
~~.. -------------------?arsec

Parsec's Parallel Prograrnmina..§ystem for transputers

A complete development system

Parsec's parallel C system offers the soft­
ware needed to make full use of the flexi­
bility in the hardware offered by the Inmos
transputer. The system is based on the C
language, with a small number of powerful
and easy-to-use extensions to enable con­
current processes and inter-process com­
munications. These are explained on the
following pages. .

The Par.C System contains an intelligent
loader, able to deal with any network of
transputers. This loader makes it possible
to change the size and configuration of the
transputer network and run the same prog­
ram, without having to re-compile or re­
link it. Also, no configuration of the soft­
ware is needed before running the same
program on a different network.

The use of resident libraries for floating
point primitives, which are linked at runti­
me, makes it possible to load the same
program on T414 and T800 transputers.
Where needed, special code for aT800 can
be generated, using faster interleaved code
for the CPU and FPU.

Each concurrent process is givenfull access
to host system services through the Par.C
file I/O syst~m. It is also p~ssible to use the
link directly when no special file support is
needed.

No special hardware requirements

The system can be purchased in a native
version running on the transputer, using a
loader/server on the host system. Servers
for a variety of host systems are available.
The Par.C System can also be purchased in
a cross-system version, running on the host
system and merely downloading programs
to the transputer network.

The Par.C Parallel C Compiler

Parsec's Par.C System makes it possible to
write parallel programs in an extended ver­
sion of the C programming language. The
extensions are few, but very powerful and
easy to use. The flexibility of standard C is
maintained in the extensions, allowing the
programmer to use the properties of the
transputer in a dynamic way.

The Par.C compiler recognizes K&R C,
including the extensions described in ftC: a
reference manual" by Harbison and Steele.
The runtime libraries conform to the ANSI
Cstandard and have been implemented to
support concurrency.

The language extensions in parallel Care
explained on the following pages.

Parsec's Par.C System

channel ChannelName;
channel *ChanneIPointer;
channel ChanneIArray[SIZE];

Product Information 06/89

1* declaration of channel */
1* declaration of channel *1

r array of channels */

2

ChannelName = VariableName;
VariableName = ChannelName;
*ChannelPointer = VariableName;
VariableName = *ChanneIPointer;

Channel'Name2 = (type)ChanneIName1;

Figure 1. Syntax of the channel datatype.

1. The channel.datatype

1* output using channel *1
1* input using channel *1
1* output using pointer */

1* input using pointer */

/* input directly to output */

2. The pair constru~t
,.J

A channel is a point-to-point connection
between two processes, which can only be
used for synchronous communication. This
means, that both processes mllst have arri­
ved at the corresponding communication
statements before the 'datatransfer takes
place. Both processes are descheduled un­
til the message has been properly transfer­
red.

A channel can be used in both directions
and for different messages. Any type of
variable can be transferred using the as­
signment operator. The size of the message
is determined by the size of the variable
sent. The programmer shol:lld take care to
check on correspondance of the sent and
expected messages on both sides. Assign­
ing one channel directly to another channel
will cause the message input from the chan­
nel on the right to be transferred over the
channel on the left immediately. In that
case a typecast is needed to determine the
size of the message.

par [replicator] {
(compound) statement;

(compoun~) statement;
}

Figure 2. Syntax of the par construct.

The par construct is u~ed to start a J;l~~er
of concurrently runnlng processes-ot1.;Jhe
same'transputer. Each (compound) st~te-

,ment can be any piece of code, incluqing
otherparconstructs. Each (compound) sta­
tement is started as a separate process. The
process containing a' par construct will
await termination of all started- processes,
before proceeding execution of the code
following the par. In this way, 'the closing
brace of the par construct functions as a
synchronization point, and the results ofall
started processes in that par can be used
after this point.

The header of the par construct may inclu-"
de a replicator of the form used in_~r'for
statement. This replicator will cause; e-ach
(compound) statement within the par ,b-oc;ly
to be started a number of times as sep.a~ate
concurrent processes.

/* the replicator is optional */
1* concurrent process number 1 */

i

1* concurrent process number n */
/* synchrqnisation point ~/

3 Product Information 06/89

select [within < expression>] {
altguard ChannelPtr: < code>

alt guard ChannelPtr: < code>
alt cond < boolean expression> : < code>
alt timeout : < code>

}

alt < replicator > guard &ChanneIArray[i] :
alt cond < expression> guard &Channel :

Parsec's Par.C System

/* optional ''Within"-part */
/* alternative number 1 */

/* alternative number n */
/* default alternative */

/* timeout alternative */

1* replicated alt */
/* cond,tional alt */

Figure 3. Syntax of the select construct.

3. The select construct

• t"; ,i~" ,','
, ";tp~'inost complicated of the extensions to

'lll~' standard C language in Par.C is the
select construct. In.short,it is used to wait
,for the.firstin a number of specified possi­

~ ble ev~pts to occur. The event that triggers
the .select determines which piece of code
will be executed next.

I~ ,each alt(ernative) clause, a replicator
, ca'n be used to set a number ofguards. Also,

it is possible to 'switch' alternatives on and
'. '. off, using a conditional expression. A spe­

cial case of this is the use of a default alter­
native, in which the guard-part of the alt
clause is left out. This default alternative

~it·,·:~ill cause the select to be triggered even
i ..f.\vhen no events have occurred.

_'lJb;j .. '.

::~neselect will wait for one of a number of
~~ '~'~v~'nts to occur. If one wants to limit this

waiting, this should be done using the "wi­
thin expression" part in the header of the
select. The result of the expression (which
may be a constant) is taken as the maximum
waiting time for the select, measured in
processor clockticks. If a timeout alternati­
ve is defined, the code specified in this
altemativewill be executed when no other

" events have occurred before expiration of
the specified maximum waiting time. The
timeout clause may contain a conditional,

. but no replicator.

Example program

In the example ,·pfogramlisted on the next
page, a par construct is used to start a num­
ber of transmitting processes on the one
hand, and one receiving process on the
other. The receiving process uses a select
construct to wait for one of the channels in
the array to become active, after which the
value is read and displayed, and the bool­
ean switching this channel in the replicated
alternative is set to FALSE. When no chan­
nel becomes active within a specified
amount of time, a timeout-message will be
displayed. When all messages have been
received, the program will terminate.

support for parallelism

Parsec's Par.C System contains everything
one needs to actually run the program on a
network of transputers. The Par.C Loader­
Server, before loading the program into the
network, first does a fast analysis of that
network, and thereby makes it possible to
load the same program into each kind of
transputer network, without having to re­
compile or relink the code. The informa­
tion, including type and processorspeed,
the amount of external memory, the link­
connections to other transputers and to the
host system, is available to the program. In
this way, it is possible to have programs
adjust themselves t~ changes in. the hard­
ware.

Parsec's Par.C System Product Information 06/89 4

1*********** EXSEL.C: Demonstration program for the Par.C System **********/

#include < stddef.h >
#defineMX 10
#define Delay 1000
#define TimeOut 10

1* General definitions */

mainO {
int
channel
int

i,j =3,N =MX,Again == 1,nC = 0;
C[MX];
NotYet[MX];

1* Array of channels *1
1* Array of booleans *1

for (i = 0 ;i < MX ; i + +)
NotYet[i] = TRUE;

par
{{

int i;
par (i =0 ; i < MX ;i + +)
{{

/* Set all to TRUE */

1* 1st process outer par */

int r = i * i ;
printf(ltParaliel process nr °lod started\nlt,i) ;
wait ((Delay/MX) * (MX +Extra-i));
C[i] = r;
printf("Sent °kd over channel at addressO~p\n", r, &C[i]);

}}
printf(ltEnd of replicated PAR\n");

}{ 1* 2nd process.outer par*/
while (Again)
select within TimeOut * 0+ 1)
{

alt 0=O;j < MX;j + +) cond NotYet[j] guard &C[j] :
printf(ltGot °kd from C[Okd] at %x\nlt,C[j),j,&C[j]);
NotYet[j] = 0;
nC + +; 1* Number of channels ready */
break;

alt timeout :
printf(ltTime Out in Select\nlt);
break;

alt cond (nC > = MX) :
printf("AIi messages have been received\nlt);
Again =0;

}
printf("End SELECT loop\nlt);

}}
printf(UExiting program\nlt);

}

Figure 4. Listing of an example Parallel C program.

5 Product Information 06/89 Parsec's Par.C System

Availability of the Par.C System

The Par.C System is designed to enable
working with transputers from a wide va­
riety of host systems and for a wide variety
of transputer systems.

As for the host systems, basically two diffe­
rent configurations are available:

Par.C running on the transputer

The Par.C System as native system running
on the transputer connected to the host
system. The only component of the Par.C
System that has to be ported to different
hosts is the Loader/Server.

Available versions: IBM-PC, SUN 3, Har­
ris and a transputer running HELlOS or
Parsytec's Megatool. Other versions can be
procuded on demand.

It is possible for users to obtain the stand­
ard C source code for the Loader/Server, to
be able to adjust it to special demands.

Par.C running on the host system

Working with the Par.C System as cross­
compiler on the host system and downloa­
ding the produced programs to a transputer
system.

Available versions: IBM-PC, SUN 3 and
Harris. Other versions can be produced on
demand.

f 3175.00
f 725.00

(on demand)

f 3900.00
f 5900.00

(on demand)

P~cesforthePar.C Syste~ (in Dutch ~uilders)~~~~~~~~~~~~
Par.C native System, excl. Loader/Server
Par.C Loader/Server for IBM XT/AT compatibles
Par.C Loader/Server for other host systems

Par.C cross System for IBM XT/AT compatibles
Par.C cross System for SUN 3
Par.C cross System for other systems
(The Par.C cross System includes the Loader/Server)

All prices are subject to change without notice.

More infor~ation

Anyone who wants to receive more infor­
mation on the Par.C parallel programming
System, and on future developments by
Parsec, is welcome to contact Parsec at the
address given in the box. You will then
receive information on updates on a regu­
lar basis. You can also call us.

Parsec Developments
P.O. Box 782
2300 AT Leiden
Netherlands
Phone: (+31) 71142142
Telefax: (+31) 71 134449

All Parsec products are registered trademarks of Parsec Developments.
Other brand and product names are trademarks or registered trademarks of their respective holders.

Copyright (c) 1989 Parsec Developments. All rights reserved.

6 Product Information 06/89 Parsec's Par.C System

Overview of the Par.C Parallel Programming System

Csource

Compiler

assembly
source

Assembler

object code

Linker

in line
assembly

libraries

monitor

debugging
info

load modules

Loader/Server

network info

Network
analyser

transputer network

The 'Par.C' Parallel C compiler is a product of Parsec Developments, Leiden, the Netherlands.

