
Par.C yem

User's Manual and Library Reference

Version 1.22

4th edition, December 18, 1989

Information in this ,document is subjectto,~q." ~thq!1. :e:tife;~d'do~~~ot,'repr .~
a commitment on:;the part of Parsec D'e '"/ " " 'rrdte, d~~r·d:

,~~~~~~t is;futnish_~derMce~,agreetBent ~l',nondi~~ure' .e6~t~,Ae~~~'

software may be used'of, copied. only in accordance with the terms ofttie agreement.
The'l~urchaser1l1aym~~one~py of the so~arefor bAckup purposes. No part ofthis
pirb1Jeation or'ltS accomjimyiDgsoftware m3fJ>e sold,resol,9>,given away or reprodUced
or transmitted in any form or by any meafts, mechanieat or electronic, including
recording and photocopying, for any purpose:other than the purchaser's personal,use
without the prior writte~permission of Par~~pDevelopments.

Copyright © Parsec Developments, 1987-1~All rights reserved.

You may sell or distribute software written with this yersion of the Par.C System freely
when you mention that it was made with the Par.C SystemofParsec Developments. You

. may also let your software be accompanied with one copy of our server (RUN) and our
resident libraries (* .Rl,S).

Parsec Developments, the Parsec logo, Par.C and the Par.C System are registered
trademarks of Parsec Developments. Other 1?rand and'product names are trademarks
or registered trademarks oftheir respeetive~liolders.

If you have any comments about'the';sdftware or the manual, please contact Parsec
Developments. If you come acro~~ an error eilher in the software or the manual, please
complete the form at the back of this manual and return it to Parsec Developments.

!-~~ .: (~? '5.

The Par.C System· and its manual were written by Jan de Baat, Frans Evenblij, Jang
Graat, Erik Groenhuis, Jeanette Hooimey~r, Marti~n d~. Joqg, Frits KuijIman, Lex
Lissauer~Leo.Noot:dergraaf, Hans Onvlee, IVlaurice van Peursem and Ko Stoe!.

Table. of Contents

Introduction,
. .

Intended audience ' :' '.,. :- ;~<: III
.. . ',': ';'</' .. ·.~t~ - "\, ,;..

Hardware assumptions •.. ~ : ~ ~ IV

Target h8rdware requirement$~i: IV

Requirements for the Par.C native System IV

Requirements for the Par.C cross System . ~ . : V

Available versions of the Par.C System _~i • •••••••••••••••• VI

1. Single T4 System ,' '. ' .- VI

2. Single T8 System '. VI

3. Small System VI

4. Static~ystem . ~ ~ VII

5. Dynamic System VII

About this, Par.e System rtlanual ~ VIII

Subdivisibn into chapters 'i• ••••• ~ .~' ••••••••••••••••••••• VIII

Typographic and n~tational conventibhs'. IX

Further reading XI

1 Quick reference

Syntax of language extensions . 1 - 2

Runtime functions .. ~ - 1 - 3

Macros 1 - 11

Macros defined in various header files . . . 1 - 11

ANSI pr(3defined macros . 1 - 11

Par.C predefined macros 1 - 11

Compiler-dependent directives 1 - 12

Implementation of basic types 1 - 13

Sizes and ranges of the basic Par.C types 1 - 13

Random notes concerning the Par.e types 1 - 14

Word alignment of data . 1 - 16

Floating point formats 1 - 17

Rounding 1 - 17

Glossary . 1 - 18

2 Installation

The Par.e System,package 2 - 2

Introduction 2 - 2

Par.C System

Par.C Systemilquireme(fiS~';, ..,r~ ••••••• ".~,•••••••••• 0 • 0 •• 0 ••••• 2 - 2

Installation '\~. '.'. '.. ,;' 0 •.••••• -0 •• 0 ••• 0 ••• 2 - 3

Adjustment to interfacing;,~rdwsre~'onPC .0 •• 0 ••• 0 0 0 0 0 0 •••••• 2 - 4

Adjustment to interfacinghardwarei,~prHelios 0 •• 0 • • • • • • 2 - 4

Confidence testing ..,........ .. ~" .:~. .'. 2 - 6

3 Par.C System .~~1{
Overview of thePar.C System U~:.' ~ •• 3 - 2

Compatibility with Draft proposed ANSI C 3 - 3

CompUf!r & Preprocessor .. ~ .. ,.. 0 •••••••••••.••••••••• 0 • 0 • • • • • • • • 3 - 4

Usage of the compiler +; ••• 0 •• 3 - 4

Input- and output file names 0 •••••••••••••••• 0 o ••••• 3 - 4

Alignment on word-boundaries 0 ••• 0 • 0 ••• 0 • • • •• 3 - 5

Using an indirect file 0 •• ~••••• 0 •• 0 0 0 • 0 0 0 • • • •• 3 - 5

Warning levels , ;' 0 •• 3 - 6

Preprocessor directives 0 • • .;<.~ • • • 0 • • • • .,.,~ • •• • • • • • • • • 0 0 0 0 • • • •• 3 - 6

Compiler-dependent directives ~, ..,." 0 ••• '3 - 7

Inline floating point coQe~'generation 0 • • • • • • •• 3 - 7

Uninterruptable code~generation 0 • • ·3 .. 8

Predefined macros ' 0 •••••••••••••••••••••• 0 0 • • • • • 3 - 9

::Erroft recoyery 0 ••••••• 0 ••••••••••••••• 0 •• 0 • • • • • 3 - 9

Exitcodes .. ~ . -: ".. ~ ". ': w ••••••••••••••••••••••••• 0 •• 0 • • 3 - 9

Assembler ... 0 •••••••••••• ' •••••••••••••••••••••••••••••••• 0 3 - 11

·.Usage of the:assembler : ' 3 - 11

>Outputfile name and format . . 0 • • •• 3 .. 11

Memory usage of the assembler" 3 .. 11

Listfile name and settings . .: ... ,,~3., ;~~ •••••:~'-O ••••• 0 •. 0 • 0 0 •• 0 0 • •• 3 - 12

Using an indirect file ~ .. :~,. :'. ::' .. " ... 0 •••• 0 0 • 0 0 •• 0 0 • o. 3 - 12

Linker ":.,_~.""...- 0 • • • • • • 0 • • • • • • 0 • 0 • • •• 3 - 14

Usage of the linker . 0 • • • • 0 • • • • • • 0 • • • • • • • • 0 • • • 0 • 0 • 0 0 • • • • • • 3 - 14

OutputfUe name'and format ' 0 : ••• 0 ••• 0 ••• 0 •••••• 0 •• • •• 3 - 14

Specification of library files . 0 •••• '0 •• 0 • 0 •••• 0 • 0 •• 0 ••• 0 0 • •• 3 - 14

Generation.~format of the mapfile .. 0 •••••• 0 •• 0 • • • • • • • • • • 3 .. 15

Specification althe executable program 0 0 0 •• 0 •• 0 3 - 15

Using an indirect file 0 ••••••••• 0 ••••• 0 • • • 3 - 16

Loader/Server ..' ".-.; '.-;:; 0 •••• 0 • 0 ••••• 0 •••••••••• 3 - 18

Usage of the· loader/server ,..,'... 0 ••••• o •• 0 • 0 0 ••••••• 0 3 - 18

Commandline options .. "~ :'0 •••••••..••••• 0 •••• 0 ••• 0 •••• 0 ••• 0 3 .. 18

The runtime system 0 .;. • • • • • • •• 0 • " •••••• 0 ••• 0 0 •••• 3 - 21

table- 'Of" Contents

General descrjption of!ibranes~- .. ~- ii • •••••••••••••••••••• 3 - 21

Boot libraries .:'.:. 3 - 21

i/O libraries '" il • • • • • • • • .' ."'. • • • • • • • • • • • • • • • • • • • 3 - 21

Standard utilities - 0 •• 0 •• 3 - 21

Math libraries 0 ••••• 0 •••••••• 0 ••••••.• 0 •• 3 - 21

The Par.C file I/O system . 0 ••••••••••••••••••••••••••••• 0 • 3 - 22

Exiting, breaking and aborting programs ~ .'0 ••• 0 •••• 0 •• 3 - 22

Network information 0 • ~... • • • • • • • • • • 0 ••••••• 0 ••••••••••••• 0 3 - 23

4 Parallel C

Introduction 0 •••••••• 0 ••• 0 • 4 - 2

Basic concepts of Parallel C 4 - 2

Reserved keywords in Paranei C 4 - 4

The par statement 0 •••••••••••••••••• I • • • • • • • • • • • 4 - 5

Short description 0 •••••••• 0 • I • • • • • • • • • • • 4 - 5

Example of use -.. I •••••••••••• I • 4 - 5

Use o •••••••••••••••••• I •••••• 4 - 6

Replicated par -statement I •••••••• I • 4 - 8

Detailed description 0 0 ••••••••••••••••••••••• I 4 - 10

The use of double brackets - 0 • • • • • • • • • • • • • • • 4 - 10

Using shared variables-·in concurrent processes 4 - 12

Replicated par statement .. e'," 0 •••••••••••••••••••• I ••• 4 - 14

Pitfalls and warnings 4 - 17

Using gloOOls- in nested replicated par statements 4 - 17

Multip.le statements inSide a replic;ated par statement I 4 - 19

return:'and continue statements I •••• I ••••• I •••• 4 - 20

The channeldatatype} ;-; 0 •••••••••••••••••••••• 4 - 22

Short description .. 0 • • ~ • .- • • • • • • 0 • • • • • • • • • • • • • • • I • • • • • • • • 4 - 22

Examples of use : 4 - 22

Use 0 •••••••••• - •.• " ••••• 0' •••••••••••••••••••• 4 - 23

Scope of channels a·no· passing as parameters I •••••••••• 4 - 24

Detailed description ... '.. ~ .. -~'<"•• 0 •••••••••••• I ••• I ••••••• I • 4 - 24

Communication and synchronisation I •••• 4 - 25

Using linkconnecttons'between transputers 4 - 26

Pitfalls and warnings 0 •••• -••••••• 0 0 • 0 •••••••• 0 ••••••• 4 - 26

"MUltiplexing" communications orr one channel I •• 4 - 26

Using "malloced" Chatfrlels I •••••••• I • 4 - 27

Non-equal size and direCtion of communication I • I •• 4 - 27

The select statement ... I ••••••••••••••.••••••••••••••• 0 •••• I • I 4 - 29

Table of Cpnte Par.e System
: .(.. ,",she '"

Short description . '. a •• 4 - 29

E>fSmptls -of use ~:;"Ji.':. • • • • • • • • . • . • . • . • . . . • .. 4 - 29

Use ",:r>'~1·•.••••••••••••••••••••• 4 - 31

Speeifying~ tift.teotit~\lalue 4 - 32

RepliC$ted altern_tives 4 - '33

Conditional alternatives. 4 - '34

'Default',alternatiMe . 4 - 35

Detailed descriPtion . P~··• ••• 0 • 0 • o. 0 0 ••••••••••••• 4 - 36

Explicit communication ... 0 • 0 0 ••••••••••••••••••••••• 4 - 37

Links aadevents 0 •• ' ••••••• 0 .0 0 ••• 0 ••••••••••••• 4 - 37

Priorities':'. . . . 0 • • • • •). • • • • • • • • • • • • • • • • • •• 4 - 38

Nested selectstatemems 0 ••••••••••••••••••• 4 - 40

Pitfails and warnings . ' 0 • • • • • • • • • • • • • • • • •• 4 - 41

Using channel$ awaiting output 0 •••• D' .:. •• • • • • • • • • • • • • • 4 - 41

Sid,e-effects . 0 • • • • • • • • • 0 • 0 •• 4 - 41

Using replicator variables o 0 ••••••••• 0 0 • • • • • • • • 4 - 42

5 Tutorial

Introduction .. 0 ••• 0 0 ••• 0 •••:' ••• 0 • o'·{~'.. .': 0 ••• 0 •••••••••••• 5 - 2

Introduction to parallel processing ~' 0 •••••••••• 0 • • • 5 - 3

Dynamic parallel processing 5 - 6

The Paroe bootsystem 5 - 7

The SYSTEM structure '. 5 - 9

Making software independent of hardware 5 - 12

T4xx{T8xx transparency;\:'.~. .. 5 .. 14

The farmer demo program . .. t~.• • '·fa:o' .<l·i, -. • • • • • • • • • • • • • • • •• • • • •• 5 - 15

Implementation in thePar.C Syst~m 't\ 5 - 16

Pseudo..code.ofthe Farmer 5 -1.8

Running the farmer demo program .. 5 .. 19

Adaptations to the ftJrmer structure 5 - 19

Optimising cO.mmunication on the same node 5 .. 20

:,Including more statistics 5 - 21

Placing different tasks on different nodes 5 -'22

6 Special topics
Program configurations 6 - 2

The PI ex~rnpJe ~:. 6 - 2

Pseudo code for the Worker , 6 - 2

Organization of the sot1r~ code :·.......................6 - 3

Tab/fJ:QfContents

Single-node programs . .j~ • ~&, ••". <~"" ••••••••••••••••••••••• 6 - 3

Example program: Pl~ (lihked·:_wit.n~Jib) 6 - 3

Multi-node programs 0 •• 0 •••••••••• 6 - 4

Example·prog,am: -PI, (linked. 'Nith bJib) 6 - 4

SUbprograms for subsyste~ 0 ••• 6 - 5

Example program: ,RljN_PI 6 - 5

Program loading and startup . 6 - 6

Defining user supplied startup code - 6 - 7

Building tiny programs ' 6 - 10

Example program: PI_E 6 - 11

Custom server on the host system 6 - 12

Example'program: PI_R .. . 6 - 12

Memory usage in Par.C-compiled ·programs 6 - 14

Methods for speed improvement 6 - 16

Optimisations in program structure . 6 - 16

Source level optimisations '0 ••••••••••••• 0 ••••• 0 • • • • • 0 6 - 16

Assembler optimisations 0 0 •••••••••••••••• 0 • • • 6 - 17

Linker Optimisations ' <••• 0 ••••• '•.4 •• 0 •••• 0 •• 0 6 - 18

Using the floating point unit efficiently 0 ~'••••• 0 0 0 0 0 0 ••• 0 • 0 • • • 6 - 18

Inline assembly 0 0 ••• 6 - 20

Usage 000.0.000.00 ••• 0 0 •• 0 6 - 20

Format 0 • • • 6 - 20

Reserved labels ' 6 - 21

Assembler'code 6 - 21

Assembler data '. 6 - 21

C caUirig interface .. w' ••••••••• ' •••' • ~' •••••••••••••••••••••• 6 - 22

Stack usage :: ' :'. 6 - 24

Final remarks ~ 0 6 - 25

7 Utilities

SYSNET ' '~' '~" 7 - 2

A utility to show the available tranputer network 0 0 •••• 7 - 2

RUN2EXE 0 •••••• 0 0 • 0 0 7 - 4

A utility to create stand alone programs 0 •• 0 0 ••• 0 0 0 ••• 0 7 - 4

Error messages 0 ••••••••••••••• 0 , • • • • •• 0 0 • 0 0 0 • 0 0 0 • 0 0 • 7 - 5

MO,DRUN 0 •• 0 •• 0 • 0 •• 0 • 0 • 0 0 0 0 0 0 • 7 - 6

A utility to modify Par.C executables. .. 0 • 0 0 0 0 0 ••• 0 ••• 0 0 0 7 - 6

Options 0 ••••••••••••••• 0 0 •• 0 ••••• 0 • • • • 7 - 7

Error messages ' 0 0 • 0 •• 0 • 0 0 • 0 • 7 - 10

Table of Contents
,. ·1"·· ..·

8 RuntimeLibraries

General remarks· 00 000.. 00. 000000000000 00000. 0 '8 - 2

Introduction 0000.. 00. 0.. 00. 0 0O. 0000..... 0.8 - 2

Compatibility with Draft proposed ANSI Coo. 000 ••••• 0 0 -8· -·2

Header files 00.. 00'0 . 00.. 0.. 0. 00 00. 0.. 0.. 00 0.. 0 ·8"-··4

Par.C Library Reference .. 0000 000 . 00.. 0 8 -·26

9 Appendices
Differences with previous versions 00000. 000.... 0000. 00.. 00. 00. 0O. 9 - 2

Improvements and changes up to v102 00000. 0. 0.... 0. 9 - 2

Compiler 0.. 000. 00000. 0. 0 0. 00. 00. 0.. 0o' ••• 0 0'. 9 - 2

Lin-ker .00 0 0.. 0 0 " 09-2

Loader/Server 000. 000.. 0. 0 0. 9 - 2

Runtime libraries 0 0. 9 .. 2

Improvements and changes since v102 9 - 4

Comp·iler 0. 9 - 4

Runtime libraries 9 - 4

Compiler / Runtime system .'. .. 9 - 5

Known bugs (and remedies) 9 - 6

Complex expressions 0 0. 9 - 6

Module alignment and FPU code . .. 9 - 6

Error and warning messages 0. 9 - 7

Command line error messages . 9 .. 7

Compiler error messages .. 0 0 ••••••• 0. 9 - 7

Compiler warning messages 0 • • • • • • • • • • • • 9 - 21

Internal compiler error messages 9 - 23

Linker error messages .. ,; . -9 - 24

Linker warning messages 9 - 28

Internal linker error messages 9 - 28

ASCII code table . 9 - 29

References 9 - 30

10 Index

IntrorJfl&tion· -:

Introduction

I

Introduction .: Par.Q. S¥~~.lJ1

Introduction
.~ ";,.-JThe Par.C System is more than yet another C compiler for Inmas
.~~ .:~transput~J1s: the system has been carefully. designed to match the

<~.J ' ··tr§lnsPllter hardware in flexibility, and theresu~t.provides a powerful
programming environment on the basis of a parallelisation of the
l~~ageC.

.P~rallel C is a superset of C, containing the main facilities for parallel
p~-Qgrammingin the par and select statements and the channel datatype.
1,b.e:$.extensio·ns resemble the main features inInmos's OCCAM, but have
be~':n implemented in C-style, without interfering with the rules of the
e"j~ti~g language. This has resulted in an easy-to-use, flexible and
powerful language for parallel programming.

The Par.C System runtime libraries support the flexibility in the
la~guage to a maximum extent. Many ANSI C functions have been

"'v imp~ementedto be re-entrant and various special functions have been
,adp~p to access specific features of transputer clusters.

~~"ThS'~linique par.C boot System can handle transputer networks of any
size and topology, and passes information on the available hardware to
the program that is loaded. On the basis of this feature, software can
easily be made to adjust itself to the available hardware during runtime.
In this case, it is no longer necessary to recompile or relink a program
after the configuration of the transputer cluster has been changed. Plug
in an extra board and your program runs faster.

The PareC System Manual not only provides a complete description of
the different features of the software. Parts of the manual were added
to introduce the main concepts concerning parallelprogramming, which
have been used in the design of the Par.C System. The Tutorial chapter
is an introduction to the Par.C System and is based on example programs
included on disk. This chapter is followed by a Special Topics ch,apter
for the advanced Par.C System user.

Parsec Developments is constantly working on improvements of the
Par.C System and extended facilities. Ifyou want to receive information
on new features and updates of the system, please do not forget to return
the registration form. If you have special demands or suggestions, we
are always interested in hearing them. Contact your dealer or write:

Parsec Developments
P.O.' Box 782, 2300 AT Leiden
The Netherlands
Phone: +31 71142142
Fax: + 31 71 134449

II

Introdli~tjo~

Intended audience

Intended audience

The Par.C System is aimed at users of the Inmas transputer family of
: microprocessors, either as a single chip or interconnected into networks

of any size and cor.Jiguration. No specific operating system is needed to
use the Par.C System.

Since the system is based on a parallelisation of the'language C, some
knowledge of this programming language is assumed. Novice C users
are advised to use one of the a'vailable C textbooks to learn the standard
language, before moving on to the parallel extensions offered in the
Par.C System. A good introduction is given in 'The C programming
language" by the founders of the C l~~guage, KernighaIl and Ritchie
[K&R].

! Knowledge of the host system, on which the Par.C System runs and from
which Par.C-produced programs are downloaded to the transputer
network, is also assumed. Details on installation of the Par.C System on
particular 110st machines, and on adaptation of thePar.C loader/server
to different interfacing hardware, is given in the Jnst~llationchapter.

III

Hardware a~i(})IJ.f:~· Par.C SYlttm

'~i ",:)llePar.C System has been produced to run ona variety of "host"
"i~}1ardware., including transputers. This section indicates the necessary
'y,zavironment in general, for Par.C produced programs and for the Par.C
S~stem itself. Details on the necessary configurations of the host
machine for this particular version of the Par.C System are given in th'e
chapter on Installation.

Hardware.,assum'ptions

Target hardware regl-.-u_ir_e_m_e_n_ts_· --__-
The Par.C System generates code for the Inmos T4xxand T8xx
transputers, interconnected into clusters of any size, mixture and
topology. The minimum amount of external memory needed per
transputer is 0 (zero) KBytes (except when using the Par.C native
System). Of course, the amount of memory needed in practice d·epends
on the Par.C produced programs that should run on the transputer
cluster.

Transputer boards from any hardware supplier are supported, insofar as
the transputers are interconnected through their links, and the network
can be booted through one single linkconnection with the host machine.
The Par.C loader/server canbe adjusted to different hardware interfaces
by changing the parameter settings in hardware. cnf .

The Par.C bootsystem expects all transputers in the target system to be
in a reset state. 'Active' transputers will not be found, but errors may
occur in the software running on them, as a result of the investigation
efforts of the Par.C bootsystem.

Note • • . .• • An adaptation to the Parsytec "nearest neighbour" reset scheme has
been made, in which the bootsystem actively resets the entire cluster
while investigating it.

~uirements for the Par.C native Sy_st_e_m _
The Par.C native System runs on the transputer system. The only part
of the system running on the host machine in this version is the Par.C
loader/server, which downloads the compiler, assembler and linker to
the transputers, just like it does with user-written programs.

With the Par.C native System, the minimum amount of memory needed
on the first transputer in the system is 256 KBytes. However, when
producing large programs, this ~ize will be insufficient.

IV

IntrodUCfion~ Hardwlife 8BSU171ptions

~uirements for the Par.C cross S~_te_m_.__~__
The Par.C cross System is available on various hosts. e]~ IBM PC, Sun,
Apollo etc. The size of the available memory determines the size of the
programs you will be able to produce-. For details·"on the necessary
version of host operating system and p'ossible extraS needed for your
machine, see the IIlstallation chapter of this manual.

v

Available versio"$j'Cifthei~ar.CSystem
.....j .7 '...•. ~". '''f.' '

Availa~lE!yersions of the Par~C System
'fThe Par.C System is available in a number of versions. These are
!, '~introducedwith the objective of offering users with restricted budgets

,: "thtfadvantages of working with the Par.C System. Upgrades to the full
;;system are available for all of the cheaper versions.. The features of the
~ different versions are described below.

,1: Single T4 System

This is the cheapest version of the Par.CSyste~and is restricted in that
the code is only generated for one single T4 transputer. If the code does
not contain floating point calculations, it will also run on a single T8
transputer (the T8 may crash on instructions which are used on the T4
for floating point emulation).

~. $iOgle T8 System
This version generates code for one single ~T8 transputer, using the
special T8math library for floating point calculations. If the code does

:;. n.ot contain flo~ting point calculations, it will ~lso run on a single T4.
,~·transputer. ' .

3. Small System

This version generates code for single transputers, but includes the
possibility ofthrough-booting to either ofthe links of the first node. This
results in a maximum target system size of four transputers, configured
in a tree topology. Note that the links which are not in the boottree but
are connected, still make it possible to have a pipeline-application
running on this four-node system.

Host

indicates a bootlink

other interconnection

links used in the pipeline

A pipeline in a Small System

VI

Introduction. Available vefsiCiff.t~ of th~Pilfo C System
- ' ~"~.-... --)~---~1!.~iI1..- •.~\~..;~--_.....--~i'..........~-.-.;

~. Static System
~

This '/ersion allows the user to generate single-trap.Jiputer tasks, \\t~hich

can be placed on processors thrOUgh011t the entire Iletwork. This model
looks most like the configuration models used in various other
development systems. The difference with these sysgiJ11S is that there is
no configurer combining separately compiled,loadmodules with
bootcode to obtain one single binary image to download 0 Instead, a
script is given to the loader, containing a list of loadmodules and
destinations. Since only single-transputer tasks can~ be produced, at least
one task has to be specified for each processor. In contrast to the small
system, there are no restrictions to the size of the network to run the
program on.

5. Dynamic System
This version contains all features of the Par.e System. The difference
with all the above systems is, that programs for multiple processors can
be written, and these programs can be made to adjust themselves to the
hardware each time they are executed.

Note .. g ••••••• s Some of our distributors may not offer all versions listed.

VII

About·tfals"'»ar.C System manual
h£ ·?~"Tl)is';tnanualis part of the Par.C System. It consists of'several chapters,

~ach. 'numbered independently of other chapters. Page numbers are
preceded by the chapter number. A range is indicated with dots
separating the (included) boundaries, as shown below:

·4-~: inflicatespage 5 of chapter 4

r-2..6: indicates pages 2 through 6 of chapterl

Subdivi:siO.t1.. int.o chap_te_r_s _
The manual consists of several chapters containing information about
specific subjects of the Par.C System. At the end of the manual an index
is given with references for the keywords occuring in the complete
maD..llal. A short description of the chapters is given below:

Quick Reference • .. The'Quick Reference chapter provides fast access to the definitions of
t~e:ifuo~t il'iipottant features of the Par.C System.

this part contains :

• Syntax of language extensions

.' Library functions with prototypes

.~plemeiltationdetails concerning this Par.C System

.\, Li$t of definitions for most of the important terms used

0,(-"

Installation ~ '.;. . .. This, c'hapter contains a description 'of the contents of the Par.e System
pa~kage. It further explains the installation procedure fo,r your host
machine, followed by a confidence test checking the system installed.

The par.c·SySt~m''''''1;1l1~ chapter gives an overview of the Par.C System. The use of'the
·collStit;tlant parts is eXplained, followed by a descr~ption of the Par.C

Runtime System. '

Parallel C The extensions to the&tandard C language are described in this chapter.
'1;be ·l~ar statement, the channel datatype and::the select statement are
eJq>lained here.

VIII

IntrocJucti:on AbOJJlthis Pfir~,C System manual

Tutorial . a.• , • It • •• The tutorial is meant to give some examples-and inpit;ations about
writing parallel program~ using the Par.C System.'/Several types of
programs will be discussed, ranging from single transputer programs to
Illulti-tra.TJ.Sputer, 'network independent programs. This chapter also
contains some demonstration programs written in th~, Par.C language.

Special Topics .•. The special topics include some specific uses of the Par.C System,
different ways to use the Par.C Runtime System and memory usage of
the Par.C System. It also contains some tips ~nd tricks about
optimisation techniques and the configuration of transputer networks.

Utilities . • . • • . • .• The chapter about the utilities includes explaIlatiO$' pta network
displayer (sysnet.run). A stand-alone program builder (RUN2EXE) is
also discussed.

Libraries The Par.C System libraries consist of standard C library functions
conform the ANSI C standard, completed with extra library functions for
the Par.C Runtime System. First an overview of th~,library functions is
given, followed by a description of the header files.declaring them. After
that, a complete alphabetical list of runtime functio~is given with a full
explanation of their use and functionality.

Appendices. In the first appendix an overview is given of the:idifferences with the
previous version of the Par.C System. A list of1mown pugs and remedies
is added. The next appendix contains a complete list of all error and
warning messages that can be generated-'by thePar.C System. The
messages are grouped together according to the part of the system they
are generated~y: compiler, assembler, link~r. or loader/server.
Furthermore an A$CII table and the literature ref~~~ncesare included.

!}pogral?hic and notational conventions
In the description of the' syntax and language definition (chapter on
Parallel C), the following typographic and notational conventions will
be used:

In the examples, identifiers are chosen in relation to their use for
explanatory reasons. These names can be repl~~ed 'by any valid
identifier. In listings of examples, code which bears rio significance for
what the example tries to illustrate is replaced by one or more lines with
a sequence of dots.

IX

About this'Par.Ct':System' manual
. . ~ , ' ~: -~:-{_ ,:::i·:i. '~ .. ," ,.~.'i..~ •.~, ~~,' .. ~~"::. ~ ~ .' '. " ~1 • ,., , .. .,-. ~! ~ ~ ,....

Par. C's,stem~""

When showing examples of parallel C source c,ode~~cq~.t$,··.~t11re.

enclosed in /*and * / as usual. Indentation is used to indicme1h~'Sc6I'e'
'ofeach compoundstatement. In comments on examples, the~term nlevel'r>;~~"~~

···j,ls use·d in accordance with the scope of the code that is commented~ The
-';:;'>':level number agrees with the level of indentation in the source shown.

Level 0 is defined to be the function level.

In some of the explanations, transputer assembly language mnemonics
3~;',;fiare used. In this assembly source code, comments start with a semicolon

and end with the next newline. Indentation is used to make a distinction
between labels, instructions and operands. Labels are placed at the
extreme left side of a new line. The transputer assembly language
mnemonics are placed at the first level of indentation. The operands
~sed jn the instructions are placed on the second level.

x

Introotlction .-', :JEtuther. reading

Further reading
This manual is not intended for learning the sta",nqard C language or
giving insight to parallel programming. For thesem~ttersthe reader is
refered to the list below.

TheCprogrammin9Iang~u_ag~e~~~~~~~~~

• Kernighan and Ritchie [K&R, 1978]

• Harbison and Steele [HARBISON, 1984]

Parallel ~_ra_m_m_in...g... _
• C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall,

1985

• R. Perrott, Parallelprogramming, Addison-Wesley, 1987

• M. J. Quinn, Designing Efficient Algorithms for Parallel Computers,
McGraw-Hill, 1987

XI

Further readi~g'
";"i~\;'>} ·.Im.~.':'?· '.,'

XII

Quick reference

Quick reference

1 - 1

Syntax of language extensions

Syntax of language extensions

Par.C System

Any text below which is set in boldface is called a terminal and stands
for text as you would type it in. The rest of the text which is not set in
boldface is called a non-terminal and stands for a rule you should look
up below or in a standard C grammar. If text is enclosed in square
brackets ('[' and 'J') it means that it is optional. Text followed by a '+ '
can occur 1 or more times. A non-terminal in the left column can be
followed by more than one rule. Each of these rules stands for one
alternative by which the non-terminal can be replaced.

non-terminal rule

par_statement: par [replicator] {statement + }

type_specifier: channel

select statement: select { alt_section + }
select within expression { timed_alt_section + }

alt section: guard_alternative : statement_list
default_alternative : statement_list

timed alt section: alt section
timeout alternative: statement list- -

guard_alternative: alt [replicator] [cond expression] guard expression

default_alternative: alt [replicator] cond expression

timeout alternative: alt timeout [cond expression]

replicator: (expression ; expression ; expression)

1-2

Quick reference

Runtime functions

Runtime functions

All library runtime functions with their prototypes:

Note: prototypes are an ANSI C feature. They are not supported by the
Par.C System, but are included here to clearify the use of the functions.

type function function/macro defined in

a
void abort (void) function stdlib.h
void abort (void) function stdlib.h
int abs (int x) function stdlib.h
double acos (double x) function math.h
int AfTER (time_t t1, time_t t2) macro time.h
unsigned alarm (int n) function time.h
clock t _alarm (clock_t ticks) function time.h
char * asctime (struct tm *ptr) function time.h
char * asctime_r (struct tm *ptr, char *s) function time.h
double asin (double x) function math.h
void assert (int expr) macro assert.h
double atan (double x) function math.h
double atan2 (double y, double x) function math.h
int atexit (void(*fptr)(void» function stdlib.h
uns long _ato (char *str, int cntrl,[char **output]) function stdcnv.h
unsigned atob (char *s) macro stdcnv.h
uns long atobl (char *s) macro stdcnv.h
double atod (char *s) macro stdcnv.h
double atof(char *s) function stdlib.h
double atof(char *s) macro stdcnv.h
int atoi (char *s) function stdlib.h
int atoi (char *s) macro stdcnv.h
long atol (char *s) function stdlib.h
long atol (char *s) macro stdcnv.h
unsigned atoo (char *s) macro stdcnv.h
uns long atool (char *s) macro stdcnv.h
unsigned atou (char *s) macro stdcnv.h
uns long atoul (char *s) macro stdcnv.h
unsigned atox (char *s) macro stdcnv.h
unslong atoxl (char *s) macro stdcnv.h

1-3

Runtime functions Par.C System

type function function/macro detinedin

b
int BEFORE (time_t t1, time_t t2) macro time.h

char * bsearch (char *key, char *base, function stdlib.h
size_tn, size_t size,
int (*comp)(char *p, char *q))

int btoa (int ~ char *s) macro stdcnv.h
int bltoa (long 1, char *s) macro stdcnv.h

C

char * calloc (size_tn, size_t size) function stdlib.h
double ceil (double x) function math.h
void clearerr (FILE *stream) function stdio.h
clock t clock (void) function time.h
clock t _ClrHaltErr (void) function transp.h
double cos (double x) function math.h
double cosh (double x) function math.h
char * ctime (time_t *timeptr) function time.h

d
int OateToInt (int day, int month, int year) function time.h
void delay (int n) function time.h
void Deschedule (void) function transp.h
double difftime (time_t time1, time_t timeD) function time.h
DIR * Oir (DIR *search) function stdio.h
DIR * OirInit (char *fdedesc) function stdio.h
int dtoa (double d, char *s) macro stdcnv.h

e
void (*ERROR)(int errno, char *mess, ...) function errno.h
void exit (int status) function stdlib.h
void _exit (int status) function stdlib.h
double exp (double x) function math.h

f
double fabs (double x) function math.h
int fclose (FILE *stream) function stdio.h
int feof (FILE *stream) macro stdio.h
int ferror (FILE *stream) function stdio.h
int fflush (FILE *stream) function stdio.h
int fgetc (FILE *stream) function stdio.h
char * fgets (char *s, int n, FILE *stream) function stdio.h
int fderr (FILE *stream) macro stdio.h

1-4

Quick reference Runtime functions

type function function/macro defined in

double floor (double x) function math.h

double fmod (double X, double y) function math.h
FILE * fopen (char *fIlename, char *mode) function stdio.h
int fprintf (FILE *stream, char *format, ...) function stdio.h
int fputc (int c, FILE *stream) function stdio.h
int fputs (char *s, FILE *stream) function stdio.h
size t fread (char *dest, size_t size, function stdio.h

size_t count, FILE *stream)
int free (char *ptr) function stdlib.h
double frexp (double X, int *exp) function math.h
int fscanf (FILE *stream, char *format, ...) function stdio.h
int fseek (FILE *stream, long int offset, int ref) function stdio.h
long int ftell (FILE *stream) function stdio.h
int ftoa (char *s, double d) function stdcnv.h
size t fwrite (char *src, size_t size, function stdio.h

size_t count, FILE *stream)

9
int getc (FILE *stream) macro stdio.h
int getchar (void) macro stdio.h
char * getenv (char *name) function stdlib.h
int getenv_r (char *value, char *name) function stdlib.h
int _GetFunStack (void) function system.h
int _GetParStack (void) function system.h
int GetNodelnfo (int Tn, function system.h

NODEDESCRIPTOR * NodeDesc)
int GetSyslnfo (SYSTEM *system) function system.h
char * gets (char *s) function stdio.h
struct tm * gmtime (time_t *timer) function time.h
struct tm * gmtime_r (time_t *timer, struct tm *ptr) function time.h

void _in (channel *from, char *mess, int size) function transp.h
void InMess (char *mess, int size, channel *from) function system.h
void InPort (int prtaddr, int size, char *buft) function stdio.h
int IntToDate (int Jindat, int *pday, function time.h

int *pmonth, int *pyear)
int isalnum (char c) function ctype.h
int isalpha (char c) function ctype.h
int isascii (char c) function ctype.h
int iscntrl (char c) function ctype.h
int isdigit (char c) function ctype.h
int isgraph (char c) function ctype.h
int islower (char c) function ctype.h

1-5

Runtime functions Par.C System

type

int
int
int
int
int
int
int
int

function

isodigit (char c)
isprint (char c)
ispunct (char c)
isspace (char c)
isupper (char c)
iswhite (char c)
isxdigit (char c)
itoa (int i, char *s)

function/macro

function
function
function
function
function
function
function
macro

defined in

ctype.h
ctype.h
ctype.h
ctype.h
ctype.h
ctype.h
ctype.h

stdcnv.h

1-6

long int labs (long int x) function stdlib.h
double ldexp (double X, int exp) function math.h
int _LDHB (void) fuQction transp.h
int _LDHF (void) function transp.h
int _LDLB (void) function transp.h
int _LDLF (void) function transp.h
channel * LINKIN (int LinkNo) macro transp.h
channel * LINKOUT (int LinkNo) macro transp.h
struct tm * localtime (time_t *timer) function time.h
struct tm * localtime_r (time_t *timer, struct tm *ptr) function time.h
double log (double x) function math.h
double log10 (double x) function math.h
int Itoa (long 1, char *s) macro stdcnv.h

m
char * malloc (size_t size) function stdlib.h
double matherr (int code, _MATHARGS arglist) function math.h
double _matherr (int code, _MATHARGS arglist) function math.h
MEMINFO* MemAvail (MEMINFO *MemInfo) function stdlib.h
char * memchr (*s, char c, size_t n) function string.h
int memcmp (*obj1, char *obj2, size_t n) function string.h
char * memcpy (char *dest, char *src, size_t n) function string.h
char * memfill (char *obj, char *ptr, int size, int cnt) function string.h
char * memmove (char *dest, char *src, size_t n) function string.h
char * memset (char *obj, int c, size_t n) function string.h
time t mktime (struct tm *ptr) function time.h
double modf (double X, double *dptr) function math.h

n
int NaN (double d) function math.h

Quick reference Runtime functions

type function function/macro detinedin

0

size t offsetof (struct s_name, member m_name) macro stddef.h
int otoa (int i, char *s) macro stdcnv.h
int oltoa (long I, char *s) macro stdcnv.h
int onexit (void(*fptr) (void)) macro stdlib.h
void _out (channel *to, char *mess, int size) function transp.h
void OutMess (char *mess, int size, channel *to) function system.h
void OutPort (int prtaddr, int size, char *buff) function stdio.h

p
void P (semaphore s) function stddef.h
void PeekHost (int memaddr, int size, char *buff) function stdio.h
void perror (char *s) function stdio.h
void PokeHost (int memaddr, int size, char *buff) function stdio.h
double pow (double X, double y) function math.h
double pow2 (double x) function math.h
double powl0 (double x) function math.h
int printf (char *format, ...) function stdio.h
int Priority (void) function system.h
int putc (int c, FILE *stream) macro stdio.h
int putchar (int c) macro stdio.h
int puts (char *s) function stdio.h

q
void qsort (char *base, size_t count, size_t size, function stdlib.h

int (*compare)(char *pl, char *p2»

r
int raise (int sig) function signal.h
uns int rand (void) function stdlib.h
char * realloc (char *oldptr, size_t newsize) function stdlib.h
int RecvLink (int LinkNo, char *MessPtr, function stdlib.h

int MessSize)
int RecvLinkOrFail (int LinkNo, function stdlib.h

char *MessPtr, int MessSize,
clock_t TimeOut)

void Release (int status) function stdlib.h
int remove (char *filename) function stdio.h
int rename (char *oIdname, char *newname) function stdio.h
ProcessDescriptor

ResetChanneI (channel *ptr) function transp.h
void _ResetSystemTimers (clock_t Start) function transp.h
int _RestartProcess (ProcessDescriptor P) function transp.h

1-7

Runtime functions Par. C System

type function function/macro defined in

void rewind (FILE *stream) macro stdio.h
int Run (int LinkNo, char *Progftlename, function stdio.h

char *Arguments)
void RunProcess (void (*Process)(...), function stdlib.h

int Priority, int Npar, ...)

S

int scanf (char *format, ...) function stdio.h
int SendLink (int LinkNo, char *MessPt, function stdlib.h

int MessSizer)
int SendLinkOrFail function stdlib.h

(int LinkNo, char *MessPtr,
int MessSize, clock_t TimeOut)

void setbuf (FILE *stream, char *buf) function stdio.h
int _SetErr (void) function transp.h
int _SetFunStack (int DefaultFuncStackSize) function system.h
void _SetHaltErr (void) function transp.h
int _SetParStack (int DefaultParStackSize) function system.h
int SetPriority (int p) function system.h
int setvbuf (FILE *stream, char *buf, int mode,

size_t size) function stdio.h
void SIG_DFL (int sig) function signal.h
void SIG_IGN (int sig) function signal.h
void SIG_ERR (int sig) function signal.h
void (* signal(int sig, function signal.h

void (*fptr)(int sig») (int sig)
double sin (double x) function math.h
double sinh (double x) function math.h
unsigned sleep (int n) function time.h
clock t _sleep (clock_t ticks) function time.h
char * smalloc (size_t size) function stdlib.h
int sprintf (char *s, char *format, ...) function stdio.h
double sqrt (double x) function math.h
void srand (unsigned x) function stdlib.h
int sscanf (char *s, char *format, ...) function stdio.h
void _STHB (ProcessDescriptor P) function transp.h
void _STHF (ProcessDescriptor P) function transp.h
void _STLB (ProcessDescriptor P) function transp.h
void _STLF (ProcessDescriptor P) function transp.h
void _StopProcess (void) function transp.h
char * strcat (char *sl, char *s2) function string.h
char * strchr (char *s, char c) function string.h
int strcmp(char *sl, char *s2) function string.h
char * strcpy(char *sl, char *s2) function string.h
int strcspn(char *s, char *set) function string.h

1-8

Quick reference Runtime functions

type function function/macro defined in

char * strerror(int errnum) function string.h

int strlen(char *s) function string.h

char * strncat(char *s1, char *s2, int n) function string.h

int strncmp(char *s1, char *s2, int n) function string.h

char * strncpy (char *s1, char *s2, int n) function string.h
char * strpbrk (char *s, char *set) function string.h

char * strpcbrk (char *s, char *set) function string.h

char * strrchr (char *s, char c) function string.h

char * strrpbrk (char *s, char *set) function string.h

int strrpos (char *s, char c) function string.h
int strspn (char *s, char *set) function string.h

char * strstr (char *src, char *sub) function string.h

double strtod (char *s1, char **s2) function stdcnv.h
function stdlib.h

long int strtol (char *s1, char **s2, int base) function stdlib.h
macro stdcnv.h

char * strtok (char *s, char *set) function string.h
char * strtok_r (char *s, char **state, char *set) function string.h
long int strtoul (char *s1, char **s2, int base) function stdlib.h

macro stdcnv.h
int system (char *command) function stdlib.h

t
double tan (double x) function math.h
double tanh (double x) function math.h
int _TestErr (void) function transp.h
int _TestClrErr (void) function transp.h
clock t _TicksPerSecond (void) function time.h
time t time (time_t *ptr) function time.h
int _toa (char *string, int control, function stdcnv.h

[unsigned] [long] int input)
int toascii (int i) macro ctype.h
int toint (char c) function ctype.h
int tolower (char c) function ctype.h
int _tolower (char c) macro ctype.h
int toupper (char c) function ctype.h
int _toupper (char c) macro ctype.h

U

int ungetc (int c, FILE *stream) function stdio.h
int utoa (int i, char *s) macro stdcnv.h
int ultoa (long 1, char *s) macro stdcnv.h

1-9

Runtime functions Par. C System

type function function/macro defined in

V

void V (semaphore s) function stddef.h
type va_arg (va_list ap, type) macro stdarg.h

int _va_arg (va_list ap, size_t size) function stdarg.h
void va_end (va_list ap) macro stdarg.h
void va_start (va_list ap, parm) macro stdarg.h

int vfprintf (FILE *stream, char *format, function stdio.h
va_list args)

int vprintf (char *format, va_list args) function stdio.h
int vsprintf (char *s, char *format, va_list args) function stdio.h

W

void wait (clock_t ticks) function time.h

X

int xtoa (int i, char *s) macro stdcnv.h
int Xtoa (int i, char *s) macro stdcnv.h
int xltoa (long 1, char *s) macro stdcnv.h
int Xltoa (long 1, char *s) macro stdcnv.h

y
int yday (int day, int month, int year) function time.h

1-10

Quick reference

Macros

Macros defined in various header files

Macros

Macro

ABORT SIG

ALARM SIG

EVENT SIG

LinksperTransputer

MostNeg

MostPos

Bytes InWord

IOFBF

IOLBF

IONBF

BUFSIZ

EOF

MAX OPEN

SEEK SET

SEEK CUR

Defined in

signal.h

signal.h

signal.h

stddef.h

stddef.h

stddef.h

stddef.h

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

Macro

SEEK END

LBUFSIZ

FNULL

RAND MAX

CLK TCK

CLOCKS PER SEC- -
LOW PRIORITY

HIGH PRIORITY

EVENT

NotProcessP

NULL

TRUE

FALSE

MinInt

Defined in

stdio.h

stdio.h

stdio.h

stdlib.h

time.h

time.h

transp.h

transp.h

transp.h

transp.h

stddef.h

stddef.h

stddef.h

stddef.h

ANSI predefined macros:
LINE replaced by the current linenumber in the sourcefI1e

FILE replaced by the current sourcefI1e name
DATE replaced by the current date

TIME replaced by the current time
STDC replaced by FALSE in this Par.C compiler

Par.C predefined macros
FUNC replaced by the current function name
RAND replaced by a random generated number

PARC dermed if Par.C is used, replaced by 1

1- 11

Compiler-dependent directives

Compiler-dependent directives

Par. C System

1-12

#pragmafpu
#pragma nofpu
#pragma noint
#pragmaint

: generate TS specific fpu code
: generate T4{fS transparant floating point code (default)
: generate non-interuptable code
: generate interuptable code (default)

Quick reference Implementation of basic types

Implementation of basic types

Sizes and ranges of the basic Par.C types

macro defined in

char
number of bits: 8
largest negative value: -128 CHAR_MIN limits.h

largest positive value: 127 CHAR_MAX limits.h

short
number of bits: 16
largest negative value: -32768 SHRT_MIN limits.h

largest positive value: 32767 SHRT_MAX limits.h

int
number of bits: 32
largest negative value: -2147483648 INT_MIN limits.h
largest positive value: 2147483647 INT_MAX limits.h

long
number of bits: 64
largest negative value: -9223372036854775808 LONG_MIN limits.h
largest positive value: 9223372036854775807 LONG_MAX limits.h

unsigned char
number of bits: 8
smallest value: 0

largest value: 255 V CHAR_MAX limits.h

unsigned short
number of bits: 16
smallest value: 0

largest value: 65535 VSHRT_MAX limits.h

unsigned int
number of bits: 32
smallest value: 0
largest value: 4294967295 VINT_MAX limits.h

1- 13

Implementation of basic types

macro

Par. C System

detinedin

unsigned long
number of bits:
smallest value:
largest value:

float
number of bits:
largest negative value:
smallest negative value:
zero:
smallest positive value:
largest positive value:

64
o

18446744073709551615

32
-3.402823466 x 1038

-1.175494351 x 10.38

0.0
1.175494351 x 10.38

3.402823466 x 1038

ULONG_MAX limits.h

float.h
float.h

double
number of bits:
largest neg. value:
smallest neg. value:
zero:
smallest pOSe value:
largest pOSe value:

channel
number of bits:

64

-1.7976931348623158 x 10308

-2.2250738585072014 x 10.308

0.0
2.2250738585072014 x 10.308

1.7976931348623158 x 10308

32

float.h
float.h

Random notes concerning the Par.C types
All integer types are signed by default. When (unsigned) shorts or (unsigned) chars are
used in expressions, they are first promoted to the corresponding int type. All
promotions from signed types to larger signed types are sign preserving.

The integer types differ widely in efficiency. This is due to the transputer hardware,
which does not have the addressing modes to support all types directly. We discuss the
types below.

char
The transputer character is basically unsigned. Extra code is needed to extend a signed
character to an integer. In routines which manipulate strings, it often pays to use
unsigned char in stead of the default signed char.

short
There is no addressing mode for short integers. Therefore, the byte addressable block
move of the transputer is used to handle them. This means that any access to a short
object takes large amounts of time and code. Signed shorts take even more code than
unsigned shorts, because of the necessary sign extension. Probably the only useful

1-14

Quick reference Implementation of basic types

applications for shorts are large arrays to save memory and interfacing to alien machines
with 16 bit word length.

int
Most operations on signed integers have a corresponding transputer instruction, and
therefore signed integers are very efficient. An exception to this is a shift right on a
signed integer. This is implemented as an arithmetic shift right, preserving the proper
sign of the value. For this preservation extra code is needed.

long
Long arithmetic is partially supported in the transputer hardware. Inline code is used
whenever it takes no more than about 16 instructions. More specifically, all bitwise and
additive operations are expanded to inline code, whereas multiplication, division and
remainder are implemented through function calls. Code generated for long expressions
tends to be large. There is little difference in performance between signed and unsigned
longs.

Note: Many existing programs use the type long for a 32 bit value. Because this range can be
handled by int much more efficiently, it is recommended to substitute int for long
whenever possible. The type specifiers· can be replaced by the following preprocessor
command:

'define long int

Care must be taken in format strings for functions like printf (), where the format
%ld should be replaced by %d, and in some runtime functions which require a long as
parameter. If protability is more important than efficiency printf ("%lx" . (long)
val) ; is recommended.

float
This floating point type conforms to the IEEE single length format. A short description
of the IEEE formats can be found in an additional section of this chapter. On the 1'800,

this format is directly supported by the hardware. On the T414 there are some supporting
instructions for rounding and packing, which are used in an emulation package.

Note Float values are not automatically converted to double when used in expressions.
However, if a float is passed to a function as a parameter, conversion to double does
take place. Conversely, if a formal parameter of a function is declared as float, this
declaration is silently replaced by a declaration of type double.

double
This floating point type conforms to the IEEE double length format. The 1'800 supports
this format directly. On the T414 an equivalent emulation package is used.

channel
The channel data type is implemented by the transputer channel. Auto, extern and static
channels are reset by the system. Channels which are dynamically allocated must be
reset by the user, using the runtime function Resetchannel ().

1- 15

Implementation of basic types Par.C System

Word alignment of data
As a rule, every object is aligned on a word (4 byte) boundary, even the single
components of a structure.

There are two exceptions: Arrays of characters and arrays of shorts.

In arrays of characters and in arrays of shorts, the elements are packed, occupying
consecutive memory locations. Note however, that single variables oftype char and short
take up a full word of storage.

Example int U; u ****
struct {

int a; v.a ****
char b; v.b *---
short c [3] ; v.c **** **--
int d; v.d ****
char e[5]i v.e **** *---

} Vi

char W; W *---
long X; X **** ****

In this example every asterix (*) represents one byte of storage, and every dash (-)
represents an unused byte, v represents a record name, but does not specify any memory
usage, which is done by the field names a, b, c, d and e; u, W and x are variables; c [3]
means an array of three shorts and e [5] means an array of five characters

The byte and word order in memory is always from low to high:

Example union{
long In;
struct {

int lsw,msw;
} i;
char c[8];

} overlay;

This union defmes the following equivalence:

physical byte offset 01234567

overlay. In ********
overlay.i lsw msw
overlay.c 01234567

i .lsw holds the least significant word of In;

c [0] holds the least significant byte of In;

1-16

Quick reference Implementation of basic types

c [3] holds the most significant byte of i .lsw.

Floating-point formats
The T800 implements the single and double length floating point formats as defmed by
the IEEE 754 standard (IEEE [1985]). Of course, this implementation of floating point
numbers is embedded in the Par.C System. A short description follows.

The letters in the following description have the meaning:

s : sign
e : exponent
m : mantisse
q : exponent bias
b : number of bits in mantisse

The bytes and bits are shown from most significant to least significant.

float

q=127 b=23

seeeeeee emmmmmmm mmmmmmm mmmmmmm

31 24 23 16 15 8 7 o

double

q= 1023 b=52

seeeeeee eeeemmmm mmmmmrnmm

63 56 55 48 47

mmmrnmmmm

o

If you interpret the bitfields s, e and m as unsigned values, the represented value can be
calculated with:

where q and b are the values given with the formats above.

Example: float
double

3f800000 (hex) = 1.0
c018000000000000 (hex) = -6.0

Rounding
In most floating point operations, the result is rounded to the nearest representable
value, the only exception being conversion from floating types to integral types. In this
case the fractional part is dropped.

1- 17

Glossary

Glossary

Par.C System

In the following list, the most important terms used throughout this manual are
explained. Technical terms related to the functioning of the transputer are not included.
For more information on these terms we refer to the transputer reference manual
[Inmos, 1986].

Active process
Process which is either running or ready to run.

Active process list
Linked list ofall processes ready to run, i.e. all processes excluding the running process
and waiting processes.

Concurrency
More than one process sharing the same processor.

Descheduling
Interrupting execution of a running process in order to schedule another active process.

Network
A set of interconnected processors.

Parallel C
The superset of standard C that is recognised by the Par.C Parallel C compiler and
supported in the Par.C System.

Process
A list of instructions which are executed sequentially while using a private workspace.

Re-entrant
A function is re-entrant if it can be called from more than one concurrent process at the
same time without any conflicts. In practice this means that any state variables should
be local to the process or read-only.

Replicator
A series of expressions, used to repeat a piece of code a number of times. The variables
used in the replicator are called the replicator variables.

Running process
Process of which instructions are currently being executed.

Scheduling
Taking a process from the active process list and resume its execution.

1-18

Quick reference Glossary

Task (running)
A set of one or more interrelated processes, which all share a global data space.

Terminated process
Process which has been active, but will not be activated anymore; the workspace is
deallocated.

Timeslice
The maximum amount of time a process is allowed to run before it can be descheduled.

Transputer
An Inmos microprocessor of the transputer type.

Waiting process
Process which is waiting for an event to resume execution. The events can be the
completion of a communication or a specified timervalue being reached.

1-19

Glossary

1- 20

Par. C System

Installation

Installation

2-1

The Par.C System package

The Par.C System package

Introduction

Par. C System

The Par.C system is delivered on several floppy disks. For the contents
of these disks read the readme file on disk 1. This file also contains
important, last minute information about the Par.e System which we
could not yet include in this manual.

The rest of this chapter will describe what the minimum requirements
are for the Par.C System and-how to install it. It will be concluded with
a simple test to see if the installation went right.

Pa~CSy~emreq_u_ir_em__e_~_s~~~~~~~~~_
The miminum requirements for the native version of the Par.e System
are one transputer (of type T4xx or T8xx) with 256 KBytes of RAM. To
be able to produce larger programs, either a larger amount of memory
is needed, or the program should be split up into a number of separately
compiled modules. With the Par.C System, programs can be made which
run on transputers with no external memory.

Where the target transputer network is concerned, transputer boards
from different producers are supported, insofar as the transputer
network can be booted up through a linkconnection with the host
system. This implies that all transputers in the network must be reset
before the program is loaded.

If you have any problems with specific transputer hardware products
please contact your dealer or Parsec Developments.

2-2

Installation

Installation

Installation

The installation procedure is the same for systems using an IBM PC (or
compatible) as host and those that use the Helios Operating System,
provided that the Helios Operating System uses an IBM PC as file server.

The Par.C System comes with an installation program, install. exe,

which copies the system from the source disks to the drive and
sub-directory indicated by the user, which will be taken as the "root"
directory for the Par.C System. This pare directory can be a subdirectory
of any level and will be indicated in this manual by parc\.

Install. exe sets up the system in the standard way depicted below. The
user may choose a different configuration, but the inc\ and lib\

sub-directories will have to be present in pare \, since the names inc and
lib are hardcoded in the search path used by compiler, linker and
loader.

A standard configuration of the Par.C System on disk should look like
this:
parc\

(declarations of library functions)

hardware.cnf

bin\

parcc.run/exe

parca.run/exe

parcl.run/exe

run.exe

parc.bat

lib\

*.lib

*.rsl

inc\

*.h

util\

(hardware info for loader/server)

(compiler and preprocessor)

(assembler)

(linker)

(loader/server)

(batch file)

(libraries)

(resident libraries)

*.exe

examples \

(utilities)

The PARSEC environment variable should be set to hold the name of the
"root" directory of the Par.C System. An example is given below:
set PARSEc=c:\transp\par.c\ (PC or)

set PARSEc=/c/helios/transp/par.c/ (Helios)

The compiler will then search for include files using the subdirectory
name formed by appending inc\ or inc/ to this PARSEC variable. The
libraries will be searched by the linker in a similar way.

2-3

Installation Par. C System

~ustment to interfacing hardware on PC
The Par.C loader/server is designed to work with a number of different
transputer hardware systems. The default link-interface used by the
loader/server is configured according to the Inmos standard on their
IBM-PC interface (as on the BOO4 plug-in board). The default linkadaptor
base address can be overruled using the -p option of run. exe.

When using hardware with different reset modes, link-adaptor base
address and link-adaptor address offset, the hardware. enf file should
be changed accordingly.

The hardware .enf file describes the hardware used as interface
between the host and the Transputer network. It typically contains three
lines which inform the loader/server about the address of the interface
adaptor, the link-interface to be used (if the interface adapter is equiped
with more than one link-interface) and the way the Transputer network
should be reset (which depends on the manufacturer of the Transputer
system).

• The adaptor base address is set by the line Adaptor-base xxx. Here
xxx is the hexadecimal value of the base port address of the link
adaptor.

• The number of the link interface is set by the line Adaptor N. Here N

is a decimal number indicating the link interface. If only one link
interface is available N should be zero, or this line can be omitted
entirely.

• The reset mode is selected by the line Reset-mode NAME. Currently,
only the Inmos and Parsytec reset modes are supported. Hence, NAME

should be "Inmos" or "Parsytec"..

If this file is not available the loader/server defaults to the following
settings:

Adaptor-base 150

Adaptor 0

Reset-mode Inmos

~ustmentto interfacing hardware for Helios
The Par.C loader/server is designed to work with a number of different
transputer hardware systems. The default link, used to access the
subnetwork where Par.C executes, can be overruled using the -p option
of run.exe.

When using hardware with different reset modes or linkadaptors, the
hardware. enf file should be changed accordingly.

2-4

Installation Installation

The hardware. enf file describes the hardware used to interface the host
to the Transputer network. It typically contains two lines which inform
the loader/server about the number of the link to use, and the way the
Transputer network should be reset (which depends on the
manufacturer of the Transputer system).

• The number of the link is set by the line Adaptor N. Here N is a decimal
number indicating the link interface (0 to 3).

• The reset mode is selected by the line Reset-mode NAME. At the
moment only the Inmos and Parsytec reset modes are supported.
Hence, NAME should be "Inmos" or "Parsytec".

If this file is not available the loader/server defaults to the following
settings:
Adaptor 2

Reset-mode Inmos

2-5

Confidence testing

Confidence testing

Par. C System

After installing the Par.C System on the host computer and adjusting
parc.bat to the chosen configuration, compiling, assembling and linking
a program can be done by typing:
pare <filename>

If compilation, assembly and linkage of the program have been
succesful, an executable program is produced which can be loaded into
the transputer network by typing:
run <filename> [arguments]

If the hardware interface information contained in hardware.cnf is
correct, running the example program dynsel.run should give a result
similar to the output shown in the example below. Otherwise, check on
the availability of hardware.cnf (the loader expects the file to be placed
in the parc\ root directory but will also search the path) and check on
the contents of hardware.cnf. The source code for the program
dynsel.run can be found in the file dynsel.c in the examples directory.

Example" . ". ""." Possible output of dynsel.run

Time out in select

Sent 25 over channel at 803fcedc

Received 25 from channel C[5] at 803fcedc

Time out in select

Sent 0 over channel at 803fcec8

Received 0 from channel e[O] at 803fcec8

Time out in select

Sent lover channel at 803fcecc

Received 1 from channel C[l] at 803fcecc

Time out in select

Time out in select

Sent 4 over channel at 803fcedO

Received 4 from channel C[2] at 803fcedO

Sent 16 over channel at 803fced8

Received 16 from channel C[4] at 803fced8

Time out in select

Sent 9 over channel at 803fced4

Replicated par terminated

Received 9 from channel C[3] at 803fced4

All data have been received

selecting process terminating

2-6

Installation Confidence testing

Because dynsel creates a number of concurrent (parallel) processes the
actual results can differ from run to run.

More examples are given in the remainder of this manual. It is advised
to first read the chapter on the parallel C language extensions.

2-7

Confidence testing

2-8

Par. CSystem

Par. C System

Par.C System

3-1

Overview of the Par..C System

Overview of the Par.C System

Par.. C System

parallel C source

assembly source

object code

load-modules

[Q] Host

1

Assembler

Linker

in-line assembly

libraries

resident libraries

executable program

Loader/Server

Transputer
network

Overview of the Par.C System

The preprocessor is integrated with the compiler, and recognises all
Draft Proposed ANSI C preprocessor directives, as well as some
compiler-specific directives, e.g. for optimization of code for floating
point transputers and for generating non-interruptable code.

The compiler recognises the Kernighan & Ritchie C definition, as well
as the extensions that have been added to permit the development of
parallel programs. The output is an assembly source file. Inline assembly
can be used anywhere in the C source code.

3-2

Par. C System Overview of the Par. C System

The assembler translates assembly source files into transputer object
code, resolving all references internal to a file and optimizing for the
length of references, constants and instructions.

The linker has a number of options, making it possible to optimise the
performance of the program, e.g. by placing the data area, the code
and/or the stack in the fast on-chip memory of the transputer.

The loader/server loads the program into the transputer network and
serves the I/O requests of the program. A program can be loaded into
any network, regardless of configuration and size.

The runtime system provides support for running parallel programs on
a network of transputers, and for dealing with concurrent processes on
the same transputer accessing the server when calling I/O routines. The
most important parts of the runtime system are explained in the chapter
"the runtime system".

The runtime libraries provide standard C facilities, as well as low-level
functions supporting specific features of the transputer. Functions which
have been defined in the Draft Proposed ANSI C standard in a non
re-entrant way have been given a re-entrant alternative.

Com~atibility with Draft ~osedANSI C
The Par.C compiler recognises the Kernighan & Ritchie [Kernighan
1978] C standard, with some of the extensions defined by Harbison and
Steele [Harbison 1984]. The Draft Proposed ANSI C preprocessor
directives are also included [ANSI 1986].

The Par.C runtime libraries are compatible to the Draft Proposed ANSI
C standard, with the exception of a small number of functions. These are
listed in the Library Reference.

3-3

Compiler &Preprocessor

Compiler & Preprocessor

Par.C System

Usage of the comp_ile_r _
Compilation of a parallel C program is achieved by calling the compiler
with optional switches and the name of the ~ourcefile to be translated
into transputer assembly source code. When no extension is specified,
".c" is taken by default. When invoking the compiler without specifying
a sourcefile or options, the usage is printed on the screen.

The options which will then be shown are divided into a number of
classes. More options in the same class can be invoked by concatenating
syllables following the option class specifier. For example, the option
"-tsi" will render the same results as using "-ts" and "-ti" seperately.

Most options are obvious in their use. Remarks on some of the special
options are given in the following paragraphs.

~u~andoutp_u_tf_il_e_n_a_m_e_s~~~~~~~~~_

Options parcc -o<file> <inputfilename>
parcc -i<dir> <inputfilename>

/* outputfile */
/* include directory */

The name of the outputfile can be specified using the "-0" option. The
default outputfilename is the inputfilename with a ".s" suffix. The
specified outputfilename is used exactly as it is given. The default
extension for the inputfilename is ".c".

Example: parcc -omyfile testprog

This will cause the file "myfile" to be used as outputfile for the
compilation of "testprog.c".

Using the "_i" option enables the use of include files from other
directories than the default include directory. The compiler will search
for include files in the following directories in the indicated order:

• The user defined directory following the "_i" option.

• The directory formed by appending "inc\" to the PARSEC
environment variable.

• The default include directory "parc\inc\".

3-4

Par. C System Compiler &Preprocessor

Example: II. parcc -id: \mydir

This will cause the compiler to use the directory "mydir" on drive D: to
search for include files. Included files that cannot be found there will be
searched in the directory defined in the PARSEC environment variable.
If this variable is missing, or if the file searched for cannot be found
there, the directory "\pare\inc" on the current drive is searched. If this
does not lead to the include file being found and used, the compiler will
exit with a fatal error message.

Alignment on word-boundaries

Options. parcc -af <inputfilename>
parcc -al <inputfilename>
parcc -alf <inputfilename>

/* alignment of functions */

/* alignment of loops */

/* both alignment forms */

Word-alignment may affect the execution speed of the program.
Instructions of the transputer are coded in bytes, but are collected in
words (four bytes) because of the word oriented memory interface of
the transputer. Since most of the instructions need more bytes to be built
up (see the transputer hardware information provided by Inmos [Inmos
1986]), an instruction crossing word-boundaries will take 2 memory
accesses to be read into the transputer's instruction register. If a loop is
executed for a large number of times, alignment of the loop can give
some increase of performance. The same goes for functions which are
executed very often in the course of the program.

Example: parcc -alf dhry

This will cause the compiler to emit code with word-aligned functions
and loops. To be effective, the program should not be linked with the
"-a" option of the linker, because in that case the start of the module is
not necessarily aligned.

The effectiveness of word alignment is limited. Especially when the
floating point unit is being used, the speed ofexecution depends strongly
on the timing of the memory accesses required by the fpu. Memory
access by the link engines may also cause different timings.

Using an indirect file

Options. parcc @<indirect file>

The Par.C Compiler can be instructed to take its arguments from an
indirect file. This can be done by preceding the name of the indirect file

3-5

Compiler &Preprocessor Par.C System

with '@' on the commandline. The indirect option can be mixed with
other options and filenames. It behaves like replacing the indirect file
specifier with the contents of the file, except that newlines in the file are
treated as whitespace.

Example: """"""" parcc -ts @std_c_opt myprog.c -0 test.s

This command will compile the file myprog •c to the outputfile test. s.

The compiler will include the lines from the source file as comment in
the assembler file, and use additional options from the file std_ c_ opt.

If the file std_c_opt contains the line -ti -i \myincdir the compiler
expands this into -ts -ti -i \myincdir myprog •c -0 test. s

Note: """"""""". Indirect files can not be nested.

Warning levels

Options """""""" parcc -we <inputfilename>
parcc -wl <inputfilename>

/* exit code on warnings */

/* set warning level */

The "-we" option may be useful when the compiler is called from within
another program, which can then use the special warning exitcode to act
appropriately (see the last section of this chapter "exitcodestt

).

The "-wI" option makes it possible to indicate the level ofwarnings which
should be suppressed. The option should be followed by a single decimal
digit between 0 and 6 inclusive. Setting the warning suppression level to
owill cause all warnings to be displayed.

~rocessor directives
The following standard C preprocessor directives are supported:
#define #undef
#ifdef #ifndef
#if #else

#endif #include

#asm #endasm

#line #elif
#pragma

The last three directives mentioned above are included in the Draft
Proposed ANSI C standard, and have the following meaning:

#line <number>

sets the line-counter to the number specified.

3-6

Par.C System Compiler & Preprocessor

#elif

is used as contraction of telse and tif appearing on consecutive lines.
#pragma

precedes compiler-dependent directives, which are skipped when
another compiler is used which does not recognize them.

Com~iler-dependentdirectives
The compiler dependent #pragma directives supported in Par.C can be
divided in directives related to the use of a transputer containing a
floating-point unit and generation of non-interruptable code.

Inline floating point code generation

Usage #pragma fpu
#pragma nofpu

When compiling statements using floating point calculations, the
generated code is generic for transputers with or without floating point
unit. In combination with this, the Par.C Runtime System enables the
use of the same code on different transputers, because different libraries
containing floating point primitives are loaded on different transputers
and linked during loadtime with the program code.

In most cases, the use of function calls for all floating point primitives
will cause a considerable overhead when running the program on a
transputer with floating point unit. Using the #pragma fpu directive will
cause the compiler to generate floating point instructions directly. Mter
#pragma nofpu the generated code will be generic again, so that parts of
the program can be made dependent on the available transputer types.

Example: Use of the #pragrna fpu directive
#pragma fpu
void DoFloatS()i
{

}

#pragrna nofpu
void PassMessageS()i
{

}

3-7

Compiler &Preprocessor

main ()
{

par
{

}

}

if (_ttype==8) DoFloats();
PassMessages();

Par.C System

In this example, a structure is given for a program which should run on
any transputer network, containing a number of T8xxs which are
interconnected using T4xxs. The latter processor type will only have to
pass messages from the host system to the T8xxs and back. Since
DoFloats () is only started on T8xxs, the program as a whole will run
on any transputer network. Note that the code for the floating point
calculations will also be loaded into the T4XXs, but will never be
executed there.

Note The program will hang if code compiled with #pragma fpu is run on a
T4xx.

Uninterruptablecodeg_e_n_e_ra_t_io_n~~~~~~~~_

Usage #pragma noint
#pragma int

Some of the instructions of the transputer are defined as descheduling
points. This implies that a process running on low priority may be
descheduled at these points. Most of the descheduling points concern
waiting for communication or a timer, but descheduling is also possible
when a process has been running for more than two timeslice periods
(of 1024 microseconds) each. To prevent execution of certain pieces of
code from being interrupted, the directive #pragma noint can be used.
The compiler will in this case generate only non-interruptable
instructions. Using #pragma int will have the compiler return to
generation of normal code.

Note Code for the execution of statements having to do with communication
or a timer will still use instructions at which the process can be
descheduled. A full list of interruptable instructions can be found in the
Transputer Instruction Set [Inmos 1986].

3-8

Par. C System

Predefined macros

Compiler & Preprocessor

The predefined macros defined in the Draft Proposed ANSI C standard
are supported in Par.C. These are the following:

LINE replaced by the current linenumber in the sourcefile
FILE replaced by the current sourcefile name
DATE replaced by the current date
TIME replaced by the current time
STDC replaced by FALSE in this Par.C compiler

Aside from these, the following macros are predefined in Par.C and will
probably not be supported in future versions:

FUNC replaced by the current function name
RAND replaced by a random generated number

In order to recognise the Par.C compiler a macro is defined:

PARe defined if Par.C is used, replaced by 1

Error recovery _
The type of error recovery used in the Par.C compiler is the so-called
"panic-mode". When the compiler encounters an error, characters are
simply skipped until some synchronising character is reached (for
example a semicolon at the end of an expression statement, or a right
brace at the end of a compound statement). This mechanism is not very
sophisticated. Quite often too much text is skipped, or compilation is
resumed at the wrong position in the source text. When this happens, an
avalanche of error messages will be displayed, most of which will be
caused by the compiler skipping some text (for example a declaration).

In most cases, only the first few error messages are significant. Missing
or superfluous semicolons are infamous for causing insignificant error
messages.

Exitcodes
The compiler exits to the calling program with an exit code, specifying
the status of what has been compiled. The exit code may have the
following values:

exit code 0 : No errors. No warnings. Compilation successful.

exit code 1 : Warnings but no errors. Compilation successful.

3-9

Compiler & Preprocessor Par.C System

exit code 2 : Errors in the source. Compilation continued.

exit code 3 : Fatal errors. Compilation aborted.

exit code 4 : System errors. Compilation aborted.

The difference between exit codes 0 and 1 is only in effect when
compiling with the "-we" option. When this option is not switched on,
the compiler will not differentiate between levels 0 and 1, and in both
cases return O.

Exit code 2 is generated when errors have been found in the source code,
which have not led to abortion of compilation. Exit code 3 is generated
when fatal errors have been encountered, either in the command line
or in the source code.

System errors are for example insufficient memory or internal errors in
the compiler.

3 - 10

Par. CSystem

Assembler

Assembler

Usage of the assembler
Assembling a transputer assembly source file (with suffix ".s" by default)
is achieved by invoking the assembler with options and the name of the
file to be assembled into transputer object code. When invoking the
assember without specifying a sourcefile or options, the usage is printed
on the screen.

Out~utfile name and format

Options. parca <inputfile> -h /*hex output instead of bin* /
parca <inputfile> -ic<number> /*specify length code label*/

parca <inputfile> -id<number> /*specify length data label*/

The output file can be written in hexadecimal notation using the "_h"
option on the commandline.

Example: . . . • parca hello -h

This will cause the assembler to write the output file named "hello.o" in
hexadecimal notation.

The length of external code and data references can be specified with
the "-ic" and "-id" options. These options can be used to optimize code
when no large reference offsets will be needed in the program.

Example: parca dhry -ic 3 -id 4

This will cause the assembler to reserve three bytes for each unresolved
code reference and four bytes for each unresolved data reference.

Memory usage of the assembler

Options. parca <inputfile> -sc <number> /*size of code table * /

parca <inputfile> -se <number> /*size of expression table*/
parca <inputfile> -sl <number> /*size of symbol table */

The assembler is optimized for speed and as a consequence uses a lot of
memory to run. This may sometimes cause problems for larger
programs, when one of the used tables is not large enough to contain all
information needed. Since the assembler allocates all available memory

3 - 11

Assembler Par. C System

when starting and divides this over the tables, adjusting table sizes may
solve the memory problems. The size of the non-specified tables are not
adjusted automatically when changing the sizes of one or two of the
tables.

The number following each of the "_s" options should be given as a
decimal number indicating the number of elements to be reserved in
the array.

Example: parca hugeprog -sc 5000 -se 2500 -sl 500

This will cause the assembler to declare an array of 5000 elements for
the code table, 2500 elements for the expression table and 500 for the
symbol table. The default settings of code, expression and symbol array
sizes have ratios 4 to 4 to 1. The element sizes are 32, 64 and 8 bytes long.
When running into memory problems and trying to find out how much
elements to use, running the assembler with the "-a" option may give
some indication, since the number ofelements used in each of the tables
will be displayed.

If the use of these switches does not solve the memory shortage, there
are two possibillities: Either split the source file in smaller parts, or buy
more memory.

Listfile name and setting_s _

Options parca <inputfi1e> -la
parca <inputfi1e> -1
parca <inputfi1e> -If<file>

/*write all to list file */

/*write according to .list*/
/*specify list filename */

The listfile contains all assembly source code, all object code (in hex
format) and all labels. When assembling in the default mode, the list file
is not generated. When using the "-la" option, all source is written to the
list file. The "_1" option will cause only assembly source which is not
preceded by a ".nolist" directive to be written to the list file. The default
list filename "t.1" can be changed using the "-If' option.

Using an indirect file
The Par.C Assembler can be instructed to take its arguments from an
indirect file. This can be done by preceding the name of the indirect file
with '@' on the commandline. The indirect option can be mixed with
other options and filenames. It behaves like replacing the indirect file
specifier with the contents of the file, except that newlines in the file are
treated as whitespace.

3 -12

Par. C System Assembler

Example: . " parca myprog @stdasopt

This command will assemble the file myprog . s with standard assembler
options taken from the file stdasopt.

Note: Indirect files can not be nested.

3 -13

Linker

Linker

Usage of the linker

Par.C System

Linking a number of transputer object code files and libraries to an
executable program is achieved by calling the Par.C linker with options.
When invoked without arguments the usage of the linker will be
displayed on the screen.

Files and options are allowed to be mixed on the commandline, provided
that an option is always preceded by a dash'-' (with the exception of the
indirection option "@ < filename> "). The commandline options that
are recognized by the linker are explained in the following paragraphs.

The linker assumes the following suffixes for files which are named
without suffix:

.0 for object files
• lib for library files
•run for executables
.map for map files

Out~utfile name and format

Options parel -0 <inputfile> /* specify output filename * /

parel -h <inputfile> /* hex output instead of bin */

The "-0" options allows you to specify a filename for the linker output.
If this option is omitted, the linker will use the name of the first object
file in the list, with suffix ".run". The "-h" option will cause the linker to
create a file with a hexadecimal representation of the executable.

Example: parel hello -odemo

This will cause the linker to create the executable file "demo". Note that
no ".run" extension will be appended in this case.

~ecification of librar~_f_ile_s _

Option parel <inputfilel> <inputfile2> -l<libl> -l<lib2>

The "-1" option is used to indicate which libraries are to be searched
during the process of linking. Unless told otherwise, the linker will

3 -14

Par. C System Linker

search for its libraries in the current directory, and if not found there, in
the subdirectory \lib of the directory that has been specified by the
environment variable PARSEC. See the "Installation" chapter on the use
of this variable in the Par.C System. A full pathname is allowed after the
"-1" switch. Modules from files specified with the "-1" option will only be
linked to the executable file if they could not be resolved from object
files.

Example: parel hello -la -lio -lstd -ld:\mydir\mylib

This will cause the linker to use the libraries a . lib, io .lib and std .lib

in the default library directory, and mylib .lib in the directory \mydir

on drive 0:

Generation and format of the map_fi_le _

Options. parel <inputfile> -m /* set generation of mapfile * /

parel <inputfile> -ml /* include a library map */

parel <inputfile> -mf<file>/* specify mapfile name */

parel <inputfile> -mx /* add cross reference to map */

The "-m" options causes the linker to write a map file. By default this file
will have the name of the first object module in the list, with suffix .map.

After the "-mf' option, you may add a filename for the mapfile.

The "-mI" option causes the linker to write a map file which includes a
map of the libraries. The "_rnx" option causes the linker to add a cross
reference to the map file.

Example: parel demo -mxlf mymap. ttt

This will cause the linker to generate a mapfile with name mymap. ttt

which includes a map of the used libraries and cross references.

~ecification of the executable p~ro~g~r~a~m~~~~~~
parel <inputfile> -be /* place code in low memory */

parel <inputfile> -bd /* place data in low memory */

parel <inputfile> -bs /* place stack in low memory */

parel <inputfile> -s<size> /* set staeksize to <size> */

parel <inputfile> -e /* do not link a booter */

The "-bc" option will cause the code segment to be loaded as low as
possible in memory. Since the lowest 2 or 4 Kbytes of the transputer are
on-chip memory (4 Kbytes on a T8xx), this memory has a very low access
time. In this way the execution speed of a program may be increased.

3 -15

Linker Par.C System

The It_bdlt option will cause the data segment to be loaded as low as
possible in memory. In this case it is not the execution of the code that
will be speeded up, but the access to static and global variables.

The It_bslt option will cause the initial stack to be allocated in low
memory. This will speed up the access to local variables.

The it_sit option allows you to specify an initial stacksize for your
application. The it_sit accepts an argument which determines the
stacksize to be used. If this argument is preceded by 'Ox', it is assumed
to be a hexadecimal number. If it is preceded by '0', it is assumed to be
an octal number. Otherwise it is interpreted as a decimal number. There
is no maximum to .the size of the stack, other than the amount of
available memory. The linker will use a minimum stacksize of 64 words.
At runtime the stack will be expanded if necessary. (See the description
of the runtime function _SetFunstack () for more details.)

Example: parel <inputfile> -be -sOxlOO

This will cause the linker to create an executable program which will
have its code segment loaded in low memory ~and which uses stacks of
256 (OxIOO) bytes.

The "-c" option will cause the linker to refrain from including booter
code. Booter code is among other things used to distribute an
application over the transputers in the network. When creating a
program that is not meant to be loaded into an unbooted transputer
network, this option should be used. In this case it is the programmer's
responsibility to load the code and start its execution. For example the
resident libraries of the Par.C System ("reaIt4 .rsl" and "reaIt8 .rsl lt

)

have been created this way.

Using an indirect file
The Par.C Assembler can be instructed to take its arguments from an
indirect file. This can be done by preceding the name of the indirect file
with '@' on the commandline. The indirect option can be mixed with
other options and filenames. It behaves like replacing the indirect file
specifier with the contents of the file, except that newlines in the file are
treated as whitespace.

This option can save a lot of typing and it can be used to circumvent
restrictions on the size of the commandline.

3 -16

Par. C System Linker

Example: • .. pare1 myprog -la -lio -lstd @myobjeets

This command will link the file myprog .0 with several libraries and will
read -1 options from the file myobjects, where the user has listed his
other modules.

Note:•.. Indirect files can not be nested.

3 -17

Loader/SeNer

Loader/Server

Usage of the loader/server

Par. C System

The Par.e loader/server (run.exe) has a dual function. First it loads a
program into the transputer system, and gives control to the transputer.
Secondly, the loader/server will serve any I/O requests the program
might issue to the host computer. When invoked without arguments, the
usage is printed on the screen.

All the options that are typed before the name of the program are
interpreted as options for the loader. The first filename is regarded as
the name of the program to run. The arguments following the program
name are passed to the program as commandline arguments.

When the loader is instructed to load a program, it first searches for it
in the current directory. If no match is found, it will search the
subdirectory indicated by the PARSEC environment variable. When the
program is not found in the "parc\" root directory, the subdirectory
"pARsEC\bin\" is searched. Following this, the MS-DOS path is searched.
If the program is still not found, the loader will exit after printing an
error message.

When needed for the execution of the program, the resident libraries
realt4. rsl and/or realt8 •rsl are loaded. These libraries contain the
floating point primitives for T4xx and T8xx transputers and are only
loaded if the program uses floating point calculations. The loader
expects the libraries in the subdirectory tipARSEC\lib\" where the other
libraries are also located.

Commandline o~_tio_n_s _

Option run -i <program> [arguments]

The "_i" option will cause the first transputer's memory to be cleared
before the program is loaded into it. This can be useful when testing a
program and using post-mortem debugging tools to investigate variables
in the transputer's memory.

Option run -p<address> <program> [arguments]

The "-p" option will overrule the default link adapter port address. This
option provides a way to have more than one link connection with one
or more transputers. It also offers an easy way of experimenting with
other link adapters without having to edit the file "hardware. enf".

3 -18

Par. C System Loader/Server

Option . " " run -r <program> [arguments]

The "_r" option will keep the server from resetting the transputer
network before loading a program into it. This may be useful in cases
where a program is already active which should not be killed when
another program is loaded.

Option . " " run -s <program> [arguments]

The "_s"option will give a detailed description of the loader options that
have been used on the commandline or the configuration file. It will also
print the full pathname of the configuration file that has been used.

Option " run -t <program> [arguments]

The "_t" option will time the execution of the program. Timing will start
after the program has been loaded, and it will stop when the program
issues an exit request. The elapsed time is then written to the standard
output.

Option. run -v <program> [arguments]

The "-v" option will cause the loader to print its own filename and a
copyright message to the standard output (the compiler, linker and
assembler always do so).

Option. run -b <program> [arguments]

The "_b" option causes the loader to open files in binary mode regardless
of the mode that is specified in the fopen () calL Omitting this option
causes the file to be opened exactly as is specified in the fopen () call.
This option is useful on MS-DOS systems and is usually provided by
MS-DOS C compilers to provide a way to resolve the difference between
the UNIX and the MS-DOS method for indicating an end of line. When a
file is opened in text mode, every newline character ('\n') is translated
to a CR/LF sequence during writes. Vice versa a CR/LF sequence is
translated to a newline character during reads.

Option run -x <program> [arguments]

The "-x" option will cause the loader to exit immediately after loading
the program. Thus the server part will not be started. This way the
programmer is able to use the loader as a means to start a program, and
then serve transputer requests with a custom server.

3 -19

Loader/Server Par.C System

Option run -d <program> [arguments]

The tt_dtt option causes the loader to display all I/O requests of the
transputer program to the screen. The information obtained canbe used
to trace the progress of the running program.

3 - 20

Par. C System

The runtime system

The runtime system

General descrip_tio_n_o_f_Ii_b_ra_r_ie_s _
To produce an executable Par.C program it has to be linked with one
bootlibrary, one I/O-library, the standard utilities library and an optional
math library. Except for the standard utilities package, a choice can be
made for each of the libraries, according to what is needed in each
particular case.

Boot libraries
Using a .lib will produce a single-transputer program. Using b .lib will
produce a multi-transputer program and cause all available transputers
to run the program.

The special library run .lib must be used when the program uses Run ()

to boot subprograms into subsystems. See the description of Run () for
more details.

I/O libraries

When the program performs file I/O, io .lib should be linked. In other
cases noio .lib must be linked instead. This will cause the server to exit
after the program has been started. Communication can then be
performed through a custom server produced by the user.

Note: io .lib and noio .lib on one side and std .lib on the other are heavily
cross referenced. The only reason for not joining them in one library is
to allow for noio .lib to be linked instead of io .lib. In the interest of
code compactness, cross reference offsets have been limited with the
use of the assembler "-ic" and "-id" switches. As a result of this, large
amounts of code between io. lib and std .lib can result in an error
message from the linker. It is recommended to specify these two
libraries directly after each other.

Standard utilities

As mentioned, std .lib must always be linked, since it contains all basic
support for Par.e programs.

Math libraries

Two math libraries are available: math .lib, which is generic for T4xx
and T8xx transputers. The routines contained in it make use of the

3 - 21

The runtime system Par.C System

resident libraries realt4.rsl and realt8.rsl for low-level floating
point support.

The T8xx library t8math .lib can be linked instead of math .lib to
increase performance on math routines, when executing the math code
on T8xx processors only. The speed improvement ·on math routines
amounts to a factor of 10 on average (compared for T8xx in both cases).

The Par.C file I/O sy_st_e_m _
The Par.C file I/O system has been redesigned and will in the near future
be extended to also support multi-transputer file I/O. The global and
detailed descriptions of the previous manual were therefore removed
from this edition.

At the moment we support only file functions on the transputer directly
connected to the host (T1). Using these functions on other transputers
will result in a crash.

Exiting, breaking and abortingj)ro9.....r_a_m_s _
The different routines related to termination of a running program are:

exit(EX_val)

• invokes the 'atexit' routines

• closes all files

• makes the host server exit with value Ex val

• does not return to the calling function

_exit (EX_val)

• makes the host server exit with the value Ex val

• does not return to the calling function

• does not close any files

abort ()

• raises the signal ABORT_ SIG

• makes the host server issue a serious error (-2) and exit with code -1

• does not return to the calling function

• does not close any files

3 - 22

Par. C System The runtime system

_abort ()

• makes the host server issue a serious error (-2) and exit with code -1

• does not return to the calling function

• does not close any files

release (EX_val)

• closes all files

• makes the host server exit with value Ex val

• returns to the calling function

BREAK handling

• raises the signal ABORT_ SIG

• closes all files

• makes the host server exit with the value -1

Network information
The Par.C System was designed to enable programmers to make
programs which are independent of the transputer network. This means
that a well-written program, once compiled, can run on any network,
independent of configuration or topology.

One of the tools available to the programmer for this purpose is the
System Network Information. This information is local to each
transputer and includes for example the transputer identification
number, the numbers of its neighbours and the fastest connection with
the host. In the current version of the Par.C System, the information is
collected when booting the network. The Par.C loader/server
investigates the network at hand by means of a network analyser and
leaves information behind on each transputer.

The data structure containing the information is defined as the SYSTEM

structure in system.h. The data can be obtained by a call to the
Getsyslnfo() library function. Refer to the Tutorial for more
information on this structure.

Some of the values in the SYSTEM structure are also available as external
variables. They can be used without the need of calling Getsyslnfo ().

Their use is discouraged however, as in future versions they might be
removed.

3 - 23

The runtime system

3 - 24

Par. C System

Parallel C

Parallel C

4-1

Introduction

·1ntroduction

Par. C System

Parallel C is a superset of the standard C language, as proposed by
Kernighan and Ritchie [Kernighan 1978] and extended by Harbison and
Steele [Harbison 1984]. In parallel C, one datatype and two statements
have been added, to enable C programmers to write parallel programs.

In this part of the manual, the language extensions are introduced and
their syntax is defined. Each of the chapters describes one extension and
contains a syntax section, examples of their use in ordinary cases, a
detailed description of the functioning of the extension and a section on
pitfalls to be avoided.

Basic concepts of Parallel C
Parallel programming involves the division of the available work
between a number of available processors, interconnected to forma
network of some shape and size. To be able to divide the work between
multiple processors, tasks must be identified which can be executed
more or less independent of each other.

But parallel programming implies more than just starting concurrent
tasks: at certain points during execution of these tasks, they will have to
pass data around or synchronise with each other to ensure a correct
parallel control flow of the program, yielding correct overall results.
Without this inter-task communication, one could hardly speak of one
program, being executed in parallel.

The figure shows the structure of an example parallel program, where
tasks are depicted as circles and the arrows show the interconnections
used for data transfer or synchronisation.

To be able to execute this example program in a concurrent way, some
extra facilities are needed above the possiblities that are available in the
standard C programming language.

Available facilities

First of all, multiple processes must be started concurrently, each
executing one of the available tasks. To be able to do this in as flexible
a way as possible, parallel C offers the par statement, which is described
in the next section of this part of the Par.C System Manual.

The second facility that is needed enables data transfer between tasks,
and is implemented through the channel datatype. Since neither of the
communicating processes can proceed until the datatransfer is
completed, the channel also acts as a point of synchronisation. For

4-2

Parallel C Introduction

Logical map of a parallel program

asynchronous communication see the paragraph "Communication and
synchronisation" in the detailed description of the channel datatype.

One more feature is needed, which may be less directly apparent from
the parallel structure shown in the figure. Some of the tasks in a parallel
program depend on information coming in from different directions,
whereas the order in which the data will arrive is not determined before
the program actually runs. In this case, a process should be able to wait
for a number of events at the same time, resuming execution when any
of these occurs. This possibility is provided in parallel C through the
select statement.

Language extensions
The choice for language extentions, as opposed to the inclusion of
parallel programming facilities in special runtime libraries, has been
made for reasons of clarity of concepts and parallel C source code, and
also to provide a maximum of flexibility in the use of the parallel
facilities.

The extensions to the language have been defined in such a way, that no
conflicts arise with the use of specific keywords in standard C. New
keywords are only added where they were necessary to implement
elementary support for parallel processing in a flexible way.

4-3

Introduction Par. C System

alt
channel:
cond
event
guard
par
process:
select :

Reserved keY!N0rds in Parallel C
Reserved keywords in parallel C are given in alphabetical order in the
table below.

alt(*) double int struct

auto else long switch

break enum par(*) timeout(*)

case event(*) process(*) typedef

channel(*) extern register union

char float return unsigned

cond(*) for select(*) void

continue goto short while

default guard(*) sizeof within(*)

do if static

The keywords marked (*) are specific to Parallel C, and are briefly
explained below.

used in select body, to mark one alternative clause
new datatype, used in communication primitives
used in alt clause, to activate or ignore it
reserved for future extensions
used in alt clause, preceding a channelpointer
new statement, used to start parallel processes
reserved for future extensions
new statement, used to wait for one of a number of
events

timeout: used in alt clause, defining code for timeout
within : used in select header, to define the waiting time

4-4

Parallel C

The par statement

The par statement

Short descrip_tio_" _
Running several processes concurrently is made possible by the par
statement. This statement is used to define parts of the program as
separate tasks, which are executed simultaneously by a number of child
processes. The parent process, which is temporarily halted, will proceed
after all its child processes have terminated.

Example of use

Example par {

(compound) statement;

(compound) statement;

(compound) statement;

}

par <replicator> {

(compound) statement;

(compound) statement;

(compound) statement;

}

(1)

(2)

<replicator> (initialisation; condition; update) (3)

See also The chapter 'Quick reference' for a formal syntax.

A par statement consists of the keyword par, followed by the par body
enclosed in braces as shown in (1). The par body consists of a number
of statements and/or compound statements. For each (compound)
statement, a separate child process is started. Mter termination of all
the child processes, the parent process proceeds with the execution of
the first statement following the closing bracket of the par statement.

The header of the par statement may include a replicator as shown in
(2). The replicator should be of the form shown in (3). The replicated
par resembles the loop which is executed in a for statement. However,
this replicated par is used to start a number of processes concurrently
(instead of having one single process do an iteration). Each of the

4-5

The par statement

Use

4-6

Par. C System

specified processes inside the par body is then replicated. Details on the
replicated par statement can be found in one of the following sections.

The (compound) statements within the par body may be of any kind,
according to standard C syntax rules, with the exception of the return
and continue statements (the reasons for these exceptions are explained
in section "return and continue statements"). This implies also that par
statements can be nested.

The par statement is used to divide a parent process into a number of
tasks, which are executed by separate child processes, running
concurrently on the same processor.

The par construct is always contained in the code for one processor, and
can therefore not directly cause processes to be started on other
processors in the available network. This possibility is handled by calling
different tasks or functions (which may each be divided into a number
of subtasks) on different processors, depending on the identity of the
processor. More information on this can be found in the Tutorial.

The par statement is particularly useful in programs that ~an be split up
into groups of tasks, which are largely independent of each other's
proceedings. In the case of strongly interrelated calculations, using the
par statement will often turn out to be inefficient.

It is usually efficient to define communication tasks (including file
access) as separate processes to prevent having the processor spend too
much idle time, waiting for data to arrive over its links. In this way
calculating processes can proceed while other processes are waiting for
communication to take place (e.g. to transmit results and receive new
data and commands for the calculation processes).

The processes inside a par statement are defined as (compound)
statements. They may contain function calls, declarations of local
variables, conditional expressions, etc. As is noted before, par
statements may also be nested. In the example on the next page, some
of the possibilities are illustrated.

Parallel C

par
{

The par statement

{

}

{

}

Execution of par

{

}

Example Executing five processes in parallel

par {

ProceSSOne()i

{

int tempI, temp2;

temp! = a + b;

temp2 = c + d;
e = temp! + temp2;

}

if (Proc3Valid == TRUE)

procesSThree()i

while (TRUE) {

sleep(!);

printf(".");

}

par {

Process5a() ;

Process5b() ;

Process5c();

}

}

/* process(!) */

/* process(2) */

/* process(3) */

/* process(4) */

/* process(5) */

/* end of nested par */

4-7

The par statement

4-8

Par. C System

Process (1) starts execution with a function call to ProcessOne (). After
returning from ProcessOne (), this first process terminates.

Process (2) contains declarations of local variables and executes a
number of statements without performing a function call.

Process (3) uses a conditional statement. If the expression evaluates to
FALSE, the process will simply terminate. Of course it is also possible to
use anifjelse construction here.

Process (4) uses a while (TRUE) construction. Since in this particular
case the condition for termination of the while loop is never satisfied,
the process will run on indefinitely. As a result, the code following the
par statement will never be reached.

Process (5) is a nested par statement. This code causes a process to be
started, which in turn executes another par statement. All nested parallel
processes must have terminated before process (5) terminates.

!!!fJlicated par statement

In the replicated par statement, each of the (compound) statements in
the replicated par body is not executed once, but a number of times,
which is determined by the replicator following the par keyword. The
total ,number of child processes executing inside the replicated par is
therefore the number of (compound) statements times the number of
replications.

The replicator included in the header of the replicated par statement
closely resembles the replicator used in a for statement, and therefore
allows variable boundaries to be used. This implies that the number of
times each of the (compound) statements will be started can be
determined during runtime. In principle, the variables used in the
replicator can be of any type, except for structure or array elements. For
details on the reason for these exceptions, see the detailed description
of replicated par statements.

Parallel C The par statement

...
par (i=O; i<n; i+ +)
{

{

Execution of replicated par

The following example illustrates the use of a replicated par statement

Example Replicated par statement using an integer

par (i = 0; i < n; i++) {

printf("%c", string[i]);
}

Execution of this par statement will cause a number of concurrent
processes fo be started, of which each one prints one character on the
screen.

Example Replicated par statement using pointers

par (p = q; P 1= NULL; P = p->next) {
Dosomethingwith(p);

}

In this example the existence of a number of structures containing data
to be processed is assumed. A list is maintained by linking each of the
structures to the next through a pointer (indicated as next). The last

4-9

The par statement Par.C System

structure in the list is marked by giving the next pointer the value NULL.

A pointer p can now be used to traverse the list.

In the following example, something is shown which probably does not
make sense in any program, but which is still possible as a consequence
ofusing the standard C replicator in combinationwith the par statement.
By using the for statement with an "empty" replicator, iteration will
continue indefinitely. Therefore this "for(;;)" is often called the "forever"
construct. The same is possible in the replicator of the par statement,
yielding an infinite number of child processes to be started.

Example The "parever" construct

par(i i) {

Dosomething()i
}

It should be noted in this case, that, since each child process needs its
own newly allocatedworkspace, available memorywill soon run out, and
the program containing this "parever" will crash after producing a fatal
runtime error message. The dangerous. c program contained in the
Par.C System package will show this.

Detailed descrip_tio_" _
In this section, more information is given on a number of topics
concerning the par statement. An important special issue in parallel
processing is the use of global variables. This topic is addressed, as far
as par statements are concerned, in the next section. The special
characteristics of the replicator variables in a replicated par statement

.are clarified in the section "Replicated par statement" below. But first,
a notational matter is discussed.

The use of double brackets

In most of the example programs contained in the Par.C System
package, double brackets are used in par statements, even where they
are not necessary. This is done for reasons of clarity of the parallel C
source code. Consider the following example:

4 - 10

Parallel C

Example par with single statements

par {
statementl;

statement2;

statement3;

statement4;

statementS;

}

The par statement

If you want to have statements 1 and 2, and statements 3 through 5
executed in sequence by one single child process each, you have to use
extra sets of brackets to make them into compound statements, as is
shown in the listing below. On the left side, the extra brackets have been
added in a standard C style. On the right side, the placement of these
brackets has been slightly adjusted, yielding the "double brackets" that
are used in many of the example programs contained in the Par.C System
package. This notation may look a little strange, but it helps to keep the
programmer from making errors by omitting or misplacing a closing or
opening bracket.

Example Standard style brackets

par {
{

statementl;

statement2;

}

{

statement3;

statement4;

statementS;

}

}

Par.C style: double brackets

par
{{

statement!;

statement2;

}{
statement3;

statement4;

statement5;

}}

The double brackets are also used in a replicated par statement, where
only one process should be replicated, containing multiple statements.

4 - 11

The par statement

process nr 1

process nr 2

process nr 3

variables global to all processes

Par.C System

variables local to process 1

variables local to process 2

variables local to process 3

4 -12

Use of local and global variables

Using shared variables in concurrent processes

All processes started inside a par statement have access to variables
declared in the function containing the par statement (and of course to
variables declared outside functions). The same scope rules apply as for
other compound statements, except for the variables mentioned in the
replicator expressions. For these variables local copies are generated by
the compiler, which effects in making the original variables read-only as
far as the started processes are concerned. More information on the
replicated par statement is given in the next section.

Problems
Using global variables in standard (sequential) C does not cause
problems because the order of execution of the program is entirely
determined by the structure of the program and the value of variables.
No conflicts arise from using and updating variables since the program
consists of only one process. Unless hardware failures occur, there can
be no changes in variables between the termination of one instruction
and the start of the next one.

When dealing with concurrent processes, another factor comes into
play, which makes the control flow of the program more complex. The
order in which the concurrent processes on the same transputer are
executed, not only depends on the structure ofthe program and the value
of variables, but also on time.

Parallel C The par statement

The execution of a par statement is illustrated in the previous figures.
The process containing the par statement starts a number of concurrent
processes, and proceeds to the synchronisation point to wait for
termination of all concurrently running processes.

If concurrent processes are using the same variables, problems may arise
from the uncertainty on the order of execution of the concurrent
processes. There is no guarantee that the used shared variable will keep
the same value in the time between descheduling and scheduling of a
concurrently running process. Another process with access to the same
variables may have changed them in the meanwhile.

To avoid errors, the programmer should take care when using variables
global to concurrent processes. Most problems can be avoided by
defining local copies of global variables inside the started processes, or
permitting only one process to alter the variable.

Application

On the other hand, the problems can become a useful feature. The next
example shows the application of global variables as a means of
communication between two parallel processes.

Example Using global variables in a par statement

int i, ProclBusy = TRUE;

par

{{
for (i=O; i<Number; i++) {

Dosomethingwith(i);

PrintResult(i);

}

ProclBusy = FALSE;

}{

/* process(l) */

/* process(2) */

while (proclBusy) {

sleep (2);

printf("Process 1 is in loop nr %d\r",i)i

}

}}

In this par statement, a boolean is declared to indicate that process (1)
is busy. This boolean is used in process (2), which will run until process
(1) has terminated. It uses the other global variable to give a report on
the proceedings of process (1) every 2 seconds.

4 -13

The par statement Par. C System

...
for (i=O; i<3; i+ +) {

{
fun1 (i);
fun2(i);

}

i=O

{
fun1 (i);
fun2(i);

}

i=l

{
fun1(i);
fun2(i);

}

i=2

4 -14

Execution of a for statement

!!!J?lic8ted p_ar_s_t_8_te_m_e_n_t _
The replicated par statement looks like an iterative statement, but
operates in a different way. It is important to understand the differences,
because errors arising from misuse ofa par statement are oftenvery hard
to find.

Difference with the for statement
The main difference with an iterative statement is the way the replicator
is used. In the replicated par statement, the same code is used by a
number of processes which are started to run concurrently, whereas in
an iterative statement the same code is executed for a number of times
in a sequential order. This difference is illustrated in the two figures.

In the for statement execution of the code part is repeated a number of
times, depending on the iteration expressions. There is no change of
context, only a change of scope for the single executing process, going
through the iteration loops one at a time. Any changes to the iteration
variables can be made and will only affect the control flow of this single
process.

Parallel C The par statement

...
par (i=O; i<3; i+ +) {

i=O

{
fun1 (i);
fun2(i);

}

{
fun1 (i);
fun2(i);

}

{
fun1 (i);
fun2(i);

}

Execution of a replicated par

In the case of a replicated par statement, the replicator variable is used
to start a number of concurrent child processes. These processes are
then executed in a time-sharing system, implicating regular shiftings of
contexts. The scope rules state that all global variables must be
accessible by all child processes, including the replicator variables. But
these variables should have different values for each different child
process. For this reason, the replicator variables are copied to each of
the child process's contexts, initialised to different values according to
the expressions in the replicator of the par statement.

Example Replicated par statement

par (i=Oi i<Numberi i++) {

x[i] i * ii
y[i] = sqrt(i)i

}

The par statement listed above will be translated to the following
scheme (using pseudo-code to illustrate the behaviour of the par).

4 - 15

The par statement

Example Pseudo-code executed in replicated par statement

for (i=O; i<Number; i++) {

int i', i";

i' = i;

Par. C System

start { x[i'] = i' * i' } as a concurrent process;

i" = i;
start { y[i"] = sqrt(i") } as a concurrent process;

}

wait for all processes to end;

Replicator versus function calls
To keep track of what happens to replicator variables inside the par
statement, a comparison with function calls may be illustrative. In that
case, parameters are passed by value, by assignment to the variables
which are declared in the funciton definition (and are therefore local to
that function). Passing back results can be done in a return value, or by
assigning directly to global variables. The values of the locally used
parameter variables are lost after returning from the function call.

In the case of a replicated par statement, the "function calls" would be
calls to the pieces of code which have been defined as separate tasks
inside the par body. But here, no parameters are passed explicitly, and
also, the declaration of local variables to hold the "parameter" values is
done automatically. Each replicated child process gets local copies of
the replicator variables, referred by the same names.

Writing to the replicator variables inside one of the child processes will
not lead to an update of the variable by the same name which is known
to the parent process. Passing results to the parent process can be done
by writing something to global variables. On this point, one should take
notice of the remarks made in section "Pitfalls and warnings" below.

Structures and array elements
One last remark must be made on the restrictions of replicator variables
that are allowed with the par statement: structure and array elements
cannot be used there. The reason is, that allowing them in a replicator
of the par statement would cause a conflict of scopes which cannot be
solved without interfering with what the average C programmer will
expect his code to do.

Execution of a par statement implies multiple processes to be started,
which adhere to the same scope rules as elsewhere in C: each of the child
processes has access to its own local variables, and to all the variables
which are accessible to the parent process. In the case of replicator

4 -16

Parallel C The par statement

variables, only the local copies are accessible, since they have received
the same names as the global originals.

Allowing structure or array elements as replicator variables would cause
a conflict, since part of the structure or array should then be copied to
local variables (in order to be able to use their different values), and at
the same time the rest of the structure or array must remain accessible
at the global level. An example is given below:

Example Replicated par using an array element

par (a[O] = 0; a[O] < 20; a[O]++) {

a[a[O]] = ResultofThis(a[O]);

}

The first element in the array is used as an index in the array. The par
statementwas intended to initialise the other elements. Confusion arises
from the use of the same names for the global structure or array and its
locally copied element. The solution of copying the complete structure
or array to the local level would imply that values cannot be written back
to the global structure or array anymore.

It is easy to program around this problem, by using a simple type variable
to copy the value of the structure or array element to, before entering
the replicated par statement. The example shown above would then look
like this:

Example Correct version replicated par using an array element

int j;

par (j = 1; j < 20; j++) {

a[j] = ResultofThis(j);

}

a[O] = j;

The last line of code is added to obtain the same situation as in the
example above, where the upper bounding value of the replicator is also
1eft in a [0] •

4 - 17

The par statement Par.C System

Pitfalls and warnins_s _

Using globals in nested replicated par statements
The use of nested replicated par statements can lead to problems when
using global variables as replicator variables. These problems are
directly related to the local copying of the replicator variable, and will
be clarified using the following simple example:

Example Nested replicated par statements: the wrong way

main()
{

int i,j;
par (i=O; i<NUMBER; i++) {

par (j=Oi j<NUMBERi j++) {

printf("%d %d\n",i,j);
}

}

}

In this example the behaviour of the program is not defined, because it
depends on the timing of the concurrent processes, which may vary from
one run to the other. The outer par will start NUMBER child processes, but
since each of these processes accesses the same global variable j, the
replication of processes on the inner level will be corrupted. Here the
rule of only allowing one process to write to the same shared variable is
violated and may cause runtime errors.

This can be overcome in different ways, which will be shown briefly
below. The first way is to have variable j copied to the local space of the
processes started in par statement of level 1, by listing it in the replicator
of that par statement as one of the replicator variables.

4 -18

Parallel C

Example Nested replicated par statements: one way

main()

{

int i,j=O;

par (j,i=O; i<NUMBER; i++) {

par (; j<NUMBER; j++) {

printf("%d %d\n",i,j);

}

}

}

The par statement

In this example, NUMBER * NUMBER processes are started. Of all variables
named in the replicator, local copies are made. In the replicator of the
par statement of level 2 copies of j, local to the concurrent processes
containing this inner par statement, are used as replicator variables.
Since the local copies of i (having the same scope as the local copies of
j) are not used in the replicator, these can be used in the way shown.

A more readable and straightforward way ofusing nested replicated par
statements is shown in the following example:

Example Nested replicated par statements: another way

main()

{

int i;

par (i=O; i<NUMBER; i++)

{{
/* par of level 1 */

/* uses copies of i */

int j;
par (j=O; j<NUMBER; j++) { /* par of level 2 */

printf("%d %d\n",i,j);/* uses copies of j */

}

}}
}

Each of the processes started in the par statement of level 1 uses a local
j, which is copied to local values inside each of the processes started in
the par statement of level 2.

4 - 19

The par statement Par. C System

Multiple statements inside a reelicated par statement

Example ~. Replicated par with multiple statements

par (p = q; P 1= NULL; p= p->next)
{

Dosomethingwith(p);
printResults(p->results);

}

It is important to note that all statements defined inside the par body
are started as separate processes a number of times. In the example
above the possibility exists that a print statement is issued for results that
have not yet been calculated. There is no mechanism synchronizing the
two functions, which are both executed a number of times concurrently.
Ifonly one replicated process is needed, calling first Dosomethingwith ()
and then PrintResults (), brackets should be put around both
statements to turn them into one compound statement, which is then
replicated as a whole. This is shown below.

Example Replicated par with one compound statement

par (p = q; P 1= NULL; P = p->next)
{{

Dosomethingwith(p);
printResults(p->results)j

}}

The double brackets used in this replicated par statement also provide
.better readable code when used in a non-replicated par statement. The
use of double bracket pairs cause single-statement processes to remain
on the same level of indentation as the compound statements listed.

return and continue statements

As is noted in the section on the use of the par construct, the return and
continue statements cannot be included in the code inside a parallel
process. The reason for these exceptions is that execution of these
statements influences the parallel control flow of the program in a way
which cannot be handled properly.

In a sequential program, there is only one process executing all of the
statements in some order. Using a return statement inside a subroutine
causes this same single process to skip the remaining code in that

4 - 20

Parallel C The par statement

subroutine and resume execution at the level where the subroutine was
called. This can also be done inside a for loop without causing problems,
since the for statement implements an iteration: returning from one of
the iterations implies that the remaining iterations are skipped.

In a parallel program the situation is a little different. Using the return
statement inside one of the child processes started in a par construct
would imply that this child process should skip the remaining code and
resume execution at the level where the subroutine, which contained
the par construct, was called.

But this would be an unauthorised change of context for the executing
child process: the definition of the par construct implies that child
processes may only exist during execution of the par construct. The
major effect of having a child process jump out of its context would be
the violation of the synchronisation implied in the definition of the par
construct.

Using a return statement inside a par construct causes an error during
compilation.

The use of the continue statement inside a par construct is prohibited
unless this is done inside an iteration which is part of the code of the
child process. A continue statement cannot be used to influence the
control flow of the parent process (Le. to skip to the "next" child process),
since this would give the child process access to the context of the parent
process. Again, since the child process is defined to only exist within the
par construct, this access across its own boundaries of existence is not
acceptable.

This point can also be seen clearly when realising that the replicated par
construct is no iteration in the proper sense: although it is true that the
implementation of the replicated par construct involves an iteration to
start a number of concurrent processes, this iteration is implicit and not
accessible by any part ofthe user program. The effect is the simultaneous
execution of multiple processes, and therefore the continue statement
(which is only defined inside the context of an iteration), cannot have a
sensible meaning here.

Using a continue statement inside a par construct causes an error during
compilation.

4 - 21

The channel datatype

The channel datatype

Par. C System

Short descri~_tio_n _
The implementation of channel as a datatype enables the quick use of
communication primitives. Communication between processes is
performed in a simple and straightforward way with the channel
functioning as a medium between two communicating processes. The
data to be transferred over the channel can be of any type. Sending a
message to ·another process is defined as using a channel as left hand
side of an assignment operator. Receiving a message is defined as using
a channel as right hand value of an assignment operator, or as any rvalue.

Examples of use

Example. channel
channel
channel

channelName
Message
outputchannel

ChannelNamei
ChannelArray[SIZE];
*ChannelPointeri

= Message;
= ChannelName;
= (type) Inputchannel;

(1)

(2)

(3)

(4)

(5)

(6)

See also The chapter 'Quick reference' for a formal syntax.

Declarations of a channel, an array ofchannels and a channelpointer are
shown in (1) through (3). Communication primitives are defined as
assignments, like the statements (4) through (6) shown above, with the
channel name on one side and the variable to be sent on the other. The
variable to be transmitted and received can be of any type. When
redirecting input to output, like in (6), a typecast is needed to indicate
the size of the message. Using a channel variable or expression as an
lvalue causes a send instruction to be executed; using it as an rvalue
causes a receive.

Variable length messages can be transmitted using the functions _in ()
and _out (), which are described in the library reference of this manual.
Communication via links should be performed by SendLink (),
RecvLink (), SendLinkOrFail () and RecvLinkorFail (), also described
in the library reference.

4 - 22

Parallel C The channel datatype

Chan = Var1;

Var2 = Chan;

Chan = Struct2;

Use

Inter-process communication

A channel is used for communication between, and synchronisation of
exactly two processes by means of data transfer. A process cannot
transmit data to itself. To enable inter-process communication, both
processes must use the same channel, and must therefore both know the
address of the channel to use. The channel should therefore be global
to both communicating processes.

Example Communication using a global channel

channel Channel;

main ()

{

int ReceiveValue;

par {
Channel = 12345678;

ReceiveValue = channel;

}

}

In this example two concurrent processes are started which
communicate via the channel declared on level 0 (global to all
functions). The same kind of interprocess communication can be set up
using channelpointers, as is shown in the next example.

4 - 23

The channel datatype

Example Communication using channelpointers

main() {
int Receivevalue;
channel Channel;
par {

Send(&Channel, 12345678);
Receivevalue = Receive(&Channel);

}

}

void Send(To, Value) channel *To; ~nt value;
{ *To = value; }

int Receive(From) channel *From;
{ return *From; }

Par. C System

~e of channels and passing as parameters

The scope rules for channel variables are the same as for other variables
(see the C language definition [Kernighan 1978]). However, channels
cannot be passed as parameters in function calls. An attempt to pass a
channel as a parameter causes a receive instruction to be executed, and
the result of the expected datatransfer to be passed as value to the
function called. The number of bytes which will be read is determined
by the expected variable type.

Example A channel used in a function-call

main()
{

channel C;
par {

C = 1000;

printf("Received %d from channel at address %p\n" ,
c, &C);

}

}

Here, the value received (1000) is printed, together with the value of the
pointer to the channel.

4- 24

Parallel C The channel datatype

~eta"ed descrip~ti~o~n~~~~~~~~~~~~~

In all cases with the exception of channel-to-channel assignments, it is
clear from the source code what the type of the message to be
transmitted and received is. Therefore it is not necessary to indicate the
type of the message explicitly. When a typecast is added which is
different from the type of the identifier named in the assignment, the
type of the cast determines the number of bytes transferred:

Example Typecast and conversion in communication

char ii

channel Ci

i = Ci (1)

i = (int) Ci (2)

In statement (1), one byte is received and assigned to i. In statement
(2), four bytes are received and converted to one byte before assigning
the resulting value to i. In all assignments involving channels the rule
is, like· in all C assignments, that the righthand side is evaluated and the
result is then assigned to the variable identified on the lefthand side.

Communication and synchronisation

Channel communication is always point-to-point, which implies that the
communication can only take place when both processes are ready for
it. The process that reaches the transfer-point first is descheduled until
the other process is ready for the transfer as well. At that moment, the
communication will be executed and both processes are able to proceed.
In this way, communication between two processes serves as a point of
synchronisation. The diagram below illustrates this aspect of
communication.In this diagram the process on the left has to wait for
the other process to arrive at the synchronisation point.

To obtain an asynchronous communication between two processes, a
buffer process should be added, which takes over the waiting time and
allows the first process to arrive at a communication to proceed
immediately, without having to wait for the destination process to arrive
at the corresponding communication point. The buffer process uses a
temporary variable to store the data received from the first process, and
can be coded very easily using a channel-to-channel assignment.

4 - 25

The channel datatype

transmitting
process

receiving
process

Par.C System

Synchonisation of channels at communication

Example Buffer process in parallel C

for (;;)
Channelout = Channelln;

However, from this assignment the compiler cannot know which type to
store and forward. Therefore, the programmer must add a typecast to
indicate the type to be expected, as in the earlier example. When the
type is not specified, an integer is assumed.

Chan1 = Var; Chan2 = (int) Chan1;

' , ,

"""~"
"

.................... ,

"-. i = Chan2;

Buffer process using typecast

Using linkconnections between transputers

The links of the transputer behave like channels, and can be used by
initialising a channelpointer to the address of a link. However, it is

4 - 26

Parallel C The channel datatype

preferable to use the functions sendLink () or ReevLink () described in
the library reference of this manual. This will provide upward
compatibility with future versions of the Par.C System (possibly
including automatic multiplexing with the message passing system which
is currently under development).

Pitfalls and warnins_s _

transmitting
process 1

1 receivingI channel •
I process

Itransmitting
process 2

Multiplexing on a channel

IIMultiplexing" communications on one channel

Channels are defined as point-to-point connections between processes.
An attempt to use the same channel for simultaneous communication
between more than two processes will lead to processes hanging up and
should therefore be avoided. The situation depicted in the above figure
can easily be implemented by shielding a channel with a semaphore (See
the runtimefunctions P () and v ()). An alternative implementation of
the above would be using two different channels, one for each of the
sending processes, and a select statement in the receiving process.

Using IImallocedll channels

When channels are declared in memory which is allocated using
malloe () or smalloe () these channels must be reset before using them
for the first time. This is done by a call to Resetchannel () with the
channel-address as parameter. To reset an array of channels, the
function memfill () can be used (see library reference). The value to
store on the channel-address in order to reset the channel is Ox8ooooooo,
defined as MostNeg in stddef . h. Another possibility to reset a channel
is using the following expression:

*(int *) &Channel = MostNegi

4 - 27

The channel datatype

4 - 28

Par. C System

Non-equal size and direction of communication

Data transfer over channels will only be successful when the
corresponding channel assignments are complementary (the same
direction of data transfer) and the size of the message corresponds. If
differences in either of these occur, the results are as follows (depending
on whether internal channels or external links are used):

• With internal channels, the second process to arrive at the
communication point determines the size and the direction of the
data transfer. An error arising from non-equal message directions or
sizes in corresponding transmission and receptionstatements will not
be detected by the communicating processes, nor by the transputer
hardware. Both processes will simply resume execution after the
erroneous data transfer has taken place, although at least one of them
has incorrect data to work with. Therefore, these errors may be very
hard to figure out.

• Making errors in size or direction when communicating over links,
will cause one or possibly both of the processes to crash. With a
difference in message size, one of the processes will finish its
communication instruction and resume execution, while the other
process keeps waiting for the last bytes to be sent from, or accepted
at, the other side. When the link is accessed for output or input on
both sides, the processes will never gain contact (because of the
division of each link in an outward and an inward bound channel).

The programmer should therefore take great care in checking on the
symmetry of corresponding communication statements. One of the
methods to help in having corresponding message sizes is using a
typedefined message structure, which can then be used to define local
structures to send and receive over channels.

Parallel C

The select statement

The select statement

Short descrip_ti_o" _
The select statement is somewhat similar to the switch statement. A
switch associates pieces of code with specific values of an expression,
whereas the select associates pieces of code with specific events. A
'guard' is set up for each of the events defined inside the body of the
select statement. The first event to occur triggers execution of the
associated code.

Examples of use

Example Simple select

select {

alt guard <channelpointer>:

alt guard <channelpointer>:

alt guard <channelpointer>:

alt cond <expression>:

}

Select with timeout

select within <expression> {

alt guard <channelpointer>:

alt guard <channelpointer>:

alt guard <channelpointer>:

alt timeout:

}

Other alternative clauses

<code>

<code>

<code>

<code>

<code>

<code>

<code>

<code>

alt <replicator> guard <channelpointer>

alt cond <expression> guard <channelpointer>

alt cond <expression> timeout

alt <replicator> cond <expression> guard <channelpointer>

See also The chapter 'Quick reference' for a formal syntax.

4 - 29

The select statement Par. C System

A select statement consists of the keyword select, followed by the select
body enclosed in braces. The select body consists of a number of
'alternative clauses', indicated by the keyword alt. Each alternative
indicates an eventwhich mayoccur and the code that shouldbe executed
on that occasion. The first of the specified events to occur will 'trigger'
the selecting process, which will then execute the code specified for this
particular event. The select body should contain at least one alternative
clause.

The select is able to detect the following events:

• another process is ready to output over a channel,

• a specified time limit is exceeded,

• the event pin of the transputer is asserted.

A 'guard' is raised for each event. The keyword guard must be followed
by a pointer to a channel.

Timeout
A maximumwaiting time for the selecting process canbe indicated using
the within keyword in the header of the select, followed by an integer
expression. The value of this expression is the number of clockticks
withinwhich one of the events must occur. Otherwise, the timeout event
will be triggered.

Replicator
Alternatives may include a replicator, causing a number of events to be
waited for, without having to write out the same alternative clause for
each of them. The replicator variables can also be used in the code
specified in the replicated alternative. The replicator is not allowed in a
timeout alternative.

.Conditional part

Also, alternatives may include a conditional part, consisting of the
keyword cond, followed by a boolean expression. This expression is
evaluated and the result determines whether or not the specified event
will be included in the select. The conditional part can be used in
combination with a replicator, and may then include the replicator
variable(s) in the boolean expression.

Note The condition may be FALSE when setting up the guards in the select,
but become TRUE while the selecting process is waiting. This will not
cause an extra guard to be included, and may even cause erroneous
behaviour after one of the other events has triggered the select. See the

4 - 30

Parallel C

Use

The select statement

section on "Side-effects" in the paragraph "Pitfalls and Warnings" of this
chapter.

Code

The code specified in an alternative clause is placed behind the colon,
and may consist of any series of statements. The code may also consist
of an empty statement list, but it should be noted that omitting the break
instruction at the end of a piece of code causes the selecting process to
'fall through' (like in a switch statement), into the code belonging to the
next alternative.

In a parallel program, with a number of concurrent processes running
simultaneously, the order in which processes will reach certain points of
synchronisation with other processes cannot be determined before the
program is actually run. And even then, from one run to the other,
changed values of variables may influence the timing of processes
dramatically.

In this situation, the select statement provides an instrument to
influence the parallel control flow of the program in a more dynamic
way than would be possible using only process-to-process channels, or
signal handling routines. Since the selecting process waits for a number
of events at the same time, the varying order in which events occur can
be handled by the program.

Multiplexing channels

The most obvious situation in which a select statement can be used is a
multiplexer of a number of communication channels. This situation is
depicted in the following figure. Using channel communications, a
simple 'client-server' model can be implemented. The differences
between using and not using the select statement for this are explained
in the examples below.

Consider the following situation: process A and process B both need the
service of process s. Requests are made by sending some information
over channels to s. A and B use the channels chan A and chan B- -
respectively. A naive implementation of s would look like this:

4 - 31

The select statement

Example . . . • Service without select

while (1 Ready) {
ProcesslnfoFrom (&chan_A);
ProcesslnfoFrom (&chan_B);

}

Par. C System

This code is purely sequential. Process A will be served first, and then
Process B. If B happens to be the first with a request for s, it will have to
wait until a request by A has been received and processed. Moreover, if
A does not do any requests, B will never be served.

A more robust implementation, using the select statement, is listed
below.

Example . • Service with select

while (! Ready) {
select {

alt guard &chan A: ProcesslnfoFrom (&chan_A); break;
alt guard &chan B: ProcesslnfoFrom (&chan_B); break;

}

}

The select statement selects code indicated in the al t (alternative)
clause which matches the triggering event. In the above example, the
event is a process becoming ready to send data over an indicated
channel. The keyword guard precedes a pointer to the channel which
has to be guarded. Process s now looks at both channels at the same time
and serves the first process to send a request.

§jJecifying a timeout value

The select includes the possibility ofspecifying a maximum waiting time,
e.g. in order to prevent deadlock situations. This can be done using the
within keyword in the header of the select, followed by an integer
expression. The resulting value of this expression is taken as the
maximum waiting time, measured in clockticks from the moment the
select is entered.

In this timed select statement, a 'timeout alternative' is allowed,
specifying code which should be executed when the 'timeout event'
occurs. The use of this alternative is shown in the example below.

4 - 32

Parallel C

I

Ct,an1 = ~
100;...........
Chan2 =
Var;

The select statement

select within < int expr >
{

alt guard & Chan 1:
Num = Chan1;

break;

alt guard & Chan2:
Num = Chan2;

break;

alt timeout:
ErrorMessage0;
break;

alt cond < bool expr> :
SkipWaitO;

Combining multiple input channels

Example Timed select

select within MaxwaitTime {
alt guard &Inputchannel: Var = Inputchannel; break;
alt timeout: InputFailed = TRUE;

}

The timeout alternative cannot be used without the within <int
expression> part in the header of the select statement. Also, it is illegal
to use more than one timeout alternative, or a replicator in one single
timeout alternative.

It is possible to switch the timeout alternative on and off during runtime
using a conditional expression, as is shown below:

alt cond TimeoutEnabled timeout: break;

This will cause a timeout event only if TimeoutEnabled is TRUE.

4 - 33

The select statement Par.C System

!!!J?licated alternatives

Each of the alternatives in the select statement, with the exception of
the timeout alternative, may include a replicator of the form shown in
line (3) in the syntax section of this chapter. This will cause a number of
the same alternatives to be set up. The channelpointers used are
calculated using the replicator variable(s).

Example ..•... II. Replicated alternatives

channel c[4];
channel multiplexed;
int dummy;
select {

alt (i=O; i<4; i++) guard &c[i]:
dummy=c[i];
multiplexed=dummy;
break;

This code shows a simple multiplexer process. It guards the four
channels in the array c [] , using the replicator following the al t keyword.
The first of these channels which has data available will trigger the select.
The selected code will be executed with the value of the replicator
variable i indicating the triggering channel c [i]. The process reads an
integer from this channel, and forwards it over the channel multiplexed.
In this way, four outputs are connected to one input. Note that the use
of the replicator keeps the code concise and readable, since we do not
have to duplicate the alternative clause for every channel to guard.

For details on the side-effects in replicators that should be avoided, see
"Pitfalls and warnings".

Conditional alternatives

It is often desirable to avoid an event to be waited for, i.e. if a channel
is not always used to communicate with the selecting process. In some
cases, the select statement may be executed a number of times with
different lists of events for each time. This can be accomplished by
adding a conditional part to the alternative clause(s).

In the following example this feature is used to guard a number of
channels contained in structures which are kept in a linked list. The end
of the list is indicated with a NULL pointer. The nodes in this list have a
field indicating the 'owner' of the channel. Only those channels which
are owned by SERVER should be guarded.

4 - 34

Parallel C The select statement

Example Use of the conditional specifier

typedef enum {SERVER, IO_DRIVER, MESSAGE_PASSER} RESOURCE;

typedef struct grd {

channel *chani

RESOURCE owner;

struct grd *nexti

} *LISTi

/* define the list

/* pointer to channel

/* owner of the channel

/* linked list pointer

*/

*/

*/

*/

extern LIST Syschans;

LIST Si

int ReqCode;

/* list of system channels*/

/* scanning pointer */

/* Action to be done */

list*/

*/

*/

*/

*/

*/

select {

alt (s=syschansi s!=NULLi s=s->next) /* scan the

cond s->owner==SERVER /* if it's mine:

guard s->chan: /* guard it

/* when selected:

Reqcode = *s->chani /* determine what to do

serveRequest(Reqcode, s->chan); /* do it

break;

}

Note the use of the replicator. It scans a pointer through the linked list
of system channels. The selected code will be entered with the variable
s pointing to the right node of the list. The condition that only channels
owned by SERVER should be guarded is expressed in the condition
following the replicator:

cond s->owner==SERVER

The condition only serves to alter the set up of the select. Once the
process is set waiting, only events can trigger it. Change of a condition
is NOT an event, so the select can not be used to suspend a process until
a certain condition becomes TRUE. Moreover, in the current
implementation of the Par.C System, changing conditions while a
selecting process is waiting will cause undefined behaviour, and should
therefore be avoided. Details on this are given in the paragraph "Pitfalls
and warnings".

4 - 35

The select statement Par.C System

'Default' alternative
The condition in an alternative can also be used without the keyword
guard. In this way the select can be kept from waiting for an event, in
case none of them was active before the select was entered. This can be
seen as the counterpart of the 'default' label in the switch statement.
Note however, that this 'default' alternative can be switched on and off
during runtime.

Example. Using a default alternative

int Haslnput(C)

channel *Ci

{

select {

alt guard C: /* Triggered if input available */

return TRUE;

alt cond TRUE: /* Always triggered, except when */

return FALSE; /* event above occurred */

}

}

In the above example, the selecting process will only return TRUE when
input is available on the specified channel before the select is entered.
Otherwise the default alternative is triggered.

Another use of the 'default' alternative is shown in the detailed
description section, in the paragraph on priorities.

~etalled descrip~tio~n~~~~~~~~~~~~~

There are two levels of code in a select statement. The first level, the
selecting code, is used to set up the select, and again to determine which
of the events has occurred just after the select has been triggered. This
level includes all code in replicator, conditional and guard expressions.
In the analogy with the switch statement, this code represents the
expression in the header of the switch, together with the case and default
label indications.

The second level, the selected code, is only executed after the selection
has been made. At that time, all first-level code has been executed, and
the only result of this is a value for the replicator variables. This selected
code is everything which follows the colon up to the next alternative or
the closing bracket of the select statement.

4 - 36

Parallel C The select statement

It is important to separate these two levels when writing code, to keep
a clear view on what is supposed to happen. This separation is not
entirely obvious, because a larger part of the code is placed in the
different alternative clauses than in the switch (where the cases
represent label values).

~Iicit communication

The guards used in the alternatives trigger the select without actually
performing an input. The statements defined in the selected alternative
determine what is done with the active channel. Receiving a message
from the active channel should be done explicitly.

It follows that one can also defer the handling of input to another
process. If we use the function Has Input () from the previous example
we could for example write:

Example Explicit channel communication after select

channel inputchan;

if (HaSInput(&inputchan»
processInput(&inputchan);

The function ProceSSlnput () might be used to read input from the
channel or to signal another process to do it.

Links and events

In principle, links and channels are of the same kind. The only difference
on the transputer is in their placement and the fact that only a limited
number of links are available per transputer. Channels are not placed
explicitly: they will be allocated somewhere in memory whenever they
are declared. Links are situated at the bottom of the transputer's internal
memory.

In the Par.C System, LINKIN () and LINKOUT () macro's are provided to
place channels on link addresses. The LINKIN () macro can be used
directly in the select statement, to guard on one or more input links. The
macro LinksPerTransputer indicates the number of links that can be
used. In the same way, the EVENT macro can be used to indicate the
specific memory address, which behaves like a channel and corresponds
to the transputer's event pin. Note that this 'event channel' can only be
used in the select statement to look if the event pin is asserted.

4 - 37

The select statement Par.C System

Example Using the event pin

iinclude <transp.h>
select {

alt guard LINKIN(O):
ReadFromLink(O);
break;

alt guard EVENT:

Handlelnterrupt();
break;

}

/* check for input on link 0 *j

j* check the event pin */

Note that these macro's operate on the lowest level of the transputer
hardware. They might interfere with other runtime functions. The file
I/O system will use all links in the direction of the host. See also
SendLink (l etc. Reading from a link occupied by the file I/O system
almost certainly corrupts the runtime system. EVENT may also be handled
by one of the 'signal' facilities. See signal () for a detailed description.

Priorities

The definition of the select implies that one event (the first to occur)
triggers the selecting process into executing the code specified for that
event. In some cases, multiple events may become active at the same
time. This brings up the point ofdeciding which code should be executed
in such situations.

To indicate the importance of this point it should be noted that, on the
transputer, triggering the selecting process does not necessarily imply
its immediate reaction: the process will be descheduled, and eventually
become active to decide which actions must be taken next. In the
meantime, more events may have occurred, and there is no way the
selecting process can know which one was first.

When the selecting process resumes execution, the list of alternatives is
checked in the order in which they are listed in the source code. Thus,
if more than one event occurred, the code specified for the first one
listed will be executed.

This opens up possibilities for a special kind of use of the 'default'
alternative: if one wants to include or exclude a whole list of events at
once, it is not necessary to include the same condition in all of the
alternative clauses specifying these events. One can simply put a
'default' alternative before the group of alternative clauses. If the
condition evaluates to TRUE, this will cause this whole group to be
skipped, since the 'default' alternative has a higher priority than all
events listed below it.

4- 38

Parallel C The select statement

Example Using the 'default' alternative to skip a group of alternatives

select {
alt guard Channell: codel(); break;
alt guard Channel2: code2(); break;

alt cond Jump_outl: break;
alt guard channelA: COdeA(); break;
alt guard ChannelB: codeB(); break;

alt cond Jump_out2: break;
}

/*first group*/

/*second group*/

This select cannot be triggered by any of the alternatives in the second
group if Jump_outl is TRUE. The effect of this is to skip all events
following this 'default' alternative. As is shown, it is possible to include
multiple 'default' alternatives in the same select statement, even if all of
them are enabled by their conditions being TRUE. Note that in this
example one of the channels in the first group only triggers the select
when it is active before the select is entered, otherwise th~ Jump_out!
alternative is selected immediately.

Example: round-robin selecting mechanism
To show the possibilities of the select statement, this section contains
an example of a 'round-robin' selecting mechanism. The situation can
be pictured as follows:

A message passing process is connected through a number of channels
to processes which try to send data. The selecting process will
immediately re-enter the select, after a message has been passed on,
using the same list of channels.

On the average, each process will send the same number of messages
with the same random delay between two messages. If we would simply
list all of the channels in one specific order, the channels specified in the
first alternative clauses would be served more times than the ones listed
at the end.

To avoid this situation, the channels are placed in structures, which are
connected into a circular list. Two replicator variables are used: an
integer to keep track of the number of channels which are included in
the list of input events, and a pointer to scan the circular list of structures.
After a channel is served, this pointer is initialised to indicate the next
structure. In this way, priorities are equalised over all channels in the
list.

4 - 39

The select statement Par.C System

Example Code for a round-robin select.
The types from one of the previous examples are used.

int i,Reqcode;

LIST p,g;

while (!Ready) { /* loop until ready*/

select { /* guard the appropriate channels */

alt (i=O,p=q; i++<COUNT; p=p->next)

cond p->owner==SERVER guard p->chan

Reqcode = *p->chan;
serveRequest(Reqcode,p->chan);

q = p->next; /* start following select */

/* at the next node */

break;
}

}

Nested select statements

Since the code following an alternative may contain any statement,
including a select, the nesting of select statements is possible. The
example listed below serves to illustrate this:

Example. Nested select statements

select within 1000 {

alt guard Chanptrl:

select within 1000 {

alt guard Chanptr2:

printf("Both channels active \n");

break;
alt timeout:

printf("only channell active \nn);

} break;

4- 40

Parallel C The select statement

alt timeout:
select {

alt guard Chanptr2:
printf("Only channel 2 active\n")i
break;

alt cond TRUE:

printf("Both channels inactive\n");
}

}

It is important to see that the nested select in this example is only
reached after the select on level 1has been triggered by a process having
output for channell. This implies that channel 2 will only be guarded
after channell has become active within 1000 clockticks after the select
at level 1 is entered. A timeout occurring in select on the outer level
does not imply anything about the availability of input on channel 2.

Pitfalls and warnins_s _

Using channels a~anin~~u~t~~~~~~~~
The instruction set of the transputer only allows guarding input
channels. When a guarded channel becomes active because a process
tries to read from that channel, the effects are unpredictable. Therefore,
the programmer should take care that channels which are being guarded
in a select statement are only used by other processes to write to.

Of course, in the second Has Input () example, when the function
Process Input () is used to signal another process that it can read from
the channel, care should be taken to ensure that the other process is
ready with the input before the channel is used again in a select.

Side-effects
Execution of a select statement starts with a loop in which the guards
for all specified events are set up. Mter this first loop the process
executing the select statement is temporarily halted, until one of the
guards triggers the select. The process then again executes the same loop
which was performed in setting up the different guards, to check which
one has triggered the select.

When using side-effects in the expressions in the conditional part of the
alternative clauses defined within the select, the second loop executed
may not be entirely the same as the first one. This may cause errors to

4 - 41

The select statement Par. C System

occur, since a guard which has triggered the select may be evaluated as
being non-valid in the second run, and remain unnoticed in this way.

The programmer should refrain from using any side-effects in the first
level code. Onlywhen both passes of this code will yield the same results,
will the selecting process behave properly.

Using..!!J?licator variables

Another important fact to note is that only the replicator variables are
guaranteed to have the correct value when the selected code is entered.
If side effects take place on objects pointed to by replicator variables,
things might not come out as expected.

Example Incorrect use of replicator variables

int *P;
int x;
channel c[lO];

select {
alt (*p=O; *p<lO; (*P)++) guard &c[*p]

x=c [*P] ;
break;

}

In this example, p is the replicator variable. The compiler ensures that
the value of this variable is correct when the selected code is entered.
However, not the value of p, but the value pointed to by p is important
in selecting from which channel to read. This value is not preserved, and
so x will be read from the wrong channel. (To be precise, *p will have a
value of 10 at the end of the loop, and therefore x will be read from
c [10], which is not a valid channel at all).

4 - 42

Tutorial

Tutorial

5-1

Introduction

Introduction

Par. C System

This part of the manual explains how to use the Par.C System to write
parallel programs. First, an introduction into parallel processing is
given. The concept of dynamic parallel processing, and the support for
this provided by the Par.C System, is addressed then, followed by an
example of a dynamic parallel program.

Although this tutorial is not nearly as extended as we would like it to be,
we believe it will prove useful to users of the Par.C System to get
acquainted with some of the basic concepts used in the design of the
system.

5-2

Tutorial Introduction to parallel processing

Introduction to parallel processing
Parallel processing involves the division of work between a number of
concurrent processors. To many people, this may seem to be a burden:
programmers for the most part have been trained to write software in a
sequential way, since the target systems mostly contain only one single
cpu. Still, the human organism is a highly parallel "machine", and
working with parallel programming for some time shows that we are
indeed capable of dealing with parallel problems quite easily.

Parallelising the execution of a certain task implies that the inherent
possibilities for parallelism in the task have to be found and mapped
onto physically distinct processes or processors in an efficient way.
Therefore, the first step in writing a parallel program is to draw a logical
map of the problem, dividing it into a number of tasks which
communicate over interconnecting channels. For a typical problem, the
logical map may look like shown in the figure below.

Logical map of a parallel program

Mapping this logical structure onto a number of concurrent
interconnected processors implies that certain conditions must be met,
according to the possibilities the target hardware provides. In the case
of transputer systems, the hardware consists of general purpose
processors with local memory to store code and data, and
interconnecting links for datatransfer.

The fact that not only processing power but also memory is distributed
over the system, implies that tasks residing on different processors will
not have access to the same data areas directly. This implies that when
multiple tasks need access to the same data, either the tasks have to be
placed onto the same processor, or data has to be communicated
between tasks on different processors.

5-3

Introduction to parallel processing Par. C System

But there is more involved when mapping the logical map of a program
onto a·parallel system. The main·purpose of parallelising a program is
of course to obtain a higher performance. When using transputer
systems, the speedup can be almost linear with the number of
processors. However, not only the increase in total processing power of
the system counts: with more processors working on the same
parallelised job, communication between processes running on
different transputers will inevitably increase.

Although communication takes place in parallel with calculations being
executed bythe cPu, itwill always take some time before the data arrives
at the destination, especially when processes on remote transputers are
interconnected through a number of intermediate processors.
Therefore, the ratio of calculation time over communication time
determines the performance of a transputer system.

This opens two strategies to map the logical structure of the program
onto the physical structure of the available transputer system. The first
divides the tasks over the system in such a way that each of the processors
will have approximately the same workload, depicted by the different
sizes of (process) circles. Using the logical map of the previous figure,
this can be done as follows:

Equally divided workload per processor

In this case, the differences in time needed for data communication on
the same processor and between remote processors, as visualised by the
thickness of the arrows connecting the processes, has not been taken
into account. Especially in cases where inter-process communication is
dense, an increased performance may be obtained by placing these
"tightly coupled" processes on the same processor. In most applications,
a trade-off between equally divided workload and minimised
inter-processor communication will prove to offer the best results.

5-4

Tutorial Introduction to parallel processing

Mininised inter-processor communication

Of course, hardware constraints may influence the possibilities for
efficient mapping in more or less severe ways. For instance, a processor
on a graphics board will have to handle the graphics commands. This
may imply that no other task will fit into its memory, and minimising
inter-processor communication means that the tasks to support the user
interface have to be placed on the transputers neighbouring this graphics
processor.

5-5

Dynamic parallel processing

Dynamic parallel processing

Par.C System

One of the most eye-catching characteristics of transputer systems is
their flexibility: virtually any number of transputers can be connected
into systems of varying configurations. This enables the production of
computer systems which are exactly tailored to suit the needs of certain
applications in terms of processing power. Also, expanding processing
power simply means adding more transputers to the system. A nearly
linear speedup can be obtained, provided the program is designed with
this option in mind.

With this flexibility as a main characteristic of transputer systems,
another view on parallel programming emerges, which distinguishes
between static and dynamic approaches. These are defined in terms of
the target systems for which the parallel program is designed: if' a
program is destined to run on one specific transputer system, it can be
characterised as a completely static parallel program; if the same
program should run on a wide variety of target systems (varying in
topology and size), the program must be parallelised in a dynamic way.

In fact, there is no clear distinction between two classes of parallel
programs using the static/dynamic characterisation: programs can be
placed somewhere on a scale between the two extremes. The position
on this scale is determined by the presuppositions which are made about
the target systems for the program. Each presupposition narrows down
the number of actual systems on which the program can be run, i.e.
makes the program less dynamic. On the other hand, presuppositions
enable the programmer to simplify the program structure and to
increase performance, for instance by using a faster and simpler scheme
for message passing in a grid configuration or a hypercube.

To indicate how presuppositions on the target system hardware narrow
down the range of systems on which the program can be executed, an
overview can be drawn showing the division of transputer systems over
transputer types and architectures·.

The rings are used to divide transputer systems according to the
constituing processor types. Joining two or more rings produces a class
which contains "pure" systems of each of the types plus any mixed system
which can be built by including transputers of all indicated types. The
influence of the types of transputers contained in the target systems for
a program can be shown quite clearly: when producing a program
destined to run on a network of T8xx's only, the use of special floating
point code and math libraries increases performance dramatically. In
the case of a mixed T4xxff8xx network, one can choose between full
transparency of the code or division of tasks between the different types
according to whether floating point arithmetic is used or not.

5-6

Tutorial Dynamic parallel processing

Butterflies

Single proc

Grids

Balanced trees

Overview of different transputer system configurations

The above figure also shows a subdivision of all transputer systems into
commonly used architectures: butterflies, hypercubes, single processor
systems, grids, balanced trees, pipelines, and others.

The influence of different architectures can be exemplified in the
inevitable message-passer facility inside the program: some
architectures allow much simpler and therefore possibly faster
message-passing schemes than others. In the case of a single-processor
system, messages will be passed directly between processes on the same
processor, using a memory word as a "soft channel". In the case of
non-balanced trees without connecting links between different
branches, messages to a processor residing in another branch will have
to travel up to the bifurcation from where they can descend towards their
destination. Of course, the aptness of a certain architecture for a certain
parallel program is highly determined by the structure of the problem
itself.

The Par.C boots~_st_e_m _
The Par.C bootsystem is able to load the same program on transputer
networks of different sizes and configurations. This is done on the basis
of a network analyser, which searches the available network every time
a program is loaded (note that this happens only when linking b .lib).

5-7

Dynamic parallel processing Par. C System

This analyser acts as a loader for the netwotk, and leaves its information
behind for the program to use. Since an important part of this
information depends on the search strategy and the resulting boot-tree,
this strategy is briefly explained here.

The search executed by the network analyser is completely parallelised,
resulting in a boot-tree which grows broader as fast as the
interconnections between the transputers allow. In this way, the shortest
path from the first transputer to each of the other available processors
is found. Note that this path is the shortest in time rather than in number
of links or 'hops' needed to reach each of the nodes: it may take more
time to pass three transputers running on 15 MHz with 10 MBit/s links
than to pass·five 25 MHz nodes communic~ting at 20 MBit/s. In some
cases, the timing of two or more different bootpaths differ to such little
extent, that different boot-trees may emerge from rebooting the same
network.

Host

Host Host Host Host

Possible boot-trees in a four-node network

When a program needs to perform different tasks on different
processors, without losing the adaptability of the software to the
available hardware during loadtime, the identity numbers given to each
of the nodes can be used. The scheme by which these numbers are given
is explained below.

The numbering scheme used by the bootsystem uses the information
which is already available in the boot-tree representation in each of the
nodes. The first transputer, after receiving the number of transputers
connected to each of its links, sets its own identity to 1, and hands out
the number of its 'child nodes' as shown in the pseudo-code below:

5-8

Tutorial Dynamic parallel processing

Pseudo-code read parentldentity from the link uptree
set ownldentity to (Parentldentity + 1)
set Childldentity to ownldentity
for each link

if this link is connected and going downtree
send Childldentity down this link
add the number of transputers connected via this
link'to Childldentity

The
SYSTEM
structure

Numbering of transputers

When loading a Par.C-produced program into a transputer network, the
complete code of the programis copied to, and started on, all processors.
Since the code is not spread over different nodes no predefined
configuration is needed. Instead of this, the execution of the code is
influenced during runtime, based on knowledge of the actual system the
program is running on. This information is left behind by the booter on
each node, and becomes available to the user program in a SYSTEM
structure after calling the function Getsyslnfo (). The contents of this
SYSTEM structure are given in its declaration in system.h as shown
below:

5-9

Dynamic parallel processing Par. C System

Definition The SYSTEM structure

/* Number [0-3] of the bootlinkl
/* send uptree */
/* Input from uptree */
/* lowest available address */
/* highest available address+l*/
/* in 250kHz units */
/* expressed in proc.cycles */
/* 2, 4 or 8 */

/* Identity nr within network */
/* Number of Tis in the network */
/* number of Tis in our branch */

/* Active Tis on each link */
/* Neighbours Tn */
/* linkstatus */
/* Links of neighbours */
/* Types of neighbours */

nT_Down;
NBooted[4];
Network[4];
Linkstatus[4];
ExtLink[4];
ExtType[4];

typedef struct system {
_word HostLinkno;
channel *HostLinkout;
channel *HostLinkIn;
_Byte *MemStart;
_Byte *MemTop;

Word processorspeed;
word XMemspeed;
word ttype;
word Tn;
Word nT;
word
word
word

_Byte
_Byte
_Byte

} SYSTEM;

An accompanying pointer type is also defined:

typedef SYSTEM *system;

The meaning of the fields is as follows:

HostLinkno

Number of the link by which this transputer was booted. Normally
indicates the fastest path to the host.

HostLinkOut

Channelpointer connected to the HostLink. Through this channel data
can be output to the HostLink.

HostLinkln

Channelpointer connected to the HostLink. Through this channel data
can be input from the HostLink.

MemStart, MemTop

Boundaries of the available contiguous memory. Note that addresses of
the lnmos transputers are signed, so these pointers probably have
negative values.

5 -10

Tutorial Dynamic parallel processing

ProcessorSpeed

Gives the processor clock speed in 250kHz units.

XMemSpeed

Speed of the external memory expressed in the number of processor
cycles required to access a memory location.

ttype

Indicates the generic type of transputer. For various transputer types
values have been defined in system.h. The T414 for example has type 4,
and the T800 has type 8. The type code is intended to reflect
characteristics of the transputer, such as the word length and the
presence of a floating point unit.

Tn

The unique identity number of this transputer within the network. Each
transputer is given a unique number to identify it. The algorithm by
which the numbers are assigned was explained earlier. The transputer
connected to the host has identity number 1.

nT

The total number of transputers booted in this network.

nT_Down

The number of transputers in this branch of the boot tree, including
itself.

NBooted[]

The number of transputers booted through each link. Note that the sum
of the elements of this array is one less than nT_Down. Also note that
NBooted [i] is zero if:

• i is the number of the HostLink.

• The transputer connected to link ill i was already booted through
another path.

• There is no transputer connected to link nr i.

Network[]

The identity numbers (Tn) of the transputers connected to each link. For
links with no transputer connected it has the value NOT_CONNECTED. The
transputer which is connected directly to the host has the value
HOST_CONNECTED in the element corresponding to the HostLink.

5 - 11

Dynamic parallel processing Par.C System

LinkStatus[]

Gives specific status information for each link. Values can be found in
system.h.

ExtLink[]

Holds, for each of this transputer's links, the number of the link as seen
from the neighbour to which it is connected.

ExtType[]

The ttypes of the neighbours connected to each link.

The boot-tree is represented on each node by information of its links.
The link from which the node has been booted is called the HostLink,
since this is the link uptree, which indicates the path to the host system.
Each of the other links of this node may have been used to boot another
transputer. The transputers connected to such a link are represented as
a branch in the boot-tree.

Note that interconnections may be available which are not represented
in the boot-tree. Therefore, avalue 0in the NBooted array does not imply
that this link is not connected. In fact, it may be connected to either the
'parent node' or to a transputer residing in another branch of the
boot-tree. In either case, the link has ·not been used to boot another
transputer from this node, so NBooted will be zero for that link.

Making software independent of hardware
The information concerning the network layout can be obtained with
the runtime function Getsyslnfo (). An example is given below:

Example Using the SYSTEM structure in a program

#include <stdio.h>
#include <system.h>
SYSTEM Sys;

int main()
{

double speed;
Getsyslnfo(&sys);
speed = Sys.processorspeed / 4.0;
printf("This transputer runs at %4.1f MHz\n", Speed);

}

The use of the unique identity number of each of the available nodes is
exemplified below:

5 -12

Tutorial

Example

Dynamic parallel processing

Using node identities (simple version)

#include <system.h>

int main()

{

SYSTEM Sys;

Getsyslnfo(&Sys);

switch ((Sys.Tn - 1) %3)

{

case 0 Task_A () ; break;

case 1 Task_B(); break;

case 2 Task_C() ; break;

}

}

In this example program, each node's identity number is used to divide
three tasks equally over the available network. On a system of 3
transputers, each of the tasks will be executed by one node. When
loading the same program into a network of 300 transputers, there will
be 100 nodes working on each task.

In practice the first node often performs a supervising task and some
message passing has to be done on each of the nodes. This could be
added to the above structure by running a Message_Passer task on each
node in parallel with the node-dependent calculator task, and starting a
Controller task on the first processor:

Example Using node identities (extended version)

#include <system.h>

int main()

{

SYSTEM Sys;

Getsyslnfo(&sys)i

5 - 13

Dynamic parallel processing

par {
if(sys.Tn == 1) controller();
switch ((Sys.Tn - 1) %3) {

case 0 Task_A(); break;
case 1 Task_B(); break;
case 2 Task_C(); break;

}

Message_Passer(:);
}

}

Par.C System

T4xx/T8xx transparency _
When running a program on a network with both T4xx and T8xx
transputers the same floating point calculations can be used on all
processors. The floating point primitives are placed in resident libraries
which are loaded when needed and according to the type of the
transputer. The T4xx transputer will load realt4 .rsl which contains
emulations of the floating point primitives. The T8xx will load
realt8. rsl with code using its floating point processor instructions.
Both calculations are guaranteed to give the same results, but the T8xx
is faster.

When this transparency for T4xx and T8xx transputers is not needed, the
#pragma fpu preprocessor directive can be used on a T8xx to increase
performance of floating point calculations by directly inserting the
floating point instructions in the program code. When using math
funcitions, linking T8math .lib instead of math .lib on a T8xx will
increase performance considerably.

An example of optimising for floating point performance, while
retaining the possibility of running the program on a mixed network, is
given in "special topics" on optimisations.

5 -14

Tutorial

The farmer demo program

The farmer demo program

Compute-intensive problems often contain parts in which the same
algorithm is executed on different sets of data. In situations where the
processing of each individual set of data is independent of the results of
the same calculations on other sets, data concurrency can be used to
speed up the overall performance of the program. Examples are
ray-tracing, Monte-Carlo simulations and generation of images
involving fractals.

The logical structure of such a program can be visualised as shown in
the figure below: a Producer continuously produces command messages
containing the data to be processed by one of the available Calculators.
The result messages are sent to the Consumer, which collects and
combines them in some way. This type of program is said to have a
farmer structure: the Producer 'farms out' the work to a number of
Calculators.

Logical structure of the farmer

Since. the transputer has a limited number of links, this logical structure
has to be mapped onto the physical structure of the available network.
The scheme which is used to distribute command messages to the
Calculators and to collect results, does not effect the logical structure of
the program. However, the scheme highly influences the dynamic load
balancing.

5 -15

The farmer demo program Par. C System

~le~entaUonlnthePa~CSy_st_e_~_·~~~~~~

In the example program described in this paragraph, one possible
scheme is implemented with a number of processes, collectively called
the 'Farmer'. The Farmer demonstration program, which is included in
the software of thePar.C System, makes use of the dynamic bootsystem,
which generates a boot-tree describing the links through which the
transputers are booted (see also one of the previous sections on the
Par.C bootsystem). Information on the boot-tree is used to regulate the
distribution of commands (travelling downtree) and collection of result
messages (travelling uptree). An example of a four-node network with
its possible boot-trees is shown in the figure below.

Host

Host Host Host Host

Possible boot-trees in a four-node network

To make the logical structure of the program independent of the
hardware, the Farmer processes are placed on every transputer, to
handle all data transfer between the Calculators and either the Producer
or the Consumer. Thus, the only processes talking to the links of the
transputers are the Farmer processes. So the Producer, Calculator and
Consumer processes only communicate with the Farmer processes.

The transputer's identity number (set by the bootsystem) is used to start
the Producer and Consumer processes on the first transputer only. The
Farmer and Calculator processes run on all transputers, including the
first one. The Farmer processes running on different transputers are
interconnected according to information about the boot-tree: each link
which is used to boot a transputer through is also used to connect the
Farmer process of that transputer to the Farmer process on its 'parent
node' (see figure on farmer configuration). These connections are
sufficient to reach all Calculator processes.

5 -16

Tutorial The farmer demo prograrn

HOST

11

FARM)...-+0---...-........ FARM

T3 T4

Example of farmer configuration on a four node network

The main tasks of the Farmer are the distribution of command messages,
containing the data to be processed, and the collection of result
messages, containing the resulting data. Since these tasks are
independent of each other, separate processes for Distribute and
Collect are started concurrently, as is shown in the following figure.

Overview of the farmer processes

The performance of the program is enhanced by using request buffer
processes in the Distribute process: a request for the next set of data is
sent by this buffer process, while the current set of data is still being
processed by the Calculator. The Distribute process only accepts a new
message coming down the boot-tree when it knows that it can propagate
it to one of the request buffers. Together with the automatic
synchronisation of the channel communication, this mechanism ensures

5 - 17

The farmer demo program Par. C System

Pseudo-code

5 - 18

that no processor will get overloaded with messages that cannot be
handled.

The Collect process multiplexes the resulting messages coming from the
Calculator and from the Farmers in the sub-trees. The buffers used for
this process need only be simple buffers: no request for new data is
needed.

Pseudo-code of the Farmer

The pseudo-code of the Distribute and Collect processes contained in
the Farmer explains what happens in a more natural language than the
Parallel C source code. The keyword select denotes a point where
actions are only taken when one of the alternative events occurs (see
section on select).

Distribute process:

forever {

select {

alt guard request from calculator buffer on this node

read request

increment number of available buffers

alt for all links

if link is connected and downtree

guard request from link buffer

read request

increment number of available buffers

alt if at least one buffer is available

guard message coming in from uptree link

read this message

if calculator buffer on this node is empty

decrement number of available buffers

s~nd message to calculator buffer

else

find an empty buffer ~o downtree link

decrement number of available buffers

send message to this link buffer

}

}

Tutorial The farmer demo program

Collect process :
forever {

select {
alt guard message from calculator on this node

read this message
set source_ID in message header

alt guard message coming in from downtree link
read this message

}

send message to uptree link
}

Runningthefar~erde~oprog_ra_~~~~~~~~_

The farmer demo program can be executed by typing run 'demo
<total_time> <job_time>. The first parameter total_time can be used
to determine the maximum time in seconds this demonstration program
should be active. If this parameter is omitted, a default value of 10.0
seconds is taken. When this time has elapsed, the exit () function is
called.

The second parameter job_time can be used to simulate the time in
seconds the Calculator should take to 'process' the data before it can
send back a result message. If job_time is omitted a default value of 1.0
will be used, meaning that the Calculator will be busy for one second
from receiving the data to sending back the result. Note that if job_time
is used, total_time must be specified also.

It is interesting to see what happens when the value of job_ time changes.
When using small values (in the range of 0.0 through 0.2), the ratio of
calculation time over communication time is too low to keep more than
a few Calculators busy, thus resulting in other transputers being idle.
More of the available transputers will be put to work when job_ time is
increased.

Adaptations to the farmer structure
To this basic farmer structure, small changes can be made to enhance
performance, or increase the functionality of the program. In the
remainder of this chapter, a number of possible changes are discussed.

The source files of the Farmer demonstration program are included in
the Par.C System software. If one or more of the following files are
missing, you are kindly requested to contact your dealer for a new copy.

• demo. c : The user definable source code for the main, Producer,
Consumer and Calculator functions.

5 - 19

The farmer demo program Par. C System

• farm.h: The include file with definitions for the Farmer functions.

• farm.c: The source code for the Farmer functions.

• demo. run : The executable file that will run on any transputer
network.

Producing a new message structure involves making changes to farm. c

and to farm.h. Putting another calculator task into the existing farmer
program requires a change of demo. c. If changes are made to the
structures of messages from Producer to Calculator and back to the
Consumer, farm.c needs recompilation as well, since the message
structure typedef in farm. h is changed.

Optimising communication on the same node

The Farmer described earlier operates by communicating messages
between the different parallel processes. The Farmer can be made more
efficient by using pointers to the messages in communications on the
same transputer, thus reducing the number of bytes that have to be
communicated in these cases.

Tn

A) B)

Passing data between processes Passing pointers inside one

The above figure illustrates the differences between passing data and
passing pointers. In the first case, each process uses its own private
memory to store the data. Message exchange between processes takes
place by copying data from the memory of the sending process to the
memory of the receiving process.

When messages contain a large amount of data, it maybe more efficient
to use the second setup, in which the data remain where they are, and
pointers to the data are passed around between processes. Of course,
since processes on different transputers do not share access to the same

5 - 20

Tutorial The farmer demo program

memory, data communication betwee'n these processes still has to be
done by sending data over the links.

Note that simply adapting the Farmer processes to work with data
pointers for internal communication is not sufficient to ensure correct
functioning of the program. In the situation depicted in part A) of the
figure above, the space occupied by a message is internal to each of the
processes and therefore this space only needs to be allocated once inside
the workspace of each process. Before a new message can arrive, the
former one is copied to anotherprocess, and therefore the same memory
space can be used without causing valuable data to be overwritten.

As mentioned earlier, in situation B) only pointers are passed around
while the data remains where it was placed upon arrival in this particular
processor. To avoid one message being overwritten before it is
processed new space has to be allocated for each new message arriving
from one of the links. Furthermore, to avoid memory congestion, this
memory space has to be deallocated by the last process to handle each
particular message, Le. the process transferring the message to another
transputer.

Including more statistics

The functionality of this Farmer can be extended in different directions
by using a more complex message header. Including a message_size

would provide the possibility of sending messages of different sizes.
Other data can be included to obtain more statistics. For instance a
path_length can be used to determine how many Farmers the message
has pass~d, having each Farmer increment this number before passing
the message. A message_type can be used to take different actions on
different messages. This can be used for messages that have to be
broadcast to all Calculators in the network.

One of the interesting statistics which can be obtained from a
sophisticated header are timings of the system. By setting the starting
time when a message is sent out by the Producer, the Consumer can
determine how long it took to handle the message. The time spent in the
Calculator can be determined also and used for analysis. These timings
can be used by another program, for instance to determine the number
of Calculators actually working, or the communication overhead in this
particular system running this particular program. Some insight in the
possibilities of dynamic load balancing can be obtained by changing the
amount of work that has to be done to process each single command
message.

Below the type definition of a more sophisticated message-header is
given:

5 - 21

The farmer demo program

Example . . • Extended message header

struct header {
int message_ID;

int source_ID;
int destination_ID;
int message_size;
int path_length;
int message type;
clock_t DT_calculator;
clock_t DT_Message;

Par.C System

}

DT calculator is used to store the time needed to calculate the result.
DT_Message holds the time elapsed between producing the command
message and consuming the result.

Placing different tasks on different nodes

As mentioned earlier, the tasks to be executed by the Calculator
processes can be replaced with user-defined tasks by editing demo.c. It
is possible to have different transputers execute different tasks, using
the information received from the network analyser to decide what parts
of code should be executed by which nodes.

To be able to distribute the work in such a program, the farmer structure
has to be able to cope with command and result messages of different
types. Therefore, the type information should be available in the Farmer
processes. As a matter of fact, transputers executing different tasks can
be seen as nodes of different types. These nodes are now combined into
one tree, but as far as Farmer tasks are concerned, this single tree should
be seen as a number of trees interleaved, one for each type of node.

Therefore, type information should be added to the command and result
messages, and in the number of available buffers on each node:
important information in this case, is how many buffers are available
through each of the links, leading to a certain type of node. Note that
the Producer and Consumer parts need to be changed as well.

5 - 22

Special topics

Special topics

6-1

Program configurations

Program configurations

Par.C System

This chapter gives an overview of the different program configurations
which are possible with the current version of the Par.C System.

In each of the sections of this chapter, an example is given on the basis
of the same calculation task. In each of the programs, the program
structure is the same: a Collector task collects data produced by one or
more Workers. The placement of tasks and the code for the Workers
differs from one example to the other, according to the configuration
that it illustrates.

The PI examp_le _
The Calculator contained in the Worker code calculates the number PI,
using the'darts method', which is highly inefficient because it converges
very slowly. Random points are chosen inside a square field, and a check
is done on whether a point is inside or outside the largest circle which
can be drawn inside the square. This could be viewed as throwing darts
and counting the number of darts which have actually hit the board.

The approximation of PI follows from:
4*(number of hits inside circle)/(total number of throws)

Once in every timeperiod (specified in the code), each of the Workers
in the system sends its results to the Collector, which adds everything up
and displays the current approximation ofPI on the screen, together with
the number of darts that have been thrown sofar in the complete system.

To be able to reach the first Collector from the Calculators running on
each of the nodes, the Worker code also contains a Message Passer. This
process awaits messages coming from transputers down the boottree
and forwards these in the direction of the Collector running on the first
transputer.

Pseudo code for the Worker

In this chapter the exact code of each of the processes is not given, since
the issue here is to show different configurations ofPar.Cprograms. For
the complete source of the following PI examples see the examples on
the accompanying disks.

The pseudo code for the Worker part of each program is as follows:

6-2

Special topics

Pseudo-code Worker task

Transputer-dependent seeds for rand();
par {

calculator();
Message_passer();

}

Program configurations

Note that different seeds for the random number generator must be
given to obtain a randomisation of the calculations over different
transputers.

Q!ganization of the source code

The source for the program on the example disk has been split up into
several modules which can be compiled separately and then should be
linked together. In this way the Collector has become a module, the
Message Passer and the Calculator together have become a Worker
module and the main function has become a module. As a result of this
division of code, a new program configuration is obtained by compiling
a new main () or _entry () function and relinking the modules. The
possible link commands are described in the accompanying source files,
and a batch file 'makerun. bat' has been provided to produce a number
of different versions automatically.

Single-node p_rog___.r_8_m_s _
When linking a .lib, only the first transputer will be booted, and only
the characteristics of this first node will be checked and available
through a call to Getsyslnfo (). The status of all links except the
bootlink is set to 'not connected'.

Example program: PI, (linked with a.lib)

When the PI program is linked with a .lib, only the first transputer is
booted and executes one Worker task. At the same time, this first node
contains the Collector task, which receives its data from the single
Worker through a channel.

6-3

Program configurations

Screen

o
e
Host

C+M
t

w

Par. C System

Single-node setup

Multi-node proQ_ra_m_·s _
When linking b . lib, all transputers in the network are booted, and the
code is copied to and started on all nodes. All information from the
network analyser is available after calling Getsyslnfo (). The copies of
the program which are started on all of the nodes can determine which
tasks to execute on the basis of this information.

Exam~ram: PI, clinked with b.lib)

The only difference between PI running on one node and PI running on
all nodes lies in the library which is linked: no other changes are

.necessary. When linked with b .lib, each processor in the network
receives the code for the entire program. However, the Collector is only
started on the first transputer, whereas the Worker tasks are started on
all nodes.

Note A program linked with b .lib can also be run on a single-transputer
network.

The description of the Farmer demo in the tutorial part of this manual
gives a detailed discussion of a Farmer process running on a multi-node
network.

6-4

Special topics

Screen

o
e
Host

M
t

w

C~

tw

M

t
w

Multi-node setup

M
t

w

M
t

w

M

t
w

Program configurations

Subprograms for subsy_st_e_m_s _
The library function Run () can be used in combination with single- and
multi-node programs to have a transputer boot its non-booted
neighbour(s) with a separately produced executable program. Run ()
behaves like the Par.C Server which is running on the host system, with
the linkadaptor address being changed to a link index to boot the
neighbour through. The transputer(s) booted through the indicated link
can be viewed as a subsystem. Note that the numbering of the
transputers in this subsystem restarts at 1.

Run () can only be used when linking run .lib, and its usage is described
in more detail in the library reference. The program being started from
this 'parent node' must be linked with noio .lib, since Run () does not
act as a file server.

Exam~rogram: RUN_PI

In this example, the Worker task is compiled separately and made into
an executable program of its own. The Worker program is then loaded
from the first transputer to a subsystem connected to one of its links, by
calling Run () . The Collector task is also compiled as a separate complete
program and is called RUN_PI.

6-5

Program configurations

Screen

o M

t
w

M
t

w

Par.C System

e M
C t

W

Host

M M

t t
w w

Multi-node setup with Run()

The Worker program used with this example is PI_M, which also contains
the· necessary message passing code and runs on all processors in the
subsystem. In the following section, this Worker will be explained in
more detail and a version running on transputers without external
memory will be described.

The advantage of using this configuration is that the Collector code is
not copied to all processors (without being executed), since it is no
longer a part of the main program containing the Worker task. This
reduces the amount of memory needed by transputers in the
subnetworks, especially when the Collector code is large.

Program loadingandstartup~~~~~~~~~

Execution of a standard Par.C program in general can be divided into
four phases:

1. Booting and investigating the available network
2. Loading the program into all available transputers
3. Executing the C startup code.
4. Executing the main () program

In the case of a single-transputer program (linked with a .lib instead of
b . lib), phase 1 is replaced with a bootsequence for the first transputer
only, and in phase 2 the code will only be loaded into that single
transputer.

6-6

Special topics Program configurations

The memory occupied by the code used to execute phases 1 and 2 is
almost completely released when phase 3 is entered. The only memory
space remaining occupied contains the memory manager and some
system information (about 512 bytes in total).

The loader always uses _entry (sys_intern, CSEGstart, math) as the
entry point of the program. This is normally the entry point to the
standard Par.C startup code, which in turn calls main () .

This is what the standard Par.C startup code does:

1. If needed, the resident part of t8math .lib is installed:

_InstallMathT8(math);

2. A number of global variables are initialised:

CSEG- -
DSEG

PROG

Tn

tohost
fromhost

_ttype
nT

3. The commandline is obtained from the bootlink, argc and argv are
initialised, and the commandline is passed on to transputers which have
been booted from this node.

4. If T4xxff8xx transparent floating point arithmetic is needed, the
resident libraries realt4.rsl and realt8.rsl are loaded from the
bootlink and distributed to all nodes which are booted from this node.
The library corresponding to the transputer type is kept in memory and
references from the program to this library are resolved.

5. If the alarm function is included in the program code, a process for
timer queue maintenance is started.

6. On the node connected to the host LTn == 1) the file I/O system is
initialised by a call to _ f ini t (), which will install the local fileserver as
HOSTO and open the standard streams stdin, stdout and stderr. When
noio .lib is linked, _f init () will only initialise the time facilities and
the environment variables PATH, PARSEC, TIMEZONE and
SUMMERTIME, and then call Release () to cause an exit of the server
running on the host.

7. The user program is started by: exit (main (argc, argv));

6-7

Program configurations Par.CSystem

Definingusersu~"ed~artup~co_d_e_~~~~~~

Defining _entry () in the user program will overrule the linking of the
standard Par.C System startup code, and cause the loader to call the user
program at _entry (). Note that in this case main () will not be called
automatically.

The next example can be used as a frame for a user-supplied startup
module. The differences with the standard code are :

• The variables are #defined instead of assigned.

• The variable PROG is omitted.

• The commandline is not parsed into arguments.

• The resident libraries are not installed.

• The timer queue is not initialised.

• Release (0) is called instead of _finit ().

• main () is not called, code just continues with user code.

Example Custom __entry ()

#include <system.h> /* Description of system structure */

#include <stdlib.h> /* Declaration of malloc(),realloc() */
#include <stddef.h> /* for definition of word and _Byte */

#include <string.h> /* for strchr() */

#define
#define

#define

#define

#define

tohost

frornhost

_ttype

Tn

nT

(sys.HostLinkout)
(sys.HostLinkln)

(sys.ttype)

(sys.Tn)

(sys.nT)

*
*

6-8

void

static

word

_Byte

#asm

GetDseg

ldl
ret

#endasrn

1

_InstallMathT8();

Word *GetDseg()i

DSEG- -
CSEG_;

Special topics Program configurations

void _entry(sys_intern, cseg, math)

word *sys_intern;

_Byte *cseg, *math;

{

int link, psize;

SYSTEM sys;

char *cmdbuf = malloc(120), *argstart;

__DSEG__ = GetDseg(); /* Get start of data segment */

__CSEG__ = cseg; /* Get start of code segment */

GetsysInfo(&sys); /* Get system info */

InstallMathT8(math); /* Install mathlib if needed */

if(_Tn == 1) getcmdline(cmdbuf);

else _in(_fromhost, cmdbuf, 120);

par(link = 0; link < LinksPerTransputer; link++) {

if(sys.NBooted[link])

_out (LINKOUT(link), cmdbuf, 120)i

}

realloc(cmdbuf, strlen(cmdbuf)+l);

Release(O)i /* send exit command to server*/

#pragma fpu

stopProCeSS()i

}

/* Enable in-line fpu code

/* User program

/* Return is not possible

*/

*/

*/

Release (0) sends an exit command to the server running on the host.
From that point on, a user defined server protocol can take over if the
user wants to start his own server on the host.

stopproces,s () is used because _entry () is not allowed to return, as the
caller (i.e. the loader) does not exist anymore after _entry () is called.

The resident libraries realt4.rsl and realtS.rsl, implementing
T4xxff8xx transparency for floating point arithmetic, are normally
loaded by the standard Par.C startup code. When the resident libraries
are not loaded, floating point arithmetic can only be used with the
#pragma fpu compiler directive, and will therefore only be executable
on T8xx transputers. Use the _ttype macro (sys. ttype) to avoid T8xx
instructions being executed by T4xx type transputers. Note that the
global variable _ttype is not automatically initialised.

If the program uses routines from the library tSrnath .lib, a small
low-level routine must be installed. This is accomplished by calling
_ InstallMathT8 () with the third parameter of _entry () as argument.

6-9

Program configurations Par.C System

If t8math .lib is not used, it releases the memory occupied by this
low-level routine, so it is always useful to call_InstallMathT8 () .

The local file server can be installed by calling _ f ini t () instead of
Release (0) • However this will produce about the same amount of code
as the standard startup code and is thus not recommended. When linking
noio .lib it will supply support for time-related functions (i.e. time (),
localtime() etc.) and restricted support for getenv(). The
environment variables PATH, PARSEC, TIMEZONE and SUMMERTIME

can be obtained.

_ f init () may only be called from the node directly connected to the
host, therefore time and environment variables can only be obtained on
that transputer.

BUlldlngtin~rog_ra_·~_s~~~~~~~~~~~_

As is shown in the previous paragraph, the standard Par.C startup code
contains a considerable amount of code to set up support of the various
runtime facilities included in the Par.C System.

When producing tiny programs (for example when using transputers
without external memory), this Par.C startup code can be minimised and
tailored to support only those facilities which are used in the program.
For instance, linking with noio .lib minimises the startup code for
programs not needing file I/O functions.

The maximum size of a program which will fit into the internal memory
of the transputer is somewhat smaller than the size of that internal
memory: the loader for each transputer must also be present in order to
load the program. The space occcupied by the loader is deallocated
before _entry () is called, and can then be used by the program as
workspace.

Minimising the memory needed for a program includes telling the linker
to reserve very little space for the initial workspace: uOsing -sO will cause
the initial workspace to be set at the default minimum stacksize. The
default minimumworkspace size is currently set to 40 words. In this case
the program will probably run out of stack very soon, so that a new stack
is allocated, using the now available space which was previously
occupied by the loader.

The size of this extended stack can be influenced by the program by
means of _SetFunStack (). This kind of programming is balancing on
the verge of an "out of memory" runtime error. If this error occurs,
another value for the stacksize should be chosen.

6 -10

Special topics Program configurations

A complete startup routine for a tiny program could look like this:

Example Minimising code using _entry ()

iinclude
iinclude
tdefine

<system.h>
<stddef.h>
STACK Ox1l0 /* Needs experimenting */

void My_Main();

void

void
word

_Byte

{

_InstallMathT8();

_entry (intern, cseg, math)
*intern,
*cseg, *math;

}

_InstallMathT8(math);
Release(O);
_setFunstack(STACK);
My_Main ();
stopProcess();

/* Install math. lib if needed */

/* send exit command to server */

/* set default size for new stack */

/* force new stack frame */
/* termination of this program */

The program called could then look like this:

Example User program My_Main

iinclude <system.h>
idefine tohost

My_Maine)
{

/* Description of system structure */

(sys.HostLinkout)
/* various definitions */

SYSTEM sYS;
GetsysInfo(&sys);

}

/* Get system info
/* User program

*/

*/

Such a program can be loaded directly from the host, in which case a
custom server must be written to take over communication with the
program after the Par.C Server (RUN) exits.

6 - 11

Program configurations Par. C System

Exam.~_ra_m_:_p __I_~E _

An example of a tiny program, which is started from the first node using
Run (), is provided as PI_E. It differs from PI_M in that the latter uses the
standard C startup code and calls main () from there, whereas PI_E is
minimised with custom startup code.

Cu~o~se~eronthehostsy_st_e_·~_·~~~~~~~

It is possible to produce programs which can be downloaded and served
without using the Par.C System loader/server. In this case, the started
program must be structured according to the following rules:

• _entry () must be used to define custom C startup code.

• No file I/O may be used at anytime, since no Par.C System server is
available.

• No environment variables, commandline, and time-related functions
may be used, since these need the supporting file I/O system during
startup time.

• The Release () function cannot be used, since there is no Par.C
System server to send·the exit command to.

• The exit () function cannot be used, since there is no return point to
jump to. Instead, stopProcess () must be used to terminate.

Exam~rogram:PI_R

. In this version of the PI-calculating example program, only the Worker
task has been produced as a Par.C progam, and a special server is used
from which the transputer network is booted. This server also executes
the Collector task, which was previously done on the first transputer,
using the Par.C System server to write results to the screen.

6 -12

Special topics

Screen

Program configurations

o M
t

w

M
t

w

M M
C t t

w W

Host

M M

t tw w

Multi-node setup with custom server

6 -13

Memory usage in Par.C-compiled programs

Memory usage in Par.C-compiled
programs

Par. C System

Each process on the transputer has its own workspace, which is used as
a stack. The figure below illustrates the structure of this stack.

For each concurrent process a new workspace is allocated, and the
Bottom-of-Stack pointer, the Static Link and the Global pointer are
initialized to the correct values. The Static Link is a pointer to the
workspace of the process executing the par statement in which the
process concerned is started (sometimes called "parent process").

If the available memory is insufficient to start a process, a runtime error
will occur, causing the program to exit.

The runtime system area contains pointers to the global data area and
to the parent of the current process. The locations with small negative
offsets measured from the workspace pointer are reserved for system
use in the transputer's hardware. These locations do not carry lasting
information, but must always be allocated directly under the current
workspace pointer.

During execution of a select statement, a small number of locations in
the upmost area of the local space are reserved for system use. In these
locations, the status of the process executing the select is stored, and
some temporaries are allocated when setting up the guards specified in
the alternative clauses.

Example Allocation of local variables

{ int a,b;
long c[3];

int d;

if (condition){
int e,f;

}else{
int g,h;

}

}

RUNTIME SYSTEM AREA

f/h
e/g
d
c[2]high
c[2]Iow
c[1]high
c[1]Iow
c[O]high
c[O]low
b
a

HARDWARE SYSTEM AREA

The local variables are allocated in order of declaration. When locals
are declared in compound statements inside the process, these are

6 -14

Special topics Memory usage in Par. C-compiled programs

therefore allocated above the locals declared on a higher level. Since
the instruction length on the transputer depends on the size of the
operands, the locals nearest to the workspace pointer are fastest
accessible. This point is worth noticing when declaring large arrays.

During evaluation of complex expressions, more stack may be needed
to store temporary variables. The code generated by the compiler
guarantees an amount of remaining stack which is sufficient to store all
necessary temporary variables. The extra memory needed is allocated
by lowering the workspace pointer. After completion of the expression
evaluation, the workspace pointer is readjusted to its original position.

When calling a function, parameters are placed in a list and a pointer to
this parameterlist is stored in a new runtime system area. The workspace
needed for execution of the function is compared with the size of the
remaining stack. The remaining stack is used when its size is sufficient
for execution of the called function. Otherwise, a new stack is allocated
automatically. The situation after calling the function is shown in the
following figure.

Top of old stack

Old workspace ptr

New top of stack

New workspace ptr

Bottom of stack

Runtime System area

Variables local
to calling process

Parameter list

New runtime system area

Variables local
to function called

New Hardware System area

New remaining stack

Situation after calling a function

pointer to
parameter list

______I

6 - 15

Methods for speed improvement

Methods for speed improvement

Par.C System

The Par.C System offers many possibilities to optimise performance.
From the source level down to the linking stage the user can influence
the final result.

• On the level of program structure, the user can make use of the
knowledge of the target transputer type: floating point calculations
will be executed much faster when 'run on a transputer with on-chip
floating point unit.

• Onthe source code level the choice of the right data type for variables
can cause considerable improvements.

• To optimise for the size of the program, the assembler can be
instructed to adjust the length of external references.

• At link time, performance can be enhanced by optimal linking order,
and intelligent use of internal (fast!) memory.

Since the effects of these optimisations are application dependent, the
user should have knowledge of when and how to use them. In the
following paragraphs we try to provide some of this knowledge.

Qptimisations in ~_ro......9.....r_a_m_st_r_u_ct_u_r_e _
An important source for optimisations of performance lies in the
structure of the parallel program that is produced. Using buffer
processes to keep calculating processes from having to wait for data is
one example.

However, this is not a subject which can be discussed at length in this
manual. In this chapter, we will indicate a limited number of
optimisation techniques on different levels.

Sourcelevelo~_ti_m_is_a_t_io_n_s~~~~~~~~~~

• Use register storage class when declaring function parameters which
are referenced more than twice. This will create a local copy of the
parameter, instead of accessing it via the pointer to the argument list.

• Declare heavily used variables first. If it is your style to use variables
with limited scope, for instance within loops, declare them with
register storage class. This will instruct the compiler to allocate them
in a low offset area, reducing instruction size.

6 -16

Special topics Methods for speed improvement

• Do not use shorts unless you really have serious memory shortage. In
contrast to int or char types, short integers are not supported by the
instruction set of 32 bit transputers. 16 bit memory references have
to be simulated by byte oriented operations, which makes them very
inefficient. If you have to use shorts, use them as little as possible in
expressions.

• Normal integers are 32 bit, longs are 64 bit. Be sure not to use longs
if you only need 32 bits, as this will decrease performance.

Assembler op_ti_m_is_8_t_iO_"_S _
Transputer instructions and operands are coded into a variable number
of bytes of object code, depending on the number of prefixes needed to
encode each particular instruction or operand. In the case of
instructions, nothing can be changed in this: their code is fixed.
Instruction operands are coded in as few bytes as possible by the
assembler.

Optimisation can be performed on the length of references which are
used as operands for load, store, jump and call instructions. On a 32-bit
transputer, the operands can take anything from 1 to 8 bytes, depending
on the offset of the reference. The assembler optimises the instruction
length as much as possible, but it can not determine how large an
external reference must be, as these will be filled in by the linker.
Therefore, the assembler uses fixed default lengths for external
references. These are 6 bytes for data references and 5 bytes for code
references. These values will usually be sufficient. However, in many
cases these lengths will be too large, resulting in unnecessary "pfix 0"
instructions.

There are two assembler commandline options which influence the
number of bytes reserved for external references. These are "-ic" and
"-id" for code and data reference lengths respectively. For example,
using "-ic 3" will cause the assembler to reserve 3 bytes for any call or
jump to an external codelabel. The best way to determine whether
unnecessary space was reserved is to inspect the map file which can be
produced by the linker. The linker must be invoked with the "-m" option
to obtain this file. For every object file, the column 'Reg/Act' gives
infomation about the requested and the actual instruction length of
external data and code references. If the requested length is larger than
the actual length, reassemble the file with the "-ic" or "-id" switches
indicating the appropriate values.

6 - 17

Methods for speed improvement Par. C System

Linker Optimisations
The linker can be instructed to place parts of the program in the fast
internal memory of the transputer by the command line switches u-bs",
"-bd" and "-be", which are discussed below.

-bs
This places the initial stack in internal memory. Note that this is only the
stack of the main program. Any concurrent process started in a par
construct or using RunProcess () will get a stack elsewhere. Also, if the
program should run out of stack, the newly allocated stack will reside
elsewhere. The linker switch "-s < n > " can be used to enlarge the initial
stacksize to < n> bytes. Using "-bs" can be advantageous if functions
are deeply nested, for instance when using recursive functions. Also,
programs which mainly reference local data (which are always located
on the stack) can be speeded up considerably using this switch.

-bd

This places the data segment in internal memory. This can be
advantageous in programs frequently referencing global data.

-be

This places the code segment in internalmemory. This method can best
be used if a program does not reference much data, for instance if the
program does a lot of processing using constants. It can also be used if
the data segment is large and the code segment is relatively small. Since
only a part of the data will fit in internal memory, only references to that
part will contribute to an increase in speed.

If you use any of these switches, a little attention to the order in which
you link the modules often pays off. The linker allocates data and code
blocks in the order in which the corresponding object files and libraries
appear on the commandline. If either the code or the data segment is
placed low, linking the most frequently used modules first will render
the largest effect.

Using the floating-point unit efficiently _
If your transputer network only contains T8xxs, you might wish to take
more advantage of the floating point unit. Here are a few suggestions.

• Use of the compiler directive #pragma fpu in Par.C source files.

The compiler will emit fpu instructions instead of generating calls to the
resident libraries to handle the elementary floating point operations.

6 -18

Special topics Methods for speed improvement

• When using math functions, t8math .lib should be linked instead of
math. lib.

This library uses the T8xx fpu instructions directly rather than via calls
to realt8 .rsl. This has made it possible to interleave code for the cpu
and fpu as much as possible, thereby using the on-chip parallelism of the
T8xx transputer in a much more effective way. In most cases,
performance will increase dramatically. Even if the network contains
T4xx transputers, t8math .lib and tpragma fpu might be used.
However, the user should take care that the code involved will not be
executed if the program runs on a T4xx. This can be accomplished by
making execution offloating point arithmetic dependent of the result of
a test for the transputer type.

Example•.. Optimising floating-point performance

main()
{

par {
if (_ttype==8) DoFloatS()i
PassMessageS()i

}

}

void PassMessages();
{

}

#pragma fpu
void DoFloatS()i
{

}

In this example, an outline is given for a program running on transputer
networks which contain both T8xx and T4xx transputers. The latter
processor type will only have to pass messages from the host system to
the T8xx nodes and back. Since DoFloats () is only started on T8xx
nodes, the program as a whole will run on any transputer network. Note
that the code for the floating point calculations will also be loaded into
the T4xx nodes, but will never be executed there.

Combined use of #pragma fpu and linking t8rnath .lib will cause both
the floating point primitives (like add, multiply, etc) and the high level
functions (like sin () and cos ()) to be speeded up.

6 -19

Inline assembly

Inline assembly

Par. C System

Inline assembly can be used through the preprocessor directives #asm

and iendasm. This section indicates a few points which should be kept
in mind when using this facility.

Usag"--,e -----
The preprocessor directive iasm indicates the start of the inline
assembly. Conversely,. iendasm indicates the end. The lines between
iasm and iendasm will be copied directly from the source file to the
assembler file. Due to this compiler bypass, the compiler will not update
its symbol table with the identifiers named in the assembly. The
compiler does not know about the types of functions written using inline
assembly either, so a declaration of these functions should be made at
C-source level. One more side effect of the bypass is that the parser may
not be ready processing the preceding C tokens when the inline assembly
is copied to the assembler file. This can result in assembly ending up in
the wrong place. To avoid this, inline assembly should be inserted only
at the following points in a C source file:

• Following a declaration without initializer. This can be used at
toplevel, i.e. outside function definitions.

• Following an empty statement (tt; It). This can be used inside function
definitions.

Format
Assembly source code should be written according to the following
rules:

• labelnames are placed at the beginning of the line, and are significant
up to 31 characters.

• instruction mnemonics are indented to distinguish them from labels.

• operands follow the instruction mnemonic on the same line.

• any characters following a semicolon and up to the next newline are
treated as comments. The semicolon introducing a comment may
also be placed on the first position of a line.

• Empty lines are ignored.

6 - 20

Special topics Inline assembly

Reserved labels

The compiler generates assembler labels consisting of a dot followed by
a number (e.g. ".137"). If you use labels of this form in your inline
assembly, you might get an error message from the assembler, indicating
a multiply defined label.

Assembler code
To make a defined code label extern, you should use the .public
directive followed by the code label:

Example Defining an external label

.public MyAsmFunc
MyAsmFunc

stl 0

If you want to reference an external code label, for instance to call a
library runtime function, you should include a .public directive as well:

Example• Referencing an external code label

.public clock
call clock

Assembler data
For external data references there should be a . global directive:

Example Referencing an external data label

. global

ldl
ldnl

name, 4

ws+GP

#name

;narne and size of object

;load global pointer
;load value of 'name'

The 'I' preceding 'name' is an operator which converts a byte offset to
a word offset. This is necessary, because assembler labels are always
treated as byte offsets, whereas the instructions ldnl, Idnlp etc. are
word addressed.

6 - 21

Inline assembly Par.C System

To define storage in the data segment, the directives .dseg, 0 word,

•byte and .public should be used:

.dseg

This directive switches to the data segment. The assembler always starts
in the code segment. Switching back to the code segment is performed
by the directive .cseg

.word <valuel>,<value2>, •••

This directive defines words in the data segment.

•byte <valuel>,<value2>, •••

This directive defines bytes in the data segments. Values can be either
numbers or double quoted strings. Note however, that strings will not
be null terminated automatically.

•public <name~,<size>

This directive makes the symbol < name> external, and associates a
storage of < size> bytes with it. A label < name> should be present in
the data segment.

Example • .. Defining storage in the data segment

.dseg

.public

Glob

•word

C calling interface

Glob, 4

o

A call to a C function looks like this:

• Generate the argument list, the first argument lowest in memory

• Load the pointer to the bottom of stack (BOS)

• Load a pointer to the first argument (AP)

• Load the pointer to the global data area (GP)

6 - 22

Special topics Inline assembly

• call the function.

BOS and GP can be found in the top of the workspace of any function
called using the C interface. At function entry, BOS can be found at
< Wptr > + 3 and GP at < Wptr > + 1. The arguments of the function
can be accessed via the argument pointer, which is located at < Wptr >
+ 2 at function entry. The return value of the function is returned in
Areg in case ofa one word return value and in Areg and Breg, with Areg
holding the least significant word, in case of a two word return value
(longs, doubles).

To make sure that the return address will be saved, a 'stl 0' instruction
should be issued directly at function entry. This is because the 'gcall'
instruction, used for indirect function calls, does not store the return
address automatically. The following diagram shows the layout of the
stack directly after a function call.

PARAMETERLIST

etc.

I
offset 3

parameter 3 offset 2

parameter 2 offset 1

parameter 1 offset 0

WORKSPACE

offset 2

offset 1

offset 0I

LOBAL DATA SEGMENT

bottom.ptr ~

parlist.ptr

global.ptr

ret.address

G

STACK

... -+

local 3

local 2

local 1

local 0

Situation after a function call

Example Inline assembly function calling a C function

extern int f()i
#asm
iassembly for:
iint f(x)
iint Xi
i {

/* declaration info for the compiler */

return g(x,l)i
i }

6 - 23

Inline assembly

ws
x
BOS

AP

GP

f

stl
ajw
ldl
ldnl
stl
Idc
stl
ldl
ldlp
Idl
call
ajw
ret

fendasm

•public f
•public 9

.equ 2

.equ 0

.equ 3

.equ 2

.equ 1

o
-ws
AP+ws
x

o
1

1

BOS+ws
o
GP+ws
g

ws

Par.C System

;defined here
;referenced here

;workspace for this function
;offset of x in the argument list
;offset of bottom of stack pointer
;offset of the argument pointer
;offset of the global pointer

;save return address
;create workspace
;load argument pointer
;load x
;first parameter for 9
;load 1
;second parameter for 9
;load bottom of stack pointer
;load pointer to argument list
;load pointer to global pointer
;call function, result is in Areg
;deallocate workspace
;return from function

Stack usag_e _
The stack checking mechanism of the Par.C System ensures that 64
words ofworkspace are available when entering a function from C-Ievel.
For small, non-recursive functions this is often quite enough. If more
stack is needed, the stack checker should be invoked. This will allocate

. more stack if the requested amount plus the 64 extra words exceeds the
remaining stack. An entry to a recursive function using 10 words of
workspace per call looks like this:

6 - 24

Special topics

Example Checking stack usage

Inlina assembly

f

.public

.public

stl
ldc
call

f

.checkstack

o
10

.checkstack
;load the number of words needed
;call the stack checker

The Par.C compiler uses a version of the stack checker which is
optimized for speed. If you are interested in this, take a look in a
compiler produced assembly file. (For ease of reading, compile with the
-ts option. The assembly output will then be commented with the
source code.)

Final remarks
It is difficult to use inline assembly inside a function body, because the
exact offsets oflocal variables are unknown in most cases. Most common
use of inline assembly is therefore to code complete functions, which
can be called from C to perform a certain task.

You might consider writing complete assembler files, thereby skipping
the compiler phase. These files can be assembled and linked just like
compiler produced assembly files.

6 - 25

Inline assembly

6 - 26

Par. C System

Utilities

Utilities

7-1

SYSNET

SYSNET

Par.C System

A utility to show the available tranputer network

Description TheSYSNET utility is a multi-transputer Par.C program which shows
information about the transputer network on which it is run. Apart from
being useful while installing or reconfiguring your transputer system, the
SYSNET program is also instructive for using the Par.C System. The
source of this program is part of this package, and can be found· in the
EXAMPLES directory.

Usage run sysnet

Before a Par.C program is started, the runtime system supplies each
transputer in the network with information about the connections of its
links, the available memory, the type of the transputer etc, in the form
of the SYSTEM structure. One component of this structure indicates the
link from which the transputer was booted. The 'bootlinks' of all the
transputers in the network collectively define the 'boottree', and
following the branches of this boottree towards the root of the tree
renders the 'bootpath' of a transputer. In the SYSNET program, each
transputer sends its SYSTEM structure via the bootpath to the root
transputer (Tl). Tl prints all the incoming information on the screen in
a diagram showing most of the important network parameters.

Figure. Possible SYSNET output

Number of transputers in system: 4

Ident Type Mhz Link 0 Link 1 Link 2 Link 3 MemTop

1 T800 17 * Host <- 2.0 <- 4.2 80001000
2 T414 20 * 1.2 <- 3.2 4.0 80040800
3 T414 20 * 2.2 4.1 80100800

4 T414 15 2.3 3.3 * 1.3 80100800

The four link columns indicate the node number and link number to
which they are connected. Each transputer has one link marked with an
asterisk, indicating the link over which it has been booted (i.e. the link
to its 'parent node'). The arrow indicates a link which has been used to
boot a 'child node'. The amount of memory per transputer can be read
from MemTop by subtracting MemBot (= MinInt = 80000000), and is
indicated in hexadecimal notation. The identity numbers as given in the
first column, are known to the transputers themselves and can therefore
be used in a Par.C program to influence its execution.

7-2

Utilities SYSNET

For more information about the SYSTEM structure, see the paragraph
about the 'Network analyser' and the header file system.h.

Pseudo code. The SYSNET program is written using the following algorithm:

if I am Tl
print my information;

else
send my information uptree;

for every downtree link
for every node connected downtree

receive information from this link;
if I am Tl

print this information;
else

send this information uptree;

In this manual, the direction of the host system is referred to as 'uptree'
and the direction towards the 'leaves' of the boottree is indicated as
'downtree'.

Note that this program does not examine the network itself, but that the
runtime system has already done this for you. This means that the
information available in the SYSTEM structure can be used in a similar
way in other applications, to have the program adapt itself to the
situation during runtime.

See also Tutorial, paragraph on dynamic parallel processing.

7-3

RUN2EXE

RUN2EXE

Par. C System

A utility to create stand alone ~_ra_m_·_s ...-..-_

Description The RUN2EXE Utility combines a transputer executable file (. run file)
with a special version of the Par.e loader/server into a single executable
file for the host (.exe file). Executing this program will boot the
transputer network, download the transputer code and start the included
server, just as if run program had been typed.

Usage. The RUN2EXE utility can be invoked with:
run2exe [-0 <outfile>] <infile> [server options]

<infile> is the name of the transputer executable (. run) file.

RUN2EXE itself has only one option:
-0 <outfile>

This will make <outfile> the name for the resulting executable file.

In a stand alone application it is not possible to pass any options to the
included server, because any additional commandline arguments are
passed to the transputer program. To compensate for this inconvenience
RUN2EXE recognises most of the options accepted by the Par.C
loader/server and stores them in the resulting executable file, so that
they can be used by the special included server. This means that the
server will then always use the specified options.

The possible server options are:

-p<number> : set link adaptor port address to <number>

-r : do not reset before loading program
-t : display execution time of loaded program
-b : open all files in binary mode
-x : load program and terminate without

serving I/O requests

Notes. Although a special version of the Par.e loader/server is used, it still
needs access to the files hardware. cnf, realt8. rsl and realt4. rsl. If
the file hardware. cnf is not available, the server uses a default setup.
The files realt4.rsl and realt8.rsl can only be omitted if the Par.C
program does not use any floating point operations or if the program is
compiled with #pragma fpu to generate inline floating point code.

7-4

Utilities RUN2EXE

Error mess8g_e_s _
RUN2EXE may generate the following errors:
out of memory

RUN2EXE could not allocate enough memory.

file error in <name>

An error occurred while accessing the file <name>.

eRe error

RUN2EXE'S integrity is violated.

file <name> is not available

The source file <name> could not be found.

missing input filename

The source filename was not specified on the command line.

unable to open file <name>

The output file <name> could not be opened for writing.

See also: Par.C loader/server.

Error messages of standard options routine

#pragma fpu

realt4.rsl

realt8.rsl

hardware.enf

7-5

MODRUN

MODRUN

A utility to modify Par.C executables.

Par. C System

With MODRUN the placement of code, data and initial stack low or high
in memory can be controlled, the stacksize can be set/modified, the top
of memory to be used by the module can be set (from version 1.22
upwards), and the program can be modified to run in either single- or
multi transputer mode.

As MODRUN does this much faster than re-linking the program, it can
be used when experimenting with different stack sizes, and locating
different program segments in high or low memory (e.g. to optimise
performance of the program).

Usage modrun <filename> [options]

Ifno extension is supplied for the filename, . run is assumed. A summary
of options and syntax can be obtained by invoking MODRUN without
arguments. These options are described in more detail below.

If only a filename is supplied, the file is analysed and a description
concerning the sizes of the segments in the file is displayed, in the same
way as the linker does after sllccesfully producing an executable file. The
sizes are given in hexadecimal notation.

Example Possible output when invoking MODRUN with only a filename:

Booter bfS stack 400 (low)
Code 3SSc . Entry 2c8
Data 22c (low) Udata 44

The segments marked (low) are indicated to be placed in low memory.

The options -b, -h, -m, -s and -c may be used to have the loader
parameters modified. Before applying the modifications, MODRUN asks
for confirmation:

Modify module.run (yin) ? :

This can be answered with "y" or "y" followed by [RETURN] to confirm.
The question can be suppressed by using the -nq (for "no questions")
option.

7-6

Utilities

After adjustments have been made MODRUN will display:

Program modified successfully

MOORUN

Note The version of MODRUN should be the same as the version of the Par.C
System with which the .run file was created. If not, the result is
undefined.

QEtions

Setting the initial stacksize

The option -s<size> causes the initial stack size to be set to <size>. If
the initial stack is chosen too large it is a waste of memory, but if the
stack is small, a new stack must be allocated more often. This may cause
a considerable degradation of performance. Tuning the stacksize to an
optimum needs some experimenting, but often pays off in gained
performance. See the Special Topics chapter, paragraph on speed
improvement for more details on the possible results. The wanted initial
stacksize can be specified according to the following format rules (which
may be combined in any way):

• A plain number is taken to be the wanted size in bytes, in decimal
notation.

• A number preceded by 'Ox' indicates that the size is given in
hexadecimal notation.

• A number preceded by '0' indicates that the size is given in octal
notation.

• A number preceded by a plus sign indicates that the current size
should be incremented by the specified amount.

• A number preceded by a minus sign indicates that the current size
should be decremented by the specified amount.

Examples Some possibilities in changing the stack size of a program:

-slOO sets the initial stack size to 100 bytes.
-sOxlOO sets the initial stack size to 256 bytes.
-s+lOO adds 100 bytes to the current size.
-s-OxlO subtracts 16 bytes from the current stack size.
-sOlOO sets the initial stack size to 64 bytes.

7-7

MODRUN Par.C System

Placement of code, data and stack segments

The -b and -h options can be used to influence the placement of code,
data and/or stack segments in low (-b) or high (-h) memory. If more
than one segment is to be loaded in low memory, a fixed sequence is
used: first the code segment, then the (initial) stack, and finally the data
segment.

Note Placement of code, stack and/or data in low memory is mainly used for
optimisation of performance of a program: the on-chip memory of the
transputer is normally much faster than external memory. MODRUN will
not give a warning if the total size of segments which are to be placed
low in memory exceeds the size ofthe internal memory of the transputer:
a part of the segments will simply cross over the boundary between
internal and external memory, since this boundary does not exist for the
memory manager.

Examples Some possibilities in placement of program segments:

-be causes the code segment to be loaded low in memory.
-bsd causes the stack & data segments to be loaded'low in memory.
-bds has the same effect as -bsd

If either of the -h or -b options is specified, MODRUN will display the
layout of the loadmodule as if the modifications have been made
already. Then it will ask for confirmation of the changes.

Setting the memory size on T #1

The -m option enables the setting of a memory size on the first node in
the network. This will keep the network analyser on this first processor
from performing a memory check, and instead assume the memory size
to be as indicated after the -m option.

The -m option has been provided for specific interface boards, which
have video RAM or memory-mapped I/O immediately following the
normally usable RAM. Setting the memory size to an address below the
actual size will prevent loading the program in video memory in the first
case, and prevent a possible host system crash (resulting from an illegal
or incomplete I/O access) in the latter situation.

The rules for specification of the memory size are the following:

• A plain number is taken to be the size in bytes, given in decimal
notation.

• A number preceded by 'Ox' is taken to be the size in bytes, given in
hexadecimal notation.

7-8

Utilities MODRUN

• A number preceded by '0' is taken to be the size in bytes, given in
octal notation.

• A number followed by the letter 'k' (or 'K') is taken to be the size in
Kilobytes: the number is multiplied by 1024 (Ox400).

• A number followed by the letter 'm' (or 'M') is taken to be the size in
Megabytes: the number is multiplied by 1024*1024 (Ox100000).

• A number followed by the letter 'g' (or 'G') is taken to be the size in
Gigabytes: the number is multiplied by 1024 *1024 *1024
(Ox40000000).

• The'+' and '-' (binary) operators may be used.

• The number 0 causes the automatic memory check to be restored.

Note MinInt (Ox80000000) is added to the specified memory size to obtain an
address for MemTop. The maximum size that can be set with MODRUN
is 2 Gigabytes (with MemTop set to the address OxOOOOOOOO).

Examples: Option MemTop at Memory size
-m2048 Ox80000800 2KBytes
-mOxlOOO Ox80001000 4 KBytes
-m4k Ox80001000 4 Kbytes
-mlm+2K Ox80100800 1026 KBytes
-m4M-64K Ox803fOOOO 4032 KBytes
-mlG+lM OxCO100000 1025 Mbytes
-mO According to results of memory check

Single-node or all-node program

The option -cs disables network investigation and causes the program
to run only on the first transputer. Relinking the program with a .lib
has the same effect. After confirmation MODRUN will display the
message:

Making module.run a single-transputer program

The option -cm enables network investigation. The program will then
be 'floodfilled' on all available nodes. Relinking the program with b .lib

will have the same effect. After confirmation MODRUN will display the
message:

Making module.run a multi-transputer program

Note The -cs and -cm options only work for programs produced with the
Par.C System version 1.3 and higher.

7-9

MODRUN Par.C System

Control of screen output
The -nq option suppresses the question for confirmation, which is
normally prompted before the loadmodule is modified.

The -11 option causes library and copyright information to be printed
to the screen, if this information is available in the load module that is
being examined.

The -In option suppresses screen output of MODRUN. This may be
useful when calling the utility from a batch file. Note that using this
option does not overrule the confirmation question. To have MODRUN
do its job completely in silence, both -In and -nq options must be used.

Error messages
There are 2 types of errors: syntax errors and processing errors. With
one exception, all errors are fatal, causing the module not to be
modified. The only non-fatal error is :

MODRUN - *ERROR* Reference patch segment misaligned

1 byte

This error is caused by an internal error in the Par.C System linker. If
this occurs, you are kindly requested to fill out the bug report form and
return it to Parsec Developments.

Syntax errors

Syntax errors refer to the commandline, and have the following format:
syntax error: <description> [<info>]

The syntax errors are numerous and completely self-descriptive and will
therefore not be discussed in detail.

Processing_e_r_ro_r_s - _

Processing errors have the following format:
MODRUN - *ERROR* <description> [<info>]

A list of all possible fatal processing errors is given below. All numbers
in the messages below are used as an example. They might have other
values in an actual message. Wherever < name> is used, it denotes the
name of the module as given in the commandline. The names 'l.tmp ,
and '2.tmp' denote temporary files as generated by MODRUN on the host
system.

7 -10

Utilities MODRUN

MODRUN - *ERROR* can not open <name>

The module to be modified could not be opened. Probably the path or
file specification was incorrect, so an attempt was made to open a
non-existing file.

MODRUN - *ERROR* write error, file might be corrupted

This is the only case, where MODRUN might have corrupted your
module. It is advisable to relink your program, and also to check your
disk system.

MODRUN - *ERROR* Can not change single/multi mode :
Failed to open temporary file

A temporary file is used to compose a new version of the load module.
In this case it could not be opened.

MODRUN - *ERROR* Read of <name> failed

A read error occured while copying part of the module to the temporary
file.

MODRUN - *ERROR* write to temporary file failed

A write error occured while copying part of the module to the temporary
file.

MODRUN - *ERROR* Can not change single/multi mode :
Failed to rename <name> to 2.tmp

After creating the new module in a temporary file, the original file is
renamed. This failed. Try using MODRUN from the directory which
contains the loadmodule.

MODRUN - *ERROR* Can not change single/multi mode :
Failed to rename 1.tmp to <name>

After giving a temporary name to the old module, the new module is
renamed to the original name. This failed.

MODRUN - *ERROR* Can ~ot set memory top : no booter in
module

A memory size is specified, which cannot be patched in the module since
it does not contain bootcode.

MODRUN - *ERROR* Can not set memory top : not available

The module is made with a version of the Par.C System older than 1.22,
which does not allow the possibility of setting the memory size. Relink
the module with the Par.C System version 1.22 or higher.

7 - 11

MOORUN

7 -12

Par.C System

MODRUN - *ERROR* Can not change single/multi mode :

version < 1.3

The -cs or -em switch can not be applied on modules produced with the
Par.C System older than version 1.3.

MODRUN - *ERROR* Data section has odd size : 7f2

The data section size should be a multiple of 4. This does not mean that
the loadmodule is corrupted: it ispossible to create a module with odd
data size by (ab)using assembly source code. As this can cause
unpredictable behaviour at loadtime and during execution, we
recommended to scan any assembler modules incorporated in the
program to contain a misaligned directive in .dseg. In most cases the
linker will have given the warning:

WARNING Data label LABELNAME at odd boundary

MODRUN-*ERROR* Initialised data section has odd size: 883

The same story applies as for the previous message.

MODRUN - *ERROR* Entry point outside code segment

The entry point of the module is stored as an offset in the code segment,
and therefore should be within a reachable part of it. In this module it
does not. This error probably implies, that the entry point is patched
manually.

MODRUN - *ERROR* premature end of file at <fileptr>

The file is corrupt, or not a loadmodule. < fileptr > is a decimal number,
denoting the pointer in the file, where MODRUN attempted to read.

MODRUN-*ERROR* <name> is not a load module

MODRUN discovered that the file is corrupt or not a load module before
< it attempted to read outside the file.

MODRUN-*ERROR* Wrong Code size (355c) or BlockTag (47)

This means, that the file is a loadmodule, but it is corrupted one way or
another. A wrong BlockTag is read, which can mean, that the code size
is wrong, because BlockTag should immediately follow the code
segment. BlockTag should be 21 (hex).

MODRUN-*ERROR* Datasize (340) smaller than initialised
data area (4b9c7)

Just another way to tell that the module is corrupted.

Runtime Libraries

8-1

Introduction

General remarks

Introduction

Par.C System

This chapter of the Par.C System Manual contains a reference of the
Par.C runtime facilities.

The section on header files gives a description of the contents of the
header files and explanations of the types and macros·defined in these
files. Although some of the types and macros are internal to the Par.C
System, they are included in the explanatory lists.

The Library reference contains descriptions of all standard Par.C
functions, ordered alphabetically. An underscore character or a
sequence of dots in the function name is ignored.

Although we have tried to adjust documentation and implementation of
the Par.C System runtime libraries to each other, there is always the
possibility of errors, omissions or differences. If you find errors of this
kind in this manual, please notify us via the bug report form included in
the appendices.

Compatibility with Draft ~osed ANSIC
The Par.C runtime libraries contain most of the Draft Proposed ANSI C
facilities, although some of these cause problems in relation to parallel
processing. The deviations from Draft Proposed ANSI C are listed below.

• locale. h is not available. The use of different locales is not
supported in the current version of Par.C.

• set jmp •h is not available. The use of the functions contained herein
causes serious problems in concurrent processing. It is not yet clear
if these functions can be implemented at all in the Par.C System.

• Support for temporary files is not available. This implies that
tmpfile () and tmpnam() cannot be used, L _ TMPNAM is not specified
and TMP MAX is not declared.

• Non-defined macros are: EDOM, ERANGE, HUGE_VAL, SIGFPE, SIGILL,

SIGINT, SIGSEGV, and SIGTERM.

• The types si9_atomic_t, fpos_t, div_t and Idiv_t are not defined.

8-2

General remarks Compatibility with Draft proposed ANSI C

• According to Draft Proposed ANSI C, the return types and types of
arguments of some facilities should be void *. In the current version
of the Par.C System, the compilerwill not allow operations on void *
types. Therefore these types have been defined as char *.

Apart from the missing functions named and implied above, the
non-available functions in the current version of the Par.C System are
the following:

• freopen(), fgetpos(), fsetpos(), div(), Idiv(), and strcoll().

These functions have not been implemented yet, but will probably be
available in the next version of the Par.C System.

• strftime()

This function is related to the support of different locales via locale.h
and is therefore not implemented in the current version of the Par.C
System.

The following functions are implemented conform to Draft Proposed
ANSI C, but have been given a re-entrant replacement which fits better
into a parallel processing environment.

ANSI C function Par.C System replacement
getenv()

gmtime ()

asctime()

localtime()

strtok()

strerror()

getenv_r()

gmtime_r()

asctime_r()

localtime_r()

strtok_r()

strerror_ r ()

8-3

assert.h

Header files

assert.h

Contents: assert ()

Par. C System

.Description: . It • •• assert. h is used in debugging C programs and contains the definition
of assert(p). When the value of p is false or zero, this macro can be
used to give a diagnostic message and exit. The message will indicate
where in your program the error occurred. If the macro NDEBUG is
defined when assert.h is included, assert(p) is defined as the empty
string, thereby annulling the effect of assert(p) in the program.

crash.h
This file has been removed from the Par.C System. The routine CRASH ()

is replaced by a more sophisticated fatal error handling utility, for
internal use by the Par.C System only.

~_e._h _

Contents: .
isalnum()

isalpha()

isascii ()

iscntrl ()

isdigit()

isgraph()

islower ()

isodigit()

isprint ()

ispunct()

isspace ()

isupper()

iswhite ()

isxdigit()

toascii()

tolower()

toint ()

toupper()

_tolower ()

_toupper()

Description: .. " It. ctype . h contains declarations of facilities for character processing.
These facilities are of two kinds: classification and conversion.

The classification facilities check on the inclusion of the character in a
specific class of characters, returning a nonzero integer if the character
falls inside the class to be considered and zero otherwise. All
classification facilities declared in ctype. h are implemented as
functions, and are available in std .lib.

8-4

Header files errno.h

The conversion facilities cause the character to fall inside a specific
range, by changing its value where needed. All conversion facilities
declared in ctype . h return an integer value representing a character or
EOF. All conversion facilities are implemented as functions, and are
available in std .lib, except for toascii () which is implemented as a
macro.

Notes and remarks: _tolower and _toupper are versions of tolower () and toupper () ,

which are implemented as macros and allow only a restricted range of
characters as arguments. Since these macros do not do any checking,
they could produce unwanted results if the argument is not a letter.

errno.h

Contents: Error codes used in the Par.C System.

Description: errno. h contains definitions of errorcodes. Most errorcodes concern
errors that may occur while doing file I/O. Other standard errorcodes are
defined for memory manager errors and errors in math functions.

A full list with errorcode values and explanations is given below:

Fatal system errors:

ESYS MEMCORR Memory structure corrupted
ESYS OUTOFMEM Out of memory
ESYS CORRUPT Process structure corrupted
ESYS ILLCALL Illegal system call
ESYS INTERN General internal error (Bug)
ESYS COMFAIL Fatal communication failure
ESYS DEADLOCK Unrecoverable deadlock

Recoverable errors:

E EOF

E UNKACC

E NOPNFWR

E NOPNFRD

E NOSUFI

E READ

E WRITE

End of file
Unknown access code
Not open for Write
Not open for Read
No Such File
Read error
Write error

8-5

errno.h Par.C System

E CANTSEND Cannot send over channelllink
E CANTRECV Cannot receive from link/channel
E DISKFULL Disk full
E· WRITPROT Medium is write protected
E CANTOPEN Cannot open file
E CANTSEEK Cannot seek
E NOTCON FILE structure not connected to open file
E_ UNKREQ Unknown request code received
E TIMEOUT Time out on communication
E ILPFDB illegal pointer to FDB

E IGNORED Command ignored, probably destination inactive
E ILLFID Illegal File ID

E ABORTED Command aborted
E DRINUSE Driver still in use
E UNKDEV Unknown device (not installed)
E CANTALLOC Memory allocation failure
E CANTFREE Memory deallocation failure
E CANTCLOSE File can not be closed properly
E CANTTELL File pointer not available
E LINKNO Attempt to access non-existing link

(LinkNo<O or LinkNo>3)

E CANTREMOVE Failed to delete file
E CANTRENAME Failed to remove file
E ILLPARM Illegal parameter value
E CANTWRITE Currently reading, can not write without seek
E CANTREAD Currently writing, can not read without seek
E CANTINSTALL Failed to install driver
E CANTUNGET unget without get or double unget

E RSLFMT8 realt8 .rsl : format corrupted-
E NOREALT8 Can not find resident library realt8 .rsl

E RSLFMT4 realt4. rsl : format corrupted
E NOREALT4 Can not find resident library realt4 .rsl

E UNDEFREF Call to undefined reference
E COMFAIL Communication failure
E GIOERR General I/O error

Math errors:

8-6

EM GENERAL

EM LOGDOMAIN

General math error
Argument of logarithm <= 0

Header files f1oat.h

EM POW2UFLOW Result of pow2 too small
EM POW20FLOW Result of pow2 too large
EM COSHOFLOW Result of cosh too large
EM SINHOFLOW Result of sinh too large
EM_SQRTDOMAIN Argument of sqrt < 0

EM LDEXPOFLOW ldexp overflow
EM LDEXPUFLOW ldexp underflow
EM POWDOMAIN pow : illegal arguments
EM POWOFLOW Result of power too large
EM LOGI0DOMAIN Argument of 10g10 <= 0

EM ATAN2UNDEF atan2 undefined
EM ASINDOMAIN asin not defined outside [-1,1]
EM ACOSDOMAIN acos not defined outside [-1,1]
EM ACOSHDOMAIN acosh not defined below -1
EM ATANHDOMAIN atanh not defined outside [-1,1]
EM POWI0UFLOW Result of powl0 too small
EM POW100FLOW Result of pow10 too large
EM EXPUFLOW Result of exp too small-
EM EXPOFLOW Result of exp too large
EM MODFIOFLOW Integer overflow in modf

EM POWUFLOW Result of pow too small-

float.h

Contents: Characteristics of the float and double data types.

Description: float. h contains the implementation-dependent characteristics of the
float and double datatypes. The format of these datatypes determines
their precision. In the Par.C System, full transparency is maintained
regarding floating point arithmetic on T4xx and T8xx transputers. This
implies that the format of float and double variables is conform the
format used in the T8xx's FPU, which largely conform to "the IEEE 754
format definitions [Inmos 19"86, IEEE 1985].

A list of definitions with explanations is given below.

FLT MAX max. representable finite nr. 3.402823466e +38
FLT MIN min. normalised positive nr. 1.175494351e-38
FLT_ EPS ILON smallest significant value 1.192092896e-07
FLT_ MAX_10_ EXP maximal decimal exponent 38
FLT_ MAX_EXP maximal binary exponent 128

8-7

f1oat.h Par.C System

FLT_ MIN_10_EXP miminal decimal exponent -37
FLT_MIN_ EXP minimal binary exponent -125
FLT MANT DIG number of bits in mantissa 24- -
FLT DIG precision (decimal digits) 6
FLT ROUNDS addition rounding 0
FLT RADIX exponent radix 2
DBL MAX max. repr. finite number 1.7976931348623158e +308
DBL MIN min. normalised pOSe number 2.2250738585072014e-308
DBL_EPSILON smallest significant value 2.2204460492503131e-016
DBL_MAX_IO_EXP maximal decimal exponent 308
DBL_MAX_EXP maximal binary exponent 1024
DBL_MIN_10_EXP minimal decimal exponent -307
DBL_MIN_EXP minimal binary exponent -1021
DBL MANT DIG number of bits in mantissa 53- -
DBL DIG precision (decimal digits) 15
DBL ROUNDS addition rounding 0
DBL RADIX exponent radix 2

The smallest significant value given is defined as the smallest value x for
which 1. 0 + x ! =1. o. Note that there is an important difference with the
smallest representable value.

Notes and remarks: float arithmetic uses the float format as long as no functions are
called. Whenever the float variable is listed as parameter for a function,
a type conversion to double is performed.

The codes used by the T8xx for Not-a-Numbers are also supported in
the primitive floating point arithmetic operations implemented for the
T4xx and included in the realt4.rsl resident library. A list of meanings of
the NaN-codes is given below.

Single length Double length value Error signified

8-8

7FCOOOOO
7FAOOOOO
7F900000
7F880000

7F840000
7F820000
7F804000
7F802000

7FF80000 00000000 Divide zero by zero
7FF40000 00000000 Divide infinity by infinity
7FF20000 00000000 Multiply zero by infinity
7FFIOOOO 00000000 Addition of opposite signed

infinities or subtraction of same signed infinities
7FF08000 00000000 Negative square root
7FF04000 00000000 64 to 32 bit NaN conversion
7FF00800 00000000 Remainder from infinity
7FF00400 00000000 Remainder by zero

Header files Iimits.h

The NaN's listed above are generated by the T8xx's hardware and by the
FPu-emulating functions running on the T4xx. The library functions will,
when an error occurs, return the following NaN with an error code in
the low word.

Example: 7FFOOOOO 00001015 NaN for sqrt() domain error.

limits.h

Contents: Miminum values and extra definitions of the standard types in the Par.C
System.

Description: A list of definitions of the standard types in the Par.C System is given
below.

CHAR BIT width in bits of char type 8
SCHAR MIN minimum value of signed char -128
SCHAR MAX maximum value of signed char 127
UCHAR MAX maximum value of unsigned char 255
SHRT MIN minimum value of short int -32768
SHRT MAX maximum value of short int 32767
USHRT MAX maximum value of unsigned short 65535
INT MIN minimum value of int -2147483648
INT MAX maximum value of int 2147483647
UINT MAX maximum value of unsigned int 4294967295
LONG MIN minimum value of long int -9223372036854775808
LONG MAX max. value of long int 9223372036854775807
ULONG MAX max. value of unsigned long 18446744073709551615
CHAR MIN is defined as SCHAR MIN- -
CHAR MAX is defined as UCHAR MAX-

8-9

math.h

math.h

Contents: .
acos ()
asin()
atan()
atan2 ()
ceil ()
cos ()
cosh ()

exp()

fabs ()
floor ()
fmod()
frexp()
Idexp()
log()

loglO()
modf ()
pow ()
pow2()
powlO ()
sin()

sinh ()

Par.C System

sqrt ()
tan()

tanh ()
matherr()
_matherr ()
NaN()

Description: • math. h contains declarations of floating point arithmetic functions. All
of these functions are available in math .lib and make use of the
primitive floating point arithmetic operations included in the resident
libraries realt4. rsl and realt4 . rsl. This implies that all functions are
fully transparent regarding the type of transputer used.

All functions use the double datatype and guarantee a maximum
precision obtainable using that type. The return value is in the double
format. Errors will cause a Not-a-Number (NaN) to be returned. A list
of possible NaN'S and their meanings is given in the description of
float. h. You can check if a double is a NaN by using the function NaN ().

servasm.h
Because the Par.C file I/O system has been changed and will be extended
further in the next release of the Par.C System, the servasm. hand
server. h include files have been removed. New facilities and
documentation for writing device drivers and custom servers will be
provided with the next release.

server.h
Because the Par.e file I/O system has been changed and will be extended
further in the next release of the Par.C System, the servasm.h and
server.h include files have been removed. New facilities and
documentation for writing device drivers and custom servers will be
provided with the next release.

8 -10

Header files

signal.h

Contents: """""""
ABORT SIG

EVENT SIG

ALARM SIG

SIG_DFL()

SIG_IGN()

SIG_ERR()

MAX SIG

raise ()

signal()

signa/.h

HIGH PRIORITY

LOW PRIORITY

Description: """"" signal. h contains declarations of functions related to the signal
function in C, which provides a simple mechanism for exception
handling. This mechanism allows programmers to implement a signal
handling function, which is activated when the signal related to it is
triggered.

signal () is used to relate the signal handling function to a specified
signal value. The various signals can be triggered by the hardware (via
the computer's error-detection mechanism) or by the software (calling
raise () with the specified signal value as argument). The latter method
enables a process to activate a signal handling process, without needing
any software linkage between the two except for the signalname.

SIG_DFL(), SIG_IGN() and SIG_ERR() are defined as functions to
correspond to the arguments expected by signal (sig, (*func) ()). For
a description of their use, see the description of signal ().

sidarg.h

Contents: "."""""
va list va_start ()

va_arg()

Description: """"" The facilities declared in stdarg" h provide a standard way of accessing
variable argument lists. These are needed to support certain functions
(such as fprintf () and vfprintf () and possible user-defined
functions).

va_list is a type for local state variables, which are used in traversing
the argument list. The local state variable is usually called ape

va_start (), va_arg() and va_end () are defined as macros (according
to the Draft Proposed ANSI C standard), and are described in the Library
reference section.

8 -11

stdcnv.h

stdcnv.h

Contents: .
itoa()

utoa ()

xtoa()

xtoa()

otoa()

btoa()

ltoa()

ultoa()

xltoa()

Xltoa()

oltoa()

bltoa()

dtoa()

atoi ()

atou()

atox()

atoo ()

atob()

atof ()

atol ()

atoul()

Par. C System

strtol()

strtoul()

_toa()

_ato()

fIt

Description: stdcnv. h contains a large number of conversion facilities. Most of these
have been implemented as macros, expanding to a call to the generic
conversion functions _toa () and _ate (). These functions require a
pointer to the string concerned, a base value with possible flags for
signed or unsigned types, and a value or variable.

_ £1t is a structure type defined as an "unpacked" floating point number,
containing integers for sign and exponent and an unsigned long for the
mantissa.

Notes and remarks: The atoi (), ato1 () and atof (), strtol () and strtou1 () facilities (all
implemented as macros) are also defined in stdIib.h, in accordance
with the Draft Proposed ANSI C standard. Since conditional compiling
is used, including both stdlib. hand stdcnv . h will not lead to warnings
or error messages. The function strtod () is declared in both header
files as well, and will not lead to warnings or error messages either.

8 -12

Header files

stddef.h

Contents:
size t

ptrdiff_t

errno

offsetof()

NULL

semaphore

TRUE

FALSE

_Byte

Word

ByteslnWord

P()

PROG

CSEG

DSEG

MostNeg

stddef.h

MostPos

V()

Minlnt

Tn

nT

_ttype

LinksPerTransputer

Description: stddef. h contains declarations of standard definitions, and should be
included by programs using any of these. Included are general purpose
definitions, as well as definitions and declarations specific for the Par.C
System.

Notes and remarks: This file is included in the following files:

assert.h

errno.h

signal.h

stdarg.h

stdcnv.h

stdio.h

stdlib.h

system.h

tirne.h

transp.h

Therefore, if any of these files is included, stddef. h is automatically
included as well.

~Ianation of definitions and declarations

size_t

ANSI C type, denoting the unsigned type of the result of the sizeof
operator. In the Par.C System, size_ t is defined as unsigned int.

ptrdiff_t

ANSI C type, denoting the type of the result of subtracting two pointers.
In the Par.C System, ptrdiff_t is defined as int.

8 -13

stddef.h

8 -14

Par.CSystem

errno

This variable should contain the code assiociated with the last runtime
error encountered. Although this may be useful for sequential
processes, it is unreliable when the concurrent features of the Par.C
System are used. A more sophisticated error handling mechanims
designed for concurrent processing, is still under development.

offsetof(s, f)

ANSIC definition, evaluating to the offset of the field denoted by f inside
the structure denoted by s. offsetof () is implemented as a macro.

NULL

The NULL pointer. To keep programs upward compatible with future
versions of the Par.C System, it is highly recommended to use this macro
instead of the value 0, because in future versions MostNeg or MostPos

might be used as NULL pointer value. This is the result of the transputer
addressing its memory in a signed space starting at MostNeg. This implies
that 0 can represent a valid pointer.

semaphore

Type definition for semaphore variables. A description of the use of
semaphores is given in the library reference to the P () and v () functions.

TRUE

An integer with value 1 used as boolean.

FALSE

An integer with value 0 used as boolean.

_Byte

Defined as unsigned char. The default character type of the Par.C
compiler is signed. However, many operations and type conversions are
more efficient using unsigned characters.

_Word

Defined as unsigned int. The default integer type of the Par.C compiler
is signed. However,. many values require unsigned integers.

ByteslnWord

Par.C System definition. This macro evaluates to the number of bytes in
a transputer word. In the current version of the Par.C System this value
is fixed at 4 (the length in bytes of a 32-bit word).

Header files stddef.h

__PROG__

Global variable containing a pointer to the name of the program. This
is the same pointer as argv[0] (second parameter of main).

__CSEG__

Global variable containing a pointer to the start of the code segment,
and can be used to calculate a relative offset inside the code segment.

__DSEG__

Global variable containing a pointer to the start of the data segment,
and can be used to calculate a relative offset inside the data segment.

MostNeg

The largest negative number representable in a signed transputer word.
In the current version of the Par.C System this value is fixed at
Ox80000000 (the most negative 32-bit integer).

MostPos

The largest positive number representable in a signed transputer word.
In the current version of the Par.C System this value is fixed at
Ox7FFFFFFF (the most positive 32-bit integer).

Minlnt

Stands for minimum integer and has the same value as MostNeg. Minlnt

is often us~d in transputer reference manuals and Inmos technical notes.

Tn

Par.C variable. When the program is loaded into each transputer in the
network, this variable is initialised to the number of the current
transputer as provided by the network loader. Note that the _Tn variable
will have no effect in programs linked with a .lib, since these programs
will only be loaded on one single transputer, and _Tn will therefore
always have the value 1.

nT

Par.C variable. When the program is loaded into each transputer in the
network, this variable is initialised to the total number of transputers in
the network, as found by the network loader. When the program is
linked with a .lib, _ nT will have the value 1.

8 -15

stdio.h Par.C System

_ttype

Par.Cvariable. When the program is loaded into each transputer in the
network, this variable is initialised to indicate the type of the current
transputer. The value of_ttype is 2 on a T212, 4 on a T414, 5 on a T425
and 8 on a T800.

LinksPerTransputer

Par.C definition. In the current version of the Par.C System this value is
fixed at 4.

Notes and Remarks The use of the Par.C variables _Tn, _nT and _ttype is discouraged. For
future compatability it is advised to use the equivalent fields in the
SYSTEM structure as defined in system.h.

stdio.h

Contents:
IOFBF OIR fputc () putS()

IOLBF stderr fputs() putc ()

IONBF stdin fread() putchar()

BUFSIZ stdout fscanf () remove ()

LBUFSIZ clearerr() fseek() rename ()

EOF Dir() ftell() rewind ()

FILE oirrnit() fwrite () Run ()

FNULL fclose () getc () scanf ()

F ERROR ferror() getchar () setbuf()

F EOF feof () gets () setvbuf()

OK fflush () InPort() sprintf()

SEEK CUR fgetc () outPort() sscanf ()

SEEK END fgets() PeekHost() ungetc ()

SEEK SET filerr () perror() vfprintf()

MAX LINE fopen() pokeHost() vprintf ()

MAX OPEN fprintf () printf () vsprintf ()

Description: stdio •h contains the necessary definitions and declaratiolJ.s to enable
the use of standard input/output facilities. All names in capitals are
macro definitions and are explained below. Functions are explained in

8 -16

Header files stdio.h

the Library reference chapter, where all runtime library functions are
listed in alphabetical order.

The functions in stdio.h provide a standard way of communicating with
the "outside world". In the present version of the Par.C System, these
file I/O functions can only be called directly on the first transputer in the
network, since only this first transputer has a host driver process running
to support file I/O. On other transputers calling these functions will
probably result in a crash.

Notes and remarks: The Par.C file I/O system is capable of handling multi-process file I/O.
Therefore some slight changes and additions have been made to the
standard facilties included in stdio. h.

§!planation of definitions and declarations

_IOFBF

Calling setvbuf () with _IOFBF causes the buffering mode for the
specified stream to be set to full buffering. This implies that the buffer
is completely filled or emptied before writing or reading characters via
the file I/O system. This type of buffering is useful when acessing disk
files.

_IOLBF

Calling setvbuf () with _IOLBF causes the buffering mode for the
specified stream to be set to line buffering. This implies that characters
are written or read whenever a newline or an EOF is encountered, or
whenever the buffer is completely filled or emptied. This type of
buffering is useful when acessing the screen.

_IONBF

Calling setvbuf () with _IONBF causes the buffering mode for the
specified stream to be set to no buffering. This implies that characters
are written and read directly via the file I/O system. This type of
buffering is useful whenever direct transfer is wanted.

BUFSIZ

BUFSIZ gives the default size of the buffer used by the setbuf () function
(full buffering).

LBUFSIZ

LBUFSIZ gives the default size of the buffer when using the line buffering
mode.

8 -17

stdio.h

8 -18

Par. C System

EOF

EOF expands to a negative value that is returned by several functions to
indicate an end_of_file being reached.

FILE

FILE denotes a structure containing all necessary information on a file
which can be accessed by calling the appropriate file I/O functions. The
structure contains a number of flags indicating the opening mode of the
file, a pointer to the last character read from or written to the file, a
variable holding information on a possible error encountered while
reading from or writing to the file, a file pointer, a buffer pointer and
some information needed by the file I/O system.

FNULL

FNULL is used as pointer to a non-existant file. Its value is equal to the
NULL pointer, but cast to a FILE pointer.

_F_ERROR

_F_ERROR is used to indicate an error while reading from or writing to a
file, except for an EOF being reached.

_F_EOF

_ F_ EOF is used to indicate an EOF being reached while reading.

OK

OK is used to indicate that no errors have been encountered while
reading from or writing to a file.

SEEK_CUR

SEEK_CUR is used to indicate a reference point for the fseek () function.
When calling f seek () with SEEK_CUR as third argument, the position is
set to a position with the indicated offset from the current position of
the file pointer.

SEEK_END

SEEK_END is used to indicate a reference point for the fseek() function.
When calling fseek() with SEEK_END as third argument, the position is
set to a position with the indicated offset from the end of the file.

Header files stdio.h

SEEK_SET

SEEK_SET is used to indicate a reference point for the f seek () function.
When calling fseek() with SEEK_SET as third argument, the position is
set to a position with the indicated offset from the start of the file.

MAX_LINE

MAX_LINE is an integer which is set to indicate the maximum length of a
string, used in the file I/O system. This variable can be used to avoid
overflow when calling gets () • It may be altered to influence gets () •

MAX_OPEN

MAX_OPEN indicates the maximum number of files which can be open
simultaneously. In the current version of the Par.C System, this number
is set to MostPos (the largest representable integer), since the structure
of the file I/O system does not impose any restrictions on the number of
opened files. However, the host system you are working on might set
such restrictions.

DIR

DIR is defined as a structure containing the directory information which
is received from the host through the use of Dir () .

stderr

This variable contains a pointer to the file descriptor of the standard
error stream.

stdin

This variable contains a pointer to the file descriptor of the standard
input stream.

stdout

This variable contains a pointer to the file descriptor of the standard
output stream.

8 -19

stdlib.h

stdlib.h

Contents: .
RAND MAX

MAX ONEXIT

MEMINFO

abort ()

_abort ()

abs ()

atexit()

atof ()

atoi ()

atol ()

bsearch()

calloc ()

exit ()

_exit ()

free ()

getenv()

getenv_r()

labs()

malloc ()

onexit t

onexit()

qsort()

rand{)

realloc ()

smalloc()

srand()

Par. C System

strtod{)

strtol()

strtoul()

calloc ()

realloc ()

system()

RunProcess ()

Release ()

sendLink()

ReCvLink{)

sendLinkorFail()

RecvLinkorFail{)

MemAvail{)

Description: stdlib. h contains declarations of standard facilities, which can be
divided into three different kinds:

The first group of facilities is used in storage allocation, and consists of
the functions calloc (), malloc (), smalloc (), realloc () and free ().

The second group offacilities gives control over the program's execution
and termination in different ways, and consists of the functions abort (),

atexit (), exi t (), _ exit (), onexi t (), the type onexit_t and the macro
MAX ONEXIT.

The remainder of stdlib. h contains declarations ofvarious elementary
fun~tions, including some simple arithmetic, some much-used
conversion utilities and the getenv () and getenv_ r () routines. The
macro RAND_MAX is used in the rand() and srand() functions.

struct MEMINFO is defined as a structure keeping information on the
available free memory blocks, as returned by MemAvail () .

8 - 20

Header files string.h

string.h

Contents: .. "
memchr() strcpy() strpcbrk()

memcmp() strcspn() strrchr()

memcpy() strerror () strrpbrk()

memfill () strerror_ r () strrpos()

menunove () strlen() strspn ()

memset() strncat () strstr ()

strcat() strncmp() strtok()

strchr () strncpy () strtok_r()

strcmp() strpbrk() MAX ERRMSG LENGTH

Description: string. h contains declarations of string handling facilities. The
functions with names starting with "mem" acf on a fixed specified number
of characters, starting from the pointers which are given as arguments
when calling the functions. The functions with names starting with "str"
act on strings and check on a terminating null character.

The function strtok_ r () is a re-entrant version of strtok (), which is
by definition not re-entrant. When more than one process on the same
processor uses strtok (), the result is not defined. The re-entrant
version guarantees correct behaviour in this case. The functions
strerror_ r () and strerror () are related in the same way. See the
descriptions of these functions for more details.

3'stem.h

Contents: ""
SYSTEM

NODEDESCRIPTOR

_GetFunstack()

_setFunstack()

_Getparstack()

_setParstack()

Linkstatus

HOST CONNECTED

NOT CONNECTED

GetNodelnfo()

GetSyslnfo()

priority ()

setPriority()

tohost

fromhost

Description: ... ". system. h contains transputer-dependent facilities of the Par.C System.
For a description of the functions mentioned above see the Library

8 - 21

system.h

8 - 22

Par. C System

Reference. The types and macros defined in system.h are explained
below.

SYSTEM

This type describes a structure containing information on the transputer
network on which the program is running, and on the specific
characteristics of the current node. A more detailed description of the
SYSTEM structure can be found in the Tutorial.

NODEDESCRIPTOR

This type describes a structure containing the local network information
in a packed form.

LinkStatus

The network analyser in the Par.C boot system uses a number of
Linkstatus codes, which are defined in system.h and will not be listed
here.

HOST_CONNECTED

This is a constant value used in the Network [] array in the SYSTEM

structure, used to indicate the link connected to the host system. This
value is therefore only used on the root transputer (#1).

NOT_CONNECTED

This is a constant value used in the Network [] array in the SYSTEM

structure, used to indicate an unconnected link.

_tohost

This is a channelpointer containing the address of the outgoing bootlink
of the current transputer (which indicates the direction of the host).

fromhost

This is a channelpointer containing the address of the incoming bootlink
of the current transputer (which indicates the direction from the host).

Header files

time.h

Contents: .
AFTER ()

BEFORE ()

CLK TCK

FIRSTDAY

BASEYEAR

clock t

_daylight

time t

timezone

tm

alarm()

_alarm ()

asctime ()

asctime_ r ()

clock()

ctime ()

DateTolnt()

delay()

difftime()

gmtime()

gmtime_r ()

IntToDate()

time.h

localtime()

localtime_r()

mktime ()

_sleep()

sleep ()

time ()

wait ()

yday ()

delay ()

_TicksperSecond()

Description: time. h contains declarations offacilities used in time and date handling.
The macros and types supporting these facilities are explained below.

A number of time and date facilities will give rise to problems when they
are used in the Draft Proposed ANSI C standard form in concurrent
processes, since they are non re-entrant. These funtions have been given
re-entrant replacements, which can be easily recognized by the "_rtf

suffix in the name of the function, i.e. the localtime_ r () function is the
re-entrant replacement of the Draft Proposed ANSI C standard function
localtime () .

The declared macros and types are explained in the following list:

CLOCKS_PER_SEC

This macro expands to the number of processor clockticks per second,
and can be used to calculate periods of time in seconds rather than in
processor clock ticks. Since the transputer contains one processor clock
for each level of priority, the value of CLOCKS_PER_SEC cannot be
determined at compiletime, and is expanded to a function call, returning
a priority-dependent value of CLOCKS_PER_SEC.

_FIRSTDAY

This macro is used in some of the time and date functions to indicate
the starting date for date measurement and calculation. In the current
version of the Par.C System, the value of _FIRSTDAY is set to 3.

8 - 23

time.h

8 - 24

Par.C System

_BASEYEAR

This macro is used in some of the time and date functions to indicate
the starting year for date measurement and calculation. In the current
version of the Par.C System, the value of _BASEYEAR is set to 1972.

clock_t
This type indicates the type of a timer value, returned by some of the
time-related functions, such as clock(). In the current version of the
Par.C System, clock_tis defined as an integer.

_daylight

This variable is used in combination with time functions to indicate
whether daylight savings time is in force or not. If this variable is needed,
the environment variable SUMMERTIME is read when the program is
loaded. If SUMMERTIME is defined, one hour is added to the calculated
localtime, regardless of the value given to the variable on the host
system.

time_t
This type is used by some of the time-related functions, such as
mktime (). In the current version of the Par.C System, ti~e_tis defined
as an integer.

_timezone
This variable is used in combination with time functions to indicate
which timezone is to be used. If this variable is needed~ the environment
variable TlMEZONE is read to obtain the correct value of timezone when
the program is loaded. The correct format for TlMEZONE is: [-] H [: M],

where 0 =< H < 12 and 0 =< M < 60. This value should indicate the
difference between the local time and Greenwich Mean Time.

struct tm
This type is defined as a structure, holding all necessary information on
the calendar time. The structure contains integers for the number of
seconds after the minute, the number of minutes after the hour, the
number of hours since midnight, the day of the month, the number of
months since January, the year, the number of days since Sunday, the
number of days since December 31 of the previous year, and an
indication for daylight savings time. The structure is used by functions
related to date manipulation.

Header files transp.h

trans~_.h _

Contents: """""""
LOW PRIORITY

HIGH PRIORITY

LINKOUT(X)

LINKIN(X)

EVENT

processDescriptor

NotProcessP

_in()

_out ()

Deschedule()

_setHaltErr ()

_ClrHaltErr()

_ResetsystemTimers()

_stopprocess()

Resetchannel ()

_RestartProcess()

_setErr()

_TestErr()

_TestclrErr()

_STLF()

_STLB ()

_STHF ()

_STHB ()

_LDLF()

_LDLB()

_LDHF()

_LDHB ()

Description: """." The routines declared in transp. hare all low-level and specific to the
transputer hardware. Most of these will be obvious in their use. The
routines names in the rightmost column should only be used with
sufficient knowledge of the transputer's hardware, since their usage may
interfere with the standard scheduling mechanism of the transputer.

More information on the use of the routines listed above is given in the
Library Reference. It is possible that some of the declared functions are
not described in this edition of the manual.

8 - 25

Par.C Library Reference

8 - 26

Par. C System

Library reference

abort()

Usage: #include <stdlib.h>
void abort();

Availability: Draft Proposed ANSI C

Library: std .lib

abortO

Description: abort () causes abnormal program termination, unless the signal
SIGABRT is caught by some signal handling routine which does not return.
The abort () function cannot return to its caller.

Return values: none

See also: _abort ()

exit ()

atexit ()

8 - 27

abortO

_abortO
Usage: iinclude <stdlib.h>

void _abort();

Availability: Par.e System

Libraries: io . lib and noio .lib

Par.C System

Description: _abort () causes abnormal program termination by sending an abort
command to the server on the transputer (named hostdriver) .. The
hostdriver in turn sends an abort command to the server on the host
(named run), which will exit with exit value -2. In contrast to abort (),
SIGABRT is not raised. The _abort () function cannot return to its caller.
run will display the message :
<progname> - *FATAL* : Program aborted with code -2

Return values: ... none

Notes and remarks: The only difference between abort () and _abort () is that SIGABRT is
not raised.

This routine is extremely crude: no files are closed and no graceful
termination is performed.

See also: abort ()
exit ()
atexit()

8 - 28

Library reference

abs()

Usage: #include <stdlib.h>

int abs(X)i

int Xi

Availability: . II • • •• Draft Proposed ANSI C

Library: std .lib

abs()

Description: abs () computes the absolute value of x, which is expected to be a
(signed) integer.

Return values: abs () returns the absolute value of x.

See also: labs ()

fabs ()

8 - 29

acosO

acosO
Usage: #include <math.h>

double acos (x) ;

double Xi

Availability: Draft Proposed ANSI C

Libraries: math .lib and t8math .lib

Par. C System

Description: acos () computes the arc cosine of x. The argument x is expected to
have the type double.

Return value: acos () returns the value of the arc cosine of x.

8 - 30

Library reference

AFTER()

Usage: #include <time.h>
int AFTER(Tl , T2)

time t Tl , T2i

Availability: Par.C System

AFTER0

Description: The macro AFTER () compares two times and reports if T2 precedes T 1 .

Return values: AFTER () returns zero if T2 does not precede T 1 I otherwise a non-zero
value is returned.

See also: BEFORE ()

8 - 31

alarm{)

alarm()

Usage:•.... iinclude <time.h>

int alarm(n);

int n;

Availability: ".... Par.C System

Library: ... " std .lib

Par.C System

Description: alarm () sets an internal system timer to the indicated number of
seconds and returns the number of seconds previously on this timer.
When the timer expires, the signal SIGALRM is raised, causing the signal
handling routine which is associated with this signal to be executed. If n

is zero the effect of the call is to "reset" the alarm, i.e. to cancel previous
calls to alarm () .

Notes and remarks: alarm () will cause all processes which are at that moment inactive due
to a call to sleep () or _sleep () to resume execution immediately,
whereby the interrupted sleep () returns the number ofunslept seconds
or clockticks, respectively. Raising SIGALRM by calling raise () will not
cause 'sleeping' processes to be woken up.

Return values: """ alarm() returns the number of seconds which was on the timer before
the call to alarm () was made.

See also: ". . _alarm ()
signal()

raise ()

sleep ()

_sleep()

8 - 32

Library reference

_alarm()

Usage: #include <time.h>

int _alarm(n);

int ni

Availability: Par.C System

Library: std .lib

_a/arm() .

Description: _alarm () sets an internal system timer to the indicated number of
clockticks and returns the number of clockticks previously on this timer.
If n is zero the effect of the call is to "reset" the alarm, i.e. to cancel
previous calls to _alarm () .

Notes and remarks: alarm () differs from alarm () in that the value of n is taken as
low-priority clockticks instead of seconds.

_alarm () will cause all processes which are inactive due to a call to
sleep () 0 r _sleep (), to resume execution after n ticks. Raising
SIGALRM by calling raise () will not cause 'sleeping' processes to be
woken up.

Return values: _alarm () returns the number of clockticks which was on the timer
before the call to _alarm () was made.

See also: alarm ()

signal()

raise ()

sleep ()

_sleep()

8 - 33

asctime()

asctime()

Usage: #include <time.h>
char *asctime(ptr)i

struct tm *ptri

Availability: at ••• at Draft Proposed ANSI C

Library:•.. at. std. lib

Par.C System

Description: asctime () converts the broken-down time given in the tm structure
pointed to by ptr to an ASCII string in the following format:

DAY MON day hour:min:sec YEAR

A newline and the terminating null character are appended to the string
formed. An example of the format: Mon Dec 19 18:15:00 1988

Return values: at.. asctime () returns a pointer to an ASCII string denoting the calendar
time given in the tm structure pointed to by ptr •

Notes and remarks: Since this and related time and date functions have been defined to
operate on a structure and a character array in the static data area, calls
to other functions may overwrite the result of a call to asctime () . Also,
other processes calling the same routine will cause the result to be
overwritten. To avoid these effects all non re-entrant time and date
functions have been given a re-entrant replacement in the Par.C System.
The replacement for asctime () is asctime_r () .

See also: asctime_ r ()

time ()

time.h

8 - 34

Library reference

8sctime_r{)

Usage: #include <time.h>

char *asctime_r(ptr, S);

struct tm *ptr;

char *s;

Availability: Par.e System

Library: std .lib

asctime_rO

Description: asctime_ r () converts the broken-down time given in the tm structure
pointed to by ptr to an ASCII string pointed to by s, in the following
format:

DAY MON day hour:min:sec YEAR

This function is the re-entrant replacement for the Draft Proposed ANSI
C function asctime (). Instead of writing the result of the conversion
into a character array in the static data area, a pointer to the resulting
string is passed to the function from the caller. The programmer is
responsible for the allocation of sufficient memory to contain the full
string.

Return values: asctime_ r () returns a pointer to the ASCII string denoting the calendar
time given in the tm structure pointed to by ptr .

Notes and remarks: In contrast to the string which is built by asctime (), the format of the
string resulting from asctime_ r () does not contain a newline character.

See also: asctime ()

time ()
time.h

8 - 35

asinO

asin()

Usage: iinclude <math.h>

double aSin(X)i
double Xi

Availability: Draft Proposed ANSI C

Libraries: math .lib and t8math s lib

Par.C System

Description: asin () computes the arc sine of x. The argument x is expected to have
the type double.

Return values: ... as in () returns the value of the arc sine of x.

8 - 36

Library reference

assert()

Usage: iinclude <assert.h>
void assert(expression)

Availability: Draft Proposed ANSI C

assertO

Description: The macro assert () takes as its argument a value of any scalar type; if
that value is zero and the macro NDEBUG is not defined, assert () will
print a diagnostic message to the stdout stream and terminate the
program by calling exit () . If the macro NDEBUG is defined, assert () is
disabled and the expression is not evaluated.

Return values: none

8 - 37

atanO

atanO
Usage: •........ iinclude <math.h>

double atan(X)i

double Xi

Availability: Draft Proposed ANSI C

Libraries: math .lib and t8math .lib

Par. C System

Description: atan () computes the arc tangent of x. The argument x is expected to
have the type double.

Return values: ... atan () returns the value of the arc tangent of x.

8 - 38

Library reference

atan2{)

Usage: #include <math.h>
double atan2(y, X)i

double y, Xi

Availability: Draft Proposed ANSI C

Libraries: math .lib and t8math .lib

atan20

Description: atan2 () computes the angle between the vector (x,y) and the positive
x-axis. The result is in radians and lies in the range (-pi, pi]. The
arguments are expected to have type double.

Return values: atan2 () returns the value of the computed angle.

8 - 39

atexitO

atexit()

Usage:•.. iinclude <stdlib.h>
int atexit(fptr);

void (*fptr)();

Availability: ...•. Draft Proposed ANSI C

Library: •. std .lib

Par.C System

Description: . . . •. atexit () sets up the function pointed to by fptr to be called without
arguments at normal program termination. Consecutive calls to
atexit () will cause the indicated functions to be listed and executed at
program termination in the reverse order. The maximum number of
functions that can be listed in this way is 32.

Notes and remarks: atexit () does the same as onexit () .

Return values: ... atexit () returns zero if registration of the indicated function was
successful. Otherwise, a nonzero value is returned.

See also: . exit ()

onexit()

8 - 40

Library reference

Example: iinclude <stdlib.h>
iinclude <stdio.h>

void func 1 ()
{

printf("EXecuting first exit handler\n");
}

void func2()
{

printf("Executing second exit handler\n");
}

void main()
{

atexit(funcl);
atexit(func2);
printf("NoWexiting ..• \n");

}

atexitO

8 - 41

Par.C System

Usage:•. #include <stdlib.h>
long _ato(string, control, output);

char *string;

int control;

char **output;

Availability: ."... Par.e System

Library: std .lib

Description: _ato () is a generic ASCII-to-number conversion function. string points
to a character array in which the string to be converted is stored.

control specifies the conversion type and consists of a bitwise or of the
radix with additional bitfields. The radix may be in the range 2-36. A
radix less than 2 results in no conversion taking place and an empty string
being returned. A radix greater than 36 results in the possibility of
non-alphanumeric characters being inserted.

The bitmasks given in stdcnv.h (which is included in stdlib.h),

further specify the conversion :

_CV_LONG : Output is to be considered 64 bits long. If not specified,
conversion does not proceed beyond 32 bits.

_CV_UNSIGNED : Perform unsigned conversion.

If output is not the NULL pointer, a pointer to the non-converted
remainder of the string is returned herein.

Return values: ... _ato () returns the value of the converted string, represented as an
unsigned long integer.

See also: "...... ato •. ()
strtol()

8 - 42

Library reference

ato.. ()
Usage: 'include <stdlib.h>

[unsigned] [long] int ato .• (string);
char *string;

Availability: Par.C System

Library: std .lib

ato··O

Description: ato •• () indicates a collection of ASCII-to-number conversion facilities,
which are all implemented as macro's expanding to a call to the generic
conversion routine _ate () • The following gives a list of the defined
macro's and their functions. The return value of _ato () is cast to the
type expected.

atoi
atol
atox
atoxl
atou
atoul
atoo
atool
atob
atobl

decimal ASCII string to integer
decimal ASCII string to long
hexadecimal ASCII string to integer
hexadecimal ASCII string to long
decimal ASCII string to unsigned integer
decimal ASCII string to unsigned long
octal ASCII string to integer
octal ASCII string to long
binary ASCII string to integer
binary ASCII string to long

Return values: All ato .. () functions return the converted value in the type expected.

See also: _ato ()
stdcnv.h

8 - 43

atodO

atod{)

Usage: #include <stdlib.h>
double atod(s);

char *s;

Availability: Draft Proposed ANSI C

Library: std .lib

Par.C System

Description: atod () converts the initial portion of the string pointed to by s to a
floating-point number of type double.

Return values: ... atod () returns the converted double value.

Notes and remarks: atod () is implemented as a macro expanding to a strtod () call, and
therefore has the same functionality.

atod () is defined identically to atof (), which is also included in the
stdcnv •h header file.

See also:

8 - 44

strtod()

stdcnv.h

Library reference

atof()

Usage: #include <stdlib.h>
double atof(s);

char *s;

Availability: Draft Proposed ANSI C

Library: std .lib

Btof()

Description: atof () converts the initial portion of the string pointed to by s to a
floating-point number of type double.

Return values: atof () returns the converted double value.

Notes and remarks: atof () is implemented as a macro expanding to a strtod () call, and
therefore has the same functionality.

a tof () is also defined in s tdcnv . h which is a special header file available
in the Par.C System for all conversion facilities.

atof () is identical to atod () , which is also included in the stdcnv. h

header file.

See also: strtod ()

stdcnv.h

8 - 45

atoiO

atoiO

Par.C System

Usa9...e: iinclude <stdlib.h>
int atoi(s);
char *s;

Availability: It ••• It Draft Proposed ANSI C

Library: It •• std .lib

Description: atoi () converts the initial portion of the string pointed to by s to a
decimal number of type (signed) integer.

Return values: ... atoi () returns the converted integer value.

Notes and remarks: In the Par.C System atoi () is defined as a macro expanding to a call to
the generic ASCII to integer conversion routine _ate (), which is also
described in this chapter. atoi () is also included as a function in the
library std .lib.

See also: It. _ ate ()

stdcnv.h

8 - 46

Library reference

stol()

Usage: 'include <stdlib.h>
leng int atel(s);

char *s;

Availability: Draft Proposed ANSI C

Library: std .lib

atolO

Description: atel () converts the initial portion of the string pointed to by s to a
decimal number of type (signed) long integer.

Return values: atel () returns the converted long integer value.

Notes and remarks: In the Par.C System atel () is defined as a macro expanding to a call to
the generic ASCII to integer conversion routine _ate (), which is also
described in this chapter. atel () is also included as a function in the
library std .lib.

See also: _ate ()
stdcnv.h

8 - 47

BEFOREO

BEFOREO
Usage: i inc1ude <time. h>

int BEFORE(Tl, T2)

time tTl, T2;

Availability: Par.e System

Par.C System

Description: The macro BEFORE () compares two times and reports if T 1 precedes T2 •

Return values: ... BEFORE () returns zero if Tl does not precede T2, otherwise a non-zero
value is returned.

See also: AFTER ()

8 - 48

Library reference

bltoa{)

Usage: iinclude <stdcnv.h>
int bltoa(num, str)
long int numi
char *stri

Availability: Par.e System

bltoaO

Description: The macro bltoa() converts a long integer (64 bits) to its ASCII
representation in binary notation, and stores the result in the string
pointed to by str. The string should be sufficiently long to store the
result of the conversion.

Return values: The length of the converted string.

See also: _tea ()
stdcnv.h

8 - 49

bsearch()

bsearch()

Usage: iinclude <stdlib.h>
char *bsearch(key, base, n, size, compare);
char *key, *base;
size_t n, size;
int (*compare)(pl, p2);

Availability: " Draft Proposed ANSI C

Library: ... " " " .. " std .lib

Par. C System

Description: ""."" bsearch () takes key as a pointer to the object to search for, base as a
pointer to the array to search,n as the number of elements in the array,
size as the size of an element and compare as a pointer to the
comparison function to be used. The array must be in ascending order
according to the comparison function.

compare () takes two pointers to array elements as arguments. If the
object pointed to by the first argument is less than, equal to or greater
than the object pointed to by the second argument, (*compare) ()
returns a value less than, equal to or greater than zero respectively.

Return values: """ bsearch () returns a pointer to the matching object, or a NULL pointer if
the object was not present in the array.

Notes and remarks: bsearch () is an implementation of a binary search. Therefore, the
elements must be in ascending order. qsort () can be used to sort the
array in ascending order using the same comparison function.

See also: """"""" qsort ()

8 - 50

Library reference

Example: iinclude <stdlib.h>
#include <string.h>
iinclude <stdio.h>

bsearchO

#define MAXLISTLEN 20 /* maximum length of the list */

typedef struct {
int number;
char name[20];
int birthdate;

} element;

element list[MAXLISTLEN]; /* array to search */

int ReadFromFile(filename,listp) /* read elements */
char *filename;
element *listp;
{

FILE *listfile;
int actualnumber = 0;

listfile = fopen(filename,"r");
if(listfile == NULL)
{

fprintf(stderr,"Failed to open %s\n",filename);
exit(l);

}

while(actualnumber < MAXLISTLEN)
{

fscanf(listfile,"%d",&listp->number);
if(listp-number == -1) break; /* end of list */

fscanf(listfile,"%s %d\n",
listp->name,
&listp->birthdate);

listp++;
actualnumber++;

}

fclose(listfile);
return actualnumber; /* the number of elements read */

}

8 - 51

bsearch()

8 - 52

Par.C System

int CompareNameNumber(sl,s2) /* compare name/number */
element *s1,*s2;
{

int retval;
retval=strcmp(sl->name,s2->name);
if (retval 1= 0)

return (retval);
else

return (s1->number - s2->number);
}

void main ()
{

element search, *foundi
int listlen;

listlen = ReadFromFile("bsearch.lst",list);
qsort«char*)list,listlen,sizeof(element),

compareNameNumber);

/* set element to search for */
search.number=10i
strcpy (search. name, "Margareth") ;

/**** find it in list and print other fields *****/
found=(element *)bsearch(&search,list,listlen,

sizeof(element), CompareNameNumber)i
if (found 1= NULL) {

printf("search element found\n");
printf("Number: %20d\n",found->number);
printf("Name: %20s\n",found->name)i
printf("Birthdate: %20d\n",found->birthdate)i

}else
printf("search element not found in list\n")i

}

Library reference

btoa()

Usage: #include <stdcnv.h>
int btoa(num, str)
int num;
char *str;

Availability: Par.e System

btoaO

Description: The macro btoa () converts the integer num to its ASCII representation
in binary notation, and stores the result in the string pointed to by str.
The string should be sufficiently long to store the result of the
conversion.

Return values: The length of the converted string.

See also: _toa ()
stdcnv.h

8 - 53

Library reference

calloc()

Usage: #include <stdlib.h>
#include <stddef.h>
char *calloc(n, size);
size t n;
size t size;

Availability: Draft Proposed ANSI C

Library: std. lib

callocO

Description: calloc () allocates a block ofstorage space for an array of n objects, each
with a space of size bytes. Each object is initialised to contain the value
o.

Return values: calloc () returns a pointer to the start (lowest byte address) of the
allocated space. A NULL pointer will be returned in case the space can
not be allocated, or in case n or size is zero.

See also: ... '. malloc ()
smalloc ()
free ()
realloc ()

8 - 54

Library reference

ceil{)

Usage: #include <math.h>

double ceil(x);

double Xi

Availability: Draft Proposed ANSI C

Libraries: math .lib and t8math .lib

ceilO

Description: ceil () computes the smallest integer not less than X and converts it to
a double.

Return values: ceil () returns a double with zero fractional part thus representing an
integer not less than x.

See also: floor ()

modf ()

Example: #include <math.h>

#include <stdio.h>

void main()

{

double X= 2.34,

y=-4.50,

z= 1.00;

}

printf("%f %f

printf("%f %f

%f\n", x, y, z);

%f\n", ceil(x), ceil(y), ceil(z));

Execution of this program will cause the following values to be
displayed:
2.340000 -4.500000 1.000000

3.000000 -4.000000 1.000000

8 - 55

cleaterrO

clearerr()

Usage: iinclude <stdio.h>

void clearerr(stream);

FILE *stream;

Availability: Draft Proposed ANSI C

Library: io . lib

Par. C System

Description: clearerr() clears the end-of-file and error indicators for the stream
pointed to by stream. These indicators are otherwise only cleared when
the file is opened or when fflush(), fseek() or rewind () are called
for the indicated stream.

Return values: /I. none

See also: fflush()

fseek()

rewind ()

8 - 56

Library reference

_ClrHaltErr()

Usage: iinclude <system.h>
void _ClrHaltErr()i

Availability: Par.e System

Library: D •••••••• std.lib

Description: _ClrHaltErr () clears the transputer's halt-on-error flag.

Return values: none

See also: _setHaltErr ()

_ClrHaltErrO

8 - 57

clock0

clockO

Usage: #include <time.h>

clock_t clock();

Availability: Draft Proposed ANSI C

Library: std .lib

Par.C System

Description: clock() can be used to determine the processor time used by the
running program up to the moment this function is called. The
transputer clock is set to MostNeg just before starting the program. The
difference between the return value and MostNeg divided by
CLOCKS_PER_SEC gives an approximation to the used time in seconds.

Return values: ... clock() returns the value of the internal transputer clock.

Notes and remarks: Since the transputer contains two processor clocks, one for each level of
priority, which run at different speeds, the values obtained by clock()

do not give a time measurement in fractions of seconds immediately. To
obtain a time measurement in seconds one should divide the return
value of clock() by CLOCKS_PER_SEC, which is replaced by a
priority-dependent value at runtime (15625 for low, 1000000 for high
priority).

See also: time. h

8 - 58

Library reference

cos()

Usage: #include <math.h>
double COS(X)i

double Xi

Availability: Draft Proposed ANSI C

Libraries: math .lib and t8math .lib

cosO

Description: cos () computes the cosine of x. The argument x is expected to have the
type double.

Return values: cos () returns the value of the cosine of x.

8 - 59

cosh()

cosh{)

Usage: iinclude <math.h>
double cosh(x);

double X;

Availability: Draft Proposed ANSI C

Libraries: math .lib and t8math .lib

Par. C System

Description: cosh () computes the hyperbolic cosine ofx. The argument x is expected
to have the type double.

Return values: 0.. cosh () returns the value of the hyperbolic cosine of x.

8 - 60

Library reference

ctime()

Usage: #include <time.h>

char *ctime(*timeptr)i

time t *timeptri

Availability: .• Draft Proposed ANSI C

Library: macro defined in time. h

ctime()

Description: ctime () converts the calendar time pointed to by timeptr to local time
in the form of a string. ctime () is equivalent to asctime (localtime ())

and in the Par.e System it is implemented as a macro expanding to that
call.

.Return values: ... ctime () returns a pointer to an ASCII string denoting the local time
calculated on the basis of the calendar time given in the tm structure
pointed to by timeptr .

See also: II....... asctime_r ()
localtime_r()

time ()
time.h

8 - 61

DateToInto

DateTolnt()

Usage: ...•..... iinclude <time.h>
int oateTolnt(day, month, year);

int day, month, year;

Availability: Par.e System

Library: ...• std. lib

Par. C System

Description: DateTolnt () converts a date to an integer in such a way that when any
two valid dates are converted to integers by calling this function and the
resulting integers are subtracted, the result gives the exact number of
days between those two dates. When the value of year is less than 300,
1900 is added before conversion. The value of month should be in the
range 0-11 (not 1-12), so January is represented by 0, December by 11.

No parameter check is done. If any parameter is out of range, or they
form an unconsistent date, the result is unpredictable. yday () can be
used to check the validity of a certain date.

Multiplication with 86400 (= 24*60*60) and adding a number of
seconds since 00:00:00 will yield a value, which can be recognized and
converted as a valid time by the routines localtime (), localtime_ r (),
gmtime () and gmtime_ r () •

Return values: .. DateTolnt () returns a linear date, measured from the first of March of
1972.

See also: IntToDate ()

yday()

localtime()

localtime_r()
gmtime ()

gmtime_r()

8 - 62

Library reference

delay()

Usage: iinclude <math.h>
void delay(t)
unsigned int t;

Availability: Par.C System

Library: std .lib

delayO

Description: The function delay () suspends execution of the current process for t
milliseconds, during which time another process can be scheduled and
executed.

Return values: none

8 - 63

Deschedule()

Deschedule()

Usage: iinclude <transp.h>
void oeschedule();

Availability: Par.C System

Library: std. lib

Par.C System

Description: oeschedule () causes the current process to be added to the back of the
process queue. The next process will be scheduled.

Return values: D.. none

8 - 64

Library reference

difftime()

Usage: iinclude <time.h>
double difftime(time2, timel);
time t time2, timel;

Availability: .• Draft Proposed ANSI C

Library:•.. std .lib

ditttimeO

Description: ..•.. difftime () computes the difference in seconds between the calendar
times given in both arguments, and returns the result as a double.

Return values: difftime () returns the value in seconds of time2 - time 1, represented
as a double.

8 - 65

DirO

Dir()

Par. C System

Usage: #include <stdio.h>

DIR *Dir(search);

OIR *search;

Availability: Par.C System

Library: • .. io. lib

Description: Dir () searches for the (next) file, that matches the file descriptor as
given to DirInit () when the search was initialised. Mter returning, the
structure at which search is pointing, contains information on the
attributes of the file that was found. When no (next) matching file could
be found, Dir () returns a NULL pointer and de-allocates the memory
used for the DIR structure.

In the OIR structure the string members are padded with null characters.
The structure is defined in <stdio 0 h>. The meaning of the members (or
fields) depends on the filesystem of the host the search is directed to. If
this system does not support for instance access codes or version
numbering, those fields will be zero. In file systems that support
filenames longer than 32 characters, the filename will be truncated.

Return values: .. Dir () returns its argument when a matching file is found. A NULL pointer
is returned when no matching file could be found.

Notes and remarks: The DIR structure is filled with host file information, for the exact
mapping of these bits compare DIR in stdio.h with comparable
information in your host manuals.

Extension fields are considered part of the filename.

8 - 66

Library reference

See also: OirInit ()

Example: tinclude <stdio .h>
int main ()
{

OIR *OS;
char*filename = "ORIVER.*";

if (I(OS = OirInit(filename»
{

fprintf(stderr,"No directory info supported\n");
}

else
if (!oir(os»
{

fprintf(stderr,"No match for %s found\n",
filename) ;

}

else
do
{

printf("%.12s %d %d %d %d\n",
OS->name, OS->type, DS->version,
Ds->size, OS->access);

} while (Dir(os»;
}

DirO

8 - 67

Dirlnit()

Dirlnit()

Usage: m 'include <stdio.h>
OIR *oirInit(filedesc)

char* filedesc;

Availability: Par.C

Library: io .lib

Par.C System

Description: ... II OirInit () initiates a file search in a directory on the host file-system
and allocates memory for the OIR structure.

If the file system does not support directory inquiries then no memory
is allocated. To obtain information about files in the host file-system this
function should be called before oir (), which actually reads the
attributes of a file (a file can also be a sub-directory) and puts that
information in the DIR structure.

Argument filedesc (filedescriptor) is a pointer to a string, containing
the search criterion. This search criterion is dependent on the service of
the filesystem the search is directed to. Most filesystems allow both
filename and extension to be replaced by 'wildcards', which is generally
an asterisk (*). Sometimes also part of the filename may be an asterisk,
and often question marks are used, denoting that any character may
match at that spot. Most times wildcards in directory-specifications are
not allowed. As the Par.C filesystem is depending either on a host
machine or a user-defined server, one should refer to the appropriate
documentation on the host file-system for the exact format of the
descriptor.

Return values: .. Oirlnit () returns a pointer to a structure OIR, which can be used by
Dir () to fill that structure. A NULL pointer is returned when no directory
inquiries are supported.

Notes and remarks: Note that the structure the return value is pointing at, does not contain
valid information yet. So even if only one file is to be expected to match
(i.e. no wildcards are used) at least one call to Dir () is required to obtain
the directory information.

See also: Dir ()

8 - 68

Library reference

dloa{)

Usage: iinclude <stdcnv.h>
int dtoa(d, str)
double d;
char *str;

Availability: Par.e System

dtoa()

Description: This macro is an alias for the function ftoa (), but with its parameters
reversed. It will put the double representation of d into str.

Return values: ... The length of the converted string.

8 - 69

(*ERROR)()

(*ERROR)()

Usage: tinclude <errno.h>
void (*ERROR)(errnumber, descr, •••)

int errnumber;

char *descr;

Availability: Par.e System

Libraries: ... 0 • ••. io .lib and noio .lib

Par.C System

Description: ERROR is a pointer to an error function, which can be replaced to point
to an user supplied function. All library routines, in case of an error, call
(*ERROR) () for error handling, where needed. By default, ERROR points
to an error function, which is defined differently in io .lib and
noio. lib. In io .lib the default error function sends a special error
message to the server on the host which causes the text:
"<programname> - *ERROR* : <error description>"

to be printed to the standard error stream on the host.

In noio.lib the default error function only sets the transputer hardware
error flag.

The argument errnumber contains the type of error and can be
processed by the strerror () function or can be looked up in the
errno. h file. Argument descr has the same form and function as the
format string in printf () . Besides errnumber and descr there can be
more arguments on the stack, see the example on how to process them.

Return values: ... none

Notes and remarks: Variable argument lists can be implemented using the facilities
described in vararg. h (see the description of header files at the
beginning of this chapter).

8 -70

Library reference

See also: errno •h
strerror()
matherr()
perror()

Example: iinelude <errno.h>
iinelude <stdio.h>
iinelude <stdarg.h>

void yourErrFUnc(errno, descr)
int errnOi
ehar *descri
{

va_list api
va_start (ap, deser)i

(*ERROR)0

fprintf(stderr, "Got error %x errno);
vfprintf(stderr, deser, ap)i

fprintf(stderr, "\nwhich means: %s\n", strerror(errno»;
}

void main()
{

FILE *nofilei

ERROR = yourErrFunci j* Plug in user error handler *j

nofile = fopen("nonexist","r")i
j* Open a file in read mode *j

fprintf(nofile,"This text is never written\n");
j* Force an error *j

}

8 -71

exitO

exit()

Usage: ..•..•.•. #include <stdlib.h>
void exit(status);
int status;

Availability: Draft Proposed ANSI C

Library: • s td •lib

Par. C System

Description: exi t () causes the program to terminate, after first calling all functions
registered by atexit () in the reverse order of registration. Then all
open output streams are flushed and all open streams are closed. Finally
control is returned to the host environment by emitting an exit code to
the server running on the host system. The value of status is returned,
and signifies successful or unsuccessful termination of the program.

Return values: ... none

See also: _exit ()
atexit()

8 -72

Library reference

_exit{)

Usage: ...•..•..• #include <stdlib.h>
void _exit(status);
int status;

Availability: Par.C System

Library: std .lib

_exitO

Description: _exi t () causes the program to terminate, without calling all functions
registered by atexit () and without deactivating the file system. Control
is returned to the host environment by emitting an exit code to the server
running on the host system. The value of status is returned, and signifies
successful or unsuccessful termination of the program.

Return values: none

See also: exit ()
atexit()

8 -73

expO

exp()

Usage: iinclude <math.h>
double exp (X) ;

double x;

Availability: Draft Proposed ANSI C

Libraries: math .lib and t8math .lib

Par.C System

Description: exp () computes the exponential function of x. The argument x is
expected to have the type double.

Return values: exp () returns the exponential value of x •

8 -74

Library reference

fabs()

Usage: iinclude <math.h>
double fabs(X)i
double Xi

Availability: Draft Proposed ANSI C

Libraries: math .lib and t8math .lib

fabs()

Description: fabs () computes the absolute value of the floating-point number x.

Return values: fabs () returns the absolute value of x.

8 -75

fclose()

fcloseO

Usage: iinclude <stdio.h>.
int fclose(stream);
FILE *stream;

Availability: Draft Proposed ANSI C

Library: io .lib

Par.C System

Description: fclose () will cause the stream pointed to by the only argument to be
flushed and the associated file to be closed. If a buffer was in use it is
emptied by writing unwritten characters or discarding unread
characters. The buffer is deallocated if it was allocated automatically.
The stream is disassociated from the closed file.

Return values: ... fclose () returns zero if the stream was succesfully closed, or
E_ CANTCLOSE if errors occurred or if the stream was already closed.

See also: errno •h

8 -76

Library reference

feof{)

Usage: 'include <stdio.h>
int feof(stream);
FILE *stream;

Availability: Draft Proposed ANSI C

Library: io .lib

feofO

Description: feof () tests whether the end-of-file indicator for the stream pointed to
by stream is set or not. The indicator is not cleared.

Return values: feof () returns a nonzero value if the end-of-file indicator for the
specified stream is set.

See also: ferror ()

8 -77

ferror()

ferror()

Usage: iinclude <stdio.h>
int ferror(stream);
FILE *stream;

Availability: ••... Draft Proposed ANSI C

Library: io •lib

Par.C System

Description: ...•. ferror () tests whether the error indicator for the stream pointed to by
stream is set or not. The indicator is not cleared.

Return values: ... ferror () returns a nonzero value if the error indicator for the specified
stream is set.

See also: feof ()

8 -78

Library reference

fflush()

Usage: •........• iinclude <stdio.h>
int fflush(stream);
FILE *stream;

Availability: Draft Proposed ANSI C

Library: io .lib

fflushO

Description: fflush() will cause any unwritten (buffered) data for the stream
pointed to by stream to be written to the file or device associated to the
stream. If stream points to an input stream the effect of the call will be
the undoing of any preceding ungetc () calls on the stream.

Return values: fflush () returns zero if the call was succesful; a nonzero value will only
be returned in case of write errors occurring.

See also: ... " ... " ungetc ()

Example: #include <stdio. h>

char buff[S12];

void main()
{

setvbuf(stdout,buff, IOFBF,S12); /* full buffering */
printf(ttHello there\n")i
printf(ttThis is the last line we were flushing\n");
fprintf(stderr,"(stderr) Now flushing stdout\n");
fflush(stdout);

}

8 -79

fgetcO

fgetc()
Usage: iinclude <stdio.h>

int fgetc(stream) ;

FILE *stream;

Availability: .•... Draft Proposed ANSI C

Library: io .lib

Par.C System

Description: It fgetc () reads the next available character from the stream pointed to
by stream.

Return values: ... fgetc () returns a positive integer representing the character read from
the input stream. Ifan end-of-file marker is encountered, the end-of-file
indicator is set and EOF is returned. If an error occurs while reading, the
error indicator is set and EOF is returned.

See also: .. II • • •• getc ()

getchar ()

8 - 80

Library reference

fgets()

Usage: .•.......• 'include <stdio.h>
char *fgets(s, n, stream);
char *s;
int n;
FILE *stream;

Availability: Draft Proposed ANSI C

Library: io .lib

fgetsO

Description: fgets () reads at most n-l characters from the stream pointed to by
stream and copies these characters to the string pointed to by s. A
terminating null character is appended to the string.

Return values: fgets () returns s if reading was successful. If an end-of-file marker is
encountered or if an error occurs while reading the NULL pointer is
returned.

Notes and remarks: If fgets () was unsuccessful the contents of the character array pointed
to by s depend on the number of characters read into the array so far.
This implies that the remaining array may not contain a terminating null
character anymore, and therefore cannot be treated as a string.

See also: gets ()

8 - 81

filerrO

filerr()

Usage: •..•..... iinclude <stdio.h>
int filerr(fp)

FILE *fPi

Availability: Par.e System

Par.C System

Description: The macro filerr () tests the status of the stream pointed to by fp.

Return values: .. The f ilerr () macro returns the error code of the last file I/O command
for this stream. This code is the same as the one found in the global
variable errno.

8 - 82

Library reference

floor{)

Usage: 'include <math.h>
double floor(x);

double Xi

Availability:• Draft Proposed ANSI C

Libraries: • .. math .lib and t8math .lib

floorO

Description: floor() computes the largest integer, which is not greater than x.

Return values: floor () returns the largest integer not greater than x, represented as a
double.

See also: ceil ()

modf ()

8 - 83

fmodO

fmod()

Usage: •.....• 0. iinclude <math.h>

double fmod(x , Y);

double X, Yi

Availability: Draft Proposed ANSI C

Libraries: •..... It math .lib and t8math .lib

Par.C System

Description: fmod () computes the floating-point remainder of x/y I i.e. the value z

such that z and x have equal sign, the absolute value of z is less than the
absolute value of Y and x=z+k*y for some integer k.

Return values: ... fmod () returns z, the floating-point remainder of x/y .

8 - 84

Library reference

fopen{)

Usage: #include <stdio.h>

FILE *fopen(filename, mode);

char *filename, *mode;

Availability: Draft Proposed ANSI C

Library: io .lib

fopen()

Description: fopen() will cause the file with name filename to be opened in the
mode indicated by mode, and a stream to be associated to the opened
file. A pointer to the associated stream is returned. The string pointed
to by mode should start with one of the following characters:

r

w

a

b

+

open file for reading

create file for writing, or truncate existing file to zero length

create file for writing, or open existing file for writing at end-of-file. To
this first character of mode, one or both of the following characters may
be added:

open a binary file (instead of the default text file mode)

open the file for reading and writing. Opening a file in the read mode
('r' as first character of mode) fails if the file does not exist or cannot be
read. Opening a file in the append mode ('a' as first character of mode)

causes all subsequent writes to the file to be forced to the current
end-of-file.

Return values: fopen () returns a pointer to the stream associated with the file opened.
If opening of the file with name filename in the mode indicated by mode

was unsuccessful, the NULL pointer is returned.

Notes and remarks: When a file is opened in update mode (+ as second or third character of
mode) both input and output are possible on the file. However, output
must be followed by a call to fflush(), fseek() or rewind(), before
the next input is read from the file. Also, input may not be followed
directly by output without an intervening call to the fflush () or fseek ()

8 - 85

fopen() Par.C System

function, unless an end-of-file has been encountered in the input. The
type of buffering for streams opened via fopen () is set to full buffering
for binary files and line buffering for text files. This type ofbuffering can
be changed using setvbuf () .

See also: fseek ()
rewind ()
setvbuf()

Example: .•..•.. jinclude <stdio.h>
jinclude <stdlib.h>

FILE *fp;
char buff[128];
int len;

void main()
{

if «fp = fopen("trash","w"» == NULL) {

printf("could not open 'trash' (w)\n");
exit(l);

}

fputS("Hai the ho\n",fp)i
fputs("Will this work?\n",fp)i
fclose (fp) i

if «fp = fopen("trash","rb"» == NULL) {

printf("could not open 'trash' (rb)\n");
exit(l);

}

len = fread(buff,1,128,fp); j* read text */

buff[len] = '\O'i /* append terminating null */

printf("read %d bytes: %s",len,buff);
fclose (fp) ;

}

8 - 86

Library reference

fprintf()

Usage: .•.......• iinclude <stdio.h>
int fprintf(stream, format, .••);
FILE *stream;
char *format;

Availability: .•.. .• Draft Proposed ANSI C

Library: io .lib

fprintfO

Description: fprintf () writes output to the stream pointed to by stream, in the
format indicated in the format string pointed to by format, using the
optional arguments following the format string.

The format string may contain zero or more ordinary characters which
are copied unchanged to the output stream and zero or more conversion
specifications, resulting in one or more subsequent arguments being
converted to printing format and written to the output stream. Each
conversion specification is preceded by the character %. Writing the
character %to the output stream is achieved by putting %% in the format
string.

format sp_e_c_if_ie_r_s _

After the %character, the following characters may appear in sequence:

• Zero or more flags modifying the meaning of the conversion
specification following the flags;

• An optional decimal digit string specifying a minimum field width. If
the converted value has fewer characters than this minimum field
width, padding will be used to fill the remaining characters in the
field. Padding is done according to the flags preceding the conversion
specification. Default is padding with spaces and right-adjusted. If the
converted value takes up more space than the specified field width,
the field is expanded to contain the complete conversion result.

The field width indicator may be replaced with an asterisk (*) instead of
a digit string. In this case the next argument in the list is taken to indicate
the field width.

8 - 87

fprintfO Par.C System

• An optional precision indication, giving the minimum number of
digits to appear for integer conversions, the number of digits to
appear after the decimal-point character for floating point type
conversions (except when g or G is specified), the maximum number
of significant digits for floating point conversions when g or G is
specified, the maximum number of characters to be written for string
conversions, or a repeat count for character conversions.

The precision indication consists of a decimal-point followed by a digit
string. If the digit string is left out, the precision indication is set to zero.
The digit string may be replaced with an asterisk (*), ·causing the next
argument to be taken as precision indicator. A negative value of this
argument will be taken as if the precision indicator was missing, and
therefore cause the precision to be set to the default value for the type
concerned.

The amount ofpadding specified by the precision overrules the specified
field width in the case of insufficient positions being available to print
the argument with the precision specified.

• An optional indicator 'h' for short integers" or '1' for long integers. If
one of these indicators is specified with a conversion specifier to
which it cannot apply, the indicator is ignored.

• A conversion specifier, indicating the type of the argument to be
converted to printing format.

flags

The flag characters and their meanings are given below:

The result of the conversion will be left-adjusted within the field. The
default mode is right-adjustment.

+ The result of the conversion of a signed type will be printed with a plus
or minus sign.

= The result of the conversion will be centered within the field. (non-ANSI
c feature)

< space> If the first character of the conversion of a signed type is not a sign, a
space will be printed preceding the result of the conversion. Ifboth space
and plus sign appear as flags, the space flag will be ignored.

The result of the conversion of an octal number will be preceded by a
zero. The result of the conversion of a nonzero hexadecimal number will

8 - 88

Library reference

o

d,i

u

b

o

x,x

f

e,E

Q,G

fprintfO

be preceded by "Ox" or "OX". The result of the conversion of a floating
point number will include a decimal point character.

Zero padding will be used rather than space padding. However, zero
padding is overruled when also specifying ,,_It for left-adjustment.

conversion specifiers
The conversion specifiers and their meanings are given below

The argument is expected to be an integer and is printed in signed
decimal notation.

The argument is expected to be an integer and is printed in unsigned
decimal notation.

The argument is expected to be an integer and is printed in unsigned
binary notation.

The argument is expected to be an integer and is printed in unsigned
octal notation.

The argument is expected to be an integer and is printed in unsigned
hexadecimal notation. 'x' and 'X' specify lower and upper case for the
hexadecimal digits a through f.

The argument is expected to be a double and is printed in signed decimal
fixed-point notation. The number of digits appearing behind the
decimal-point character is given by the optional precision specifier. The
default precision is 6. At least one digit will appear preceding the
decimal-point character. If the specified precision is zero and the # flag
is not specified, no decimal point will be printed.

The argument is expected to be a double and is printed in signed decimal
floating-point notation with one digit preceding the decimal-point
character and an exponent introduced by the character 'e' or 'E'. The
number of digits appearing behind the decimal-point character is given
by the optional precision specifier. The default precision is 6. The
exponent part will always contain at least two digits.

The argument is expected to be a double and is printed in signed decimal
floating-point notation, in the style of the 'f or 'e' specifiers ('E' in the
case of 'G') according to the way which will take up the least positions.
The style of 'e' (or 'E') will be used when the exponent resulting from
the conversion is less than -4 or greater than the precision indicated.

8 - 89

fprintfO Par.C System

Trailing zeroes are removed from the result, and a decimal-point
character is printed only if it is followed by a digit (unless the "#" flag is
set).

c The argument is expected to be an integer and is converted to an
unsigned char before it is printed as a character.

s The argument is expected to be a pointer to a string and characters from
this string are printed up to, but not including the terminating null
character. If the precision is specified, no more than the specified
number of characters are printed.

p The argument is expected to be a pointer, ofwhich the value is converted
to a sequence of printable characters in the style of a hexadecimal
number (according to the 'x' specifier).

n The argument is expected to be a pointer to an integer, which is used to
write the number of characters, which have been printed to the output
stream at the moment the n specifier is encountered. This "conversion"
specifier does not cause a conversion to be executed, since the value is
not printed to the output stream.

Return values: ... fprintf () returns the number of characters which have been written to
the indicated stream, or a negative value if an error has occurred.

Notes and remarks: Using a precision indicator with the "c" conversion causes the character
to be printed repeatedly, the number of characters printed being
specified by the precesion indicator. This is an extension of the use of
the precision indicator as compared with the Draft Proposed ANSI C
standard.

The centralise option flag , =' is not part of the Draft Proposed ANSI C

standard.

See also: printf ()

sprintf()

vprintf()

vfprintf()

vsprintf()

8 - 90

Library reference

fputeO

Usage:•.. 'include <stdio.h>
int fputc(c, stream);
int c;
FILE *stream;

Availability: Draft Proposed ANSI C

Library:•.. io .lib

fputcO

Description: fputc () writes the character c to the ~tream pointed to by stream.

Return values: ... D fputc () returns a positive integer representing the character written to
the stream. If an error occurs while writing, the error indicator is set and
EOF is returned.

Notes and remarks: The macro putc () expands to a considerable amount of code, but is
faster than a call to fputc ().

See also: putc ()

putchar()

8 - 91

fputsO

fputs()

Usage: ..•••.... iinclude <stdio.h>
int fputs(s, stream);
char *8;
FILE *stream;

Availability: ..•.. Draft Proposed ANSI C

Library: • .. io. lib

Par.C System

Description: • . . •. fputs () writes the string pointed to by s to the stream pointed to by
stream.. The terminating null character is not written.

Return values: ... fputs () returns a nonzero value if the string has been successfully
written. Otherwise, zero is returned.

See also: puts ()

8 - 92

Library reference

fread()

Usage:•.. 'include <stdio.h>
. f3.ize t fread(dest, size, n,~ stream);

char * dest;
size_t size , n;

FILE *stream;

Availability:• Draft Proposed ANSI C

Library:• io .lib

fread()

Description: fread() reads up to n items, each of size size from the stream pointed
to by stream into the array pointed to by dest. If a read error occurs or
an end-of-file marker is encountered, execution is aborted. A call to
ferror () or feof () can be used to determine which error has occurred.

Return values: fread () returns the number of items of the array which have been read
successfully. This number may be less than the number specified by n,
in which case an error has occurred. If size or n is zero, the returned
value is zero and the contents of the array and the state of the stream
remain unchanged.

Notes and remarks: If an EOF is encountered before n elements have been read, the return
value gives the number of elements successfully read, and the next
element will be partially filled.

See also: fwrite()

feof ()

ferror ()

8 - 93

free0

free()

Usage: #include <stdlib.h>
int free(ptr);

ehar *ptr;

Availability: Draft Proposed ANSI C

Libraries: a. lib and b. lib

Par.C System

Description: free () causes the memory block pointed to by ptr to be deallocated. If
the argument does not match a valid memory block pointer (such as
obtained by a call to one of the memory allocation functions) a non-zero
value is returned to indicate an error.

Return values: ... free () returns a non-zero value if ptr was found to indicate an invalid
address. When the block pointed to by ptr was succesfully deallocated,
a zero value is returned.

See also: II ••• it malloe ()

smalloe ()

8 - 94

Library reference

frexp()

Usage: 'include <math.h>
double frexp(x, eXp)i
double Xi
int *exPi

Availability: Draft Proposed ANSI C

Library: math .lib and t8math .lib

frexpO

Description: .•... frexp () breaks a floating-point number into a normalized fraction and
a power of 2. The argument x is expected to have the type double. The
power of 2 is stored in an integer pointed to by exp.

Return values: frexp () returns the value y, such that y is a double with magnitude in
the interval [0.5, 1) or zero, and x equals y * 2

exp
. If x is zero, both parts

of the result are zero.

See also: ldexp ()

pow2 ()

Example: 'include <math.h>
#include <stdio.h>

void main()
{

double X = 3.141Se214, Yi

int eXPi

y = frexp(x, &eXp)i
printf("x %le\ny: %f exp: %d\n" , x, y, eXp)i
printf("y * 2 A exp : %le\n", y*pow2«double)exp»i

}

8 - 95

fscanf()

fscanf()

Usage:•.. iinclude <stdio.h>
int fscanf(stream, format, •••)i

FILE *stream;
char *formati

Availability: .. ;0.. Draft Proposed ANSI C

Library: io .lib

Par. C System

Description: fscanf () reads input from the stream pointed to by stream, which is
converted according to the format indicated in the format string pointed
to by format, using the optional arguments following the format string
to receive the input.

The format string may contain one or more whitespace characters, a
number of ordinary characters (excluding the % character) and a
number of conversion specification directives, each introduced with the
% character. Whitespace characters are matched with any sequence of
whitespace characters, other characters must literally match for
conversion to continue. When a % is encountered, a conversion from
input data will be performed.

format sp_e_ci_fi_e_rs _

Following the % character the following characters may appear in
sequence:

• An optional asterisk (*) indicating that assignment of the following
input should be suppressed.

• An optional decimal integer specifying the maximum field width.
This denotes the maximum number of characters, that will be read.

• An optional character indicating the size of the receiving object. The
indicator 'h' causes a short integer (16 bit) or float (32 bit) to be
expected; '1' indicates a long integer (64 bit) or double (64 bit). The
default size of the assignment is 32 bits for integer as well as for float
conversion. If one of these indicators is specified with a conversion
specifier to which it cannot apply, the indicator is ignored.

• A conversion specifier, indicating the type of conversion to be
applied to the input before assignment to an object.

8 - 96

Library reference

d

o

u

fscanf()

fscanf () executes the directives given in the format string one by one,
and returns when a directive fails. Failures may result from an input
error or from an error in the attempt to match the input with the
specified conversion type. If an error is caused by a mismatch in the input
stream, the character causing the error remains unread.

An ordinary character in the format string causes the next character to
be read from the input stream. If the character differs from the input,
the directive fails and the character remains unread.

A whitespace in the format string will cause characters to be read up to
and excluding the first following non-whitespace character, or until no
more characters can be read.

Each conversion specification is processed as follows:

• Whitespace characters are skipped, except with the '[', 'c', or 'n'
specifiers.

• Unless the conversion specifier is 'n', an input item is read from the
stream. The input item is defined as the longest sequence of input
characters (up to a possibly specified maximum field width), which is
an initial subsequence of the specified matching sequence. If the
length of the input item is zero, execution of the directive fails.

• The input item is converted to the type indicated by the conversion
specifier and unless the * character is specified, the result of the
conversion is assigned to the object pointed to by the next argument
in the argument list.

conversion specifiers
The conversion specifiers and their meanings are given below:

The input is matched with an optionally signed decimal integer and the
conversion result is assigned to the integer the next argument points to.

As d, but when the number input is preceeded by 0, as o. When
preceeded by Ox, as x.

When a precision is specified, it represents a radix, e.g. %.13i reads a
number with radix 13 (see also: extra features added after the notes and
remarks).

The input is matched with an optionally signed octal integer and the
conversion result is assigned to the integer the next argument points to.

8 - 97

fscanfO

x

8,f,9

s

c

p

8 - 98

Par.C System

The input is matched with an unsigned decimal integer and the
conversion result is assigned to the unsigned integer the next argument

. points to.

The input is matched with an unsigned hexadecimal integer and the
conversion result is assigned to the integer the next argument points to.

The input is matched with an signed floating-point number. The
conversion result is of type float and is assigned to the float or (after a
float to double conversion) to the double the next argument points to.
Double assignment is forced by a.'l' specifier.

The input is matched with a sequence ofnon-whitespace characters. The
result is assigned to the string the next argument points to.

This character should be followed in the format string by a set of
characters terminated by the corresponding ']' character, which is
treated as the scanset and indicates the characters which will cause
copying input characters to continue. The characters are copied to a
character array pointed to by the next argument. After the input
sequence is terminated, a trailing null character is appended to the
character array.

Input of characters will stop either after the optionally specified field
width has been reached, after an end-of-file has been found, or after the
first character which is not included in the scanset is encountered (this
character will not be read). When the first character following the
opening '[' character is the negation sign' A " all characters specified are
treated as not being in the set, and the occurrence in the input of one of
these characters will stop more characters from being read. Note that
both the '[' and' A , characters may be included in the scanset since only
one specific position of these characters is treated as conversion
specification. The ']' character may be included in the scanset only if it
is placed immediately after the conversion specification characters, i.e.
when the format string reads "[]...]" or "[A] •••]". The second ']' character
is needed to terminate the scanset.

The input is matched with a sequence ofcharacters, the number ofwhich
is specified by the field width, and these are copied to the character array
the next argument points to. If the field width is not specified, one single
character is copied. No terminating null character is added to the array.
Whitespace characters are treated like all other characters by this
conversion.

Library reference

n

%

fscanfO

The input is matched with a sequence of characters indicating a pointer
value. The format of the expected string should be the same as is
produced by the corresponding print facilities for pointer values, namely
a hexadecimal number.

The argument is expected to be a pointer to an integer, which is used to
write the number of characters to, which have been read from the input
stream at the moment the 'n' specifier is encountered. This "conversion"
specifier does not cause a conversion to be executed, since no character
is read from the input stream.

The input character is matched with a single % character, which is not
assigned.

Return values: fscanf () returns the number of input items assigned, or EOF if an error
occurred before any conversion has been executed. Note that the use of
the %n conversion specifier does not cause a character to be read and
will not increment the return value, neither will conversions with the
assignment suppression indicator '*' increment the return value.

Notes and remarks: According to the Draft Proposed ANSI C standard, number conversion
always succeeds. So for example a hexadecimal conversion encountering
'oxppp' in the input will assign Dto the associated variable, after which
conversion will proceed at 'PPP'.

A number of extra features have been added. They are mentioned here,
because they are not part of the Draft Proposed ANSI C standard:

• Extra conversion '%b' for unsigned binary.

• Binary numbers in the input stream may be preceded by 'Db' or 'DB

• The %i conversion is a general number conversion of any number for
which 1 < radix < 37. A precision is allowed with this conversion,
which makes its definition: %[*][< width>][.[-] < precision>][h II]i

The minus sign instructs fscanf () to apply signed conversion. The
precision defines which radix is used for the conversion. If the radix is
not specified by a precision, it is specified by the input as follows
(according to ANSI c) : If the number read is preceded by Ox or OX,
unsigned hexadecimal conversion is applied. If the number read is
preceded by Db or DB, unsigned binary conversion will take place. If the
number read is preceded by one or more leading D's, it is assumed to be
unsigned octal. In other cases signed decimal conversion will be
performed.

8 .. 99

fscanf() Par.C System

• The hyphen ('-') can be used in sets to define a range, e.g. :

%[A-Za-z] defines all alphabetic characters. This implies two 'escape'
possibilities to include a hyphen as a part of the set, namely mentioning
it first, or between two characters, of which the first has a higher value
than the second.

Examples: Format

%[1-4]

%[-+1-9]
%[0-9-+]

%[+--]

Set

1234

+-123456789
+-0123456789

+'-

• Draft Proposed ANSI C specifies that on number conversions
characters are read until a character that is not a digit in the specified
radix system is encountered in the input stream. If the conversion
overflows, the result is undefined. The Par.C implementation does
give some guarantees in these cases:

As soon as overflow occurs, depending on the calculus and an 'I' or 'h'
specifier, the conversion is stopped, but remaining digits are still being
read.

Example: format "%lx" and input: "1234567890abcdef123Z" will yield
the number Ox1234567890abcdef to be assigned to a long unsigned int,
and the input stream being read until 'Z'.

• The conventional implementation of whitespace matching/skipping
would be to have any single whitespace character (' " '\n', '\r', '\t',
'\v', '\f') skip characters from the input stream, until a
non-whitespace character is encountered. In the Par.C System, three
types of whitespace matching/skipping are implemented:

-A space character matches all conventional whitespace characters, namely: space,
tab, < CR >, < LF >, <FF> , < VT >. (this is according to the Draft
Proposed ANSI C standard).

-A tab matches spaces and tabs (' " '\t').

-A <CR>, <LF> <VT> or <FF> matches any sequence of <CR>s,
<LF>s, <VT>S and/or <FF>s, but no space or tab.

Before a number conversion is performed, only spaces and tabs are
skipped, thereby enabling the conversion to stop when encountering a
newline. Skipping all whitespace characters before conversion can be
achieved by inserting a space in the format string before the conversion
specification.

8 -100

Library reference fscanf()

• The < count> field at the "%[" conversion (sets), does have the
expected effect. SO U%12[abc]" reads at most 12 characters from the
input, even if the 13th is also in the set.

See also: scanf ()

8 -101

fseek()

fseek()

Usage: •..•...•. linclude <stdio.h>
int fseek(stream, offset, ref);

FILE *stream;

long int offset;

int ref;

Availability: Draft Proposed ANSI C

Library: io .lib

Par. C System

Description: f seek () sets the file position indicator for the stream pointed to by
stream to point to offset characters from the point referred to via the
code given in ref.

If stream is associated with a binary file, offset is taken as a signed
number of characters. If the corresponding file is treated as text file only
OL is allowed for offset and SEEK_SET and SEEK_END as reference point
indicators. This is overruled when the loader is invoked with the tt_b"
option, which causes all files to be opened as binary files.

ref may have one of the following values:

SEEK SET: indicates the beginning of the file.
SEEK CUR: indicates the current position of the file pointer.
SEEK END: indicates the position of the end-of-file marker.

fseek() clears the end-of-file indicator and undoes the effect of
ungetc () calls for the same stream.

Return values: ... fseek() returns a nonzero value if a request was made which could not
be granted.

See also: ftell ()

8 -102

Library reference

Example: II •• iinclude <stdio.h>

FILE *fPi

long pos;

void main()
{

fseekO

fp = fopen ("temp" , Itw+ It) ;
fprintf(fp, "first world in a string\n");
fseek(fp,OL,SEEK_SET); /* return to the beginning */

fprintf(fp,"Hello It); /* replace 'first' */

pos = ftell(fp); /* remember this position */

fseek(fp,OL,SEEK_END); /* move to the end of the file */

fprintf(fp,"This is at the end of the file.\n");
fseek(fp,pos+12,SEEK_SET);

/* move to the right position */

fprintf(fp,"file •• \n lt
); /* replace 'string' */

fclose (fp) ;
}

8 -103

ftel/()

ftell{)

Usage: iinclude <stdio.h>

long int ftell(stream);

FILE *stream;

Availability: Draft Proposed ANSI C

Library: io .lib

Par.C System

Description: ftell () returns the current position of the file position indicator for the
stream pointed to by stream. For a binary file, the return value equals
the number of characters measured from the beginning of the file.

Return values: ... ftell () returns the current value of the file position indicator. If an
error occurred the return value is (long) (-1) .

Notes and remarks: The functioning of ftell () is only guaranteed for binary files, since the
representation of textfiles differs from one host system to the other.
However, when the loader is invoked with the "_b" option, texts files will
also be treated as binary files, and fseek() can be used on them.

See also: f seek ()

8 -104

Library reference

ftoa()

Usage: iinclude <stdlib.h>

int ftoa(s, fp)i

char *Si

double fPi

Availability: Par.C System

Library: std .lib

ftoaO

Description: ftoa () converts the floating-point number fp, which is expected to have
the type double, to its ASCII representation and stores the result of this
conversion in the character array pointed to by s. The number is
represented in the format corresponding to the %G conversion specifier
used in fprintf () and related functions.

The size of the array pointed to by s should be at least 24 characters.

Return values: ... ftoa () returns the length of the string pointed to by s, resulting from
the conversion of fp to ASCII.

Notes and remarks: This function is included for compatibility reasons. It is advised to use
the format function sprintf (), which offers more formatting
possibilities.

See also: fprintf ()

sprintf ()

8 -105

fwriteO

fwrite()

Usage: iinclude <stdio.h>
size_t fwrite(src, size, n, stream);
char *src;
size_t size, 0;

FILE *stream;

Availability: Draft Proposed ANSI C

Library: a. io •lib

Par. C System

Description: " fwrite () writes up to n items, each of size size from the array pointed
to by src to the stream pointed to by stream.

Return values: fwrite () returns the number of items of the array which have been
successfully written. This number may be less than the number specified
by n, in which case an error has occurred.

See also: ".".... fread ()

8 -106

Library reference

getc()

Usage: iinelude <stdie.h>
int gete(stream);

FILE *stream;

Availability: II Draft Proposed ANSI C

Library: ie.lib

getcO

Description: gete () reads the next available character from the stream pointed to by
stream.

Return values: gete () returns a positive integer representing the character read from
the input stream. Ifan end-of-file marker is encountered, the end-of-file
indicator is set and EOF is returned. If an error occurs while reading, the
error indicator is set and EOF is returned.

Notes and remarks: gete () is implemented as a macro, expanding to a lot of code, but
executing faster than a call to fgete (). When using gete (), side effects
in stream should be avoided.

See also: fgete ()

getehar()

8 -107

getchar()

getchar{)

Usage: iinclude <stdio.h>
int getchar () ;

Availability: Draft Proposed ANSI C

Library: . . • • . . . •. io. lib

Par. C System

Description: . . • .. getchar () reads the next available character from the standard input
stream.

Return values: ... getchar () returns a positive integer representing the character read
from the standard input stream. If an end-of-file marker is encountered,
the end-of-file indicator is set and EOF isretl;lrned. If an error occurs
while reading, the error indicator is set and EOF is returned.

Notes and remarks: getchar () is defined as a macro, expanding to gete (stdin) .

See also: !I. gete ()

fgetc ()

. 8 - 108

Library reference

getenv()

Usage: iinclude <stdlib.h>
char *getenv(name);

char *name;

Availability: Draft Proposed ANSI C

Library: io .lib

getenvO

Description: getenv () causes the environment list on the host system to be searched
for a variable matching the string pointed to by name. The string
referenced by this variable is obtained from the host system and a
pointer to this string is returned to the caller.

Return values: getenv () returns a pointer to a string containing the value associated
with name on the host system. If the variable is not found, a NULL pointer
is returned.

Notes and remarks: Since the data area containing the string obtained from the host system
is internal to the getenv () function, problems arise when a number of
concurrent processes call the function because the requested string
might be replaced by another string before it is copied. Therefore, a
re-entrant version getenv_r () has been added in the Par.e System.

See also: getenv_ r ()

8 -109

Par.C System

Usage: #include <stdlib.h>
int getenv_r{value, name);
char *value, *namei

Availability: II.... Par.e System

Library: II. io. lib

Description: getenv_r () causes the environment list on the host system to be
searchedfor a variable matching the stringpointed to by name. The string
referenced by this variable is obtained from the host system and copied
to the string pointed to by value. The programmer is responsible for
allocation of sufficient memory space to contain the returned string.

Return values: ... getenv_r () returns zero if the variable has successfully been read.
Otherwise, a nonzero value is returned.

See also: getenv ()

Example: #include <stdlib.h>
#include <stdio.h>

void main(argc, argv
int argci
char *argv[]i
{

char Var[120];

if{ getenv_r(Var, argv[l]))
printf("%s not defined\n", argv[l])i

else
printf("%s=%s\n", argv[l], Var);

}

8 -110

Library reference

_GetFunStack{)

Usage:• 'include <system.h>
int _GetFunstack()i

Availability: Par.C System

Library:•... std .lib

_GetFunStackO

Description: _GetFunstack () returns the current size of the stackspace added to the
stack when a function has exhausted its stackspace.

The user program may change this value by using _setFunstack () .

This and related routines can be used to optimize program performance
by tuning memory usage for stacks. Using too small stacks degrades
function calling speed, using too large stacks wastes memory space. See
the chapter on memory usage for an explanation on stack handling
during runtime.

Return values: The current stacksize for functions.

Notes and remarks: Controlling stackspace is global. During parallel processing some
construct (e.g. using semaphores while starting processes) should be
employed to optimise for just a few function calls.

See also: _GetParstack()

_setFunstack()

_setParstack()

8 - 111

GetNodelnfoO

GetNodelnfo()

Usage: iinclude <system.h>
int GetNodelnfo(Tn, ninfdest);
int Tn;
NODEINFO *ninfdest;

Availability: .•... Par.e System

Library: std .lib

Par. C System

Description: GetNodelnfo () obtains information concerning the transputer node
indicated by Tn and assigns this to the structure pointed to by ninfdest.

Return values: ... GetNodelnfo () returns zero on success and nonzero when the
information is not availableo

Notes and remarks: Node information is only available on the first transputer in the network
LTn == 1) and if the program was linked with b.lib.

Example: . II • • • •• #include system.h
NODEINFO myNodelnfo;
GetNodelnfo(Tn, &myNodelnfo);

See also: GetSyslnfo ()

8 -112

Library reference

_GetParStack()

Usage: tinclude <system.h>
int _Getparstack()i

Availability: Par.C System

Library: std .lib

_GetParStackO

Description: _GetParstack () returns the current initial size of the stackspace that
will be used for each of the concurrent processes started inside a par
construct. This only concerns the initial stack allocated for each
concurrent process; when any of these needs more workspace during
execution (i.e. when recursive function calls are used) use
_setParstack () to set a larger initial stack.

See _GetFunstack () and _SetFunstack () for setting the size of newly
allocated stacks for function calls.

Return value: The current initial process stacksize.

Notes and remarks: Stacks for the newly created processes and stacks for function calls are
mutually independent.

See also: _GetFunstack ()

_setParstack()

_setFunstack()

8 -113

gets0

gets()

Usage: #include <stdio.h>
char *getS(8);
char *8;

Availability: ••... Draft Proposed ANSI C

Library: . . • . . • . .. io .lib

Par.C System

Description: gets () reads characters from the standard input stream and copies these
characters to the string pointed to by s, until a newline character or an
end-of-file marker is encountered. Any newline character is discarded,
and a null character is appended to the string.

Return values: ... gets () returns s if reading was successful. If an end-of-file marker is
encountered or if an error occurs while reading the NULL pointer is
returned.

Notes and remarks: If gets () was unsuccessful (Le. as an effect of MAX_LINE, see stdio. h),

the contents ofthe character array pointed to by s depend on the number
of characters read into the array so far. This implies that the resulting
array may not be terminated by a null character, and therefore cannot
be treated as a string.

See also: fgets ()

stdio.h

8 -114

Library reference

GetSyslnfo()

Usage: iinclude <system.h>
int GetsysInfo(synfdest);
SYSTEM *synfdest;

Availability: Par.C System

Library: std .lib

GetSyslnfoO

Description: GetSysInfo() gets information concerning the transputer where this
function is called and assigns this information to the structure pointed
to by synfdest.

The information can be used to direct the flow of control related to
message passing, load balancing, inter proc~ssor communication etc.

Return values: Getsys Info () returns zero on success and nonzero when no information
is available.

See also: GetNodeInfo ()

Example: In the \examples directory a number of programs make use of this
routine to obtain local system information, e.g. for message passing and
network information display. Here is a short example on how to call it.

#include system.h
main ()
{

SYSTEM sys;
GetSyslnfo(&sys);

}

8 -115

gmtime0

gmtime()

Usage: .a ••••••• #include <time.h>
struct tm *qmtime(timer);
time t *timeri

Availability: Draft Proposed ANSI C

Par. C System

Library: .

Description:

Return values: ...

Notes and
remarks: .

See also: .

8 -116

std .. lib

gmtime () converts the encoded value of the calendar time pointed to by
timer to a broken-down time representing Greenwich Mean Time and
sets the members of the static tm structure to the appropriate values.

gmtime () returns a pointer to the tm structure in the static data area
which is set to indicate Greenwich Mean Time, which is calculated using
the encoded value of the time_ t pointed to by timer.

Since this and related time and date functions have been defined to
operate on a structure and a character array in the static data area, calls
to other functions may overwrite the result of a call to grntime () • Also,
other processes calling the same routine will cause the result to be
overwritten. To avoid these effects all non re-entrant time and date
functions have been given a re-entrant replacement in the Par.C System.
The replacement for gmtime () is grntime_ r () •

gmtime_r()

time ()

time.h

Library reference

gmtime_r{)

Usage: tinclude <time.h>
struct tm *gmtime_r(timer, ptr);
time_t *timeri
struct tm *ptri

Availability: Par.e System

Library: std .lib

gmtime_rO

Description: gmtime_r () converts the encoded value of the calendar time pointed to
by timer to a broken-down time representing Greenwich Mean Time
and sets the members of the tm structure pointed to by ptr to the
appropriate values.

This function is the re-entrant replacement for the Draft Proposed ANSI
C function gmtime () • Instead ofwriting the result of the conversion into
a tm structure in the static data area, a pointer to the resulting structure
is passed to the function from the caller.

Return values~ grntime_ r () returns a pointer to the tm structure containing the
broken-down time representing the current Greenwich Mean Time,
using the encoded value of the time_ t pointed to by timer.

See also: grntime ()

time ()

time.h

8 -117

Par.C System

Usage: ..•...... iinclude <transp.h>
void _in(src, dest, size)
channel *srci
char *dest;
int sizei

Availability: II.... Par.C System

Library: std .lib

Description: The function _in () receives size bytes from the channel pointed to by
src in the buffer pointed to by dest.

Return values: ... none

See also: ... II . .. _out ()

Example: #include <stdio.h>
#include <string.h>
#include <transp.h>

void main ()
{

channel commi

par

{{
static char src[] = "This is the source string.\n"i
printf("(sending process) %s", src)i
comm = strlen(src)+li /* send length of string */

_out(&comm,src,strlen(src)+l); /* send contents */

}{
static char dst[] =

"This is the destination string.\n"i
printf(" (receiving process) %s", dst);
_in(&comm,dst,(int)comm); /* receive other string */

printf(" (receiving process) %S", dst);
}}

}

8 -118

Library reference

InMess()

Usage: finclude <system.h>

void InMess(message, size, from);

char *message;

int size;

channel *from;

Availability: Par.C System

Library: a .lib and b .lib

InMess()

Description: InMess () reads size bytes from the channel pointed to by from into the
character array pointed to by message.

Return values: none

Notes and remarks: This is the C-implementation of the transputer instruction "in". The only
difference is that no communication is performed if size is zero. This
implies that at least one byte must be transferred, even when only
synchronisation is desired. The proper working of InMess () is only
guaranteed, if exactly one other process sends data of the same size over
the same channel.

See also: outMess ()

ReCVLink()

RecvLinkorFail()

sendLink()

sendLinkorFail()

8 -119

InPortO

InPortO

Usage: iinclude<stdlib.h>
void Inport(prtaddr, size, buff);
int prtaddr, size;
char *buff;

Availability: " Par.C System

Library: . " " " io .lib

Par. C System

Description: .. " .. InPort () reads size bytes from host I/O port with address prtaddr"
The bytes are stored in a buffer located at the transputer with
startaddress buff"

This function is intended for hosts that have cPu's with separate
instructions for I/O, controlling a dedicated I/O bus. What ports are
accessible depends on the operating system on the host.

Return values: """ none

Notes and remarks: Care should be taken with forming prtaddr, which should be
recognisable by the host as a valid port address.

See also: ."""""" outPort ()

peekHost()

PokeHost()

8 -120

Library reference

IntToDateO

Usage: iinclude <time.h>

int IntToDate(lindat, pday, pmonth, pyear);

int lindat, *pday, *pmonth, *pyear;

Availability: Par.C System

Library: std .lib

IntToDate()

Description: IntToDate () converts an integer assumed to contain a linear date, to
the corresponding day, month and year. Month ranges from 0-11, the
year includes the right century.

Notes & Remarks: 0 is converted to day 1, month 2 (March) and year 1972.

After conversion the values of day, month and year are stored in
locations pointed to by respectively pday, pmonth and pyear. Dividing
a value of type time_ t as returned by the routines mktime () and time ()

by 86400 (number of seconds in a day), will yield a linear date, which is
convertible by IntToDate () .

Return values: IntToDate () returns zero.

See also: DateTolnt ()

8 - 121

isalnum()

isalnum()

Usage: ... ~• linclude <ctype.h>
int isalnum(c);

char c;

Availability: Draft Proposed ANSI C

Library: std .lib

Par.C System

Description: Routine to test whether the character c is in the range of alphanumeric
characters.

Return values: ... isalnum() returns a nonzero value if value for a character in one of the
ranges 0 to 9, a to z, or A to Z. Otherwise, the returned value is zero.

See also: isalpha ()

isdigit()

isascii ()

8 -122

Library reference

isalpha()

Usage: 'include <ctype.h>
int isalpha(c);
char c;

Availability: Draft Proposed ANSI C

Library: std .lib

isalphaO

Description: Routine to test whether the character c is in the range of upper or lower
case letters.

Return values: isalpha () returns a nonzero value if c is the ASCII code value for a
character in one of the ranges a to z or A to Z. Otherwise, the returned
value is zero.

See also: isalnum()

isascii()

8 -123

Library reference

isascii()

Usage: iinclude <ctype.h>
int isascii(c);
char c;

Availability: Draft Proposed ANSI C

Library: std .lib

isasciiO

Description: Routine to test whether the character c is in the range of ASCII coded
characters.

Return values: isascii () returns a nonzero value if the value of c is in the range of
ASCII codes (values 0 through Ox7F). Otherwise, the returned value is
zero. A table of ASCII coded characters is included in the appendices.

See also: toascii ()

8 -124

iscntrlO

iscntrl()

Usage: #include <ctype.h>
int iscntrl(c)j
char Cj

Availability: Draft Proposed ANSI C

Library: std .lib

Par. C System

Description: Routine to test whether the character c is in the range of control
characters.

Return values: ... iscntrl () returns a nonzero value if the value of c is in the range of
control codes, i.e. any character that is not a printable character.
Otherwise, the returned value is zero. If the ASCII character set is used,
the control characters have values 0 through OxlF or value Ox7F. A list
of ASCII coded control characters is given in the appendices.

See also: isprint ()

8 -125

isdigitO

isdigitO

Usage: ..•...... tinclude <ctype.h>
int isdigit(c);

char c;

Availability: Draft Proposed ANSI C

Library: II II II II II II II II II std .lib

Par.C System

Description: II II II II Routine to test whether the character c is one of the decimal digits.

Return values: II. II isdigit () returns a nonzero value if the value of c is the code for one
of the decimal digits 0 through 9. Otherwise, the returned value is zero.

See also: II II II II • II II isxdigit()

isodigit()

8 -126

Library reference

isgraph()

Usage: iinclude <ctype.h>
int isgraph(c);

char Ci

Availability: Draft Proposed ANSI C

Library: std .lib

isgraphO

Description: Routine to test whether the character c is one of the printable
characters, except for the space character.

Return values: isgraph () returns a nonzero value if the value of c is the code for one
of the printable characters, except for the space character. Otherwise,
the returned value is zero.

See also: isprint ()

isspace ()

iswhite ()

8 -127

islowerO

islowerO

Usage: •.•...... iinclude <ctype .h>
int islower(c);

char Ci

Availability: Draft Proposed ANSI C

Library: •. std .lib

Par. C System

Description: Routine to test whether the character c is a lower case letter.

Return values: ... islower () returns a nonzero value if the value of c is the code for one
of the lower case letters a through z. Otherwise, the returned value is
zero.

See also: isalpha()

isupper()

tolower()

8 -128

Library reference

isodigit()

Usage: 'include <ctype.h>
int isodigit(C)i
char Ci

Availability: Draft Proposed ANSI C

Library: II •• std .lib

isodigitO

Description: Routine to test whether the character c is one of the octal digits.

Return values: isodigit () returns a nonzero value if the value of c is the code for one
of the octal digits 0 through 7. Otherwise, the returned value is zero.

See also: isdigit()

isxdigit()

8 -129

isprintO

isprint()

Usage: iinclude <ctype.h>
int isprint(c);
char c;

Availability: Draft Proposed ANSI C

Library: std .lib

Par.C System

Description: Routine to test whether the character c is one of the printing characters,
i.e. not a control character.

Return values: ... isprint () returns a nonzero value if the value of c is the code for one
of the printable characters, Le. not a control character. Otherwise, the
returned value is zero. If the ASCII character set is used, the printable
characters have codes 000 through Ox7E.

See also:

8 -130

iscntrl()

isascii ()

Library reference

ispunct()

Usage: ~ 'include <ctype.h>
int ispunct(c);
char Ci

Availability: Draft Proposed ANSI C

Library: ~ std .lib

ispunctO

Description: Routine to test whether the character c is one of the punctuation
characters, i.e. not a control character or an alphanumeric character.

Return values: ispunct () returns a nonzero value if the value of c is the code for one
of the punctuation characters, i.e. not a control character or an
alphanumeric character. Otherwise, the returned value is zero.

See also: iscntrl ()

isalnum()

8 -131

isspace()

isspace()

Usage: iinclude <ctype.h>
int isspace(c);
char c;

Availability: Draft Proposed ANSI C

Library: a • • •• std .lib

Par.C System

Description: Routine to test whether the character c is a whitespace character. In the
implementation of this function, the meaning of whitespace is taken in
the broad sense, which implies that the following characters fall in the
set of whitespace characters:

'\t'(Ox9) : horizontal tab '\n' (0xA) : newline
'\f (0xB) : form feed '\v' (OxC) : vertical tab
'\r' (0xD) : carriage return ' , (000) : blank or space

Return values: ... isspace () returns a nonzero value if the value of c is the code for a
whitespace character in the broad sense, i.e. a horizontal tab, newline,
form feed, vertical tab, carriage return or a space character. Otherwise,
the returned value is zero.

See also: iswhite ()

8 -132

Library reference

isupper()

Usage: 'include <ctype.h>
int isupper(c);

char Ci

Availability: Draft Proposed ANSI C

Library: std .lib

isupperO

Description: Routine to test whether the character c is an upper case letter.

Return values: isupper () returns a nonzero value if the value of c is the code for one
of the upper case letters A through Z. Otherwise, the returned value is
zero.

See also: isalpha ()

islower()

toupper()

8 -133

iswhite()

iswhite{)

Usage: gs ••••••• #include <ctype.h>
int iswhite(c);
char c;

Availability: Draft Proposed ANSI C

Library: std .lib

Par. C System

Description: Routine to test whether the character c is a whitespace character. In this
function, the meaning ofwhitespace is taken in a restricted sense, which
implies that the following characters fall in the set of whitespace
characters:

'\t' (Ox9) : horizontal tab , , (000) : blank or space

Return values: ... iswhite() returns a nonzero value if the value of c is the code for a
whitespace character in the restricted sense, i.e. a horizontal tab or a
space character. Otherwise, the returned value is zero.

See also:

8 -134

isspace()

Library reference

isxdigit()

Usage: tinclude <ctype.h>

int isxdigit(c);

char c;

Availability: Draft Proposed ANSI C

Library:• std .lib

isxdigit()

Description: Routine to test whether the character c is one of the hexadecimal digits.

Return values: isxdigit () returns a nonzero value if the value of c is the code for one
of the hexadecimal digits, i.e. if the coded character is in one of the
ranges 0 through 9, a through f or A through F. Otherwise, the returned
value is zero.

See also: isdigit ()

isodigit()

8 -135

itoa()

itoaO

Usage: iinclude <stdcnv.h>
int itea(num, str)

int numj
char *str;

Availability: Par.C System

Par.C System

Description: The macro i tea () converts an integer to its ASCII representation in
decimal notation. Both the integer and a pointer to the string are passed
as arguments. The string should be sufficiently long to store the result
of the conversion.

Return values: .. The length of the converted string.

See also: . _tea ()

8 -136

Library reference

labs()

Usage: #include <stdlib.h>
long int labs(X)i
long int Xi

Availability: Draft Proposed ANSI C

Library: std .lib

labs0

Description: labs () computes the absolute value of x, which is expected to be a
(signed) long integer.

Return values: labs () returns the absolute value of x.

See also: abs ()
fabs()

8 -137

Idexp()

Idexp()

Usage: iinclude <math.h>
double ldexp(x, eXp)i
double Xi
int eXPi

Availability: Draft Proposed ANSI C

Library: math .lib and t8math .lib

Par.C System

Description: ldexp () multiplies a floating-point number by an integral power of 2.
The argument X is expected to have the type double, and the second
argument exp is taken as an integer value.

Return values: ... ldexp () returns the value of x * 2 exp.

8 -138

Library reference leave0

leave()

This function has been removed from the Par.C System runtime
libraries. The necessary support in the Par.C loader/server could not be
implemented in a correct way, since the functioning of leave () would
allow the loader/server to exit without closing files and flushing buffers.

The possibility of communicating in a more direct way with the host
system is implemented through the use of PeekHost () and PokeHost () .
Doing communications with a user-defined server can be done through
the system () function, or by calling Release () • This last option implies
that the file I/O cannot be re-installed again. If this possibility is needed,
we can supply you with the necessary information on demand.

See also: PeekHost ()

pokeHost()

system()
Release ()

8 -139

LINKINO

LINKINO

Usage:•. iinclude <system.h~

char * LINKIN(Linkno);

int Linkno;

Availability: ..•.. Par.C System

Par.C System

Description: The macro LINKIN () evaluates to the address of the incoming channel
of the link Linkno. The resulting address can be used to implement
direct channel communication to another transputer. However, to
remain compatible with future versions ofthe Par.C System, it is advised
to use the functions RecvLink () or RecvLinkOrFail () instead.

Return values: ... LINKIN () returns a pointer to the incoming channel of link Linkno.

Notes and remarks: This macro is not garanteed to be compatible with future versions of the
Par.C System.

See also: RecvLink ()

RecvLinkOrFail()

LINKOUT()

8 -140

Library reference

LINKOUT()

Usage: iinclude <system.h>

char * LINKOUT(Linkno);

int Linkno;

Availability: Par.C System

LINKOUTO

Description: The macro LINKOUT () evaluates to the address of the outgoing channel
of the link Linkno. The resulting address can be used to implement
direct channel communication to another transputer. However, to
remain compatible with future versions of the Par.C System, it is advised
to use the functions SendLink () or SendLinkOrFail () instead.

Return values: LINKOUT () returns a pointer to the outgoing channel of link Linkno.

Notes and remarks: This macro is not garanteed to be compatible with future versions of the
Par.C System.

See also: sendLink ()

sendLinkOrFail()

LINKIN()

Example: #include <system.h>

int main()

{

int varia = Oxabcd;

if (_Tn == 1) {

*LINKOUT(3)

}else{

varia; /* send over link three */

}

varia *LINKIN(l)j

}

/* receive from link one */

8 -141

Library reference

localtime()

Usage: #include <time.h>
struct tm *localtime(timer);

time t *timeri

Availability: Draft Proposed ANSI C

Library: std .lib

loea/timet)

Description: localtime () converts the encoded value of the calendar time pointed
to by timer to a broken-down time representing the local time and sets
the members of the static tm structure to the appropriate values.

Return values: ... localtime () returns a pointer to the tm structure in the static data area
which is set to indicate the local time, which is calculated using the
encoded value of the time_ t pointed to by timer.

Notes and
remarks: .

Since this and related time and date functions have been defined to
operate on a structure and a character array in the static data area, calls
to other functions may overwrite the result of a call to localtime () .

Also, other processes calling the same routine will cause the result to be
overwritten. To avoid these effects the most important non re-entrant
time and date functions have been given a re-entrant replacement in the
Par.e System. The replacement for localtime() is localtirne_r() .

See also: localtime_r ()

time ()

time.h

8 -142

Library reference

localtime_r()

Usage: iinclude <time.h>
struct tm *localtime_r(timer, ptr);
time t *timeri
struct tm *ptri

Availability: Par.e System

Library: std .lib

loealtime r()

Description: localtime_r () converts the encoded value of the calendar time timer
to a broken-down time representing the local time, and sets the
members of the tm structure pointed to by ptr to the appropriate values.

This function is the re-entrant replacement for the Draft Proposed ANSI
C localtime () • Instead ofwriting the result of the conversion into a trn
structure in the static data area, a pointer to the resulting structure is
passed to the function from the caller.

Return values: ... localtime_ r () returns a pointer to the trn structure containing the
broken-down time representing the local time, using the encoded value
of the time_ t given in timer.

See also: localtime ()
time ()
time.h

8 -143

logO

log()

Usage: ..•...... iinclude <math.h>
double log (x) i

double Xi

Availability: Draft Proposed ANSI C

Library: II math. lib and t8math.lib

Par.C System

Description: log () computes the natural logarithm of x. The argument x is expected
to have the type double.

Return values: ... log () returns the value of the natural logarithm of x.

8 -144

Library reference

log10()

Usage:•.. iinclude <math.h>

double 10g10 (x) i

double Xi

Availability: Draft Proposed ANSI C

Library: . II •••••• II math .lib and t8math .lib

log100

Description: 10g10 () computes the base-ten logarithm of x. The argument X is
expected to have the type double.

Return values: 10g10 () returns the value of the base-ten logarithm of x.

8 -145

Itoa()

IloaO

Usage: 'include <stdcnv.h>
int ltoa(num, str)
long int num;
char *str;

Availability: ...•• Par.e System

Par. C System

Description: The macro 1toa () converts a long integer (64 bits) to its ASCII
representation in decimal notation. Both the integer and a pointer to
the string are passed as arguments. The string should be sufficiently long
to store the result of the conversion.

Return values: ". The length of the converted string.

See also: _ toa ()

8 -146

Library reference

malloc()

Usage:•.• tinelude <stdlih.h>
char *malloe(size);

size t size;

Availability: Draft Proposed ANSI C

Library:• std .lib

malloc()

Description: malloe () causes a memory block of size bytes to be allocated and a
pointer to the allocated block to be returned. If no block of at least size

bytes could be allocated, the NULL pointer is returned.

Return values: malloe () returns a pointer to the data area of an allocated block of at
least size bytes, if allocation was successful. Otherwise, the NULL pointer
is returned.

Notes and remarks: The method of allocation used by malloe () is optimised for size, which
implies that only size bytes + some words overhead are allocated. All
blocks are aligned to word boundaries and the value returned is a pointer
to the data area of the allocated block.

malloe () allocates blocks of memory by a "first fit" method, and starts
the search for available blocks from the far end of memory. The
corresponding function smalloe () can be used to obtain fast on-chip
memory from the first 2 or 4 KBytes which are available in the
transputer.

High priority processes performing a malloe () will temporarily be
switched to low priority while allocating memory.

See also: smalloe ()

ealloe ()

free ()
realloe ()
MemAvail ()

8 -147

matherrO

matherr()

Usage: tinclude <math.h>
double matherr(code,arglist)
double _matherr(code,arglist)
int code;

MATHARGS arglist;

Availability: Par.e System

Library: math .lib and t8math .lib

Par.C System

Description: The math functions in math .lib and t8math .lib call the function
matherr () when an error occurs. They pass to it an integer code,
indicating which error occured, and a pointer to the parameter list. The
error codes are contained in errno .h .

The functionmatherr () does nothing but call_matherr () with the same
error code and parameter pointer. Thus, the user can supply his own
matherr () function to deal with certain kinds of errors, while calling the
default error handler _matherr () for all other errors.

The function _matherr () calls the general error handler (pointed to by
the function pointer (*ERROR) () •

Return values: ... matherr () returns the value returned by _matherr (). _matherr ()
returns a so called Not a Number (NaN), which is a 64 bit pattern with
Ox7ff in the most significant 12 bits. The least significant bits contain the
error code which was passed to _matherr () .

See also: errno .h

(*ERROR) ()

NaN()

8 -148

Library reference

Example: 'include <errno. h>
'include <math.h>

double matherr(code,args)
int code;

MATHARGS args;
{

if (code==EM_POWDOMAIN && args->x.db==O.O &&
args->y.db==O.O)

return 1.0; j* define POW(O.O,O.O) */

return _matherr(code,args);
j* default math error handler *j

}

matherrO

8 -149

MemAvailO

MemAvail()

Usage: iinclude <stdlib.h>
struct MEMINFO *MemAvail(info)i
struct MEMINFO *infoi

Availability: Par.C System

Library: std .lib

Par. C System

/* total amount of free memory */
/* largest free block available */

/* total number of free blocks */

Description: MemAvail () scans the complete memory of the transputer and writes
information on the available free memory blocks into the MEMINFO
structure pointed to by info. The MEMINFO structure is defined in
stdlib. h as:
struct MEMINFO {

size_t total free;
size_t largest_free;
int nr_of_blocks;

}

Return values: ... The value of info.

Notes and remarks: The information returned in the MEMINFO structure only gives the status
at the moment MemAvail () was executed. Even if this call is immediately
followed by a call
p = malloc(info->largest_free)

there is no guarantee that this will be successful. Another process may
have allocated memory between the two calls (explicitly or implicitly
through the dynamic workspace allocation).

See also: malloc ()
smalloc ()
calloc ()
realloc ()
free ()

8 -150

Library reference

memchr()

Usage: 'include <string.h>
char *memchr(s, c, n);
char *s, c;
size t n;

Availability: Draft Proposed ANSI C

Library: std .lib

memchrO

Description: memchr () searches for the first occurrence of the character c in the first
n characters of the sequence pointed to by s. If the character c is found,
a pointer to the first occurrence of c is returned. Otherwise the NULL

pointer is returned.

Return values: memchr () returns a pointer to the first occurrence of c in the first n
characters of the sequence s, or a NULL pointer when c is not found.

See also: strchr ()
strrchr ()

8 - 151

memcmpO

memcmp()

Usage: #include <string.h>

int memcmp(objl, obj2, n);

char *objl, *obj2;

size_t n;

Availability: Draft Proposed ANSI C

Library: std .lib

Par.C System

Description: II • • •• memcmp () takes the first n characters of the objects pointed to by obj 1

and obj2 and compares them. If the values of these first n characters of
both objects are equal, zero is returned. Otherwise, a non-zero value is
returned, according to the compared values of obj 1 and obj2.

Return values: II II II memcmp () returns zero if the first n characters of objects obj 1 and obj 2

are identical. A non-zero value is retilrned if the character sequences
are not identical: negative when the value of the indicated character
sequence of obj 1 is smaller, positive if it is greater than the value of the
corresponding character sequence of obj2.

See also: strcmp ()

strncmp()

8 -152

Library reference

memcpyO

Usage:•....• 'include <string.h>
char *memcpy(dest, src, n);
char *dest, *src;
size t n;

Availability: Draft Proposed ANSI C·

Library: std .lib

memcpyO

Description: memcpy () copies the n characters from the object pointed to by src to
the first n characters of the object pointed to by dest. The result is not
defined in case of overlapping source and destination objects.

Return values: memcpy () returns the value of dest.

See also: strcpy ()
mermnove ()

8 -153

memfil/()

memfill()

Usage: iinclude <string .h>
char *memfill(obj, ptr, size, cnt);
char *obj, *ptr;
int size, ent;

Availability: Par.C System

Library: std .lib

Par. C System

Description: memfill () fills the object pointed to by obj with the pattern of size
bytes pointed to by ptr, which is repeated cnt times.

Return values: memfill () returns obj

Notes and remarks: The number of bytes written is cnt * size. No 'stride' can be defined,
i.e. each copy of the pattern follows the former immediately.

See also: memset ()

Example: #include <string .h>

channel *Multichan;
int ResetPat = MostNeg; /* predefined as Ox80000000 */

int Nrofchannels = 1024; /* number of channels desired */

/* use memfill to reset dynamically allocated channels */

Multichan = (channel *) malloc(Nrofchannels *
sizeof(channel));

memfill(Multichan, &ResetPat, sizeof(channel),
Nrofchannels);

8 -154

Library reference

memmove()

Usage: iinclude <string.h>
char *memmove(dest, src, n)i

char *dest, *srci
size t ni

Availability:• Draft Proposed ANSI C

Library: std .lib

memmove()

Description: memmove () copies the n characters from the object pointed to by src to
the first n characters of the object pointed to by dest .

Return values: memmove () returns the value of dest.

Notes and remarks: In contrast with memcpy (), memmove () renders correct results, even if
the source and destination overlap.

See also: memcpy ()
strcpy ()

8 -155

memsetO

memset()

Usage: ...•..... jinclude <string.h>
char *memset(obj, c, n);
char *obj;
int c;
size t n;

Availability: •.•.• Draft Proposed ANSI C

Library: std .lib

Par.CSystem

Description: memset () copies the value ofc, converted to an unsigned char type, into
each of the first n characters of the object pointed to by obj .

Return values: ... memset () returns obj •

See also: memfill ()

8 -156

Library reference

mktime{)

Usage: iinclude <time.h>
time_t mktime(ptr);
struct tm .ptr;

Availability: Draft Proposed ANSI C

Library: std .lib

mktimeO

Description:• mktime () converts the time information contained in the tm structure
pointed to by ptr to a calendar time value of type time_ t, which has the
same encoding as the values returned by time () • The original values of
the tm_wday and tm_yday elements of the indicated structure are
ignored, and the values of the other elements are not restricted to the
ranges which they would have when obtaining the' structure from
gmtime () or localtime () • When execution ofmktime () was successful,
the elements of the tm structure are set to the correct values and the
returned value is a valid representation of the indicated calendar time
represented as time_ t.

Return values: mktime () returns the calendar time encoded in a time_ t type. If the time
indicated in the tm structure pointed to by ptr cannot be represented,
the value (time_ t) (-1) is returned.

See also: time ()

gmtime ()
localtime()

time.h

8 -157

modfO

modf()

Usage: ..•...•.. iinclude <math.h>
double modf(x, iptr);
double x, *iptr;

Availability: Draft Proposed ANSI C

Library: math .lib and t8math .lib

Par. C System

Description:modf () breaks the floating-point number x into integral and fractional
parts, each of which has the same sign as the argument. The argument x

is expected to have the type double. The computed integral part is stored
as a double value in the object pointed to by iptr.

Return values: ... modf () returns the fractional part of x.

8 -158

Library reference

NaN()

Usage: iinclude <math.h>

int NaN (X);

double Xi

Availability: Par.e System

Library:• math .lib and t8math .lib

NaNO

Description: The function NaN () checks whether its argument X is a Not a Number.

Return values: The function NaN () returns 0 if X is a regular double. If x is a NaN (Not
a Number) generated by _matherr (), it will return the associated error
code, as defined in errno. h. If x is a NaN not generated by _matherr () I

1 is returned.

See also: matherr ()

_matherr()

Example: double x, YI Z;

X=Y*Zi

if (NaN (X)) {

printf ("Exception occurred. \n") ;
exit(l);

}

8 -159

offsetof()

offsetof()

Usage: ..•..•... iinclude <stddef.h>
size_t offsetof(s_name, m_name);
structure name s_name;
member name m_name;

Availability: Draft Proposed ANSI C

Library: . . • defined as a macro in stddef.h

Par.C System

Description: offsetof () is defined as macro in stddef.h and is used to obtain the
offset in bytes of a structure member identified by m_name in the
structure type designated by s_name. The type of the value replacing the
macro is size t.

See also: stddef.h

8 -160

Library reference

oltoa()

Usage: #include <stdcnv.h>
int oltoa(num, str)
long int numi
char *stri

Availability: Par.C System

oltoaO

Description: The macro oltoa() converts a long integer (64 bits) to its ASCII
representation in octal notation. Both the integer and a pointer to the
string are passed as arguments. The string should be sufficiently long to
store the result of the conversion.

Return values: ... The length of the converted string.

See also: _toa ()

8 -161

onexitO

onexitO

Usage: 'include <stdlib.h~

int onexit(fptr);

void (*fptr)();

Availability: Par.e System

Library: . . • std .lib

Description: .•... See atexi t () .

Notes and remarks: onexit () is defined as a macro:
'define onexit(func) atexit(func)

See also: atexit ()

8 -162

Par.C System

Library reference

otoa{)

Usage: iinclude <stdcnv.h>
int otoa(num, str)
int numi
char *stri

Availability: Par.e System

otoaO

Description: The macro otoa () converts an integer to its ASCII representation in octal
notation. Both the integer and a pointer to the string are passed as
arguments. The string should be sufficiently long to store the result of
the conversion.

Return values: The length of the converted string.

See also: _ toa ()

8 -163

DutO

Usage:•.. iinclude <transp.h>
void _out(dest, src, size)
channel *dest;
char *srci
int size;

Availability: Par.e System

Library: . . • . . • . .. std. lib

Par.C System

Description: The function _out () sends size bytes to the channel pointed to by dest
from the buffer pointed to by src •

Return values: ... none

See also: _in()
_ sendLink ()

8 -164

Library reference

OutMess()

Usage: iinclude <system.h>
void outMess(message, size, to);
char *message;
int size;
channel *to;

Availability: Par.e System

Library: a .lib and b .lib

OutMess()

Description: outMess () sends size bytes over the channel pointed to by to from the
character array pointed to by message.

Return values: none

Notes and remarks: This is the C-implementation of the transputer instruction out. The only
difference is that no communication is performed if size is zero. This
implies that at least one byte must be transferred, even when only
synchronisation is desired. The proper working of outMess () is only
guaranteed, if exactly one other process expects data of the same size
over the same channel.

See also: InMess ()
SendLink()
sendLinkOrFail()

8 -165

OutPort()

OutPortQ

Usage: II • • •• 'include <stdlib .h>
void outPort(prtaddr, size, buff);
int prtaddr, size;
char *buff;

Availability: Par.C System

Library: io. lib

Par.C System.

Description: outPort () writes size bytes to a host I/O port with address prtaddr.
The bytes are fetched from a buffer located at the transputer with
startaddress buff.

This function is intended for hosts that have cPu's with separate
instructions for I/O, controlling an I/O dedicated bus. What ports are
accessible is host dependent.

Return values: ... none

Notes and remarks: IIMPORTANT NOTE: GREAT CARE SHOULD BE TAKEN WHEN USING THIS FUNCTION. I
Care should be taken with forming prtaddr which, should be
recognizable by the host as a valid port address.

Also byte and bit ordering may differ on the host. The bytes and bits
should then be rearranged to match the ordering used on the host.

See also: InPort ()
PeekHost()
pokeHost()

8 -166

Library reference

P(>

Usage: iinclude <stdlib.h>
void P(SemPtr);
semaphore *SemPtr;

Availability: •..•.. Par.C System

Library: ...•..... std .lib

PO

Description: P () implements semaphores, together with the v () function and the
semaphore type definition. p () operates on a user-declared semaphore
and causes the processes accessing the same semaphore to be queued
in a First In First Out queue.

Semaphores can be used by processes to share resources or variables.
In the Par.C System, semaphores are integer pointers and are used to
implement a queue of processes waiting for the same semaphore. The
queue is handled in the first-in-first-out way. Processes of different
priorities are treated alike, i.e. processes running on high priority are
queued at the end of the line.

Before using the P () and v () functions, a semaphore should be declared
and initialised to contain the value O.
semaphore MySem = 0;
P (&MySem) ;

/* critical section of this program */

V(&MySem) ;

When a process calls P() with Mysem having the value 0 (zero), the
process is given access to its critical section and the semaphore is set to
indicate the active process. The critical section is terminated when this
active process calls v (). When another process is inside its critical
section guarded by MySem, the process calling P () will be queued and
temporarily stopped. The waiting process will resume execution after all
preceding processes, waiting for MySem, have been scheduled, entered
and exited their critical sections.

Notes and remarks: It is vital for correct functioning of semaphores that a critical section in
a process is started with a p () operation and ended with a v () operation.
Performing a v () operation without a corresponding previous P ()

operation will void the protection of the resource or variable. This may
cause loss of active processes.

8 -167

PO Par.C System

Forgetting to call v () will cause all following code to be inside the critical
section: other processes will never obtain access to the shared resources
or variables and the program will probably deadlock as a result of this.

Forgetting to initialise the semaphore to 0, will cause every process
performing a p () operation to be descheduled forever.

Processes running in a critical section can not automatically be
considered as non-interruptable. The process is scheduled and
de-scheduled as usual. However, the processes waiting for the
semaphore will not interrupt this process before it releases it.

Both high and low priority processes can share one semaphore, but high
priority processes are switched to low priority temporarily while
obtaining it.

Example: #include <stdlib.h>
#include <stdio.h>

#define N 10

semaphore comsemaphore = 0;
channel comChannel;

void main ()
{

par
{{
/* concurrently send N messages of different length */

int i,j;
par(i=l; i<= N; i++)
{{

p(&comSemaphore); /* Claim channel and wait */

/* when it is occupied */

for(j=l; j<=i; j++) /* send some integers */

{

comChannel = j;
}

ComChannel = 0; /* send an "end of message" */

V(&comSemaphore); /* Release the channel */

}}
comChannel = -1; /* send an "end of all messages" */

}{

8 -168

Library reference

}

PO

/* Receives all messages and print the values sent */

int j;
j = comChannel;
while (j 1= -1 /* stop at "end of all messages" */

{

printf("%d ",j);
if(j==O) printf("\n");

/* new line at "end of message" */

j = comchannel;
}

}}

8 -169

PeekHosto

PeekHostO

Usage: II iinclude <stdlib.h>
void peekHost(memaddr, size, buff);
int memaddr, size;
char *buff;

Availability: Par.C System

Library: io .lib

Par. C System

Description: PeekHost () reads size bytes ofconsecutive memory at the host, starting
at memaddr. The bytes are put in a buffer located at the transputer
pointed to by buff.

This function is intended to provide direct access to the memory of the
host. What memory is accessible is host dependent.

Return values: ... none

Notes and remarks: Care should be taken with forming memaddr which, should be
recognizable by the host as a valid memory address.

Byte and bit ordering may differ on the host. The bytes and bits should
then be rearranged.

See also: InPort ()
outPort()

PokeHost()

8 -170

Library reference

perror()

Usage: 'include <stdio.h>
void perror(lmessage);

char *lmessage;

Availability:• Draft Proposed ANSI C

Library: io. lib

perrorO

Description: perror () prints a message to stderr (standard error stream). First the
user-supplied leader message lmessage, then a colon and space, then
the system error message, then a new-line character.

The system error message is a textual mapping of the errno variable, the
values oferrno and related text canbe found in the include file errno . h .

Before calling a library routine errno should be cleared, and perror ()
must be called immediately after the call to the library routine (see
notes).

The errno variable should be declared at an external level by means of
including <stddef . h>.

The argument lmessage may be a NULL pointer or point to a null string,
which results in an empty leader message.

Return values: none

Notes and remarks: In case parallel processes call library routines that can set the global
errno variable, one cannot rely on the value of errno and hence neither
on the routines that use errno. In case the errno variable contains a
value wich cannot be mapped, the system error message "error not
found" is printed.

See also: errno . h

stddef.h
strerror()
(*ERROR) ()

8 -171

PokeHostO

PokeHost()

Usage: *include <stdlib.h>
void pokeHost(memaddr, size, buff);
int memaddr, size;
char *buff;

Availability: •.... Par.C System

Library: io .lib

Par. C System

Description: PokeHost () writes size bytes to consecutive memory addresses at the
host, starting at memaddr. The bytes are fetched from a buffer located
at the transputer at address buff.

This function is intended to provide direct access to the memory of the
host. The memory that is accessible is host dependent.

Return values: ... none

Notes and remarks: Care should be taken with forming memaddr, which should be
recognizable by the host as a valid memory address.

Byte and bit ordering may differ on the host. The bytes and bits should
then be rearranged.

See also: InPort ()
outPort()
PeekHost()

8 -172

Library reference

pow()

Usage: tinclude <math.h>

double POW(X, y);
double x, Yi

Availability: Draft Proposed ANSI C

Library: math .lib and t8math .lib

powO

Description: pow () computes the value of x raised to the power y. The arguments x

and yare expected to have the type double. An error occurs when x is
zero and y is less than or equal to zero, or if x is negative and y is not an
integer. Also, a range error may occur if the return value cannot be
represented in a double.

Return values: pOW() returns the value x Y•

See also: errno •h

8 -173

p0w20

pow20

Usage: tinclude <math.h>
double pow2(x);
double Xi

Availability: Par.e System

Library: math .lib and t8math .lib

Par.C System

Description: pow2 () computes the value of 2 raised to the power x. The argument x
is expected to have the type double. A range error may occur if the return
value cannot be represented in a double.

Return values: ... pow2 () returns the value 2x.

See also: errno . h

8 -174

Library reference

pow10()

Usage: iinclude <math.h>

double powlO(X)i

double Xi

Availability: ...•.. Draft Proposed ANSI C

Library: math .lib and t8math .lib

pow100

Description: powlO () computes the value of 10 raised to the power x. The argument
x is expected to have the type double. A range error may occur if the
return value cannot be represented in a double.

Return values: powlO () returns the value lOx.

See also: errno •h

8 -175

printfO

printfO

Usage: #include <stdio.h>
int printf(format, ••.);
char *format;

Availability: Draft Proposed ANSI C

Library: std .lib

Par.C System

Description: printf () writes output to the standard output stream in the format
indicated in the format string pointed to by format, using the optional
arguments following the format string.

The format string may contain zero or more ordinary characters which
are copied unchanged to the standard output stream and zero or more
conversion specifications, resulting in one or more subsequent
arguments being converted to printing format and written to the
standard output stream. Each conversion specification is preceded by
the character %. Writing the character % to the standard output stream
is achieved by putting %% in the format string.

A full description of the possible conversion specifications and flags is
given in the description of the related fprintf (). The difference
between fprintf () and printf () is, that the latter writes to the
standard output stream rather than to a stream indicated by the first
argument.

Return values: ... printf () returns the number of characters written to the standard
output stream, or a negative value if an error occurred.

See also: fprintf ()
sprintf()
vprintf ()
vsprintf()
vfprintf()

8 -176

Library reference

Priority()

Usage: 'include <system.h>
int priority();

Availability: Par.C System

Library: II std .lib

Description: II.... priority () obtains the priority of the current process.

PriorityO

Return values: Priority () returns the value of one of the defined constants
HIGH_PRIORITY or LOW_PRIORITY dependending on the current priority.

See also: II. setpriority()

8 -177

Library reference

putc{)

Usage: iinclude <stdio.p>

int putC(C, stream);

int Cj

FILE *stream;

Availability: Draft Proposed ANSI C

Library: io • lib

puteO

Description: putc () writes the character specified by c and converted to an unsigned
integer, to the stream pointed to by stream..

Return values: putc () returns a positive integer representing the character written to
the stream. If an error occurs while writing, the error indicator is set and
EOF is returned.

Notes and remarks: putc () is implemented as a macro, expanding to more code than a call
to fputc () would generate, but which executes faster. Side effects in the
expression stream should be avoided.

See also: fputc ()

putchar ()

8 - 178

Library reference

putchar()

Usage: 'include <stdio.h>
int putchar(c);

int Ci

Availability: Draft Proposed ANSI C

Library: io .lib

putcharO

Description: putchar () writes the character specified by c and converted to an
unsigned integer, to the standard output stream.

Return values: putchar () returns a positive integer representing the character written
to the standard output stream. If an error occurs while writing, the error
indicator is set and EOF is returned.

Notes and remarks: putchar () is implemented as a macro, expanding to putc (C, stdout).

See also: putc ()

fputc ()

8 -179

puts0

putsO

Usage: .a .••.•.. tinclude <stdio.h>
int putS(S);
char *s;

Availability: .•... Draft Proposed ANSI C

Library: io . lib

Par.C System

Description: puts () writes the string pointed to by s to the standard output stream
and appends a newline character to the output. The terminating null
character is not written.

Return values: ... puts () returns a nonzero value if the string has been successfullywritten
to the standard output stream. Otherwise, zero is returned.

See also: fputs ()

8 -180

Library reference

qsort()

Usage:• 'include <stdlib.h>
void qsort(base, n, size, compare);
char *base;
size_t n, size;
int (*compare) (pI, p2);

Availability: Draft proposed ANSI C

Library: s td •lib

qsortO

Description: qsort () takes base as a pointer to the array to be sorted, n as the number
of elements in the array, size as the size of an element and compare as
a pointer to the comparison function to be used. See the description of
bsearch () for more details on compare () .

Return values: none

Notes and remarks: qsort () is an implementation of the quicksort algorithm. It is written
recursively, so it needs much stack if the input array is large.

See also: bsearch ()

8 -181

raise0

raise()

Usage: tinclude <signal.h>
int raise(sig);

int sig;

Availability: s Draft Proposed ANSI C

Library:• II std .lib

Par.C System

Description: raise () provides, together with signal () and a number of defined
signal macro's, a primitive exception handling mechanism to be used to
influence the normal flow of the C program. When raise () is called,
the routine corresponding to sig, as installed with signal (), will be
executed. The function will be replaced by S IG_ DFL in the trap table, and
must be re-installed when it should be called again when sig is raised
the next time. This can be done in the signal handling routine itself, by
calling signal ().

Return values: .. II raise () returns zero if it was successful, nonzero if unsuccessful.

Notes and remarks: Certain signals may be raised without explicitly calling raise (). This is
true for ABORT_ SIG, which is raised by abort () or /'. C (ctrl C), for
EVENT_SIG, which is raised by asserting the transputer's event pin, and
for ALARM_SIG, which is raised by the alarm timer.

Raising ALARM_SIG will not cause sleeping processes to be woken, and
raising ABORT_SIG will not cause the program to be aborted. raise()
calls a function associated to sig and causes it to be removed from the
trap table.

See also: II signal ()

abort ()

alarm()

8 -182

Library reference

rand()

Usage: 'include <stdlib.h>
int rand();

Availability: Draft proposed ANSI C

Library: std .lib

rand()

Description: rand () generates a pseudo random number in the range 0 - RAND_MAX.

RAND MAX is defined in stdlib.h.

Return values: rand () returns the generated random number.

Notes and remarks: rand () is implemented as a linear feedback shift register with a 55
element buffer. The period is at least 255

.

srand () can be used to initiate a reproducible sequence. However,
when rand () is called from a number of concurrent processes, this
reproducibility can not be guaranteed, because the sequence will be
shared by these processes.

rand () will generate the same sequence on all transputers in the
network if no transputer specific initialization is performed. srand ()
and the network info in the SYSTEM structure can be used to render
independant results on all transputers. See the system. h include file for
a description of the SYSTEM structure.

See also: srand ()

stdlib.h

system.h

Example: A function returning a double value in the range [0.0, 1.0) can be defined
as follows:

#include <stdlib.h>

double drand ()

{

return (double) rand() / (RAND_MAX+l.0);

}

8 -183

real/oc()

reallocQ

Usage: 'include <stdlib.h>

'include <stddef.h>

char *realloc(oldblock, size);

char *oldblock;

size t size;

Availability: Draft Proposed ANSI C

Library: std. lib

Par.C System

Description: realloc () attempts to adjust the size of a previously allocated block.
The new block will be a storage space of size bytes, and will contain the
information of the previously allocated block, as far as the old and new
block overlap.

oldblock must have a value previously returned by one of the memory
allocation functions. If not, realloc () will behave undefined. size is
the amount of storage space to be allocated.

If necessary the contents of the old block are copied to the new block.

Return values: realloc () returns a pointer to the start (lowest byte address) of the new
allocated space. A NULL pointer will be returned in case the space can
not be allocated, or in case size is zero.

Notes and remarks: If argument oldblock is the NULL pointer, realloc () behaves like
malloc (). The return value may differ from oldblock.

See also: malloc ()

smalloc ()

free ()
calloc ()

8 -184

Library reference

RecvLink()

Usage: iinclude <system.h>
int ReCVLink(LinkNO, MessPtr, Messsize)i

int LinkNoi
char *Messptri

int Messsize;

Availability: Par.C System

Library: std .lib

RecvLinkO

Description: ReCvLink() will attempt to receive a message of Messsize bytes from
the input link indexed by LinkNo and write the data into the array pointed
to by MessPtr. Error codes are generated when the function is called
with an illegal LinkNo or when the status of the link (as given in the
SYSTEM structure) indicates I/O errors or the link not being connected.

Return values: RecvLink () returns zero if the specified number of bytes were
successfully received. If the indexed link does not exist, the error code
E LINKNO is returned. If the linkstatus indicates a non-connected link or
a link showing I/O errors, the error code E_ CANTRECV is returned.

Notes and remarks: It is possible to perform link communication in other ways, e.g. by
assigning link addresses to channel pointers and using the primitives for
channel communication available in the Par.C System. Although
system. h contains the macros LINKOUT and LINKIN for this purpose, this
method of inter-processor communication is not recommended,
because future expansions of the Par.C system might use the links for
low-level message passing and internal system communications, or for
multi-processor file I/O. The functions ReCVLink(), RecvLinkOrFail (),

sendLink () and SendLinkorFail () are guaranteed to work, also in later
versions of the Par.C System.

See also: RecvLinkorFail ()

sendLink()
sendLinkOrFail()

8 -185

RecvLinkOrFailO

RecvLinkOrFail()

Par.C System

Usage: .••.....• iinclude <stdlib.h>

iinclude <time.h>

int RecvLinkOrFail(LinkNO, Messptr, Messsize, Timeout);

int LinkNo;

char *MessPtr;

int Messsize;

clock_t Timeout;

Availability: Par.e System

Library: std. lib

Description: RecvLinkOrFail () will attempt to receive a message of Messsize bytes
from the input link indexed by LinkNo and write the data into the array
pointed to by MessPtr. If this is not accomplished within Timeout

clockticks, the receive is aborted and the function will return the
non-zero value E_TIMEOUT. Error codes are also generated when the
function is called with an illegal LinkNo or when the status of the link
indicates that I/O errors have occurred or that the link is not connected.
The link status is described in the SYSTEM structure, which is described
in system.h.

Return values: ... RecvLinkOrFail () returns zero if the specified number of bytes were
successfully received within the specified time. If the indexed link does
not exist, the error code E_ LINKNO is returned. If the linkstatus indicates
a non-connected link ora link showing I/O errors, the error code
E CANTRECV is returned. If the receive instruction was not successful
within the specified time, the error code E_ TIMEOUT is returned.

Notes and remarks: It is possible to perform link communication in other ways, e.g. by
assigning link addresses to channel pointers and using the primitives for
channel communication available in the Par.e System. Although
system. h contains the macros LINKOUT and LINKIN for this purpose, this
method of inter-processor communication is not recommended,
because future expansions of the Par.e system might use the links for
low-level message passing and internal system communications, or for
multi-processor file I/O. The functions RecvLink (), RecvLinkOrFail () ,

SendLink () and SendLinkOrFail () are guaranteed to work, also in later
versions of the Par.e System.

8 -186

Library reference

See also: • .. RecvLink ()

SendLink()

sendLinkorFail()

Example: · · · · · • .• See sendLinkOrFail ()

RecvLinkOrFaiiO

8 -187

Release()

ReleaseO

Usage: iinclude <stdio.h>
void Release(status);
int status;

Availability: Par.C System

Library: io .lib

Par.C System

Description: Release () causes the file system on the transputer to be deactivated and
the server running on the host system to exit with value status. This
function can be used to have control return to the host system without
aborting the running program on the transputer. On the transputer side,
the link to the host system is free to the user program after Release ()
has been called. A special, user-defined server program (e.g. a graphics
server) can then handle the communications.

Return values: ... none

8 -188

Library reference

remove()

Usage: 'include <stdio.h>
int remove(filename);
char *filename;

Availability: Draft Proposed ANSI C

Library: io. lib

remove0

Description: remove () causes the file with name filename to be removed.
Subsequent attempts to open the file will fail. The effect of calling
remove () for a file which is open depends on the operating system
running on the host. An attempt which is not granted will result in an
errorcode being returned.

Return values: remove () returns zero if the file was removed successfully. Otherwise,
a nonzero value is returned.

8 -189

rename()

rename()

Usage: ..•...... tinclude <stdio.h>
int rename(oldname, neWname)i
char *oldname, *newnamei

Availability: Draft Proposed ANSI C

Library: II • •• io .lib

Par.C System

Description: rename () will cause the file with name oldname to receive the new name
specified by newname. The effect of an attempt to rename a non-existing
file, or to use an already existing filename as newname, depends on the
operating system running on the host. A failing attempt to rename a file
will cause an errorcode to be returned. In this case the file that was to
be renamed will still be known under its old name on the host system.

Return values: ... rename () returns zero if the file was renamed successfully. Otherwise,
a nonzero value is returned.

8 -190

Library reference

ResetChannel()

Usage: iinclude <system.h>
int Resetchannel(ptr);
channel *ptr;

Availability: Par.C System

Library: std .lib

ResetChannelO

Description: Resetchannel () resets the channel pointed to by ptr in order to make
it available for communication instructions.

Return values: Resetchannel () returns the old contents of the channel word pointed
to by ptr.

Notes and remarks: This routine should be used when the user wants to reset a channel. It
is also possible to write NotProcessP into a channel by writing

*(int *) &chan = NotProceSSPi

where chan is a channel. The manipulation with pointer operators and
typecasts is necessary to avoid the transmission of the value
NotProcessP over the channel. This method is not recommended. It
does not work on links, as the link hardware is not reset.

Resetting a channel which has a process waiting for it will effectively
abort the waiting process, since its information is not stored anywhere
in either the transputer's hardware nor in the system areas of the Par.C
System. The contents of the channel can be used to reach the waiting
process, but great care should be taken when working with this
information. See the transputer reference manual for more details on
the communication mechanism and on the de/scheduling mechanism of
the transputer.

8 -191

ResetChannelO Par.C System

Example: finclude <transp.h>

struct Port
{

/* stucture containing a channel */

channel Chan;

int status;
} *out;

/* This channel is not automatically
initialized */

/* dynamically create a channel */
out = (struct Port *)malloc(sizeof(struct Port));
ResetChannel(&out->chan); /* initialize the channel */
out->status = FREE;

/* initialize rest of the structure */

/* after this, channel is available for communication */

8 -192

Library reference _ResetSystemTimers0

_ResetSystemTimers{)

Usage: iinclude <system.h>

void _ResetsystemTimers(start);

int start;

Availability: Par.C System

Library: ""....... std .lib

Description: _ResetsystemTimers () sets both low and high priority system timers to
the value indicated by start.

Return values: none

Notes and remarks: It is not necessary to start the timers, because the Par.C system sets their
values to MostNeg just before calling main (). Resetting the timer may
influence otherprocesses, and is therefore not recommended. The timer
can be read with the function clock ().

See also: . " " " . " ." clock ()

8 -193

rewindO

rewind()

Usage: 'include <stdio.h>
void rewind(stream);

FILE *stream;

Availability: .•... Draft Proposed ANSI C

Library: . . • io .lib

Par. C System

Description: rewind () sets the file position indicator for the stream pointed to by
stream to the beginning of the file. The end-of-file and error indicators
for the specified stream are cleared.

Return values: ... none

Notes and remarks: The effect of rewind () can also be obtained by a call to fseek() with
the offset specified as zero bytes from the begirining of the file, and a
subsequent call to clearerr () for this file.

See also:

8 -194

fseek()
clearerr()

Library reference

RunQ
Usage: 'include <stdlib.. h>

int Run (Linkno, progfilename, Arguments)

int Linkno;
char *progfilename, *Arguments;

Availability: Par.C System

Library: run .lib

RunO

Description: Run () reads the file Progfilename (containing an executable Par.e
program) from the host and sends it over link Linkno to a neighbouring
transputer, where it is started. The string Arguments is passed to the
started program.

Calling Run () on the first transputer is comparable with invoking the
command run Progfilename Arguments on the host machine.

The program calling Run () should be linked with run .lib and io .lib.

The program(s) to be booted into neighbouring transputers should be
linked with noio .lib.

Detailed description

Run () can only be called on the first transputer in the network. It is used
to boot a subsystem of transputers, connected to one of the links of this
first transputer, with an executable Par.C program. Although that
program is a complete Par.C program in itself, it will be referred to as a
subprogram here.

The first transputer acts as a host to the subprogram. To avoid
complications in the explanation, this transputer will be referred to as
pseudo-host. The only difference between invoking RUN on the host
machine and calling Run () on the first transputer is that a subprogram
communicates with the pseudo-host through user-defined message
passer routines (no file I/O system is available in the subprogram).

With Run (), a transputer system can be divided into a number of
subsystems each executing a different subprogram. Since the transputer
has four links and one of these is in use as interface to the host system,
the maximum number ofsubsystems/subprograms is three (not counting
the program running on the first transputer which initiates these three
subprograms). An example is given in the following figure:

8 -195

Library reference Run()

Example: In this example, three subsystems have been booted, each through one
of the available links on transputer # 1. Since each of the subprograms
behaves exactly as if it was started directly from the host machine, the
transputers in each subsystem are numbered again starting from 1.

Subsystem A

o
Subsystem B Subsystem C

Three independant subsystems

When the subprogram to be loaded onto a subsystem is linked with b.lib,
a multi-transputer program will be produced, which is loaded onto all
available transputers. This is exemplified in subsystems A and C above.
When a subprogram is linked with a.lib only one transputer will be
booted. This is shown in subsystem B, where one more transputer is
available but not used by the subprogram.

Restrictions:
Run () resides in run .lib which replaces the ordinary single and multi
transputer boot libraries a .lib and b .lib. Since Run () reads a file to
load onto a subsystem, the program calling Run () must be linked with
io .lib.

All subprograms must be linked with noio .lib, since no file server is
installed on the pseudo-host. This also implies that no program calling
Run () can be loaded onto a subsystem: the use of this function is
restricted to the transputer immediately connected to the host.

Return values: Run () returns zero if successful, otherwise one of the following error
codes is returned:

E RSLFMT4

E RSLFMT8

E NOREALT4

E NOREALT8

E CANTALLOC

Format of resident library for T4 corrupted.
Format of resident library for T8 corrupted.
Unable to find/open resident library for T4.
Unable to find/open resident library for T8.
Memory allocation failure on pseudo-host.

8 -196

Run()

E NOSUFI

E TIMEOUT

E LINKNO

E CANTSEND

E CANTRECV

E_UNKREQ

Par. C System

Unable to find/open the indicated ProgFilename.
Timeout on communication to subsystem.
Attempt to access a non-existing link.
Unable to send subprogram over the indicated link.
Unable to receive from the indicated link.
Unknown request code received from subsystem.

Also, a number of errors may occur in the file I/O between host and
pseudo-host. See errno. h for a full list of error codes.

Notes and remarks: When booting a subsystem which is connected to a transputer already
booted (including possibly the pseudo-host), care should be taken not
to access the interconnecting link from the other side while Run () is
executing. This is exemplified in the figure below:

Multiple access to subsystem

In this example, the pseudo-host is connected to the subsystem via three
links. When loading a multi-transputer subprogram through link 1, all
transputers will be booted and the interconnections from transputers 3
and 5 back to the pseudo-host will also be probed by the network
analyser. To prevent errors, links 2 and 3 of the pseudo-host should not
be accessed in either direction during execution of Run (). This is
indicated with the slash character 'I'.

It is also possible to load different subprograms onto different parts of
the same subsystem, but only to a limited extent. Using the same figure
as in the previous note this can be explained as follows.

In this case, all transputers connected to the pseudo-host are again
interconnected. Still, they can be divided into at most three subsystems
by loading different subprograms through each of the three links going

8 -197

Library reference Run()

into the system from the pseudo-host. Since a multi-transputer program
takes all available transputers, two of the subprograms in the above case
must be single-transputer programs, and must be loaded before the
multi-transputer program is loaded through link 1. Again, no access to
the interconnecting links between different subprograms should be
made during loadtime.

Different programs on the same subnetwork

Run () can be used in combination with the _entry () facility to boot a
subsystem consisting of transputers with internal memory only. For an
explanation of the use of_entry () see the chapter on Special Topics in
this manual. The \examples \pi directory included in the Par.C System
software contains source code (the PI programs) as examples of this
technique.

See also: errno . h

Chapter 6

_entry ()

8 -198

Library reference

RunProcess{)

Usage: #include < system.h >
void RunProcess{Process, priority, Npar, •••);

void (*ProcesS)()i

int prioritYi

int Npari

Availability: Par.C System

Library: std .lib

RunProcessO

Description: RunProcess () causes a process to be created, which calls the function
pointed to by Process and passes the required parameters to it. This
process will run concurrently with the caller of RunProcess ().

priority can have the values HIGH_PRIORITY and LOW_PRIORITY as
defined in transp. h, and indicates the priority at which the process will
be started. After starting the concurrent process, RunProcess () returns
immediately.

Any number of parameters can be passed to the function named
Process. The optional fourth and following parameters of
RunProcess () will be passed as parameters to the indicated function.

Npar must hold the size of the parameter list, which will mostly be the
exact number of parameters, with the exception of longs, floats and
doubles. Every long, float or double counts for 2 parameters.

The concurrent process will have its own workspace. When Process ()

returns the process is deactivated and its workspace deallocated.

Return values: none

Notes and remarks: RunProcess () offers an alternative to the par statement. These are the
differences:

• RunProcess () can only start a piece of code that is organised as a
function.

• RunProcess () can start processes at the high priority level.

8 -199

RunProcessO Par.C System

• RunProcess () offers no automatic synchronisation mechanism: no
parentprocess willwait for the started function to finish. It could even
go on running after the main program has finished (which is not
recommended).

See also: Chapter 4 (Parallel C)

Example: tinclude <system.h>

iinclude <stdio.h>

iinclude <stdlib.h>

idefine PROCNR 20

void print_message(i,sync)

int i;
channel *sync;

{

printf("This is process %d\n",i);

sync = 1; / signal that I am ready */

}

void main()

{

int i, j;

channel syncs[PROCNR];

int ready[PROCNR];

for (i=O; i<PROCNRi i++) { /* start PROCNR processes */

Runprocess(print_message,Low_PRIORITY,2,i,&syncs[i]);

ready[i] = 0;

}

for (i=O; i<PROCNR; i++)

/* wait PROCNR times for a ready signal */

select { /* look at running processes only */

alt (j=O; j<PROCNR; j++) cond !ready[j]

guard &syncs[j] :

ready[j] = syncs[j];

/* another process is ready */

}

/* at this point all processes which were started */

/* are ready */

}

8 - 200

Library reference

scanfO

Usage: 'include <stdio.h>
int scanf(format, .••);

char *formati

Availability: Draft Proposed ANSI C

Library: io .lib

scanf()

Description: ...'.. scanf () reads input from the standard input stream, which is converted
according to the format indicated in the format string pointed to by
format, using the optional arguments following the format string to
receive the input.

The format string may contain one or more whitespace characters, a
number of ordinary characters (excluding the % character) and a
number of conversion specification directives, each introduced with the
% character.

A full description of the possible conversion specifications and flags is
given in the description ofthe related f scanf () . The difference between
fscanf () and scanf () is, that the latter reads from the standard input
stream rather than from a stream indicated by the first argument.

Return values: scanf () returns the number of conversions or EOF if an error occurred
before any conversion has been executed.

See also: fscanf ()

8 - 201

SendLinkO

SendLink{)

Usage: iinclude <system.h>
int sendLink(LinkNo, MessPtr, MessSize)i
int LinkNoi
char *MessPtri
int Messsizei

Availability: Par.e System

Library: std .lib

Par.C System

Description: sendLink() will attempt to send a message of Messsize bytes to the
output link indicated by LinkNo, reading the data from the array pointed
to by MessPtr. Error codes are generated when the function is called
with an illegal LinkNo or when the status of the link (as given in the
SYSTEM structure) indicates I/O errors or the link not being connected.

Return values: ... sendLink() returns zero if the specified number of bytes were
successfully sent. If the indicated link does not exist, the error code
E LINKNO is returned. If the linkstatus indicates a non-connected link or
a link showing I/O errors, the error code E_CANTSEND is returned.

Notes and rema~ks: It is possible to perform link communication in other ways, e.g. by
assigning link addresses to channel pointers and using the primitives for
channel communication available in the Par.C System. Although
system.h contains the macros LINKOUT and LINKIN for this purpose, this
method of inter-processor communication is not recommended,
because future expansions of the Par.C system might use the links for
low-level message passing and internal system communications, or for
multi-processor file I/O. The functions RecvLink (), RecvLinkOrFail (),
sendLink() andsendLinkOrFail() are guaranteed to work, also in later
versions of the Par.C System.

See also: RecvLinkOrFail ()
ReCVLink()
sendLinkOrFail()

8 - 202

Library reference

SendLinkOrFail()

SendLinkOrFai/()

Usage: 'include <system.h>

'include <time.h>
int sendLinkOrFail(LinkNO, Messptr, Messsize, Timeout);

int LinkNoi
char *Messptr;

int Messsizei

clock t Timeout;

Availability: Par.C System

Library: std .lib

Description: sendLinkorFail () will attempt to send a message of Messsize bytes to
the output link indexed by LinkNo, reading the data from the array
pointed to by MessPtr. If this is not accomplished within Timeout

clockticks, the send is aborted and the function will return the non-zero
value E_TIMEOUT. Error codes are also generated when the function is
called with an illegal LinkNo or when the status of the link (as given in
the SYSTEM structure) indicates I/O errors or the link not being
connected.

Return values: SendLinkOrFail () returns zero if the specified number of bytes were
successfully sent within the specified time. If the indexed link does not
exist, the error code E_ LINKNO is returned. If the linkstatus indicates a
non-connected link or a link showing I/O errors, the error code
E_ CANTSEND is returned. If the send operation did not succeed within the
specified time, the error code E_ TIMEOUT is returned.

Notes and remarks: It is possible to perform link communication in other ways, e.g. by
assigning link addresses to channel pointers and using the primitives for
channel communication available in the Par.C System. Although
system. h contains the macros LINKOUT and LINKIN for this purpose, this
method of inter-processor communication is not recommended,
because future expansions of the Par.C system might use the links for
low-level message passing and internal system communications, or for
multi-processor file I/O. The functions RecvLink (), RecvLinkOrFail (),
SendLink () and SendLinkorFail () are guaranteed to work, also in later
versions of the Par.C System.

8 - 203

SendLinkOrFailO Par.C System

See also: e1...... RecvLink ()
RecvLinkOrFail()
SendLink()

Example: iinclude <stdio.h>
#include <system.h>
iinclude <stdlib.h>

int data[4] = { 10, 20, 30, 40 };
idefine TIME OUT 4000

void main ()
{

SYSTEM sysinfo;
int myId, hostlink;
int link, number;
GetsysInfo(&sysinfo);
myld = sysinfo.Tn;
hostlink = sysinfo.HostLinkno;
if(myId == 1){

par(link = 0; link 4; link++){
if(link != hostlink){

sendLinkorFail(link, &data[link],
sizeof(int), TIME_OUT);

printf("send data %d down link %d\n",
data[link], link);

RecvLinkOrFail(link, &data[link],
sizeof(int), TIME_OUT);

printf("received result %d from link %d\n",
data[link], link);

}

}

printf("finished test of send-/Recv-LinkOrFail()\n");
}else{

RecvLinkOrFail(hostlink, &number, sizeof(int),
TIME_OUT) ;

number = number + myId;
sendLinkOrFail(hostlink, &number, sizeof(int),

TIME_OUT) ;
}

}

8 - 204

Library reference

setbuf{)

Usage: iinclude <stdio.h>
void setbuf(stream, buf);
FILE *stream;
char *buf;

Availability: Draft Proposed ANSI C

Library: io.lib

setbuf()

Description: setbuf () causes the stream pointed to by the first argument to be
buffered, using the buffer pointed to by buf. If buf is the NULL pointer,
buffering is switched off.

Return values: setbuf () returns zero on success, and a nonzero value if the attempt to
associate the specified stream with the buffer was unsuccessful.

See also: setvbuf ()

8 - 205

SetErr()

_SetErr()

Usage: 'include <system.h~

int _setErr();

Availability: Par.e System

Library: •. std .lib

Description: _SetErr () sets the transputer's error flag.

Return values: .. _SetErr () returns a nonzero value.

Par.C System

Notes & remarks:. Note that the setting of the transputer's error flag will cause the
processor to halt when the halt-on-error flag is also set.

See also: _TestErr()
_TestclrErr()
_setHaltErr ()
_clrHaltErr()

8 - 206

Library reference

_SetFunStack{)

Usage: 'include <system.h>
int _setFunstack(size);
int size;

Availability: Par.C System

Library: std .lib

_SetFunStack()

Description: _SetFunstack () sets the basic size for function stacks to the value of
size, and returns the previous value. It is used to determine the size of
newly allocated stacks for function calls. This and related routines can
be used to optimize program performance by tuning memory usage for
stacks. Using too small stacks degrades function calling speed, using too
large stacks wastes memory space. For an explanation on stack handling
during runtime see the paragraph "Memory usage in Par.C programs" in
chapter 6.

Return values: The previous basic function stacksize.

Notes and remarks: Controlling stackspace is global. During parallel processing some
construct (e.g. using semaphores) should be employed when one wants
to optimise for just a few function calls.

See also: _GetFunstack ()
_Getparstack()
_setparstack()

8 - 207

_SetHaltErrO

_SetHaltErr()

Usage:•.... iinclude <system.h>
void _setHaltErr();

Availability: ... Q. Par.e System

Library: . .• . . • . •. std. lib

Par.C System

Description: _setHaltErr () sets the transputer's halt-on-error flag. This will cause
the transputer to halt when the error flag is set. The flag is offby default.

Return values: ... none

See also: _SetErr ()
_TestErr()
_ TestclrErr ()

_clrHaltErr()

8 - 208

Library reference

_SetParStack()

Usage: 'include <system.h>
int _setParstack(size);
int size;

Availability: Par.C System

Library: std .lib

_SetParStackO

Description: setParstack () sets the size for workspaces for new processes to the
value of size. This only concerns the size of the initial stack allocated for
each concurrent process.

Return value: The previous workspace size.

Notes and remarks: size is measured in words, not bytes.

Controlling stackspace is done on a global level. During parallel
processing some construct (e.g. semaphores) shou~dbe employed when
one wants to adjust the size for just a few par constructs.

Setting the value small causes newly created processes to allocate a new
stack quite often when subroutine nesting gets deeper, while setting the
value too large may waist memory. A small value is useful when many
processes are started.

See also: _GetFunstack ()
_Getparstack()
_setparstack()

8 - 209

SetPriorityO

SetPriorityQ

Usage: ...••••.. tinclude <system.h>
int setpriority(p);

int Pi

Availability: Par.C System

Library: a .lib and b. lib

Par. C System

Description: setPriority() forces the current process to resume execution at the
priority level indicated by p. The value of p may be set to zero for high
priority and nonzero for low priority.

Return values: ... setpriority() returns the priority level of the process before the
function call was made.

Notes & remarks:. Processes running at the high priority level are discouraged in the Par.C
System. It is our view and experience that processes running at high
priority tend to slow down rather than speed up a program. However,
timecritical and short-running tasks may be programmed to run on the
high priority level to guarantee a short interrupt latency. In the Par.C
System, whenever a high priority process uses resources like memory
management or file I/O, it is forced to low priority until the call has been
answered. The programmer should see to it, that tasks involving
resources are handled outside of the timecritical regions of a process,
or taken over by less timecritical processes (i.e. processes to buffer I/O).
Of the routines contained in the Par.e System itself, only those involved
in event-handling make use of the high priority level.

8 - 210

Library reference

See also: priority ()

Example: iinclude <system.h>
iinclude <stdio.h>

void calc()
{

int i;
double a = 3.0, b = 4.0;
for (i=O; i<10000; i++) { a = alb; b = b/aj }

}

void main()
{

int i;
par (i=Oj i<10j i++)

{{

SetPriority()

if (i%4 == 0) setpriority(HIGH_PRIORITY);
calc () ;
printf("Ready : %d priority = %d\n", i, priority(»;

}}
}

8 - 211

setvbufO

setvbufO

Usage: ...•..... iinclude <stdio.h>
void setvbuf(stream, buf, mode, size);
FILE *stream;
char *buf;
int mode;
size t size;

Availability: Draft Proposed ANSI C

Library: io .lib

Par.C System

Description: setvbuf () causes the stream pointed to by the first argument to be
buffered, using the specifications given. The mode argument indicates
the type of buffering and may have the value _IONBF (no buffering),
_IOLBF (line buffering) or _IOFBF (full buffering). If buf is the NULL

pointer and mode is not set to _IONBF, an automatically allocated buffer
of size size is used. Otherwise, the character array buf points to is used.
This array should have the size indicated by the last argument.

Return values: ... setvbuf () returns zero on success, and a nonzero value if the attempt
to associate the specified stream and buffer was unsuccessful, or if
invalid values are given for mode or size.

See also: setbuf ()

8 - 212

Library reference

signal()

Usage: 'include <signal.h>

void (*signal(sig, fptr»();

int sig;

void (*fptr)();

Availability: Draft Proposed ANSI C

Library: std .lib

signa10

Description: signal () provides a primitive exception handling mechanism to be used
to influence the normal flow of the C program. signal () is used to
associate a specific signal value to a defined signal handling function,
which will then be executedwhenever the specified signal is raised. After
a signal is raised, but before the corresponding signal handling function
is called, the signal trap handler is reset to SIG_DFL. This implies that
after every time a certain signal is raised, signal () must be called to
again associate the signal to the same function, if multiple invocations
are desired. Re-associating a signal handling function to a certain signal
can be done inside the function itself. The signal () function expects a
signal identifier of type integer and a pointer to a signal handling
function which should be associated to the specified signal identifier.
Instead of the signal handling function pointer, two other values may be
used as second argument: SIG_ DFL will cause the default signal handling
to be executed. SIG_ IGN will cause the signal to be ignored. Signals can
be raised in two different ways: synchronously by a call to raise () , and
asynchronously by the system traps.

ABORT_ SIG is raised when the program is aborted from the keyboard and
BREAK handling is supported, or when the routine abort () is called.
EVENT_SIG is raised when the event-pin of the transputer is asserted.
ALARM_ SIG is raised when the time delay, set with alarm () expires.
Signals with values 1 to 15 can be defined and used by the program.
Other signals (including the value 0) are reserved for system use and
future extensions.

Return values: signal () will return the value of fptr for the previous call to signal ()

with sig as first argument. If signal () fails to associate the specified
signal value to the signal handling function pointed to, the value SIG_ERR

will be returned.

8 - 213

signa/() Par.C System

Notes & remarks:. signal (EVENT_SIG, EventHandler) will cause the function
EventHandler to be started as high-priority process, as soon as the
event-pin on the transputer is asserted. If low-priority processing is
desired, the call should be:
signal(EVENT_SIG I.LOW_PRIORITY, EventHandler);

see also: raise ()
alarm ()
sleep()

_sleep()

Example: iinclude <signal.h>
iinclude <stdio.h>
#include <stdlib.h>

#define MYSIG 1

void Showsignal(sig)
int sig;
{

static int evtimes = 0;
/* number of times the Event pin was asserted */

switch(sig)
{

case MYSIG:
printf("somebody raised me\n");
signal(MYSIG,Showsignal); /* reinstall myself */

break;
case EVENT SIG:

printf("Event occured %d time(s)\n",++evtimes);
signal(EVENT_SIG,Showsignal);

/* reinstall handler for Event signal */
break;

}

}

8 - 214

Library reference

void main()
{

signal(MYSIG,Showsignal);
/* install handler for my signal */

signal(EVENT_SIG,Showsignal);
/* install handler for his signal */

for(;;) /* repeat indefinitely */

{

raise (MYSIG) ;
sleep(4);

}

}

signa/()

8 - 215

sinO

sinO

Usage: •........ #include <math.h>
double sin(x);
double Xi

Availability: Draft Proposed ANSI C

Library: math .lib and t8math .lib

Par.C System

Description: sin () computes the sine of x. The argument x is expected to have the
type double.

Return values: ... sin () returns the value of the sine of x.

8 - 216

Library reference

sinhQ

Usage: tinclude <math.h>
double sinh(x);
double Xi

Availability: Draft Proposed ANSI C

Library: math .lib and t8math .lib

sinh0

Description: sinh () computes the hyperbolic sine of x. The argument x is expected
to have the type double.

Return values: sinh () returns the value of the hyperbolic sine of x .

8 - 217

sleep0

sleep()

Usage: ..•...... iinclude <time.h>
int sleep(n);

int n;

Availability: Par.e System

Library:• std .lib

Par. C System

Description: sleep() causes the process to be suspended for n seconds. After the
indicated number of seconds have expired, the process is scheduled for
execution again. If ALARM_SIG is raised before this number of seconds
have passed, the process will be ''woken'', i.e. it will be put back in the
active list.

Return values: ... sleep () returns zero if the indicated time has expired. If the process was
resumed as an effect of ALARM_ SIG being raised, the returned value is
the number of unslept seconds.

Notes and remarks: To set a process waiting for a number of clockticks instead of seconds
_sleep () can be used.

See also: _sleep ()

wait ()
raise ()
alarm()

8 - 218

Library reference

_sleep()

Usage: 'include <time.h>
int _sleep(ticks);

time_t ticks;

Availability: Par.e System

Library: std .lib

_sleep()

Description: _sleep() causes the process to be suspended for ticks clockticks,
unless ALARM_ SIG is raised before this number of clockticks have passed,
in which case the process will be "woken up", i.e. it will be put back in
the active list.

Return values: _sleep () returns zero if the indicated time has expired. If the process
was resumed as an effect of ALARM_ SIG being raised, the returned value
is the number of unslept clockticks.'

Notes and remarks: To have a process waiting for a number of clockticks without the
possibility of waking up through ALARM_ SIG being raised, wai t () can be
used.

See also: sleep ()

wait ()

raise ()

alarm()

8 - 219

smallocO

smaliocO

Usage: iinclude <stdlib.h>
char *smalloc(size):

size t size;

Availability:• Par.e System

Library: a .lib and b .lib

Par. C System

Description: smalloc () causes a memory block of size bytes (plus some words of
overhead) to be allocated and a pointer to the allocated block to be
returned. If no_block of at least size bytes could be allocated, the NULL

pointer is returned.

The difference with malloc () is that smalloc () allocates memory
blocks at the low end of memory, which starts with the fast on-chip RAM
ofthe transputer. If the on-chip RAM is not already occupied by program
segments (See the description of the -b switch of the Par.e linker), the
variables placed in the allocated block will have considerably lower
access times.

Return values: ... smalloc () returns a pointer to the data area of an allocated block of at
least size bytes, ifallocationwas successful. Otherwise, the NULL pointer
is returned.

Notes and remarks: Using more than the allocated bytes will cause internal information of
the memory manager to be overwritten, and will inevitably cause the
program to crash.

The method ofallocation used by smalloc () is optimized for size, which
implies that only size bytes + some words overhead are allocated. All
blocks are aligned to word boundaries and the value returned is a pointer
to the data area of the allocated block. There is no guarantee that the
return value of smalloc () will indeed point to a block in the fast on-chip
memory of the transputer. If no on-chip RAM is available, the call
smalloc () will continue the search into the external memory, since the
entire available memory is seen by the memory manager as one
continuous area with no distinction between internal and external
memory. smalloc () allocates blocks of memory by a "first fit" method,
and starts the search for available blocks from the low end of memory.

8 - 220

Library reference smallocO

The corresponding function malloc () can be used to allocate blocks
starting from the far end of memory.

See also: malloc ()

Example: 'include <stdlib.h>
linclude <system.h>
linclude <stdio.h>

void main ()
{

char *Low, *High;

High = malloc(8);
Low = smalloc(8);
free (High);
free (LOw);
printf("

Largest free block starts at Ox%p, size
Low, High - Low + 8);

}

%u bytes \n II ,

8 - 221

sprintf()

sprintfO

Usage: tinclude <stdio.h>
int sprintf(s, format, ...)i

char *s, *formati

Availability: Draft Proposed ANSI C

Library: std. lib

Par. C System

Description: sprintf () writes characters to the string pointed to by s, in the format
indicated in the format string pointed to by format, using the optional
arguments following the format string. The format string may contain
zero or more ordinary characters which are copied unchanged to the
indicated string and zero or more conversion specifications, resulting in
one or more subsequent arguments being converted to printing format
and written to the string. Each conversion specification is preceded by
the character %. Writing the character % to the string is achieved by
putting %% in the format string.

A full description of the possible conversion specifications and flags is
given in the description of the related function fprintf (). The
difference between fprintf () and sprintf () is, that the latter writes
to a string rather than to a stream indicated by the first argument. When
the terminating null character is encountered, this is treated as an
end-of-file marker.

Return values: ... sprintf () returns the number of characters written to the string s (not
counting the terminating null character), or a negative value if an error
occurred.

Notes and remarks: sprintf () writes a terminating null character to the string s after the
format string has been processed entirely. This terminating null
character is not included in the count which is returned after successful
termination of the function.

See also: fprintf ()
printf()
vsprintf ()

8-222

Library reference

sqrt()

Usage: iinclude <math.h>
double sqrt(x);
double Xi

Availability: Draft Proposed ANSI C

Library: math .lib and t8math .lib

sqrtO

Description: ...•. sqrt () computes the square root of the value of x. A domain error will
occur when the argument has a negative sign.

Return values: sqrt () returns the square root of the value of x.

8 - 223

srandO

srandO

Usage: tinclude <stdlib.h>.
void srand(x) i

unsigned int Xi

Availability: Draft proposed ANSI C

Library: • • .. std .lib

Par. C System

Description: srand() initializes the sequence generated by rand () to a known state.
The same sequence will be generated after srand() is called with the
same argument.

Return values: .. none

Notes and remarks: When rand() is called from several concurrent processes, the use of
srand() can not guarantee that the same sequence will be generated.

See also: rand ()

Example: #include <stdlib.h>
#include <stdio.h>

void main ()
{

int i;

srand(1200);
for (i=O; i<6; i++)

printf("%12u", rand(»;
printf("\n")i

srand(1200);
for (i=Oi i<6; i++)

printf("%12u", rand(»;
printf("\n");

}

8 - 224

Library reference

sscanf{)

Usage:•.•. iinclude <stdio.h>
int sscanf (S, format, ...);

char *s, *format;

Availability: Draft Proposed ANSI C

Library: io. lib

sscanf()

Description: ...•. sscanf () reads input from the string pointed to by the first argument,
which is converted according tot the format indicated in the format
string pointed to by the second argument, using the optional arguments
following the format string to receive the input. The format string may
contain one or more whitespace characters, a number of ordinary
characters (excluding the % character) and a number of conversion
specification directives, each introduced with the %character.

A full description of the possible conversion specifications and flags is
given in the description of the related fscanf (). The difference
between fscanf () and sscanf () is, that the latter reads from a string
rather than from a stream indicated by the first argument.

Return values: sscanf () returns the number of successful conversions, or EOF if an
error occurred before any conversion has been executed.

Notes and remarks: When the trailing null character of the string s is encountered, this is
treated as an end-of-file marker.

8 - 225

sscanfO

See also: fscanf()

Par. C System

Example: iinc1ude <stdio.h>

char input[) = "1 + 2 = three\n";

void main ()
{

int i;
long 1;
char cl, c2, s[8];

sscanf(input, "%d %c %ld %c is", &i, &cl, &1, &c2, S);

printf("int %d\nchar %c\n1ong %ld\nchar %c\nstring %s\n",
i, cl, 1, c2, s);

}

8 - 226

Library reference

_StopProcess()

Usage: iinclude <transp.h>
void _stopprocess();

Availability: Par.C System

Library: std .lib

_StopProcessO

Description: _stopprocess () stops the current process. It can be used to terminate
a process which was started by RunProcess () . Note however, that the
workspace of this process will not be freed. If the current process was
started by means of a par, this par will never end.

Return values: _stopProcess () returns no value.

8 - 227

strcatO

strcat{)

Usage: ...•.•.•• 'include <string.h>
char *strcat(s1, s2);

char *s1, *s2;

Availability: ••.•. Draft Proposed ANSI C

Library: std .lib

Par. C System

Description: . . . •. strcat () concatenates the strings s 1 and s2 to form one new string s 1.

The null character terminating s1 before strcat() is called is
overwritten by the first character of s2 .

Return values: .. strcat () returns a pointer to the resulting string s 1 .

See also: strncat ()

8 - 228

Library reference

strchr()

Usage: #include <string.h>
char *strchr(s, C)i

char *s, Ci

Availability: Draft Proposed ANSI C

Library: std .lib

strchr()

Description: strchr () searches for the first occurence of the character c in a string
s. The string must be terminated by a null character. If the character c

is found, a pointer to the first occurence of c is returned. Otherwise a
NULL pointer is returned. Searching for a null character in string swill
cause a pointer to the terminating null character of s to be returned.

Return values: strchr () returns a pointer to the first occurence of c in s, or a NULL

pointer when c is not found.

See also: strrchr ()

8 - 229

strcmp()

strcmp()

Usage: iinclude <string .h>,

int strcmp(s1, 82);

char *s1, *s2;

Availability: Draft Proposed ANSI C

Library: • . .. std .lib

Par. C System

Description: strcmp() takes the contents of strings 81 and 82 and compares them
lexicographically. If the strings are equal, the value returned is zero~

Otherwise, a non-zero value is returned, according to the
lexicographical values of s 1 and s2 •

Return values: .. strcmp () returns zero if strings s 1 and s2 are identical. Anon-zero value
is returned if the strings are not identical: negative when the
lexicographical value of s 1 is smaller, positive if the value of s 1 is larger
than the value of 82.

See also: strncmp ()
memcmp()

8 - 230

Library reference

strcpy()

Usage: tinclude <string.h>
char *strcpy(s1, s2);
char *sl, *s2;

Availability: Draft Proposed ANSI C

Library: std .lib

strcpyO

Description: strcpy () copies the contents of string s2 to string s I, including the
terminating null character, thereby overwriting the old contents of s 1 .

The entire contents of s2 is copied, even if s1 is smaller than s2.

Return values: ... strcpy () returns a pointer to the first character of s 1 .

Notes and remarks Note that it is possible to corrupt a memory control block, and thus
crashing the system, when the size of s2 exceeds the size of sl.

See also: ... ~ strncpy ()
memcpy()

8 - 231

strcspnO

strcspn{)

Usage: II II II II II II II II II tinclude <string.h>
int *strcspn(s, set);

char *s, *set;

Availability: II II II II II Draft Proposed ANSI C

Library: II II II II II II II II II std .lib

Par.C System

Description: II II II II II strcspn() searches the string s for the first occurence of a character
that is contained in the string set, which is regarded as a set of
characters rather than as a string. However, this second argument should
also be terminated by a null character. The order of characters in this
set, and whether or not there are duplicate characters in the set, is
insignificant.

strcspn() returns a count of the first n characters in the string s which
are not in the set of characters specified in the second argument. So, the
first occurence of a character which is in the set will cause strspn () to
return the number of skipped characters until then. If none of the
characters of the string s are in the set of characters specified, the length
of the string is returned, not counting the terminating null character. If
s is the empty string, no characters can be found, and the return value
will therefore be zero.

Return values: ... strcspn() returns the length of the longest initial segment of string s

which contains no characters from the characters specified in set.

See also: II II II II II II II strspn ()
strpbrk()
strrpbrk()

8 - 232

Library reference

strerror()

Usage: 'include <string.h>
char *strerror(errnum)i
int errnum;

Availability: ...• .. Draft Proposed ANSI C

Library: std .lib

strerror()

Description: strerror () maps errnum to an error message as found in errno. h, the
error message is internally stored and can be accessed by means of the
return value.

Return values: strerror () returns a pointer to an internal string containing the error
message.

Notes and remarks: In case errnum cannot be mapped, a pointer to the string "error not
found" is returned.

For parallel programming it is advisable to use strerror_r () which is
a re-entrant version of strerror () .

See also: errno . h

strerror_r()

perror ()

Example: 'include <string .h>
'include <stdio.h>
'include <errno.h>

void main()
{

puts(strerrOr(E_UNKDEV»;
}

8 - 233

Par.C System

Usage: tinclude <string.h>
char *strerror_r(message,errnum)i

int errnumi
char *messagei

Availability: ...•• Par.e System

Library: . . . • . • . •. std .lib

Description: . •• .. strerror_r() maps errnum to an error message as found in errno.h,

the error message is stored in a string pointed to by message. The user
should have declared at least MAX_ ERRMSG_ LENGTH characters string
space.

Return values: ... strerror_r() returns message.

Notes and remarks: In case errnum cannot be mapped, the error message "error not found"
is put in the user supplied string space.

For parallel programming this function is preferred to strerror ()
because it is re-entrant.

See also: errno . h

perror()

strerr()

8 - 234

Library reference

strlen()

Usage: iinclude <string.h>
size_t *strlen(s);
char *s;

Availability: Draft Proposed ANSI C

Library: std .lib

strlenO

Description: strlen () returns the number ofcharacters contained in the string s, not
counting the terminating null character. The length of the empty string
is zero.

Return values: strlen () returns the length of the string s.

8 - 235

strncatO

strncatQ

Usage: ...•..••. iinclude <8tring.h~

char *8trncat(81, 82, n);
char *81, *82;
int n;

Availability: Draft Proposed ANSI C

Library: std .lib

Par.C System

Description: II • • •• strncat () appends the first n characters in string 82 to string 81, unless
a null character is encountered in string s2 before reaching the n-th
character to be appended to string 81. The value of the resulting string
81 is returned. The null character terminating sl before strcat(") is
called is overwritten by the first character of s2. The new string is
terminated by a null character. If n is zero or has a negative value, no
characters of string 82 are appended to string s 1.

Return values: ... s trncat () returns a pointer to the resulting string s 1.

See also: 8trcat ()

8 - 236

Library reference

strncmp()

Usage: 'include <string.h>
int strncmp(sl, s2, n);
char *sl, *82;
int n;

Availability: Draft Proposed ANSI C

Library: std .lib

strncmpO

Description: strncmp () takes the first n characters of strings s 1 and s2 and compares
them lexicographically. If these character sequences are equal in value,
zero is returned. Otherwise, a non-zero value is returned, according to
the lexicographical values of the compared characters of 81 and 52. If n

has a zero or negative value, both strings are treated as empty strings
and therefore are considered to be identical.

Return values: strncmp () returns zero if the first n characters of strings 81 and 52 are
identical. A non-zero value is returned if these character sequences are
not identical: negative when the lexicographical value of the first n

characters of 81 is smaller, positive if it is larger than the value of the
first n characters of 82.

See also: strcmp ()

memcmp()

8 - 237

strncpy()

strncpy()

Usage: ...•.•••. iinclude <string.h>
char *strncpy(sl, 82, n);
char *sl, *s2;
int n;

Availability: Draft Proposed ANSI C

Library: std .lib

Par. C System

Description: It strncpy () copies the first n characters of string s2 to string s 1. If a null
character is encountered before n characters of s2 have been copied,
null characters are written into s 1 until n characters have been written.
If the length of string s2 (excluding the terminating null character)
exceeds the value ofn, then s 1 will contain a truncated copy of string s 2,

and no terminating null character will be appended to s 1.

Return values: ... strncpy () returns a pointer to the first character of s 1.

See also:

8 - 238

strcpy()

memcpy()

Library reference

strpbrk{)

Usage: tinclude <string.h>
char *strpbrk(s, set);

char *s, *set;

Availability: •. Draft Proposed ANSI C

Library: std .lib

strpbrk()

Description: strpbrk() searches the string s for the first occurence of a character
that is contained in the string set, which is regarded as a set ofcharacters
rather than as a string. However, this second argument should also be
terminated by a null character. The order of characters in this set, and
whether or not there are duplicate characters in the set, is insignificant.

strpbrk () returns a pointer to the first character in the string s which
is in the set of characters specified in set. If none of the characters of
the string are in the set of characters specified, the NULL pointer is
returned. If s is the empty string, no characters can be found, and the
return value will therefore be the NULL pointer.

Return values: strpbrk () returns a pointer to the first character in string s contained
in the set of characters specified by set. A NULL pointer is returned if
none of the characters in string s are contained in the set specified.

See also: strcspn ()

strrpbrk()

8 - 239

strpbrk()

Example:

8 - 240

Par. C System

iinclude <string.h>
iinclude <stdio.h>

char str[] = "The Par.C system by Parsec Developments\n";
char vowel [] = "ae~ouy";

void main ()
{

char *result, *test = string;

printf(str);
while ((result = strpbrk(test, vowel)) 1= NULL)

{

int i = result - test;

test = result + 1;
while(i--) putchar(' ');
putchar('''')i

}

putchar (, \n') ;
}

Library reference

strrchr()

Usage: iinclude <string.h>
char *strrchr(s, C);

char *s, c;

Availability: Draft Proposed ANSI C

Library: std .lib

strrchrO

Description: strrchr () searches for the last occurence of the character c in a string
s. The string must be terminated by a null character. If the character c

is found in string s, a pointer to the last occurence of c is returned.
Otherwise the NULL pointer is returned. Searching for a null character
in string s will cause a pointer to the terminating null character of the
string to be returned.

Return values: strrchr () returns a pointer to the last occurence of c in string s, or the
NULL pointer when c is not found.

See also: ... ~ strchr ()

8 - 241

strrpbrkO

strrpbrk{)

Usage: •....•••. iinclude <string.h~

char *strrpbrk(s, set);

char *9, *get;

Availability: ..•.. Par.e System

Library: std .lib

Par.C System

Description: strrpbrk() searches the string s for occurences of characters that are
contained in the string set, which is regarded as a set ofcharacters rather
than as a string. However, this second argument should also be
terminated by a null character. The order of characters in this set, and
whether or not there are duplicate characters in the set, is insignificant.

strrpbrk () returns a pointer to the last character in the string s which
is in the set of characters specified in the second argument. If none of
the characters of the string s are in the set of characters specified, the
NULL pointer is returned. If s is an empty string, no characters can be
found, and the return value will therefore be the NULL pointer.

Return values: ... strrpbrk () returns a pointer to the last character in string s contained
in the set of characters specified by set. The NULL pointer is returned if
none of the characters in string s are contained in set.

See also: strpbrk()

strcspn()

8 - 242

Library reference

strrpos{)

Usage: tinclude <string.h>
int strrpos(s, C)

char *s, Cj

Availability: Par.C System

Library: std .lib

strrpos()

Description: The function strrpos () searches the string s for the last occurence of
the character c. If the character c is found in the string, the position of
the last occurence is returned. If the character is not found, the value -1
is returned. Searching for a null character returns the position of the
terminating null character, that is the length of the string, not the value
-1.

Return values: The position of the last occurence of the character c in string s, or the
value -1 if the character is not in the string.

8 - 243

strspnO

strspnQ

Usage: .••...••. 'include <strin9.h~

int *strspn(s, set);

char *s, *set;

Availability: .•... Draft Proposed ANSI C

Library: . s • • • • • •• std. lib

Par.C System

Description: .. . •. strspn () searches the string s for occurences of characters contained
in the string set, which is regarded as a set of characters rather than as
a string. However, this second argument should also be terminated by a
null character. The order of characters in this set, and whether or not
there are duplicate characters in the set, is insignificant.

strspn () returns a count of the first n characters in the string s which
are all in the set of characters pointed to by set. The first occurence of
a character which is not in the set will cause strspn () to return the
number of skipped characters untill then. If all characters of the string
s are in the set of characters specified, the length of s is returned, not
counting the terminating null character. If s is ·the empty string, no
matching characters can be found, and the return value will therefore
be zero.

Return values: ... strspn () returns the length of the longest initial segment of string s

which contains only characters which are contained in set.

See also: strcspn()

strpbrk()

strrpbrk()

8 - 244

Library reference

Example: 'include <stdio.h>
'include <string.h>

strspnO

char str[] = "The Par.C system by Parsec Developments\n";
char vowell] = "aeiouy";

void main()
{

int skip, mark, count 0;

printf(string);

while(count < strlen(string»{
skip = strcspn(&string[count], vowel);
count += skip;
while(skip--) putchar(' ');

mark = strspn(&string[count], vowel);
count += mark;
while (mark--) putchar(,A,);

}

putchar (, \n') ;
}

8 - 245

strstr()

strstr{)

Par. C System

Usage: #include <string.h>
char *strstr(src, sub);
char *src, *sub;

Availability: Draft Proposed ANSI C

Library: ...•.... s std .lib

Description: strstr () searches for the first occurence of the substring pointed to by
sub in the string pointed to by src, and returns a pointer to this substring
when found.

Return values: ... strstr () returns a pointer to the first occurence of the string sub in
string src. The NULL pointer is returned if the substring has not been
found in src.

See also: strtok ()
strtok_r()

8 - 246

Library reference

strtod()

Usage:•.• iinclude <stdlib.h>
double strtod(sl, s2);
char *sl, **s2;

Availability: •... .. Draft Proposed ANSI C

Library: std .lib

strtod()

Description:• strtod () converts the string pointed to by s 1 to a floating-point number
of type double. First the input string is decomposed into an initial
sequence of zero or more whitespace characters (as specified by the
isspace () facility), a subject sequence resembling a floating-point
number representation, and a final string of one or more unrecognized
characters including the trailing null character of the original string. The
subject sequence is then converted to a floating-point number which is
passed as return value.

The subject sequence is expected to contain an optional plus or minus
sign, a sequence of digits optionally containing one decimal-point
character and an optional exponent part (which in turn consists of the
character 'e' or 'E' followed by an optional sign and two or more digits).
If the first non-whitespace character in the original string is not a sign,
a digit or a decimal-point character, the subject sequence remains empty
and the returned double value is zero.

After succesful conversion, a pointer to the final subject sequence is
stored in the object pointed to by s2, provided s2 is not the NULL pointer.

Return values: strtod () returns the converted value of the floating-point number
represented in s 1 and stores a pointer to the substring which could be
identified as representing this floating-point number in s2. If conversion
failed the returned value is zero.

See also: atod ()

8 - 247

strtok()

strtokO

Usage:•... iinclude <string .h~

char *strtok(s, set);

char *s, *set;

Availability: Draft Proposed ANSI C

Library: std .lib

Par.C System

Description: ...•. strtok() is used to separate the string s into tokens separated by
characters in the string set, which is used as a collection of characters
rather than as a string. However, set should be terminated by a null
character. s trtok () must be called again for each new token in the string
to be tokenised, passing a NULL pointer as first argument to obtain the
next occurence of a character from the set of characters specified. This
set of characters may be changed from one call of s trtok () to another.

strtok () makes use of an internal state pointer, which points to the last
token found in string s. With each call to strtok () which contains the
NULL pointer as first argument, the string s is searched for characters in
the set of characters specified, starting at the position in s pointed to by
the internal state pointer. The first occurring character from set is
replaced by a null character and the internal state pointer is returned.
After this, the internal state pointer is adjusted to point to the first
character in string s following the found character from set, which is
replaced by a null character.

In this way, a string containing a number of tokens with specified token
delimiters, is subdivided into a number of strings, each with a
terminating null character, which are obtained one-by-one in successive
calls to strtok () . Information on the progress of the tokenising process
in string s is held in the internal state pointer, which is a variable local
to strtok () .

Return values: ... strtok () returns a pointer to the first character of the substring, which
is delimited by a character from the set of characters specified, or by the
null character terminating string s. Each successive call to s trtok () with
the NULL pointer as first argument will cause a pointer to the next token
in string s to be returned.

8 - 248

Library reference strtokO

Notes and remarks: It follows from the explanation given above, that strtok () is non
re-entrant by definition. This may cause serious problems when using
strtok () in concurrent processes on the same transputer: when process
1 is descheduled before the tokenising process of string s 1 has finished,
another process may call the same routine to tokenise another string,
which causes the information on string s 1 to be erased.

To cope with this problem a special re-entrant version of the same
function is added to the Par.C System, which copies the otherwise
internal information on the tokenizing process to a variable local to the
caller. See the description of strtok_r() for more details.

See also: strtok_r ()

strstr()

8 - 249

strtok_r()

Usage: iinclude <string.h>

char *strtok_r{s, state, set);

char *s, **state, *set;

Availability: •..•• Draft Proposed ANSI C

Library: std .lib

Par. C System

Description: strtok_r{) is used to separate the string s into tokens separated by
characters in the string set, which is used as a collection of characters
rather than as a string. However, set should be terminated by a null
character. strtok_r() must be called again for each new token in the
string to be tokenised, passing a NULL pointer as first argument to obtain
the next occurence of a character from the set of characters specified.
This set of characters may be changed from one call of str'tok_r () to
another.

strtok_r() makes use of the state pointer pointed to by state, which
points to the last token found in string s. With each succesive call to
strtok_r () which contains the NULL pointer as first argument, the string
s is searched for characters in the set of characters specified, starting at
the position in s pointed to by state. The first occurring character from
set is replaced by a null character and the state pointer is returned. After
this, the state pointer is adjusted to point to the first character in string
s following the found character from set, which is replaced by a null
character.

In this way, a string containing a number of tokens with specified token
delimiters, is subdivided into a number of strings, each with a
terminating null character, which are obtained one-by-one in successive
calls to strtok_r().

Return values: ... strtok_ r () returns a pointer to the first character of the substring,
which is delimited by a character from the set of characters specified, or
by the null character terminating string s. Each successive call to
strtok_ r () with the NULL pointer as first argument will cause a pointer
to the next token in string s to be returned.

Notes and remarks: strtok_r () is the re-entrant replacement for the strtok () function as
defined in the Draft Proposed ANSI C standard. The difference with

8 - 250

Library reference strtok_rO

strtok () is, that the internal state pointer used by the latter is replaced
with a state pointer which is declared local to the routine calling
s trtok_r () . In this way, concurrent processes can call s trtok_ r () for
different strings without interfering with each other's progress in
tokenizing their respective strings. The state pointer should be declared
as shown in the following example and its value should not be altered.

See also: . . . • strtok ()

strstr ()

Example: The following example shows the actual implementation of strtok () in
the Par.C System.

iinclude <string.h>
iinclude <stddef.h>

char *strtok{str, delim)
char *str;
char *delim;
{

/* non-reentrant function */

/* the set of delimiters */

static char *intern = NULL; /* internal state pointer */
return strtok_r(str, &intern, delim);

}

The reentrant function can be used as outlined below.
'include <string.h>

void Tokenisestring(str, delim);
char *str, *delimi
{

char *nexttoken, *statepointer;

while (EndofstringReached == FALSE)
{

}

}

nexttoken strtok_r(str, &statepointer, delim);

8 - 251

strto/()

strtolO

Usage: iinclude <stdlib.h>
long int strtol(sl; s2, base);

char *s1, **s2;
int base;

Availability: Draft Proposed ANSI C

Library: std .lib

Par. C System

Description: strtol () converts the string pointed to by s 1 to a decimal number of
type long integer. First the input string is decomposed into an initial
sequence of zero or more whitespace characters (as specified by the
isspace () facility), a subject sequence resembling an integer in some
radix representation as determined by the value of base, and a final
string ofone or more unrecognized characters including the terminating
null character of the original string. The subject sequence is then
converted to a decimal number of type long integer which is passed as
return value.

Ifthe value ofbase is zero, the format ofthe subject sequence is expected
to represent the octal notation ofintegers. If the value ofbase is between
2 and 36 the expected format of the subject sequence is an optional plus
or minus sign, followed by a sequence of digits and letters. The letters a
(or A) through z (or Z) are ascribed the values 10 through 35 and only
letters whose ascribed value is less than that of base are recognized to
be in the subject sequence. If the value of base is 16, the character
sequence 'Ox' or 'OX' is allowed to precede the sequence of digits and
letters.

After successful conversion, a pointer to the unparsed part of s 1 is stored
in the object pointed to by s2, provided s2 is not the NULL pointer.

Return values: ... strtol () returns the converted value of the integer represented in s 1

with radix base and stores a pointer to the substring which could be
identified as representing this integer in s2. If conversion failed, the
returned value is zero.

Notes and remarks: In the Par.e System strol () is defined as a macro expanding to a call
to the generic ASCII to integer conversion routine _ate (), which is also
described in this chapter. strtol() is defined in stdlib.h for

8 - 252

Library reference strtolO

compatibility reasons, and also in stdcnv •h for reasons of convenience
and completeness.

See also: _ato()

stdcnv.h

8 - 253

strtoulO

strtoulQ

Usage: iinc1ude <std1ib.h>
long int strtou1(s1, s2, base);

char *s1, **s2;
int base;

Availability:• Draft Proposed ANSI C

Library: . . . • std .1ib

Par.C System

Description: strtoul () converts the string pointed to by s 1 to a decimal number of
type unsigned long integer. For a complete description of the
functioning of strtou1 () see the description of strtol (), which is
equivalent, except that latter returns a signed rather than an unsigned
long integer.

Return values: ... strtoul () returns the converted value of the integer represented in s 1

with radix base and stores a pointer to the unparsed part of the string in
s2. If conversion failed the returned value is zero.

Notes and remarks: In the Par.e System stroul () is defined as a macro expanding to a call
to the generic ASCII to integer conversion routine _ate (), which is also
described in this chapter. strtoul () is defined in stdlib.h for
compatibility reasons, and also in stdcnv •h for reasons of convenience
and completeness.

See also: ..•.... _ate ()

stdcnv.h

8 - 254

Library reference

system()

Usage: #include <stdlib.h>
int system(cmdstring);

const char *cmdstring;

Availability: Draft Proposed ANSI C

Library: io .lib

system0

Description: system() passes the string pointed to by cmdstring to the host
environment where the server executes a comparable function. A
command processor (shell) is invoked at the host which interprets the
command in the string. Which command interpreters are available, is
host dependant. A NULL pointer may be used for cmdstring to inquire
whether a command processor exists.

Return values: system() returns the exitcode of the invoked command processor and
is host dependant. If the argument is a NULL pointer, system() returns
non-zero when there is a command processor available.

Example: #include <stdlib.h>

void main()
{

if(system(NULL) != 0)

system("dir") ;
}

8 - 255

tan0

tan()

Usage: ...•••.•. iinclude <math.h>
double tan(x);
double Xi

Availability: •.... Draft Proposed ANSI C

Library: II •• math .lib and t8math .lib

Par.C System

Description: ... II. tan () computes the tangent of x. The argument x is expected to have
the type double.

Return values: ... tan () returns the value of the tangent of x.

8 - 256

Library reference

tanh()

Usage: 'include <math.h>
double tanh(X)i
double Xi

Availability: Draft Proposed ANSI C

Library: math .lib and t8math .lib

tanh()

Description: tanh () computes the hyperbolic tangent of x. The argument x is
expected to have the type double.

Return values: tanh () returns the value of the hyperbolic tangent of x.

8 - 257

_Teste/rErrO

_TestClrErrQ

Usage: ..•....•. iinclude <system.h>
int _TestclrErr()

Availability: ..•.. Par.e System

Library: std .lib

Par.C System

Description: _TestclrErr () checks whether the transputer error flag is set, and
clears it.

Return values: ... _TestclrErr () returns zero if the flag was not set. Otherwise, a
non-zero value is returned.

Notes and remarks: This routine can be used to check on arithmetic overflow in certain
sections of the program. The example listed below illustrates this.

See also:

Example: .

8 - 258

_setErr()

_TestErr()

_setHaltonErr()

_ClrHaltonErr()

_TestclrErr()i /* clear flag before section */

Dosomecalculations(); /* execute critical section */

Errorl = _TestclrErr()i /* check and clear error flag */

DosomethingElse(); /* execute another section */

Error2 _TestErr(); /* check error flag, don't clear */

Library reference

_TestErr{)

Usage: tinclude <system.h>
int _TesttErr();

Availability: Par.e System

Library: std .lib

_TestErr()

Description: _TestErr () checks whether the transputer's error flag was set, and
preserves the error flag while checking.

Return values: _TestErr () returns zero if the error flag was not set. Otherwise, a
non-zero value is returned.

See also: a • •• _ SetErr ()

_TestclrErr()

_setHaltErr()

_ClrHaltErr()

8 - 259

_TicksPerSecondO

_TicksPerSecondO

Usage: ..••..... tinclude <stdlib.h>

int _TicksperSecond();

Availability: Par.e System

Library: • . . • . . • .. std .lib

Par.C System

Description: _TicksPersecond () is used to make a correct implementation of the
macro CLOCKS_PER_SEC which is defined in Draft Proposed ANSI C as
giving the number of clockticks per second on each particular machine.
Since the transputer currently uses timers with different frequencies
(one for each of the priority levels), and since processes can set their
own priority level during runtime, the value ofCLOCKS_PER_SEC can only
be determined through this function call.

In view of portability and future compatibility it is considered wise to
use the CLOCKS_PER_ SEC macro instead of calling _TicksPersecond () .

See also: stdlib. h

8 - 260

Library reference

time{)

Usage: tinclude <time.h>
time_t time(ptr);
time_t *ptr;

Availability: Draft Proposed ANSI C

Ub~ries: io.lib and noio.lib

time0

Description: time () returns an encoded value indicating the current calendar time,
and stores the value in the string pointed to by ptr, unless this is the NULL

pointer. In the current version of the Par.C System, the encoding is such
that the return value gives the number of seconds which have passed
since the first day of March 1972 at 00:00:00 Greenwich Mean Time.

The environment variable TlMEZONE should be used to set the difference
with GMT in hours and minutes for the local timezone. Zones east of
Greenwich are indicated by a positive value, zones west of Greenwich
must use a negative value. The format allowed for the TIMEZONE variable
is: [-]H[:M], where 0 = < H < 12 and 0 = < M < 60.

If the variable SUMMERTIME is defined in the environment, regardless of
its value, local time is assumed to differ 1hour more (positive) from GMT

and the daylight savings time indicator will be set in the tm structure.

Return values: time () returns an encoded value indicating the current calendar time.
If ptr is not the NULL pointer, the same value is stored in the string ptr.

Notes and remarks: Daylight savings time is not supported for all routines, because this
would involve large tables for all zones and all times, which would not
be worth the amount of memory needed. Most time related routines in
the Par.C System allow manipulation of daylight savings time, but
require the programmer to set this variable in the time structure.

See also: gmtime ()

mktime ()

localtime()

8 - 261

time0

Example:

Par.C System

iinclude <time.h>
tinclude <stdio.h>

void main ()

{

time t
struct tm

NoW_Encoded, RefTime_Encoded;
Now_Decoded, RefTime_Decoded;

8 - 262

/* get encoded time, decode and print it */
Now Encoded = time(NULL);
Now Decoded = *localtime (&NOW_EnCoded);
printf ("Time: %2d:%02d:%02d\n", Now_Decoded.tm_hour,

Now_Decoded.tm_min, Now_Decoded.tm_sec);

/* copy Now to RefTime to get the date etc right */
RefTime Decoded = Now_Decoded;

/* Set RefTime to 06:11:04 */
RefTime_Decoded.tm_hour 6;
RefTime_Decoded.tm_min 11;
RefTime Decoded.tm sec 4;

/* encode it */
RefTime Encoded = mktime (&RefTime_DeCoded);

/* print the time elapsed between RefTime and Now */
printf(

"Elapsed time since 06:11:04 today: %5.0f seconds\n",
difftime(NOW_Encoded, RefTime_EnCoded»;

}

Library reference

..toa()

Usage: #include <stdlib.h>
int •• toa(number, string);
[unsigned] [long] int number;
char *string;

Availability: .• Par.C System

Library: .

.. toa()

Description: •• toa () indicates a collection of number-to-ASCII conversion facilities,
which are all implemented as macros expanding to a call to the generic
conversion routine _toa(). The macros .. toa () convert number to ASCII
and store the result in the string pointed to by string. The following
gives a list of the available macros and their functions. The type of
number should correspond to the specifications in this list.

i toa : integer to decimal ASCII string
utoa : unsigned int to decimal ASCII string
xtea : integer to hexadecimal ASCII string
xtea : integer to capitalised hexadecimal ASCII string
etea : int to octal ASCII string
btea : int to binary ASCII string
1tea : long to decimal ASCII string
ultea : unsigned long to decimal ASCII string
xltea : long to hexadecimal ASCII string
xltea : long to capitalised hexadecimal ASCII string
01toa : long to octal ASCII string
bltoa : long to binary ASCII string

Return values: All .. toa () functions return the length of the converted string.

See also: _toa ()

stdcnv.h

8 - 263

Par. C System

Usage: ...•..... iinclude <stdlib.h>
int _toa(string, control, input);
char *stringi
int control;
[unsigned] [long] int input;

Availability: II. II II II Par.e System

Library: II • II •• std .lib

Description: . II II II II _ toa () is a generic number-to-ASCII conversion function. string points
to a character array in which the result of the conversion will be stored,
after which a null character will be appended. It is the programmer's
responsibility to allocate enough space. The worst case is long binary
conversion, which may consume up to 65 characters (including the
terminating null cahracter).

control specifies the conversion type and consist of a bitwise or of the
radix and additional bitfields. The radix may be in the range 2-36. A radix
less then 2 results in no conversion taking place and string being empty.
A radix greater than 36 results in the possibility of non-alphanumeric
characters being inserted.

The bitmasks given in stdcnv •h (which is included in stdlib. h), further
specify the conversion:

cv LONG : input is to be considered 64 bits long.
cv LOWER : use lowercase characters for digits greater than 9.
cv SIGNED : perform signed conversion.

Return values: II.. _ toa () returns the number of characters inserted in the string pointed
to by string, excluding the terminating null character.

See also: II •• II II II II •• toa ()

8 - 264

Library reference

toascii{)

Usage: #include <ctype.n>
int toascii(i);

int i;

Availability: Draft Proposed ANSI C

Library: .

toasciiO

Description: toascii () converts i to a value in the range of ASCII coded characters,
i.e. a value between 0 and Ox7F. All bits higher than the seven
lower-order bits are set to O. The ASCII coded character set can be found
in the appendices.

Return values: toascii () returns an ASCII value for i by truncating the input value in
order to let it fall in the range of the ASCII character set. If i was in this
range already, the value is returned unchanged.

Notes and remarks: toascii () is implemented as a macro.

See also: isascii ()

8 - 265

tointO

toint()

Usage: ...•••..• #include <ctype.h>
int toint(c);
char c;

Availability: .•. Ii. Draft Proposed ANSI C

Library: . . • std .lib

Par.C System

Return values: ... toint () returns the decimal value of the hexadecimal character c. If c
is not a hexadecimal digit, a.zero value is returned.

See also: isxdigit()

8 - 266

Library reference

tolower()

Usage: iinclude <ctype.h>
int tolower(c);

char c;

Availability: Draft Proposed ANSI C

Library: ...•..... std .lib

tolower()

Return values: If c is an upper-case letter, tolower () returns the corresponding
lower-case letter. Otherwise, the value of c is returned unchanged.

See also: _ tolower ()

toupper()

islower ()

8 - 267

_to/ower()

_tolowerO

Usage: iinclude <ctype.h>
int _tolower(c);
char c;

Availability: ..•.. Par.e System .

Library:•..

Par.C System

Description: This macro is a simpleversion oftolower () andwill onlywork on letters.
Other characters might produce unwanted results.

Return values: ... If c is an upper-case letter, _tolower () returns the corresponding
lower-case letter. If c is lower-case, c is returned unchanged.

See also: .. II • a •• tolower ()

8 - 268

Library reference

toupper()

Usage: 'include <ctype.h>
int toupper(c);

char c;

Availability: Draft Proposed ANSI C

Library: std .lib

toupperO

Return values: If c is a lower-case letter, toupper () returns the corresponding
upper-case letter. Otherwise, the value of c is returned unchanged.

See also: _toupper ()

tolower()

isupper()

8 - 269

_toupperO

_toupper()

Usage: #include <ctype.h>
int _toupper(c);

char c;

Availability: Par.e System

Library: ... II •••••

Par.C System

Description: II This macro is a simple version oftoupper () andwill onlywork on letters.
Other characters might produce unwanted results.

Return values: ... If c is an lower-case letter, _toupper () returns the corresponding
upper-case letter. If c is upper-case, c is returned unchanged.

See also: tolower ()

8 - 270

Library reference

ultoa()

Usage: 'include <stdcnv.h>
int ultoa(num, str)
long unsigned int num;
char *str;

Availability: Par.C System

ultoaO

Description:• The macro ultoa () converts the long unsigned integer num to its ASCII
representation in decimal notation. The result is stored in the string
pointed to by str. str should be sufficiently long to store the result of
the conversion.

Return values: The length of the converted string.

See also: _toa ()

8 - 271

utoaO

utoaO
Usage: ...•..... iinclude <stdcnv.h~

int utoa(num, str)
unsigned int num;
char *str;

Availability: ..••. Par.C System

Par.C System

Description: . . • •. The macro utoa() converts the unsigned integer num to its ASCII
representation in decimal notation. The result is stored in the string
pointed to by str. str should be sufficiently long to store the result of
the conversion.

Return values: ... The length of the converted string.

See also: _ toa ()

8 - 272

Library reference

ungetc()

Usage: 'include <stdio.h>
int ungetc(c, stream);
int c;
FILE *stream;

Availability: Draft Proposed ANSI C

Library: io .lib

ungetc()

Description: ungetc () pushes the character specified by c and converted to an
unsigned char back onto the input stream pointed to by stream. The
effect is that reading the character from the stream is undone, and
therefore the character is the first available character from the stream,
provided that no functions will be called which change the file position
pointer.

Return values: ungetc () returns an integer representing the character pushed back
onto the input stream. If an error occurs EOF is returned.

See also: fgetc ()

getc ()

8 - 273

V(J

vo
Usage: •........ iinclude <stdlib.h>

void v (semPtr) ;

semaphore *SemPtr;

Availability: Par.C System

library: std .lib

Par.C System

Description: • v () implements semaphores, together with the p () function and the
semaphore type definition. v () operates on a user-defined semaphore
and causes the next process waiting for the same semaphore to be
scheduled for execution.

Semaphores can be used to have processes share resources or variables.
In the Par.C System, semaphores are pointers and are used to implement
a queue of processes waiting for the same semaphore. The queue is
handled in the first-in-first-out way. Processes of different priorities are
treated alike, i.e. processes running on high priority have no privilege in
obtaining the semaphore.

Before using the p () and v () functions, a semaphore should be declared
and initialised to contain the value NULL:

semaphore Mysem = NULL;

P (&MySem) ;
/* critical section of this program */

V(&MySem) ;

When aprocess calls P () with MySem having the value NULL, the process
is given access to its critical section and the semaphore is set to indicate
the active process. The critical section is terminated when this active
process calls v (). When another process is inside its critical section
guarded by Mysem, the process calling p () will be queued and
temporarily stopped. The waiting process will resume execution after all
preceding processes in the same queue have been scheduled, entered
and exited their critical sections.

Notes and remarks: It is vital for correct functioning of semaphores that a critical section in
a process is started with a p () operation and ended with a v () operation.
Performing a v () operation without a corresponding previous P ()

8 - 274

Library reference vo

operation will void the protection of the resource or variable. This may
cause loss of active processes.

Forgetting to call v () will cause all following code to be inside the critical
section: other processes will never obtain access to the shared resources
or variables and the program will probably deadlock as a result of this.

Processes running in a critical area are interruptable. The process is
scheduled and de-scheduled as usual. However, the processes waiting
for the semaphore will not interrupt this process before it releases it.
Therefore, for the safe execution of a critical section every process that
uses this section, should do so through P () and v () .

See also: P()

8 - 275

va_argO

Usage: 'include <stdarg.h~

type va_arg(ap, type);

va list ap;

Availability: Draft Proposed ANSI C

Par.C System

Description: The macro va_arg() provides, together with the type va_list and the
macro's va_start () and va_end (), variable argument lists in function
calls. va_ arg () expands to the type and value of the next argument in
the call. The state variable ap is advanced to indicate the next parameter
in the list (if the end of the argument list has not been reached yet).
va_ arg () takes as arguments the current state variable and type, the
type of the expected argument.

Return values: ... va_ arg () returns the value of the next variable in the variable argument
ap list with the type indicated in type..

Notes and remarks: The type va_list is defined in stdarg . h.

The implementation of the variable argument list facilities in the Par.C
System makes use of a function _va_ arg (), which is declared in
stdarg.h but which is intern to the Par.C System and will not be
described in this manual. _va_ arg () resides in std .lib.

See also: . va_start ()

va_end ()

8 - 276

Library reference

Example: 'include <stdarg .h>

tinclude <stdio.h>

void printvarArgs(format)

char *format;

{

va_argO

va_start (ap, format); /* initialise argument pointer */

while(*format 1= '\O'){ /* continue up to end of format */

switch(*format++){

case 'I': /* print an integer */

printf("Integer %d\n", va_arg(ap, int));

break;

case '0': /* print a double */

printf("Double %e\n", va_arg(ap, double));

break;

}

/* restore the argument pointer */

}

void main()

{

printvarArgs("IDI", 12, 1.625, 15);

PrintvarArgS("DI", 12345.678ge5, 123456789);

}

8 - 277

va_end()

Usage: tinclude <stdarg~h>

void va_end(ap)i

va_list api

Availability: Draft Proposed ANSI C

Par.C System

Description: The macro va_end () provides, together with the type va_list and the
macro's va_start () and va_ arg () , variable argument lists in function
calls. va_end () should be called after the last variable in the argument
list is read, and is intended to do cleaning-up of temporary variables etc.
In the Par.C System, va_end () is defined with an empty body.

Return values: . II. none

Notes and remarks: The type va_list is defined in stdarg . h.

The implementation of the variable argument list facilities in the Par.C
System makes use of a function _va_ arg (), which is declared in
stdarg.h but which is intern to the Par.C System and will not be
described in this manual. _va_arg () resides in std .lib.

See also: va_start ()

va_arg()

8 - 278

Library reference

Usage: *include <stdarg.h>
void va_start(ap, parm)i

va_list api
identifier parmi

Availability: .• Draft Proposed ANSI C

va_startO

Description: The macro va_start () provides, together with the type va_list and
the macros va_ arg () and va_end (), variable argument lists in function
calls. va_start () should be called before'the first variable in the
variable argument list is read, to initialise the state variable ap to indicate
the first argument in the variable argument list.

va_start () takes as its arguments the locally defined internal state
pointer and the name of the last fixed parameter in the argument list.

Return values: none

Notes and remarks: The type va_list is defined in stdarg. h.

The implementation of the variable argument list facilities in the Par.C
System makes use of a function _va_ arg (), which is declared in
stdarg.h but which is intern to the Par.C System and will not be
described in this manual. _va_ arg () resides in std .lib.

See also: va_ arg ()

va_end()

8 - 279

vtprintfO

vfprintfO

Usage: ...•.•.•. iinclude <stdio.h>
int vfprintf(stream, format, args);

FILE *stream;
char *format;
va list args;

Availability: Draft Proposed ANSI C

Library: . II •••••• II std. lib

Par.C System

Description: vfprintf () writes output to the output stream pointed to by the stream,
in the format indicated in the format string pointed to by format, using
the arguments given via the variable argument list indicated by args.

The format string may contain zero or more ordinary characters which
are copied unchanged to the output stream and zero or more conversion
specifications, resulting in one or more subsequent arguments being
converted to printing format and written to the output stream. Each
conversion specification is preceded by the character %. Writing the
character % to the output stream is achieved by putting %% in the
format string.

A full description of the conversion specifications and flags is given in
the description of the related fpr intf (). The difference between
fprintf () and vfprintf () is that the latter takes its arguments from a
variable argument list indicated by args, using va_start (), va_ arg ()

and va_end () to get the arguments needed, rather than expecting them
all to be named in the function call.

Return values: ... vfprintf () returns the number of characters written to the output
stream, or a negative value if an error occurred.

See also: II fprintf ()

stdarg.h

8 - 280

Library reference

vprintfO

Usage: linclude <stdio.h>
int vprintf(format, args);

char *format;
va_list args;

Availability: ... • .. Draft Proposed ANSI C

Library:•.. std .lib

vprintf()

Description: vprintf () writes output to the standard output stream in the format
indicated in the format string pointed to by format, using the arguments
given via the variable argument list indicated by args.

The format string may contain zero or more ordinary characters which
are copied unchanged to the standard output stream and zero or more
conversion specifications, resulting in one or more subsequent
arguments being converted to printing format and written to the
standard output stream. Each conversion specification is preceded by
the character %. Writing the character % to the standard output stream
is achieved by putting %% in the format string.

A full description of the conversion specifications and flags is given in
the description of the related function fprintf (). The difference
between fprintf () and vprintf () is that the latter writes to the
standard output stream rather than to a stream indicated by an
argument, and that the latter takes its arguments from a variable
argument list indicated by args, using va_start (), va_arg() and
va_end () to get the arguments needed, rather than expecting them all
to be named in the function call.

Return values: The number of characters written to the standard output stream, or a
negative value if an error occurred.

See also: fpr intf ()

printf ()

stdarg.h

8 - 281

vprintfO

Example:

8 - 282

Par.C System

tinclude <stdarg.h>
tinclude <stdio.h>
#include <stdlib.h>

tdefine COUNT 25

int print_mess(format)
char *format;
{

va_list ap;
int result;

va start(ap, format);
result = vprintf(format, ap);

if(result < 0)

{

fprintf(stderr, "unable to write to stdout!\n");
exit(l);

}

return result;
}

void main ()
{

int i;

printf("Concurrently printing %d messages\n\n", COUNT);

par(i = 1; i <= COUNT; i++)
{

print_mess("printing from process %d\n", i);
/* one extra parameter */

}

print_meSS("\nFinished with par\nBye now!\n");
/* no extra parameter */

}

Library reference

vsprintf()

Usage: tinclude <stdio.h>

int vsprintf(s, fo~at, argS)i

char *s, *formati

va list argsi

Availability: .. • . .. Draft Proposed ANSI C

Library: std .lib

vsprintfO

Description: vsprintf () writes characters to the string pointed to by s, in the format
indicated in the format string pointed to by format, using the arguments
given via the variable argument list indicated by args.

The format string may contain zero or more ordinary characters which
are copied unchanged to the indicated string and zero or more
conversion specifications, resulting in one or more subsequent
arguments being converted to printing format and written to the string.
Each conversion specification is preceded by the character %. Writing
the character % to the string is achieved by putting %% in the format
string.

A full description of the conversion specifications and flags is given in
the description of the related function fprintf (). The differences
between fprintf () and vsprintf () is that the latter writes to a string
rather than to a stream indicated by an argument and that the latter takes
its arguments from a variable argument list indicated by args, using
va_start (), va_ arg () and va_end () to get the arguments needed,
rather than expecting them all to be named in the function call.

Return values: vsprintf () returns the number of characters written to the string s (not
counting the terminating null character), or a negative value if an error
occurred.

Notes and remarks: When the trailing null character of s is encountered, this is treated as an
end-of-file marker.

vsprintf() writes a terminating null character to the string s after the
format string has been processed entirely. This terminating null
character is not included in the count which is returned after successful
termination of the function.

8 - 283

vsprintfO

See also:

8 - 284

fprintf()

sprintf()

stdarg.h

Par.C System

Library reference

wait{)

Usage: #include <time.h>

void wait(ticks);

clock t ticks;

Availability: .. . • .. Par.C System

Library:•.. std .lib

wait()

Description: ..•.. wait () causes the process to be suspended for ticks clockticks. When
the indicated number of clockticks have expired, the process is
scheduled for execution again.

Return values: none

Notes and remarks: Calling wait () does not guarantee that the process will resume
execution after exactly ticks clockticks, since other active processes
may precede the process, once it has been put back in the active process
list.

In contrast to sleep(), wait() is unconditional: processes using this
function will not be resumed after ALARM SIG has been raised.

The duration of one clocktick is dependant on the current priority. The
macro CLOCKS_PER_ SEC, defined in time. h, specifies the number of
clockticks per second in a priority independant way.

See also: sleep ()

_sleep()

alarm()

signal()

raise ()

time.h

8 - 285

x/toa()

xltoa()

Usage:•.. iinclude <stdcnv.h>·
int xltoa(num, str)
long int num;
char *str;

Availability: Par.e System

Par.C System

Description: .• . .. The macro xltoa() converts the long integer num to its ASCII
representation in hexadecimal notation. The digits 'a'-'f are in lower
case. The result is stored in the stringpointed to by s tr. The string should
be sufficiently long to store the result of the conversion.

Return values: ... The length of the converted string.

See also: _toa ()

8 - 286

Library reference

Xltoa()

Usage: iinclude <stdcnv.h>
int xltoa(num, str)
long int numi
char *str;

Availability: Par.e System

XltoaO

Description: The macro xltoa() converts the long integer num to its ASCII
representation in hexadecimal notation. The digits 'A'-'F' are capitalized.
The result is stored in the string pointed to by str. The string should be
sufficiently long to store the result of the conversion.

Return values: The length of the converted string.

See also: _toa ()

8 - 2B7

xtoaO

xtoa{)

Usage: •.••..• II. iinclude <stdcnv.h>
int xtoa(num, str)
int num;
char *str;

Availability: Par.e System

Par. C System

Description: The macro xtoa () converts the integer num to its ASCII representation
in hexadecimal notation. The digits 'a'-'f are in lower case. The result
is stored in the string pointed to by s tr. The string should be sufficiently
long to store the result of the conversion.

Return values: ... The length of the converted string.

S'ee also: _toa ()

8 - 288

Library reference

XtoaQ

Usage: tinclude <stdcnv.h>
int xtoa(num, str)
int num;
char *str;

Availability: Par.C System

Xtoa()

Description: The macro xtoa () converts the integer num to its ASCII representation
in hexadecimal notation. The digits'A'-'F' are capitalized. The result is
stored in the string pointed to by str. The string should be sufficiently
long to store the result of the conversion.

Return values: The length of the converted string.

See also: _toa ()

8 - 289

yday()

yday()

Usage:•... *inc1ude <time. h>
int yday(day, month, year);
int day, month, year;

Availability: ... 0. Par.e System

Library: • .. std .lib

Par.C System

Description: ... o. yday () checks the date built from day, month and year for validity and
returns the day offset within the given year.

Return values: ... yday () returns the day number within the year, counted from the first
ofJanuary. The first ofJanuarywill return 1, while the 31th ofDecember
will return 365 (or 366 in a leap year). The routine will return 0, if the
date is invalid or inconsistent.

See also: DateTolnt ()

IntToDate()

Examples: Calls with inconsistent or invalid dates and so returning 0:

8 - 290

yday(1,12,1988)
yday(lOOO,2,99)
yday(31,3,1903)
yday(29,1,1900)

- 0 <= month < 12
- March has only 31 days
- April only has 30 days
- 1900 is not a leap year

Appendices

Appendices

9-1

Differences with previous versions

Differences with previous versions

Par. C System

~r~~entsandchangesup_to~v_1._2~~~~~_

Com~.....~i_le_r _

The compiler directive tpragma fpu caused incorrect results of logical
operations on floating point numbers. This has been corrected.

Handling of floating point constants has been improved to result in a
1/2-bit accuracy (was 1 bit).

Conversion of negative integer constants to floating point values was
done unsigned, this has been corrected.

The check on the remaining stack size at each function entry is generated
in-line, which increases performance.

Linker

The functioning of the -a switch has been reversed: invoking the linker
without -a causes word alignment ofobject modules. This has been done
to avoid errors with floating point numbers.

Loader/Server

The -i option has been added, to initialise the memory of the transputer
to zero, before loading a program.

The -r option has been added, to enable loading a program without first
resetting the transputer system.

The -d option has been added, to have the server display messages
tracing file I/O.

Runtime libraries

Memory management has been optimised considerably. Performance
does not degrade anymore by allocating many blocks.

fputc () caused a buffer overflow on some occasions. This has been
corrected.

System information is now only passed to the program on explicit
request through a function call: Getsyslnfo () and GetNodelnfo ().

• · toa () and related functions have been redefined to conform to usage
in standard C compiler systems. Although these functions are not part
of the Draft Proposed ANSI C standard, the ordering of arguments for

9-2

Appendices Differences with previous versions

these macro's and the associated functions has been redefined to be
closer to what one might expect.

The atan() function in math. lib returned incorrect results for an
argument smaller than -1.0. This has been corrected.

t8math .lib has been added for enhanced performance on transputers
of the T8xx series.

Error handling has been improved on a number of levels:

• All functions in the t8math .lib call matherr (), which has been
improved to do more thanjust exit. See the description ofmatherr ()
for more information.

• perror(), strerror() and strerror_r() have been added to the
libraries.

• Errors occurring during file I/O with the host system are now
displayed as messages on the screen.

• Some fatal runtime errors (like OUT OF MEMORY) will cause a message
to be displayed on the screen (only if the server is active when the
error occurs).

These functions have been added to the libraries:

_abort ()

_alarm ()

calloc ()

ceil ()

Dir()

Dirlnit()

(*ERROR) ()

_GetFunstack()

GetNodelnfo()

_Getparstack()

Getsyslnfo()

InPort()

matherr()

MemAvail ()

onexit()

outPort()

P ()

PeekHost()

perror()

pokeHost()

realloc()

Run ()

_setFunstack()

_setparstack()

The following functions have been removed from the libraries:

• leave () has been removed because its functioning interfered with
correct file handling on the host machine. See the description of
leave () in this manual for more information on how to replace its
functionality in various more secure ways.

• curtime_r () has been removed for lack of significance. See the
description of curtime_ r () for information on a replacing call to
localtime () .

9-3

Differences with previous versions Par.C System

• CRASH () has been replaced by more sophisticated handling of fatal
runtime errors. The routine was not meant to be user callable in the
first place.

~r~ementsandchang_e_s_s_in_c_e_v_1_.2_·~~~~~_

Comp_il_er _

Code generation using ipragma fpu has been improved considerably.
These improvements mainly apply to mixed type expressions.

Dividing and multiplying with the constants 2.0 or 0.5 rendered illegal
instructions in the assembler output. This bug was only present in vl.2.

Function calls in complex expressions sometimes caused trouble: Some
intermediate results would not be stored.

A call to a function of type double or float without parameters resulted
in an Internal Error C8000.

Using arrays of enum resulted in an Internal Error in some instances.
This has been fixed.

float x=O. 0; Was compiled as : float x=2. 0; This error was only
present in vl.2 and has been removed.

Compound assignment to complex lvalues of type short resulted in an
Internal Error. This has been fixed.

The code <any_type> x [SIZE] I *P; P = x + 2; was compiled as if x were
a character array, i.e. the constant was not multiplied with the size of
<any_type>. This has been fixed.

Some inconveniences have been removed:

• The compiler did not recover properly from a missing closing
parenthesis in a function header.

• An excess use of memory at compile time has been eliminated.

Runtime libraries

qsort () crashed in most cases. This has been fixed.

scanf (), fscanf () and sscanf () did not skip newline characters prior
to a conversion and did not handle the %hd specifier for short conversion
correctly either: if a pointer to an element of a short array was supplied,
an adjacent element was overwritten. Both errors have been removed.

The function pow () from t8math .lib did not return correct values. This
has been fixed.

9-4

Appendices Differences with previous versions

math . lib, the math library which is suited for both T4xx and T8xx, has
been speeded up considerably byusing improved algorithms and writing
large pieces of it in assembler. This has also brought down the size.

The handling oferrors in math .lib and t8math .lib has been improved.
The user can now install his own matherr() handler, which can access
the arguments with which the math routine was called.

The function modf () has been changed to comply with the Draft
Proposed ANSI standard. The second parameter was a pointer to integer
in stead of a pointer to double.

Compiler / Runtime system

The conversion of floating point types to integral types was not
consistent with the specification of the Draft Proposed ANSI standard,
which states that the fraction of the floating point value should be
dropped. Until now, the floating point value was rounded to the nearest
integer. It has now been implemented according to the Draft Proposed
ANSI standard. Note that this can alter the behaviour of existing
programs.

9-5

Known bugs (and remedies)

Known bugs (and remedies)

Par.C System

Complexexp_re_s_s_io_n_s - - _
Using too complex expressions may cause the generation of erroneous
code. This problem has beenworked on, but it is not completely solved.
Try to re-write the expression in a less complex form, using temporary
variables when needed.

Note:•.• The symptoms of this problem are the generation of the transputer
instructions stl, ldl and ldlp with negative offsets and will in all cases
be detected by the peephole optimizer, causing the compiler to exit with
the following message:

caooo Internal Error: code Generator (EmitNoPHopt)

This error is most likely to occur when using (single-length)
floating-point variables in complex expressions.

Module alignment and FPU code
The use of ipragma fpu is liable to generate errors. When using floating
point constants, the linker should be invoked without the -a option to
align the object modules. The results when invoking the -a linker option
are not guaranteed. This problem does not occur when linking a single
object file, or when only the first object file contains these floating point
constants.

Note: The functioning of the -a linker switch has been reversed, so invoking
the linker with -a will not generate word-aligned object modules in the
executable file.

9-6

Appendices

Error and warning messages

Error and warning messages

Co~~and"neerror~essa9_e_s~~~~~~~~_

In the current version of the Par.C System, all components except the
loader/server use the same routine to read and interpret the
commandline options. This option routine may cause the following error
messages to be displayed:

• FATAL ERROR <message>

Illegal commandline option

• FATAL ERROR <message>

Illegal scriptfile option

with < message> replaced by one of the following:

• invalid script filename after @option

• non-alphabetic option

• illegal option <character>

• not enough arguments or option as argument

• illegal sub-option <character>

• cannot open scriptfile <filename>

Since these messages are obvious enough, no further explanation is
given here. The error and warning messages generated by the Par.C
compiler and linker are explained below.

Co~piler error ~essag_e_s_~~_~~~_~~_
The following error and warning messages may be generated by the
compiler. The numbers indicate the class in which the errors and
warnings fall.

Storage class

CllOl Illegal storage class for global var. Extern assumed.

auto or register was used as storage class for a global variable.

9-7

Error and warning messages Par.C System

Cl102 Illegal storage class for parameter.

A storage class other than register was used when declaring a
parameter.

Cl103 storage class specified twice.

More than one storage class was specified in one declaration.

Array declaration

C120l Array size must be a positive integer.

An array was declared with a negative or zero element count.

C1202 syntax error in declaration. 'l' expected.

The closing bracket in an array declaration was absent or misplaced.

C1203 syntax error in abstract declarator. 'l' expected.

A closing bracket in an abstract array declarator was absent or
misplaced.

Initialisation

C130l Error in <name> initialiser. Constant expression
expected.

An attempt was made to initialise a global variable of type < name>
with a non-constant expression.

C1302 Cannot initialise global f1oat/double.

This message will only occur in versions of the Par.C System running on
host systems which do not support IEEE floating point arithmetic. This
makes it impossible to evaluate fp constants at compile time. In these
cases, one should initialise the variable with an explicit assignment
instead of using an initialiser.

C1303 Illegal constant type for float/double initialiser.

The constant supplied could not be converted to a float/double ..

C1304 Channels can not be initialised.

The storage class associated with a channel is not used to hold a value,
but an internal status. Therefore it is useless to initialise it to a user
specified value. A pointer to a channel can be initialised to an address,
for instance the address of a hardware link.

9-8

Appendices Error and warning messages

C130S Too many initialisers in array initialiser.

The number of initialisers exceeded the specified element count in an
array initialiser.

C1306 Too many initialisers in structure initialiser.

The number of initialisers exceeded the number of components of the
designated structure in a structure initialiser.

C1307 Array initialiser string too large.

The number of characters in the string literal exceeded the specified
element count.

C1308 Error in array initialiser. Non-empty list needed.

The list of initialisers in an array initialiser should contain at least one
element.

C1309 only character arrays can be initialised with a
string literal.

An attempt was made to assign a quoted string to an array of a type
differing from char or unsigned char.

C1310 Function/void can not be initialised.

An initialiser was used when declaring an object which can not be
initialised. lnitialisers can not be used with local arrays. Local arrays can
only be initialised with explicit assignment statements.

C1312 Parameters can not be initialised.

A declaration of a parameter was followed by an initialiser.

C1313 Initialiser not allowed in function declaration.

An initialiser followed a function declaration.

C1314 variable size unknown. complete type or initialiser
needed.

The compiler could not determine the size of a variable. This usually
occurs when declaring types involving arrays when neither the array
element count nor an initialiser are present.

C1314 syntax error in array initialiser. '{' expected.
C131S syntax error in structure initialiser. '{' expected.

An array or structure initialiser should be enclosed in braces.

9-9

Error and warning messages Par.C System

C1316 syntax error in array initialiser. Comma or '}'
expected.
C1317 syntax error in structure initialiser. Comma or '}'
expected.

After an array or structure initialiser element either a comma, indicating
another initialiser is following, or a terminating bracket is required.

C1318 Illegal kind of structure/union initialisation.

Function declaration/definition

C1401 Illegal function return type.

A function was declared with an illegal type for the return value. Only
simple types can be returned.

C1402 Function definition not allowed here.

Any function definition should be at top level, i.e. not local to another
function. Possibly a comma or semicolon was omitted after a function
declaration.

C1403 syntax error in parameter list. Comma or ')'
expected.

An identifier in a parameter list should be followed by either a
(separating) comma or a (terminating) right parenthesis.

C1404 syntax error in parameter list. Identifier expected.

The formal parameterlist in the function header should consist of
identifiers, separated by commas and enclosed in parentheses.

C140S syntax error in function definition. Function body
or parameter declaration expected.

The function header of a function definition should be followed by
either the declaration of the formal parameters, or by the function body.

C1406 syntax error in function definition. Function body
missing.

A function definition should include a compound statement defining the
function body. At least {} should be present.

C1407 <name> is not a parameter.

The identifier < name> was declared as formal parameter, but did not
occur in the formal parameterlist.

9 -10

Appendices Error and warning messages

e1408 Parameter <name> declared more than once.

A parameter was declared more than once in the formal parameter
declarations.

e1409 Parameter name <name> already used.

The same identifierwas used more than once in the formal parameterlist
of a function definition.

e1410 Illegal parameter type.

A parameter in a function parameter list had an illegal type. Structures
and unions can not be used as parameters.

General declaration

elSOl syntax error in declarator. ')' expected.

An attempt to balance parenthesis in a declarator failed.

elS02 syntax error in declarator. '*', '(' or identifier
expected.

Type specifiers and/or storages class specifier in declarations should be
followed by one of these three tokens.

elS03 Illegal parenthesized abstract declarator.

The use of parentheses in an abstract declarator was not correct.

elS04 Identifier not allowed in abstract declarator.

In an abstract declarator (e.g. used in a cast or a sizeof) the use of an
identifier is illegal. It should be omitted.

elSOS Illegal use of function type.
ClS06 Illegal use of void type.
elSO? Illegal use of array type ('function returning
array').
ClS08 Illegal use of function type ('function returning
function').
elS09 Illegal use of function type ('array of function').
CISlO Illegal use of undefined structure/union.

The type used is not a valid or meaningful type or is not valid in this
context.

9 -11

Error and warning messages Par.C System

cIS1I syntax error in declaration. Comma or semicolon
expected.

An identifier in a declaration was not followed by either a separating
comma or a terminating semicolon.

f.!!J?rocessor

C2I0I sizeof operator not allowed in preprocessor
expression.

The preprocessor cannot evaluate the sizeof operator in expressions.

C2I02 'defined' operator only allowed after iif or telif.

The defined operator can only be used in preprocessor directives tif
and telif

C2I03 Macro name expected.

The defined operator should be followed by an identifier (a macro
name).

C2104 Too many formal macro arguments. Line ignored.

The number ofmacro arguments exceeded the compiler limit in a macro
definition.

C210S Illegal preprocessor command. Line ignored.

The characters following the i were not recognized as a valid directivee

C2106 unbalanced i<name>. Ignored.

The preprocessor encountered a 'closing' directive before encountering
the corresponding 'opening' directive.

C2107 Identifier expected as macro name. Line ignored.

The directives tdefine, #undef, #ifdef and #ifndef should be followed
by an identifier.

C2108 Identifier expected as macro argument. Line ignored.

Only identifiers are allowed as formal macro arguments.

C2109 Formal macro argument used more than once. Line
ignored.

An identifier was used more than once in the formal parameter list of a
macro definition.

9 -12

Appendices Error and warning messages

C2110 Filename missing. Line ignored.
C2111 Illegal filename delimiter. Line ignored.

The directive 'include should be followed by a filename, delimited by
either angled brackets (<••• >) or double quotes (" ... ").

C2112 Constant expression expected. Line ignored.

The directive tif should be followed by a constant expression.

C2113 End of file reached expanding macro.

An unexpected EOF was encountered during macro expansion. Check
parentheses !

C2114 Too many actual macro arguments.
C211S Not enough actual macro arguments.

The number of arguments in the use of a macro did not match the
number of arguments in the macro definition.

C2116 Enumeration constants not allowed in preprocessor
expressions.

An enumeration constant was used in a preprocessor expression.

C2117 Illegal character: $Xx

An illegal character was found in the source file. The printed value is
the hexadecimal representation of the character.

C2118 syntax error in macro definition. ',' or ')'
expected.

A formal macro argument should be followed by a comma or a right
parenthesis.

Syntax errors in statements

c3101 Case value already used.

A constant value after a case statement was used more than once in the
same switch statement.

C3102 More than one default statement.

More than one default statement was used in the same switch statement.

C3103 Closing brace missing at end of file.

A closing bracket '}' was omitted or misplaced. This is often caused by
a preceding error and is due to the panic-mode error recovery.

9 - 13

Error and warning messages Par.C System

C3104 syntax error in <keyword> statement. '{' expected.
C310S syntax error in <keyword> statement. '}' expected.
C3106 syntax error in <keyword> statement. '(' expected.
C3107 syntax error in <keyword> statement. ')' expected.
C3108 syntax error in <keyword> statement. ':' expected.
C3109 syntax error in <keyword> statement. 'i' expected.

The statement parser found that one of these delimiters was missing in
the indicated statement.

C3110 'break' used outside whi1e/do/for/switch/se1ect.

break can only be used inside one of these statements.

C3111 'continue' used outside while/do/for.

continue can only be used inside one of these statements.

C3112 'return' in par statement not allowed.

A return from a subprocess would have disastrous results.

C3113 syntax error in for-expressions. '(' expected.

for should be followed by a left parenthesis.

C3114 syntax error in for-expressions. semicolon expected.

The expressions in a for statement should be separated by a semicolon.
The same holds for replicators in a1t and par.

C3115 syntax error in for-exp~essions. ')' expected.

The expressions in a for statement should be terminated by a right
parenthesis. The same holds for replicators in a1t and par.

C3116 'case' used outside switch statement.

case labels can only be used within a switch statement.

c3117 'default' used outside of switch statement.

defau1t can only be used within a switch statement.

C3118 syntax error in do-while statement. 'while' expected.

A do loop should be terminated with while.

9 -14

Appendices Error and warning messages

C3119 syntax error in select statement. 'alt' expected.

The first token following the first opening brace in a select statement
should be al t

C3120 Pointer to channel needed in guard specifier.

guard should be followed by a pointer to a channel.

C3121 Error in select statement. Illegal timeout specifier.

A timeout alternative is only valid in a timed select statement, using
select within.

C3122 Error in select statement. 'timeout' specified more
than once.
C3123 Error in select statement. 'timeout' in replicated
alt.

Only one timeout can be specified in a select statement.

C3124 Error in alternative. No cond/guard/timeout
specifier.
C3125 syntax error in alternative. 'timeout', 'guard' or
':' expected.
C3126 syntax error in alternative. ':' expected.

Incorrect alternative. alt should be followed by cond, guard or tirneout.
cond should be followed by timeout, guard or a colon. The alternative
should always be terminated by a colon.

C3127 Illegal alternative.

The alternative was not specified correctly.

C3128. syntax error in goto statement. Identifier expected
as label.

goto should be followed by an identifier.

C3129 Unbalanced else.

else was used without a corresponding if.

Errors in exp_re_s_s_i_o_n_s _

C4101 operand required.

An identifier was used in an invalid context.

9 -15

Error and warning messages Par.C System

C4102 Constant expression required.

A non constant object was used in an expression which should evaluate
to a constant value.

C4103 pointertype or arraytype required.

A subscripting operator was used in combination with a variable of type
different from pointer or array.

C4104 Illegal type conversion.

The types of the operands of an operator were incompatible with each
other or with the specific operator.

C410S subscripting of functions not allowed.

A subscripting operation was attempted on a function.

C4106 Function required for functioncall.

A functioncall operator '()' was applied to, an identifier which was
declared, but not as a function.

C4107 structure/union type required.

A direct selection operator '.' was applied to something other than a
structure or a union.

C4108 Not a component of this structure/union.

The identifier following '.' or -> was not one of the components of the
structure / union.

C4109 Pointer to structure/union required.

An indirect selection operator -> was applied to something other than
a pointer to a structure/union.

C4110 Lvalue required for <name> operator.

The operators ++, --, &, =, +=, -= and the other assignement operators
should be applied to an lvalue, Le. something evaluating to an address.

C4111 Illegal use of structure/union type.

An operator was illegally applied to a structure or union.

C4112 Pointer required for indirection.

The indirection operator * can only be applied to pointers.

9 -16

Appendices Error and warning messages

C4113 Illegal typecast.

A cast operator was applied to an object of incompatible type.

C4114 No list expression allowed in constant expression.
C411S Assignment not allowed in constant expression.
C4116 Increment/decrement operator not allowed in constant
expression.

Constant expressions, like array element counts, can not contain a
comma operator (', '), an assignment (' =" '+ =', '* ='....)or a increment
or decrement operator (' + +', '--').

C4117 : expected in conditional operator.

A colon was missing in the conditional operator ? : •

C4118) expected.

The expression parser expected a right parenthesis here.

C4119] expected.

The expression parser expected a right square bracket here.

C4120 Cast to function type not allowed.

A cast of any data type to function type is illegal.

C4121 component name expected.

The operators '.' and -> should be followed by an identifier selecting the
component of the structure / union.

C4122 Cast to non-integers not allowed in constant
expression.

Only type casts to integer are allowed in constant expressions.

C4123 Parameter missing.

A comma in a function parameter list was not followed by a parameter.
C4124 Operand expected.

The expression parser expected an operand at this position.

9 -17

Error and warning messages

Errors in identifiers

Par.C System

cS10l Unresolved reference to structure/union <name>. Tag
not defined.

A structure / union tag was used in a structure / union definition, but
could not be resolved.

CSI02 Unresolved reference to structure/union <name>. Not
a structure cq union tag.

The tag used in referencing a structure could not be identified as a
structure / union tag.

CSI03 Conflict using symbol <name>.

A symbol < name> was used in a way not compatible with previous
references / definitions of the same symbol.

CSI04 Enumeration constant <name> already defined.

The same identifier < name> was used more than once to define an
enumeration constant.

CSIOS Tag <name> is not an enumeration tag.
CSI06 Enumeration tag <name> not defined.

The identifier < name> was used as a reference to an enumeration type
which was not defined or not defined as an enumeration tag.

CSI07 Enumeration tag <name> already defined.

A definition of an enumeration type used a tag of an earlier defined
enumeration type.

CSI08 Identifier <name> not declared.

A reference was made to a the variable < name> which was not
declared.

CSI09 Symbol <name> in use for non-function.

The identifier used in the declaration of a function was already used for
something else.

cS110 Function <name> already defined.

A function was defined more than once.

9 -18

Appendices Error and warning messages

CSlll Function <name> declared with different type.

The type of a function in a declaration did not match with the type
specified in an earlier definition or declaration.

CSl12 component name <name> exists.

A component name was used more than once in a structure/union

definition.

CSl13 Tag <name> is not a structure cq union tag.

An identifier used after struct was defined as a union tag or vice versa.
CSl14 structure/union tag <name> already defined.

A tag in a structure / union definition was defined before.

CSllS unresolved reference to label <name>.

The label was used in a goto statement, but was not defined in the same
function.

CSl16 Label <name> already defined.

The label was defined more than once in a function.

CSl17 Redefinition of global <name>.

The global variable was defined (Le. space allocated to it) more than
once.

Errors in structs, unions and enums

C6101 Constant expression required for enum constant.

An explicit definition of an enumeration constant was made with a non
constant expression.

C6102 Integer value required for enum constant.

An explicit definition of an enumeration constant was made with a non
integer value.

C6103 union can not contain bit fields.
C6104 Constant expression required for bit field width.
C610S Integer value required for bit field width.
C6106 Bit fields are not supported yet.

These messages relate to bit fields, which are not yet supported.

9 -19

Error and warning messages Par.C System

C6107 syntax error in enum type definition. '}' expected.

An enumeration list consists of a list ofidentifiers, separated by commas
and enclosed in braces. '

C6108 syntax error in enum list. identifier expected as
enum constant.

A comma in an enumeration list should always be followed by an
identifier.

C6109 syntax error in enum type definition. Tag or '{'
expected.

enum should be followed by either an identifier, used as enumeration
tag, or opening brace, starting the enumeration list.

C6110 Missing type specifier in component declaration.
Assumed int.

The type specifier in a component declaration was missing.

C6111 Declarator or bit field expected in component.

The type specifier in a component declaration was not followed by a
declarator.

C6112 syntax error in component declarator list. ',' or
'i' expected.

The identifiers following the typespecifier in a component declaration
should be separated by a comma; declarations should be separated by a
semicolon.

C6113 syntax error in struct/union type specifier. Tag or
'{' expected •

.struct or union should be followed by an identifier (the structure or
union tag) or an opening brace.

C6114 syntax error in struct/union type definition. '}'
expected.

A structure/union definition was not terminated by a closing brace.

9 - 20

Appendices Error and warning messages

~o~piler~arning~essag_e_s~~~~~~~~~

Warning numbers are given a severity level, which corresponds to the
warning suppression level specified by the -wl option (see the chapter
on the Par.C System). This level is given in parenthesis following the
message text.

Declarationassu~p_ti_o_n~~~~~~~~~~~_

c7101 Declaration expected. (6)

C7102 Useless declaration (no side effects). (6)

C7103 Type and storage class specifier missing. (5)

C7104 Function <name> declared implicitly. (2)

The function < name> was declared when it was used for the first time,
not by explicit declaration.

Warning about name

C7201 Assumed function <name> returns int. (2)

The function definition did not specify the function return type, so int
was assumed by default.

C7202 Assumed parameter <name> has type int. (2)

The formal parameter was not declared. Type integer was assumed by
default.

C7203 Macro <name> redefined. (1)

The macro < name> was redefined without a preceding #undef.

C7204 Reserved keyword <name>; possible future
incompatibility. (1)

The identifier < name> might in future versions of the Par.C System
be used as keyword. Until then it can be used as identifier, but upward
compatibility is not guaranteed.

~ressions

C7301 Illegal character in character constant. (6)

An illegal character was encountered in a character constant.

9 - 21

Error and warning messages Par.C System

C7302 Illegal escape code in character constant. (6)

A non valid escape code was encountered in a character constant.

C7303 character constant too long. (6)

A character constant contained more than one character.

C7304 Integer constant too large for unsigned long. (6)
C7306 Decimal constant too large. (6)

A constant was encountered which exceeded the available range.

C7307 Divide by zero in constant expression. (6)

A constant expression could not be evaluated because it required a
division by zero.

C7308 Division/remainder of long constants not
implemented. (6)

A constant expression involving long integers could not be evaluated at
compile· time.

C7309 ptr/int conversion. (4)

A pointer value was converted to an integer before operating on it.

c7310 int/ptr conversion. (4)

An integer value was converted to a pointer before using it.

C7311 ptr/ptr conversion. (3)

A pointer value was converted to a pointer to another type before using
it.

C7312 untyped chan-chan assignment; int assumed. (2)

If both the left side and the right side of an assignment expression are
of channel type, the compiler cannot determine the number of bytes to
communicate. Type integer (four bytes) is assumed.

C7313 Implicit conversion to void type. (2)

A value was returned from a function defined with type void.

C7314 overflow in constant conversion. (6)

Conversion of a constant to the appropriate type caused an overflow.

9 - 22

Appendices Error and warning messages

~rocessor

C7401 End of file reached with unbalanced <name>. (5)

The preprocessor directive < name> was used without the balancing
counterpart.

C7402 End of file reached with unbalanced #asm. (5)

#asm was used without balancing iendasm.

C7403 End of file reached with unbalanced comment. (6)

A comment was opened but never closed.

C7405 spurious text following preprocessor command.
Ignored. (1)

A preprocessor command was not followed by a newline.

Miscellaneous

C7501 Illegal character: $XX. Ignored. (6)

The preprocessor encounterd an illegal character.

C7502 Source line too long. Terminated. (6)

The length of a logical source line exceeded the maximum linelength of
the compiler.

C7503 Channel initialization overridden. (6)

A global variable of channel type was explicitly initialised, overriding
the default initialisation. This can cause serious problems, because the
transputer requires channels to be initialised to Minlnt, before
communication can take place.

Internalco~pilererror~essag~e_s~~~~~~~_

caooo Internal Error: <origin>

If this error message is printed on the screen we kindly ask you to send
us a filled out bug report.

9 - 23

Error and warning messages Par.C System

Linker error messas_e_s-..- _

Booter load address offset segment length error (1=4)

The segment defining the booter load address offset has been found to
be incorrect. This error should not occurwhenworkingwith C programs.
When programming in assembly this error could occur if a wrong
segment number has been used (only code and data are allowed).

Booter load address segment length error (1=4)

The segment defining the booter load address has been found to be
incorrect. This error should not occur when working with C programs.
When programming in assembly this error could occur if a wrong
segment number has been used (only code and data are allowed).

Can't write map file

The linker could not write the map file. It is most likely that your disk is
full, or the file exists and is write-protected.

code load address segment length error (1=4)

The segment defining the code load addresss has been found to be
incorrect. This error should not occur when working with C programs.
When programming in assembly this error could occur if a wrong
segment number has been used (only code and data are allowed).

code segment: offset too large

The space reserved for the storage of a global reference offset is
insufficient. More space can be reserved using the assembler -id and
-ic options.

Duplicate segment

Each type of segment may occur only once in an object module.

Duplicate code instruction length

Indicates an invalid object code format. Should never occur.

Duplicate data instruction length

Indicates an invalid object code format. Should never occur.

Duplicate boot block

Two blocks containing booter code were found. Possibly both the a .lib
and the b. lib libraries were linked.

9 - 24

Appendices Error and warning messages

Duplicate booter load address

Two blocks containing booter code were found. Possibly both the a .lib
and the b .lib libraries were linked.

Duplicate code load address

Two blocks containing a code load address specification were found.

Duplicate entry point

Two program entry points were found. Possibly both the a .lib and the
b .lib libraries were linked.

Duplicate memory specification

Two blocks containing a memory specification were found.

End of file reached prematurely

An end of file was encountered while there were still segments open.

Error closing input file

The input file could not be closed.

Error opening input file

The input file could not be opened.

Error opening output file

The output file could not be opened. Possible causes are: disk full,
directory full or disk is write-protected.

Error reading file
Error reading indirect file

The file could not be read. Possibly the file is empty, or the disk has a
bad sector.

Error writing output file

An error occured during the writing of the output file (possibly the disk
is full).

9 - 25

Error and warning messages Par. C System

File error (illeg.al code label segment)
File error (illegal data label type)
File error (illegal data label segment)

These errors indicate an error in the object file format. Should normally
not occur.

Filename in indirect file too large

The filename found in the specified indirect file was too long.

Format error reading file

An attempt was made to link a file which was not in the object file or
library file format.

Illegal option

The option was not recognized as a valid option.

Illegal segment
Illegal tag

The object file format is incorrect. Possibly the file has been edited
before linking. Otherwise the compiler or assembler could have
generated an error in writing their output. In that case please send in a
bug report.

Label type conflict

The label is already in use for another type of object. You can not use
the same name for both a variable and a function.

Memory segment length error

The segment defining the memory specification has been found to be
incorrect. This error should not occur when working with C programs.
When programming in assembly this error could occur if a wrong
segment number has been used (only code and data are allowed).

Needs filename

The option required a filename but none was found.

No booter: can't make stand-alone program!

No booter has been found, and therefore no executable program could
be produced. This error may occur when not linking either a .lib or
b .lib. This message is not generated when the -c option is used.

9 - 26

Appendices Error and warning messages

No object files

There were no object modules specified in the commandline.

Not an object file or library

The indicated file does not appear to be a library or an object module.

option argument too small. minimum taken.

An option has been used with too small an argument. The minimum
value for the argument has been substituted.

option argument too large. maximum taken.

An option has been used with too large an argument. The argument
given has been truncated to the maximum size.

out of memory

There was insufficient memory available for the completion of the link
process. When working on an IBM-PC with parcl.exe, try to remove
resident programs, RAM chache and RAM disk.

segment error: entry point (segment length 1= 4)

The segment defining the program entry point has been found to be
incorrect. This error should not occur when working with C programs.
When programming in assembly this error could occur if a wrong
segment number has been used (only code and data are allowed).

Symbol multiple defined

A symbol definition has occured more than once. The linker can not
resolve this symbol unambiguously.

undefined symbol

A reference has been found to a symbol that is not defined in the given
list of object modules and libraries. It is most likely that you misspelled
the symbol name. Remember that the linker is case sensitive. Check
whether all the necessary libraries and object files are listed in the
command.

9 - 27

Error and warning messages Par.C System

Linker warnin9_m_e_s_s_a9.....~e_s _

WARNING data label xxxx at odd boundary

The compiler always locates static data storage on a (32 bit) word
address. This warning could show up when inline assembly code has
been used.

Booter data segment ignored

It is not meaningful to use a datasegment in booter code.

Internal linker error messa9~es~~~~~~~~~
Internal error <message>
Linker bug <message>

If one of these error messages is printed on the screen we kindly ask you
to send us a filled out bug report.

9 - 28

Appendices ASCII code table

ASCII code table
In the following table, the numerical value of the ASCII coded
characters are given in decimal and hexadecimal notation, and the
character is printed in the "Char" column.

Dec Hex ctrl Char Dec Hex Char Dec Hex Char Dec Hex Char

0 00 A@ NUL 32 20 SP 64 40 @ 96 60

1 01 AA SOH 33 21 65 41 A 97 61 a

2 02 AB STX 34 22 66 42 B 98 62 b

3 03 AC ETX 35 23 * 67 43 C 99 63 c

4 04 AD EOT 36 24 $ 68 44 D 100 64 d

5 05 AE ENQ 37 25 % 69 45 E 101 65 e

6 06 AF ACK 38 26 & 70 46 F 102 66 f

7 07 AG BEL 39 27 71 47 G 103 67 9

8 08 AH BS 40 28 72 48 H 104 68 h

9 09 AI HT 41 29 73 49 I 105 69 i

10 OA AJ LF 42 2A * 74 4A J 106 6A j

11 OB AK VT 43 2B + 75 4B K 107 6B k

12 OC AL FF 44 2C 76 4C L 108 6c 1

13 OD AM CR 45 2D 77 40 M 109 60 m

14 OE AN SO 46 2E 78 4E N 110 6E n

15 OF AO SI 47 2F / 79 4F 0 111 6F 0

16 10 Ap DLE 48 30 0 80 50 P 112 70 P
17 11 AQ DC1 49 31 1 81 51 Q 113 71 q

18 12 AR DC2 50 32 2 82 52 R 114 72 r

19 13 AS DC3 51 33 3 83 53 S 115 73 s

20 14 AT DC4 52 34 4 84 54 T 116 74 t

21 15 AU NAK 53 35 ~ 85 55 U 117 75 u

22 16 AV SYN 54 36 6 86 56 V 118 76 v

23 17 AW ETB 55 37 7 87 57 W 119 77 w

24 18 AX CAN 56 38 8 88 58 X 120 78 x

25 19 Ay EM 57 39 9 89 59 y 121 79 Y
26 1A AZ SUB 58 3A 90 SA Z 122 7A z

27 1B A[ESC 59 3B 91 5B [123 7B {

28 1C A\ FS 60 3C < 92 5c \ 124 7C I
29 10 A] GS 61 3D 93 50] 125 70 }

30 IE RS 62 3E > 94 5E 126 7E

31 IF US 63 3F ? 95 SF 127 7F DEL

9 - 29

References

References

Par.C System

ANSI [1986]

Draft Proposed American National Standard for Information Systems
Programming Language C

Accredited Standards Committee X3, (ANSI) 1986

HARBISON [1984]

C: a reference manual

Samual P. Harbison & Guy L. Steele Jr.

Prentice-Hall, 1984

INMOS [1986]

Transputer reference manual

Inmos Ltd, 1986

KERNIGHAN [1978]

The Cprogramming language

Brian W. Kernighan & Dennis M. Ritchie

Prentice-Hall, 1978

9 - 30

. t g, ~., .. ' .;;;

Index

In\ ex

10 -1

Index·
1;'ao ,. t' ':.. "... ~ ." ,~ 't Z'" ~. ,. ".", . ,"

Par. C System

A

10 - 2

~.. 'f.~·

coshO 8-60
. '.~ crash.h 8-4

._ _CSEG__ 8-15

:; ctimeO 8-61
:ctype.h 8-4

.Custom server 6-12

D

..J

L

';,' isprintO 8-130
ispunct()"8-13'1 .
isspaceO 8-132

- isupperO 8-133
iswhiteO 8-134
isxdigitO 8-135

.. itoaO 8-136

.~~..'t.~. K
::Y~C':.~.f

......... --------........._--
Kernighan and Ritchl'e t3:2, 4-2,

~·9-30

keywords, reserved 4-4

<v·macro 1-11
·:,:~~macros, predefined 3-9

Harbison and, Steele ~2t 9-30
hardware 2-4

,: hardware.cnf 2-4.

~ Helios 2-3.:~

,:~(!-host system 2-3 ":~

HOST_CONNECTED'8-~
HostLinkln 5-10
.HostLinkno 5-10 .

.~. HostLin~Out ~flO'· '.

GetFunStackO 8-111
,GetNodelnfoO 8-112
_GetParStackO 8-113

. getsO 8-114
~,GetSyslnfoO 8-115
Glossary 1-18
gmtimeO 8-116

.) gmtime_rO 8-117
"" guard 4-29 - 4-30 ,:"

4 ' guarding input 4-41
,(~ ,~ guarding outp~ 4-41

'labsO.8-137
:language extensions 4-~,,'

LBUFSIZ 8-17
IdexpO 8-138

. JeaveO 8-139
'. I' library files 3-14

f;~ '-" ...

:':'·":,'limits.h 8-9
.'~ " LINE 1-11

link communication 4-26
" '" I ' .'1:':'link-interface 2-4

'. j ,: .. I/O libraries 3-21 ' , ..,. ,> • "';'$, ;~"linkcommunication 8-185
IBM PC 2-3 .(~, ".- "linker 3·3

., . _inO 8-118 " '~:"~'linker errors 9-24
initial stack 6-18 '., "linker options 3-14,9-7

,.~:Inline asse~bIY.~2b' .':,,':, ,~.~.t.'~ _;LINKINO 4-37, 8-140
:~: .lnMessO 8-119; .!!' '~~I~::~' ~ ".;' ~ .. d :linking order 6-18

Inmes 2-4,9-30 . ,., LINKOUTO 4-37, 8-141
" ,lnPortO 8-120 "links 4-37
·:;:~install.exe 2-3 ',LinksPerTransputer 4-37,8-16
~1r; InstaliMathT80 6-9 ", LinkStatus 5-12,8-22

. I int 1-13, 1-15 ····Ioader 5-8, 7-4

.;' interface hardware 2-4 'loader/server 3-3, 3-21 . 3-24
.~~.. internal memory6-18" . 'Ioader/server exit codes 3-22

. '~~" IntToDateO 8-121 ,', '~,'~ ~. "'! loader/server options 3-18
'Y j ~.,'; : •. "investigating 6-6 ..;..i' " Loading 6-6

.".- , '. ". io.lib 3-21 '. '~.. localtimeO 8-142
i~"· ' IOFBF 8-17 ." 'localtime_rO 8-143

I < ,,-IOLBF 8-17 " "logO 8-144

. '-'ONBF 8-17 :' log100 8-145
.JSalnumO 8-122 logical map 5·3
isalphaO 8-123 " 'long 1-13, 1-15

~. isasciiO 8-124 ItoaO 8-146
iscntriO 8-125.'
isdigitO 8-126
isgraphO 8-127

. islowerO 8-128
, isodigitO 8-129

fabsO 8-75
FALSE 8-14
Farmer 6-4

farmer structure 5-15
Farmer, Calculator 5-15
Farmer, Collect 5-17
Farmer, Consumer 5-15
Farmer, Demo program 5-16
Farmer, Distribute 5-17
Farmer, message-header 5-21
Farmer, Producer 5-15
Farmer, sources 5-19
Farmer, using pointers 5-20

Farmer, using statistics' 5-21
fcloseO 8-76
feofO s-n
ferrorO 8-78
fflushO 8-79
fgetcO 8-80

fgetsO 8-81
FILE__ 1-11,8-18

file I/O 3-22
,filerrO 8-82
_finitO 6-7
FIRSTDAY 8-23

float 1-14 - 1-15, 1-17
float.h 8-7
floating point unit 6-18
floorO 8-83
fmodO 8-84

FNULLs-18
fopenO 8-85
forever 4-10
fprintfO 8-87
fputcO 8-91
fputsO 8-92
freadO 8-93
freeO 8-94
frexpO 8-95
fromhost 8-22

fscanfO 8-96

fseekO 8-102
fteliO 8-104
ftoaO 8-105
__FUNC__ 1-11
fwriteO 8-106

getcO 8-107
getcharO 8-108
getenvO 8-109
getenv_rO 8-110

G

10 - 3

Par.CSystem
us /....... '"", .'~ -' .. ·-s·~

'"~·o :~., .r ~)il:'t: ...c.4pragma noint 1-12, 3-8
mallocO 8-147 ".•.' '.' 'j;,.preprocessor 3-2,3-6maUoced chahnels··4-~t.. '. ~~'r~);'obiectfiles 3-14 · tfO 6

I :.' . . . >. ;:,:: ,pran 8-17
map file 6-17 .. ; offsetof 8-14 .,PriorityO 8-177
mapping strategies 5-4 : '" . :,-offsetofO 8-160 . ,Process 1-18, 8-199
math libraries 3-21 . :. ·..,·OK 8-18 . ..:c,ProcessorSpeed 5-11
math.h8-10 ;;:', oItoaO 8-161 . . ", .01: PROG 8-15
math.lib 3-21 . 'a~: onex~O. 8-162 ", ':\,,~, _ :';... :;~; ;.program configurations 6.2
matherrO 8-148 opt!mlslng perfo~~.~;6:~"f:·' .::program structure 6-16
MAX_LINE 8-19 . ";' ... opt~ons, assembler~11 " ..:"'ptrdifU 8-13
MAX_OPEN 8-19 "c., . ;tsV opt~ons, com~ndhne 9-! ..•...:;",putcO 8-178
MemAvanO 8-150 ,,'" . ;,··,;,!-:-;~.OptlonS, complier3-4.,. putcharO 8-179
memchrO 8-151 .5,,' :. "~ .options, linker 3-14 " ' '. ~ ;.putsO 8-18O/;.J.
memcmpO 8-152 . ;' ., ." options, loader/server 3-18 . ,
memcpyO 8-153 ;:.~,--">, .otoaO 8-163 ' ..

memfiliO 8-154 ~ ~i;,1 outO 8-164 ;p.;" .;;:Q;.... _

memmoveO 8-155 '.. .;OutMesso 8-165 ::qsortO 8-181
memorytop7-6,~., OutPortO 8-166,';."
Memory usage 6-14 'ii''':; " .R

O I : ,:! .~~;i.memset .8-156 7--'. :.' :Y,,'.;:"·-?; '!"!"':'p. .:.;.. --...__

- i':; :.\:'~.r~.·~\,~~H~~;raiseO·8-182.
~:~~:prt:;~O ". ~',,~:·;;.P-O-8--1-67-----------....._~....,;:~~....._-r-·~......~.-·;;::__RAND__ 1-11

-' ',,~.• ' .LI . bod -.:::.~: ' ··~~.~r·"·randO 8-183Message Passer 6-2 .:- '~N.par ' ' y 4-5 .
Minint 8-15 . '..,.. ,_ r~~:'~; par statement 4-5 It.: ... ~' ,'~.'::''':. ~~Re-entrant 1-18

mktimeO 8-157 ,.' : "par, continue 4-20 .:.', '(.:~·f . reallocO 8-184
modfO 8-158 ,~ .. '. ,'par, global variables 4-.12, 4-17" '., 'l'iRecvLinkO 8-185
MODRUN 7-6 '.' ,j:,.' . 'Par, multiple statements +19 " .n:':RecvLinkOrFaiIO 8-186
MostNeg 8-15 , ..C"~'.' par, nested 4-6 . ; .', i register storage class 6-16
MostPos 8-15 .:. :',' .:....par, replicated 4-5, 4-9 ;:ReleaseO 8-188
Multi-node 6-4 .. ',.,.... .;.,~'par, return 4-20 .- ",' 'removeO 8-189
mUlti-transputer 7~2' ":" ',::' '~'par, scope rules4-12' :"renameO 8-190
multi-transputer program 1-9 .. ~" ~par, shared variables ~1.2 ',;';", .. replicated alternatives 4-33
mUltiplexing chan~~ls'4-:26,4-3(··~!;:.:par, tasks 4-5 ." replicated par 4-5,4-8 - 4-9,4-14

. . ~ ,... ~·Parallel C 1-18,4-2 ',: . .: 'replicated par, nested 4-17

.'1 ,. Parallel programming 4-2~'; ,J~eplicator 1-18, 4-5, 4-8, 4-14, 4-30
N ",(:\\ ' PARC__ 1-11:-.:. ,t"replicator variables 4-16
NaN 8-8 ,. parent process 4-5:;;,:,·.··:~feplicator with pointers 4-35
NaNO 8-159 ~parever 4-10 . If {"'~?replicator,array element 4-16
NBooteci'5-11.... " ,- --'~'PARSEC2-3, 3-5··":;:...,.eplicator, func~IQrcalls 4-16 .J

nested par4-6·. .:>;,;{,.Parsytec 2-4 'Y ; replicator, structure element 4-.16 .'
nested replicated par ~17:,:et. PeekHostO 8-170,. J"':':reserved keywords 4-4

nested select 4-40; ,Ii ~' .perrorO 8-171 "reset mode 2-4 '"
netowrk Information3-2~,(; ;·,.d, .PI&-2 ii..>!ResetChanneIO 4-27,8-191
Network 1·18,5-11,7-2. !HC!"'~~c' Pitfa1lS4-17 '.. 'ResetSystemTimersO 8-193
network analyser 5-7 ',,; ". ' '.,pitfalls select 4-41 :.; . ':resident libraries 5-14, 6-7,6-9
NODEDESCRlgTQR 8-~:, ;~':'; . ,PokeHostO 8-172 . rewlndO 8-194
noio.lib 3-21 -. .' ""'1 ":; ·.,· ..portability 3-3 ";., .. ':~'!. round-robin select 4-39
.nolist 3-12 :pow0 8-173 ' ' . '!;'."~': ' Rounding 1-17 ,
Not-a-Number 8-8 pow100 8-175' ,I,:. RunO 6-5. 8-1~5
NOT_CONNECTED8-22.p0W20 8-174 , . \":,',;''. ~;run.lib 3-21 >

nT 5-11,8-15 '-'#pragma fPU1-12, 3-7, 9'4,'11:: ";::'-';',ZRUN2EXE 7-4
nT_Down 5-11 ,.;~ #pragma int 1-12, 3-8 ','.,. ,;1' '(''l~Runningprocess 1-18
NULL8-14;.::, #pragma nofpu 1-12, 3-7 .~, ,,:,""'2

10 - 4

Index

VO 8-274
.va argO 8-276
va=end0 8-278

,·v

t"T
5,··t8rnath.lib 3-22

".,' 18nO 8-256
, tanhO 8-257
'Task 1-19
_TestClrErrO 8-258
TestErrO 8-259 . ,

.,-TicksPerSecondO 8-~(j;
"J!:". C:'" _TIME__ 1-11

:~. '~r,. timeO 8-261
". ; ...~ time-sharing 4-15

i~r;~: '.' time.h 8-23
time_t 8-24
timeout 4-32

.... c timer 8-193
TimesJice 1-19
timezone 8-24

tiny programs 6-10'
"~tm structure 8-24

-.. ·.:Tn 5-11,8-15
.-~. ...toa0 8-263 - 8-264

:',1, ~': 1f>··~toasciiO 8-265
'JiH12 " tohost 8-22

,tointO 8-266
tolowerO 8-267 - 8-268
toupperO 8-269
~toupperO 8-270

. transp.h 8-25
transparent code 5-14

"':~.: Transputer 1-19
;i'~·transputer links 4-26

:~:-; I transputer network 7-2
'TRUE 8-14
tty~ 5-~ 1,8-16

~, ·~B~· ..

.,.U
<.'iJt~·, ultoaO 8-271

' .. 1f;~J\;'7_: ~·:.'ungetcO 8-273 .
\i J3C)(' :~·;~;<unsignedchar 1-1'3

i"';"~';~''':unsigned int1-13 .>"

,~ 'unsigned long 1-14 ~ .. ,

. sprintfO 8-222
sqrtOr'~223

> srand08-224
sscanfO 8-225
,stack 6-14, 7-6 - 7-7
stack checking 6-24
standard library 3-21
startup cod.~,j6:'7~ r:; l''' .':

static processing 5-6.

std.lib 3-21

stdarg.h 8-11
STOC 1-11

stdcnv.h~12
stddef.h 8-13
stderr 8-19
stdin 8-19

'. stdio.h 8-16
stdHb.h 8-20

.. stdout 8-19
,StopProcessO~ 6-:9~ .&227
strcatO 8-228

,strchrO 8-229

:,7strcmpO 8-230
strcpyO 8-231

. '" .. strcspnO 8-232
,~;:;strerrorO 8-233
.. ' strerror rO 8-234

string.h 8-21
strienO 8-235
strncatO 8-236
strncmpO &;237
strncpyO 8-238
strpbrkO 8-239

:~~trrchrO 8-241
'strrpbrkO 8-242
strrposO 8-243

",i~.·.;::rstrspnO 8-244
.,': ·strstrO 8-246

strtodO 8-247
'" .strtokO 8-248
'strtok_rO 8-250

.; , - -

strtolO 8-252
strtoulO 8-254 1:"'unsigned short 1,~13~ \!

, structure element in replicator::i~" ,'use of par 4-6 ',r

4-16 .~:~" use of replicator variables 4-42,

", Subsystem 6-5 use of select 4-31
synchronisation 4-31 uteaO 8-272
SYSNET 7-2
SYSTEM 5-9, 8-22

system structure 3-23, 7-2
.systemO 8-255
system.h 8-21'

RunProcessO 8-199
runtime system 3-3

s
scanfO 8-201
Scheduling 1-18
scope rules 4-15
SEEK_CUR 8-18
SEEK_END 8-18
SEEK_SET 8-19
select 4-29

select alternative 4-29
select body 4-29
select output 4-41
select, break 4-31
select, code levels 4-36
select, conditional 4-30
select, default alternative 4-35
select, explicit communication '
4-37
select, guard 4-30
select, nested 4-40
select, priorities 4-38
select, replicator 4-30
select, side-effects 4-41
select, timeout 4-30, 4-32
select, within 4-30
selected code 4-36

selecting code 4-36

semaphore 8-14
SendLinkO 8-202
SendLinkOrFailO 8-203

servasm.h 8-10
server 7-4, 8-188
server.h 8-10
setbufO 8-205
SetErrO 8-206 .." '.

- SetFunStackO'6-10,' 8-207
- SetHaltErrO '8-208
- SetParStackO 8-209
SetPriorityO 8-210
setvbufO 8-212
short 1-13 - 1-14
signalO 8-213
signal.h 8-11
sinO 8-216
Single-node 6-3 c

single-node program 7-9'
sinhO 8-217
size_t 8-13
sleepO 8-218 - 8-219
smaliocO 8-220

10 - 5

. ~~ - l ,. f

Index

va_startO 8-279

vfprintfO 8-280

vprintfO 8-281

vsprintfO 8-283

W
wait08-285

Waiting process 1-19

;, ~ ...

- .""''i,':

C~'_(J~:d"\' .
--'''XffoaO' &.2s6 . 8-287

.' 'r"XMemSpeed 5-11

xtoaO 8-288 - 8-289

y .

'ydayO 8-290

.• :,'\!.

Par. C System

10 - 6

BUG REPORT FO_" !M.
__ .~ .'1.:

ThislprograDi·h-as been designed carefully..However, it is always possible
that some irregularities have slipped through. If you come across any
bug or error in this Par.e System, please fill in a copy of this form and
send it to Parsec Developments, P.O.Box .782,.. 2300 AT;.._~Leiden, The
Netherlands, Fax +31 71·134449 '

User information .. Name:

Address:

City:

Phone number:

Par.C Version:

Your Par.e dealer. Name:

Address:

City:

Country:

Serial number:

Country:

Where? Circle the part of the Par.e System in which you located an error?

Compiler, assembler, linker, lo~der/server, runtime functions.

Manual: page:

Other:

Hardware. transputer network (layout, types, processorspeeds, amount of
memory)...

host system (type, operating system, memory, I/O recources, system
settings), link interface, etc.

Please turn over

Error.descljPtion. Wh~cbcq~dlin~ ?J>tions were used? ..

Which standard librari~s~tJ~~ linked to the program?...

Is the errQr reprpducable?...
I . .". . • :~. . (. ~ ~ _ ~ " ...

Ifpossible?ple.~j~ludea prinrout of the source text(s) which caused
generati()n oftb,~+Wor. ItWillbe<~pp+~a~cd ifyou remove all irrelevant
infotma:tionsPle~;e.il1clu~e a4escription ·ofwhatthecode was supposed
to.do and ·what.itactllally did.

	Contents
	Introduction
	Intended audience
	Hardware assumptions
	Target hardware requirements
	Requirements for the Par.C native System
	Requirements for the Par.C cross System

	Available versions of the Par.C System
	1. Single T4 System
	2. Single T8 System
	3. Small System
	4. Static System
	5. Dynamic System

	About this Par.C System manual
	Subdivision into chapters
	Typographic and notational conventions

	Further reading

	1 Quick reference
	Syntax of language extensions
	Runtime functions
	Macros
	Macros defined in various header files
	ANSI predefined macros
	Par.C predefined macros

	Compiler-dependent directives
	Implementation of basic types
	Sizes and ranges of the basic Par.C types
	Random notes concerning the Par.C types
	Word alignment of data
	Floating point formats
	Rounding

	Glossary

	2 Installation
	The Par.C System package
	Introduction
	Par.CSystem requirements

	Installation
	Ajustment to interfacing hardware on PC
	Ajustment to interfacing hardware for Helios

	Confidence testing

	3 Par.C System
	Overview of the Par.C System
	Compatibility with Draft proposed ANSI C

	Compiler & Preprocessor
	Usage of the compiler
	Input- and output file names
	Alignment on word-boundaries
	Using an indirect file
	Warning levels
	Preprocessor directives
	Compiler-dependent directives
	Inline floating point code generation
	Uninterruptable code generation

	Predefined macros
	Error recovery
	Exitcodes

	Assembler
	Usage of the assembler
	Outputfile name and format
	Memory usage of the assembler
	Listfile name and settings
	Using an indirect file

	Linker
	Usage of the linker
	Outputfile name and format
	Specification of library files
	Generation and format of the map file
	Specification of the executable program
	Using an indirect file

	Loader/Server
	Usage of the loader/server
	Commandline options

	The runtime system
	General description of Iibraries
	Boot libraries
	I/O libraries
	Standard utilities
	Math libraries

	The Par.C file I/O system
	Exiting, breaking and aborting programs
	Network information

	4 Parallel C
	Introduction
	Basic concepts of Parallel C
	Reserved keywords in Parallel C

	The par statement
	Short description
	Example of use
	Use
	Replicated par statement

	Detailed description
	The use of double brackets
	Using shared variables in concurrent processes
	Replicated par statement

	Pitfalls and warnings
	Using globals in nested replicated par statements
	Multiple statements inside a replicated par statement
	return and continue statements

	The channel datatype
	Short description
	Examples of use
	Use
	Scope of channels and passing as parameters

	Detailed description
	Communication and synchronisation
	Using linkconnections between transputers

	Pitfalls and warnings
	"Multiplexing" communications on one channel
	Using "Imalloced" channels
	Non-equal size and direction of communication

	The select statement
	Short description
	Examples of use
	Use
	Specifying a timeout value
	Replicated alternatives
	Conditional alternatives
	'Default' alternative

	Detailed description
	Explicit communication
	Links and events
	Priorities
	Nested select statements

	Pitfalls and warnings
	Using channels awaiting output
	Side-effects
	Using replicator variables

	5 Tutorial
	Introduction
	Introduction to parallel processing
	Dynamic parallel processing
	The Par.C bootsystem
	The SYSTEM structure
	Making software independent of hardware
	T4xx/T8xx transparency

	The farmer demo program
	Implementation in the Par.C System
	Pseudo-code of the Farmer

	Running the farmer demo program
	Adaptations to the farmer structure
	Optimising communication on the same node
	Including more statistics
	Placing different tasks on different nodes

	6 Special topics
	Program configurations
	The PI example
	Pseudo code for the Worker
	Organization of the source code

	Single-node programs
	Example program: PI, (linked with a.lib)

	Multi-node programs
	Example program: PI, (linked with b.lib)

	Subprograms for subsystems
	Example program: RUN_PI

	Program loading and startup
	Defining user supplied startup code
	Building tiny programs
	Example program: PI_E

	Custom server on the host system
	Example program: PI_R

	Memory usage in Par.C-compiled programs
	Methods for speed improvement
	Optimisations in program structure
	Source level optimisation
	Assembler optimisations
	Linker Optimisations
	Using the floating-point unit efficiently

	Inline assembly
	Usage
	Format
	Reserved labels

	Assembler code
	Assembler data
	C calling interface
	Stack usage
	Final remarks

	7 Utilities
	SYSNET
	A utility to show the available tranputer network

	RUN2EXE
	A utility to create stand alone programs
	Error messages

	MODRUN
	A utility to modify Par.C executables
	Options
	Error messages

	8 Runtime Libraries
	General remarks
	Introduction
	Compatibility with Draft proposed ANSI C

	Header files
	assert.h
	crash.h
	ctype.h
	errno.h
	float.h
	limits.h
	math.h
	servasm.h
	server.h
	signal.h
	stdarg.h
	stdcnv.h
	stddef.h
	stdio.h
	stdlib.h
	string.h
	system.h
	time.h
	transp.h

	Par.C Library Reference
	A
	abort
	_abort
	abs
	acos
	AFTER
	alarm
	_alarm
	asctime
	asctime_r
	asin
	assert
	atan
	atan2
	atexit
	_ato
	ato..
	atod
	atof
	atoi
	atol

	B
	BEFORE
	bltoa
	bsearch
	btoa

	C
	calloc
	ceil
	clearerr
	_ClrHaltErr
	clock
	cos
	cosh
	ctime

	D
	DateToInt
	delay
	Deschedule
	difftime
	Dir
	Dirlnit
	dtoa

	E
	(*ERROR)
	exit
	_exit
	exp

	F
	fabs
	fclose
	feof
	ferror
	fflush
	fgetc
	fgets
	filerr
	floor
	fmod
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	frexp
	fscanf
	fseek
	ftell
	ftoa
	fwrite

	G
	getc
	getchar
	getenv
	getenv_r
	_GetFunStack
	GetNodelnfo
	_GetParStack
	gets
	GetSyslnfo
	gmtime
	gmtime_r

	I
	_in
	InMess
	InPort
	IntToDate
	isalnum
	isalpha
	isascii
	iscntrl
	isdigit
	isgraph
	islower
	isodigit
	isprint
	ispunct
	isspace
	isupper
	iswhite
	isxdigit
	itoa

	L
	labs
	Idexp
	leave
	LINKIN
	LINKOUT
	localtime
	localtime_r
	log
	log10
	Itoa

	M
	malloc
	matherr
	MemAvail
	memchr
	memcmp
	memcpy
	memfill
	memmove
	memset
	mktime
	modf

	N
	NaN

	O
	offsetof
	oltoa
	onexit
	otoa
	_out
	OutMess
	OutPort

	P
	P
	PeekHost
	perror
	PokeHost
	pow
	pow2
	pow10
	printf
	Priority
	putc
	putchar
	puts

	Q
	qsort

	R
	raise
	rand
	realloc
	RecvLink
	RecvLinkOrFail
	Release
	remove
	rename
	ResetChannel
	_ResetSystemTimers
	rewind
	Run
	RunProcess

	S
	scanf
	SendLink
	SendLinkOrFail
	setbuf
	_SetErr
	_SetFunStack
	_SetHaltErr
	_SetParStack
	SetPriority
	setvbuf
	signal
	sin
	sinh
	sleep
	_sleep
	smalioc
	sprintf
	sqrt
	srand
	sscanf
	_StopProcess
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strerror
	strerror_r
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strrpbrk
	strrpos
	strspn
	strstr
	strtod
	strtok
	strtok_r
	strtol
	strtoul
	system

	T
	tan
	tanh
	_TestClrErr
	_TestErr
	_TicksPerSecond
	time
	..toa
	_toa
	toascii
	toint
	tolower
	_tolower
	toupper
	_toupper

	U
	ultoa
	utoa
	ungetc

	V
	V
	va_arg
	va_end
	va_start
	vfprintf
	vprintf
	vsprintf

	W
	wait

	X
	xltoa
	Xltoa
	xtoa
	Xtoa

	Y
	yday

	9 Appendices
	Differences with previous versions
	Improvements and changes up to v1.2
	Compiler
	Linker
	Loader/Server
	Runtime libraries

	Improvements and changes since v1.2
	Compiler
	Runtime libraries
	Compiler / Runtime system

	Known bugs (and remedies)
	Complex expressions
	Module alignment and FPU code

	Error and warning messages
	Command line error messages
	Compiler error messages
	Storage class
	Array declaration
	Initialisation
	Function declaration/definition
	General declaration
	Preprocessor
	Syntax errors in statements
	Errors in expressions
	Errors in identifiers
	Errors in structs, unions and enums

	Compiler warning messages
	Declaration assumption
	Warning about name
	Expressions
	Preprocessor
	Miscellaneous

	Internal compiler error messages
	Linker error messages
	Linker warning messages
	Internal linker error messages

	ASCII code table
	References

	10 Index
	BUG REPORT FORM

