Elements of date array

so.today.ascii

PROC so. today. ascii
(CHAN OF SP fs, ts,
VAL BOOL long.years, days. first,
[so. time. string. len] BYTE string)

_9_4 Iiiilit_~' _



4 Host file server library

Gives today's date, in local time, as an ASCII string, in the same format as procedure
so .date. to .ascii. If the date is unavailable string is filled with spaces.

so.today.date

PROC so.today.date (CHAN OF SP fs, ts,
[so.date.len]INT date)

Gives today's date, in local time, as six integers, stored in the array date. The format
of the array is given in Table 4.9. If the date is unavailable all elements in date are
set to zero.

so.version

PROC so.version (CHAN OF SP fs, ts,
BYTE version, host, os, board)

Returns version information about the server and the host on which it is running. A
value of zero for any of the items indicates that the information is unavailable. This
function is obsolete and has not been updated with new host, operating system and
board types.

The version of the server is given by version. The value should be divided by ten
to yield the true version number. For example, a value of 15 means version 1.5.

The host machine type is given by host, and can take any of the following values:

sph.unknown

sph.PC

sph.S370

sph.NECPC

sph.VAX

sph.SON3

sph. BOX. SUN4

sph.BOX.SUN386

sph.BOX.APOLLO

sph.BOX.ATARI

unknown host type
IBM PC

IBM 370 Architecture

NECPC

DEC VAX

Sun Microsystems Sun 3
Sun Microsystems Sun 4
Sun Microsystems Sun 386i

Apollo
Atari ST or TT

Values up to 127 are reserved for use by SGS-THOMSON Microelectronics Limited.

The host operating system is given by os, and can take any of the following values:

spo.unknown

spo.DOS

unknown OS type

DOS

____________ ~~i~@mlLsa©~ 9_5



4.5 Host i/o procedure definitions

spo.HELIOS

spo.VMS

spo.SONOS

spo.CMS

spo.TOS

HELlOS

VMS

SunOS

CMS

TOS

Values up to 127 are reserved for use by SGS-THOMSON Microelectronics Limited.

The interface board type is given by board, and can take any of the following values:

spb. unknown unknown board type

spb.B004 IMS B004

spb.B008 IMS B008

spb.B010 IMS B010

spb.B011 IMS B011

spb.B014 IMS B014

spb.B015 IMS B015

spb.B016 IMS B016

spb.DRXll DRX-11

spb.IBMCAT CAT

spb. QTO Caplin aTO

spb. UDPLINK UDP link

spb. TCPLINK TCP link

spb.ACSILA ACSILA

Values up to 127 are reserved for use by SGS-THOMSON Microelectronics Limited.

so.write

PROC so.write (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE data,
INT length)

Writes a block of data to the specified stream. If length is less than the size of data
then an error has occurred.

Note: so.write writes in multiples of the packet size defined by
sp.max.writebuffer.size. For greatest efficiency, write requests should be
made in multiples of this size.

so.write.char

PROC so.write.char (CHAN OF SP fs, ts,
VAL BYTE char)



4 Host file server library

Writes the single byte char to the screen.

so.write.hex.int

PRoe so.write.hex.int (CHAN OF SP fs, ta,
VAL INT n, width)

Writes the value n (of type INT) to the screen as hexadecimal ASCII digits, preceded
by the # character. The number of characters printed is width + 1. If width is
larger than the size of the number then the number is padded with leading Os or FS
as appropriate. If width is smaller than the size of the number, the number is
truncated, from the left, to width digits. A negative value for width is an error.

so.write.hex.int32

PRoe so.write.hex.int64 (CHAN OF SP fs, ts,
VAL INT32 n,
VAL INT width)

Writes the value n (of type INT32) to the screen as hexadecimal ASCII digits,
preceded by the # character. The number of characters printed is width + 1. If
width is larger than the size of the number then the number is padded with leading
Os or FS as appropriate. If width is smaller than the size of the number, the number
is truncated, from the left, to width digits. A negative value for width is an error.

so.write.hex.int64

PRoe so.write.hex.int64 (CHAN OF SP fs, ts,
VAL INT64 n,
VAL INT width)

Writes the value n (of type INT64) to the screen as hexadecimal ASCII digits,
preceded by the # character. The number of characters printed is width + 1. If
width is larger than the size of the number then the number is padded with leading
Os or FS as appropriate. If width is smaller than the size of the number, the number
is truncated, from the left, to width digits. A negative value for width is an error.

so.write.int

PRoe so.write.int (CHAN OF SP fs, ta,
VAL INT n, width)

Writes the value n (of type INT) to the screen as decimal ASCII digits, padded out
with leading spaces and an optional sign to the specified field width, width. If the

O 97----------- ~~U@ml<f~D©~-----------



4.5 Host i/o procedure definitions

field width is too small for the number it is widened as necessary; a zero value for
width specifies minimum width. A negative value for width is an error.

so.write.int32

PROC so.write.int32 (CHAN OF SP fs, ts,
VAL INT32 n,
VAL INT width)

Writes the value n (of type INT3 2) to the screen as decimal ASCII digits, padded out
with leading spaces and an optional sign to the specified field width, width. If the
field width is too small for the number it is widened as necessary; a zero value for
width specifies minimum width. A negative value for width is an error.

so.write.int64

PROC so.write.int64 (CHAN OF SP fs, ts,
VAL INT64 n,
VAL INT width)

Writes the value n (of type INT64) to the screen as decimal ASCII digits, padded out
with leading spaces and an optional sign to the specified field width, width. If the
field width is too small for the number it is widened as necessary; a zero value for
width specifies minimum width. A negative value for width is an error.

so.write.nl

PROC so.write.nl (CHAN OF SP fs, ts)

Writes a new line sequence to the screen.

so.write.rea132

PROC so.write.rea132 (CHAN OF SP fs, ts,
VAL REAL32 r,
VAL INT Ip, Dp)

Writes the value r (of type REAL3 2) to the screen as ASCII characters formatted
using Ip and Dp as described under REAL32TOSTRING (see section 7).

Note: Since the internal buffers are of fixed size, this procedure will be invalid if the
string representing the real number is longer than 24 characters. If this is a problem,
it is suggested you write your own procedure to perform this function. The procedure
should include a buffer set to the required size, a call to REAL3 2TOSTRING, followed
by a call to so.wri tea

_9_8 iiiilii@m.£~©~ _



4 Host file server library

so.write.rea164

PROC so.write.rea164 (CHAN OF SP fs, ts,
VAL REAL64 r,
VAL INT Ip, Dp)

Writes the value r (of type REAL64) to the screen as ASCII characters formatted
using Ip and Dp as described under REAL32TOSTRING in Chapter 7.

Note: Since the internal buffers are of fixed size, this procedure will be invalid if the
string representing the real number is longer than 30 characters. If this is a problem,
it is suggested you write your own procedure to perform this function. The procedure
should include a buffer set to the required size, a call to REAL64TOSTRING, followed
by a call to so.wri teo

so.write.string

PROC so.write.string (CHAN OF SP fs, ts,
VAL []BYTE string)

Writes the string string to the screen.

so.write.string.nl

PROC so.write.string.nl (CHAN OF SP fs, ts,
VAL []BYTE string)

Writes the string string to the screen, followed by a newline sequence.

___________ i1ii5t9.©~ 99_



4.5 Host i/o procedure definitions

_10_0 iifilitnwrl9©' _



5 Stream i/o library

Library: streamio .lib

Constants: streamio. inc

The stream i/o library contains routines for reading and writing to files and to the terminal
at a higher level of abstraction than the host i/o library. The file streamio. inc defines
the KS and ss protocols and constants used by the stream i/o library routines.

The routines are listed in groups according to function in section 5.2 and described in
full in the alphabetical list in section 5.3.

5.1 Naming conventions

Procedure names always begin with a prefix derived from the first parameter. Stream
processes, where the SP channel (listed first) is used in combination with either the KS
or SS protocols, are prefixed with so. Stream input routines, which use only the KS
protocol are prefixed with ks, and stream output routines, which use only the ss
protocol, are prefixed with ss. The KS-to-SS conversion routine, which actually uses
both protocols, is prefixed for convenience with ks.

5.2 Stream i/o procedures

The stream i/o routines may be divided into three groups:

• stream processes (Table 5.1);

key stream input (Table 5.2);

screen stream output (Table 5.3).

Stream input and output procedures are used to input and output characters in key
stream KS and screen stream ss protocols. KS and ss protocols must be converted to
the server protocol before communicating with the host.

Stream processes convert streams from keyboard or screen protocol to the server
protocol SP or to related data structures. They are used to transfer data from the stream
input and output routines to the host. Stream processes can be run as parallel processes
serving stream input and output routines called in sequential code. For example, the
following code clears the screen of a terminal supporting ANSI escape sequences:

CHAN OF SS sern :
PAR

so.serstream.to.ANSI(fs, ts, sern)
SEQ

ss.goto.xy(sern, 0, 0)
ss.clear.eos(sern)
ss.write.endstream(scrn)

----------- Eillil@nllfJl©'----------1-0-1



5.2 Stream i/o procedures

The result value from many of the routines in this library can take a value equal to or
greater than spr.operation.failed, which is a server dependent failure result.
Future server implementations may give more failure information back via this byte.
Names for result values can be found in the file hostio. inc.

5.2.1 Stream processes

This group of procedures is designed to assist with handling key and screen streams.
Each procedure is a complete process, containing a loop which will run until explicitly
stopped. The procedures are normally called once in parallel with the rest of the
program.

Procedure Description

so.keystream.from.kbd Creates a process to read keys and convert to a key stream.

so.keystream.from.file Creates a process to read a file and convert to a key stream.

so.keystream. from. stdin Creates a process to read from standard in and convert to a key
stream.

ks.keystream.sink Creates a process to soak up a key stream.

ks.keystream.to.scrstream Creates a process to convert a key stream to a screen stream.

ss.scrstream.sink Creates a process to soak up a screen stream.

so.scrstream.to.file Creates a process to send a screen stream to a file.

so.scrstream.to.stdout Creates a process to send a screen stream to standard out.

ss.scrstream.to.array Creates a process to send a screen stream to an array.

ss.scrstream.from.array Creates a process to read a screen stream from an array.

ss.scrstream.fan.out Creates a process to copy screen stream input to two output
channels.

ss.scrstream.copy Creates a process to copy screen stream input to one output
channel.

so.scrstream.to.ANSI Creates a process to convert a screen stream to ANSI format.

so.scrstream.to.TVI920 Creates a process to convert a screen stream to TVI920 format.

ss.scrstream.multiplexor Creates a process to merge multiple screen streams.

Table 5.1 Stream process procedures

5.2.2 Key stream input

Procedure Description

ks.read.char Retums the next byte from a key stream.

ks.read.line Retums the next line from a key stream.

ks.read.int Retums the next INT from a key stream.

ks.read.int64 Retums the next INT64 from a key stream.

ks.read.rea132 Retums the next REAL32 from a key stream.

ks.read.rea164 Retums the next REAL64 from a key stream.

Table 5.2 Key stream input procedures

102 ~SGS-1HOMSON------------- ""L ~n©oo@rn~oo@~n©~ -------------



5 Stream i/o library

These procedures, as listed in Table 5.2, read characters and strings from the input
stream, in KS protocol.

5.2.3 Stream output

These routines write text, numbers and screen control codes to an output stream in ss
protocol.

Procedure Description

ss.write.char Write a character to a screen stream.

ss.write.nl Write a newline to screen stream.

ss.write.string Write a string to a screen stream.

ss.write.endstream Write an end of stream character to a screen stream.

ss.write.text.line Write a string to a screen stream followed by return and next line.

ss.write.int Write an J:NT to a screen stream as decimal ASCII characters.

ss.write.int64 Write an J:NT64 to a screen stream as decimal ASCII characters.

ss.write.hex.int Write an J:NT to a screen stream as hexadecimal characters.

ss.write.hex.int64 Write an J:NT64 to a screen stream as hexadecimal characters.

ss.write.reaI32 Write an REAL32 to a screen stream as ASCII characters.

ss.write.real64 Write an REAL64 to a screen stream as ASCII characters.

ss.goto.xy Send control signals to a screen stream to move the cursor.

ss.clear.eol Send control signals to a screen stream to clear to the end of the line.

ss.clear.eos Send control signals to a screen stream to clear to the end of the
screen.

ss.beep Send a bell character to a screen stream.

ss.up Send a cursor up character to a screen stream.

ss.down Send a cursor down character to a screen stream.

ss.left Send a cursor left character to a screen stream.

ss.right Send a cursor right character to a screen stream.

ss.insert.char Send control signals to a screen stream to insert a character.

ss.ins.line Send control signals to a screen stream to insert a line.

ss.delete.chr Send control signals to a screen stream to delete the current cursor
character.

ss.delete.chl Send control signals to a screen stream to delete the character to the
left of the cursor.

ss.del.line Send control signals to a screen stream to delete a line.

Table 5.3 Screen stream output procedures

------------I:.Yi~I@mIL.~ 1_0_3



5.3 Stream i/o procedure definitions

5.3 Stream i/o procedure definitions

ks.keystream.sink

PROC ks.keystream.sink (CHAN OF KS keys)

Reads word length quantities from the channel keys until ft. terminated is
received, then terminates.

This procedure is a complete process, containing a loop which will run until explicitly
stopped by sending ft. terminated on the channel keys. The procedure is
normally called once in parallel with the rest of the program.

ks.keystream.to.scrstream

PROC ks.keystream.to.scrstream (CHAN OF KS keyboard,
CHAN OF SS scm)

Converts the key stream protocol received on the input channel keyboard to the
screen stream protocol sent on the output channel scrn. The procedure terminates
when it receives the value ft. terminated on keyboard.

This procedure is a complete process, containing a loop which will run until explicitly
stopped by sending ft. terminated on the channel keyboard. The procedure is
normally called once in parallel with the rest of the program.

ks.read.char

PROC ks.read.char (CHAN OF KS source, INT char)

Returns in char the next word length quantity from source.

ks.read.int

PROC ks.read.int (CHAN OF KS source,
INT number, char)

Skips input up to a digit, i, + or -, then reads a sequence of digits to the first non-digit,
returned as char, and converts the digits to an integer in number. char must be
initialized to the first character of the input. If the first significant character is a 'I' then
a hexadecimal number is input, thereby allowing the user the option of which number
base to use. The hexadecimal may be in upper or lower case.

char is returned as ft. number. error if the number overflows the INT range.

ks.read.int64

PROC ks.read.int64 (CHAN OF KS source,
INT64 number, INT char)

Skips input up to a digit, i, + or -, then reads a sequence of digits to the first non-digit,
returned as char, and converts the digits to an INT64 in number. char must be

_1o_4 Eii~it_~~I-----------



5 Stream i/o library

initialized to the first character of the input. If the first significant character is a 'I' then
a hexadecimal number is input, thereby allowing the user the option of which number
base to use. The hexadecimal may be in upper or lower case.

char is returned as ft. number. error if the number overflows the INT range.

ks.read.line

PROC ks.read.line (CHAN OF KS source, INT len,
[]BYTE line, INT char)

Reads text into the array line up to but excluding '*c', or up to and excluding any
error code. Any '*n' encountered is thrown away. len gives the number of charac­
ters in line. If there is an error its code is returned as char, otherwise the value of
char will be INT '*c'.lfthe array is filled before a '*c' is encountered all further char­
acters are ignored.

ks.read.rea132

PROC ks.read.reaI32 (CHAN OF KS source,
REAL32 number, INT char)

Skips input up to a digit, + or -, then reads a sequence of digits with optional decimal
point and exponent) up to the first invalid character, returned as char. Converts the
digits to a REAL32 value in number. char must be initialized to the first character
of the input. If there is an error in the syntax of the real, if it is ± infinity, or if more than
24 characters read then char is returned as ft •number. error.

ks.read.rea164

PROC ks.read.reaI64 (CHAN OF KS source,
REAL64 number, INT char)

Skips input up to a digit, + or -, then reads a sequence of digits with optional decimal
point and exponent) up to the first invalid character, returned as char. Converts the
digits to a REAL64 value in number. char must be initialized to the first character
of the input. If there is an error in the syntax of the real, if it is ± infinity, or if more than
30 characters read then char is returned as ft. number. error.

so.keystream.from.file

PROC so.keystream.from.file (CHAN OF SP fs, ts,
CHAN OF KS keys.out,
VAL []BYTE filename,
BYTE result)

Reads lines from the specified text file and outputs them on keys. out. Terminates
automatically on error or when it has reached the end of the file and all the characters

____________ Jifilil@m&~W©~ 1_0_5



spr.ok

spr.bad.packet.size

5.3 Stream i/o procedure definitions

have been output on the keys. out channel. A '*c' is output to terminate a text line.
The negative value ft. terminated is sent on the channel keys. out to mark the
end of the file. The result returned can take any of the following values:

This procedure is a complete process, containing a loop which will run until it an error
occurs or it reaches the end of the file. The procedure is normally called once in
parallel with the rest of the program.

The operation was successful.

Filename too large Le. SIZE filename >
sp.max.openname.size.

spr. bad. name Null file name.

~spr.operation.failedThe open failed or reading the file failed.
If result ~ spr. operation. failed then this
denotes a server returned failure.

so.keystream.from.kbd

PROC so.keystream.from.kbd (CHAN OF SP fs, ts,
CHAN OF KS keys.out,
CHAN OF BOOL stopper,
VAL INT ticks.per.poll)

Reads characters from the keyboard and outputs them one at a time as integers on
the channel keys. out. It is terminated by sending either a TRUE or FALSE on the
boolean channel stopper. The procedure polls the keyboard at an interval deter­
mined by the value of ticks.per.poll, in transputer clock cycles, unless keys are
available, in which case they are read at full speed. It is an error if ticks.per.poll
is less than or equal to zero.

This procedure is a complete process, containing a loop which will run until explicitly
stopped by sending FALSE on the channel stopper. When FALSE is received on
the channel stopper the procedure sends the value ft. terminated on
keys. out. The procedure is normally called once in parallel with the rest of the
program.

so.keystream.from.stdin

PROC so.keystream.from.stdin (CHAN OF SP fs, ts,
CHAN OF KS keys.out,
BYTE result)

Reads lines from the standard input stream and outputs them on keys. out. The
standard input stream is normally assigned to the keyboard, but can be redirected
by the host operating system. An end of file character from the keyboard will termi­
nate this routine. *c is output to terminate each text line.

_1_06 ~lii©l"~YI-----------



5 Stream i/o library

This procedure is a complete process, containing a loop which will run until explicitly
stopped by sending and end of file character. When this character is received the
procedure sends the value ft. terminated on keys. out. The procedure is
normally called once in parallel with the rest of the program.

The result returned may take any of the following values:

spr. ok The operation was successful.
~spr.operation.failedReading standard input failed. If result ~

spr.operation.failed then this denotes a
server returned failure.

so.scrstream.to.ANSI

PROC so.scrstream.to.ANSI (CHAN OF SP fs, ts,
CHAN OF SS scrn)

Converts screen stream protocol into a stream of BYTES according to the require­
ments of ANSI terminal screen protocol. Not all of the screen stream commands are
supported.

The following tags are ignored:

st.ins.char
st.key.raw

st.reset st.te~inatest.help st.claim
st.key.cooked st.release st.initialise

The procedure terminates on receipt of the stream terminator from
ss.write.endstream.

so.scrstream.to.file

PROC so.serstream.to.file (CHAN OF SP fs, ts,
CHAN OF SS scm,
VAL []BYTE filename,
BYTE result)

Creates a new file with the specified name and writes the data sent on channel scrn
to it. The sern channel uses the screen stream protocol which is used by all the
stream output library routines. It terminates on receipt of the stream terminator from
ss •write. endstream, or on an error condition. The result returned can take any
of the following values:

spr. ok The data sent on sern was successfully written to
the file.

spr.bad.paeket. size Filename too large Le. SIZE filename >
sp.max.openname.size.

spr. bad. name Null file name.

~ spr.operation. failed If result ~ spr.operation. failed then this
denotes a server returned failure

----------- j;.T£~~I@_~~~ 1_07_



5.3 Stream i/o procedure definitions

If used in conjunction with so. scrstream. fan. out this procedure may be used
to file a copy of everything sent to the screen.

so.scrstream.to.stdout

PROC so.scrstream.to.stdout (CHAN OF SP fs, ts,
CHAN OF SS scrn,
BYTE result)

Performs the same operation as so. scrstream. to. file, but writes to the stan­
dard output stream. The standard output stream goes to the screen, but can be redi­
rected to a file by the host operating system. The result returned can take any of the
following values:

spr. ok The data sent on scrn was successfully written to
standard output.

~spr.operation. failed If result ~spr.operation.failed then this
denotes a server returned failure.

so.scrstream.to.TVI920

PROC so.scrstream.to.TVI920 (CHAN OF SP fs, ts,
CHAN OF SS scm)

Converts screen stream protocol into a stream of BYTES according to the require­
ments of TVI 920 (and compatible) terminals. Not all of the screen stream
commands are supported. The following tags are ignored:

st.reset st.terminate st.help st. initialise

st.key.raw st.key.cooked st.release st.claim

The procedure terminates on receipt of the stream terminator from
ss.write.endstream.

ss.beep

PROC ss.beep (CHAN OF SS scrn)

Sends a bell code to the terminal.

ss.clear.eol

PROC ss.clear.eol (CHAN OF SS scrn)

Clears screen from the cursor position to the end of the current line.

_1o_8 i'T£~i~@~~JI-----------



5 Stream i/o library

ss.clear.eos

PROC ss.clear.eos (CHAN OF SS scrn)

Clears screen from the cursor position to the end of the current line and all lines
below.

ss.delete.chr

PROC ss.delete.chr (CHAN OF SS scrn)

Sends a command to the terminal to delete the character at the cursor and move the
rest of the line one place to the left. The cursor does not move.

ss.delete.chl

PROC ss.delete.chl (CHAN OF SS scrn)

Sends a command to the terminal to delete the character to the left of the cursor and
move the rest of the line one place to the left. The cursor also moves one place left.

ss.del.line

PROC ss.del.line (CHAN OF SS scrn)

Sends a command to the terminal to delete the current line and move all lines below
it up one line. The bottom line becomes blank.

ss.down

PROC ss.down (CHAN OF SS scm)

Sends a command to the terminal to move the cursor one line down the screen.

ss.goto.xy

PROC ss.goto.xy (CHAN OF SS scm, VAL INT x, y)

Sends the cursor to screen position (x,y). The origin (0,0) is at the top left corner of
the screen.

ss.insert.char

PROC ss.insert.char (CHAN OF SS scrn,
VAL BYTE ch)

Sends a command to the terminal to move the character at the cursor and all those
to the right of it one place to the right and inserts char at the cursor. The cursor
moves one place right.

___________ ~~~@_'9©' 1_0_9



5.3 Stream i/o procedure definitions

ss.ins.line

PROC ss.ins.line (CHAN OF SS scrn)

Sends a command to the terminal to move all lines below the current line down one
line on the screen, losing the bottom line. The current line becomes blank.

ss.left

PROC ss.left (CHAN OF SS scm)

Sends a command to the terminal to move the cursor one place left.

ss.right

PROC ss.right (CHAN OF SS scrn)

Sends a command to the terminal to move the cursor one place right.

ss.scrstream.copy

PROC ss.scrstream.copy (CHAN OF SS scrn.in,
scrn.out)

Copies screen stream protocol input on scm. in to scm. out. Terminates on
receipt of the end-stream terminator from ss.write. endstream, which is not
passed on.

ss.scrstream.fan.out

PROC ss.scrstream.fan.out (CHAN OF SS scrn,
screen.outl,
screen.out2)

Sends copies of everything received on the input channel scrn to two output chan­
nels, as shown in Figure 5.1. The procedure terminates on receipt of the stream
terminator from ss •write. endstream without passing on the terminator.

sern

- - -. CHAN OF SS

~

,screen. out1

screen.out2

'---
Figure 5.1 Channels of ss .scrstream. fan. out

_11_0 ~Iit_'~~lf _



5 Stream i/o library

ss.scrstream.from.array

PROC ss.serstream.from.array (CHAN OF SS sern,
VAL []BYTE buffer)

Regenerates a screen stream buffered in buffer by a previous call of
so. serstream. to. array. Terminates when all buffered data has been sent.

ss.scrstream.multiplexor

PROC ss.serstream.multiplexor([]CHAN OF SS screen.in,
CHAN OF SS screen. out,
CHAN OF iNT stopper)

This procedure multiplexes up to 256 screen stream channels onto a single screen
stream channel, as shown in Figure 5.2. Each change of input channel directs output
to the next line of the screen, and each such line is annotated at the left with the array
index of the channel used followed by>. The tag st. endstream is ignored. The
procedure is terminated by the receipt of any integer on the channel stopper. For
n channels, each channel is guaranteed to be able to pass on a message for every
n messages that pass through the multiplexor. This is achieved by cycling from the
lowest index of screen. in. However, stopper always has highest priority.

---.......---- -~
screen.in[i] -~

I
\

.---
- -~ CHAN OF SS

._-~ CHAN OF INT
I stopper

screen. out
---~

Figure 5.2 Channels of ss.scrstream.multiplexor

This procedure is a complete process, containing a loop which will run until explicitly
stopped by sending an INT value on the channel stopper. The procedure is
normally called once in parallel with the rest of the program.

ss.scrstream.sink

PROC ss.scrstream.sink (CHAN OF SS scrn)

Reads screen stream protocol and ignores it except for the stream terminator from
ss.write. endstream which terminates the procedure.

___________ Eiili~©M.©~ 1_1_1



5.3 Stream i/o procedure definitions

ss.scrstream.to.array

PROC ss.serstream.to.array (CHAN OF SS sern,
[]BYTE buffer)

Buffers a screen stream whose total size does not exceed the capacity of buffer,
for debugging purposes or subsequent onward transmission using
so. serstream. from. array. The procedure terminates on receipt of the stream
terminator from ss •write. endstream.

ss.up

PROC ss.up (CHAN OF SS Bern)

Sends a command to the terminal to move the cursor one line up the screen.

ss.write.char

PROC ss.write.ehar (CHAN OF SS sern,
VAL BYTE ehar)

Sends the ASCII value ehar on sern, in serstream protocol, to the current posi­
tion in the output line.

ss.write.endstream

PROC ss.write.endstream (CHAN OF SS sern)

Sends a special stream terminator value to scm.

ss.write.hex.int

PROC ss.write.hex.int (CHAN OF SS sern,
VAL INT number, width)

Converts number into a sequence of ASCII hexadecimal digits, using upper case
letters, preceded by 'I'. The total number of characters sent is always width + 1,
padding out with '0 ' or 'F ' on the left if necessary. The number is truncated at the
left if the field is too narrow, thereby allowing the less significant part of any number
to be printed. The converted number is sent to sern. A negative value for width
is an error.

ss.write.hex.int64

PROC ss.write.hex.int64 (CHAN OF SS sern,
VAL INT64 number,
VAL INT width)

As ss . write •hex. int but for 64-bit integer values.

_11_2 E;i~~@e£~©' _



5 Stream i/o library

ss.write.int

PROC ss.write.int (CHAN OF SS scm,
VAL INT number, width)

Converts number into a sequence of ASCII decimal digits padded out with leading
spaces and an optional sign to the specified field width, width, if necessary. If the
number cannot be represented in width characters it is widened as necessary; a
zero value for width will give minimum width. The converted number is sent to
scm. A negative value for width is an error.

ss.write.int64

PROC ss.write.int64 (CHAN OF SS sern,
VAL INT64 number,
VAL INT width)

As ss .write. int but for 64-bit integers.

ss.write.nl

PROC ss.write.nl (CHAN OF SS sern)

Sends *e*n to sern.

ss.write.rea132

PROC ss.write.rea132 (CHAN OF SS sern,
VAL REAL32 number,
VAL INT Ip, Dp)

Converts number into an ASCII string formatted using Ip and Dp, as described for
REAL32TOSTRING in Chapter 7. The converted number is sent to sern. If the
formatted form of number is larger than 24 characters then this procedure acts as
an invalid process.

ss.write.rea164

PROC ss.write.rea164 (CHAN OF SS scm,
VAL REAL64 number,
VAL INT Ip, Dp)

Converts number into an ASCII string formatted using Ip and Dp, as described for
REAL32TOSTRING in Chapter 7. The converted number is sent to sern. If the
formatted form of number is larger than 30 characters then this procedure acts as
an invalid process.

___________ ~~~tIr-~©, 1_13_



5.3 Stream i/o procedure definitions

ss.write.string

PROC ss.write.string (CHAN OF SS scrn,
VAL []BYTE str)

Sends all characters in str to scrn.

ss.write.text.line

PROC ss.write.text.line (CHAN OF SS scrn,
VAL []BYTE str)

Sends all of str to scrn ensuring that, whether or not the last character of str is
'*c', the last two characters sent are "*c*n".

_11_4 ~li~@malcfJ1©~ _



6 String handling library

Library: string.lib

This library contains functions and procedures for handling strings and scanning lines
of text. They assist with the manipulation of character strings such as names,
commands, and keyboard responses.

The routines are listed in groups according to function in section 6. 1 and described in
full in the alphabetical list in section 6.2.

6.1 String handling procedures

The library provides routines for:

identifying characters;

• comparing strings;

editing strings;

searching strings;

scanning lines of text.

6.1.1 Character identification

Result Function Parameter specifiers

BOOL is.in.range VAL BYTE char, bottom, top

BOOL is.upper VAL BYTE char

BOOL is. lower VAL BYTE char

BOOL is.digit VAL BYTE char

BOOL is.hex.digit VAL BYTE char

BOOL is.id.char VAL BYTE char

Table 6.1 Character identification functions

6.1.2 String comparison

These two functions allow strings to be compared for order or for equality.

Result Function Parameter specifiers

INT compare. strings VAL []BYTE strl, str2

BOOL eqstr VAL [] BYTE strl, str2

Table 6.2 String comparison functions



6.1 String handling procedures

6.1.3 String editing

These procedures allow strings to be edited. The string to be edited is stored in an array
which may contain unused space. The editing operations supported are: deletion of a
number of characters and the closing of the gap created; insertion of a new string starting
at any position within a string, which creates a gap of the necessary size.

These two operations are supported by a lower level procedure for shifting a consecutive
substring left or right within the array. The lower level procedure does exhaustive tests
against overflow.

Procedure Parameter specifiers

str.shift []BYTE str, VAL INT start, len, shift, BOOL not.done

delete. string INT len, []BYTE str, VAL INT start, size, BOOL not.done

insert.string VAL []BYTE new.str, INT len, []BYTE str, VAL INT start,
BOOL not.done

to.upper.case []BYTE str

to. lower. case []BYTE str

append. char INT len, []BYTE str, VAL BYTE char

append. text INT len, []BYTE str, VAL []BYTE text

append.int INT len, []BYTE str, VAL INT number, width

append.int64 INT len, []BYTE str, VAL INT64 number, VAL INT width

append.hex.int INT len, []BYTE str, VAL INT number, width

append.hex.int64 INT len, []BYTE str, VAL INT64 number, VAL INT width

append.real32 INT len, []BYTE str, VAL REAL32 number, VAL INT Ip, OJ)

append.real64 INT len, []BYTE str, VAL REAL64 number, VAL INT Ip, OJ)

Table 6.3 String editing procedures

6.1.4 String searching

These functions allow a string to be searched for a match with a single byte or a string
of bytes, for a byte which is one of a set of possible bytes, or for a byte which is not one
of a set of bytes. Searches insensitive to alphabetic case should use to. upper. case
or to. lower. case on both operands before using these procedures.

Result Function Parameter specifiers

INT string.pos VAL []BYTE search, str

INT char.pos VAL BYTE search, VAL []BYTE str

INT, BYTE search.match VAL []BYTE possibles, str

INT, BYTE search.no.match VAL []BYTE possibles, str

Table 6.4 String searching functions

_11_6 l:ii5t_£~©' _



6 String handling library

6.1.5 Line parsing

Depending on the initial value of the variable ok these two procedures either read a line
serially, returning the next word and next integer respectively, or the procedures act
almost like a SKIP, as described in section 6.2. The user should initialize the variable
ok as appropriate.

Procedure Parameter specifiers

next.word.from.line VAL [] BYTE line, INT ptr, len, []BYTE word, BOOL ok

next.int.from.line VAL []BYTE line, INT ptr, number, BOOL ok

Table 6.5 Line parsing procedures

6.2 String handling procedure definitions

append. char

PROC append.char (INT len, []BYTE str,
VAL BYTE char)

Writes a byte char into the array str at str [len]. len is incremented by 1.
Behaves like STOP if the array overflows.

append.hex.int

PROC append.hex.int (INT len, []BYTE str,
VAL INT number, width)

Converts number into a sequence of ASCII hexadecimal digits, using upper case
letters, preceded by '#'. The total number of characters set is always width+1,
padding out with '0' or 'F' on the left if necessary. The number is truncated at the left
if the field is too narrow, thereby allowing the less significant part of any number to
be printed. The converted number is written into the array str starting at str[len]
and then len is incremented by the number of characters added to the string.
Behaves like STOP if the array overflows or if width < O.

append.hex.int64

PROC append.hex.int64 (INT len, []BYTE str,
VAL INT64 number,
VAL INT width)

Converts number into a sequence of ASCII hexadecimal digits, using upper case
letters, preceded by '#'. The total number of characters set is always width+1,

___________ Iifi~i~@_,9©' 1_17_



6.2 String handling procedure definitions

padding out with '0' or 'F' on the left if necessary. The number is truncated at the left
if the field is too narrow, thereby allowing the less significant part of any number to
be printed. The converted number is written into the array str starting at str[len]
and then len is incremented by the number of characters added to the string.
Behaves like STOP if the array overflows or if width < o.

append.int

PROC append.int (INT len, []BYTE str,
VAL INT number, width)

Converts number into a sequence of ASCII decimal digits padded out with leading
spaces and an optional sign to the specified field width, width, if necessary. If the
number cannot be represented in width characters it is widened as necessary. A
zero value for width will give minimum width. The converted number is written into
the array str starting at str [len] and then len is incremented by the number of
characters added to the string. This procedure behaves like STOP if the array over­
flows or if width is negative.

append.int64

PROC append.int64 (INT len, []BYTE str,
VAL INT64 number,
VAL INT width)

Converts number into a sequence of ASCII decimal digits padded out with leading
spaces and an optional sign to the specified field width, width, if necessary. If the
number cannot be represented in width characters it is widened as necessary. A
zero value for width will give minimum width. The converted number is written into
the array str starting at str [len] and then len is incremented by the number of
characters added to the string. This procedure behaves like STOP if the array over­
flows or if width is negative.

append.rea132

PROC append.rea132 (INT len, []BYTE str,
VAL REAL32 number,
VAL INT Ip, Dp)

Converts number into a sequence of ASCII characters formatted using Ip and Dp

as described under REAL32TOSTRING in Chapter 7.

The converted number is written into the array str starting at str [len] and len
is incremented by the number of characters added. This procedure behaves like
STOP if the array overflows.

_11_8 L'T£ litmrl9©~ -----------



6 String handling library

append.rea164

PROC append.real64 (INT len, []BYTE str,
VAL REAL64 number,
VAL INT Ip, Dp)

Converts number into a sequence of ASCII characters formatted using Ip and Dp

as described under REAL32TOSTRING in Chapter 7.

The converted number is written into the array str starting at str [len] and then
len is incremented by the number of characters added to the string. This procedure
behaves like STOP if the array overflows.

append. text

PROC append.text (INT len, []BYTE str,
VAL [ ] BYTE text)

Writes a string text into the array str, starting at str [len] and then len is
incremented by the number of characters added to the string. This procedure
behaves like STOP if the array overflows.

char.pos

INT FUNCTION char.pos (VAL BYTE search,
VAL []BYTE str)

Returns the position in str of the first occurrence of the byte search. Returns -1
if there is no such byte.

compare. strings

INT FUNCTION compare.strings (VAL []BYTE str1, str2)

This general purpose ordering function compares two strings according to the lexi­
cographic ordering standard. (Lexicographic ordering is the ordering used in dictio­
naries etc., using the ASCII values of the bytes). It returns one of the 5 results 0,1,
-1,2, or -2, as follows:

o
1

-1
2

-2

The strings are exactly the same in length and content.
str2 is a leading substring of strl
str1 is a leading substring of str2
str1 is lexicographically later than str2
str2 is lexicographically later than str1

119
~SGS·1HOMSON------------ IIJ.T£ ~u©OO@~~u©~ ------------



6.2 String handling procedure definitions

So if s is "abcd" then:

compare.strings ("abc", [s FROM 0 FOR 3])
compare.strings ("abc", [s FROM 0 FOR 2])
compare.strings ("abc", s)
compare.strings ("bc", s)
compare.strings ("a4", s)

delete. string

PROC delete. string (INT len, []BYTE str,
VAL INT start, size,
BOOL not.done)

returns the value 0
returns the value 1
returns the value -1
returns the value 2
returns the value -2

Deletes size bytes from the string str starting at str [start]. There are initially
len significant characters in s tr and it is decremented appropriately. If s tart is
outside the string, or start + size is greater than len, then no action occurs and
not. done is set to TRUE.

eqstr

BOOL FUNCTION eqstr (VAL []BYTE sl,s2)

This is an optimized test for string equality. It returns TRUE if the two strings are the
same size and have the same contents, FALSE otherwise.

insert. string

PROC insert. string (VAL []BYTE new.str, INT len,
[]BYTE str, VAL INT start,
BOOL not.done)

Creates a gap in str starting at str [start] and copies the string new. str into
it. There are initially len significant characters in str and len is incremented by the
length of new. str inserted. Any overflow of the declared size of str results in
truncation at the right and setting not. done to TRUE. This procedure may be used
for simple concatenation on the right by setting start =len or on the left by setting
start =o. This method of concatenation differs from that using the append proce­
dures in that it can never cause the program to stop.

is.digit

BOOL FUNCTION is.digit (VAL BYTE char)

Returns TRUE if char is an ASCII decimal digit, otherwise returns FALSE.

_12_0 iiiili~@_,~CI-----------



6 String handling library

is.hex.digit

BOOL FUNCTION is.hex.digit (VAL BYTE char)

Returns TRUE if char is an ASCII hexadecimal digit, otherwise returns FALSE.
Upper or lower case letters A to F are allowed.

is.id.char

BOOL FUNCTION is.id.char (VAL BYTE char)

Returns TRUE if char is an ASCII character which can be part of an occam name;
otherwise returns FALSE.

is.in.range

BOOL FUNCTION is.in.range (VAL BYTE char, bottom, top)

Returns TRUE if the value of char is in the range defined by bottom and top
inclusive, otherwise returns FALSE.

is.lower

BOOL FUNCTION is. lower (VAL BYTE char)

Returns TRUE if char is an ASCII lower case letter, otherwise returns FALSE.

is.upper

BOOL FUNCTION is.upper (VAL BYTE char)

Returns TRUE if char is an ASCII upper case letter, otherwise returns FALSE.

next. int.from. line

PROC next. int. from. line (VAL []BYTE line,
INT ptr, number,
BOOL ok)

If ok is passed in as TRUE, on entry to the procedure, skips leading spaces and
horizontal tabs and reads the next integer from the string line. The value of ptr
is the starting point of the search. The integer is considered to start with the first
non-space, non-tab character found and continues until a space or tab or the end
of the string line is encountered. If the first sequence of non-space, non-tab

121
-----------li;l~~t_,9©~ ------------



6.2 String handling procedure definitions

characters does not exist, does not form an integer, or forms an integer that over­
flows the INT range then ok is set to FALSE, and number is undefined; otherwise
ok remains TRUE, and number is the integer read. A '+' or '-' may be the first
character of the integer. The index ptr is updated to be that of the space or tab
immediately after the found integer, or is SIZE line. If ok is passed in as FALSE,
then ptr and ok remain unchanged, and number is undefined.

next.word.from.line

PROC next.word.from.line (VAL []BYTE line,
INT ptr, len,
[]BYTE word,
BOOL ok)

If ok is passed in as TRUE, on entry to the procedure, skips leading spaces and
horizontal tabs and reads the next word from the string line. The value of ptr is
the starting point of the search. A word continues until a space or tab or the end of
the string line is encountered. If the end of the string is reached without finding a
word, the boolean ok is set to FALSE, and len is o. If a word is found but is too large
for word, then ok is set to FALSE, but len will be the length of the word that was
found; otherwise the found word will be in the first len bytes of word. The index ptr
is updated to be that of the space or tab immediately after the found word, or is SIZE
line. If ok is passed in as FALSE, len is set to 0, ptr and ok remain unchanged,
and word is undefined.

string.pos

INT FUNCTION string.pos (VAL []BYTE search, str)

Returns the position in str of the first occurrence of a substring which exactly
matches search. Returns -1 if there is no such match.

search. match

INT, BYTE FUNCTION search.match
(VAL []BYTE possibles, str)

Searches str for anyone of the bytes in the array possibles. If one is found its
index and identity are returned as results. If none is found then -1 and 255 (BYTE)
are returned.

_12_2 ~Ii~@.'~~©, _



6 String handling library

search.no.match

INT, BYTE FUNCTION search.no.match
(VAL []BYTE possibles, str)

Searches str for a byte which does not match anyone of the bytes in the array
poss ibles. If one is found its index and identity are returned as results. If none is
found then -1 and 255 (BYTE) are returned.

str.shift

PROC str.shift ([]BYTE str, VAL INT start,
len, shift, BOOL not. done)

Takes a substring [str FROM start FOR len], and copies it to a position shift
places to the right. Any implied actions involving bytes outside the string are not
performed and cause the error flag not. done to be set to TRUE. Negative values
of shift cause leftward moves.

to. lower. case

PROC to.lower.case ([]BYTE str)

Converts all alphabetic characters in str to lower case. All other characters are left
unaltered.

to.upper.case

PROC to.upper.case ([]BYTE str)

Converts all alphabetic characters in str to upper case. All other characters are left
unaltered.



6.2 String handling procedure definitions

-12-4----------liiilil@nw&59I-----------



7 String conversion library

Library: convert .lib

This library contains procedures for converting numeric values to strings and vice versa,
as listed in Table 7.1. String to numeric conversions return two results, the converted
value and a boolean error indication. Numeric to string conversions return the converted
string and an integer which represents the number of significant characters written into
the string.

These routines are also described in appendix N of the occam 2. 1 Reference Manual.

Procedure Parameter specifiers

INTTOSTRING INT len, []BYTE string, VAL INT n

INT16TOSTRING INT len, []BYTE string, VAL INT16 n

INT32TOSTRING INT len, []BYTE string, VAL INT32 n

INT64TOSTRING INT len, []BYTE string, VAL INT64 n

HEXTOSTRING INT len, []BYTE string, VAL INT n

HEX16TOSTRING INT len, []BYTE string, VAL INT16 n

HEX32TOSTRING INT len, []BYTE string, VAL :INT32 n

HEX64TOSTRING INT len, []BYTE string, VAL INT64 n

REAL32TOSTRING INT len, []BYTE string, VAL REAL32 X, VAL INT Ip, Dp

REAL64TOSTRING INT len, []BYTE string, VAL REAL64 X, VAL INT Ip, Dp

BOOLTOSTRING INT len, []BYTE string, VAL BOOL h

STRINGTOINT BOOL Error, INT n, VAL []BYTE string

STRINGTOINT16 BOOL Error, INT16 n, VAL []BYTE string

STRINGTOINT32 BOOL Error, INT32 n, VAL []BYTE string

STRINGTOINT64 BOOL Error, INT64 n, VAL []BYTE string

STRINGTOHEX BOOL Error, INT n, VAL []BYTE string

STRINGTOHEX16 BOOL Error, INT16 n, VAL []BYTE string

STRINGTOHEX32 BOOL Error, INT32 n, VAL []BYTE string

STRINGTOHEX64 BOOL Error, INT64 n, VAL []BYTE string

STRINGTOREAL32 BOOL Error, REAL32 X, VAL []BYTE string

STRINGTOREAL64 BOOL Error, REAL64 X, VAL []BYTE string

STRINGTOBOOL BOOL Error, h, VAL []BYTE string

Table 7.1 String conversion procedures

125----------- ~~I~@9&Y©'-----------



7.1 Procedure definitions

7.1 Procedure definitions

BOOLTOSTRING

PROC BOOLTOSTRING (INT len, []BYTE string,
VAL BOOL b)

Converts a boolean value to a string. The procedure returns TRUE in string if b is
TRUE and FALSE otherwise. len contains the number of characters in the string
returned. If string is not long enough to hold the representation then this routine
acts as an invalid process.

HEXTOSTRING

PROC HEXTOSTRING (INT len, []BYTE string,
VAL INT n)

The procedure returns the hexadecimal representation of n in string, and the
number of characters in the representation is returned in len. The hexadecimal
value generated represents the entire word length of n. The number of characters
will be the number of bits in an :tNT divided by four. A # is not output by the
HEXTOSTRING procedure. If string is not long enough to hold the representation
then this routine acts as an invalid process.

see also: HEX16TOSTRING, HEX32TOSTRING, HEX64TOSTRING

HEX16TOSTRING

PROC HEX16TOSTRING (INT len, []BYTE string,
VAL INT16 n)

The procedure returns the hexadecimal representation of n in string, and the
number of characters in the representation is returned in len. The hexadecimal
value generated represents the entire 16 bits of n. The number of characters will be
four. A # is not output by the HEX16TOSTRING procedure. If string is not long
enough to hold the representation then this routine acts as an invalid process.

See also: HEXTOSTRING, HEX32TOSTRING,HEX64TOSTRING

HEX32TOSTRING

PROC HEX32TOSTRING (INT len, []BYTE string,
VAL INT32 n)

The procedure returns the hexadecimal representation of n in string, and the
number of characters in the representation is returned in len. The hexadecimal

_1_26 ~litmYIl9©' _



7 String conversion library

value generated represents the entire 32 bits of n. The number of characters will be
eight. A # is not output by the HEX32TOSTRING procedure. If string is not long
enough to hold the representation then this routine acts as an invalid process.

See also: HEXTOSTRING, HEX16TOSTRING, HEX64TOSTRING

HEX64TOSTRING

PROC HEX64TOSTRING (INT len, []BYTE string,
VAL INT64 n)

The procedure returns the hexadecimal representation of n in string, and the
number of characters in the representation is returned in len. The hexadecimal
value generated represents the entire 64 bits of n. The number of characters will be
sixteen. A # is not output by the HEX64TOSTRING procedure. If string is not long
enough to hold the representation then this routine acts as an invalid process.

see also: HEXTOSTRING, HEX16TOSTRING, HEX32TOSTRING

INTTOSTRING

PROC INTTOSTRING (INT len, []BYTE string,
VAL INT n)

Converts an integervalue to a string. The procedure returns the decimal representa­
tion of n in string and the number of characters in the representation is returned
in len. If string is not long enough to hold the representation then this routine acts
as an invalid process.

See also: INT16TOSTRING, INT32TOSTRING, INT64TOSTRING

INT16TOSTRING

PROC INT16TOSTRING (INT len, []BYTE string,
VAL INT16 n)

Converts an INT16 value to a string. The procedure returns the decimal representa­
tion of n in string and the number of characters in the representation is returned
in len. If string is not long enough to hold the representation then this routine acts
as an invalid process.

See also: INTTOSTRING, INT32TOSTRING, INT64TOSTRING

INT32TOSTRING

PROC INT32TOSTRING (INT len, []BYTE string,
VAL INT32 n)

Converts an INT32 value to a string. The procedure returns the decimal representa­
tion of n in string and the number of characters in the representation is returned

____________ J,.Ti~I@r.'£~ 1_2_7



7.1 Procedure definitions

in len. If string is not long enough to hold the representation then this routine acts
as an invalid process.

See also: INTTOSTRlNG, INT16TOSTRlNG, lNT64TOSTRING

INT64TOSTRING

PROC INT64TOSTRlNG (INT len, []BYTE string,
VAL lNT64 n)

Converts an INT64 value to a string. The procedure returns the decimal representa­
tion of n in string and the number of characters in the representation is returned
in len. If string is not long enough to hold the representation then this routine acts
as an invalid process.

See also: INTTOSTRlNG, INT16TOSTRlNG, lNT32TOSTRlNG

REAL32TOSTRING

PROC REAL32TOSTRING (lNT len, []BYTE string,
VAL REAL32 X,
VAL INT Ip, Dp)

Converts a 32-bit real number (represented in single precision IEEE format) to a
string of ASCII characters. len is the number of characters (BYTES) of string used
for the formatted decimal representation of the number. (The following description
applies to and notes the differences between this procedure and
REAL64TOSTRING).

The string must match the format for occam real literals, for example, 1. 2E+2, as
defined in the occam 2. 1 Reference Manual on p 146.

Depending on the value of x and the two formatting variables Ip and Dp the proce­
dure will use either a fixed or exponential format for the output string. These formats
are defined as follows:

Fixed: First, either a minus sign or space (an explicit plus sign is not
used), followed by a fraction in the form <digits>. <digits>.
Padding spaces are added to the left of the sign indicator, as
necessary. (lp gives the number of places before the point and Dp

the number of places after the point).

Exponential: First, either a minus sign or space (again, an explicit plus sign is
not used), followed by a fraction in the form <digit>. <digits>, the
exponential symbol (E), the sign of the exponent (explicitly plus or
minus), then the exponent, which is two digits for a REAL32 and
three digits for a REAL64. (Dp gives the number of digits in the
fraction (1 before the decimal point and the others after)).

_1_28 iiiilit.'J?©~ _



7 String conversion library

Possible combinations of Ip and Dp fall into three categories, described below.
Note: the term 'Free format' means that the procedure may adopt either fixed or
exponential format, depending on the actual value of x.

If Ip=O, Dp=O, then free format is adopted. Exponential format is used if the
absolute value of x is less than 10-4, but non-zero, or greater than 109 (for
REAL32), or greater than 1017 (for REAL64); otherwise fixed format is used.

The value of len is dependent on the actual value of x with trailing zeroes
suppressed. The maximum length of the result is 15 or 24, depending on
whether it is REAL32 or REAL64 respectively.

If x is 'Not-a-Number' or infinity then the string will contain one of the
following: 'Inf', '-Inf' or 'NaN', (excluding the quotes).

2 If Ip>O, Dp>O, fixed format is used, unless the value needs more than Ip
significant digits before the decimal point, in which case, exponential format
is used. If exponential does not fit either, then a signed string 'ov' is
produced. The length is always Ip + Dp + 2 when Ip>O, Dp>O.

If x is 'Not-a-Number' or infinity then the string will contain one of the
following: 'Inf', '-Inf' or 'NaN', (excluding the quotes) and padded out by
spaces on the right to fill the field width.

3 If Ip=O, Dp>O, then exponential format is always used. The length of the
result is Dp + 6 or Dp + 7, depending on whether x is a REAL32 or REAL6 4,
respectively.

If Ip=O, Dp=1, then a special result is produced consisting of a sign, a blank,
a digit and the exponent. The length is 7 or 8 depending on whether x is a
REAL32 or REAL64. Note: this result does not conform to the occam format
for a REAL.

If x is 'Not-a-Number' or infinity then the string will contain one of the
following: 'Inf', '-Inf' or 'NaN', (excluding the quotes) and padded out by
spaces on the right to fill the field width.

All other combinations of Ip and Dp are errors.

If string is not long enough to hold the requested formatted real number as a string
then these routines act as invalid processes.

REAL64TOSTRING

PROC REAL64TOSTRING (INT len, []BYTE string,
VAL REAL64 X,
VAL INT Ip, Dp)

As REAL32TOSTRING but for 64-bit numbers.

___________ Eii~tn'.fi~ 1_2_9



7.1 Procedure definitions

STRINGTOBOOL

PROC STRINGTOBOOL (BOOL Error, b,
VAL []BYTE string)

Converts a string to a boolean value. The procedure returns TRUE in b if the first four
characters of string are 'TRUE' and FALSE if the first five characters are 'FALSE';
b is undefined in other cases. TRUE is returned in error if string is not exactly
'TRUE' or 'FALSE'.

STRINGTOHEX

PROC STRINGTOHEX (BOOL Error, INT n,
VAL []BYTE string)

The procedure returns in n the value represented by the hexadecimal string. No
# is allowed in the input and hex digits must be in uppercase (A to F) rather than lower
case (a to f). error is set to TRUE if a non-hexadecimal character is found in
string, or if string is empty. n will be the value of the portion of string up to any
illegal character with the convention that the value of an empty string is o. error is
also set to TRUE if the value represented by string overflows the range of INT. In
this case n will contain the low order bits of the binary representation of string. In
all other cases error is set to FALSE.

Similar procedures are provided for the types HEX16, HEX32, and HEX64.

STRINGTOHEX16

PROC STRINGTOHEX16 (BOOL Error, INT16 n,
VAL []BYTE string)

As STRINGTOHEX but converts to a 16-bit integer.

STRINGTOHEX32

PROC STRINGTOHEX32 (BOOL Error, INT32 n,
VAL []BYTE string)

As STRINGTOHEX but converts to a 32-bit integer.

STRINGTOHEX64

PROC STRINGTOHEX64 (BOOL Error, INT64 n,
VAL []BYTE string)

As STRINGTOHEX but converts to a 64-bit integer.

_1_3o J:.filitmYI£~~ _



7 String conversion library

STRINGTOINT

PROC STRINGTOINT (BOOL Error, INT n,
VAL []BYTE string)

Converts a string to a decimal integer. The procedure returns in n the value repre­
sented in string. error is set to TRUE if a non-numeric character is found in
string or if string is empty. + or a - are allowed in the first character position. n
will be the value of the portion of string up to any illegal characters, with the
convention that the value of an empty string is o. error is also set to TRUE if the
value of string overflows the range of INT, in this case n will contain the low order
bits of the binary representation of string. error is set to FALSE in all other cases.

Similar procedures are provided for the types INT16, INT32, and INT64.

STRINGTOINT16

PROC STRINGTOINT16 (BOOL Error, INT16 n,
VAL []BYTE string)

As STRINGTOINT but converts to a 16-bit integer.

STRINGTOINT32

PROC STRINGTOINT32 (BOOL Error, INT32 n,
VAL []BYTE string)

As STRINGTOINT but converts to a 32-bit integer.

STRINGTOINT64

PROC STRINGTOINT64 (BOOL Error, INT64 n,
VAL []BYTE string)

As STRINGTOINT but converts to a 64-bit integer.

STRINGTOREAL32

PROC STRINGTOREAL32 (BOOL Error, REAL32 X,
VAL []BYTE string)

Converts a string to a 32-bit real number. This procedure takes a string containing
a decimal representation of a real number and converts it into the corresponding real
value. If the value represented by string overflows the range of the type then an

5 0 131------------ J1ii ~fi~@_&o©~ ------------



7.1 Procedure definitions

appropriately signed infinity is returned. Errors in the syntax of string are signalled
by a 'Not-a-Number' being returned and error being set to TRUE. The string is
scanned from the left as far as possible while the syntax is still valid. If there are any
characters after the end of the longest correct string then error is set to TRUE,
otherwise it is FALSE. For example if string was "12.34E+2+1.0" then the value
returned would be 12.34 x 1Q2 with error set to TRUE-

STRINGTOREAL64

PROC STRINGTOREAL64 (BOOL Error, REAL64 X,
VAL []BYTE string)

As STRINGTOREAL32 but converts to a 64-bit number.

_1_32 J:;ili~@m&r~lf9©' _



8 Block CRC library

Library: ere .lib

The block CRC library provides two functions for calculating cyclic redundancy check
values from byte strings. Such values can be of use in, for example, the generation of
the frame check sequence (FCS) in data communications. These functions are in
addition to the compiler library functions CRCWORD and CRCBYTE, described in
Chapter 2.

A cyclic redundancy check value is the remainder from modulo 2 polynomial division.
Consider bit sequences as representing the coefficients of polynomials; for example, the
bit sequence 10100100 (where the leading bit is the most significant bit (msb» corre­
sponds to P(x) =x 7 + x5 + x2. The routines in the library calculate the remainder of the
modulo 2 polynomial division:

xk +n H(x) + xn F(x)
G(x)

where: F(x) corresponds to InputString

G(x) corresponds to PolynomialGenerator

H(x) corresponds to OldCRC

k is the number of bits in InputString

n is the word size in bits of the processor used (Le. n is 16 or 32).

(OldCRC can be viewed as the value that would be pre-loaded into the cyclic shift
register that is part of hardware implementations of CRC generators.).

When representing G(x) in the word PolynomialGenerator, note that there is an
understood bit before the msb of PolynomialGenerator. For example, on a 16-bit
processor, with G(x) =x16+ x 12+ x5+ 1,which is #11021 ,then PolynomialGenerator
must be assigned #1021, because the bit corresponding to x 16 is understood. Thus, a
value of #9603 for PolynomialGenerator, corresponds to G(x) =x 16+ x 15+ x 12+x10

+ x9 + x + 1, for a 16-bit processor.

A similar situation holds on a 32-bit processor, so that:

G(x) = x32 + x26 + x23 +x22 + x 16 + x 12 + x 11 + x 10 + x8 + x 7 + x5 +x4 + x2 + x+ 1

is encoded in PolynomialGenerator as #04C11 087.

It is possible, however, to calculate a 16-bit CRC on a 32-bit processor. For example,
if G(x) =x16+ x 12+x5+ 1, then PolynomialGenerator is #10210000. This is because
the most significant 16 bits of the 32-bit integer form a 16-bit generator; the least
significant 16 bits of OldCRC form the initial CRC value; and the calculated CRC is the

so 133----------- ~~i~@m'@~u©~-----------



8.1 Example of use

most significant 16 bits of the result from CRCFROMMSB and the least significant 16 bits
of the result from CRCFROMLSB.

8.1 Example of use

Suppose it is required to transmit information between two 32-bit transputers, and the
message that is to be transmitted is the byte array:

[data FROM 4 FOR size.message]

where: there are size.message bytes in the message.

Both the transmitter and receiver use the same 32-bit generating polynomial and
OldCRC value. There are two methods for the receiver to check messages:

First CRCFROMMSB is given the message as an input string, the result is placed into the
first four bytes of data and the message is sent. The receiver can either:

Give the received data (which is (size.message + 4) bytes long) to
CRCFROMMSB and expect a result of zero, or

Give the received [data FROM 4 FOR size.message] to CRCFROMMSB
and check that the result is equal to the INT contained in the received [data

FROM 0 FOR 4].

These methods of checking are equivalent. If the check fails then the transmitted data
was corrupted and re-transmission can be requested; if the check passes then it is most
probable that the data was transmitted without corruption - just how probable depends
on many factors, associated with the transmission media.

Note: The occam predefines CRCBYTE and CRCWORD can be chained together to help
calculate a CRC from a byte string, and this is indeed the use to which they are put in
CRCFROMMSB and CRCFROMLSB. However, because these latter routines shift the poly­
nomial F(x) corresponding to InputString by xn, these routines should not be chained
together over segments of a byte string to find its CRC; the whole string must be used
in a single call to CRCFROMMSB or CRCFROMLSB.

8.2 Function definitions

CRCFROMMSB

INT FUNCTION CRCFROMMSB (VAL []BYTE InputString,
VAL INT PolynomialGenerator,

VAL INT OldCRC)

This routine is intended for strings in normal transputer format (little-endian). The
most significant bit of the given string is taken to be bit 7 of the most significant byte
InputString[(SIZE InputString) - 1].

_1_34 Eii~itm.lf'©~ _



8 Block CRC library

PolynomialGenerator, OldCRC and the result are all also in normal transputer
format (little-endian).

CRCFROMLSB

INT FUNCTION CRCFROMLSB (VAL []BYTE InputString,
VAL INT PolynomialGenerator,
VAL INT OldCRC)

This routine accommodates strings in big-endian format. The most significant bit of
InputString is taken to be bit 0 of InputString [0]. The generated CRe is
given in big-endian format. PolynomialGenerator and OldCRC are taken to be
in Iittle-endian format.

-- iF;i5~~.Ycl-----------1-35-



8.2 Function definitions

_13_6 ii;i~i~@I'.£'~ _



9 Extraordinary link handling library

Library: xlink .lib

The extraordinary link handling library contains routines for handling communication
failures on a link, as listed in Table 9.1.

Four procedures are provided to allow failures on input and output channels to be
handled by timeout or by signalling the failure on another channel. These procedures
are intended to be used as input/output pairs, in order to provide secure communication
at both ends of the link. A fifth procedure allows the channel to be reset. Use of these
routines is described in section 12.5 of the occam 2.1 Toolset User Guide.

These procedures must not be used on virtual channels implemented in software.

Procedure Parameter specifiers

:InputOrFail.c CHAN OF ANY c, []BYTE message,
CHAN OF INT kill, BOOL aborted

InputOrFail.t CHAN OF ANY c, []BYTE message,
TIMER t, VAL INT time, BOOL aborted

OUtputOrFail.c CHAN OF ANY c, VAL []BYTE message,
CHAN OF INT kill, BOOL aborted

OUtputOrFail.t CHAN OF ANY c, VAL []BYTE message,
TIMER t, VAL INT time, BOOL aborted

Reinitialise CHAN OF ANY c

Table 9.1 Extraordinary link handling procedures

CAUTION:

Use of the routines in xlink.lib during interactive debugging will lead to undefined
results. In addition these routines may only be used for channel communication on a link;
they must not be used for communications between processes on the same processor.

9.1 Procedure definitions

The first four of these procedures take as parameters a link channel c (on which the
communication is to take place), a byte vector mess (the object of the communication),
and the boolean variable aborted. The choice of a byte vector for the message allows
an object of any type to be passed along the channel providing it is retyped first.
aborted is set to TRUE if the communication times out or is aborted; otherwise it is set
to FALSE.

Note: In rare circumstances aborted maybe set to TRUE even though the communica­
tion is successful. This happens if the communication terminates successfully in the
interval after the timeout or abort signal and before the channel is initialized again. The
likelihood of this event is very small.

S 137------------ iil~l@e~~©~------------



9.1 Procedure definitions

InputOrFail.c

PROC InputOrFail.c (CHAN OF ANY c, []BYTE mess,
CHAN OF INT kill,
BOOL aborted)

This procedure provides, through an abort control channel, for communication
failure on a channel expecting an input. This is useful if failure cannot be detected
by a simple timeout. Any integer on the channel kill will cause the channel c to
be reset and this procedure to terminate.

InputOrFail.t

PROC InputOrFail.t (CHAN OF ANY c, []BYTE mess,
TIMER t, VAL INT time,
BOOL aborted)

This procedure is used for communication where failure is determined by a timeout.
It takes a timer parameter t, and an absolute time time. The procedure treats the
communication as having failed when the time as measured by the timer t is AFTER
the specified time time. If the timeout occurs then the channel c is reset and this
procedure terminates.

OutputOrFail.c

PROC OutputOrFail.c (CHAN OF ANY c,
VAL []BYTE mess,
CHAN OF INT kill,
BOOL aborted)

This procedure provides, through an abort control channel, for communication
failure on a channel attempting to output. This is useful if failure cannot be detected
by a simple timeout. Any integer on the channel kill will cause the channel c to
be reset and this procedure to terminate.

OutputOrFail.t

PROC OutputOrFail.t (CHAN OF ANY c,
VAL []BYTE mess,
TIMER t, VAL INT time,
BOOL aborted)

This procedure is used for communication where failure is determined by a timeout.
It takes a timer parameter t, and an absolute time time. The procedure treats the
communication as having failed when the time as measured by the timer t is AFTER
the specified time time. If the timeout occurs then the channel c is reset and this
procedure terminates.

-1-38-----------l.Ulit_&~~-----------



9 Extraordinary link handling library

Reinitialise

PROC Reinitialise (CHAN OF ANY c)

This procedure may be used to reinitialize the link channel c after it is known that
all activity on the link has ceased.

Reinitialise must only be used to reinitialize a link channel after communication
has finished. If the procedure is applied to a link channel which is being used for
communication the transputer's error flag will be set and subsequent behavior is
undefined.

___________ iiiil~@m~SJ1©~ 1_3_9



9.1 Procedure definitions

_14_0 J:.:filitllfl'9©' _



10 Debugging support library

Library: debug. lib

The debugging support library provides procedures, listed in Table 10.1, to assist with
debugging when the INQUEST interactive debugger is being used. Two procedures are
provided to stop a process, one on a specified condition. Another procedure is used to
insert debugging messages. The procedure ASSERT, for use when INQUEST is not
present, is described in section 2.9.

Procedure Parameter Specifiers

DEBUG. ASSERT VAL BOOL assertion

DEBUG. MESSAGE VAL []BYTE message

DEBUG. STOP none

Table 10.1 Debugging support procedures

10.1 Procedure definitions

DEBUG.ASSERT

PROC DEBUG.ASSERT (VAL BaaL assertion)

If a condition fails this procedure stops a process and notifies the debugger. This
procedure may be used in place of ASSERT when using the interactive debugger.

If assertion evaluates to FALSE and the INQUEST debugger is present, then
DEBUG. ASSERT stops the process and sends process data to the debugger. If
assertion evaluates to TRUE then no action is taken.

If the program is not being run with the interactive debugger and the assertion fails,
then the procedure behaves like DEBUG. STOP.

DEBUG.MESSAGE

PROC DEBUG.MESSAGE (VAL []BYTE message)

This procedure sends a message to the debugger and stops the thread with event
type 6. The interactive debugger can then locate the source of the message and
execution can be resumed. The first 80 characters of the message is displayed with
the normal program output.

If the program is not being run with the interactive debugger then the procedure has
no effect.



10.1 Procedure definitions

DEBUG. STOP

PROC DEBUG.STOP ()

If the program is being run with the interactive debugger, this procedure stops the
process and sends process data to the debugger.

If the program is not being run with the interactive debugger then the procedure stops
the process or processor, depending on the error mode that the processor is in.

_14_2 ~~i~'t9L\?I-----------



I Appendices



-14-4----------lEiilitmsl.©' -----------



A Language extensions

This appendix describes language extensions that are supported by the occam 2.1
compiler.

Note: These extensions are compiler-dependent and do not extend the syntax of the
occam 2.1 language as defined in the occam 2. 1 Reference Manual. The extensions
to the occam 2 language given by occam 2.1 are listed in Appendix P of the occam
2. 1 Reference Manual.

A.1 Syntax

A.1.1 Compiler keywords

The following additional keywords are supported by the occam 2.1 compiler:

ASM IN INLINE VECSPACE WORKSPACE

The keyword GUY is also recognized by the compiler, but is no longer supported by
SGS-THOMSON. This compiler supports in-line assembly code, as described in section
12.3 and Appendix 8 of the occam2. 1Toolset UserGuide, is introduced by the keyword
ASM.

A.1.2 Compiler directives

The following directives are supported by the occam 2.1 compiler:

# INCLUDE #USE #COMMENT # IMPORT #OPTION #PRAGMA

For more information see section 3.13 of the Toolset Reference Manual.

A.1.3 String escape characters

The syntax of the non-printable character '*', as defined in Appendix G of the occam
2. 1Reference Manual, has been extended. The first character of a literal string may now
take the value *1 or *L, which is used to represent the length of the string, excluding
the character itself. For example, the following statements define the same string:

VAL stringl is "*lFred" :
VAL string2 is "*#04Fred" :

*1 (or *L) is illegal if the string (excluding the *1) is longer than 255 bytes, and will be
reported as an error.

The characters *, ' and" may be used in the form given in Table A.1.

----------- J,).",/£ ~u©m.~~©' 1_4_5



A.2 Retyping channels to and from data items

*c *C carriage return = *#00

*1 *L string length ~ *#FF

*n *N newline = *#OA

*t *T tab = *#08

*8 *8 space = *#20
*, quotation mark

*n double quotation mark

** asterisk

Table A.1 Special character constants

Any byte value can be represented by *# followed by two hexadecimal digits.

A.1.4 Tabs

The compiler expands tabs in source files to be every eighth character position. Tabs
are permitted anywhere in a line but are not expanded within strings or character
constants.

A.1.5 Relaxations on syntax

There is no limit on the number of significant characters in identifiers, and the case of
characters is significant.

A.2 Retyping channels to and from data items

Channels may be retyped:

to and from data items

between protocols of different types.

Retyping between protocols allows the protocol on a channel to be changed, as
described in section 10.2 of the occam 2.1 Reference Manual. This facility should be
used with care. This section describes retyping to and from data items.

Retyping a channel to or from a data item depends upon the implementation of chan­
nels. With the implementation given by this toolset, retyping maps a data item onto a
pointer to the channel word. This can be used, for example, to determine the address
of the channel word, or to create an array of channels pointing at particular addresses:

CHAN OF protocol c :
VAL INT x RETYPES c: - - Must be a VAL RETYPE

use x as the address of the channel word

This operation (retyping a channel to a data item) can be achieved more portably by
means of the LOAD. INPUT. CHANNEL predefine. See Chapter 12 of the occam 2. 1
Toolset User Guide and section 2.7 in this manual.

_14_6 ~li~©~~c1-----------



A Language extensions

The following code demonstrates how to create a channel array whose channels point
at arbitrary addresses.

[10]INT x :
SEQ

initialise elements of x to the addresses of
the channel words

[10]CHAN OF protocol c RETYPES x
use channel array c

A.3 Low level programming

A.3.1 ASM

The keyword ASM introduces a section of transputer assembly code; see section 12.3
and Appendix B of the occam 2. 1 Toolset User Guide.

A.3.2 PLACE statements

The PLACE statement in occam allows a channel, a variable, an array, or a PORT, to
be placed in workspace, in vector space or at an absolute location in memory.

The syntax of the supported PLACE statements extends the definition of an allocation
as defined in the occam 2. 1 Reference Manual:

allocation = PLACE name AT expression
PLACE name AT WORKSPACE expression
PLACE name IN WORKSPACE
PLACE name IN VECSPACE

The PLACE statement must be inserted immediately following the declaration of the
variable to which it refers e.g.

int x, y, z :
PLACE x
PLACE Y

int x :
int y :
PLACE x

is correct

is incorrect

The address used in a PLACE allocation is converted to a transputer address by consid­
ering the address to be a word offset from MOSTNEG INT.

For example, in order to access a BYTE memory mapped peripheral located at machine
address #1234, on a 32-bit processor:

PORT OF BYTE peripheral :
PLACE peripheral AT (#1234 >< (MOSTNEG INT» » 2
peripheral ! 0 (BYTE)



A.3 Low level programming

The numbers used as PLACE addresses are word offsets from the bottom of address
space. For example, PLACE scalar channel AT n places the channel word at that
address, and PLACE arrayofchannels AT n, places the array of pointers at that address.

The PLACE name IN WORKSPACE and PLACE name IN VECSPACE statements place
variables explicitly in program workspace and vector space respectively. The allocation
of workspace and vectorspace by the compiler is described in Appendix B of this
manual.

The PLACE name AT WORKSPACE expression statement places a variable at a specific
offset in workspace. An example use of this is given in the occam 2. 1 Toolset User
Guide, section 12.1.2.

Chapter 12 of the occam 2. 1 Toolset User Guide also describes allocation.

A.3.3 INLINE keyword

INLINE may be used immediately before the PROC or FUNCTION keyword of any
procedure or function declaration. It will cause the body of the procedure or function to
be expanded inline in any call, and the declaration will not be compiled as a normal
routine. Use of INLINE procedures or functions may increase the size of the object
module but will also avoid the overheads incurred in executing extra calls.

The INLINE statement extends the syntax of a definition as defined in the occam 2. 1
Reference Manual:

definition

Examples:

PROTOCOL name IS simple.protocol:
PROTOCOL name IS sequential.protocol:
PROTOCOL name

CASE
{tagged.protocol}

{INLINE} PROC name ( {a , formal} )
procedure.body

(1 , primitive type) {INLINE} FUNCTION name ( {a , formal} )
function.body

(1 , primitive type) {INLINE} FUNCTION name ( fa , formal) ) IS
expression. list:

specifier name RETYPES element:
VAL specifier name RETYPES expression:

INT INLINE FUNCTION sum3 (VAL INT x, y, z,) IS x + (y + z):

INLINE PROC seterror ()
error := TRUE

_14_8 Eii~il@_'£' _



A Language extensions

A call to the FUNCTION sum3:

so.write.int(fs, ts, sum3(p,q,r),O)

would be expanded by the compiler thus:

so.write.int(fs, ts, p + (q + r),O)

Note: the declaration is marked with the keyword, but the call is affected. This means
that you cannot inline expand procedures and functions which have been declared by
a #USE directive; to achieve that effect you may put the source of the routine, marked
with the INLINE keyword, in a separate file, and include this file with an #INCLUDE
directive.

___________ iIil~il@••©' 1_49_



A.3 Low level programming

_15_0 Eil~il@_£~~ --- _



B Implementation of occam on the
transputer

This appendix defines the toolset implementation of occam on the transputer. It
describes how the compiler allocates memory and gives details of type mapping, hard­
ware dependencies and language. The appendix ends with the syntax definition of the
language extensions implemented by the occam compiler.

B.1 Memory allocation by the compiler

The code for a whole program occupies a contiguous section of memory. When a
program is loaded onto a transputer in a network, memory is allocated in the following
order starting at MemStart: workspace; code; separate vector space. This is shown in
Figure 8.1.

Higher address

t

Lower address

Free memory

Vector space

Code

Workspace
MemStart -. L...---- --'

Figure 8.1 Program memory layout

8.1.1 Procedure code

The compiler places the code for any nested procedures at higher addresses (nearer
MOSTPOS INT) than the code for the enclosing procedure. Nested procedures are
placed at increasingly lower addresses in the order in which their definitions are
completed. For example, the memory layout for the following code is shown in
Figure 8.2:

PROC P()
PROC Q ()

code for Q

PROC R ()
code for R

code for P

___________ iifll~t.'~~©, 1_5_1



8.1 Memory allocation by the compiler

Higher address
Code for a

Code for R

Code for P

Lower address

Figure B.2 Code layout for procedures

8.1.2 Compilation modules

The order in which compilation modules are placed in memory, including those refer­
enced by a #PRAGMA LINKAGE directive, is controlled by a linker directive. Modules are
placed in priority order, with the highest priority module being placed at the lowest
available address.

The compiler will attempt to optimize floating point routines, such as REAL320P, by
giving them a high priority. This can be overridden by using the compiler directive
#PRAGMA LINKAGE in conjunction with the linker directive #section.

8.1.3 Workspace

Workspace is placed lowest in memory, before the arithmetic handling library, so that it
has priority usage of the on-chip RAM, if the processor is configured to have any.
Workspace is allocated from higher to lower address (Le. the workspace for a called
procedure is nearer MOSTNEG INT than the workspace for the caller). For example:

PROC P ()
code

here
code

PROC Q ()
P ()

In the above example, when Q is called it will in turn call P. Figure B.3 shows the data
layout in memory at the point labelled here.

Higher address

Workspace for a

Workspace for P

Lower address

Figure B.3 Workspace layout for procedures



B Implementation of occam on the transputer

In a PAR or PRI PAR construct the last textually defined process is allocated the lowest
addressed workspace. For example, Figure 8.4 shows the workspace layout for the
following parallel processes:

PAR
Pl
P2
P3

Higher address

Workspace for P1

Workspace for P2

Workspace for P3

Lower address

Figure 8.4 Workspace layout for parallel processes

In a replicated PAR construct, the instance with the highest replication count is allocated
the lowest workspace address. For example, Figure 8.5 shows the workspace layout
for the following parallel processes:

PAR i = 0 FOR 3
P [i]

Higher address

Workspace for P[O]

Workspace for P[1]

Workspace for P[2]

Lower address

Figure 8.5 Workspace layout for replicated parallel processes

Unless separate vector space is disabled, most arrays are allocated in a separate data
space, known as vector space, as described in section 8.1.4. The allocation is done in

____________ Eiil~~@.&~©, 1_5_3



B.1 Memory allocation by the compiler

a similar way to the allocation of workspace, except that the data space for a called
procedure is at a higher address than the data space of its caller.

The variables within a single procedure or parallel process are allocated on the basis
of their estimated usage. The variables which the compiler estimates will be used the
most, are allocated lower addresses in the current workspace.

From within a called procedure the parameters appear immediately above the local
variables. When an unsized vector is declared as a formal procedure parameter an extra
VAL INT parameter is also allocated to store the size of the array passed as the actual
parameter. This size is the number of elements in the array. One extra parameter is
supplied for each dimension of the array unsized in the call, in the order in which they
appear in the declaration.

If a procedure requires separate vector space, it is supplied by the calling procedure. A
pointer to the vector space supplied is given as an additional parameter. If the procedure
is at the outer level of a compilation unit, the vector space pointer is supplied after all the
actual parameters. Otherwise it is supplied before all the actual parameters.

B.1.4 Vectorspace

By default, arrays larger than 8 bytes are allocated into a separate stack known as the
vectorspace. This scheme optimizes use of the workspace, creating more compact and
quicker code. It can also make better use of a transputer's on-chip RAM. The default
scheme may be overridden by an option on the command line, a directive in the source
code, or, for specific variables only, by a PLACE statement.

This can be overridden per compilation unit by the V command line switch or #OPTION
"V" directive. This will force all variables into the workspace. Secondly, the current
'default' may be overridden on an array-by-array basis by using extra allocations as
follows:

[100]BYTE a :
PLACE a IN WORKSPACE

[100]BYTE b :
PLACE b IN VECSPACE

-- forces a to reside in workspace

-- forces b to reside in vectorspace

Only arrays may be placed in vectorspace; scalar variables must reside in workspace.
Arrays smaller than 8 bytes may be explicitly placed in vectorspace.

It may be desirable to change the default vectorspace allocation for various reasons.
Using vectorspace can actually slow down execution, since an extra parameter is
passed to each subroutine which requires it. However, this cost is normally over­
whelmed by the reduction in workspace size, and the associated compaction in the
number of prefix instructions required to address local variables. In certain circum­
stances it may be useful to place a commonly used array into workspace, particularly
if it is heavily used in array assignment (block moves). Alternatively it may be useful to
place most arrays in workspace, but move any large arrays into vectorspace.

154 ~SGS.1HOMSON
------------ ....,~ ~O©OO@[g~@lR!lO©®------------



B Implementation of occam on the transputer

B.2 Type mapping

This section describes how the occam types are represented on the target processor.
The correct operation of an occam program should not depend on implementation
details unless they are part of the language, as described in the occam 2. 1Reference
Manual. Future compiler releases may use different implementations.

Table B.1 summarizes the type implementation. For further information on data types
see Chapter 3 of the occam 2. 1 Reference Manual.

Type Storage Range of values

BOOL 1 byte FALSE, TRUE

BYTE 1 byte oto 255

J:NT16 2 bytes -32768 to 32767

J:NT32 4 bytes -2,147,483,648 to 2,147,483,647

J:NT64 8 bytes -263 to (263_1 )

J:NT (On 32-bit processors) 4 bytes -2,147,483,648 to 2,147,483,647

J:NT (On 16-bit processors) 2 bytes -32768 to 32767

REAL32 4 bytes IEEE single precision format

REAL64 8 bytes IEEE double precision format

PACKED RECORD Sum of fields

Named types As for underlying type

CHAN (On 32-bit processors) 8 bytes Channels are implemented as a

CHAN (On 16-bit processors) 4 bytes pointer to a channel word.

PORT OF D As for D

TJ:MER None

Table B.1 occam type implementation

All objects are word aligned, Le. the lowest byte of the object is on a word boundary. For
objects of type BOOL and BYTE, the padding above the object is guaranteed to be all bits
zero; for all other objects, the value of any padding bytes is undefined. Any named type
is stored in the same way as the underlying type.

Arrays are packed, Le. there are no spaces between the elements. (Note: that an array
of type BOOL has one byte for each element).

The compiler uses reordering and padding to implement RECORDS, and the current
implementation may be changed in future releases. If the implementation is significant
then PACKED RECORDS should be used. The operators OFFSETOF and BYTESIN may
be used to identify the position of a field and the size of a record.

For example, consider the following definition of RECORD type REC • TYPE, compiled for
a 32-bit transputer:



B.3 Parameter passing

DATA TYPE REC.TYPE
RECORD

BYTE bi:
INT16 i16:
REAL64 r64:
BYTE b2:
BYTE b3:

In this example the compiler allocates one 32-bit word for the three BYTE fields, one word
for the INT16 field and two words for the REAL64 field.

The fields of a PACKED RECORD type are stored and communicated in the same order
as they are listed in the type definition with no padding added between the fields. The
first field is stored at the lowest address and communicated first. The total size of a
PACKED RECORD must be a whole number of words. Within a PACKED RECORD, the
following alignment rules apply to the start of each field:

BYTE and BOOL scalar and array fields may start on any byte,

• INT16 scalar and array fields must be 2-byte aligned, and

• other integer, real, array and record fields must be word aligned.

Protocol tags are represented by a-bit values. The compiler allocates tag values for each
protocol from 0 (BYTE) upwards in order of declaration.

Values accessed through RETYPES must be aligned to the natural alignment for that
data type; BYTES and BOOLS may be aligned to any byte; INT16s on a 32-bit processor
must be aligned to a half-word boundary and all other data types must be aligned to a
word boundary. This will be checked at run-time if it cannot be checked at compile time.
For example:

[20]BYTE array: This will be word aligned

INT32 Y RETYPES [array FROM i FOR 4]:
Run-time check is inserted

INT32 z RETYPES [array FROM 8 FOR 4]:
No run-time check inserted

B.3 Parameter passing

Parameters are divided into VAL and non-VAL parameters. These have different seman­
tics and may be passed differently.

B.3.1 VAL parameters

Scalar values that fit within the word length of the target machine are represented as
items one word long containing the value of the parameter.

_15_6 ~lil@m&'&~I-----------



8 Implementation of occam on the transputer

In the case of BYTE and BOOL, the value is found in the low-order byte of the word and
the high order bytes are guaranteed to be zero.

In the case of an INT16 parameter on a 32-bit processor, the value resides in the
low-order 2 bytes of the word. The high-order bytes are undefined.

If the parameter is a primitive type, or a record, that will not fit into a processor word, then
it is passed as a pointer to the actual value.

If the parameter is an array, a pointer to its base is passed, Le. the address of the first
element in the array. If any of its strides are undefined in the source then extra parame­
ters are passed containing the integer values of the missing strides. These parameters,
of type INT, are placed immediately after the pointer to the base of the array and appear
in the same order as the missing strides appear in the source.

Timers, channels and ports can never be VAL parameters.

8.3.2 Non-VAL parameters

Since these parameters change the actual parameters passed, the formal parameters
are always represented as pointers to the actual parameters (except for timers - see
below).

If the parameter is an array, then it is treated the same way as a VAL parameter with any
missing strides following the address of the first element.

If the parameter is a timer, it occupies no storage and so no parameter slot is reserved
for it.

8.3.3 Alignment

The compiler assumes that all parameters passed to a routine are aligned to the require­
ments described in Table 8.2.

Type Alignment Type Alignment

BOOL byte BYTE byte

INT word INT16 even byte

INT32 word INT64 word

REAL32 word REAL64 word

Table 8.2 Data alignment

8.4 Calling sequence

This section describes the state on entry to the called routine.

8.4.1 Registers

All registers are undefined. In particular, you may not assume that Areg is defined to be
the return address, because the entry may be via a jump which has timesliced. If some

SO 157------------ ~~itMcm~o©~------------



8.4 Calling sequence

occam code calls a separately compiled routine, then the call is done by means of a
call instruction to a stub, which then does a j to the true entry point. Calls to procedures
and functions defined within the same compilation module cannot timeslice.

On all processors with a floating point unit, the floating point registers are neverassumed
to have any values.

Iptr addresses the first instruction of the invoked procedure or function.

Wptr addresses the invocation stack frame (see next section). It must be word aligned.

8.4.2 Invocation stack

The invocation stack at entry to a procedure or function is addressed by non-negative
offsets from Wptr. Negative offsets are in the free (unused) part of the invocation stack.

Most parameters map one-to-one onto words of stack space. However, as described in
section 8.3, TIMERS occupy no storage, and arrays with open dimensions have extra
hidden parameters passed to indicate their real dimensions. The following diagram
assumes that all parameters are a single word long.

word
offset

n parameter n

(high addresses)

(last parameter passed in)

8.4.3 Iret

4 parameter 4 (first parameter stored by caller)

3 parameter 3 (Creg as saved by call instruction)

2 parameter 2 (Breg as saved by call instruction)

parameter 1 (Areg as saved by call instruction)

0 Iret (return address if call used)
....--Wptr

-1 free

(top of stack)

In all cases, the value of Iret has been stored before the first instruction of the called
routine is executed.

_1_58 iiii~itM.I-----------



8 Implementation of occam on the transputer

8.4.4 Parameters

The source code parameters to the procedure are foundat successive word offsets from
Wptr + k (words) , where 1 <= k <= 3. There may be up to two hidden parameters inserted
before the source code parameters. The hidden parameters being static link address
and vector space address:

k = 1 if neither the vector space address or static link parameters are used;

k =2 if one but not both of these parameters are used;

k =3 if both parameters are used.

In some cases the vector space address may be the last parameter - see below. Each
parameter occupies just one word. (See section B.3 for exceptions to this.) The source
code parameters are placed in the appropriate number of parameter words (see below
for details) in the lexical order in the source program.

The pointers to indicate the FUNCTION return value positions (if there are any) come
before all the source parameters (see below).

In some cases, the procedure needs the address of the outer level stack frame (the static
link). In this case, it is the first parameter to the procedure or function. (Note: that this
is never true for externally visible functions).

If the procedure being called allocates arrays in the vector space, the current value of
the vector space pointer is also passed in as a parameter. For calls to externally visible
procedures or functions the parameter is the last one of all. Otherwise, the parameter
is the first following the static link (if any). This parameter is optional.

The compiler is free to assume that locations (Wptr + 0) to (Wptr + 3) (the slots
corresponding to the registers stored by the call instruction) have been allocated for its
own use. It may corrupt any of the locations, after (if necessary), reading any actual
parameters stored therein. If the routine is called via a gcall instruction, or by any other
method, it is up to the caller to ensure that these locations are available. In effect, there
must always be at least 3 actual parameters.

8.5 Implementation of channels

A channel is implemented as a pointer to a channel word. When mapping channels to
specific transputer links, the channel word is placed at the specified address for scalar
channels. Arrays of channels are mapped as arrays of pointers to channel words.

As a result of this PLACE ing arrays of channels is implemented such that:

PLACE array.of.channels AT n:

places the array of pointers at that address.

PLACE scalar.channel AT n:

____________ ii;i5t••' 1_5_9



B.6 Transputer timers (clocks)

places the channel word at that address.

An example of the placement of channels on links is given in Chapter 12 of the occam
2. 1 Toolset User Guide.

The effect of PLACE on scalar channels differs from the effect of PLACE on channel
arrays. For scalar channels, the channel word is PLACEd, but for channel arrays, the
array ofpointers is PLACEd.

Arrays of channels may be constructed out of a list of other channels. For example:

PROC p (CHAN OF protocol a, [2]CHAN OF protocol b)
[3]CHAN OF protocol c IS [a, b[O], b[i]] :
-- channel constructor

ALT i = 0 FOR SIZE c
c[i] ? data

Channel constructors extend the facilities for manipulating channels; further information
is given in section 12.2 of the occam 2. 1 Toolset User Guide.

8.6 Transputer timers (clocks)

The transputer has two timers which can be accessed by the programmer. They are
used for real time programming, timing events, data logging, timing out, delays and so
on.

Two timers are provided to give low and high resolution timing. The timers themselves
are word length registers which are incremented regularly and related to the speed of
the input clock. The low resolution timer goes 64 times slower than the high resolution
timer, as shown in Table B.3. These speeds are independent of transputer model,
processor speed, and word length.

Priority Low High

Time between ticks 64 J.1Seconds 1 J.1Second

Ticks per second 15625 1000000

Approximate cycle time (16-bit) 4 seconds 65 milliseconds

Approximate cycle time (32-bit) 76 hours 1hour 1Omins

Table B.3 Timer parameters

The high resolution timer is always used by high priority processes, so is often called the
high priority timer. The low resolution timer is always used by low priority processes.

B.6.1 TIMER variables

TIMER variables in occam give access to the transputer timers. The syntax of timer
input is similar to channel input.

_16_0 Ii;i~it.'~~©, ------- _



8 Implementation of occam on the transputer

Timers can have only one of two possible values, corresponding to the high and low
priority transputer clocks. The clock which is read depends on the priority of the
enclosing process. When comparing clock values the same timer variable should be
used, and the value mustbe input from the same process or from a process of the same
priority on the same processor. If the same timer is used in processes with different
priorities or on different processors, the results are undefined.

A common use of timers is to time a process, for example, a channel input:

TIMER clock:
SEQ

clock ? start
chan ? y
clock ? end
delay := end MINUS start

The MINUS operator performs a modulo subtraction and is used to give a relative
difference, because the transputer timers are registers which wrap-around. The
maximum period that can be timed is limited to half the clock cycle time, e.g. about
33milliseconds at high priority and 2 seconds at low priority on 16-bit transputers. If the
period being measured is likely to be greater than this then a delay period based on
multiples of clock cycles should be built in.

8.6.2 TIMERS as formal parameters

When calling occam from C, any formal TIMER parameter in the occam procedure or
function must be ignored by the calling C code, and no actual parameter should be
passed. When calling occam routines from other occam routines an actual parameter
should be passed in the normal way.

B.7 CASE statement

The CASE statement is implemented as a combination of explicit test, binary searches,
and jump tables, depending on the relative density of the selection values. The choice
has been made to optimize the general case where each selection is equally probable.
The compiler does not make any use of the order of the selections as they are written
in the source code.

B.8 ALT statement

No assumption can be made about the relative priority of the guards of an ALT state­
ment; if priority is required, a PRI ALT must be used.

B.9 Checking IF statements

The compiler checks subscripts in all expressions at compile-time, including those
inside code which will never be executed. Hence the following code is illegal:

----------- LYL~i~~~~c1----------1-6-1



B.10 Implementation of PORTs

PROC P (INT x, [2]INT array)
IF

FALSE
x := array[lOO]

TRUE
x := array[l]

B.10 Implementation of PORTS

occam provides PORTS to access memory mapped devices. These should be used to
access any devices which do not behave as normal memory, Le. devices which should
not be cached, or those which are sensitive to the numbering and lor order of successive
read and write operations.

B.11 Formal parameters

If a name appears more than once in a single formal parameter list, the last definition
is used.

B.12 Hardware dependencies

• The number of priorities supported by the transputer is 2, (Le. high and low), so
a PRI PAR may have two component processes. The compiler does not permit
a PRI PAR statement to be nested inside the high priority branch of another. This
is checked at compile time, even across separately compiled units.

The low priority clock increments at a rate of 15 625 ticks per second, or one tick
=64 microseconds for all transputer types.

The high priority clock increments at a rate of 1 000 000 ticks per second, or one
tick =1 microsecond for all transputer types.

Because the high and low priority clocks tick at different speeds, the same
TIMER should not be read from within both high and low priority branches of a
PRI PAR.

TIMER channels cannot be placed in memory with a PLACE statement.

B.13 Summary of implementation restrictions

FUNCTIONS may not return arrays of variable size.

Multiple assignment of arrays of unknown size is not permitted.

A replicated PAR count must be constant.

_1_62 ~litI"~'£~©, _



-- this is illegal
-- this is legal

B Implementation of occam on the transputer

• There must be exactly two branches in a PRI PAR.

Replicated PRI PARS are not permitted.

Nested PRI PARS are not permitted.

• PLACE statements must immediately follow the declaration of the variable to
which they refer. The only statements which may intervene are other PLACE
statements, e.g.:

INT x, y, z :
PLACE x •••••
PLACE Y •••••

Compiler pragmas SHARED and PERMITALIASES must immediately follow the
declaration of the variable to which they refer.

Table sizes must be known at compile time, for example:

PROC p ([ ] INT a, [ ] INT b)

VAL [] []INT x IS [a]
VAL [lINT y IS b :

• Constant arrays which are indexed by replicator variables are not considered to
be constants for the purposes of compiler constant folding, even if the start and
limit of the replicator are also constant. This restriction does not apply during
usage checking.

FUNCTIONS which use ALT replicator variables as free variables may not be
called in the guard of the same ALT. An error is reported at compile time if this
occurs. Example:

PROC P([10]CHAN OF INT c
ALT i = 0 FOR 10

INT FUNCTION f() IS 9 - i
INT x:
c[f()] ? x call of If()' is illegal

SEQ

ALT
c[f(}] ? x -- this is legal.

This can be resolved by passing the replicator variable into the FUNCTION as a
parameter:

PROC P([10]CHAN OF INT c
ALT i = 0 FOR 10

INT FUNCTION f(VAL INT i) IS 9 - i
INT x:
c[f(i)] ? x -- call of 'f(i)' is legal

SKIP

___________ ~~I@r.£y©~ 1_63_



8.13 Summary of implementation restrictions

Maximum array size is 64 Kbytes on 16-bit processors, 2 Gbytes on 32-bit
processors. No dimension of any array may exceed MOSTPOS INT.

• Maximum filename length is 128 characters.

• Maximum 256 tags allowed in PROTOCOLS.

Maximum number of lexical levels is 254. (Applies to nested PROCS and repli­
cated PARS).

The compiler can compile a maximum of 240 Kbytes of object code in a single
compilation unit. (This limit can be changed by using the compiler command line
option CODE).

• The compiler places restrictions on the syntax which is permitted at the outer­
most level of a compilation unit; i.e. not enclosed by any function or procedure.

o No variable declarations are permitted.

o No abbreviations containing function calls or VALOFS are allowed, even if
they are actually constant. For example:

VAL x :IS (VALOF
SKIP
RESULT 99

)

VAL m :IS max (27, 52)
-- This is illegal.
-- This is also illegal.

The compiler does not permit the following syntax, which refers to the zeroth
element of a table of one element, type converted to a named data type:

x := mytype [myelement][O]

This restriction is necessary because the compiler cannot distinguish this syntax
from an element of a two dimensional array.

The compiler does not permit the following statement, where the length of the
counted array is the S:IZE of an array of channels:

c ! SIZE [n]CHAN OF INT :: a

This restriction is necessary because the compiler cannot distinguish this syntax
from sending the SIZE of an array of channels with a counted array protocol, as
it is not clear where the operand of S:IZE ends. This ambiguity can be resolved
by adding parentheses:

c ! (S:IZE [n]CHAN OF INT) •• a

_1_64 i~£ ~1@llm~l~~©' -----------



C Alias and usage checking

C.1 Alias checking

This section describes the alias checking that is implemented by the compiler. Alias and
usage checking are described in the occam 2. 1 Reference Manual.

In the following text 'assigned to' means 'assigned to by assignment or input'.

C.1.1 Introduction

Alias checking is the name given to the series of checks made by the compiler on
occam abbreviations to ensure that an object is known by a single name within a given
scope Le. no aliases exist. In practice this means that:

named abbreviations must be used correctly within the code

• expressions used to define abbreviations (plus any subscripts within them) must
be valid and within range

• variables in defining expressions must not be changed.

The same rules apply to retyped names, since retyping is simply another form of abbrevi­
ation.

Alias checking is governed by a strict set of rules. This enables many checks to be done
at compile time, reducing the need for run-time checking code. Some checks, however,
can only be performed at run-time.

Alias checking can be disabled in a compilation unit or for specific variables. It is then
up to the programmer to ensure that the rules are complied with, or the behavior of the
program is undefined.

The formal rules used for alias checking are set out below. For further details see the
occam 2. 1 Reference Manual.

C.1.2 Rules

Scalar variables

Rule 1 If a scalar variable appears in the abbreviated expression of a VAL abbreviation,
for example x in:

VAL a IS x + 2 :

then that variable may not be assigned to or abbreviated by a non-VAL abbrevi­
ation anywhere within the scope of the VAL abbreviation.



C.1 Alias checking

Rule 2 If a scalar variable is abbreviated in a non-VAL abbreviation, for example x in:

a IS x :

then that variable may not be referenced anywhere within the scope of the
abbreviation.

Arrays

The aliasing rules for arrays attempt to treat each element of the array as an individual
scalar variable. They allow the maximum freedom possible without introducing run-time
checking code except at points of abbreviation. In the following text the word 'constant'
means any expression that can be evaluated at compile-time.

If an array is referenced in the expression of a VAL abbreviation, for example x in:

VAL a IS x[il :

then rules 3 to 5 apply to the use of the array within the scope of the abbreviation:

Rule 3 If the subscript is constant then elements of the array may be assigned to as long
as they are only subscripted by constant values different from the abbreviated
subscript. Any element of the array may also appear anywhere in the expression
of a subsequent VAL abbreviation. Any other elements of the array may be
non-VAL abbreviated, and run-time checking code is generated if subscripts
used in the abbreviation are not constant.

Rule 4 If the subscript is not constant then no element of the array may be assigned to
unless it is first non-VAL abbreviated. The non-VAL abbreviation may generate
run-time code to check that it does not overlap the VAL abbreviation. The array
may be used in the expression of a subsequent VAL abbreviation.

Rule 5 Elements of the array may be read anywhere within the scope of the abbreviation
except where restricted by further abbreviations.

If an array is abbreviated in a non-VAL abbreviation, for example x in:

a IS x [il :

then rules 6 to 8 apply to the use of the array within the scope of the abbreviation:

Rule 6 If the subscript is constant then elements of the array may be read and assigned
to as long as they are accessed by constant subscripts different from the abbre­
viated subscript. Other elements of the array may be abbreviated in further VAL
and non-VAL abbreviations, and run-time checking code is generated if
subscripts used in the abbreviation are not constants.

Rule 7 If the subscript is not constant then the array may not be referenced at all except
in abbreviations, in which case run-time code may be generated to check that
the abbreviations do not overlap.

_16_6 J;.~~ ~i~@.'9J1-----------



C Alias and usage checking

Rule 8 Variables used in subscripts of the array being abbreviated act as if they have
been VAL abbreviated. In the above example i acts as if it has been VAL
abbreviated and cannot be altered in the scope of the abbreviation. Where
elements of the array being abbreviated are used in the subscript of the array
then the abbreviation is checked as if the subscript expression was VAL abbre­
viated just before the non-VAL abbreviation. For example:

a IS x[x[2]] :

is checked as if it was written:

VAL subscript IS x[2]
a IS x[subscript] :

which (by Rule 7 above) will generate run-time checking code.

C.1.3 Alias checking disabled

Note: the compiler will be able to generate the most efficient code when all alias checks
are enabled.

When alias checking is disabled, either on a compilation unit or on specific variables, the
compiler cannot guarantee no aliasing on the affected variables. It is then the program­
mer's responsibility to ensure that the rules described in this section are not broken.

The set of aliasable variables consists of either:

the set of all variables declared in the compilation unit (if the whole compilation
unit has alias checking turned off by the A command line option or the #OPTION
"A" directive),

or

the set of all variables which have been marked by the pragma
PERMITALIASES, together with those variables which have been deduced to be
aliasable by the compiler according to the rules described below.

(See Chapter 3 in the Toolset Reference Manual for a description of the pragma
PERMITALIASES).

In the presence of aliasable variables, the behavior of a program is defined in the intuitive
model, where all reads and assignments to aliasable variables are executed strictly in
the order in which they are written; they may not be re-ordered by an optimizer. Note also
that because of retyping it cannot be assumed that a write to an aliasable variable of one
type will not affect an aliasable variable of another type.

When variables are aliasable the following rules apply.

VAL abbreviations

Suppose we have a VAL abbreviation of the form:



C.1 Alias checking

VAL name IS expression

If name is aliasable, then

all component variables of expression are automatically inferred to be aliasable
by the compiler and may be modified in the scope of the abbreviation,

and therefore:

name must not be used after any component variable of expression is modified.

If this constraint is not met, the behavior of the program is undefined, and results will be
implementation-dependent.

For example:

VAL x IS ali] :
#PRAGMA PERMITALIASES x
SEQ

use x
modify i or ali]
use x

Non-VAL abbreviations

This is OK
This is OK if x is aliasable
This is undefined

Suppose we have a non-VAL abbreviation of the form:

name IS element :

If name is aliasable, then:

any variable used in a subscript to select a component or components of an array
reference in elementmay be modified in the scope of the abbreviation. (All such
variables are automatically inferred to be aliasable by the compiler.)

and therefore:

name must not be used after a variable used in a subscript to select a component
or components of an array referenced in element has been modified.

If this constraint is not met, the behavior of the program is undefined, and results will be
implementation-dependent.

If the base variable of element is aliasable then:

the actual element referred to by such an abbreviation may be modified within
the scope of the abbreviation. name is automatically inferred to be aliasable by
the compiler, and the abbreviation is implemented as though name is a pointer
to the element.

An alias may subsequently be created, either by referring to element explicitly in the
scope of the abbreviation, or by using another abbreviation within the scope.

_16_8 L'T£ lit._©, -----------



C Alias and usage checking

Multiple assignment

In a multiple assignment, the destinations of the assignment are written to as though
they are in parallel. Therefore:

variables listed as the left hand side of a multiple assignment must not be
aliased.

It is up to the programmer to ensure that this rule is complied with. If it is not, the behavior
of the program is undefined.

Note that it is perfectly legal for the destinations of an assignment to alias expressions
used on the right hand side of an assignment. Thus destination variables maybe aliased
with actual parameters to a FUNCTION.

Procedure parameters

It is assumed that only (non-VAL) formal parameters of a procedure which are aliasable
may be aliased, either with each other, with the VAL parameters, or with aliasable free
variables.

If an actual parameter to a procedure aliases another actual parameter, or aliases a free
variable used by the procedure, then:

the formal parameter must be marked as aliasable. Note that this also applies
across separately compiled units.

Since the rules for procedure parameters derive from those for abbreviations, the
following constraint applying to VAL abbreviations also applies. That is:

any variable used in an actual parameter corresponding to a VAL formal param­
eter must not be modified in the body of the procedure prior to the final read of
the formal parameter.

It is up to the programmer to ensure that these rules are complied with. If they are not,
the behavior of the program is undefined.

Interaction with usage checking

Since the usage checking algorithms rely on lack of aliasing, any aliasable variable is
automatically inferred to be shared; see section C.2.7.

C.2 Usage checking

This section describes the usage checking that is implemented by the compiler. The
usage rules are given in section E.1 of the occam 2. 1 Reference Manual.

C.2.1 Introduction

Usage checking is the name given to the series of checks made by the compiler to
ensure that parallel processes do not share variables, channels span only two

___________ Eil~i~@mgf;lfJ~©' 1_69_



C.2 Usage checking

processes, and communication down channels is unidirectional. Using a set of rules
means that many checks can be done at compile time, reducing the need for run-time
checking code.

C.2.2 Checking of non-array elements

Variables and channels which are not elements of arrays are checked according to the
rules of occam 2.1 given in section E.1 of the occam 2. 1 Reference Manual.

C.2.3 Checking of arrays of variables and channels

Where possible, the compiler treats each element of an array as an independent vari­
able. This makes it possible to assign to the first and second elements of an array in
parallel.

For usage checking to operate in this way, it must be possible for the compiler to evaluate
all possible subscript values of an array. The compiler is capable of evaluating expres­
sions consisting entirely of constant values and operators (but not function calls). Where
a replicator is used in an expression the compiler can evaluate the expression for all
values of the index provided that the base and count of the replicator can be evaluated.
Note: however, that as each iteration of the routine is checked, this can slow the compiler
down.

Where an array subscript contains variables, a function call, or the index of a replicator
where the base or the count cannot be evaluated, the compiler assumes that all possible
subscripts of the array may be used. This may cause a spurious error. For example,
consider the following program fragment:

x := 1
PAR

a[O] := 1
a [x] : = 2

The compiler reports the assignment to a [x] as a usage error. The fragment could be
changed to:

VAL x IS 1:
PAR

a[O] := 1
a[x] := 2

This would be accepted by the compiler because x can be evaluated at compile time.

The compiler checks segments of arrays similarly to simple subscripts. Where the base
and count of a segment can be evaluated, each segment is treated as though it has been
used individually. Where the base or count cannot be evaluated, the compiler behaves
as if the whole array has been used. For example, the following code is accepted without
generating an error:

170 ~SGS.1HOMSON------------ A."'£ Ir:ilO©OO@[g~@~O©~ -----------



-- c free in p

C Alias and usage checking

PAR
[a FROM 4 FOR 4] .- x
a[8] := 2
[a FROM 9 FOR 3] .- y

C.2.4 Arrays as procedure parameters

Any variable array which is the parameter of a procedure is treated as a single entity.
That is, if any element of the array is referenced, the compiler treats the whole array as
being referenced. Similarly, if any free variable array, or element of a free variable array
is assigned in a procedure then the compiler treats it as if every element were assigned.
For example, the compiler reports an error in the following code because it considers
every element of a to have been assigned when p (a) occurred.

PROC p( [] INT a)
a[l] := 2

PAR
p(a)

a[O] := 2

Similarly, where one element of an array of channels is used for input or output within
a procedure, the compiler treats the array as if all elements were used in the same way.
For example, the compiler reports an error in the following code because it considers
an output has been performed on every element of c when p () occurred.

PROC p()

c[l] ! 2

PAR
P ()
c [0] ! 1

C.2.5 Abbreviating variables and channels

The compiler treats an element which is abbreviated in an element abbreviation as if it
had been assigned to, whether or not it is actually updated. If this causes an apparently
correct program to be rejected the program should be altered to use a VAL abbreviation.
For example, the compiler reports an error in the following code because it considers
that b is assigned to in the first component of the PAR.

PAR
a IS b
x .- a
y .- b

This could be changed to:

PAR
VAL a IS b :
x := a
y := b

SO 171----------- Eilli~@RII@~D©'------------



C.2 Usage checking

Where a channel is an abbreviation of a channel array element, the compiler behaves
as if the whole of the channel array had been used unless the element is an array
element with constant subscripts, a constant segment of an array (Le. with constant
base and count) or a constant segment with constant subscripts.

C.2.6 Channels

A channel formal parameter, or a free channel of a procedure, may not be used for both
input and output in a procedure. This check is disabled if usage checking is disabled.

C.2.7 Usage checking disabled

Note: the compiler will be able to generate the most efficient code when all usage checks
are enabled.

The compiler supports two switches which can be used to disable either Usage checking
only, or both Alias and Usage checking together. Usage checking can be disabled on
a compilation unit by the N command line switch or argument to the #OPTION compiler
directive. Usage checking can also be turned off on specific variables using the SHARED
pragma. See Chapter 3 in the Toolset Reference Manual for more details.

When usage checking is disabled it is the programmer's responsibility to ensure that
variables and channels are used correctly according to certain rules. if they are not the
behavior of the program is undefined.

The set of shared variables consists of either:

• the set of all variables declared in the compilation unit, if the whole compilation
unit has usage checking disabled, or

• the set of all variables which have been marked by the pragma SHARED, together
with those variables which have been deduced to be shared by the compiler
because they are aliasable (see section C.1.3).

The effects of disabling usage checking are best defined by what happens at a synchro­
nization point - a point where. the relative progress of two processes is known. A
synchronization point is defined to be one of the following:

A communication (on a channel, timer, or port)

The beginning or end of a PAR construct.

A program using shared variables is valid provided that:

If between two synchronization points of a process, a process reads a shared
variable, then the variable is not updated by any other process at any time
between these two points.

(This means that an implementation is at liberty to read the shared variable from
memory after the first synchronization point, and then to cache a local copy of
the variable, if it wishes.)

_17_2 ;.:ulil@.cf9I-----------



C Alias and usage checking

If between two synchronization points of a process, a process updates a shared
variable, then the variable is neither read nor updated by any other process at
any time between these two points.

(This means that an implementation is at liberty to read the shared variable from
memory after the first synchronization point, and then to cache a local copy of
the variable, if it wishes, as long as it ensures that the variable is written back to
memory before the second synchronization point.)

Each element of an array is considered to be a separate variable for the purpose of these
rules.

If either of these constraints is broken, the behavior of the program is undefined. It is up
to the programmer to ensure that these constraints are met.

Channels may be considered shared in the same way that variables may be. A program
using shared channels is valid provided that:

If a process communicates on a shared channel, then the channel is not used
for communication in the same direction by any other process at any time
between the previous and the following synchronization points.

• No branch of a PAR may use a channel for both input and output.

Each element of an array is considered to be a separate channel for the purpose of these
rules.

If either of these constraints is broken, the behavior of the program is undefined. It is up
to the programmer to ensure that these constraints are met.

If any variable or channel which is shared is passed as an actual parameter to a
procedure or function, then the corresponding formal parameter must also be marked
as shared. Note: that this also applies across separately compiled units. It is up to the
programmer to ensure that this is done, otherwise the behavior of the program is
undefined.

173------------ ~EI@m"~~©~------------



C.2 Usage checking

_1_74 ~~i~@elcf£' _



Index

Symbols
#COMMENT, 145

#IMPORT, 145

#INCLODE,145

#OPTION,145

#PRAGMA,145
LINKAGE, 152
SHARED, 172

#section,152

#usE,3,145

Numbers
20 block move, 5

A
Abbreviation, checking, 171

Accuracy of floating point arithmetic, 21-23

Acos,27,47

Alias checking, 165
arrays, 166
effect of disabling, 167
rules, 165

Alignment, 156

ALOG, 28, 48

ALOG10, 29, 49

ALT,161

ANSI screen protocol, 107

ANSI-IEEE standard 754, 20

Apollo, 95

append. char, 117

append.hex.int,117

append.hex.int64,117

append. int, 118

append. int64, 118

append.rea132,118

append.rea164,119

append. text, 119

Argument reduction, 21-23

Arithmetic functions
floating point support, 12
IEEE behavior, 6
occam, 6

Array
alias checking, 166
channel, 159
constant, 163
of pointers, 159
unknown size, 162
usage checking, 170

ASIN,30, 50

ASK, 145

ASSERT, 18

ATAN, 31,51

ATAN2,32,52

B
Binary byte stream, 81, 86

Bit manipulation, 5, 9

BITCOUNT,10

BITREVNBITS,10

BITREVWORD,10

Block CRC library, 133

BOOL,155

BOOLTOSTRING, 126

Buffers, 71

BYTE,155

c
C run time library, 67

Caplin aTO, 96

CASE, 161

CAT, 96

CAUSEERROR,17

Channel
array, 159

____________ ~5~@-cf9©~ 1_7_5



Index

implementation, 159
place, 148
retyping, 146
usage checking, 170

char.pos,119

Character identification, 115

CLIP2D,8

Clock rate, 162

CMS,96

Code, allocation in memory, 151

Command line, server, 73, 85

Communication. See Channel

compare. strings, 119

Compiler
directives, 145
implementation restrictions, 162
language keywords, 145
libraries, 5

user functions, 6
memory allocation, 151

Constant arrays, 163

Constants, 4

convert.lib,3,125

COS, 33,53

COSH, 35, 55

CRG functions, 10, 133

crc.lib,3

CRCBYTE,12

CRCFROMLSB,135

CRCFROMMSB,134

CRCWORD,11

D

DACOS, 27, 47

DALOG,28,48

DALOG10, 29, 49

DASIN,30,50

DATAN, 31,51

DATAN2, 32, 52

Date, 95

dblmath.lib,3,19,25

DCos,33,53

DCOSH,35,55

DEBUG. ASSERT, 141

debug .lib, 141

debug. lib, 3

DEBUG.MESSAGE,141

DEBUG. STOP, 142

Debugging support library, 141

DEC VAX, 95

delete. string, 120

DEXP, 36, 56

Domain, 24

DOS, 95

DPOWER,37,58

DRAN, 39, 60

DRAW2D,9

DRX-11, 96

DSIN,40,61

DSINH, 42, 63

DTAN,43,64

DTANH, 45, 66

Dynamic code loading, procedures, 14

E
Echoed keyboard input, 90

Elementary functions, 19, 25, 46

End of file, 73

Environment variables, 78

eqstr,120

Error, floating point, 21

Escape characters, 145

Examples, INLINE, 148

Exceptions, 23

EXP, 36, 56

Extended data types, 5

Extensions, to occam, 145

Extraordinary link handling library, 137

_1_76 i:iilil@_~I------------



Index

F occam, 151
restrictions, 162

File IMS B004, 96
access, 69 IMS B008, 96
access errors, 74

IMS B010, 96deletion, 92
name, length, 164 IMS B011, 96
output, 70 IMS B014, 96
positioning, 92
renaming, 92 IMS B015, 96

Floating point IMS B016, 96
accuracy, 21-23 IN, 145
arithmetic, 5

inexact.NaN, 21compiler optimization, 152
representation, 20 Infinity, 20

FKUL, 46 INLI:NE,145,148

FRACMUL, 12 InputOrFail. c, .138

InputOrFail.t, 138

G insert.string, 120

I NT, 155
Generated error, 21 , 24 INT16, 155
GUY, 145 INT16TOSTRING,127

INT32, 155

H INT32TOSTRING, 127

INT64, 155
HEllOS, 96

INT64TOSTRING,128
HEX16TOSTRING,126

INTTOSTRING,127
HEX32TOSTRING,126

is.digit,120
HEX64TOSTRING,127 is.hex.digit, 121
HEXTOSTRING,126 is.id.char, 121
Host is.in.range, 121

access,68
system call, 93 is • lower, 121

versions, v is.upper, 121

Host file server, library, 67 I SEARCH, 86

hostio.lib, 3

Hyperbolic functions, 42 K
KERNEL.RON,14,15

Keyboard

IBM 370, 95 input, 69, 106
polling, 86

IEEE floating point arithmetic, 5
Keystream

IF, 161 input, 102

ilist,4 protocol, 101

Implementation kS,101

channels, 159 ks.keystream.sink, 104

W SGS-1HOMSON 177
~~ ~U©OO@[g~@~O©®



Index

ks.keystream.to.scrstream,104

ks.read.char,104

ks.read.int,104

ks.read.int64,104

ks.read.line,105

ks.read.rea132,105

ks.read.rea164,105

L
Language extensions, 145

Lexical levels, 164

Library, 3
block CRC, 133
compiler, 5
debugging support, 141
displaying, 4
extraordinary link handling, 137
host file server, 67
maths, 19
optimized T4 series, 19,46
string handling, 115
type conversion, 125

Line parsing, 117

Link, failure, 137

Link handling library, 137

LOAD.BYTE.VECTOR,14,16

LOAD. INPUT. CHANNEL, 14,15

LOAD. INPUT. CHANNEL. VECTOR, 14,16

LOAD.OUTPUT.CHANNEL,14,16

LOAD.OUTPUT.CHANNEL.VECTOR,14,16

Long reals, 25

Lowercase, 121, 123

M
MAE, 22

Maths
functions, 6
libraries, 19

Maximum error. See MAE; MRE

Memory, allocation, 151

MemBtart,151

MOSTNEG INT, 152

MOSTPOS INT, 151, 164

MOVE2D,9

Moving the cursor, 112

MRE,22

Multiplexors, 71

N
NaN, 20

NEC PC, 95

next. int. from. line, 121

next.word.from.line,122

Not a number. See NaN

o
occam

implementation, 151
language extensions, 145
libraries, 3

OUtputOrFail.c,138

OUtputOrFail.t,138

p

PAR, 153, 162

Parsing, 117

Parsing command line, 84

PLACE, 147,159, 162
syntax, 147

Placement
array of channels, 148
at address, 147
channels, 148
in vector space, 148
in workspace, 148
variables, 148

Pointer to channel, 159

Port, 162
place at address, 147

POWER, 37,58

PRI ALT,161

PRI PAR, 153,162, 163
nested, 163
replicated, 163

Primary domain, 24

_17_8 ~Iilm~\' _



Priority, 162

Propagated error, 22, 24

PROTOCOL, 164

Protocol, tag, 156

R
RAN,39,60

Random number generation, 39

Range, 24

Range reduction, 21

REAL, 67

Real numbers, 67

REAL32TOSTRING, 128

REAL64TOSTRING,129

Reinitialise,139

Replicated PAR, 153, 162

RESCHEDULE, 17

Resetting links, 137

Restrictions, implementation, 162

RETYPES, 156

RMSAE,22

RMSRE,22

Root mean square error. See RMSAE; RMSRE

ROUNDSN,13

s
Scalar channels, 159

Screenstream
output, 103
protocol, 101

Search path, 86

search.match, 122

search.no.match, 123

Server
command line, 73, 85
termination, 74

SIN,40,61

SINH,42,63

snglmath.lib,3,19,25

so, 101

Index

so.ask, 72

so.buffer,72

so.close,73

so.commandline, 73

so.eof,73

so. exit, 74

so.ferror,74

so. flush, 74

so. fwrite. char, 75

so.fwrite.hex.int,75

so.fwrite.hex.int32,75

so. fwrite.hex. int64, 76

so.fwrite.int,76

so.fwrite.int32,76

so.fwrite.int64,76

so.fwrite.nl,77

so.fwrite.real32,77

so.fwrite.real64,77

so.fwrite.string,78

so.fwrite.string.nl,78

so.getenv,78

so.getkey,79

so. gets, 79

so.keystream.from.file, 105

so.keystream.from.kbd, 106

so.keystream.from.stdin, 106

so.multiplexor,80

so.open,80

so.open.temp,81

so.overlapped.buffer,82

so.overlapped.multiplexor,83

so.overlapped.pri.multiplexor,84

so.parse.command.line,84

so.pollkey,86

so.popen.read,86

so.pri.multiplexor,87

so.puts,88

so.read,88

so.read.echo.any.int, 88

so.read.echo.hex.int,89

so.read.echo.hex.int32,89



Index

so.read.echo.hex.int64,89

so.read.echo.int,90

so.read.echo.int32,90

so.read.echo.int64,90

so.read.echo.1ine,90

so.read.echo.rea132,91

so.read.echo.rea164,91

so. read. 1 ine, 91

so. remove, 92

so. rename, 92

so.scrstream.to.ANSi,107

so. scrstream.to. file, 107

so. scrstream. to. stdout, 108

so.scrstream.to.TVi920,108

so.seek,92

so. system, 93

so.te11,93

so.test.exists,93

so.time,94

so.time.to.ascii,94

so.time.to.date,94

so.today.ascii,94

so.today.date,95

so.version,95

so.write,96

so.write.char,96

so.write.hex.int,97

so.write.hex.int32,97

so.write.hex.int64,97

so.write.int,97

so.write.int32,98

so.write.int64,98

so.write.n1,98

so.write.rea132,98

so.write.rea164,99

so.write.string,99

so.write.string.n1,99

ss,101

ss.beep,108

ss.c1ear.eo1,108

ss.c1ear.eos,109

ss.de1.1ine,109

ss.de1ete.ch1,109

ss.de1ete.chr,109

ss.down,109

ss.goto.xy,109

ss.ins.1ine,110

ss.insert.char,109

ss .1eft, 110

ss.right,110

ss. scrstream. copy, 110

ss.scrstream.fan.out,110

ss.scrstream.from.arraY,111

ss.scrstream.mu1tip1exor,111

ss.scrstream.sink,111

ss.scrstream.to.array,112

ss .up, 112

ss.write.char,112

ss.write.endstream,112

ss.write.hex.int,112

ss.write.hex.int64,112

ss.write.int,113

ss.write.int64,113

ss .write.n1 ,113

ss.write.rea132,113

ss.write.rea164,113

ss.write.string,114

ss.write.text.1ine,114

Standard, maths function, 25

str.shift,123

streamio.1ib,3

Streams, 69

String handling
comparison, 115
editing, 116
library, 115

introduction, 3
searching, 116

string.pos,122

STRiNGTOBOOL,130

STRiNGTOHEX,130

STRiNGTOHEX16,130



STRINGTOHEX32, 130

STRINGTOHEX64, 130

STRINGTOINT, 131

STRINGTOINT16, 131

STRINGTOINT32,131

STRINGTOINT64,131

STRINGTOREAL32,131

STRINGTOREAL64,132

Sun, host types, 95

SunOS, 96

System call, 93

T
T2 special, maths function, 25

T4 series, optimized library, 19, 46

T8 series, maths libraries, 25

Tabs, in occam source, 146

TAN,43,64

TANH, 45, 66

Target transputer, vi

tbmaths.lib,3, 19,46

Text
reading, 79
stream, 81,86
writing, 88

Time, 94
transputer clock, 162

Timeout, 137
channel input, 138
channel output, 138

TIMER, channels, 162

Timer, 160

to. lower. case, 123

to.upper.case,123

Toolset, documentation, v
conventions, vi

Transputer

targets, vi
timer, 160

Trigonometric functions, 26

TV1920,108

Type conversion library, 125

Type mapping, 155

u
UDPlink,96

Ulp,24

undefined.NaN, 20

UNPACKSN,13

unstable.NaN, 21

Uppercase, 121, 123

Usage checking, 169
arrays, 170
channels, 170
disabled, 172

v
Variable

place at address, 147
place in memory, 148

VECSPACE, 145, 147

Vector space, 151, 153, 154

VMS, 96

VSSIZEOF, 14, 17

w
WORKSPACE, 145,147

Workspace, 151, 152

WSSIZEOF, 14, 17

x
xlink.lib,3, 137

Index


	Contents overview
	Contents
	Preface
	Host versions
	About this manual
	About the toolset documentation set
	Other documents
	Transputer targets supported by this toolset
	Documentation conventions

	Libraries
	1 The occam libraries
	1.1 Introduction
	1.2 Using the occam libraries
	1.2.1 Linking libraries
	1.2.2 Listing library contents
	1.2.3 Library constants


	2 Compiler libraries
	2.1 Using compiler library routines
	2.2 Mathematics functions
	2.3 2D block moves
	2.4 Bit manipulation functions
	2.5 CRC functions
	2.6 Floating point arithmetic support functions
	2.7 Dynamic code loading support
	2.8 Transputer-related procedures
	2.9 Assertion test procedure

	3 Mathematics libraries
	3.1 Introduction and terminology
	3.1.1 Inputs
	3.1.2 Outputs
	3.1.3 Accuracy
	3.1.4 Test Procedures
	3.1.5 Symmetry
	3.1.6 The Function Specifications

	3.2 Single and double length elementary function libraries
	ACOS, DACOS
	ALOG, DALOG
	ALOG10, DALOG10
	ASIN, DASIN
	ATAN, DATAN
	ATAN2, DATAN2
	COS, DCOS
	COSH, DCOSH
	EXP, DEXP
	POWER, DPOWER
	RAN, DRAN
	SIN, DSIN
	SINH, DSINH
	TAN, DTAN
	TANH, DTANH

	3.3 T4 elementary function library
	ACOS, DACOS
	ALOG, DALOG
	ALOG10, DALOG10
	ASIN, DASIN
	ATAN, DATAN
	ATAN2, DATAN2
	COS, DCOS
	COSH, DCOSH
	EXP, DEXP
	POWER, DPOWER
	RAN, DRAN
	SIN, DSIN
	SINH, DSINH
	TAN, DTAN
	TANH, DTANH


	4 Host file server library
	4.1 Errors and the server run time library
	4.2 Reading real numbers
	4.3 Procedure descriptions
	4.4 Host i/o procedures arranged by purpose
	4.4.1 General host access
	4.4.2 Keyboard input
	4.4.3 Screen output
	4.4.4 File access and management
	4.4.5 File output
	4.4.6 Server protocol buffers
	4.4.7 Server protocol multiplexors
	4.4.8 Host date and time

	4.5 Host i/o procedure definitions
	so.ask
	so.buffer
	so.close
	so.commandline
	so.eof
	so.exit
	so.ferror
	so.flush
	so.fwrite.char
	so.fwrite.hex.int
	so.fwrite.hex.int32
	so.fwrite.hex.int64
	so.fwrite.int
	so.fwrite.int32
	so.fwrite.int64
	so.fwrite.nl
	so.fwrite.real32
	so.fwrite.real64
	so.fwrite.string
	so.fwrite.string.nl
	so.getenv
	so.getkey
	so.gets
	so.multiplexor
	so.open
	so.open.temp
	so.overlapped.buffer
	so.overlapped.multiplexor
	so.overlapped.pri.multiplexor
	so.parse.command.line
	so.pollkey
	so.popen.read
	so.pri.multiplexor
	so.puts
	so.read
	so.read.echo.any.int
	so.read.echo.hex.int
	so.read.echo.hex.int32
	so.read.echo.hex.int64
	so.read.echo.int
	so.read.echo.int32
	so.read.echo.int64
	so.read.echo.line
	so.read.echo.real32
	so.read.echo.real64
	so.read.line
	so.remove
	so.rename
	so.seek
	so.system
	so.tell
	so.test.exists
	so.time
	so.time.to.ascii
	so.time.to.date
	so.today.ascii
	so.today.date
	so.version
	so.write
	so.write.char
	so.write.hex.int
	so.write.hex.int32
	so.write.hex.int64
	so.write.int
	so.write.int32
	so.write.int64
	so.write.nl
	so.write.real32
	so.write.real64
	so.write.string
	so.write.string.nl


	5 Stream i/o library
	5.1 Naming conventions
	5.2 Stream i/o procedures
	5.2.1 Stream processes
	5.2.2 Key stream input
	5.2.3 Stream output

	5.3 Stream i/o procedure definitions
	ks.keystream.sink
	ks.keystream.to.scrstream
	ks.read.char
	ks.read.int
	ks.read.int64
	ks.read.line
	ks.read.real32
	ks.read.real64
	so.keystream.from.file
	so.keystream.from.kbd
	so.keystream.from.stdin
	so.scrstream.to.ANSI
	so.scrstream.to.file
	so.scrstream.to.stdout
	so.scrstream.to.TVI920
	ss.beep
	ss.clear.eol
	ss.clear.eos
	ss.delete.chr
	ss.delete.chl
	ss.del.line
	ss.down
	ss.goto.xy
	ss.insert.char
	ss.ins.line
	ss.left
	ss.right
	ss.scrstream.copy
	ss.scrstream.fan.out
	ss.scrstream.from.array
	ss.scrstream.multiplexor
	ss.scrstream.sink
	ss.scrstream.to.array
	ss.up
	ss.write.char
	ss.write.endstream
	ss.write.hex.int
	ss.write.hex.int64
	ss.write.int
	ss.write.int64
	ss.write.nl
	ss.write.real32
	ss.write.real64
	ss.write.string
	ss.write.text.line


	6 String handling library
	6.1 String handling procedures
	6.1.1 Character identification
	6.1.2 String comparison
	6.1.3 String editing
	6.1.4 String searching
	6.1.5 Line parsing

	6.2 String handling procedure definitions
	append.char
	append.hex.int
	append.hex.int64
	append.int
	append.int64
	append.real32
	append.real64
	append.text
	char.pos
	compare.strings
	delete.string
	eqstr
	insert.string
	is.digit
	is.hex.digit
	is.id.char
	is.in.range
	is.lower
	is.upper
	next.int.from.line
	next.word.from.line
	string.pos
	search.match
	search.no.match
	str.shift
	to.lower.case
	to.upper.case


	7 String conversion library
	7.1 Procedure definitions
	BOOLTOSTRING
	HEXTOSTRING
	HEX16TOSTRING
	HEX32TOSTRING
	HEX64TOSTRING
	INTTOSTRING
	INT16TOSTRING
	INT32TOSTRING
	INT64TOSTRING
	REAL32TOSTRING
	REAL64TOSTRING
	STRINGTOBOOL
	STRINGTOHEX
	STRINGTOHEX16
	STRINGTOHEX32
	STRINGTOHEX64
	STRINGTOINT
	STRINGTOINT16
	STRINGTOINT32
	STRINGTOINT64
	STRINGTOREAL32
	STRINGTOREAL64


	8 Block CRC library
	8.1 Example of use
	8.2 Function definitions
	CRCFROMMSB
	CRCFROMLSB


	9 Extraordinary link handling library
	9.1 Procedure definitions
	InputOrFail.c
	InputOrFail.t
	OutputOrFail.c
	OutputOrFail.t
	Reinitialise


	10 Debugging support library
	10.1 Procedure definitions
	DEBUG.ASSERT
	DEBUG.MESSAGE
	DEBUG.STOP


	Appendices
	A Language extensions
	A.1 Syntax
	A.1.1 Compiler keywords
	A.1.2 Compiler directives
	A.1.3 String escape characters
	A.1.4 Tabs
	A.1.5 Relaxations on syntax

	A.2 Retyping channels to and from data items
	A.3 Low level programming
	A.3.1 ASM
	A.3.2 PLACE statements
	A.3.3 INLINE keyword


	B Implementation of occam on the transputer
	B.1 Memory allocation by the compiler
	B.1.1 Procedure code
	B.1.2 Compilation modules
	B.1.3 Workspace
	B.1.4 Vectorspace

	B.2 Type mapping
	B.3 Parameter passing
	B.3.1 VAL parameters
	B.3.2 Non-VAL parameters
	B.3.3 Alignment

	B.4 Calling sequence
	B.4.1 Registers
	B.4.2 Invocation stack
	B.4.3 Iret
	B.4.4 Parameters

	B.5 Implementation of channels
	B.6 Transputer timers (clocks)
	B.6.1 TIMER variables
	B.6.2 TIMERS as formal parameters

	B.7 CASE statement
	B.8 ALT statement
	B.9 Checking IF statements
	B.10 Implementation of PORTs
	B.11 Formal parameters
	B.12 Hardware dependencies
	B.13 Summary of implementation restrictions

	C Alias and usage checking
	C.1 Alias checking
	C.1.1 Introduction
	C.1.2 Rules
	C.1.3 Alias checking disabled

	C.2 Usage checking
	C.2.1 Introduction
	C.2.2 Checking of non-array elements
	C.2.3 Checking of arrays of variables and channels
	C.2.4 Arrays as procedure parameters
	C.2.5 Abbreviating variables and channels
	C.2.6 Channels
	C.2.7 Usage checking disabled


	Index



