
Express 3. {J

Introductory Guide

MS-DOS and MicroSoft Windows

© ParaSoft Corporation, 1988, 1989, 1990

All brand and product names are trademarks or registered trademarks of
their respective holders.

Copyright © 1988, 1989, 1990
ParaSoft Corporation
2500, E.Foothill Blvd.
Pasadena, CA 91107

Printed in the U.S.A

Table of Contents

1 Overview .1

2 Installing Express3

3 Customizing Express with excustom ...7

4 Loading Express.9

5 Compiling a fIrst program 13

6 Running with and without Cubix .. 15

7 Perfonnance analysis with PM. 21

8 Parallel Graphics 23

9 Using the Examples . 25

IOUsing MicroSoft Windows 27

10.1 The Express Server. . . .27

10.2 Running excustom, exinit, etc. . ..28

10.3 Compiling programs for the transputers.... 29

10.4 Running Cubix 0 • • .29

10.5 Running ndb 30

10.6 Running PM.32

11 Compiling code to run on the nodes . . .33

11.1 "Host-Node" programming model 33

11.2 Cubix programming model. 35

12 Compiling code to run on the PC. 37

12.1 MicroSoft Fortran "Host" programs. .. 37

12.2 MicroSoft C "Host" programs 38

12.3 MicroSoft Windows "Host" programs 39

12.4 Turbo C "Host" programs. 39

12.5 Zortech C, C++ "Host" programs 40

12.6 MicroWay NDP C-386, "Host" programs .. 41

12.7 MicroWay NDP C-386, "Host" programs .. 42

13 Trouble-Shooting 43

13.1 Finding programs 43
13.2 / Finding the customization file43

13.3 Finding the Express kernel 44

13.4 Kernel loading details 44
13.5 Failure of the "wonn" program. . 47

13.6 Problems with DESQView and debugging .. 48

Overview

in Overview
M This guide is intended to give you the minimum information needed to install

Express on your system and compile and run simple programs. Hints are also
included as to what action to take in problem cases and how to use the more
advanced tools.

The basic text is directed to the MS-DOS user working in the conventional
programming environment. An alternative version of Express is available
which runs under MicroSoft Windows. This version of the system is not
described in detail in the main text but a set of notes is included which
indicates the primiary differences between the command line MS-DOS
versions of Express tools and their windowing counterparts.

An altenative inter­
face using Mi­
croSoft Windows

1

Overview

2

Installation

i.:JIcf Installing Express
M The complete MS DOS system requires about 4 Mbytes of space on the hard

disk for installation.

The basic installation procedure is very straightforward - only two pieces of
information are required: the name of the floppy disk drive from which you
will be installing the system and the name ofa directory into which the system
will be placed. By default we will assume throughout these instructions that

you will be using drive a: as the floppy drive and the system will be
installed at the top level on the c: drive.

Place the disk labelled "Express 1 / 7" in your disk drive and type

install

You will be asked to enter the name of the drive from which you are installing
the system and also the name of a directory into which the Express software
should be placed. Note that this last directory must exist when the install
program is run - if not abort it, create the directory and start again.

If you wish to install Express from a differently labelled disk, or you wish to
place it on another hard disk or in another directory merely change the
appropriate parameters. The install program will create a suitable
directory structure on your hard disk, and will copy and unarchive all the files
to it. When you are prompted to enter a new disk, do so, being careful to insert
them in the correct order.

To complete the installation process three further things need to be done: your
execution path must be modified so that you can access the Express tools, an
environment variable EXPRESS must be set to indicate the place where
Express has been installed and configuration files must be created showing
how your transputer hardware is connected. All of these things can, in
principle, be done by the installation prognun.

After the Express files have been copied and unarchived to your hard disk
you will be prompted, in turn, as to whether the program should attempt to
automatically perform the three operations mentioned in the previous
paragraph. If you elect to let the prognun perform these operations you can
probably skip the next few paragraphs which describe how to perform these
procedures by hand. If, however, something seems to fail or you wish to take
control of the process yourself read on.

The environment variable EXPRESS must be set to contain the complete path
and fIlename of the Express customization file. The system default file will
have been placed in the parasoft \bin subdirectory of the main
installation and has the name "express. cst". If you installed Express in

Floppy drives and
hard disks

Installation in the
default location

Automatic or
manual installation

The EXPRESS
environment
variable

3

..r

Installation

Modifying your
execution PATH

Possible name
clashes with other
DOS programs

Using the (lworm"
to configure your
hardware

4

the default position on the e: drive you would, therefore use the command

SET EXPRESS=e:\parasoft\bin\express.est

If you installed the system elsewhere e: may be replaced by the path given
as the second argument to the install program. This command can be run
from the OOS prompt and should also be added to your autoexee. bat
fIle, so that you don't have to type it every time your start your machine.

The second thing you will want to do is add the directory
e: \parasoft \bin to your execution path. This should also be done to
your autoexee. bat flie, i.e.

SET PATH=e:\parasoft\binie:\biniete ...

Note that the actual path name used may differ from that shown above if you
have installed Express in other than the default location. If you did so then
the appropriate name to use is that of the parasoft \bin subdirectory from
whatever root you used in the installation. Also note that the exact form of this
command will certainly differ in detail from that shown above - every
machine has its own search path depending on what software has been
installed there.

You might also note that this instruction places the ParaSoftdirectory ahead
of everything else on the execution PATH. This means that any name clashes
between ParaSoft routines and other programs you may have will result in
the Express program being executed. The only clash of which we are
currently aware is with the command-line version of Borland's Turbo C
compiler which is called tee in common with that used to compile Express
programs for the transputers.

Before proceeding to the final step of the installation process you need to
check that your transputer hardware is actually installed in your machine. If
not, shut off the power and insert it. When you reboot the machine your
execution PATH and EXPRESS customization variables should be set
correctly by your autoexee. bat procedure.

The last step before running an Express program is to set up configuration
flies describing the transputer hardware installed in your machine. This is
achieved with the "cnftool" program.

The simplest way to execute this program is to type

enftool -d

which executes a "wonn" program to attempt to figure out the connectivity
of the transputer hardware directly. If this succeeds the installation is now
complete and you should be able to load the Express kernel and ron
transputer programs. In some cases, however, the "worm" fails to recOgnize

Installation

hardware configurations or has other problems. In these cases you should
instead execute the command

cnftool

which asks you whether or not to execute the "worm" program and then
displays a picture of the resulting transputer network. Reading the section on
"cnftool" in the Express users guide is the recommended way to proceed
from this point.

A [mal point to note in connection with cnftool and the "worm" is that
they can only detect physical links - i.e., ones made by wire connectors or
built-in to the printed circuit board. They cannot detect links configured with
COO4 link switches. These link switches can be easily configured by running
cnftool manually as described in the last paragraph.

5

Installation

6

excustom

i.:JIcr Customizing Express with exc ustom
M From time to time you may wish to modify the way in which Express

operates. You may wish to alter the internal buffer sizes or allocations when
optimizing a particular algorithm or you may wish to use a different host
interface to your hardware. In these cases you will need to use the excustom
utility.

This tool is controlled by a single file, the Express customization file, which
describes the way in which the system has been installed and configured. If
you wish you can edit this file with a normal text editor using the instructions
contained in the user's guide to Express. A simpler interface, however, is to
use the excustom program directly.

Before using this, or any other Express tools you must have access to the
Express programs. To do this ensure that your PATH environment variable
contains the directory into which the executables have been placed. Your
system administrator should know the name of this directory.

To add it to your path merely modify the appropriate line in your
autoexec. bat to include the Express bin directory. Then either re­
execute this file by typing its name, or reboot your machine.

If you have now modified your PATH variable you should be able to execute
the excustom program with the command

excustom

If you receive an error message indicating that the program has not been
found you should make sure that it really is on your execution PATH.

If you receive a message of the form

Express customization file: " "
Not found

this means that the indicated customization file cannot be found. To proceed
you should ask your system administrator for the correct name of the
Express customization file and then check the notes in the "troubleshooting"
section of this guide.

Hopefully you can now execute the excustom command. When you do so
you will be asked a set of questions about the type of system you have, where
the software has been installed, and what operating parameters you wish to
use. If you are beginning to use Express for the frrst time or are currently
installing the software you should accept all the defaults (by just hitting the
"return" key) except for the question regarding the directory in which
Express has been installed. You need to modify this path to reflect the

The importance of
the customization
file

Running Express
programs - the
PATH variable

What to do if
excustomfails to
locate the
customization file

Answering the
questions posed by
excustom

7

excustom

If the Express
kernel cannot be
found

8

correct location.

If you are an expert user you should consult the excustom chapter of the
Express users guide for a description of the customization parameters.

When excustom terminates you may see another error message along the
lines of

Express kernel: " ", not found

If this happens check the notes in the "Troubleshooting" section of this guide.

Loading Express

j;II1 Loading Express
M Before you can actually run programs under Express you need to make sure

that the kernel is running on the transputer nodes. The simplest way to check
this is to use the command

exstat

Checking that the
kernel is running

If the kernel is working properly you should see, within a few seconds, a
display such as

Total nodes:
Allocated:
Number of hosts:

4
o
1

Checking/or other
users

This tells you how many transputer nodes are present in the system and also
how many are currently in use. If you are running on a single PC then no
nodes should be in use. If you are running in a multi-host network you may
see other people using the nodes when executing this command.

Ifnothing happens when you use the exstat command one ofseveml things
may have occurred

The hardware may not be installed correctly or at all - check that you
are actually logged into the right machine!

Express may never have been loaded or it may have crashed due to
the malfunctioning of some previous user program - use the
exini t command to start it up.

A non-Express program may have used the transputer nodes. The
most common of these are the 3L compilers, t c c 3L and t f c which
execute on the nodes in a very raw mode, blowing away any
Express code or users in the process.

Taking these points in order:

In order to operate successfully exinit must be able to fmd a fde containing
an accurate description of the hardware system to be loaded. By default this
fde is called "run. nif" and is found in the bin subdirectory of the main
Express installation. This file is normally created and modified using the
network configuration tool, cnftool.

Since the details of the use of cnftool are too complex to discuss in this
document we will restrict attention to the absolute minimum that needs to be
done to get the hardware going. If you are currently installing Express for
the frrst time this information should enable you to execute exinit
correctly.

Reasons for
exstatfailing

Non-Express
programs; the 3L
compilers

System
configuration files

9

Loading Express

Hardware
purchasedfrom
ParaSoft should
be pre-configured

Mechanical links

Electrical link
switches

If your hardware were originally purchased through ParaSoft the run. ni f
file supplied with the distribution should be. sufficient to create a working
network. The topology might not be the one you ultimately wish to use but it
should suffice.

If your hardware came from some other supplier you have several choices
depending on exactly what sort of system you possess

If your board has mechanical link connections, or hardwired
interconnections you should be able to use the "worm" program
contained in Express. To do this execute the command

cnftool -d

This will run the worm program into your hardware, automatically
detecting the network configuration and building the appropriate
system files.

If your hardware has only electrical link switches you may be able
to use the existing configuration files. To try this simply proceed to
the next section where we describe how to execute exinit

Note that this should only be necessary in cases where the only
internode links are manipulated by COO4 link. switches. IF you have
a board such as Quintek's FAST-9 then a few of the internode
connections are built into the circuit board and you should be able to
detect them with the "worm" described in the previous item. Once
you have successfully done this you can add extra links using
cnftool to manipulate the link switches.

Executing exinit Assuming that the hardware and system configumtion files now match you
should (re)load the Express kernel with the single command

exinit

If all goes well you should see a display similar to that of Figure 1.

The process of loading the Express kernel is actually quite complex.
Basically we have to "reset" the transputer hardware and download a very
primitive boot-strap code to each node. This activity is shown occurring in the
section labelled A in the figure.

Next the actual Express kernel in loaded into the system. This process is
shown in the sections marked B, C and D in the figure. Initially the kernel is
loaded into low memory on each node.

Once loaded the Express kernel decides whether or not to check the
transputers' memory and relocate itself to high memory. This decision is
based upon the "kernel load address" entry in the system customization file.

10

Loading Express

ParaSoft Transputer System

~--------_l_JG

======== -----------------

~--------rA

Initializing transputer's memory ... please stand by ...

Allocated 4 nodes, or~g~n at 0, process I.D. 1

Loading forwarding tables to transputers

0.1.2.3.

Topology initialization complete

••••••••.•••••••••••••• E
Done-----------------W

Pre-booting network

O•. 1 .• 3 •• 2 ••

Downloading Express kernel: /usr/express/bin/express.tld

Figure 1. Downloading the Express kernel with exinit

The message shown in section E indicates the action to be taken.

Finally in section F and G the full Express system begins to operate and is
used to download to the nodes the forwarding, broadcast and other routing
tables necessary for internode communication.

If problems occur during exini t they most often occur during section A of
the above figure because links are not connected properly. This is controlled
by a particular system fue (usually called run. nif) which was discussed
earlier. If you have problems at this stage you should use the Express system
configuration tool, cnftool, to see if the configuration fue actually
specifies the connectivity that is present in the hardware. If this still seems
correct or you have other problems using exini t refer to the
"Troubleshooting" section of this guide.

11

Loading Express

12

First compilation

~ Compiling a first program
M Now that Express has been successfully loaded into the network we can start

building programs and running them.

To examine the compilation process create a file (using any editor or word­
processor you like, and in any directory you like to work) containing the
immortal lines:

main ()
{

printf(nHello world\nn);

and save it with the name noddy. e. If you have an aversion to writing C
programs and you have a FORTRAN version of Express try instead the
equivalent FORTRAN code:

PROGRAM TEST

CALL KXINIT
WRITE(6,*) 'Hello world'
STOP
END

and save it in the fIle noddy. f •

To compile this code for the transputers we will need to use the Cubix
programming model since the code does its own I/O. (The calls to printf
in C and WRITE in FORTRAN.) If you are using the Logical Systems C
compiler the appropriate command is

tee -g -0 noddy noddy.e -leubix

while the 3L C compiler would be invoked with the command

tee3L -g -0 noddy noddy.e -leubix

and the 3L FORTRAN compiler with

tfe -g -0 noddy noddy.f -leubix

for FORTRAN.

Notice that only one command both compiles and links the program, creating
the executable "noddy" and linking the Cubix libraries.

Note that the tee, tee31 and tfe commands are only used to compile and
link code which will run on the transputer boards. Programs which will run
on the host computer and communicate with the transputer network using

Writing uHello
world" in C

Writing uHello
world" in
FORTRAN

Compiling Cubix
programs with
Logical System C

Compiling Cubix
code with 3L C

Compiling Cubix

/rHost" programs
use other compilers

13

First compilation

3L compilers run
on the transputer
nodes

14

Express shouldbe compiled with your usual compilers. A library is available
to link with such programs - see a later section for more details.

A fmal important point to notice is that the 3L compilers, tcc3L and tfc
actually execute on the transputer nodes rather than running on the host as is
the case with the Logical systems compiler. Furthermore the 3L compilers are
extremely antagonistic to Express and actually reset the transputer hardware
before starting. As a result any Express programs which may have been
running will be blown away, as will the Express kernel. Before you can
actually run any more programs, including the one you've just compiled, you
will have to run exini t to reload Express. Note that the Logical systems
C compiler is quite compatible with Express so exinit should be
unnecessary if you use this compiler.

Cubix •.. or not?

i.:JIcr Running with and without Cubix
M It is important to understand clearly the difference between the Cubix

programming model and the "Host-node" style. In the former you write code
for the transputer system only and it interfaces to the outside world through a

· graphics and text server allowing you facilities similar to those available
under OOS - printing, reading files, etc. For many applications this is an ideal
way to proceed since only one piece of code is written which then executes
on the transputers and uses the facilities of the host through the server.

Some applications, however, include significant invesunents in tricks and/or
technology which is not so easily transferred to the transputers. Typical cases
include programs which make extensive use of assembly language
optimizations or which have complex user interfaces built around custom
graphics packages. In these cases it is easiest to write two pieces ofcode. One,
which runs on the host, contains the hardware specific code and the other,
which runs on the transputers, performs the computationally intensive
"number-crunching". The two programs communicate using Express
system calls.

If you are using the "Host-node" programming model the most important
thing to note is that you shouldn't include the "-lcubix" or "-lplotix"

switches in the tee and t f c command lines. Other than that progress
should be straightforward - remember to run exinit to load Express before
your application starts.

Since we used the Cubix programming style in the noddy program that we
compiled in the last section the only remaining problem is the execution of
this program. This is achieved simply by executing the cubix command. In
the simplest case we need only two pieces of infonnation: the name of the
program to be executed and the number of nodes on which to execute it. We
then issue a command similar to

cubix -n4 noddy

which loads the program "noddy" into 4 transputers and executes it there.
Obviously straightforward modifications to this command involve changing
the number of nodes to use and different program names. Both should be
obvious.

The cubix command has many options which are used infrequently. In most
cases the previous command, or one just like it, is adequate for running Cubix
applications. One useful extension for C programmers is that any arguments
after the name of the program to be loaded are passed to the node program in
the conventional argc, argv manner. Thus the command

The Cubix
programming
model

The llHost-Node"
programming
model

Avoid the Cubix
switches if writing
"Host-Node"
programs

Executing Cubix
programs

Passing arguments
to the node
programs

15

Cubix ••• or not?

What to lookfor
when cubix
executes

Troubleshooting
when nothing
happens

16

cubix noddy -n4

cannot be used instead of that shown previously because the '-n4' switch,
coming after the name of the program to be loaded, is passed directly to the
"main" routine of noddy. c rather than being interpreted by the cubix
command itself. This command would, in fact, execute the noddy program
on only one node which is the default forcubix if no '-n' switch is given.

When you start cubix you will see a display similar to the following

CUBIX I/O Server, version 3.0
Loading
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbE
Loaded 35723, starting

As your program loads, a single 'b' character is produced for each block of
data sent to the nodes. Finally the 'E' indicates that the last block has been
loaded and your program should start. Ifnothing happens at this point one of
three things may have happened

Your program may be running but not doing any I/O or otherwise
showing anything.

Your program may have a bug and crashed somewhere. In this case
you should either go back and recompile it with more "print"
statements or else proceed to the next section to learn about the
debugger, ndb.

Express may be sufficiently "alive" to load your program but not to
run it In this case reload the kernel with exinit and try again.

Compiling
programs for ndb

Running ndb

~:~::~~:=:~~~~::~~:dC~de~gwn which is
located in the parasoft \examples\ndb\e directory but before we do
so let's go through the compilation process to make sure that everything is
understood.

Change directory to the subdirectory

parasoft\examples\ndb\e

of the main Express installation and execute the command

tee -0 code -g eode.c -lcubix

(If you are using the 3L version of Express substitute "tec3L" for "tee"
in the above.) Notice the important difference between this command and the The r-g' switch
one shown earlier - the '-g' switch. This tells the compiler to create a symbol
table for our progwn, which will allow the debugger access to important
information about it

The two most important files which will have been created are the code
progwn itself and the code. sym file containing the symbol table
information.

The fundamental difficulty of debugging under MS-DOS is that only one
progwn can run at once. For this reason the ParaSoft debugger ndb is
supplied with a multitasking, window oriented environment called
DESQview. Rather than explain the details of the use of this system in gory
detail we will merely lead the reader through an example session showing its
use in debugging one of the standard ParaSoft examples programs

To enter the DESQview environment (and hence gain access to ndb) enter
the commands

cd \parasoft\examples\ndb\c
dv

The main DESQview menu will appear in the right hand comer of your
screen. Options are selected from this menu by typing the indicated

characters. Enter the '0' command which should present another menu
containing selections of windows for opening. If you type 'cu' a Cubix
window will appear on the top half of the screen with the DOS prompt in it
This window is actually just a regular DOS command interpreter but it has
been set up with enough memory to execute the cubix program. You could
actually run most other host applications from this window.

To start the debugging process enter the command

Running two
programs at once
under MS-DOS

Starting DESQview

Starting Cubixfor
debugging

17

Runningndb

cubix -P -n 4 code

Running exinit
from DESQView
windows

Starting ndb

Express process
IDs and exstat

ndb's prompt

18

Note the '-p' switch. This causes cubix to load up your program but stop it
at a breakpoint just before entering your main routine. This allows you to fIre
up the debugger at your leisure safe in the knowledge that the node program
is still waiting for you. It also causes a reduction in the amount of memory
used by the cubix program which is necessary for use with DESQView. If
you omit this switch you will probably get a message saying

Failed to allocate memory for XXX buffers

and the program will quit This one of several memory related issues which
can cause problems when running Express under DESQView, which only
uses the basic 640K PC memory. Others are discussed in the troubleshooting
section of this document.

One simple consequence of the memory limits imposed by DESQView is that
you will not be able to execute exinit from the cubix window. The ndb
window, which we are about to open, has more memory allocated to it so you
can, in principle, run exinit there.

Now hit the ALT key. Once again the main DESQview menu appears in the
upper right comer of the screen. Enter the '0' command to open another
window and make the 'nd' selection to open a window for the debugger,
ndb. The new window appears in the bottom half of the screen and again
contains the OOS prompt To invoke ndb for debugging the code program
enter the command

ndb -p 1 code

This command tells the debugger that you wish to debug a program called
code which is executing as "process 1" in the parallel computer. This
process number is really rather straightforward - as Express loads programs
it allocates process numbers according to how many other programs are
currently running. In general, under OOS, there will be only one program at
a time so yours will usually be process I! If you have any doubt about this, or
you are working in a multi-user system then the command

exstat -1

will show you a list of running programs and their process numbers.

At this point one of two things will happen. In most cases ndb will happily
start up by reading in the symbol table from the code program and getting
access to the nodes it is using. In this case you will see a few start-up
messages and then ndb will issue the prompt

Node 0>

Running ndb

which tells you that it is ready to accept commands and execute them on
processor O.

There are generally two causes for failure at this point The most elementary
is if ndb fails to fmd the symbol table for the program that you wish to debug.
This file is expected to have the same name as your program with the" . sym"
extension. If this file is missing you should create it by recompiling your
program with the '-g' flag set -see the comments earlier in this section for
instructions on how to do this. A second possible cause for failure is if ndb
fails to access the nodes attached to your program. If this happens you will
see the message

Failed to share nodes with process *
where the ' #' mark indicates the argument you gave to the '-p' switch when
starting ndb. This may mean that the node program has terminated (Not
likely in this particular case since we told cubix to start it with a breakpoint
- the '-p' option.) or that it has somehow died so horribly that it killed
Express. Both of these problems may occur in real programs although they
shouldn't in this case - the code program isn't quite this sick! Another
possibility is that you gave the wrong process ID to the ndb command when
you started it or that you attempted to start up ndb before cubix.

So, assuming that ndb started correctly you can now start debugging by
typing commands at the prompt. A good way to start is to type

show status

which should give you some feedback. You are now in complete control of
the debugging process. You can swap between windows at will with ALT

commands - ALT 1 will take you to the top window (where you can type

input for your Cubix program) and ALT 2 back to the debugger.

Now is a good time to check out the discussion in the users guide which leads
you through the process of debugging this program. It actually does contain
a fairly common Express bug so you might want to see how to find it.

When you've fmished debugging there are two alternatives. If you like the
DESQview environment you can stick with it - if you want you can enlarge
one of the windows to the full screen size or use another of the systems
options. If, on the other hand, you prefer to work in the conventional OOS
environment then one quits DESQview by typing 'ALT q' and confmning

the request to exit with 'y'.

This section has discussed the process involved in debugging one of the
standard Express examples under Cubix. You should be able to debug any
other Cubix program the same way - the memory allocations to the windows

Whydoesndb
sometimesfail to
start properly?

What to do if ndb
starts properly

Switching between
the DESQview
windows

Quitting ndb

19

Runningndb

Debugging your
own host programs

When ndb runs out
ofmemory

20

have been selected to allow ndb the maximum amount of memory consistent
with the desire to run Cubix in the other window. As we have already seen
this imposes a few small restrictions - we can only execute exinit from
ndb's window, for example, but otherwise the process is straightforward

If you have written your own host program and wish to debug it under
DESQView you must make sure that it calls expause before downloading
the node program with one of the exload functions so that a breakpoint will
be inserted properly. You will also have to consider the memory allocation
problem carefully.

If you select the "Change a Program" option from the DESQView menu you
will be able to see the memory allocations for the cubix and ndb programs.
If your host program is larger than cubix you can increase the memory
allocation for the cubix window and decrease that for 'ndb until both
programs run. If you get this arithmetic wrong you will probably see the
message

A non-swappable window is in the way

when you attempt to start up the second window.

An unfortunate side-effect of reducing ndb's memory allocation, however, is
that its space for symbol table entries will be reduced. At some point as your
node program grows ndb may be unable to load it into memory. One
possibility in such a case is to reduce the number of [tIes compiled with the
'-g' switch. If this doesn't help the MicroSoft Windows version of Express
is also available which makes much better use of extended and expanded
memory capabilities.

Performance analysis

i.:JIj Performance analysis with PM
M The profding system. PM. is simply invoked by typing the names of the

various profIling tools at the system prompt Creating the files containing the
profiling information under Cubix is extremely simple - merely add a couple
of switches to the normal Cubix command line. If you would normally run
your program with the command

cubix -n4 myprog foo bar

then you can tum on the "communication" and "event" profIling systems by
changing the command to

cubix -n4 -mce myprog foa bar

If you have written a host program certain library calls must be added to your
code - see the standard reference for more details. In either case no special
precautions are necessary to compile and link programs which use the
profiling utilities.

If you wish to use the execution profiler things are a little more complex. You
will have to modify your code a little by the insertion of a call to the profiling
utility profil (or KPROFI in FORTRAN). This routine allows the
collection of statistics about the execution of your code which can later be
dumped and analyzed with the xtool command.

To use xtool however, you must have a symbol table for your program.
This is identical to the one you may already have produced for use with the
debugger, ndb. Ifyou haven't created a symbol table before you will need to
re-link your program with an additional' -g' switch. Note that you don't have
to recompile anything - just relink the executable.

Profiling Cubix
programs

Profiling lIHost­
Node" programs

A symbol table is
required for execu-
tion profiling

21

Performance analysis

22

Parallel Graphics

~ Parallel Graphics
M Compiling and linking programs that use the parallel graphics library, Plotix,

is a simple matter of changing the "-leubix" switch to "-lplotix". A
program normally compiled with the Cubix libraries and the command

tee -0 foo foo.c -lcubix

would instead be compiled with the command

tee -0 foo foo.e -lplotix

Similar comments apply to the other supported compilers, tfe and tee31.

Running grnphics programs on an IBM PC or compatible requires that an
extra switch be supplied to the eubix command used to execute the
program. If the above code were nonnally to run with the command

eubix -n4 foo argl arg2

then it can be executed, with graphics, using the command

eubix -n4 -Tbgi foo argl arg2

The additional switch, '-Tbgi ' instructs the system to use a special grnphical
version of the eubix program which uses the "Borland Graphics Interface"
to drive IBM monitors and compatibles.

An additional possibility is available on NEe PC's which have an entirely
different graphics interface. These machines have EGA boards which are
driven with eubix commands of the form

cubix -n4 -Tega foo argl arg2

Special switches to
include graphics li­
braries

Running programs
on IBM compatible
hardware

Running program
onNECPCs

23

ParaDel Graphics

24

Using the examples

t-j Using the Examples
M The Express system is supplied with a number of working example

programs which include DOS . ba t files for building the executables. This
provides an important source of information regarding the compilers and
switches used to build Express programs of all types and should be used
whenever doubt arises - copying someone else's commands has always been
a worthy method of proceeding!

The examples are contained in the examples subdirectory of the main
Express installation. These you will find a further set of directories, each
dedicated to a particular aspect of the Express system as follows:

express The "host-node" programming style.

cubix The Cubix programming model.

plotix Examples of graphical programs using the Cubix
programming model and the Plotix graphics libraries.

profile Both "host-node" and Cubix programs exhibiting the use
of the profiling system.

ndb A program with a common Express bug, the fmding of
which is discussed at length in the ndb manual. Useful
since it shows the modifications necessary to the compile/
link process to allow symbolic debugging.

Each subdirectory contains a README file which offers hints on how to run
the programs and what options and/or arguments they expect. Also included
is a batch file called remake. bat which recompiles and links the program
named as its argument. To compile a program called "hello" use the
command

remake hello

Examination of the contents of this file should provide a sound basis for
beginning Express programming.

Lots of examples
hopefully make it
easier to get started

This program con­
tains a very com­
mon bug, easily
found with the de­
bugger, ndb

25

Using the examples

26

Using MicroSoft Windows

i.:JIcr Using MicroSoft Windows
M The material covered so far in this guide is intended to guide you through the

elementary use of Express in a standard MS-DOS environment. All
commands are typed at the MS-DOS prompt and have the expected terminal
interface.

If you are using Express under MicroSoft windows the various tools and
utilities have a different interface consistent with that expected of "window"
based applications. As a result there are several important differences
between the commands shown in the earlier part of this guide and those used
in windows. These are covered in this section.

The format of this discussion follows closely the pattern of the previous
sections in that a separate sub-heading here contains the infonnation about a
previously discussed topic which is pertinent to MicroSoft Windows users

1 The Express Server

To aid you in running Express, there is a graphical server which represents
as icons the major applications you will want to run. The Server program
is located in the parasoft \bin directory. It may be run either by double­
clicking on the fIle name, or by selecting the Files menu, and then Run
from the MS-DOS Executive and entering the name Server in the resulting
dialog box. When active the server presents a display similar to that shown in
the following figure.

An alternative in­
terface using Mi­
croSoft Windows

An easy way to exe­
cute Express utili­
ties without know­
ing pathnames

(cnfteol) (cubix) (cleoI) (etool) (xtool

~~p~
(exinit) (exreset) (ndb) (exstat) (exeat) (

The Express Server

?
•

help)

27

Using MicroSoft Windows

Once the Server program is running, you may ron Express programs by
clicking once on the desired fIlename. The Server display may be
manipulated as a normal window, i.e., you may reduce it to an icon, or move
it around, without affecting any other programs running. You may even quit
from the Server, and any programs you have run from it will continue
running.

Relativepathnames The Server program will attach itself to the directory from which it is
may cause prob- started. This means that any programs you run from the Server will use that
lems to the server initial directory as their home directory, regardless of the location of the MS-
'since it uknows" its DOS Executive program. To find out where a Server is attached, click the
own directory HelD option. You may have several Servers open at once, each attached to

a different directory.

For example, if you have a program f 00 in the directory
c: \parasoft \ tmp, and you want to run it under Cubix you should start
the Server from that directory. Then when you start Cubix it will look in
this directory for the files it needs. Similarly, the other programs started from
that Server will look in this directory. If you have a Server that you
started in another directory, and attempt to run Cubix from there it will fail
to find the file f 0 0, unless you have specified a complete pathname for every
occurrence of the filename. If you have a problem finding files, it probably
means your Server is attached to the wrong directory.

2 Running excustom, exinit, etc.
Exinit and other
control utilities can
be executed direct­
ly from the Ex­
press Server

28

These tools can be run from within MicroSoft windows in one of the
following ways:

By double-clicking on the program's name from the MS-DOS
executive.

By entering the program name in the dialog box resulting from the
selection of the Run item in the Files menu.

By clicking once on the program's name in the Express Server
described above.

In the fIrst two methods described here we need to be careful to select the
"windows" versions of the programs from the parasoft \bin \ win
subdirectory rather than the usual command line version which is found in
parasoft \bin.

In any case the interface should (hopefully) be fairly straightforward to use.
Exinit should run without any intervention while excustom presents a
dialog box which requires entries for the same items that are usually
requested when running excustom in the non-windows environment~

Using MicroSoft Windows

3 Compiling programs for the transputers.
To compile a program using tee, tee31 or tfe you should have the
accompanying ".PIF" file tee. pif, tee31. pif or tfe. pif. These
files will initially be located in the parasoft \bin directory, but may be
moved to wherever you keep you PIP (program information files) files. You
may now run the compilers as described in the earlier sections of this Guide,
by selecting the Fi 1 e s menu, and then Run. You may type any switches into
the dialog box just as you would under DOS. Note that the various compilers
are "bad" programs in that they do not conform to the Window's standard and
run in the "raw" mode, trashing the display.

One confusing feature of the MS-DOS executive is that it doesn't always
update its idea of which files exist so you may find that even after running the
compilers the various object, executable and symbol files may appear to be
missing. This situation can normally be corrected by changing directory in the
MS-DOS executive and returning. This forces the program to re-scan the
contents and should result in the new files being displayed.

4 Running Cubix

To run Cubix programs under Windows we execute the eubix command
using one of the methods described in conjunction with exinit. When
started you will be presented with a dialog box similar to that shown below

Transputer program

Arguments

Compilers are not
UWindows" appli­
cations so they
need U. PIF" files

Missingfiles in the
MS-DOS executive.

Specifying eubix
parameters

(Cancel) (Continue)

Number of nodes

o Load Stopped

o Reload EXPRESS kernel

o Help

Options 1 _

Profilers: o Communication

o Event

o Execution

The various check boxes and blank spaces allow text to be entered describing

29

Using MicroSoft Windows

the panuneters required for execution. The name of the transputer program
and the number of nodes to use should be self-evident. The space marked
"argument" can be used to enter parameters which will be passed to the
"main" routine of the node program as the conventional argc and argv
arguments.

The check boxes to the right of the dialog box can be used to enable the
various profiling subsystems and correspond to the basic '-m' options of the
command line version of cubix - i.e., checking the box marked "event" is
equivalent to giving the '-me'.

The check boxes to the left of the display provide for extra functionality as
follows:

Load llStopped" if
you wish to debug
with ndb

A convenient way
to run Exini t

Specify lliine ori­
ented" command
line options in the
llOptions" box

30

Load Stopped
This box is equivalent to the '-P' option of the common line
cubix and forces the insertion of a breakpoint at the beginning
of the node program. This allows the debugger to be used by
attaching it to the stopped node program.

Reload Express kernel
Forces Exini t to be executed before trying to download the
node program. This isa convenient way of reloading the system
without going to the trouble of executing exini t separately.

Help
Displays the normal, command line error text

If you need to use a function of the command line cubix that is not explicitly
supported by the boxes and text items in the dialog they can be entered in the
box marked "Options" in the normal command line form. To load the node
program into processors, skipping node 0, for example we would add the
extra text

-0 1

to the "Options" box.

Once you have completed fIlling in the dialog box, clicking the "Continue"
button starts the program running. Instead of the nonna! sequence of 'b'
characters displayed while loading the node program you will see an
oscillating cursor which "wobbles" for each block loaded before returning to
its more conventional form as the program begins to execute.

5 Running ndb

Before you can run ndb to debug your node programs you need to compile
and link appropriate sections of your code as described in the earlier section

Using MicroSoft Windows

of this Guide. Once you have a symbol table in place the procedure for
starting ndb under MicroSoft Windows is considerably easier than the
previous description of DESQView.

The basic steps involved are:

Start up cubix in the manner described in the last section.

Fill in the cubix input dialog box and make sure to additionally
check the box labelled "Load Stopped".

Start cubix by clicking the "Continue" button.

Start the ndb program in one of the nonnal ways. You will be
presented with the following dialog box

NOB Command Line

Transputer program

Source Path

Running ndb un­
derWindows

Node Process 10

o Help

~
o Kernel Mode o SysOebug

(Cancel) (Continue)

Fill in the parameters - they match quite simply the arguments
normally given to the command line version of ndb so you should
have little difficulty, and select "Continue" to start the debugger.

At this point ndb should begin reading the symbol table from your node
program and everything will function as described in the earlier description.
The great simplification to the debugging process is caused by the fact that
under MicroSoft Windows both the debugger and the program running on the
PC (either the cubix program or a user-written "host program") are truly
sharing the CPU. As a result the user can switch from one to another by
merely moving the mouse - there is no need for continually swapping
windows with keystroked as is the case under DESQView.

Furthermore, since Windows can make use of any extended memory in your

Since Windows
provides umulti­
tasking" there is no
need/or explicit
switching between
programs while de­
bugging

31

Using MicroSoft Windows

system, ndb is much less likely to run out ofmemory for symbol table entries
allowing the user to debug much larger programs.

The performance analysis system is very easy to use under Windows. The
basic analysis tools; ctool, etool and xtool are available from the
Express Server and can be run in the obvious way.

Enabling the profiling system when executing Cubix programs merely
requires checking the appropriate boxes in the "Profilers" section of the
Cubix input dialog as shown before. The procedure for "host-node"
programs remains as would be the case without Windows - function calls are
available in the standard Express libraries and can be linked with the "host"
program.

Using extended
memory reduces
the chancesofndb 6
failing to read
large symbol tables

Running PM

32

Compilers

'f.jIIl;t Compiling code to run on the nodes
M This section contains the details of the compilation process that were briefly

sketched in the earlier sections. Each type ofprogramming model is discussed
in tum.

1 "Host-Node" programming model

I

In a previous section we introduced the tee, tee31 and tfe commands
which were used to compile the introductory "Hello world" programs.
These commands are also used to compile and link the transputer half of
"host-node" applications, the only difference being that you CANNOT
specify either the "-leubix" or "-lplotix" library switches since these
link in alternative forms of the system software that is not compatible with the
"host-node" programming model. Unfortunately no evidence of the failure to
follow this rule is given during compilation or linking since the associated
Cubix and Plotix libraries are a superset of those used by "host-node"
programs. The only place where the difference becomes apparent is at
runtime when a "host-node" program linked incorrectly will fail to start

The basic use of the compiler program is quite straightforward The switches
are basically similar to those used by UNIX compilers. The examples already
given show most of the commonly used switches including those which must
be specified for debugging and the reference manual contains many more
examples.

Consider, for example, two C source fIles called nl . e and n2 . e which will
be compiled and linked together with the Logical Systems C compiler to
make the Express program nodeprog. The simplest commands to achieve
this are

tee -e nl.e
tee -e n2.e
tee -0 nodeprog nl.trl n2.trl

in which we have used none of the unusual options of the tee command.
Note that the frrst two lines merely compile the source files, generating object
fIles with the suffIX " . t r 1".

If we wished to use, instead, the 3L compiler the commands would be

tee31 -e nl.e
tee31 -e n2.e
tee31 -0 nodeprog nl.bin n2.bin

in which the most obvious difference, other than the name of the compiler
itself, is the fact that 3L object files have the suffIX" . bin".

Hidden problems
compiling llHost­
Node" programs

Compiling llnode"
programs under
Logical Systems C

Compiling llnode"
programs under3L
C

33

Compilers

Compiling unode"
programs under3L
FORTRAN

Running exinit
after the 3L
compilers

Missing error
messagesfrom 3L
linkers

Special
precautions to take
when using ndb

Including line
number and local
variable
information

34

A 3L FORTRAN progriun would be built from similarly named FORTRAN
fIles with the commands

tfe -e n1.f
tfe -e n2.f
tfe -0 nodeprog n1.bin n2.bin

An important point to note is that the 3L compilers, tee31 and tfe actually
execute on the transputers themselves, completely destroying any program
that may have been running on the nodes, including the Express kernel. As
a result you must execute exinit after using thesecompilers before running
any Express program.

If the compiler generates error messages which seem to indicate missing ftIes
or incorrect path names a useful switches are '-dryrun' and '-x'. The
former causes the compiler to print out the commands which would normally
be executed instead of actually perfonning them. The '-x' switch also prints
out commands but also executes them. The most common source of error
while compiling is failure to fmd some compiler pass. This usually indicates
some sort of error in the customization fIle which should be corrected by
executing exeustom.

Compilation and linking errors are typically sent to the screen although the
3L compilers are again somewhat exceptional. While compilation errors are
issued in this manner errors incurred during linking often generate the
mysterious message

Failed to open .b4 file

This is because all output from the linker is being redirected to a "map" ftIe
which is used to generate Express programs. This file has the same name as
the executable program you are trying to create but with the extension
" • rnap". If you see this error message it means that link errors have occurred
which can best be found by examining the map fIle with an editor or word
processor and searching for the string "ERROR".

If you wish to use ndb, the source level debugger, on your programs one
simple addition must be made to the above commands - the inclusion of the
'-g' switch. This switch performs two important functions.

During the "link" phase of the tee, tee31 and tfe commands it instructs
the system to build a symbol table for your program. The name of this is the
same as your transputer program but with the suffIX" . sym". Without this
table ndb will be unable to do very much and you will see a warning message
whenever you try to start it

While the '-g' switch is essential while linking a transputer program for use
with ndb it is optional while compiling the source ftIes. Most compilers

Compilers

produce smaller object files if no debugging information is requested which
saves on disk space at the expense of limiting the amount of debugging that
can be done. Typically, as with the Logical Systems C compiler, the omission
of the '-g' switch at compile-time causes no information about local
variables or source line numbers to be included in the output This, in tum,
means that ndb cannot know this informationfor the particularfile compiled
without the switch. As a result you can selectively choose the files in which
you need the extra information when you compile - this saves both on disk
space and memory inside ndb since the resulting symbol table will be smaller
if you include less information in it Normally we include the switch in all
fIles while debugging unless the resulting prognun becomes too big for ndb
to handle in which case "safe" source files are recompiled without '-g'.

As an example of the typical process consider the same two source files as
above compiled with the Logical Systems C compiler for use with ndb. The
appropriate commands are

tee -g -c nl.e
tee -g -c n2.e
tee -g -0 nodeprog nl.trl n2.trl

and one additional file, "nodeprog . sym" will be created.

Programs linked with any of these commands have access to all of the
facilities of Express except the I/O and graphics systems which require the
Cubix prognunming model. Note that no special switches have to be set to
access the PM profiling system although the execution profiler requires that
a symbol table be present to translate addresses into subroutine names. If you
intend to use xtool you should add a '-g' switch to your "link" command
in the same manner as described above in connection with ndb.

2 Cubix programming model

The commands used to compile and link transputer code for the Cubix
prognunming model are essentially the same as those discussed in the
previous section for "host-node" programs. The only difference is the
specification of the "-leubix" switch when linking (and "-lplotix" if
you are using the Plotix system.).

If the files nl . c and n2. e were to contain code which used the Plotix
routines we would compile and link them under Logical Systems C with the
commands

tee -g -e nl.e
tee -g -c n2.e
tee -g -0 nodeprog nl.trl n2.trl -lplotix

What to do ifndb
runs out ofmemory

Compiling
programs for use
with ndb

What tlnode"
programs can and
cannot do

Including graphics
and I/O with Cubix

Compiling Cubix
programs

3S

Compilers

-lplotix
implies -lcubix

36

Note that the "-lplotix" switch also implies that the Cubix I/O libmries
should be linked so no "-lcubix" switch is required in this case. Similar
modifications would be made to the tcc31 and tfc commands.

All other comments regarding the behavior of the compilers made in the
previous section are the same when compiling Cubix codes.

Compilers

'f.:JII1 Compiling code to run on the PC
M To compile and link: code to run on the PC under 005 which communicates

with the transputers using the Express system calls the nonnal procedure for
compiling and linking PC programs is followed with a couple of fairly simple
additions. In most cases these involve rmding the C header file
"express. h" and the library which contains the Express system calls.
Several compilers are supported and each section below indicates the details
for one version of the system.

1 MicroSoft Fortran "Host" programs
To compile FORTRAN programs with the MicroSoft compilers you need to
have version 4.0 or greater Fortran and access to version 5.0 or greater of the
MicroSoft C compiler libraries. This latter is because Express, which is
written in C, must be linked into your program. If you have only Fortran and
need the C library please contact us.

As well as having the appropriate Fortran and C libraries you need to install
the Fortran system in "c compatibility mode". If you have not done this then
run the SETUP program from the Fortran installation and respond 'Y' when
asked about C compatibility. If necessary save your existing Fortran library
for use when you are not building Express programs.

Once you have the libraries in place you can proceed to link your Fortran
Express program. To do this requires further special linking procedures ­
you must be careful to link libraries in a particular order with certain key
switches set

As an example consider code built from two source files, n1. for and
n2. for which contain Express code. We could compile and link this
program with the commands

f1 -c nl.for
f1 -c n2.for
f1 -0 node.exe nl.obj n2.obj -link Inod/noe

c:\parasoft\1ib\express.lib+
11ibfor7+11ibc7i

(The last line, the "link" command, is broken into three here since the printed
page is not wide enough to put everything on one line. When you execute this
command it may well fit on one line - if not the usual OOS options can be
used to break it up into multiple lines.)

There are several important features in this command

The link stage of the process has two unusual switches. '/nod' tells

Things to watch out
for when linking
((Host" programs

Versions of
MicroSoft
compilers

Installing the
FORTRAN
compiler so it can
call C routines

The difference
between this
manual and what
you type

37

c:\parasoft\lib

Compilers

the linker not to link: ANY of the default libraries, only the ones we
tell it to. '/noe' prevents a huge number of warnings and errors
when linking both C and Fortran libraries together since many
routines are defined in both.

The Express library itself has the path shown (if you installed the
system in the default directory - if not modify the pathname
appropriately.) and is quite straightforward.

The last two libraries are the MicroSoft Fortran and C libraries
respectively. It is important to link the Fortran library fIrst Note that
the example shown assumes the use of the 8Ox87 floating point
processor - if you have a different option then the appropriate
changes need to be made to the names of the C and Fortran libraries.

2 MicroSoft C "Host" programs
Any version of Linking MicroSoft C programs with Express is extremely straightforward.
MicroSoft C should The directory
work

The difference

Express supports
only large model
programs

38

contains a library, "express .lib", which must be linked with the rest of
your application using the usual cl, link ormsc command. The only catch
in the procedure is that we must pick up the Express header file
express. h which is probably included in your code. H you installed
Express in the default directories this will be found in

c:\p~rasoft\hostinc

(If you installed the system elsewhere modify the pathname appropriately.)

As an example consider two source files, n1 . c and n2 . c which we wish to
link together to create a program called prog . exe.

The appropriate commands to compile and link the code are:

cl -MI -c -Ic:\parasoft\hostinc nl.c
cl -MI -c -Ic:\parasoft\hostinc n2.c
cl -MI -0 prog.exe n1.obj n2.obj -link

c:\parasoft\lib\express;

(The last line, the "link" command, is broken into two here since the printed
page is not wide enough to put everything on one line. When you execute this
command it may well fit on one line - if not the usual DOS options can be
used to break it up into multiple lines.)

Note the specification of the '-MI ' switch - the Express library is for' 'large
model" programs.

Compilers

3 MicroSoft Windows "Host" programs

The only tricky aspect of compiling programs for use with Express is in
fmding the standard header fde express. h which is located in the
hostinc subdirectory of the main installation - if you put Express in its
default location the full directory name is

c:\parasoft\hostinc

although this will need to be modified if you used another location. To
compile a source fde called foo. c for use with Express therefore you
should use a command similar to

cl -c -AL -Gsw ~Os -w2 -zp
-Ic:\parasoft\hostinc foo.c

(Note that this command should be typed on a single line - it is broken into
two only for clarity in this document.) The most important switch here, other
than the usual Window's switches, is '-AL' which requests large-model
compilation. The only Express currently supplied is for large model
programs so you need to compile all your source with this switch set

Linking MicroSoft Windows programs with Express is extremely
straightforward. The directory

c:\parasoft\lib

contains a library, "exprwin . lib", which must be linked with the rest of
your application using the usuallink4 command. As already mentioned this
library is for programs compiled in the large model only and may necessitate
changes in your resource and definitions fIles to allow for the fact that the
resulting program must be statically placed in memory.

4 Turbo C "Host" programs

Linking Turbo C programs with Express is extremely straightforward. If you
installed Express in the default location the directory

c:\parasoft\lib

contains a library, "exprtc .lib", which must be linked with the rest of
your application using the usual c : \ tc \ tcc commands. (Unfortunately the
Turbo C stand-alone compiler and that used to compile/link Express node
programs share the same name. In this discussion we call the Turbo C
compiler c: \ t c \ t c c to distinguish it. You need to be careful when
compiling that you are really using the correct compiler at all times!) The only
catch in the procedure is that we must pick up the Express header file
express.h which is probably included in your code.

The difference
between this
manual and what
you type

This pathname may
be different ifyou
installed Express
in a non-standard
location

Name clashes
between Turbo C
and Express

39

CompDers

The difference
between this
manual and what
you type

Express supports
only large model
programs

Compiling and
linking from the
integrated
environment

40

This is to be found (with the same proviso about installation
directories as above) in the directory

c:\parasoft\hostinc

As an example consider two source files, nl. c and n2 . c which we wish to
link together to create a program called prog . exe.

The appropriate commands to compile and link the code are:

c:\tc\tcc -ml -c -Ic:\parasoft\hostinc nl.c
c:\tc\tcc -ml -c -Ic:\parasoft\hostinc n2.c
c:\tc\tcc -ml -eprog.exe nl.obj n2.obj

c:\parasoft\lib\exprtc.lib

(The last line, the "link" command, is broken into two here since the printed
page is not wide enough to put everything on one line. When you execute this
command it may well fit on one line - if not the usual DOS options can be
used to break it up into multiple lines.)

Note the specification of the '-ml ' switch - the Express library is for' 'large
model" programs.

Ifyou use the stand-alone linker other than through the tee command the last
line above should be replaced by

\tc\tlink cOl+nl+n2,prog"
c:\parasoft\lib\exprtc.lib+XXX

where the string "xxx" should be replaced by the libraries that you normally
need to link you Turbo C programs.

You should also be able to compile and link Express programs from the
integrated environment. To do this you should remember three things:

You must set the compiler option to "large model".

• You must add the parasoft \hostinc directory to those
searched for "include" [ties.

You must add the Express library exprtc .lib to your project
[tie.

With these changes Express programs can be linked simply from the Turbo­
C integrated environment.

5 Zortech C, C++ "Host" programs
Linking C programs with Express is quite straightforward. The directory

c:\parasoft\lib

The difference
between this
manual and what
you type

Compilers

contains a library, "expres s Z • 1ib' " which must be linked with the rest
of your application using the usual ztc, link or blink commands. The
only catch in the procedure is that we must pick up the Express header file
express. h which is probably included in your code. If you installed
Express in the default directories this will be found in

c:\parasoft\hostinc

(If you installed the system elsewhere modify the pathname appropriately.)

As an example consider two source files, nl . c and n2 . c which we wish to
link together to create a program called prog . exe.

The appropriate commands to compile and link the code are:

ztc -ml -c -Ic:\parasoft\hostinc nl.c
ztc -ml -c -Ic:\parasoft\hostinc n2.c
ztc -ml -0 prog.exe nl.obj n2.obj -link

c:\parasoft\lib\expressZ;

(The last line, the "link" command, is broken into two here since the printed
page is not wide enough to put everything on one line. When you execute this
command it may well fit on one line - if not the usual 005 options can be
used to break it up into multiple lines.)

Note the specification of the '-ml ' switch - the Express library is for "large
model" programs.

Express supports
6 MicroWay NDP C-386, "Host" programs only large model

Express is easily linked to programs created with either of these compilers. programs
The directory

c:\parasoft\lib

contains a library, "exprndp .lib", which must be linked with the rest of
your application using the usual commands. To achieve this merely add the
library name to the final section of your linker input ftle or the command line.

The only catch in the procedure is that C programs must pick up the Express
header rue express. h which is probably included in your code. If you
installed Express in the default directories this will be found in

c:\parasoft\hostinc

(If you installed the system elsewhere modify the pathname appropriately.)

As an example consider a source fIle nl. c which we wish to compile with
the NDP C compiler for the WElTEK floating point accelerator. We could do
this by executing

41

CompHers

cc -n2 -c -Ic:\parasoft\hostinc nl.c

7 MicroWay NDP C·386, "Host" programs

Express is easily linked to programs created with either of these compilers.
The directory

c:\parasoft\lib

contains a library, "exprndp .lib", which must be linked with the rest of
your application using the usual commands. To achieve this merely add the
library name to the final section of your linker input fIle or the command line.

42

Trouble shooting

t-j Trouble-Shooting
M This section lists some of the more common problems experienced while

using or installing Express together with solutions. Also discussed are the
details of the loading procedures used by exini t which may be useful in
diagnosing hardware problems.

1 Finding programs

The simplest, and most common, problem using Express is the failure to
locate the executables required. If you see a message such as

No such file or directory

or

Command not found

when you type one of the commands it probably means that you don't have
your PATH variable set properly. To correct this situation you must ask your
system administrator, or whoever installed the software where it is located on
your system. Then add the bin subdirectory of this installation to your PATH.

As an example assume that the software has been installed in the directory

d:\parallel\express

on your system. You would then need to add the directory

d:\parallel\express\bin

to the list of places searched when looking for programs. This is typically
achieved by modifying the PATH environment variable contained in the
autoexec. bat file in your home directory.

If necessary you should modify this entry and then reboot your machine to
force the changes to take effect. Alternatively you can re-execute the file by
typing

autoexec

If you still cannot execute any Express commands check that the system has
really been installed in the directory indicated.

2 Finding the customization file

Most Express commands need to know some system parameters before they
can operate correctly. This information is stored in a central "customization
fIle" with the name

express. cst

What to do ifyou
can't run any
Express program

The PATH

environment
variable

43

Trouble shooting

What to do ifyou
can't find the
customization file

The EXPRESS
environment
variable

What to do ifyou
can't find the
Express kernel

Debugging the
hardware

44

To use Express successfully the system must know how to locate this file.
By default it assumes that the ftle has been located in the bin subdirectory of
the most common Express installation directory - i.e., with the full pathname

c:\parasoft\bin\express.cst

If this is indeed the case you need to take no special precautions to use the
tools since they will fmd the customization ftle by default.

If you see the message

Failed to find customization file:

check that the named file does indeed exist

If the ftle does not exist your system administrator has decided to install it
elsewhere. In this case you need to fmd the full name of the ftle and set an
environment variable called EXPRESS which contains the path name of the
customization file.

To do this edit your autoexec. bat file again and add a line similar to

set EXPRESS=d:\parallel\express\bin\express.cst

Note that the exact pathname entered here will depend on the location in
which your system administrator has installed the Express software.

If you have not done so add these lines (suitably modified to indicate the
correct ftlename) to the autoexec . bat file and either reboot or re-execute
the file as described in the last section.

3 Finding the Express kernel

When running excustomor exinit you may see the message

Express kernel: ~ " not found

First check that the named ftle exists. If not you probably don't have the
correct path for the Express installation directory in the system configuration
ftle and you should run excustom to correct this.

If you incurred this error while running excustom or exinit keep trying
until it terminates without errors.

4 Kernel loading details
Since the loading process is quite complex many things can potentially go
wrong. Of these the easiest to diagnose involve incorrectly installed or
configured software and most of the typical problems have been covered in
the previous sections.

Trouble shooting

A more troublesome issue is that of hardware failures. Since no really good
diagnostic appears to be available at present the following notes identify the
functions being performed by each of the stages of the exinit process
which may help to isolate problems.

When running correctly exinit displays a dialog similar to that shown in
Figme 1, repeated here for clarity

ParaSoft Transputer System

~-----------__l._JG

======== -----------------

~--------rA

Initializing transputer's memory ... please stand by ...

Allocated 4 nodes, or1g1n at 0, process 1.0. 1

Loading forwarding tables to transputers

0.1.2.3.

Topology initialization complete

••••.•••••••••••••••••• E
Doner--------------__--L-J

Pre-booting network

O•• 1 .. 3 •• 2 ••

Downloading Express kernel: /usr/express/bin/express.tld

Figure 1.(Repeated) Downloading the Express kernel with exinit

If, instead of the display shown, you get error messages concerning either the
Express customization file or kernel see the previous discussion for possible
errors and their correction.

The basic processes involved in booting Express onto the transputer network
concern the loading of the operating system itselfand the configuration of the
internal state to match that indicated by the system configuration files and
cnftool.

Diagnosing
exini tfailures­
the loading process

A Before attempting to load the Express kernel into the transputer
network we must reset the nodes and load a small pre-boot code to
each. This code, which is loaded in two 256 byte chunks is
responsible for later downloading the Express kernel file. In this
part of the display each node number appears as the pre-boot is
loaded to it. The two subsequent "dots" represent completed loading
of each 256 byte block of the pre-boot code into the on-chip RAM.

4S

Trouble shooting

Memory checking
and kernel
relocation

Initializing
topology data,
forwarding and
broadcast tables

46

If errors occur at this point they usually mean that link connections
do not match the configuration [ues or that hardware links are
completely non-functional. Occasionally, bad memory in the on­
chip RAM may prevent successful loading.

B Having loaded the pre-boot exinit now tries to download
Express from the indicated file. Any errors occurring at this point
will mean that exini t cannot open the indicated file. Check f11"st
that it exists and then that every user can both read and write the fIle.

C Each "dot" in this section represents a 256 byte block of the kernel
being sent to all nodes of the network. While it is unlikely that errors
will occur at this point, memory failures in the off-chip memory of
the transputer may cause problems although these will typically be
detected later. The kernel will initially be loaded into the off-chip
memory at a location 128 Kbytes from the bottom of memory.

D The 'E' character indicates that the kernel has been successfully
loaded from the disk. The "Done" message indicates that the signal
to start up the network has been successfully sent. At this point the
Express kernel should begin to run.

E The fIrst act of the Express kernel is to reposition itself in high­
memory. To do this its fIrst checks to see if the customization file
indicates an explicit loading address. If so the relocation is
performed at once with no memory checking. If the memory address
indicated is -1 then Express determines the amount of memory
available on each node by destructively reading and writing memory
locations. Having found how much memory is available Express
relocates itself to the top of memory. This process takes a few
seconds or more depending on how much memory is on each node.
(As a benchmark it takes 15- 30 seconds to check 4 Mbytes of
memory on each of four nodes.)

F Now that Express is correctly loaded and running we must
configure its internal state to reflect that indicated by cnftool.
This means that information about message routing and
broadcasting must be loaded. To do this we actually use the high
level Express calls including exopen to gain access to the nodes.
The message shown here is the response of the system to the
allocation request. If this message never appears it indicates that
node 0 is not running correctly.

G The last action required is the loading of forwarding and broadcast
information to the nodes. Having been allocated (in the previous
step) we merely use exwrite to download the necessary

Trouble shooting

infonnation. Again each node is indicated as it is loaded and the
"dot" indicates that the data has been successfully sent to the
indicated node. If this process never completes it usually indicates
that either a link or a node memory have failed. Note that this is the
fIrSt real test that Express is running correctly - up to this point we
have been using a much lower level ofcommunication primitive and
topology awareness that is needed for this last phase to complete
properly.

The processes occurring while exini t runs are rather complex as has been
indicated in the previous discussion. Unfortunately, however, the ability of
this tool to diagnose hardware errors is to be treated with great caution. Often
the frrst few stages of exini t proceed correctly only for the loading of the
forwarding tables to fail. There can be many reasons for this such as

Express may have failed to load correctly or to re-Iocate itself into
high memory because of bad off-chip RAM. This will fust manifest
itself during the forwarding table load, except in node zero which
would probably fail to give the "nodes allocated" message.

A link may fail to function correctly. Up to the point where Express
starts to operate on its own we have been using very simple
protocols on only a subset of the links. when Express operates it
probably uses other, previously unused, links. Furthermore the
protocols in use are more complex than before so "dodgy" links may
fail at this point.

It is important to also consider the fact that the parallel nature of the system
may prevent easy identification of failed components. A failure in, for
example, node 3 may not be visible until much further through the network
due to some combination of routing issues.As a result it pays to be cautions
when replacing hardware.

In conclusion we should probably note that Express has proven a much more
stringent hardware test than the diagnostics typically supplied by hardware
manufacturers. To execute Express correctly much more has to be working
than is usually tested.

5 Failure of the "worm" program.

An occasionally mysterious problem occurs when using the "worm" program
in cnftool. Occasionally it may seem that some of the nodes and/or links
have not been detected correctly. Among the possible causes of error are the
following

No transputer hardware is installed in your machine.

What can have
gone wrong?

Express as a
hardware test and
diagnostic

47

Trouble shooting

The Ilworm"
cannot detect links
controlled by C004
switches

•

Some or all of the links are controlled by electronic COO4 link
switches. These links will not be detected by cnftool and should
be configured by hand in the desired topology.

If the transputer hardware is·on multiple boards the reset signal may
not be propagating from one to the next. In this case either the reset
lines should be checked or the exreset program used to reset the
other nodes before running the "worm".

If the transputers are installed in several separate machines check
that a common ground is available to all hardware.

Running out of
memory in
DESQView

An alternative ­
MicroSoft windows

48

6 Problems with DESQView and debugging

The most common problems associated with the use of DESQView and the
debugger, ndb, are caused by running out of memory. The system currently
in use can only make use of the standard 640Kbytes of conventional PC
memory and requires almost all of it

If you have unusual device drivers installed in your system you may have to
remove them before DESQView will allow you to run multiple programs.
The most commonly observed error message in this regard is

A non-swappable window is in the way

which appears when you attempt to create the second window used for
debugging. To see how much memory is available you can either use
DESQView's "Memory status" command or the standard chkdsk program
supplied with MS-DOS. The minimum required for the standard Express
configuration is roughly 590Kbytes.

If you can find no way to get enough memory an alternative is to reduce the
amount ofmemory reserved for the debugger, ndb. To do this select "Change
a program" from the DESQView menu and select the debugger. One of the
entries that you will see specifies how much memory is to be used. Reducing
this number will possibly allow ndb to start but you will almost certainly run
into trouble later since the amount of memory available for your program's
symbol table is now less.

If the problem of memory allocation becomes too serious an alternative is the
MicroSoft Windows version of Express which is able to take full advantage
of extended memory options.

Another problem occasionally observed when running ndb under
DESQView is the message

Please start the application in the other
window

Trouble shooting

In the simplest case this error may indicate that you have, indeed, not started
up the program to be debugged. You must start the transputer program first,
using the expause or 'cubix -P' options to load it stopped.

If you have done this correctly there is still a small but finite chance that ndb
is attempting to share access to the transputer nodes at the exact same instant
that this resource is locked by the user program moning in the other window.
If this happens the best solution is to exit DESQView and try again - it should
only happen once every few decades! If it does persist some other problem
has probably occurred and you should call for assistance.

lithe userprogram
isn't running

49

Trouble shooting

so

	Table of Contents
	1 Overview
	2 Installing Express
	3 Customizing Express with excustom
	4 Loading Express
	5 Compiling a first program
	6 Running with and without Cubix
	# Running the debugger, ndb
	7 Performance analysis with PM
	8 Parallel Graphics
	9 Using the Examples
	10 Using MicroSoft Windows
	10.1 The Express Server
	10.2 Running excustom, exinit, etc.
	10.3 Compiling programs for the transputers
	10.4 Running Cubix
	10.5 Running ndb
	10.6 Running PM

	11 Compiling code to run on the nodes
	11.1 "Host-Node" programming model
	11.2 Cubix programming model

	12 Compiling code to run on the PC
	12.1 MicroSoft Fortran "Host" programs
	12.2 MicroSoft C "Host" programs
	12.3 MicroSoft Windows "Host" programs
	12.4 Turbo C "Host" programs
	12.5 Zortech C, C++ "Host" programs
	12.6 MicroWay NDP C-386, "Host" programs

	13 Trouble-Shooting
	13.1 Finding programs
	13.2 Finding the customization file
	13.3 Finding the Express kernel
	13.4 Kernel loading details
	13.5 Failure of the "worm" program
	13.6 Problems with DESQView and debugging

