
Program design for
concurrent systems

INMOS Technical Note 5

Philip Mattos

February 1987
72-TCH-005-01

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Structuring the System 4

2 System Topology 4

3 System Design - the functional blocks 7

4 System Integration 9

5 Conclusions 11

3

This note illustrates one approach to programming concurrent systems in oc-
cam. It concentrates on applications, rather than general purpose computer
networks, which are covered in Technical Note 13.

1 Structuring the System

There is no absolutely correct topology for an application; each possibility
represents a trade-off between programming ease and ultimate efficiency. In
this trade off consideration must be given to the level of reliability required
and the cost of development and final hardware.

Assuming there is to be more than one processor in the system under design;
an important early decision is the manner of sharing the load between the
processors. This depends upon how the problem may be divided, and the
measure of performance required. If the task is a repetitive one; that is, the
same operation performed on many pieces of data, the ultimate throughput
is infinite, limited only by economic factors; the number of processors you
can afford. However, the latency; that is, the delay from raw data in to
associated results out, cannot be reduced below the total execution time of
those operations that must be performed sequentially on the data.

Having established that a task is divisible in the way we require, processes
can be written to perform each subtask, and each data item passed through
the subtasks. Whether divisible or not, the option of providing multiple
processes; each capable of performing the same task, remains. This approach
allows many items of data to pass through many identical processes at the
same time and thus increases overall throughput.

Note that we use the term ”processes” in preference to ”processors”. The
first term is the logical division of a task and the second is the physical
division of a task. In the final analysis we may allocate several processes to
one processor. This is an important point; as it illustrates that the division
of a task into sub tasks must be done to a greater extent rather than a
lesser, as processes can be grouped later, but cannot easily be subdivided
after writing.

2 System Topology

We can now consider the topology of the system. Processes are represented
by rounded boxes, and communication channels by arrowed lines. To illus-
trate a simple case, consider the example in Figure 1.

This shows a functional division of a generic application into a keyboard

4

Figure 1: Example

handler, a screen handler and the application itself. Such a division is for
ease of programming and flexibility rather than performance.

Each channel is given a name on the diagram, and then the top level occam
can be written. The three functional blocks execute at the same time, i.e.
in PARallel. The ONLY items they share are the channels between them,
so these are declared in an outer scope.

... proc decls
CHAN OF INT app.in, echo, app.out
PAR
keyboard.handler(keyboard, app.in, echo)
screen.handler (screen, app.out, echo)
application (app.in, app.out)

This top level design done - and instantly coded due to the correlation
between the occam and the diagram - we progress to the three functional
blocks.

These are totally independent, and as long as they agree on the form of
data to pass between them, can be designed by different people on different
sites. This hierarchical approach means that the most complex task can be
attacked and reduced to simplicity.

The last example illustrated functional division. This is the most effective
solution for ease of programming, but relies on a divisible task. For the
indivisible task, the solution is ”many hands make light work” - achieved by
distributing data items to different processors, all working at the same time.
In the first example, the system topology was dictated by the connectivity
required by the functions. In the indivisible task, the topology is arbitrary.

A simple topology directly supported by occam’s PAR replicator syntax is a
pipeline, or spaceline. The pipeline relies on each stage not only processing,

5

but also passing on data and/or results on behalf of other processes.

Figure 2: Spaceline

In order to achieve this, messages would have tags indicating their types
and a router process would handle this, so each stage would become

Figure 3: Stage

However, as channels are available in the opposite direction, one can arrange
for input and output to be at one end of the pipeline, which allows for simple
extensibility.

Figure 4: Stage with simple extensibility

The routers are very simple - usually around 5 lines of operational code
after initialisation etc, so are not a problem. However, it must be borne
in mind that the first processors will be handling the data and results for
ALL processors, so one must consider the balance of communications and
processing. Provided messages are used, rather than single words or bytes,
a pipeline is appropriate to length of order 10 (i.e. < 100)

A spaceline system is implemented as shown:

The width of a spaceline is limited by the number of links on the distributor

6

Figure 5: Spaceline system

and gatherer. By using a tree structure, spacelines of any width can be
constructed.

Figure 6: Tree structure

Clearly, the optimum topology is application dependent, and each applica-
tion must be judged on its merits. The rest of this note will concentrate on
functionally divided applications. For arrays etc. (See Technical Note 13.)

3 System Design - the functional blocks

Reverting to the example of figure 1, we must now design the functional
blocks.

In general, each process must do some initialisation, then will repetitively
receive data, and act upon it. The actions may be complex, may read more
data, may generate output, and may terminate the process, but the basic
structure still holds.

The Transputer Development System uses a folding editor, which can rep-
resent a large block of text in a single named fold line marked by three dots.
A fold can contain another fold, nested to any depth. Folds can be ’opened’
by the editor to display internal structure and source text, or ’closed’ to
hide data not currently of interest. Thus any level of detail can be viewed
at will.

Folds can be created and named even before their contents have been writ-
ten. This allows the structure of the process to be entered as part of the
design. Thus the generic process is as shown here :

7

PROC my.proc(parameters)
... declarations, including local procs
SEQ
... initialisation
WHILE condition
SEQ
... loop initialise
... input data
... act upon it
... tidy up this pass

... tidy up process
:

Considerable experience training programmers new to both the folding ed-
itor and occam has shown that adopting this type of structure is essential,
otherwise they immediately enter a program that mimics languages they are
accustomed to, rather than making use of the parallel and communications
of occam.

Thus the keyboard handler from the example becomes:

PROC keyboard.handler(CHAN OF INT in , out , to.screen)
INT ch: --declarations
VAL stopch IS INT ’@’:
BOOL running:

SEQ
running := TRUE --initialisation

WHILE running
SEQ
in ? ch --input

PAR --action
out ! ch
to.screen ! ch

IF
ch = stopch
running = FALSE TRUE

SKIP
:

As can be seen, many of the elements of the standard structure are null,
but the conscious decision to exclude them is very beneficial in the design
process.

8

One powerful construct of occam that does not clearly fit this structure is
the ALTernate. This is used to take input from one of many channels, when
it is not known which will be ready first. Thus it is used in the screen
handler. The reason it does not clearly fit the standard format is because it
includes both input and action. The screen handler implemented here puts
echoed text and output text in two separate windows, so the structure is
modified to:

WHILE <condition>
ALT
... input from echo
SEQ
... go to echo cursor position
... output text
... update cursor position

... input from application
SEQ
... go to application cursor position
... output text
... update cursor position

Again the editor helps, because due to the similarity between the two branches,
only one need be entered, it can then be copied and edited.

4 System Integration

Once all three function blocks are entered, the system can be compiled and
tested. Were it a complex application, the individual processes would have
been separately tested, with test-data-generators, as per Technical Note 2.
This example, however is simple enough that the complete system can be
tested together.The modus operandi is first to run the program on a single
transputer, either the development system or an external evaluation board,
and then to adapt it for the target system. To adapt this program to run on
3 transputers is mechanical - one simply exchanges the PAR for a PLACED
PAR, add PROCESSOR statements, assign the channel names to particular
links using PLACE ... AT, and make each PROC separately compiled.

... SC keyboard.handler

... SC screen.handler

... SC application

CHAN OF INT keyboard, screen, echo, app.in, app.out:

9

PLACED PAR
PROCESSOR 0 T4
PLACE keyboard AT link0in:
PLACE echo AT linklout:
PLACE app.in AT link2out:

keyboard.handler(keyboard, app.in, echo)

PROCESSOR 1 T4
PLACE screen AT link0out:
PLACE echo AT linklin:
PLACE app.out AT link2in:

screen.handler(screen, app.out, echo)

PROCESSOR 2 T4
PLACE app.in AT link0in:
PLACE app.out AT linklout:

application(app.in, app.out)

However, in a more general system, if my advice was heeded, there are more
logical processes than physical processors. The allocation must be done by
the programmer considering three factors:

1. The connectivity - taking account of the number of physical links on
each transputer.

2. The processor loading - the system will probably run at the speed of
the most loaded processor.

3. The size of program on each processor, with regard to both internal
memory (which is faster) and total memory provided.

Once the decision is taken, it is simply an additional box drawn on the
diagram to map our example onto 2 processors.

In this case there is a little juggling to be done to ensure that the code for
each processor is a single separately compiled unit.

... SC keyboard.and.screen.handler

... SC application

CHAN OF INT keyboard, screen, app.in, app.out:

PLACED PAR
PROCESSOR 0 T4

10

PLACE keyboard AT link0in:
PLACE screen AT link0out:
PLACE app.in AT linklout:
PLACE app.out AT linklin:

keyboard.and.screen.handler(keyboard, screen, app.in, app.out)

PROCESSOR 1 T4
PLACE app.in AT link0in:
PLACE app.out AT link0out:

application(app.in, app.out)

For the multi transputer system, an additional operation is performed after
the compilation known as configuring. This creates a code file that can be
loaded into a network of transputers. It includes the routing information for
the code, derived from the PROCESSOR and PLACE AT statements. The
target system can then be loaded with a single keystroke, and live testing
can begin - the multi processor concurrent program is running.

5 Conclusions

Concurrent programming is very simple, and errors easily avoided, using
OCCAM, provided the programmer is willing to adapt his style appropri-
ately. Specification, design and programming become a smooth flow of work
using the same tools on the same text, which becomes progressively more
detailed. The process and channel diagram is essential in top down design,
and at the lower levels, a formalised approach to design, using the folds
where a COBOL programmer might have used flow charts allows on-screen
design and rapid, error free programming.

11

	1 Structuring the System
	2 System Topology
	3 System Design - the functional blocks
	4 System Integration
	5 Conclusions

