
IMS B004
IBM PC

add-in board

INMOS Technical Note 11

Stephen Ghee

February 1987
72-TCH-011-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4
1.1 Occam and the Transputer 4
1.2 Initial requirements for the PC add-in board 6

2 Design 7
2.1 Memory . 7
2.2 Parity . 12
2.3 System Control . 14
2.4 Interface to PC . 17

3 Implementation 20

4 Design summary 22

5 Using the board 22
5.1 Systems development . 22
5.2 Applications . 23

6 Program 1-4 23
6.1 IC17 - PARITYPAL . 23
6.2 IC20 - REVBCONFIG . 25
6.3 IC16 - IBM interface . 27
6.4 IC22 - IBM address select . 29

3

1 Introduction

To complement the launch of the Inmos Transputer in October 1985, a
number of evaluation boards were designed, to allow the world to evaluate
the performance / ease of use of the transputer. A number of hosts to control
boards were considered, and the IBM Personal Computer was chosen, due
to its wide usage, and large programming base. This article describes the
design, implementation and uses of the board, both as an occam engine in
development of Occam for transputer systems, and also the use of the board
as an accelerator for computational intensive tasks that can be passed to
the board from host programs.

1.1 Occam and the Transputer

The transputer is a complete computer on a chip. There is a processor, a
small amount of fast (50 ns cycle), on-chip static RAM, four serial com-
munications ’Links’ (for external communications), and a programmable
memory interface (which allows up to 4 Gbytes physical memory external
to the transputer). The block diagram is shown in figure 1.

Figure 1: Block Diagram

The transputer, and the programming language Occam, evolved together.
Occam was designed to simplify the task of concurrent programming. Occam

4

consists of three primitive processes, which are combined to create larger
processes.

v := e assign the value of expression e to variable v
c ! e output expression e to channel c
c ? v input a value from channel c into variable v

These primitives are combined to create processes using the occam construc-
tors:

SEQ operate on the component processes in sequence
PAR operate on the component processes concurrently
ALT operate on the first process to become ready

IF and WHILE constructs are also available. Each constructor is itself a
process, and can be used inside other constructors to create larger pro-
cesses. Concurrent processes, which cannot use shared resources, commu-
nicate across occam channels. These channels are single direction, point to
point connections between processes, and give synchronised message com-
munication.

Concurrent programming evolved as it became clear that many programs
could be split into a number of tasks which could be operated on indepen-
dently, and use some form of message passing for passing results, parameters,
and synchronisation.

On standard sequential machines, implementing concurrency was solved by
making the processor share its time between each task. This required a
complex software ‘kernel’ to be written, which would control the switching
of tasks (including itself) in and out of the processor, and handle the passing
of messages. Switching the tasks frequently gives the user the impression
that all of the processes are running simultaneously.

When developing occam programs on host machines such as the Personal
Computer, an occam kernel is supplied to implement the concurrency and
message passing via occam channels.

On transputers, the kernel has been implemented in hardware, giving a sub-
microsecond task switch time, compared to a few milli-seconds on software
driven multi-tasking machines. Occam processes can be mapped onto one
transputer, which shares its time between them, or onto multiple tranputers,
each taking a subset of the processes. The occam channels are mapped
onto the tranputer links for processes on separate processors. In this way,
programs can be developed on a single transputer, and extended to multiple
transputers as more performance is required.

The tranputer’s links operate at 10MBaud, full duplex, and each link is
capable of supporting two occam channels, one into the transputer, and

5

one out from the transputer. Each link is implemented as an autonomous
DMA (Direct Memory Access) engine, and so can perform communications
with external devices as background tasks to the processor with negligible
performance degradation.

1.2 Initial requirements for the PC add-in board

There were three main elements required for the PC board.

1. A transputer, with some external RAM

2. The interface to the Personal Computer

3. User controlled devices to allow the board to be used with other similar
boards supplied by Inmos (and possibly other manufacturers products
as well).

Let us take the transputer and memory first. The first transputer available
is the T414, a 32 bit processor, capable of 10 MIPS throughput.

The 32 bit multiplexed address/data bus of the T414 allows up to 4 GBytes
physically addressable memory, external to the transputer, as well as the
2 KBytes fast static RAM on board the transputer itself. The memory map
of the transputer is signed, with the internal RAM starting at the most
negative address (Hex 80000000 to Hex 800007FF).The external memory
starts at Hex 80000800.

For the Personal Computer add-in board, it was decided to give the user
up to 2MBytes external RAM, mapped in to the negative half of the avail-
able address space, above internal RAM. For this amount of RAM on an
IBM form-factor board, dynamic RAM (DRAM) had to be used. Also for
such a large amount of memory, a parity checking system also had to be
implemented.

The communication with the host Personal Computer is handled using an
Inmos C002 Link Adaptor. This device can convert serial link data into byte-
wide parallel data , and visa versa. The device allows simple interfacing with
standard bus architectures, appearing to the host computer as a memory
mapped peripheral.

A number of system control signals are also provided, which give the user
the possibility of connecting a number of transputer boards to the add-in
board via the Inmos links, and to allow the add-in board to control the
system of transputers. All signals are software controlled.

6

Figure 2: Block diagram of B004

In the following design, much of the logic required to control parity etc was
implemented in PAL logic. In the design description, that logic is described
in terms of the programming language used by the CUPL (Universal Com-
piler for Programmable Logic) programming system (available from Assisted
Technology), available for Personal Computers.

2 Design

2.1 Memory

To ease the task of designing memory systems, the transputer has an on
board programmable memory interface. With this interface, it is possible
to configure the external memory cycle of the transputer to be any width
(to suit slow or fast memories), and a number of programmable strobes
are supplied, which can be programmed to give signals such as RAS, CAS
for dynamic memories. Automatic refresh, over a selectable refresh cycle
time, can also be chosen. This eliminates the need to design complex timing
generators, and so cuts down the number of devices required on the board.

To give up to 2 Mbytes of RAM on an IBM form factor board, 256Kx1
DRAMs were chosen. The memory interface needs to be configured to suit
the cycle times of these devices. For evaluation purposes, parts with 150 ns
access time were chosen.

The external memory cycle is split into six states. These ’T states’ are as
follows :

7

State
1: Address set up
2: Address hold
3: Read cycle tri-state/write cycle data setup
4: Extended for WAIT states
5: Read or write data
6: End tri-state/data hold

The configuration of the cycle consists of specifying the number of each of
these states that are required to give the timing needed by the particular
memory device used. The memory interface is programmable to a resolution
of a period ’Tm’, where Tm is the time for half a processor cycle. Any T
State can consist of one to four Tm periods (The transputer has a Wait
input which can be used to selectively insert more T4 states). The user
programmable strobes are also defined with reference to Tm. A package is
included in the transputer development system for calculating the configu-
ration with reference to the memory device data sheets.

The parts used for the B004 were RevA transputers, with an 80 ns processor
cycle, and so 40 ns is the minimum resolution the external memory cycle can
be programmed to. For the 150 ns parts used for the memory, the following
configuration was drawn up.

Figure 3: Configuration diagram

The refresh interval is set to give a refresh cycle every 4.32us. Early write cy-
cles are used so that the Din and Dout pins of the DRAMs can be combined,
and there is no need for buffering the data bus.

The transputer has a number of pre-defined configuration patterns that can
be used, but the configuration described in figure 3 does not match any of
these, so we must supply the configuration from an external device. For this

8

particular board, a PAL was chosen, due to its small size, and number of
functions available not only for the configuration but for other peripherals
as described later.

The PAL is programmed as a finite state machine which responds to the
addresses output by the transputer during the configuration stage. For
each address, a data bit must be presented to the MemConfig input pin of
the transputer. The bit pattern is split into 13 fields, which describe the
number of Tm periods for the T States or user strobes, and refresh options.
These fields are described in the memory interface section of the Transputer
reference manual.

A number of requirements have to be met when using an external device to
supply the configuration data to the transputer.

1. During the initial reset phase, the transputer scans the MemAD pins to
see if any are connected to MemConfig. If so, an internal configuration
is chosen. For this design, we wish an external device to be used for
the configuration, so external logic must hold the MemConfig pin low
during the scan phase, but must allow the external device to respond
during the read phase of the configuration. In this design, a PAL
has been used, which can do both tasks, outputting a ’0’ bit for any
address outside the 36 address range used in configuration, and the
necessary data within the address range.

2. If a PAL is being used, the data presented to the MemConfig pin must
be inverted (this is not a problem with the 22v10 PAL used, as the
outputs can be programmed to invert data, allowing the state machine
to be designed to output positive data).

A karnaugh map was used to program the finite state machine. First, the
chosen configuration must be put into bit form. The state machine (as-
suming the PAL will invert the data on the output pin) is programmed to
respond (output a ’1’) for those addresses which have a ’1’ associated with
them in the configuration data. For other addresses, the state machine does
not respond (i.e. generates a ’0’ bit).

Table 1 shows the Karnaugh map, along with the decoded logic, associated
with the configuration in figure 3.

9

0 0 1 1 0 0 1 1 A4
0 0 0 1 1 1 1 0 A3

A7 A6 A5 0 1 1 1 1 0 0 0 A2
0 0 0 1
0 0 1
1 0 1 1 1 1 1
1 1 1 1
0 1 1 1 1
0 1 0
1 1 0 1 1
1 0 0 1 1

Table 1: Karnaugh map of configuration

MemConfig = A2 & A3 & !A4 & A5 & A6 & !A7 +
A2 & !A3 & A4 & A5 & A6 +
A2 & !A3 & !A5 & !A6 & A7 +

!A3 & !A4 & A5 & !A6 & A7 +
A2 & !A3 & A4 & A5 & !A6 & A7 +
A2 & !A3 & !A4 & !A5 & A6 & A7 +
!A2 & A3 & !A4 & !A5 & A6 & A7 +
!A2 & !A3 & A4 & A5 & A6 & A7 +
!A2 & !A3 & !A4 & !A5 & !A6 & !A7 + A31

The last two terms are associated with the memory scan phase, and ensure
that the state machine will respond during the scan phase (the inverter on
the output of the PAL will then hold the MemConfig pin LOW). The scan
phase involves each of the AD lines being pulled low in turn (and held low
for the rest of the scan), starting with AD0. The AD31 term in the state
machine ensures the MemConfig state is TRUE until AD31 is pulled low,
when the term expressing lines AD2 to AD7 low will keep MemConfig state
TRUE.

When the transputer enters the read cycle of the configuration stage, AD31
is always low, and the state machine responds to the addresses output by
the transputer.

As the memory cycle of the T414 is a multiplexed address/data cycle, not-
MemS0 is used to latch the data (in IC14) from the PAL throughout the
read cycle.

Program 2 includes the logic required to implement the state machine in a
PAL (IC20).

Once the memory interface has been configured correctly, the logic for con-
trolling the memory must be designed. As the memory interface controller

10

on the transputer generates all of the signals needed, the only logic required
are buffer and latch devices, the buffers used to multiplex the Row and Col-
umn addresses, and to drive the long PCB tracks along the memory array.

The circuit for the memory is shown in figure 4.

Figure 4: Memory

The transputer memory bus is a 32 bit, multiplexed address/data bus. The
address is output during T2, and so we must latch the signals we require
for the rest of the cycle. The address is a word address, and so MemAD0
and MemAD1 are used to carry information related to the type of cycle
that is being executed. MemnotWrD0 signifies a write cycle when active,
MemnotRfD1 signifies a refresh cycle. For this memory system, we need
the MemnotRfD1 signal to disable CAS during refresh, and so this must be
latched along with the column address needed for the DRAMs.

Two F373 transparent latches (IC14, IC15) are used to capture the signals
needed, the latches being enabled by the falling edge of notMemS0 at the
start of T2. At this point, we can be sure that the addresses are stable
on the bus. At the same time, we can strobe in the row address (the low
order address bits present on the bus during T2) to the DRAMs, using the
notRAS signal derived from notMemS1.

Once the row address has been latched by the RAM, the column address
(stored by the latches) must be presented to the RAM address inputs. When

11

stable, the column address can be strobed in, using the notCAS signal de-
rived from notMemS3. notMemS2 is used to perform the switching of the
row-column addresses.

Two banks of 1 Mbyte each have been implemented. The banks are se-
lected by one of two notRAS signals, these being decoded from the state
of A20 (bank select address bit), A31, and the refresh signal given out on
MemNotRfD1. The device used (IC7 - F153) is a dual multiplexer, each
multiplexer outputting one of four inputs dependant on the state of the con-
trol signals A20 and A31. Table 2 shows the data output for values of these
control signals.

Select
Inputs Data Inputs Data Inputs Outputs

A20 A31 (Ras0) (Ras1) Ras0 Ras1
L L R x x x R x x x R R
L H x 0 x x x R x x 0 R
H L x x R x x x R x R R
H H x x x R x x x 0 R 0

R = State of NotRf (from AD1)

Table 2: RAS output from F153

As can be seen, some of the inputs are controlled by notRf (latched from
MemnotRfD1 by IC14). Normally high, this signal will only allow the appro-
priate notRAS signal (for the memory bank being addressed) to be asserted
during a normal memory cycle. When notRf is active (low), both notRAS
strobes will be asserted (for any address).

IC14 also latches an inverted MemnotRfD1 (Rf), which is used to control
the generation of the notCAS strobes. Rf is OR’ed with notMemS3, so that
if Rf is asserted (high), the output from the OR gate is always high, thus
disabling notCAS. This makes use of the RAS only refresh facility of the
DRAMs. The output from the OR gate is split and buffered to both banks
of RAM.

A flip-flop formed from NAND gates (IC11) is used to create the non-
overlapping strobe signals needed to switch the memory address from Row
to Column. The flip-flop is triggered by the notMemS2 strobe.

2.2 Parity

For such a large amount of dynamic memory, a parity checking circuit needed
to be included. The transputer has overall control of the parity system, as
the parity checker exists as a number of memory mapped registers. Simple

12

memory accesses from processes allow parity to be enabled/disabled, the
parity error flag read, and routing of the parity error flag to other transput-
ers. Figure 5 shows the parity checking logic for one byte.

Figure 5: Schematic of parity generator, checker

The parity control is handled by IC20. This PAL does the address decoding,
and handles the registers that are available to the user processes.

For each byte in main memory, there is a parity bit stored in an associated
addresses in the parity RAM. On a memory write cycle, each byte is con-
verted to odd parity, the 9th parity bit being written to the parity RAM.
On read, the parity bit for the particular address is passed into the parity
checker, along with the byte from main memory, and parity checking takes
place. If the parity is odd, the Parity(x) output signal (from the F280 parity
generator/checker) will remain low. If an even parity situation is found, the
Parity(x) signal will be asserted. This signal is read by the parity decoding
logic in PAL IC17.

On memory read cycles, the four ParityError signals from the parity checkers
are latched by IC17, and if parity is enabled (i.e. ParityEnable is asserted),
the signals are decoded to indicate whether a parity error has occurred,
and which byte and bank the error occurred in. The output lines of IC17

13

chosen for these decoded signals have tri-state buffers, which are enabled by
the notReadParity signal from IC20, which is asserted when the transputer
executes a read from the ParityError register. The logic required for the
decoding of the four Parity(x) lines is given in Program 1.

If parity is enabled, then once a parity error has occurred, its state (i.e.
byte, bank, error) will be latched, and no further parity errors will overwrite
the first. Reading a parity error will not reset the parity latch, so the parity
must first be disabled, a read cycle executed to clear the latch, then parity
re-enabled. If parity is disabled, no parity errors will be reported. If a parity
error has occurred (and parity is enabled), the ParityError output from IC17
is set. This signal can be combined with the main board error signal (see
system control signals) under software control from the transputer.

IC20 is programmed to appear to the transputer as a number of registers.
Three registers are used for parity control, these being

EnableParity (write only) Hex 2
ParityToUp (write only) Hex 3
ParityError (read only) Hex 2

(The addresses given are WORD addresses)

Only bit 0 of the write only registers has any significance. Writing a ’1’
to either EnableParity or ParityToUp asserts the corresponding signal, a
’0’ de-asserts it. Reading from the ParityError register instructs IC17 to
output the decoded data on the transputer data bus.

IC17 decodes parity error information onto data bits D0 to D3. The bits
have the following significance.

D0 Error byte (low bit)
D1 Error byte (high bit)
D2 Error bank
D3 Error

If D3 is set, and parity is enabled, the byte and bank in which the parity
error occurred can be calculated. The logic required to implement these
registers is given in Program 2.

2.3 System Control

The board architecture, common to all Inmos transputer evaluation boards,
allows any number of boards to be connected together to create a multi-
processor system. On each board, the transputer links, suitably buffered,
are brought to the edge connector, and cables are used to interconnect trans-

14

puters on separate boards.

A number of control signals are also brought to the edge of the board, to
provide control over the transputer’s reset, analyse and error functions. The
system control signals are standard throughout Inmos transputer evaluation
boards, and to understand the needs for the hardware to implement these
control lines, the system architecture of the boards needs to be examined.
Figure 6 shows how a hierarchical network of boards can be built into a
large system.

Figure 6: Hierarchy of board connection

The Up, Down, and Subsystem ports all carry the same control signals.
These are

• notReset

• notAnalyse

• notError

notReset and notAnalyse flow down the system (if the configuration of the
system is considered to be as in figure 6), notError flows upwards. The
notAnalyse signal is used to place the system into Analyse mode.

For a single board, there are two paths we must look at.

1. The Up and Down ports are used to daisy chain boards together.
notReset and notAnalyse enter the Up port, are inverted for the trans-
puter Reset and Analyse, and are passed out the Down port as notRe-
set, notAnalyse. notError enters the Down port, is combined (by IC20)
with the transputer and parity error flags for the board, and passed

15

out of the Up port. With this scheme, all boards in the chain can be
reset, or put into analyse mode by a master controller which is con-
nected to the Up port of the top board in the chain, and any board in
the chain can report an error to this controller.

2. The Subsystem port allows any board to be a master controller of a
chain. This port is capable of generating the notReset and notAnalyse
signals (by software control in the transputer), and allows user pro-
cesses to read the notError signal from the chain of connected boards.

The schematic of the control system is shown in figure 7.

Figure 7: Up, down, subsystem schematic

The architecture allows for any board in a chain to act as a master for
another chain, allowing large systems to be split up into smaller subsystems,
each with its own local controller. If an error occurs in the system, it can
be handled be the local controller, without interfering with the rest of the
system.

The link buffering is also shown. The four output links of the transputer
are buffered using F244 buffer/drivers, and 100 ohm resistors (in series with
the line). The input links are also buffered using F244 drivers. The inputs
also have pull down resistors (1K ohm), which are used to prevent spurious
inputs on the links being interpreted by the transputer as code or data.

The subsystem signals are handled by the 22v10 PAL IC20 (which handles
the parity controls also). As with parity, the subsystem control is done via

16

registers.

SubsystemReset (write only) Hex 0
SubsystemAnalyse (write only) Hex 1
SubsystemError (read only) Hex 0

(The addresses given are WORD addresses)

Writing a ’1’ to bit 0 of SubsystemReset or SubsystemAnalyse asserts the
associated signal, a ’0’ clears the signal. If bit 0 of SubsystemError is set,
an error has been detected. Program 2 includes the logic required for these
functions.

The logic required for the Up, Down ports is simple. The notUpReset and
notUpAnalyse for the daisy chaining of boards enter the board from the Up
port, are inverted (IC21) to give the correct polarity for the transputer Reset
and Analyse, and are then inverted again for output at the Down port. The
second inverter is used to provide the drive current required between boards.
Both inputs (from the Up port) are pulled high with 1 K resistors to prevent
spurious resets etc occurring when no external boards are connected.

The notDNError signal enters the board from the Down port, and is fed
to IC20 (again, a 1 K pull up resistor is used to hold the line at the ’no
error’ state when no other boards are connected). In IC20, the notDNError
is combined with ParityError (from IC17) and the T4Error signal from the
transputer, and fed out to the notUpError output of the board. The logic
required to do this is given in Program 2.

The notUpError signal can inform the controlling board that some form of
error has occurred, whether it be a parity error, transputer error, or an error
from a board further down the chain.

2.4 Interface to PC

The circuit described above gives a transputer with 2Mbytes of parity checked
memory, four links to the outside world, and control signals. Although this
is now able to communicate with any other transputer via the links, a means
of communication with the host Personal Computer is needed.

The requirements for the interface was to have a parallel bus interface to
the Personal Computer, and this parallel interface communicating with a
transputer. There were two possible methods

1. Memory map the bus communication hardware into the transputers
external memory;

17

2. communicate with the transputer via one of the serial links.

The second method was chosen, as it maps onto the transputer concept
of communications via occam channels. In this case, the host computer
will appear as a process at the end of a channel mapped onto one of the
transputers links. This method, however, means that the transputer selected
to communicate with the host must use one link solely for this purpose.

To make this sort of interface possible, INMOS have also produced devices
which convert parallel data into serial data, and vice versa, following the
protocol of the Inmos links.

The IMSC002 link adaptor has a bi-directional 8 bit bus, to allow easy
connection to standard bus architectures. A number of standard control
lines, such as chip-enable, read/write and register select are included. The
device takes parallel data, and converts it into serial form, and passes it out
of the ’output link’. Incoming serial data is converted into parallel form, to
be read by the parallel bus.

The circuit to perform the communications with the Personal Computer is
outlined in figure 8.

Figure 8: Link schematic

IC22 is a PAL which handles the address decoding from the bus. A4 to A9
are decoded, as well as AEN (when AEN is active, DMA controlled refresh
is active on the PC bus, and so the board must be de-gated from the bus).
Using a PAL for the address decoding allows the board address to be altered

18

by changing the PAL. The board is currently located at address HEX 150 -
163 in I/O address space.

IC16 generates the timing sequence for the link adaptor from the clock and
strobes generated from the Personal Computer.

Also included at the Personal Computer interface are more system control
signals, which operate in the same manner as the transputer subsystem
signals, but controlled by the Personal Computer. This allows the Personal
Computer to be the master system controller. These are also implemented
by 1016, in a similar manner to the subsystem and parity logic in IC20.

To allow more than one evaluation board to be fitted within a host, a method
of selecting only one link adaptor and system control circuit to respond to
accesses by the host was required. This selection method would allow all
other boards to have all four links available for general use.

To satisfy these needs, it was decided to take the link from the link adaptor to
the rear of the board, and to use a jumper plug to connect a transputer link
to the link adaptor. A mechanism is included which informs the decoding
logic that the jumper plug is in place, and the board can respond to the
Personal Computer. The system control signals (controlled by the PC) are
also taken to the rear connector, using a jumper plug to connect to the Up
port, and using a similar selection mechanism to the links.

The selection mechanism involves an input of the selection PAL (IC22) to be
pulled low if one of the jumper plugs is inserted. Only if the line (notLink or
notSystem) is low will the corresponding select signal (notLADP or notSYS)
be asserted. This signal enables the logic in IC16.

If notSYS is asserted, IC16 will allow the Personal Computer to access
the registers used to control the Reset, Analyse, and Error signals. These
registers operate in a similar manner to the subsystem control registers.

Writing a’l’to bit 0 of PCReset or PCAnalyse asserts the associated signal, a
’0’ clears the signal. If bit 0 of PCError is clear, an error has been detected.
Program 3 shows the logic required for these functions., and Program 4
shows the address decoding logic.

notLADP is used to select the link adaptor timing logic. Here, the IOW,
IOR, and CLOCK signals from the PC bus are used to generate the access
timing sequence for the link adaptor. This timing sequence, and the logic
required to produce it, is shown in figure 9. The logic to perform this task
is included in program 3, (with the address decoding given in Program 4).

Chip-Select (notCS) and the write strobe (notWrite) are also used to control
the enabling and direction of the bi-directional buffer IC23 (LS245). Note
notPCReset (after being inverted) is also used to reset the C002. This

19

Figure 9: Link adaptor timing

ensures that all links are reset before loading of the system takes place.

3 Implementation

The component layout of the IMS B004 board is shown in figure 10. The
memory array has been designed so that the MemAD lines flow from the
transputer through the array, the addresses required by the RAMs are
latched at the far end of the board, and buffered before being passed back
down through the array. All devices have decoupling (the memory chips
have their decoupling capacitors under the sockets). On the production
B004, the capacitor required for decoupling the internal PLLs has a value
of 10uF, though for new boards a 1uF miniature ceramic is preferred.

The IMS B004 board was originally designed to use RevA T414-G12S com-
ponents. Some minor bugs in this early revision of the device meant that
a 25 MHz clock was required for the transputer (not the 5 Mhz clock as is
now standard). Also, a C003 link adaptor (which can be switched between
C001 and C002 modes) was used in C002 mode. This also uses the 25 MHz
input clock.

For current designs, the RevB T414 should be used. This is available in 15,
17, 20 MHz versions. This device has no known bugs. Note that there is a
slight pin change from the RevA part, where CapPlus and CapMinus have
been swapped (the full pin list is given in the Transputer Family document,

20

Figure 10: Component layout

available from Inmos). Also, a 24 pin 0.3” C002 package is available, to be
used instead of the C003.

The new transputer devices have had the link circuitry updated to allow
data transmission at 20Mbits/sec. If the designer wishes to make use of this
link speed, a number of minor changes will have to made to the design given.

1. The F244 buffers used to buffer the links (figure 7) do not have a
skew specification that meets that required by the 20Mbit/sec link
rate. If buffering is thought to be necessary, FACT devices have very
low skew values (typically 2ns), which should allow full bandwidth
communication at 20MBits. With these devices, serial terminating
resistors (typically 100 ohm) are required to dampen the edge rate
and prevent undershoot.

2. The C012 is a new version of the C002 which can support 20Mbit/sec
links. This device has a slightly different pinout to the C002.

Use of a faster transputer (such as a T414B-G20S) will require some changes
to the board. Where FAST devices have been used throughout the memory
interface logic, FACT devices may now have to be used to make use of the
low propagation delays (typically 2-3ns).

NOTE: 100 ohm serial resistors also need to be used to dampen the edges
to prevent undershoot.

Fast DRAMs can also be used, and the memory configuration altered as
these parts dictate. Using the new family of Inmos 280x fast DRAMs (with
access times down to 60ns), the transputer can be run with no wait states
(the memory interface cycle being three processor cycles).

21

If a faster memory cycle is to be chosen, care should be taken to ensure
devices such as the memory address latches, drivers, and parity checkers do
not create timing clashes due to propagation delays etc.

4 Design summary

As the transputer can be programmed to supply all the timing signals neces-
sary to build an external memory system, the design of a transputer system
consists mainly of latching and buffering address, data, and control lines to
provide sufficient drive current to take board capacitance etc into account.
Practical things to note are the use of pull up or pull down resistors on all
inputs of the board. Output links have a series resistor used for line match-
ing (approx. 47 ohm). The input links require pull down resistors (approx.
100K ohm), to prevent floating inputs from being interpreted as code or
data. All of the control signals (Up, Down, and Subsystem) are active low,
so pull up resistors are required on all inputs to the board, to protect against
lines not being used from floating.

All devices should have adequate decoupling capacitors near (on the IMS B004,
the decoupling capacitors for the RAM array were inserted below the RAM
sockets, saving board area).

The interface described above is that used to communicate with a Personal
Computer bus. The IMSC002 can be interfaced to any parallel micropro-
cessor type bus, and this would require a small change to the timing logic
(implemented in a PAL).

5 Using the board

As stated at the start, the IMS B004 add-in board was primarily designed
to complement the Personal Computer as an occam development station.
Any number of evaluation boards can be connected to the board via the
links. Figure 11 shows a few examples of large, parallel processing systems
connected to a Personal Computer.

5.1 Systems development

Programming the board for specific applications is done using the trans-
puter development systems, using Occam. In the near future, it will also be
possible to program the transputer system in ’C’, Pascal, and Fortran, as
well as Occam. With these language compilers, it will be possible to take

22

Figure 11: Examples of multi board systems

existing algorithms, and re-compile them for transputer applications. Also,
by using Occam as the harness to describe the concurrency of the system,
it is possible to run multiple processes, which could be written in any of the
four languages.

5.2 Applications

Other uses include using the board as a high-performance number crunching
device, used as a slave processor to the host machine. Here, any applica-
tion could be written (or a current application modified) to pass data to
the board, which will perform certain tasks on that data, before passing
it back to the host machine for displaying etc. The interface software sees
the board as a number of memory mapped registers. For example, a high
performance flight simulator could be written, the transputer system doing
the complex trigonometry involved with aircraft position, windowing, 3D-
2D conversions, passing vector information to the host computer for display.
By using multiple boards, the tasks could be split between many processors,
giving orders of magnitude improvement in performance.

6 Program 1-4

6.1 IC17 - PARITYPAL

PARTNO IC17 ;
NAME PARITYPAL ;
REVISION 01 ;
DATE 14/10/85 ;

23

DESIGNER S.Ghee ;
COMPANY Inmos Limited ;
ASSEMBLY B004 ;
LOCATION 16R4 ;

PIN 1 = !notRD ;
PIN 2 = nc2 ;
PIN 3 = Parity0 ;
PIN 4 = Parity3 ;
PIN 5 = Parity1 ;
PIN 6 = A31 ;
PIN 7 = Parity2 ;
PIN 8 = A20 ;
PIN 9 = EnableParity ;
PIN 11 = !notReadParity ;
PIN 12 = nc12 ;
PIN 13 = ParityError ;
PIN 14 = PStat0 ;
PIN 15 = PStat3 ;
PIN 16 = PStat1 ;
PIN 17 = PStat2 ;
PIN 18 = nc18 ;
PIN 19 = nc19 ;

/*
PStat0-3 are connected to bits 0-3 of the transputer data bus

PStat0,1 represent the parity ’BYTES’
PStat2 represents the parity ’BANK’
PStat3 signals a parity error

Once a parity error has occurred, it is latched onto the outputs
of the pal and no other errors are latched. If parity is
DISABLED, the latches are reset.

*/

FIELD ErrByte = [PStat1..0] ;

$DEFINE L ’b’0
$DEFINE H ’b’1

ErrByte.d = ([L, L] & Parity0 & !PStat3) #
([L, H] & !Parity0 & Parity1 & !PStat3) #
([H, L] & !Parity0 & !Parity1 & Parity2 & !PStat3) #
([H, H] & !Parity0 & !Parity1 & !Parity2 & Parity3 & !PStat3) #
(ErrByte & PStat3) ;

PStat2.d = A20 & !PStat3 # PStat2 & PStat3;

24

/*
For PStat3, clear if Parity disabled, but do not set if in top half
or if no error

*/

!PStat3.d = !EnableParity #
!PStat3 & EnableParity & !A31 #
!PStat3 & EnableParity &
!Parity0 & !Parityl & !Parity2 & !Parity3 ;

ParityError = PStat3;

6.2 IC20 - REVBCONFIG

PARTNO IC20 ;
NAME REVBCONFIG ;
DATE 27/1/86 ;
REV 01 ;
DESIGNER S.Ghee ;
COMPANY Inmos Limited ;
ASSEMBLY B004 ;
LOCATION 22v10 ;

/**/
/* memory configuration , and subsystem reset etc PAL */
/**/
/** Allowable Target Device Types : PAL22V10 */
/**/

/** Inputs **/

PIN 1 = !notWRBO ; /* Register Clock */
PIN 2 = ParityError ;
PIN 3 = !notSSError ;
PIN 4 = A3 ;
PIN 5 = A2 ;
PIN 6 = A31 ;
PIN 7 = T4Error ;
PIN 8 = !notRD ;
PIN 9 = !notDNError ;
PIN 10 = AD6 ;
PIN 11 = AD5 ;
PIN 13 = AD4 ;
PIN 14 = AD7 ;
PIN 15 = AD0 ;
PIN 16 = nc ;
PIN 17 = !notUPError ;
PIN 18 = !MemConfig ;

25

PIN 19 = !notSSReset ;
PIN 20 = !notSSAnalyse ;
PIN 21 = EnableParity ;
PIN 22 = !notReadParity ;
PIN 23 = ParityToUP ;

FIELD ADDRESS = [AD7..4, A3..2] ;
FIELD SelAddr = [A3..2] ;

FIELD output = [notSSReset, notSSAnalyse
, EnableParity, ParityToUP] ;

/*
Logic equations for 5 cycle memory. The items not commented out
generate the bits as shown in the state machine diagram

*/

MemConfig = ADDRESS:[6C] #
/*ADDRESS:[70] #*/
ADDRESS:[74] #

/*ADDRESS:[78] #*/
/*ADDRESS:[7C] #*/
/*ADDRESS:[80] #*/
ADDRESS;[84] #

/*ADDRESS:[88] #*/
/*ADDRESS:[8C] #*/
/*ADDRESS:[90] #*/
ADDRESS:[94] #

/*ADDRESS:[98] #*/
/*ADDRESS:[9C] #*/
ADDRESS:[A0] #
ADDRESS:[A4] #

/*ADDRESS:[A8] #*/
/*ADDRESS:[AC] #*/
/*ADDRESS:[B0] #*/
ADDRESS:[B4] #

/*ADDRESS:[B8] #*/
/*ADDRESS:[BC] #*/
/*ADDRESS:[C0] #*/
ADDRESS:[C4] #
ADDRESS:[C8] #

/*ADDRESS:[CC] #*/
/*ADDRESS:[D0] #*/
/*ADDRESS:[D4] #*/
/*ADDRESS:[D8] #*/
/*ADDRESS:[DC] #*/
/*ADDRESS:[E0] #*/
/*ADDRESS:[E4] #*/
/*ADDRESS:[E8] #*/

26

/*ADDRESS:[EC] #*/
ADDRESS:[F0] #
ADDRESS:[F4] #

/*ADDRESS:[F8] #*/
ADDRESS: [0] #
A31 ;

/* switch all Async resets OFF */

output.ar = ’b’0 ;

/* switch all sync presets OFF */

output.sp = ’b’0 ;

/* subsystem control logic */

notSSReset.d = AD0 & !A31 & SelAddr:[0] #
notSSReset & !(!A31 & SelAddr:[0]) ;

notSSAnalyse.d = AD0 & !A31 & SelAddr:[4] #
notSSAnalyse & !(!A31 & SelAddr:[4]) ;

AD0 = notSSError ;

AD0.oe = SelAddr:[0] & !A31 & notRD ;

AD7.oe = ’b’0 ;

/* Parity control logic */

EnableParity.d = AD0 & !A31 & SelAddr:[8] #
EnableParity & !(!A31 & SelAddr:[8]) ;

ParityToUP.d = AD0 & !A31 & SelAddr:[C] #
ParityToUP & !(!A31 & SelAddr:[C]) ;

notReadParity = SelAddr:[8] & !A31 & notRD ;

/* Error combining logic */

notUPError = T4Error # notDNError #
ParityToUP & ParityError ;

6.3 IC16 - IBM interface

PARTNO IC16 ;
NAME IBM interface ;

27

REVISION 01 ;
DATE 14/10/85 ;
DESIGNER S.Ghee ;
COMPANY Inmos Limited ;
ASSEMBLY B004 ;
LOCATION 16R4 ;

PIN 1 = Pclk ;
PIN 2 = notPCError ;
PIN 3 = !notSYS ;
PIN 4 = nc4 ;
PIN 5 = !notIOW ;
PIN 6 = !notIOR ;
PIN 7 = A0 ;
PIN 8 = !notLADP ;
PIN 9 = A1 ;
PIN 11 = !outputenable ;
PIN 12 = !notWrite ;
PIN 13 = !notCS ;
PIN 14 = !notStatWR ;
PIN 15 = !notPCReset ;
PIN 16 = !notPCAnalyse ;
PIN 17 = nc17 ;
PIN 18 = D0 ;
PIN 19 = nc19 ;

FIELD select = [A1..A0] ;

/* Abbreviations */

readsys = notSYS & notIOR ;
writesys = notSYS & notIOW ;

readlink = notLADP & notIOR ;
writelink = notLADP & notlOW ;

/* IBM system control logic */

notIBMReset.d = D0 & writesys & select:[0] #
notIBMReset & !(writesys & select:[0]) ;

notIBMAnalyse.d = D0 & writesys & select:[1] #
notIBMAnalyse & !(writesys & select:[1]) ;

D0 = !notIBMError ;
D0.oe = readsys ;

/*
Link adaptor timing logic

28

StatWR is notIOW delayed by one PClk cycle
*/

notStatWR.d = notIOW ;

notCS = writelink & notStatWR #
readlink ;

notWrite = writelink #
notLADP & notStatWR ;

6.4 IC22 - IBM address select

PARTNO IC22 ;
NAME IBM address select ;
REVISION 01 ;
DATE 14/10/85 ;
DESIGNER S.Ghee ;
COMPANY Inmos Limited ;
ASSEMBLY B004 ;
LOCATION 16L8 ;

PIN 1 = !notLink ;
PIN 2 = A6 ;
PIN 3 = A5 ;
PIN 4 = A4 ;
PIN 5 = ErrInt ;
PIN 6 = nc6 ;
PIN 7 = nc7 ;
PIN 8 = !notAEN ;
PIN 9 = IntInput ;
PIN 11 = IntOutput ;
PIN 12 = IRQ7 ;
PIN 13 = A8 ;
PIN 14 = A9 ;
PIN 15 = !notLADP ;
PIN 16 = !notSYS ;
PIN 17 = A7 ;
PIN 18 = !notSystem ;
PIN 19 = IRQ6 ;

FIELD IBMaddr = [A9..A4] ;

notLADP = IBMaddr:[150] & notAEN & notLink ;
notSYS = IBMaddr:[160] & notAEN & notSystem ;

/* tri stated for the moment */

29

IRQ6.oe = ’b’0 ;
IRQ7.oe = ’b’0 ;

30

	1 Introduction
	1.1 Occam and the Transputer
	1.2 Initial requirements for the PC add-in board

	2 Design
	2.1 Memory
	2.2 Parity
	2.3 System Control
	2.4 Interface to PC

	3 Implementation
	4 Design summary
	5 Using the board
	5.1 Systems development
	5.2 Applications

	6 Program 1-4
	6.1 IC17 - PARITYPAL
	6.2 IC20 - REVBCONFIG
	6.3 IC16 - IBM interface
	6.4 IC22 - IBM address select

