
The Afserver V1.5

March 4, 1988

Contents

1

2

3

Release contents

Source file structure

Afserver interface and protocol specification
3.1 afserver command syntax
3.2 Using the afserver

3.2.1 afserver options
Normal boot transputer (-:b boot. tile.name)
Specify option flag (-: 0 [#]option.f1ag)
Specify board size (- : s [#]board.size)
afserver information (-: i)
Specify link address (-: 1. [#]link.address)
Boot in analyse mode (- : x)
No reset when booting (-: n)
Test error flag (-: e)
Special boot transputer (-: c boot. tile. name)
Specify load address (-: a f#]load.address)
Serial boot debug (-: d)

3.3 afserver protocol
3.3.1 Filer process
3.3.2 Filing system operations

Terminate
OpenFile
OpenTemp
OpenlnputStream
OpenOutputStream
AlienTerminate
SetResult
RunTimeData
ReadCoreDump
ServerVersion
RunCommand
RenameFile
ReadTime
ReadKey
ReadKeyWait
ReadEnvironment

3.3.3 Stream operations
StreamAccess
StreamStatus
StreamFile
StreamLength
StreamConnect
CloseStream

3.3.4 File operations:
ReadBlock
WriteBlock
Seek

3.3.5 IBM PC/DOS -extensions
ReceiveBlock .

2

3

4
4
5
5
5
5
5
5
5
6
6
6
6
6
7
7
7
8
8
8
9
9
9

10
10
10
10
11
12
12
12
13
13
13
14
14
14
14
14
15
15
15
16
16
16
17
17

Copyright INMOS Ltd 1988 March 4, 1988

2

SendBlock 17
Call1nterrupt 17
ReadRegs 18
PortRead 19
PortWrite 19

3.3.6 afserver termination 20
3.3.7 afserver protocol 20

Terminate command 22
OpenFile command 22
OpenTemp command 22
OpenlnputStream command 22
OpenOutputStream command 22
StreamAccess command 22
StreamStatus command 22
StreamFile command 22
StreamLength command 22
StreamConnect command 23
CloseStream command 23
ReadBlock command 23
WriteBlock command 23
Seek command 23
AlienTerminate command 23
SetResult command 23
RunTimeData command 23
ReadCoreDump command 23
ServerVersion command 23
RunCommand command 24
RenameFile command 24
ReadTime command 24
ReadKey command 24
ReadKeyWait command 24
ReadEnvironment command 24
ReceiveBlock command 24
SendBlock command 24
Call1nterrupt command 24
ReadRegs command 25
PortRead command 25
PortWrite command 25

3.3.8 Constant values 25
Commands 25
Access methods 26
Op~n modes 26
Exist modes 26
Connections 26
Close options 26
Standard input: 26
Standard output 26
Results 27

A afserver error me;ssages ·28

8 Making the IBM/DOS loader 30

Copyright INMOS Ltd 1988 . March 4 1 1988

Contents 3

C

D

Making the VAXlVMS loader

Making the SUN/UNIX loaders

31

32

Copyright INMOS Ltd 1988 March 4, .1988,

4

1 Release contents

This release contains the sources for V1.5 for the afserver program. The sources supplied are for the
following versions of the program:

Host

IBM PC
DEC VAX
SUN 3
SUN 3

Operating System

MS-DOS 2.11 or above
VMS V4.5
SUN UNIX 3.2 or above
SUN UNIX 3.2 or above

Transputer Board

IMS 8004
IMS 8001/8002 (ROM loader)
IMS 8011
Niche NT1000

The sources for different versions of the program are supplied in sub-directories on the distribution disk. Also
supplied on this disk in a sub-directory is a test program (written in occam) that can be used to test the
afserver interactively or otherwise. Note that this test software is contained in TDS format files and so
can only be compiled using the TDS (IMS D700C or IMS D700D).

The structure of the distribution disk is as follows.

• The toplevel directory contains afserver source files that are common to all releases as well as
a number of sub-directories containing the test software and version dependent source files for the
afserver program.

• The sub-directory ibmdos contains the source files which are specific to the IBM/MS-DOS - B004
version of the afserver

• The sub-directory vaxvms contains the source files which are specific to the VAX/VMS - B001/8002
version of the afserver

• The sub-directory sununi.x\bOl1 contains the source files which are specific to the SUN3/UNIX
- 8011 version of the afserver

• The SUb-directory sununix\niche contains the source files which are specific to the SUN3/UNIX
- NT1 000 version of the afserver

Copyright INMOS 'Ltd 1988 March.4, 1988

5

2 Source file structure

The afserver source file names are the same for each implementation of the program (including the
implementation specific sources). The files that' make up the sources for the afserver program are as
follows:

version.h
afserver.h
boot.e
linkio.e
version.e
afserver.e

Listed below is a brief description for each of the above files, describing their portability and contents.

version.h

This file is afserver implementation dependent and is one of the header files that is always included by
the C source files. This header file contains all the implementation dependent constants. It also includes
all the system header files that might be needed by the C source files.

afserver.h

This header file for the afserver is implementation independent and is also included by all the C source
files. It conatins the definitions of the constants used by the afserver for the various protocol commands
and tags. It also contains other constant definitions that are not dependent on the afserver implementation.

boot.e

This source file is implementation dependent. The file contains the routines that are used to load a transputer
board with a boot file and also to determine the method in which the transputer board is reset (or not).

linkio.e

This source file is implementation dependent. The file contains all the routines that are used to send and
receive date to and from the transputer board. Other functions included are routiness to initialise and reset
the transputer board and a function to peek memory from the transputer board. Functions for interpreting the
tag protocol of the afserver are also provided in this file.

version.e

This source file is implementation dependent. The files contains the functions that perform the afserver
commands which are non-portable. For example, the IBM/DOS specific afserver commands. Version
specific support routines used in the processing of the afserver commands are also included in this file.

afserver.c

This source file for the afserver is implementation; independent. The file contains all the functions nec­
essary to perform the afserver commands (which includes any support functions). The file also contains
the main entry point for the program (Le. the main function).·

Copyright INMOS Ltd 1988 March 4, 1988

6

3 Afserver interface and protocol specification

The following sections describe the operation and protocol of the afserver (version V1.5) which is used
to load standalone programs and to provide a file service on the host system for these programs.

3.1 afserver command syntax

The syntax for the command line of the afserver is as follows:

afserver [command. line]

Where command.line is defined as follows:

command. line

program.parameter

option

options

boot. file. name

option. flag

board.size

link.address

load. address

number

option
program.parameter
option command. line
program.parameter command. line

any argument that is not an option

-: options
/: options

b boot.file.name
o option.flag
s board.size
i
1 link.address
x
n
e
c boot.file.name
a load.address
d

standard host file name

number

number

number

number·

decimal 'value
, I #hexadecimal value

program.parameter is supplied to r~sident programs on request by the program by issuing a
ReadBlock. Cmd command on ~tandard input stream 1 (the parameter stream). Note, this ·can only be
done after the stream has been opened for access.

Copyright INMOS Ltd 1988 March 4, 1988

3 Afserver interface and protocol specification

3.2 Using the afserver

7

The afserver has the filer process incorporated into it. This is the only protocol that is used by the
afserver. As a result, the afserver will 'not work with boot files previously used with other server
programs.

3.2.1 afserver options

The afserver options are described below.

Normal boot transputer (-:b boot. file. name)

If the option -: b is used, the afserver will try and use the given file name after the -:b to boot the
transputer. If the file name is not a valid file or the afserver is unable to boot the transputer with this file,
an error message will be generated by the afserver and then will terminate.

If this option is not specified the afserver will try and communicate with a program that has been previously
loaded onto the transputer board. If no program is loaded on the transputer, the afserver will be unable to
detect this and so will not terminate. If this happens then breakout of the afserver using the appropriate
break key.

The ability to ignore this option enables the user to load a program onto a board once and then to re-run the
program any number of times without the need to re-load the transputer board every time the program is to
be used.

Specify option flag (-: 0 l#]option.f1ag)

This option is used to pass values directly to a user program by using the afserver command
RunTimeData. Cmd with an option number of zero. If a # is used as a prefix for the following number then
the number is taken to be a hexadecimal number. If no number is specified an error will occur.

Note that if this option is not used the the value of the option flag defaults to zero. This option should only
be used with implementations that specify how to make use of the option flag.

An example use of this option is to enable the user to change the mode in which a program runs. That is,
whether the program runs with a separate stack and heap store or a combined stack and heap store. The
former would primarily be used for trying to place the run-time stack in fast memory.

Specify board size (-: s [#]board.size)

This option is used to pass to the user program the size of the transputer board on which the program is
running. The value given with this option is accessed using the afserver command RunTimeData. Cmd
with an option number of one. If a # is used as a prefix of the following number then the number is taken to
be a hexadecimal number. If no number is specified an error will occur.

Note that if this option is not used the the value for the board size defaults to zero.

afserver information (-: i)

If this option is used the afserver will display a copyright message and its version date.

A typical message given is:

Afserver (IBM) V1;.:5 (25th February 1988)
Copyright INMOS L~ited, 1985, 1986, 1987, 1988

Specify link address (-: 1 [#]Iirik.address)

This optio~ is only for use with the IBM/DOS version of the afserver.

Copyright INMOS Ltd 1988 ,March 4, 1988-

8

The use of this option enables you to change the address which the afserver uses to communicate with
the transputer board. If a # is used as a prefix of the following number then the number is taken to be a
hexadecimal number. If no number is specified an error will occur.

The default link address used by the afserver when running on an IBM PC XT/AT is #150 (hexadecimal
150). If the afserver is running on an IBM PC then the default link address used is #300 (hexadecimal
300).

This option need only be used at present to change the base link address if a B004 board configured for
the IBM PC XT/AT (link address #150) is used in an IBM PC and vice-versa. Therefore the link addresses
which have to be specified are #150 and #300 respectively.

Boot in analyse mode (-: x)

This option is only for use with the IBM/DOS version of the afserver.

This option is only relevent if a transputer board is being loaded with a program. If this option is specified
then the transputer being loaded is reset in analyse mode. The default is to reset the transputer in the normal
way.

Also when this option is used the afserver performs a core dump of the first 16 Kbytes of the transputer's
memory (Le. starting from MININT) and stores the core in an internal buffer. This core dump can then be
accessed by using the afserver command ReadCoreDump. Cmd.

No reset when booting (- : n)

This option is only for use with the IBM/DOS version of the afserver.

This option is also only relevent if a transputer board is being loaded with a program. If this option is
specified then the transputer being loaded is NOT reset any way. This option overrides the option -: x
(described above) and also prevents a core dump being preformed.

This option should only be used if the transputer being loaded has been previously loaded with a program
that can understand the boot file being sent to it by the afserver.

Test error flag (-: e)

This option is only for use with the IBM/DOS version of the afserver.

If this option is used the afserver will test the error flag on the transputer board. If the error flag is
detected the afserver will terminate. If this option is not specified the afserver defaults to not testing
the transputer error flag.

If the error flag has been set and the afserver is not testing for it then the afserver will not be able
to detect if the program on the transputer has halted (or not). It is therefore important to no what mode the
program loaded has been compiled for. If it has been compiled so that if a run-time error occurs the error
flag is set then this option should be used, otherwise it is not necessary for this option to be used.

Special boot transputer· (- : c boot. file. name)

This option is only for use with the VAX/VMS version of the afserver.

This option is used in the same way as the - : b option described previously. The o:nly differenc~ between
the use of this option and the -: b option is that the specified boot file used with this option mu~t have
been created using the standalone configurer. This option should not be used with boot files created by the
standalone Iinker, they should be loaded. instead using the -:b option. .

Sp~cify load address (:-.: a [#]10ad.address)

This option is only for use with the VAX/VMS version of ~he afserver.

Copyright INMOS Ltd } 988 March 4, 1988

3 Afserver interface and protocol specification 9

This option allows the user to specify the start address at which the code is loaded from on the board being
loaded. This option is only applicable for boards connected to a serial line, Le. boards with their own built in
loader (in ROM) and used in conjunction with the -: b option. This option has no effect if it is used with the
-: c option as the load address is embedded into the code that is being loaded. If a # is used as a prefix
of the following number then the number is taken to be a hexadecimal number. If no number is specified an
error will occur.

The load address used by default is determined by the data at the start of the boot file which specifies the
workspace requirements of the program to be loaded. This workspace requirement enables the afserver
to calculate the minimum load address of the program, Le. the code is loaded at a location which is calculated
by adding the scalar workspace size to a default address which is the start of user memory on the transputer
board. Note that this calculation takes into account the workspace requirement of the loader to ensure that
the code being loaded does not overwrite the ROM loader's workspace area when this code is being loaded
by the ROM loader.

Note, the use of this option is not to be recommended if the size for the workspace requirement of the program
is unknown. The scalar workspace requirement of a linked program can be found by using the linker's option
/i.

Serial boot debug (-: d)

This option is only for use with the VAX/VMS version of the afserver.

This option wiJl cause the afserver to output debugging information to a file called afserver .log. The
information contained within the file gives a representation of the states of the afserver during the booting
process.

This option is only useful if the afserver fails to boot the board for some reason. If this happens, the file
generated will give an indication of the state the afserver was at during the boot process when the error
occured.

The IBM/DOS version of the afserver will reset transputer on the board that is being loaded and is able to
load the transputer using the boot files created by the standalone linker and the standalone configurer using
the -:b option.

The VAX/VMS version of the afserver is unable to reset the transputer on the board being loaded as it
cannot access the reset pin of the transputer over the serial line it uses to load the board by. The VAX/VMS
version is able to load the transputer using the boot files created by the standalone linker and the standalone
configurer. To load a boot file created by the Iinker the -: b option has to be used, whereas if the file was
created by the configurer the -: c option is used instead. Note that the boot file used with the -: b option
must have been created using the standalone linker with the Iinker switch / c, (this switch prevents a loader
being appended to the front of the code generated by the linker). The switch is used because a loader is
already present in (ROM) on the board that is being loaded. Also note that the VAX/VMS version will only
load transputer boards that are connected to a terminal's serial line.

3.3 afserver protocol

ThH afserver supports an interface to the host operating system, enabling user programs to access
the :filing system (among the operations available). The afse2;Ver also provides the service of loading a
compiled and linked user program onto a transputer board for running.

3.3.~1 Filer process

This section describes the set of operations- that is supported by the "filer process" to enable user programs
to access the host filing system. .

The· filer process supports a simple model of a filing system which allows the user to create,'open, read and
writ~ files. A file is access~d by its name, which must be a legal host file name.

Copyright INMOS Ltd 1988. . March·4, 1988

10

Files may be opened using one of two access methods:-

1 Binary byte-stream access: View the file as a byte stream.

2 Text byte-stream access: View the file as a byte stream, the filer process inserting carriage-returns
to make the file a host format text file.

Files may be opened in read, write or update mode. Update mode allows both reading and writing.

The filer process also supports a number of standard input and output streams. Standard input stream 0
normally comes from the terminal, but may be redirected from a file by the user. The user may output to
standard input stream 0, provided it is connected to the terminal, in which case output is sent to the terminal.
Standard input stream 1, if it is used, consists of a sequence of characters supplied by the user (up to a
maximum of 256 bytes) (eg from the command line). Standard output streams °and 1 normally go to the
terminal, but may also be redirected to files by the user.

Standard streams are considered to be opened for text byte-stream access. Seek operations mayor may
not succeed on them, depending on what they are attached to.

Results from operations are returned as integers with the following conventions:

o Indicates successful operation.

Indicates an end-of-file has occurred on this stream.

2 Higher positive integers are error conditions produced by the filer process for this operation.

-1 Negative integers are error conditions generated by the host operating system.

3.3.2 Filing system operations

Before any stream has been opened for reading or writing the following operations are supported.

Terminate

The terminate operation closes down the afserver. It returns a result. It is the responsibility of the user
program process to close all open streams before issuing the terminate command to the afserver.

Input: None

Output: Result

In this implementation the terminate result never returns an error.

OpenFile

Given a file name, return a stream identifier for it. This stream identifier will be used in all subsequent
operations on the file, until it is closed.

Input: File name
Access method
Open m.ode
Exist mode
Record length

Output: Stream identifier
Result

The access method is one of {Binary byte-stream, Text byte-stream }. The open mode is one of {Read,
Write,.Update}.Update m~ans both reading and writing is allowed. The exist mode is one of {Old, New}.

Copyright INMOS Ltd 1988 . March 4, 1988

3 Afserver interface and protocol specification

The record length is currently ignored; a number must always be supplied, however.

The possible error conditions detected by the afserver on OpenFile . Cmd are as follows:

1 Invalid file name length

2 No free channel

3 Invalid access method

4 Invalid open mode

5 Invalid exist mode

6 Operation failed

11

An OpenFi.le. Cmd specifying an Old file will only succeed if the file already exists in the host filing system.
An OpenFi.le. Cmd specifying a New file will succeed if a file with that name can be made. Depending on
the option specified at close time, the file name of a newly-created file may be added to the set of names
permanently in the filing system, replacing any file of the same name which already exists. Exactly when the
name of a newly-created file is added to the filing system is undefined, except that it will be no earlier than
the open operation and no later than the close operation.

OpenTemp

Create a temporary file and return a stream identifier for it. The file will be opened for update. A temporary
file is always deleted when it is closed.

Input: Access method
Record length

Output: Stream identifier
Result

The parameters and results are the same as for OpenFi.le . Cmd.

OpenlnputStream

Open one of the standard input streams for read-only text byte-stream access.

Input: Standard input stream number

Output: Stream identifier
Result

The error conditions are:

1 No free channel

. 2 Invalid input stream number

OpenOutputStream

Open' one of the st~ndard output strea~s for write-only text byte-stre~m access.

Input: Standard output stream number

Output: Stream ,identifier
Result

. Copyright INMOS Ltd 1988: March 4,. 1988

12

The error conditions are:

1 No free channel

2 Invalid output stream number

AlienTerminate

The alien terminate operation preforms no action. All it does is to acknowledge the receipt of command. The
reason for its inclusion in the protocol is for historical reasons.

Input: None

Output: Result

In this implementation the result never returns an error.

SetResult

Set the return value of the afserver when it terminates. This is useful if running the afserver within
some environment that expects a result from the afserver.

Input: Value to be returned by the afserver

Output: Result

In this implementation the result never returns an error.

RunTimeData

The run time data operation asks the af'server the value of parameter that has been passed to it when
executed. The choice of parameter is determined by specifying an index (or option number) that is used by
the afserver to decide which option is passed back.

Input: Option number

Output: Option value
Result

The only error condition is:

1 Invalid data option

At present the only values for the option number can be 0 or 1 (corresponding to the afserver options
-: 0 and -: s respectively). If any other option number is used the operation fails.

ReadCoreDump

The read core dump operation is used to ask from the afserver a slice of memory that has been dumped
from the transputer when the transputer- was reset. Note that this operation will only succeed if the transputer
was reset in analyse mode (by using the afserver option ~: x). If this. option is not used (or if another
option has overridden the option) then the operation will fail. .

Input: Offset in core dump to read :from
Record ·Iength required

Output: Record read
Result

The slice required is specifi.ed by giving to the 'afserver the byte offset from MININT (of the trqnsputer)

Copyright INMOS Ltd 1988 March 4, 1988

3 Afserver interface and protocol specification 13

from which the start of slice is to be taken and the length of the slice required. If the given offset or the slice
length are out of range then an error is returned.

Note that if the combination of offset and slice I~ngth means that there is not enough core memory to fulfil
the slice length requirement then the afserver returns the core memory that is available and a result of
EndOfFile.

The error conditions are:

Invalid core offset

2 Invalid record length

3 Operation failed

In the current implementation the size of the core dump extracted by the afserver from the transputer is
16 Kbytes, starting at MININT in the transputer's memory.

ServerVersion

This command is used to find out from the afserver the host on which it isrunning, the date and version
of the afserver and the state in which the afserver loaded the transputer (Le. the method used for
loading the transputer).

Input: None

Output: Version number
Version date
Version state
Result

The version number is a 32 bit number which is divided up into four 8 bit fields. These are the following:

Bits

0-7
8 - 15
16 - 23
24 - 31

Value

Version sub-number
Version main number
Sub-host type
Host type

Presently the afserver host types are the following:

Value Host

o IBMPC. Host (includes XT and AT machines)
1 NECPC.Host
2 VAXVMS.Host
3 SUN3.Host

The sub-host type field is used to identify the different transputer systems that reside within a host; for~instance
the transputer board type. That is, as well as indicating the host on which the afserver is runni~g,. it will
also be possible:to identify the board family for which afserver was built for. At prese"t this field is unused.

The version main number and sub-number fields of the version number cOhtain the current afserver
version. For example, if the verison for th~ afserver is V1.5 then the version is encoded so that version
main number has the value- 1 and sub-number has the value 5.

The \(ersion date number is-also a 32 bit number which is used to encode the date on which the-af~erver
was produced. The date comprises of the.day, month and year and is encoded into four 8 bit fields. These

Copyright INMOS Ltd 1988 March 4, 1988

14

are the following:

Bits

0-7
8 - 15
16 - 23
24 - 31

Value

Year of century
Century
Month
Day of month

For example, the date 15th February 1988 will be represented (in hexadecimal) as the value #OF021358.

The version state is another 32 bit number which currently uses only the bottom (i.e. least significant) 8 bits
of the number. These bits are used to describe the method used by the afserver to load the transputer.
The afserver's loading states are currently defined as the following:

Value Host

o NoBootFile.State
1 ResetBootFile.State
2 NoResetBootFile.State
3 AnalyseBootFile.State

afserver option used

No -:b
-:b
-:b with -:n
-:b with -:x

In this implementation the result never returns an error.

RunCommand

Run the given command line on the host system. This has exactly the same effect of using the C library call
system (char '*). (On completion of the command, control is returned to the afserver.)

Input: Command line to be executed on the host system

Output: Result

The error conditions are:

1 Invalid record length

2 Operation failed

RenameFile

Rename the given file name using the given replacement file name. Only succeeds if the original file name
exists, if not, an error is returned.

Input: Original file name
Replacement file name

Ou~put: Result

The error conditions are:.

1 Invalid file name length

2 Operation failed

·ReadTime

Get the current time. Value returned is the number at- seconds that have elapsed since 00:00:00 GMT,
January 1, 1970 ac~ording to the host system clock.

Copyright INMOS Ltd 1988 March 4, 1988

3 Afserver interface and protocol specification

Input: None

Output: Number of seconds that have elapsed
Result

The only error condition is:

1 Operation failed

15

ReadKey

Get the value of the first unread key pressed on the host's keyboard that is available in the host's keyboard
buffer. If no key has been pressed an error value is returned as a result. The value that is returned is the
ascii value of the key, if pressed. If a key is pressed then it will not be echoed to the screen.

Note if a key is available then th~t key will be removed from the host's keyboard buffer. Also, it is advised that
when reading input from the keyboard only one method should be used, either using the ReadKey . Cmd (or
ReadKeyWait. Cmd) command or using the ReadBlock. Cmd command on standard input stream O. If
this is not adhered to, unpredictable results may occur.

Input: None

Output: Value of last key pressed that has not been read
Result

The only error condition is:

1 Operation failed

ReadKeyWait

Wait and get the value of the first unread key pressed on the host's keyboard. The value that is returned is
the ascii value of the key, if pressed. The key pressed will not be echoed to the screen.

Note will be removed from the host's keyboard buffer. Also, it is advised that when reading input from
the keyboard only one method should be used, either using the ReadKey . Cmd (or ReadKeyWait . Cmd)
command or using the ReadBlock. Cmd command on standard input stream O. If this is not adhered to,
unpredictable results may occur.

Input: None

Output: Value of last key pressed that has not been read
Result

The only error condition is:

1 Operation failed

ReadEnvironment

The read environment operation passes to the afserver a string representing the environment var"iable
whose va1ue is wanted. 1.1 the variable exists in the environment, the afserver passes back the value of
the variable as defined in the host system. The value passed back is always a string. If the variable does not

;" exist the operation fails. This operation is equivalent to using the C Iibr"ary function getenv (char *). :

Input: Environment variable

Output: Value of variable
Result

Copyright INMOS Ltd 1988 March 4, 1988

16

The error conditions are:

Invalid record length

2 Operation failed

3.3.3 Stream operations

Once a stream has been successfully opened, the operations described in this section may be applied to it.
These are a set of status requests which return information on the current status of the stream, and a close
operation.

StreamAccess

Return the access method used to open this stream.

Input: Stream identifier

Output: Access method
Result

The only error condition is:

1 Invalid stream identifier

StreamStatus

Return 0 to indicate OK, 1 to indicate end-of-file on this stream or a negative number which is a host-specific
error value.

Input: Stream identifier

Output: Result

The only error condition is:

1 Invalid stream identifier

StreamFile

Return the file name associated with this stream (if any), possibly a full hierarchical name.

Input: Stream identifier

Output: File name
Result

The only error condition is:

r Invalid stream identifier

StreamLength

Return the current length in bytes of this stream.

Input: Stream identifier

Output: Stream -length
Result

Copyright INMOS Ltd 1988 March. 4, 1988

3 Afserver interface and protocol specification

The error conditions are:

1 Invalid stream identifier

2 Operation failed

StreamConnect

17

Return the device to which this stream is connected. The connection is one of {Screen, Keyboard, File,
Temporary file, Parameter}.

Input: Stream identifier

Output: Device connected
Result

The error conditions are:

1 Invalid stream identifier

2 Operation failed

CloseStream

Close this stream.

Input: Stream identifier
Close option

Output: Result

The close option is one of {Close, Close-Delete}. Of the options available at close time, if Close-Delete
is selected, the file is closed and the meaning of the name used to open the file becomes undefined. If
Close is selected, the file is closed and its name is added to the set of names permanently in the filing
system, replacing any file of the same name which already exists. If the file has been opened with an
OpenTemp. Cmd operation then either option may be specified, but have no effect on the file name system
(a temporary file is always deleted).

The error conditions are:

Invalid stream identifier

2 Invalid close option

3 Operation failed

3.3.4 File operations

The remaining· operations are the read and write operations for text byte-stream and binary byte-stream
access. Read operations may only be used when the file has been opened for read or update. Write
operations may only be used when the file has been opened for write or update. '

A file opened for text or binary byte-stream access is seen as a sequence of bytes. There is a stream position
which is an offset in bytes from the start of the file. When a file is opened the stream ,position is O.

If accessing a file that has been opened in Update mode, then when changing from writing to ·the: file to
reading from it (and vice-versa), a seek operation must be performed between the ch.ange of operation.

The:following operations may be applied to a stream opefled in either of the byte-stre~m access modes :-

Copyright INMOS Ltd 1988 March 4, 1988

18

ReadBlock

Given a length of data to be read, read up to that length of data from the byte stream, starting with the byte
indicated by the current stream position. Move the stream position beyond the last byte of data read. The
end of file condition becomes true when a read is made that attempts to read past the last byte in the file.

Input: Stream identifier
Record length required

Output: Record read
Result

The error conditions are:

Invalid stream identifier

2 Invalid record length

3 Operation failed

WriteBlock

Write the given block of data to the byte stream, starting with the position indicated by the current stream
position. Move the stream position beyond the last byte of data written. If the current stream position is
beyond the old end of the file, then the data between the old end of the file and the first byte of data written
is undefined.

Input: Stream identifier
Record to be written

Output: Record length written
Result

The error conditions are:

Invalid stream identifier

2 Invalid record length

3 Operation failed

Seek

Move the stream position to the byte offset indicated, from the start of the file.

Input: Stream identifier
Offset

Output: Result

The error conditions are:

1 Invalid stream identifier

2 Seek not possible on this stream

3 Invalid seek offset

4 Operation failed

. Copyright INMOS Ltd 1988 March 4, 1988

3 Afserver interface and protocol specification

3.3.5 IBM PC/DOS extensions

l,,'

19

The following protocol commands are only appli,cable to the IBM PC running under DOS as they allow the
user to gain full access to the machine's hardware and software. These commands should not be used if the
program communicating with the afserver if it is not to be resident on an IBM PC/DOS system (e.g. the
VAX/VMS system). If this is the case, then the commands described in the previous sections should only be
used. This will enable the user to maintain maximum portability of programs between different hardware and
operating system combinations.

If the following commands are used on a system that does not support them (i.e. not an IBM PC/DOS system)
then they will be accepted but no action will be performed and the command will fail.

ReceiveBlock

Receive a block of data from the host system (via the afserver), the size of which is specified in bytes.
The location of the start of this block in the host system is specified as a host dependent address.

Input: Location of block of data to be sent
Size of block of data to be sent

Output: Block of data received
Result

The error conditions are:

Invalid record length

2 Not implemented

When implemented on an IBM PC running under DOS this address will be a 32 bit quantity, the most significant
16 bits indicating the memory segment and the least significant 16 bits being the offset in the given segment.

SendBlock

Send a block of data to the host system starting at a specified location in the host's memory, the value of
which is host dependent.

Input: Storage location of block of data
Block of data to be stored

Output: Number of bytes stored
Result

The error conditions are:

1 Invalid record length

2 Not implemented

The type of address used, when running on the IBM PC un'der DOS, will be the same as that used for the
Rece.iveBlock. Cmd command. '

Call1nterrupt

Inyoke an interrupt call on the; host system with the host processor registers appropriatery set up. On return
from t~e interrupt receive the regis.ters contents and the value of. a'ny flags. ' .

The v~lues for the register~ are sent over as a ,block of bytes, which is then split up by the afserver' into
register values and then assigned to the appropriate registers. E~G~ register value occupies 4 bytes of the '

Copyright INMOS Ltd 1988. March 4', 1988

20

block. The order in which the register values appear in this block (at 4 byte intervals) is host architecture
dependent. At present only one flag value is returned.

Input: Interrupt number
Values of the host processor's registers before the interrupt

Output: Value of flag after interrupt
Values of the host processor's registers after the interrupt
Result

The error conditions are:

Invalid record length

2 Not implemented

This condition only occurs if the amount of register data sent over is not adequate.

On the IBM PC the 2 most significant bytes are ignored as this machine has only 2 byte registers (16 bit
registers). The order in which the registers appear in the block of data passed over is defined as the following:

REGISTER Start position in block End position in block
I.s. byte m.s. byte

ax 0 3
bx 4 7
ex 8 11
dx 12 15
di 16 19
si 20 23
cs 24 27
ds 28 31
es 32 35
ss 36 39

The flag that is returned is the value of the carry flag on the IBM PC after the interrupt has been done.

Note that the segment registers are available. (The registers cs, ds, es, ss). Therefore you will need
to use the ReadRegs . Cmd command to read the values of these segment registers before assigning values
to them so as to ensure that they retain their values before the interrupt call. This only has to be done if you
do not need to reassign these registers.

The current implementation does not use the registers cs and ss, as these registers cannot be assigned to
using the current afserver. The registers ds and es are restored to their original values once the interrupt
has been done. This means that it is not possible to change the segment registers.

Also note that if registers are left qnspecified in the block the values that these registers take will be whatever
random data that is in the relevant positions in the block.

ReadRegs

Inquire the about the state of the registers on th~ host machine. On return the value~ of the host's registers
are given.

The values of the registers are returned as a block of bytes, each register occupying 4 bytes of the block. :
The order, in which the registers appear in the blC?ck (at 4 byte intervals) is host depe~dent.

Copyright INMOS Ltd 1988 March 4, 1988

3 Afserver interface and protocol specification

Input: None

Output: Values of the host processor's registers
Result'

The only error condition is:

21

1 Not implemented

On the IBM PC the 2 most significant bytes are ignored as this machine has only 2 byte registers (16 bit
registers). The order in which the registers appear in the block of data passed over is defined as the following:

PortRead

REGISTER

cs
ds
es
ss

Start position in block
I.s. byte

o
4
8
12

End position in block
m.s. byte

3
7
11
15

Returns the value at the port specified, using the given port address, at the moment the port is read by
the afserver. No check is made to ensure that the value received from the port is valid, it is the users
responsibility to ensure that the value returned is valid.

Input: Address of the port

Output: Value at the port when read
Result

The only error condition is:

1 Not implemented

On the IBM PC the 2 most significant bytes of the port address are ignored as the port address can only be
represented as a 2 byte number (Le. a 16 bit number).

PortWrite

Writes the given value at the port specified using the given port address. No check is made to ensure that
the value written to the port has been correctly read by the device connected to the port (if any), as for
PortRead. Cmd, it is upto the user to do this.

Input: Address of the port
Value to be written to the port .

Output: Result

The only error condition is:

1 Not implemented

On the IBM PC the 2 most significant bytes of the port address are ignored as the port address can only be
represen.ted :as a 2 byte number (Le. a :16 bit number). .

Copyright INMOS Ltd .1988 March 4, 1988

22

3~3.6 afserver termination

To terminate the afserver, Terminate. Cmd has to be given. This should not be given from within a
user's program. The command should only be given after the user's program has terminated (within a har­
ness). The harness should be the only separately code to terminate the afserver using Terminate. Cmd.
If this is not done and the afserver is terminated from within the user's program then it may not be guar­
anteed that code outside the user's program (for instance in the harness) will not be waiting to communicate
with the afserver.

The AlienTerminate . Cmd was originally introduced into the protocol to overcome the above problem
in previous releases of compilers and their run-time libraries. The command has been left in so that the
afserver remains compatible with these compilers and their run time libraries.

When the terminate command is received by the afserver is terminated, so ensure that there is no further
code to execute after the terminate command that relies on communication with the afserver.

3.3.7 afserver protocol

The afserver has an interface to an user program process consisting of two channels. The channel
to. filer is used to send commands and data from the user program process to the afserver. The
channel from. filer is used to send data from the afserver to the user program process.

The basic protocol between the processes consists of a tagged protocol; the tags will indicate the type of the
value following immediately. The following is the basic tagged protocol:-

bool.value IS BYTE 0:
byte. value IS BYTE 1:
i.nt.value IS BYTE 2:
int16.value IS BYTE 3:
int32.value IS BYTE 4:
int64.value IS BYTE 5:
rea132.value IS BYTE 6:
rea164.value IS BYTE 7:
nilrecord.value IS BYTE S:
recordS.value IS BYTE 9:
record. value IS BYTE 10:
record16.value IS BYTE 11:
record32.value IS BYTE 12:

The afserver protocol is implemented on top of this basic data protocol.

The following description of the protocol of the afserver uses a modified BNF notation. The terms integer
and record are made up the basic tagged variants described above, as follows:-

integer

record

int32.value; INT32

nilrecord.value
record32.value; INT32:: []BYTE

Copyright INMOS Ltd 1988 March 4, 1988

3 Afserver interface and protocol specification 23

The meaning of which is as follows:

To send an integer value to the afserver the tag int32 . value is sent (indicating that a 4 byte
integer value is about to be sent) followed by the integer value. The value of int32 . value is
represented by a byte of value of 4. To receive an integer value first int32 . value is received
followed by the integer.

To send a record of bytes to the afserver either the tag nilrecord. value or
record32. value is sent. If nilrecord. value is sent then no sequence of bytes following
the tag is sent. This tag is sent if a zero length record is to be sent to the afserver, the value of
which is represented by a byte value of 8. If record32 . value is sent, then a sequence of bytes
follows it (which are preceded by an integer value indicating the number of bytes to be sent, which
will be 4 bytes in length). The value of record32 . value is represented by a byte value of 12.
To receive a record first record32 . value is received followed by the record length and then the
record itself. If nilrecord. value is received then no record will follow it.

The nilrecord. value variant must always be sent for a record of length O.

Commands to the afserver are listed individually by name. Each of these is an integer value. The actual
values corresponding to these, and to the other quantities which have a limited range of values, are defined
in the next section.

First we define the types for each of the kinds of parameters:-

flag
date
state
value
result
offset
version
option.no
record. no
interrupt
stream.id
open.mode
exist.mode
close.option
std.stream.no
access.method
record. length
stream.length
port. location
stream.connect
source. location
destination. location

,variable
filename
command. line
old. file.name
new. file. name
register. block

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

record
record
record
record
record
record

Now we define the protocol going to and from the afserver for each operation. A program using this
protocol should output all the' pararT)ete~s·on the to. filer channel, and then iDPut all the results on the
from. filer channel.

Copyright INMOS Ltd 1988 March 4, 1988

24

Terminate command

to. filer.protocol

from. filer.protocol

OpenFile command

to. filer.protocol

from. filer.protocol

OpenTemp command

to. filer.protocol

from. filer.protocol

.terminate.cmd

result

openfile.cmd filename access.method
open.mode exist.mode record.length

stream.id result

opentemp.cmd access.method record.length

stream.id result

OpenlnputStream command

to.filer.protocol

from. filer.protocol

openinputstream.cmd std.stream.no

stream.id result

OpenOutputStream command

to. filer.protocol

from. filer.protocol

openoutputstream.cmd std.stream.no

stream.id result

StreamAccess command

to. filer.protocol

from. fifer.protocol

streamaccess.cmd stream.id

access.method result

StreamStatus command

to. filer.protocol

from.filer.protocol

StreamFile command

to. filer.protocol

from. filer.protocol

streamstatus.cmd stream.id

result

streamfile.cmd stream.id

filename result

StreamLength command

to. filer~protocol

from.filer.protocol

streamlength.cmd stream.id

stream.length result

Copyright INMOSLtd .1988 March 4, 1988

record.length result

writeblock.cmd stream.id record

readblock.cmd stream.id record.length

record result

3 Afserver interface and protocol specification

StreamConnect command

to.filer.protocol streamconnect.cmd stre,am-id

from. fifer.protocol stream.connect result

CloseStream command

to.fifer.protocol closestream.cmd stream-id close.option

from. filer.protocol result

ReadBlock command

to.filer.protocol

from. filer.protocol

WriteBlock command

to. filer.protocol

from. filer.protocol

Seek command

to.filer.protocol seek.cmd stream.id offset

from.filer.protocol result

AlienTerminate command

to. filer.protocol alienterminate.cmd

from. filer.protocol result

SetResult command

to.filer.protocol setresult.cmd value

from. filer.protocol result

RunTimeData command

to. filer.protocol runtimedata.cmd option.no

from. filer.protocol value result

ReadCoreDump command

.' to.filer.protocol readcoredump.cmd offset record. length

from. filer.protocol record. result

ServerVersion command

.to. filer.protocol serverversion.cmd

from. filer.protocol versIon date state result

25

March 4,' 1988

26

RunCommand command

to. fifer.protocol

from. filer.protocol

RenameFile command

to. fifer.protocol

from. fifer.protocol

ReadTime command

to. fifer.protocol

from. filer.protocol

ReadKey command

to.fifer.protocol

from. fifer.protocol

runcommand.cmd command.line

result

renamefile.cmd old. fife. name new.fife.name

result

readtime.cmd

value result

readkey.cmd

value result

ReadKeyWait command

to. filer.protocol

from. fifer.protocol

readkeywait.cmd

value result

ReadEnvironment command

to. filer.protocol

from. filer.protocol

readenvironment.cmd variable

record result

The following describes the syntax for the protocol commands that can only be used on the IBM PC running
under DOS.

ReceiveBlock command

to. filer.protocol

from. filer.protocol

SendBlock command

to. filer.protocol

from.filer.protocol

Call1nterrupt command

to. filer.protocol

ffom.:'ifer.protocol

receiveblock.cmd source.location record.length

record result

sendblock.cmd destination. location record

record:length result

callinterrupt.cmd interrupt register.block.

flag register.block·result

Copyright INMOS Ltd 1988 March· 4, 1988

3 Afserver interface and protocol specification 27

ReadRegs command

to. filer.protocol

from.filer.protocol

PortRead command

to. filer.protocol

from.filer.protocol

PortWrite command

to. filer.protocol

from. filer.protocol

readregs.cmd

register. block result

portread.cmd port. location

value result

portwrite.cmd port. location value

result

3.3.8 Constant values

This section lists the constant values defined for the required operations. Gaps in number sequences of
constants are reserved for future use by INMOS.

Commands

AlienTe~inate.Cmd

OpenFile.Cmd
OpenTemp.Cmd
OpenInputStream.Cmd
OpenOutputStream.Cmd
StreamAccess.Cmd
StreamStatus.Cmd
StreamFile.Cmd
StreamLength.Cmd

CloseStream.Cmd
ReadBlock.Cmd
WriteBlock.Cmd
Seek.Cmd-

StreamConnect.Cmd
Terminate.Cmd
SetResult.Cmd
RunCommand.Cmd
RenameFile.Cmd
ReadTime.Cmd
ReadKey .. Cmd
,ReceiveBlock.Cmd
SendBlock.Cmd
CallInt~rrupt.Cmd

ReadRegs.Cmd
RunTimebata.Cmd
ReadEnvironment.Cmd

. 'PortRead. Cmd
PortWrite.Cmd
ReadKeyWait.Cmd
ReadCoreDump.Cmd
ServerVersion.Cmd

Copyright I~MOS Ltd 1988

IS 0:
IS 1:
IS 2:
IS 3:
IS 4:
IS 5:
IS 6:
IS 7:
IS 8:

IS 11:
IS 12:
IS 13:
IS 14:

IS 23:
IS 24:
IS 25:
IS 26:
IS 27:
IS 28:
IS 29:
IS 30:
IS 31:
IS'32:
IS 33:
IS 34:
IS 35:
IS 36:
IS 37:
IS 38:
IS 39:
IS~40:

March 4, 1988

28

Access methods

BinaryByteStream.Access IS 0:
TextByteStream.Access IS 1:

Open modes

Read. Mode IS 0:
Write.Mode IS 1:
Update.Mode IS 2:

Exist modes

Old. File IS 0:
New.File IS 1:

Connections

Screen. Use IS 0:
Keyboard. Use IS 1:
File.Use IS 2:
Temp.Use IS 3:
Parameter.Use IS 4:

Close options

Close. Option IS 0:
CloseDel.Option IS 1:

Standard input

Keyboard. Input IS 0:
Parameter. Input IS 1:

Standard output

Standard. Output IS 0:
Error. Output IS 1:

Copyright INMOS Ltd 1988 Mar6h 4, 1988 .

3 Afserver interface and protocol specification 29

Results

OperationOk IS 0:
EndOfFile IS 1:

InvalidFileNameLength.Err IS 2 :
InvalidAccessMethod.Err IS 3:
InvalidOpenMode.Err IS 4:
InvalidExistMode.Err IS 5:
InvalidRecordLength.Err IS 6:
InvalidStdStream.Err IS 7:
InvalidStreamId.Err IS 8:
InvalidCloseOption.Err IS 9:
NoSeekPossible.Err IS 10:
InvalidRecordNumber.Err IS 11:

OperationFailed.Err IS 99:
NoFreeChannel.Err IS 100:
NoSuchFile.Err IS 101:
FileAlreadyOpen.Err IS 102:
ReadOpenFail.Err IS 103:
NotImplemented.Err IS 104:
InvalidSeekOffset.Err IS 105:
InvalidCoreOffset.Err IS 106:
InvalidDataOption.Err IS 107:

Copyright INMOS Ltd 1988 March 4, 1988

30

A afserver error messages

The following gives a list of the possible error messages that can be generated by the afserver. All errors
generated by the afserver are fatal, Le. the afserver will immediately terminate.

Failed to open boot file: name
Failed to close boot file: name

These are generated when the afserver cannot open or close the boot file name (as specified
with the -:b (or -: c) option). This generally occurs when the file name given to the afserver
does not exist in the host file system or because the afserver has insufficient privilege to read
from it.

2 Failed to read boot file: name

This is generated when the afserver cannot read the contents of the boot file name. This may
only occur if the contents of the boot file has been corrupted in some way.

3 Failed to send boot file: name

This is generated when the afserver cannot send the contents of the boot file name to the
transputer board it is trying to load. This may happen when there is a hardware problem with the
board which prevents any more code being sent to it or the loader on the board has decided that
there is no more code to load where in fact there is.

4 Failed to open I/O channel: name

This is generated when the VAX/VMS version of the afserver cannot open the logical channel
name it uses to communicate with the transputer board. This generally occurs if the logical channel
has not been set up, Le. the logical name SYS$TRANSPUTER has not been assigned to a terminal
device.

5 Failed to open debug file: name
Failed to close debug file: name

These are generated when the VAXlVMS version of the afserver cannot open or close the
debug file name that is used to record the communication dialog between the afserver and
transputer board when loading the transputer board. This generally occurs when the debug file
name afserver .log cannot be written to because the afserver has insufficient privilege or
because the debug file is being written to at an illegal position in the file system.

6 Unknown protocol in boot file: name

This is generated when the VAX/VMS version of the afserver is used with the -: c option and
the boot file name, that it is loading, has data within it that the afserver does not recognise. This
may occur if the -,: c option has been used when the -:b option should have been used.

7 Missing boot file name parameter

This is generated when the file option -:b (and -: cin the VAX/VMS version of the afserver)
does not have specified with: it the boot file ·name to be loaded onto a transputer board.

8 Missing option fl'ag parameter

This is generated: when the option -: 0 does not have specified wit~ it the option' flag value that may
(or may not) be used by the program the afserver is communicating with (or: loading).

9 Missing board size parameter '

This: is generated when the option -: s do~s.not have specified with it the value that is to be used
as the: size of the transputer"board with whi~h the afserver is communicating with (or loading)". "

10 Missing link address parameter

Copyright INMOS Ltd 1988 March 4, 1988' ,

A afserver error messages 31

This is generated when the option -: 1 does not have specified with it the base IBM port address
that is used by the IBM/DOS version of the afserver to communicate with a transputer board.

11 ~ssing load address parameter

This is generated when the option - : a does not have specified with it the value that is to be used as
the base address address from which code is loaded using the VAXlVMS version of the afserver.
(It can only be used in conjunction with the - :b option.)

12 Server terminated: bad protocol when expecting INT32

This is generated when the afserver is expecting to be sent a word from the transputer board
it is communicating with but is in fact sent something else. That is, the afserver is expecting to
receive the tag int32 . value but has been sent something else.

13 Server terminated: bad protocol when expecting record

This is generated when the afserver is expecting to be sent a record from the transputer board
it is communicating with but is in fact sent something else. That is, the afserver is expecting to
receive the tags record32. value or nilrecord. value but has been sent something else.

14 Server terminated: illegal filer command received

This is generated when the afserver is sent a filer command from the transputer board it is
communicating with that it does not recognise.

15 Server terminated: aborted by user

This is generated when the afserver is terminated by using the break key. Typical break keys
are control-C and control-Y.

16 Server terminated: cannot initialise host

This is generated when the afserver is unable for some reason to set up the host machine, e.g.
unable to open the i/o channels used to communicate with the transputer board.

17 Server terminated: cannot boot root transputer

This is generated when the afserver is unable to load the code from the specified boot file (using
the option -: b or -: c) onto the target transputer board. This will be caused by any error that has
occured prior to the afserver communicating with the target transputer board, e.g. unable to
open the boot file etc.

18 Server terminated: bad command line

This is generated when the afserver cannot correctly parse the command line that it has been
given. This will in general be caused when an option is used which expects a parameter and none
is given, e.g. the option -:b etc.

19 Server terminated: error in transputer system

This is generated when the' IBM/DOS versio.n of theafserver is used with the' option -: e and
the afserver detects that the error flag on the transputer board it is communicating with is set.

Copyright INMOS Ltd 1988' . March 4, 1988

32

B Making the IBM/DOS loader

This appendix covers how to re-compile the loader program (afserver. exe). For this to be possible it will
be necessary to have access to the Microsoft C compiler and associated software. If this is not possible then
the supplied source may have to be modified in order for it to compile using a non-Microsoft C compiler.

To make things simple a make file is supplied (makefiJ.e) and a file containing the responses for the Iinker
(afserver. rsp). If the make program exists then all that is necessary to re-make the loader is to issue
the following command:

> make makefile

If the make program does not exist then the following sequence of commands can be executed instead:

> msc lOt IZe boot.c;

> msc lOt IZe J.inkio.c;

> msc lOt IZe version.c;

> msc lOt IZe afserver.c;

> masm quickio.asm;

> link @afserver.rsp

To make the NEe version of the loader it is necessary to undefine the flag IBMserver in the header file
version. h and instead define a flag called NECserver.

Also, if a version is to be made which accommodates Rev A T414's then the flag REV-A-FIX in the files
version.h and quickio. asm will have to be defined. Note that if this is done then changes will have to
be made to programs which communicate with the loader to take into account the loader's accommodation
of Rev A T414's. The main differences between the version of the loader compiled to take into account Rev
A T414's and a version which has not are:

• If a single byte value is to be transferred across the link to or from the loader then it is expanded to
a four byte transfer.

• If a single byte string or record is to be transferred across the link to or from the loader then it is
expanded to a two byte transfer.

These differences ensure that no single byte transfers are performed by the loader and the program it is
communicating with.

Copyright INMOS Ltd 1988 March 4,. 1988

33

C Making the VAXlVMS loader

This appendix covers how to re-compile the loader (afserver. exe). For this to be possible it will be
necessary to have access to the DEC VAXlVMS. C compiler and associated software. If this is not possible
then the supplied source may have to be modified in order for it to compile using a non-DEC VAX/VMS C
compiler.

To make the loader the the following sequence of commands should be executed:

$ cc boot.e

$ cc linkio.c

$ cc version.c

$ cc afserver.c

$ link afserver+version+linkio+boot /exe=afserver.exe

Also, if a version is to be made which accommodates Rev A T414's then the flag REV-A-FIX in the file
version. h will have to be defined. Note that if this is done then changes will have to be made to programs
which communicate with the loader to take into account the loader's accommodation of Rev A T414's. The
main differences between the version of the loader compiled to take into account Rev A T414's and a version
which has not are:

• If a single byte value is to be transferred across the link to or from the loader then it is expanded to
a four byte transfer.

• If a single byte string or record is to be transferred across the link to or from the loader then it is
expanded to a two byte transfer.

These differences ensure that no single byte transfers are performed by the loader and the program it is
communicating with.

Copyright IN~OS Ltd 1988 t0arch 4, 1988

34

D Making the SUN/UNIX loaders

This appendix covers how to re-compile the loader program (afserver). For this to be possible it will be
necessary to have access to the SUN/UNIX C compiler and associated software. If this is not possible then
the supplied source may have to be modified in order for it to compile using a non-SUN/UNIX C compiler.

To make things simple a make file is supplied (Makefile) , If the make program exists then all that is
necessary to re-make the loader is to issue the following command:

$ Make Makefile

If the make program does not exist then the following sequence of commands can be executed instead:

$ cc -0 -c boot.c

$ cc -0 -c linkio.c

$ cc -0 -c version.c

$ cc -0 -c afserver.c

$ cc -0 afserver.o version.o linkio.o boot.o -0 afserver

Also, if a version is to be made which accommodates Rev A T414's then the flag REV-A-FIX in the file
version. h will have to be defined. Note that if this is done then changes will have to be made to programs
which communicate with the loader to take into account the loader's accommodation of Rev A T414's. The
main differences between the version of the loader compiled to take into account Rev A T414's and a version
which has not are:

• If a single byte value is to be transferred across the link to or from the loader then it is expanded to
a four byte transfer.

• If a single byte string or record is to be transferred across the link to or from the loader then it is
expanded to a two byte transfer.

These differences ensure that no single byte transfers are performed by the loader and the program it is
communicating with.

Copyright INMOS Ltd 1988 .March 4, 1988

	1 Release contents
	2 Source file structure
	3 Afserver interface and protocol specification
	3.1 afserver command syntax
	3.2 Using the afserver
	3.2.1 afserver options
	Normal boot transputer (-:b boot.file.name)
	Specify option flag (-:o [#]option.flag)
	Specify board size (-:s [#]board.size)
	afserver information (-:i)
	Specify link address (-:l [#]Iink.address)
	Boot in analyse mode (-:x)
	No reset when booting (-:n)
	Test error flag (-:e)
	Special boot transputer· (-:c boot.file.name)
	Specify load address (-:a [#]load.address)
	Serial boot debug (-:d)

	3.3 afserver protocol
	3.3.1 Filer process
	3.3.2 Filing system operations
	Terminate
	OpenFile
	OpenTemp
	OpenlnputStream
	OpenOutputStream
	AlienTerminate
	SetResult
	RunTimeData
	ReadCoreDump
	ServerVersion
	RunCommand
	RenameFile
	ReadTime
	ReadKey
	ReadKeyWait
	ReadEnvironment

	3.3.3 Stream operations
	StreamAccess
	StreamStatus
	StreamFile
	StreamLength
	StreamConnect
	CloseStream

	3.3.4 File operations
	ReadBlock
	WriteBlock
	Seek

	3.3.5 IBM PC/DOS extensions
	ReceiveBlock
	SendBlock
	CallInterrupt
	ReadRegs
	PortRead
	PortWrite

	3.3.6 afserver termination
	3.3.7 afserver protocol
	Terminate command
	OpenFile command
	OpenTemp command
	OpenlnputStream command
	OpenOutputStream command
	StreamAccess command
	StreamStatus command
	StreamFile command
	StreamLength command
	StreamConnect command
	CloseStream command
	ReadBlock command
	WriteBlock command
	Seek command
	AlienTerminate command
	SetResult command
	RunTimeData command
	ReadCoreDump command
	ServerVersion command
	RunCommand command
	RenameFile command
	ReadTime command
	ReadKey command
	ReadKeyWait command
	ReadEnvironment command
	ReceiveBlock command
	SendBlock command
	CallInterrupt command
	ReadRegs command
	PortRead command
	PortWrite command

	3.3.8 Constant values
	Commands
	Access methods
	Open modes
	Exist modes
	Connections
	Close options
	Standard input
	Standard output
	Results

	A afserver error messages
	B Making the IBM/DOS loader
	C Making the VAX/VMS loader
	D Making the SUN/UNIX loaders

