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Abstract

The Inmos transputer family is a range of system components each of which
combines processing, memory and interconnect in a single VLSI chip. The
latest addition to this family, the IMS T800 transputer, incorporates a 64-
bit on-chip floating-point unit, and is capable of sustaining 2.25 MFlops.
The device also incorporates a number of other improvements over previous
transputers, such as increased communication throughput, 4 kbytes of on-
chip memory and instructions to support high-resolution colour graphics.
One interesting aspect of the design of the IMS T800 floating point unit is
the extensive use of formal methods.

1 Introduction

The Inmos transputer family is a range of system components each of which
combines processing, memory and interconnect in a single VLSI chip. The
first member of the family, the IMS T414 32-bit transputer [Inmos 84], was
introduced in September 1985, and has enabled concurrency to be applied
in a wide variety of applications such as simulation, robot control, image
synthesis, and digital signal processing. These numerically intensive ap-
plications can exploit large arrays of transputers; the system performance
depending on the number of transputers, the speed of inter-transputer com-
munication and the floating point performance of each transputer.

The latest addition to the Inmos transputer family, the IMS T800, can in-
crease the performance of such systems by offering greatly improved floating-
point and communication performance. The IMS T800-20, available in the
second half of 1987, is capable of sustaining over one and a half million
floating point operations per second; the IMS T800-30, available in the sec-
ond half of 1988, is capable of sustaining over two and a quarter million
floating point operations per second. The comparative figure for the IMS
T414 transputer is somewhat less than one hundred thousand floating point
operations per second.

The IMS T800 is pin-compatible with, and retains all the capabilities of, the
established IMS T414 transputer. In addition, the IMS T800 incorporates
an on-chip floating point unit, novel instructions to support graphics, and
twice the on-chip RAM of the IMS T414.

To minimise development time and risk, the design of the IMS T800 employs
many of the component modules used in the IMS T414. The design of the
floating point unit makes extensive use of formal techniques, to ensure that
each floating point operation produces the correct result as specified by the
IEEE 754 floating point standard [IEEE].
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The design of the IMS T800 forms part of the P1085 European ESPRIT
parallel computer architecture project [Harp]. The goal of this project is
to develop a low-cost, high performance supercomputer, based on reconfig-
urable nodes of transputers. The intention is that single nodes (typically
of 20 or so transputers) would be used as powerful workstations, and that
up to 64 nodes could be connected together, offering a machine with a per-
formance greatly in excess of one giga-flop. Within the project software is
being developed for applications in physics, engineering, CAD, CAM, and
image processing.

2 The transputer: basic architecture and concepts

2.1 A programmable device

The transputer is a component designed to exploit the potential of VLSI.
This technology allows large numbers of identical devices to be manufactured
cheaply. For this reason, it is attractive to implement a concurrent system
using a number of identical components, each of which is customised by
an appropriate program. The transputer is, therefore, a VLSI device with
a processor, memory to store the program executed by the processor, and
communication links for direct connection to other transputers. Transputer
systems can be designed and programmed using occam (see appendix) which
allows an application to be described as a collection of processes which
operate concurrently and communicate through channels. The transputer
can therefore be used as a building block for concurrent processing systems,
with occam as the associated design formalism.

2.2 Processor and memory on a single chip

One important property of VLSI technology is that communication between
devices is very much slower than communication within a device. In a
computer, almost every operation that the processor performs involves the
use of memory. For this reason a transputer includes both processor and
memory in the same integrated circuit device.

2.3 Serial communication between transputers

In any system constructed from integrated circuit devices, much of the phys-
ical bulk arises from connections between devices. The size of the package
for an integrated circuit is determined more by the number of connection
pins than by the size of the device itself. In addition, connections between
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devices provided by paths on a circuit board consume a considerable amount
of space.

The speed of communication between electronic devices is optimised by the
use of one-directional signal wires, each connecting two devices. If many
devices are connected by a shared bus, electrical problems of driving the
bus require that the speed is reduced. Also, additional control logic and
wiring are required to control sharing of the bus.

To provide maximum speed with minimal wiring, the transputer uses point-
to-point serial communication links for direct connection to other transput-
ers. The protocols used on the transputer links are discussed later.

2.4 Simplified processor with micro-coded scheduler

The most effective Implementation of simple programs by a programmable
computer is provided by a sequential processor. Consequently, the trans-
puter has a fairly conventional microcoded processor. There is a small core
of about 32 instructions which are used to implement simple sequential pro-
grams. In addition there are other, more specialised groups of instructions
which provide facilities such as long arithmetic and process scheduling.

As a process executed by a transputer may itself consist of a number of
concurrent processes the transputer has to support the occam programming
model internally. The transputer, therefore, has a microcoded scheduler
which shares the processor time between the concurrent processes. The
scheduler provides two priority levels; any high priority process which can
run will do so in preference to any low priority process.

2.5 Transputer products

The first transputer to become available was the Inmos IMS T414. This has
a 32-bit processor, 2 kbytes of fast on-chip memory, a 32-bit external memory
interface and 4 links for connection to other transputers. The current fastest
available version of this product, the IMS T414-20, has a 50 nS internal cycle
time, and achieves about 10 MIPS on sequential programs. The second
transputer to become available was the IMS T212; this is very similar to the
IMS T414 but has a 16-bit processor and 16-bit external memory interface.
The remaining transputer in the family is the IMS M212 disk processor.
This contains a 16-bit processor, RAM, ROM, 2 inter-transputer links and
special hardware to control both winchester and floppy disks.

In addition the transputer family includes a number of transputer link re-
lated products. There are the ’link adaptors’ which convert between hand-
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shaken 8-bit parallel data and Inmos link bit-serial data. These allow trans-
puters to be connected to conventional, bus-based systems, and also allow
conventional microprocessors to use transputer links as a system intercon-
nect. In addition there is the IMS C004, which is a link exchange.

3 IMS T800 Architecture

The IMS T800, with its on-chip floating point unit, is only 20% larger in area
than the IMS T414. The small size and high performance come from a design
which takes careful note of silicon economics. This contrasts starkly with
conventional co-processors, where the floating point unit typically occupies
more area than a complete micro-processor, and requires a second chip (or
in the case of the Weitek 1167 floating point processor for the Intel 80386,
second, third and fourth chips).

The architecture of the IMS T800 is similar to that of the IMS T414. How-
ever, in addition to the memory, links, central processing unit (CPU), and
external memory interface, there is a micro-coded floating point unit (FPU)
which operates concurrently with and under the control of the CPU. The
block diagrams below indicate the way in which the major blocks of the IMS
T800 and IMS T414 are interconnected.

Figure 1: Major blocks

The CPU of the IMS T800, just like that of the IMS T414, contains three
registers (A, B and C) used for integer and address arithmetic, which form
a hardware stack. Loading a value into the stack pushes B into C, and
A into B, before loading A. Storing a value from A pops B into A and C
into B. In addition there is an O register which is used in the formation of
instruction operands. Similarly, the FPU includes a three register floating-
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point evaluation stack, containing the AF, BF, and CF registers. When
values are loaded onto, or stored from the stack the AF, BF and CF registers
push and pop in the same way as the A, B and C registers.

The addresses of floating point values are formed on the CPU stack, and
values are transferred between the addressed memory locations and the FPU
stack under the control of the CPU. As the CPU stack is used only to
hold the addresses of floating point values, the wordlength of the CPU is
independent of that of the FPU. Consequently, it would be possible to use
the same FPU together with, for example, a 16 bit CPU such as that used
on the IMS T212 transputer.

The IMS T800, like the IMS T414, operates at two priority levels. The
FPU register stack is duplicated so that when the IMS T800 switches from
low to high priority none of the state in the floating point unit is written
to memory. This results in a worst-case interrupt response of only 2.5 µS
(-30), or 3.7 µS (-20). Furthermore, the duplication of the register stack
enables floating point arithmetic to be used in an interrupt routine without
any performance penalty.

3.1 Instruction encoding

All transputers share the same basic instruction set. It contains a small
number of instructions, all with the same format, chosen to give a compact
representation of the operations most frequently occuring in programs. Each
instruction consists of a single byte divided into two four bit parts.

Figure 2: Instructionbyte

The four most significant bits are a function code, and the four least signifi-
cant bits are a data value. The sixteen functions include loads, stores, jumps
and calls and enable the most common instructions to be represented in a
single byte. As this encoding permits only 4 bits of operand per instruction
two of the function codes (prefix and negative prefix) are used to allow the
data part of any instruction to be extended in length. Another of the sixteen
functions (operate) treats its data portion as an operation on values held in
the processor registers. This allows up to 16 such operations to be encoded
in a single byte instruction.

All instructions are executed by loading the four data bits into the least sig-
nificant four bits of the O register, which is then used as the the instruction’s
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operand. All instructions except the prefix instructions end by clearing the
O register, ready for the next instruction.

Figure 3: Instruction and O register

The prefix instruction loads its four data bits into the O register, and then
shifts the O register up four places. The negative prefix instruction is sim-
ilar, except that it complements the operand register before shifting it up.
Consequently operands can be extended to any length up to the length of
the operand register by a sequence of prefix instructions.

The prefix functions can be used to extend the operand of an operate instruc-
tion just like any other. The instruction representation therefore provides
for an indefinite number of operations. The encoding of operations is cho-
sen so that the most common operations, such as add and greater than, are
represented without a prefix instruction.

The IMS T800 has additional instructions which load into, operate on, and
store from, the floating point register stack. It also contains new instructions
which support colour graphics, pattern recognition and the implementation
of error correcting codes. These instructions have been added whilst retain-
ing the existing IMS T414 instruction set. This has been possible because
of the extensible instruction encoding used in transputers.

3.2 Floating point instructions

The core of the floating point instruction set was established fairly early in
the design of the IMS T800. This core includes simple load, store and arith-
metic instructions. Examination of statistics derived from FORTRAN pro-
grams suggested that the addition of some more complex instructions would
improve performance and code density. Proposed changes to the instruction
set were assessed by examining their effect on a number of numerical pro-
grams. For each proposed instruction set, a compiler was constructed, the
programs compiled with it, and the resulting code then run on a simulator.
The resulting instruction set is now described.

In the IMS T800 operands are transferred between the transputer’s mem-
ory and the floating point evaluation stack by means of floating point load
and store instructions. There are two groups of such instructions, one for
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single length numbers, one for double length. In the description of the load
and store instructions which follow only the double length instructions are
described. However, there are single length instructions which correspond
with each of the double length instructions.

The address of a floating point operand is computed on the CPU’s stack
and the operand is then loaded, from the addressed memory location, onto
the FPU’s stack. Twc new addressing operations have been added to the
CPU to improve access to double-word (64-bit real and integer) values. The
first of these, word subscript double, is used to index double-word values.
The second of these, duplicate, is used when the CPU has to manipulate the
addresses of both the more significant and less significant words of a double
word object.

Operands in the floating point stack are tagged with their length. The
operand’s tag will be set when the operand is loaded or is computed. The
tags allow the number of instructions needed for floating point operations to
be reduced; there is no need, for example, to have both floating add single
and floating add double instructions; a single floating add will suffice.

There are two instructions to load double length floating point numbers into
the floating point evaluation stack from the transputer’s memory. These are
floating load non-local double and floating load indexed double. The floating
load non-local double instruction loads the value pointed to by the A register
of the CPU’s stack. The floating load indexed double instruction has the
same effect as the instruction word subscript double followed by floating
load non-local double. The value in the B register is used as a double-word
offset from the base pointer in the A register and the selected double length
value is loaded into the AF register. The diagram below shows the effect of
executing a floating load indexed double instruction.

Figure 4: floating load indexed double

The effect of the floating load indexed instructions can be achieved by a
sequence of just two instructions. However, their presence does decrease
code size; the floating load indexed double instruction is encoded in only
two bytes, whereas the equivalent instruction sequence would require four
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bytes. This appears to be a worthwhile optimisation as this instruction
sequence would be compiled for every array access.

However, there are just two floating store instructions, floating store non-
local single and floating store nonlocal double. These both store the value
in the AF register into the location pointed to by the A register. There are
no floating store indexed instructions. This may be surprising given that
the floating load indexed instructions exist; however, in any program there
are less store operations than load operations and, therefore, there is less to
be gained by optimising store (write to memory) operations than optimising
load (read from memory) operations.

The common floating point operations of addition, subtraction, multiplica-
tion and division are provided by single instructions. These instructions
operate on values in the AF and BF registers, storing the result of the oper-
ation into the AF register and popping the CF register into the BF register.
Similarly, the floating point comparison operations, floating point greater
than and floating point equality, compare values stored in the AF and BF
registers; however, they load the result of the comparison into the A register
of the CPU.

As an example, consider the following fragment of occam which sets a
boolean variable converged to indicate whether the value of the 32-bit float-
ing point variable absolute.error is less than the value of the variable epsilon.

BOOL converged:
REAL32 absolute.error, epsilon
SEQ
...
converged := absolute.error < epsilon
...

The compiled code for this fragment would be:

load local pointer epsilon address of epsilon
floating load non-local single load value into FPU
load local pointer absolute.error address of absolute. error
floating load non-local single load value into FPU
floating greater than result pushed onto CPU stack
store local converged store in converged

There are four instructions which combine loading and operating. These
exist, as do the load indexed instructions, to improve code compactness.
The effect of the floating load and add single instruction is just the same
as the sequence floating load non-local single followed by floating add. The
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remaining instructions complete the set needed to load and add or multiply
single and double length values. The choice of optimising only addition
and multiplication in this way reflects the high usage of these operators in
programs.

3.3 Optimising use of the stack

The depth of the register stacks in the CPU and FPU is carefully chosen.
Floating point expressions commonly have embedded address calculations,
as the operands of floating point operators are often elements of one dimen-
sional or two dimensional arrays. The CPU stack is deep enough to allow
most integer calculations and address calculations to be performed within it.
Similarly, the depth of the FPU stack allows most floating point expressions
to be evaluated within it, employing the CPU stack to form addresses for
the operands.

No hardware is used to deal with stack overflow. A compiler can easily ex-
amine expressions and introduce temporary variables in memory to avoid
stack overflow. The number of such temporary variables can be minimised
by careful choice of the evaluation order; an algorithm to perform this op-
timisation is given in [Inmos ’87]. The algorithm, already used to optimise
the use of the integer stack of the IMS T414, is also used for the main CPU
of the IMS T800.

3.4 Concurrent operation of FPU and CPU

In the IMS T800 the FPU operates concurrently with the CPU. This means
that it is possible to perform an address calculation in the CPU whilst the
FPU performs a floating point calculation. This can lead to significant
performance improvements in real applications which access arrays heavily.
This aspect of the IMS T800’s performance was carefully assessed, partly
through examination of the ’Livermore Loops’ (see appendix and [McMa-
han]). These are a collection of small kernels designed to represent the types
of calculation performed on super-computers. They are of interest because
they contain constructs which occur in real programs which are not rep-
resented in such programs as the Whetstone benchmark (see below). In
particular, they contain accesses to two and three-dimensional arrays, oper-
ations where the concurrency within the IMS T800 is used to good effect.
In some cases the compiler is able to choose the order of performing address
calculations so as to maximise overlapping; this involves a modification of
the algorithm mentioned earlier.

As a simple example of overlapping consider the implementation of Liver-
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more Loop 7 (see appendix). The IMS T800-30 achieves a speed of 2.25
Mflops on this benchmark; for comparison the IMS T800-20 achieves 1.5
Mflops, the T414-20 achieves 0.09 Mflops and a VAX 11/780 (with fpa)
achieves 0.54 Mflops. The occam program for loop 7 is as follows:

-- LIVERMORE LOOP 7
SEQ k = 0 FOR n
x[k] := u[k] + ((( r*(z[k] + (r*y[k]))) +

(t*((u[k+3] + (r*(u[k+2] + (r*u[k+1]))))))) +
(t*((u[k+6] + (r*(u[k+5] + (r*u[k+4])))))))

The following explains how this program fragment is executed on the IMS
T800. The explanation assumes that the floating point variable r and the
floating point arrays (x, y, z, and u) are located in a global data area and
must be accessed via a a static link, but that the loop count k, is in the
process workspace. A compiler will generate code which first evaluates the
subexpression z[k] + (r*y [k]).

The first stage in the computation of this is to load the value y[k]. The code
to do this is:

load local k
load local static.link
load non-local pointer y
floating load indexed single

The first load pushes the subscript k onto the CPU stack. The next load
pushes the static link onto the CPU stack; the static link will contain a
pointer to the base of the area of memory which contains the floating point
variables and arrays. The load non-local pointer instruction generates a
pointer to the yth element of that area of memory; this will be the base of
the array y. The CPU stack now has its A register containing a pointer to
the base of the array y, and its B register containing the subscript, k. The
floating load indexed single instruction pushes the single length floating
point number stored in y[k] onto the FPU stack.

The next segment of code pushes the value r onto the floating point stack
and multiplies the number r in AF by y[k] in BF.

load local static.link
load non-local pointer r
floating load and multiply single

Although the floating point multiplication takes several cycles to complete,
the CPU is able to continue executing instructions whilst the FPU performs
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the multiplication. Thus the whole of the next segment of code can be
executed whilst the multiplication is being performed.

load local k
load local static.link
load non-local pointer z
word subscript

This code is similar to the first section of code illustrated above. However,
it explicitly executes a word subscript to compute the address of z[k]; this
allows the code following to use a floating load and add single instruction
which saves 2 bytes of code.

Finally, the value z[k] is pushed onto the floating point stack and added to
the previously computed subexpression r*y[k]. It is not until the value z[k]
is loaded that the CPU needs to synchronise with the FPU.

The computation of the remainder of the expression proceeds in the same
way, and the FPU never has to wait for the CPU to perform an address
calculation.

The overlapping of address calculation with floating point computation is
effective even when access is being made to multi-dimensional arrays. The
IMS T800 retains the fast multiplication instruction (produce of the IMS
T414 which is used for the multiplication implicit in multi-dimensional array
access. This instruction executes in a time dependent on the highest bit set
in its second operand.

For example, in the execution of the following fragment of occam

[20][20]REAL32 A:
SEQ
...
B := A[I,J] + (C / D)
...

loading the element A[I,J] involves computing the offset of the element from
the base of the array A. The transputer compiler would generate the follow-
ing code for this computation

load local I load I onto CPU stack
load constant 20 load 20 onto CPU stack
product multiply I by 20
load local J load J onto CPU
add add J to I * 20
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In this case the product instruction will execute in only 8 cycles (267 nS
(-30), or 400 nS (-20)) and the whole address calculation will take 19 cycles
which would be overlapped with the execution of the division C / D. Effec-
tively, the overlapping allows the array accessing to be performed in only
one cycle.

4 Floating point unit design

In designing a concurrent systems component such as the IMS T800, it is
important to maximise the performance obtained from a given area of silicon;
many components can be used together to deliver more performance. This
contrasts with the design of a conventional co-processor where the aim is
to maximise the performance of a single processor by the use of a large
area of silicon. (Interestingly, however, the IMS T800-20 achieves similar
performance to the 80386 with its Weitek 1167 co-processor chip set). As a
result, in designing the IMS T800, the performance benefits of silicon hungry
devices such as barrel shifters and flash multipliers were carefully examined.

A flash multiplier is too large to fit on chip together with the processor,
and would therefore necessitate the use of a separate co-processor chip. The
introduction of a co-processor interface to a separate chip slows down the
rate at which operands can be transferred to and from the floating point
unit. Higher performance can, therefore, be obtained from a slow multiplier
on the same chip as the processor than from a fast one on a separate chip.
This leads to an important conclusion: a separate co-processor chip is not
appropriate for scalar floating point arithmetic. A separate co-processor
would be effective where a large amount of work can be handed to the
co-processor by transferring a small amount of information; for example a
vector co-processor would require only the addresses of its vector operands
to be transferred via the co-processor interface.

It turns out that a flash multiplier also operates much more quickly than is
necessary. Only a pipelined vector processor can deliver operands at a rate
consistent with the use of such devices. In fact, any useful floating point
calculation involves more operand accesses than operations. As an example
consider the assignment y[i] := y[i] + (t * x[i]) which constitutes the core
of the LINPACK floating point benchmark. To perform this it is necessary
to load three operands, perform two operations and to store a result. If
we assume that it takes twice as long to perform a floating point operation
as to load or store a floating point number then the execution time of this
example would be evenly split between operand access time and operation
time. This means that there would be at most a factor of two available in
performance improvement from the use of an infinitely fast floating point
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unit!

Unlike a flash multiplier, a fast normalising shifter is important for fast
floating point operation. When implementing IEEE arithmetic it may be
necessary to perform a long shift on every floating point operation and un-
less a fast shifter is incorporated into the floating point unit the maximum
operation time can become very long. Fortunately, unlike a flash multiplier,
it is possible to design, a fast shifter in a reasonable area of silicon. The
shifter used in the IMS T800 is designed to perform a shift in a single cycle
and to normalise in two cycles.

Consequently, the floating point until of the IMS T800 contains a fast nor-
malising shifter but not a flash multiplier. However there is a certain amount
of logic devoted to multiplication and division. Multiplication is performed
three-bits per cycle, and division is performed two-bits per cycle. This gives
rise to a single length multiplication time of 13 cycles (367 nS (-30), or 550
nS (-20)) and a double length divide time of 34 cycles (1.07 µS (-30), or 1.6
µS (-20)).

One other aspect of floating point arithmetic which was carefully exam-
ined was the implementation of standard scientific functions (sqrt, sin, etc).
Trigonometric functions are generally implemented by algorithms which
make use of an approximation which is only accurate over a small part
of the function’s domain. This is possible because mathematical identities
enable the full function to be computed from the partial approximation.
Algorithms differ in the way in which they compute the approximation; two
methods of computing the approximation were considered during the design
of the IMS T800.

The first method is called CORDIC which was developed for hardware im-
plementation and is used in some floating point co-processor chips such as
the i8087. This requires the addition of significant quantities of hardware
into the datapath and the storage of large look-up tables. Even with this
hardware the best performance which could be achieved would be to gen-
erate one bit of result every four cycles, resulting in a minimum evaluation
time for the reduced function of about 230 cycles (double length).

The second method is polynomial approximation. This requires no addi-
tional hardware in the FPU. The evaluation time will vary from function
to function, but for the sin function only about twice the number of cycles
required by CORDIC would be used since the implementation of multipli-
cation generates three bits of product every one cycle.

In practice we are interested in the evaluation time for the function proper,
not just the reduced function. Once the time for argument reduction and
function generation have been added to the time for the evaluation of the
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partial function it is dear that there is no possibility of a CORDIC based im-
plementation being even twice as fast as polynomial based implementation.
For this reason the IMS T800 contains no special support for trigonometric
function evaluation.

This comparison can also be extended to show that if a processor with even
faster trigonometric function evaluation were required it should be achieved
by increasing the speed of the processor’s multiplication. This would have
the additional benefit that it would increase performance on virtually all
applications, not just those which make heavy use of trigonometric functions.

The situation is rather different with regard to the square root function.
Here the IEEE standard requires that the result is produced correct to the
last bit and this is not easy to achieve by simple polynomial evaluation. Fur-
thermore it only requires a small amount of additional hardware to perform
square root in hardware and this has been done in the IMS T800.

The block diagram below illustrates the physical layout of the floating point
unit.

Figure 5: Block diagram of floating point unit

The datapaths contain registers and shift paths. The fraction datapath is
59 bits wide, and the exponent data path is 13 bits wide. The normalising
shifter interfaces to both the fraction data path and the exponent datapath.
This is because the data to be shifted will come from the fraction datapath
whilst the magnitude of the shift is associated with the exponent datap-
ath. One further interesting aspect of the design is the micro-code ROM.
Although the diagram shows two ROMs, they are both part of the same
logical ROM. This has been split in two so that control signals do not need
to be bussed through the datapaths.

5 Floating point performance

The IMS T414 has microcode support for 32-bit floating point arithmetic
which gives it performance comparable with the current generation of float-
ing point co-processors. It achieves an operation time of about 10 microsec-
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onds on single length IEEE 754 floating point numbers. The IMS T800-20
betters the floating point operation speed of the IMS T414 by more than an
order of magnitude; its operation times are shown below

IMS T800-30 IMS T800-20 IMS T414-20
single double single double single double

operation
add 233ns 233ns 350ns 350ns 11.5µs 28.3µs
subtract 233ns 233ns 350ns 350ns 11.5µs 28.3µs
multiply 367ns 667ns 550ns 1000ns 10.0µs 38.0µs
divide 567ns 1067ns 850ns 1600ns 12.3µs 55.8µs

The operation time is not a reliable measure of performance on real numeri-
cal programs. For this reason, floating point performance is often measured
by the Whetstone benchmark. The Whetstone benchmark provides a good
mix of floating point operations, and also includes procedure calls, array in-
dexing and transcendental functions. It is, in some sense, a ’typical’ scientific
program.

The performance of the IMS T414 and IMS T800 compared with other
processors as measured by the Whetstone benchmark is shown below:

Processor Whetstones/second
single length

Intel 80286/80287 8 MHz 300K
IMS T414-20 20 MHz 663K
NS 32332-32081 15 MHz 728K
MC 68020/68881 16/12 MHz SUN 3 755K
VAX 11/780 FPA UNIX 4.3 BSD 1083K
IMS T800-20 20 MHz 4000K
IMS T800-30 30 MHz 6000K

This table shows that although the IMS T414 has an operation time three
times slower than the MC68881 co-processor it performs only 25% worse
than the MC68020 + MC68881 co-processor (as measured by the Whet-
stone benchmark). This is because the speed of evaluating a floating point
expression depends on two factors; the speed at which operands are trans-
ferred to and from the floating point unit and the speed of the unit itself. By
careful balancing of these the single chip IMS T800-20 achieves more than
five times the Whetstone performance of the MC68020/MC68881 combina-
tion.

Another important measure is the performance obtained from a given area of
silicon. For example, four IMS T800-30 chips occupy an area similar to the
i80386 together with the Weitek 1167 chip set, and on single length floating
point will deliver 6 times the performance in any concurrent application. In
terms of circuit board area, the effect is even more dramatic; the IMS T800
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requires negligible support circuitry and can even be used without external
memory.

6 Formal methods ensure correctness and quick
design

One of the concerns of engineers designing microprocessors into life-critical
systems is the correctness of the implementation of those microprocessors.
The complexity of a floating point unit is such that It is impossible to
validate by exhaustive testing. The approach which INMOS has taken is
to make use of the most advanced formal methods to ensure the correct
implementation of the IEEE 754 standard for floating point arithmetic. This
work has been undertaken in co-operation with the Programming Research
Group at Oxford University and has made use of the formal semantics of
the occam programming language. Inmos has found that the use of formal
methods in complex designs greatly decreases design time as well as ensuring
correctness.

The specification language Z (see appendix) was used extensively during the
design of the IMS T800, both to express the IEEE 754 standard mathemati-
cally and to specify instructions precisely. The first stage of implementation
was to write a software package in the occam language and to prove that it
met the specification. (This package is used to provide floating point arith-
metic for various occam implementations, including that for the IMS T414).
Using an interactive program transformation system, the occam package was
then transformed into the microcode for the IMS T800.

This design process is illustrated using one instruction from the sequence of
instructions executed by the IMS T800 to perform floating point to integer
conversions. This instruction occurs in the middle of the sequence, after
the floating point number has been rounded into an integer in floating point
format. The instruction checks that the rounded value lies within the range
of numbers representable as an integer and, if not, sets the error flag.

6.1 Z specification

The precise specification of range checking is expressed in Z as:

Floating_Check-Integer-Range
Areg, Areg’ : Floating-Point-Register
Error_Flag, Error_Flag’ : bool
fv Z
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Areg’ = Areg
fv Areg [MinInt,MaxInt] => Error_Flag’ = Error_Flag
fv Areg [MinInt,MaxInt] => Error_Flag’ = true

In this specification the primed variables Areg’ and Error Flag’ denote the
values of registers after the operation, and the unprimed variables denote
the values before. Maxint and Minint are constants defined by the integer
format and fv is a function that returns the value of a floating point reg-
ister. The predicates state that the operation is only defined when Areg
contains an ”integer” value, that Areg is unchanged by the operation and
that Error Flag is set if Areg lies outside the storable integer range and is
unchanged otherwise.

6.2 High level occam implementation

The high level occam implementation is as shown below. Its correctness
depends on proving two assertions. Firstly, that there is an exponent,
LargestINTExp, such that every floating point register with a smaller ex-
ponent lies in [Minlnt,Maxlnt], and secondly, that a register with a negative
sign bit, an exponent equal to LargestINTExp and a fraction with only the
implied msb set, has an fV of Minint.

IF
Areg.Exp < LargestINTExp
SKIP

(Areg.Sign = NEGATIVE) AND (Areg.Exp = LargestINTExp) AND (Areg.Frac = MSBit)
SKIP

TRUE
SetError (ErrorFlag)

In the above code, the occam variable Areg.Exp is used to represent the
contents of the exponential part of the FA register of the FPU. Similarly,
Areg. Sign and Areg.Frac represent the sign-bit and fraction part. This
code first checks to see if the exponent is smaller than LargestINTExp; if it
is then the value in the FA register is in range and no further action is to be
performed. Otherwise, the code checks if the value in the FA register has a
negative sign bit, an exponent equal to LargestINTExp and a fraction with
only the most significant bit set; if it does then, again, no further action is
performed. Otherwise, the value in the FA register is out of range and the
error flag is set.
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6.3 Low level occam Implementation

The program above can be transformed using the laws of occam. First
the condition on Areg. Sign is pulled to the outside. Then the program
is transformed into processes and variables defined in terms of operations
found in the floating point microcode. This involves the use of register and
bus operations to perform the comparisons together with explicit tests of
the resulting flags. At this stage the processes are also grouped into the
sequences of operations that form each micro-instruction. For brevity the
negative case is omitted in this illustration:

SEQ
AregSignNEGATIVE := (Areg.Sign = NEGATIVE)
ExpZbus := (Areg.Exp - LargestINTExp)
ExpZbusNeg := ExpZbus < 0
IF
AregSignNEGATIVE
... negative case

NOT AregSignNEGATIVE
IF
ExpZbusNeg
SKIP

NOT ExpZbusNeg
SetError(ErrorFlag)

6.4 Flattened low level implementation

The low level occam implementation is then transformed into a ”flattened”
form that makes explicit use of a micro-instruction pointer. This form uses a
WHILE loop and explicit testing of the next instruction register (NextInst)
to simulate the sequencing of the micro-code. If the resulting micro-code
involves no loops it is possible to transform it back into the original form
mechanically. In the program below the SetError (ErrorFlag) process has
been moved into a separate micro-instruction, OutOfRange.

INT NextInst :
SEQ
NextInst := FloatingPointCheckIntegerRange
WHILE NextInst <> NOWHERE
IF
NextInst = FloatingPointCheckLntegerRange
SEQ
AregSignNEGATIVE := (Areg.Sign = NEGATIVE)
ExpZbus := (Areg.Exp - LargestINTExp)
ExpZbusNeg := ExpZbus < 0
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IF
AregSignNEGATIVE
... negative case

NOT AregSignNEGATIVE
IF
ExpZbusNeg
NextInst := NOWHERE

NOT ExpZbusNeg
NextInst := OutofRange

NextInst = OutofRange
SEQ
SetError(ErrorFlag)
NextInst := NOWHERE

... negative case micro instructions

6.5 Microcode

The flattened occam code is then transformed into micro-code assembler.
This is done by a pattern matching and textual substitution program. With-
out the use of mechanical assistance this is a very laborious and error-prone
task. The program below shows the micro-code which results from translat-
ing the FloatingPointCheckIntegerRange micro-instruction of the previous
example.

FloatingPointCheckIntegerRange:
ConstantLargestINTExp
ExpXbusFromAreg ExpYbusFromConstant
ExpZbusFromXbusMinusYbus

GOTO Cond1FromAregSign ->
(Cond0FromExpZbusNeg -> (... , ...),
Cond0FromExpZbusNeg -> (NOWHERE,OutofRange))

6.6 Summary

The use of the high-level specification language Z provides short and precise
specifications of instructions, and, being mathematically based, avoids the
problems of interpreting natural language specifications. This specification
can be implemented fairly naturally, at a high level, in occam. This im-
plementation can be proved correct, using occam’s denotational semantics.
The algebraic semantics of occam then allow the occam to be transformed
into a form that corresponds to the micro-code.

Z specification
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| 1
V
high level occam
| 2
V
low level occam "tree code"
| 3
V
low level occam "flat code"
| 4
V
micro-code

Each of steps 1 to 3 can be proven correct using the formal semantics of
occam. The translation and compilation of step 4 could also be proved cor-
rect. In practice, both steps 1 and 2 were performed backwards; that is, an
implementation was written and then transformed back into the previous
specification. This process made use of an occam source transformation sys-
tem, written in ML and implemented by the Programming Research Group
at Oxford University. Steps 3 and 4 are performed semi-mechanically by
programs. Although these have not been formally proved, their use is more
reliable than doing the same work by hand; computers do not mistakenly
miss out lines of micro-code due to boredom!

7 Communication links

A link between two transputers is implemented by connecting a link interface
on one transputer to a link interface on the other transputer by two one-
directional signal wires, along which data is transmitted serially. The two
wires provide two occam channels, one in each direction. This requires a
simple protocol to multiplex data and control information. Messages are
transmitted as a sequence of bytes, each of which must be acknowledged
before the next is transmitted. A byte of data is transmitted as a start bit
followed by a one bit followed by eight bits of data followed by a stop bit.
An acknowledgement is transmitted as a start bit followed by a stop bit. An
acknowledgement indicates both that a process was able to receive the data
byte and that it is able to buffer another byte.

The protocol permits an acknowledgement to be generated as soon as the
receiver has identified a data packet. In this way the acknowledgement can
be received by the transmitter before all of the data packet has been trans-
mitted and the transmitter can transmit the next data packet immediately.
The IMS T414 transputer does not implement this overlapping and achieves
a data rate of 0.8 Mbytes per second using a link to transfer data in one di-
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Figure 6: Data & control

rection. However, by implementing the overlapping and including sufficient
buffering in the link hardware, the IMS T800 more than doubles this data
rate to 1.8 Mbytes per second in one direction, and achieves 2.4 Mbytes per
second when the link carries data in both directions. The diagram below
shows the signals that would be observed on the two link wires when a data
packet is overlapped with an acknowledgement.

Figure 7: Overlapped acknowledgement

8 Graphics capability

The ”bit-blt” operations of a conventional graphics processor no longer seem
appropriate in these days of byte (or greater) per pixel colour displays.
The fast block move of the IMS T414 make it suitable for use in graphics
applications using byte-per-pixel colour displays. Indeed, the IMS B007
colour graphics evaluation board uses it in such a manner.

The block move on the IMS T414 is designed to saturate the memory band-
width, moving any number of bytes from any byte boundary in memory to
any other byte boundary using the smallest possible number of word read
and write operations. Using the transputer’s internal memory the block
move sustains a transfer rate of 60 Mbytes per second (-30), or 40 Mbytes
per second (-20); using the fastest possible external memory the block move
sustains 20 Mbytes per second (-30) or 13.3 Mbytes per second (-20).

The IMS T800 extends this capability by incorporation of a two-dimensional
version of the block move which can move windows around a screen at
full memory bandwidth, and conditional versions of the same block move
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which can be used to place templates and text into windows. One of these
operations copies bytes from source to destination, writing only non-zero
bytes to the destination. A new object of any shape can therefore be drawn
on top of the current image. All of these instructions achieve the speed of
the simple IMS T414 move instruction, enabling a 1 million pixel screen to
be drawn 13 times per second.

8.1 Instruction description

The three new instructions are concerned with moving a two-dimensional
block of data from source to destination. The instructions differ in how the
source is used to modify the destination. Unlike the conventional ”bit-bit”
instruction, it is never necessary to read the destination data.

The instructions are described in occam:

PROC Move2d ([][]BYTE Source, sx, sy,
[][]BYTE Dest, dx, dy,
width, length)

SEQ y = 0 FOR length
[Dest[y+dy] FROM dx FOR width] := [Source[y+sy] FROM sx FOR width]

This moves a block of size width x length which starts at byte Source [By]
[sx] to the block starting at byte Dest[dy][dx].

PROC Draw2d ([][]BYTE Source, sx, sy,
[][]BYTE Dest, dx, dy,
width, length)

BYTE temp:
SEQ line = 0 FOR length
SEQ point = 0 FOR width
SEQ
temp := Source[line+sy][point+sx]
IF
temp = 0(BYTE)
SKIP

TRUE
Dest[line+dy][point+dx] := temp

This moves a block of size width x length which starts at byte Source[sy][sx]
to the block starting at byte Dest[dy][dx]. However for every byte transferred
a check is made to see if it is zero. If this is the case then the byte is not
copied, and the destination remains unaltered.
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PROC Clip2d ([][]BYTE Source, sx, sy,
[][]BYTE Dest, dx, dy,
width, length)

BYTE temp:
SEQ line = 0 FOR length
SEQ point = 0 FOR width
SEQ
temp := Source[line+sy][point+sx]
IF
temp = 0(BYTE)
Dest[line+dy][point+dx] := temp

TRUE
SKIP

This moves a block of size width x length which starts at byte Source[sy][sx]
to the block starting at byte Dest[dy][dx]. However for every byte transferred
a check is made to see if it is zero. If this is the case then that byte is copied.

Draw2d and Clip2d are complementary and are used for the copying of
irregular shapes onto the screen and the creation of templates.

Like the transputer’s one dimensional block move, the Move2d, Draw2d and
Clip2d instructions move data from any byte address in memory to any
byte address using the smallest possible number of single word transfers.
When executing a Draw2d operation, data is written in whole words, and
hardware is used to suppress the generation of individual byte write signals
corresponding to zero bytes in the source. Further, the write cycle is omitted
completely if all bytes in the source word are found to be zero. Clip2d is
similarly implemented using the smallest number of word read and write
operations. Consequently, Draw2d and Clip2d normally operate faster than
simple moves.

Move2d, Draw2d and Clip2d are not restricted to operations on single byte
pixels. For example, 3 byte (24 bit) pixels can be treated in exactly the
same way as single byte pixels, with a zero pixel being represented by three
zero bytes, and non-zero pixels being represented by three non-zero pixels.
Pixels less than a byte can be implemented by omitting unnecessary bit
planes from the video memory. By regarding an image as a 2 dimensional
array of pixels, each of which is itself an array of bytes, it is possible to use
the same graphics software on systems with differing pixel sizes.

8.2 Drawing coloured text

Drawing proportional spaced text provides a simple example of the use of
the IMS T800 instructions. The font is stored in a two dimensional array
Font; the height of Font is the fixed character height, and the start of each
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character is defined by an array start. The textures of the character and its
background are selected from an array of textures; the textures providing a
range of colours or even stripes and tartans!

An occam procedure to perform such drawing is given below and the effect of
each stage in the drawing process is illustrated by the diagrams on the final
page of this document. First, (1) the texture for the character is selected
and copied to a temporary area and (2) the character in the font is used to
clip this texture to the appropriate shape. Then (3) the background texture
is selected and copied to the screen, and (4) the new character drawn on top
of it.

-- Draw character ch in texture F on background texture B
PROC DrawChar(VAL INT Ch, F, B)
SEQ
IF
(x + width[ch]) > screenwidth
SEQ
x := 0
y = y + height

(x + width[ch]) <= screenwidth
SKIP

[height][maxwidth]BYTE Temp :
SEQ
Move2d(Texture[F], 0, 0, Temp, 0, 0, width[ch], height)
Clip2d(Font[ch], start[ch], 0, Temp, 0, 0, width[ch], height)
Move2d(Texture[B], 0, 0, Screen, x, y, width[ch], height)
Draw2d(Temp, 0, 0, Screen, x, y, width[ch], height)
x := x + width[ch]

This procedure will fill a 1 million pixel screen with proportionally spaced
characters in about 1/6 second. Obviously, a simpler and faster version
could be used if the character colour or background colour was restricted.
The operation of this procedure is illustrated on the next page.

9 Conclusion

The IMS T800 floating point transputer provides a very high performance
building block for concurrent systems. The design of the IMS T800 demon-
strates that it is not desirable to use co-processors to achieve high perfor-
mance floating point capability. The careful consideration of silicon eco-
nomics has enabled the IMS T800 to incorporate a floating point unit, a
central processing unit, memory and a communication system in a single
device; it is a complete scientific computer on a single chip. For example,
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Figure 8: Draw character

the 4 kbytes of onchip memory allows the IMS T800 to be used, without
external memory, in a number of signal processing applications. The fact
that the floating-point performance of the IMS T800 exceeds its fixed-point
performance on multiply-accumulates removes the need to design algorithms
which use fixed-point arithmetic.

The IMS T800 forms the basis of the most powerful supercomputer in Eu-
rope, currently under construction at Edinburgh University. This will con-
tain 1,000 transputers operating on one giga-byte of main store and should
be operational by April 1988. Whilst this may seem to be a very large ma-
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chine, the continuing improvement in VLSI technology means that such a
machine will occupy only a few cubic feet in the early 1990s. Even today, us-
ing conventional packaging and printed circuit board technology, machines
built from the IMS T800-20 can achieve a ”performance density” of 1.5 Gflop
per cubic foot.
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B Occam

It is not possible to give a comprehensive description of occam in the space
available. However, the following overview explains the basic concepts of
the language and explains those details which are required in order to un-
derstand the examples in the paper.

The occam programming language was developed to allow concurrent, dis-
tributed, systems to be programmed. The emphasis is placed on distributed
because it was for this area that previous languages are unsuited. The oc-
cam language enables a system to be described as a collection of concurrent
processes, which communicate with each other and with peripheral devices
through channels. The concurrent processes do not communicate via shared
variables, and thus occam is a suitable language for programming systems
where there there is no store which is shared between processors in the
system.

occam programs are built from three primitive processes: v := e assign
expression e to variable v c ! e output expression e to channel c c ? v input
from channel c to variable v
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The primitive processes are combined to form constructs:

SEQuential components executed one after another PARallel components
executed together ALTernative component first ready is executed

A construct is itself a process, and may be used as a component of another
construct. The syntax of oCCam uses indentation to indicate program struc-
ture, thus the occam program below consists of two parallel processes. The
first process inputs from the channel source into next.problem. The sec-
ond process itself consists of two processes to be executed sequentially. The
first is an instance of the procedure compute.next.solution, and the second,
which is executed after the first has terminated, outputs solution onto chan-
nel result.

PAR
source ? next.problem
SEQ
compute.next.solution(this.problem, solution)
result ! solution

Conventional sequential programs can be expressed in occam with variables
and assignments, combined in sequential constructs. IF and WHILE con-
structs are also provided. The IF construct test a number of conditions in
sequence, when one is found to be true, the associated process is executed.
The example below shows how this might be used to compare two numbers,
a and b, and to record their order.

IF
a > b
order := gt

a < b
order := lt

TRUE
order := eq

Concurrent programs can be expressed with channels, inputs and outputs,
which are combined in parallel and alternative constructs.

Each occam channel provides a communication path between two concurrent
processes. Communication is synchronised and takes place when both the
inputting process and the outputting process are ready. The data to be
output is then copied from the outputting process to the inputting process,
and both processes continue.

An alternative process may be ready for input from any one of a number
of channels. In this case, the input is taken from the channel which is first
used for output by another process.

30



Although the first version of occam (as described in the occam Programming
Language) had only a single data type and only one dimensional arrays, the
version of the language used in this paper, occam 2, supports several data
types and multi-dimensional arrays. Arrays may be assigned, communicated
between processes and passed as parameters to procedures. occam permits
a sub-array of an array to be used as an array. For example, the following
program declares a 10 element arrays of integers, a, and then, in parallel
inputs to the first 5 elements of a from the channel c, and to the second 5
elements from the channel d. (Note that in occam the first element of an
array is element 0).

[10] INT a :
PAR
c ? [a FROM 0 FOR 5]
c ? [a FROM 5 FOR 5]

One further feature of occam which requires explanation is the replicated
constructor. The examples in the paper are all of replicated SEQs which have
a similar effect to a FOR loop in a conventional language. The replicated
SEQ

SEQ i = base FOR count
a[i] := i

is implemented as a loop and is equivalent to the following

SEQ
a[base] := base
a[base + 1] := base + 1
.....................
a[base + count - 1] := base + count - 1

C The ”Livermore Loops”

The Livermore Fortran Kernels [McMahon] (commonly known as the Liv-
ermore Loops) are a set of 24 computation kernels designed to measure
realistic floating-point performance on FORTRAN applications. They differ
from a number of other standard benchmark programs in that they do not
produce a single figure of merit, but a set of figures, one for each kernel.
They represent a useful source of information about the structure of sci-
entific programs, and as such, were studied during the design of the IMS
T800.
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Livermore Loop 7, mentioned in this paper, is an ”equation of state” frag-
ment. The FORTRAN code for this loop is

DO 7 k= 1,n
X(k)= U(k ) + R*( Z(k ) + R*Y(k )) +

. T*( U(k+3) + R*( U(k+2) + R*U(k+1)) +

. T*( U(k+6) + R*( U(k+5) + R*U(k+4))))
7 CONTINUE

The program in the paper is written in occam 2 and it is for this version that
the code and performance figure is given. The implementation of occam and
FORTRAN will differ slightly as the two languages allocate store differently.

D The formal specification language Z

The specification notation Z has been developed to tackle the problems
of specify actual systems. Z originated with Jean-Raymond Abrial and
has been developed and used extensively by members of the Programming
Research Group, Oxford University.

A Z specification consists of a combination of a formal text and a natu-
ral language description. This formal text provides the precise specification
while the natural language text introduces and explains the formal parts.
The formal text has two parts: the schema language, which provides a means
of structuring the specification, and the mathematical language, which al-
lows for the preciseness of the specification. The mathematical language
is based largely on set theory and enables an abstract mathematical view
of the objects being specified to be taken. The schema language enables
specifications of large systems to be broken into more manageable sections.

The combination of natural language for explanation, and the schema lan-
guage produces specifications that are more readable than pure mathemat-
ics. In addition, the mathematical nature of the specifications enable imple-
mentors to use mathematical proofs to ensure the correspondence of their
implementations with the specification.

The formal part of a Z specification makes use of ”schemas”. The schema
consists of two ”boxes”. The top box contains the signature which introduces
the variables of the specification. The lower box contains a list of predicates
which constrain the values that the variables may take.

The following is an example of a Z specification:

If the reset signal is set then the Count operation sets the register to 0,
otherwise it increments the register.
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Count
value, value’: N

reset?: bool
reset? ⇒value’ = 0
¬reset? ⇒value’ = value + 1

This schema, named Count, introduces 3 variables; value, value’ and reset.
Conventionally, primed variables such as value’ represent values of state
variables after an operation, while their unprimed counterparts represent
the values before the operation. Variables with names ending in ”?”, such as
reset, are conventionally inputs to an operation. The values are constrained
by two predicates (conventionally these are and-ed together, unless explicitly
written otherwise). These predicates formally specify the behaviour of the
operation described in the informal text that precedes the schema. This
schema gives a precise specification of the operation; what it has not done
is to dictate how the counter is implemented (number of bits etc) as these
are implementation details.
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