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1 Introduction

The INMOS transputer family [1] is a family of microcomputers with high-
performance processor, memory and communication links on a single chip,
Figure 1. The links are used to connect transputers together, and very large
concurrent systems can be built from collections of transputers communi-
cating via their links.
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Figure 1: Transputer Architecture

The occam programming language [2] was developed by INMOS to address
the task of programming extremely concurrent systems. This document will
illustrate how best to arrange occam programs in order to maximise the
performance of transputer systems, with particular reference to the author’s
ray-tracing program [4].

All these performance enhancement techniques have been implemented in
the ray tracer, and their use will be illustrated by fragments from this pro-
gram.

Several topics will be discussed, falling into two main categories - max-
imising the performance of an individual transputer, and maximising the
performance of arrays of transputers.

Note that all occam examples conform to the beta release of the Transputer
Development System.



2 Maximising performance of a single transputer

The following sections describe how to maximise the performance of a sin-
gle transputer. However, all these performance maximisation techniques
are highly relevant to maximising the performance of each processor in a
multiple transputer system.

2.1 Making use of on-chip memory

To achieve maximum performance from a transputer it is vital that best use
is made of on-chip memory. On the B004-4 Transputer Evaluation Board
for example [6], the internal memory cycles in 66ns, whereas the off-chip
memory cycles in 330ns. This factor of five degradation in memory speed
can be reflected in program performance if heavily accessed locations are in
off-chip memory.

On-chip memory is better used for data, rather than code. The T414 fetches
instructions in 32-bit words, so every code fetch cycle will pull in 4 instruc-
tions. Hence code accesses generally occur less frequently than data accesses,
and data memory requires higher bandwidth.

2.1.1 Memory layout

The occam compiler and transputer loader software take advantage of this
bandwidth imbalance between data and code memory by trying to place
data on-chip (Figure 2). Data space is allocated upwards from the lowest

free location in on-chip memory, and code is placed immediately above the
highest data location.
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Figure 2: Memory layout of occam program

This is made possible because all data allocation in occam is static, and



after compilation the loader knows exactly the data space requirement of
the program. (Static allocation has one major drawback - recursion is not
allowed in occam. Handling recursive algorithms in occam is described in

Appendix A.)

If a program has a data space requirement of more than 2k bytes (the on-
chip memory space of the T414), then some data will be placed in off-chip
memory. It is then up to the programmer to arrange his occam program such
that the most frequently-used variables are placed on-chip. The following
sections will describe how to write occam programs which optimise use of
on-chip memory.

2.1.2 Workspace layout

On the transputer, variables are accessed relative to a workspace pointer
register, Wptr [1]. Each occam process has its own workspace - a procedure
call will generate a new workspace for the called procedure, and forking a
set of parallel processes will generate a new workspace for each new process.

To maximise performance it is important that variables within the most
frequently active workspace areas be in on-chip memory.

The occam compiler places the most recently declared variables in the lowest
workspace slots. For example, the following piece of code

INT32 a, b, c :
[2000] INT32 largeVector :

SEQ
a := 42
b := #DEFACED
Cc := #DEAF

SEQ i = 0 FOR 2000
largeVector [i] := 0

would result in the following workspace layout

Variable Workspace Location

a 2005

b 2004

c 2003

largeVector 2 .. 2002

i 0 .. 1 (replicators consume 2 workspace slots)

Note that the replicator variable, is implicitly declared last, and therefore



takes up the two lowest workspace slots. However, a, b and ¢ have ended
up off-chip, and they will be relatively expensive to access - prefixing in-
structions are required to access them, and accessing off-chip memory will
consume extra processor cycles. If a, b or ¢ are going to be accessed fre-
quently, it is better to declare them after largeVector.

2.1.3 Workspace layout of called procedures

In occam, workspace for called procedures is allocated as a falling stack.
Called procedures have their workspace placed at lower addresses than the
caller. All vectors are located by the compiler within the workspace of the
process in which they are declared. Hence the occam compiler does nothing
to improve the performance of this piece of code -

[2000] INT32 largeVector :
INT32 a, b, c :

PROC totallyWasteOnChipMemory ()
[2000] INT32 largeData :
SEQ i = 0 FOR 2000
largeData [i] := i

SEQ
totallyWasteOnChipMemory ()
a := 42
b := #DEFACED
c := #FADED
SEQ i = 0 FOR 2000
largeVector [i] := 0

The call of totallyWasteOnChipMemory takes up over 2000 words of low-
address memory, consuming all of the on-chip memory.

Calling a procedure with a large workspace requirement results in the caller
process having its workspace placed entirely off-chip. A good rule to improve
performance is declare all large vectors at the outermost lexical level.

NOTE

Unfortunately this is not good programming practice - declaring items at
the scope within which they are required is more secure, avoiding accidental
shared data or other programming errors. This conflict of good programming
style and program efficiency is a feature of the current compiler implementa-
tion, not the occam language. It is intended that future releases of the occam
compiler will allow the user to specify whether vectors should be compiled
located within or outside the current workspace.



To avoid lengthy access times due to static chaining, these global vectors
should be brought into local scope, either by passing them as parameters,
or abbreviating them locally to their use.

Using abbreviations to bring large vectors into local scope has a dramatic
effect on workspace requirement.

[2000] INT32 largeVector, vectorForPROC :
INT32 a, b, c :

PROC totallyWasteOnChipMemory ()
[2000] INT32 largeData IS vectorForPROC :
SEQ i = 0 FOR 2000
largeData [i] := i

SEQ
totallyWasteOnChipMemory ()
a := 42
b := #DEFACED
c := #FADED
SEQ i = 0 FOR 2000
largeVector [i] := 0

This simple change to totally WasteOnChipMemory has reduced its workspace
requirement from over 2000 words to only 3 words (the abbreviation, and
2 words for i), leaving large amounts of on-chip memory free for other pro-
cesses.

Further use of abbreviations to improve performance is discussed in sections
2.1.5-2.1.8.

2.1.4 Workspace layout of parallel processes

Workspace for parallel processes is allocated below the workspace of the
parent. The first member of the PAR list is allocated workspace immediately
below the parent, the second immediately below that, etc.

Hence workspace minimisation by global declaration becomes even more
important when more than one process is running on the transputer. If, in
the example above any of the processes a, b, ¢ or d were consuming large
amounts of workspace, then the workspace of the others could be resident
off-chip. To ensure minimisation of workspace in a parallel environment,
large vectors must be declared outside the scope of the outermost PAR. For
example,



proc a  Total data
proc b  requirement of a
proc ¢ 4— base of workspace of a

proc d  Totg) data
requirement of b

PAR
a () 4—— base of workspace of b
b () Total data
c 0 requirement of ¢
d O
4— base of workspace of ¢
Total data
requirement of d <] 4— base of workspace of d
\\\\\\\ <4——— MOSTNEG INT
Figure 3: Workspace layout of parallel processes
PAR

[2000] INT vector :
a ( vector )
[2000] INT vector :
b ( vector )
[2000] INT vector :
¢ ( vector )
[2000] INT vector :
d ( vector )

is not sufficient; the large vectors are declared within the scope of the PAR,
and will contribute to the workspaces of the individual processes. The pro-
gram should be

[2000] INT vecA, vecB, vecC, vecD :

PAR
a ( vechA )
b ( vecB )
¢ ( vecC)
d ( vecD )

where the large vectors are now within the parent’s workspace, thus re-
ducing the workspace requirement of each process, and giving each process
workspace a better chance of residing in on-chip memory.

2.1.5 Abbreviations

Abbreviations are a powerful feature of the occam language. They can be
used to bring non-local variables down into local scope (as demonstrated in
section 2.1.3), thus removing static chaining and speeding up access. They
can also speed up execution by removing range check instructions.



2.1.6 Abbreviations - removing range-checking code

By abbreviating sub-vectors of larger vectors and using constants to index
into the sub-vector, the compiler will not need to generate range-checking
code, as all checks can be done at compile-time.
breviations removing range check instructions, here are two versions of the
same procedure. Part of the ray-tracer, this procedure is initialising fields
in a new node to be added into a tree. The identifier nodePtr points to the
start of the node. The second version uses abbreviations, generates no range
checking code (apart from initial generation of the abbreviation) generates

shorter code sequences for each assignment, and executes more quickly.

PROC initNode ( VAL INT nodePtr )

SEQ

tree [ nodePtr
tree [ nodePtr
tree [ nodePtr
tree [ nodePtr

+
+
+
+

n.reflect] := nil
n.refract] := nil

n.next] := nil
n.object] := nil

PROC initNode ( VAL INT nodePtr )
node IS [ tree FROM nodePtr FOR nodeSize ]

SEQ
node [ n.reflect] := nil
node [ n.refract] := nil
node [ n.next] := nil
node [ n.object] := nil

Even if range-checking were switched off, the second version will execute

more quickly. Without range check instructions, the statement

tree [ nodePtr + n.refract] := nil

will generate the following transputer instructions

1ldc nil

1d1 nodePtr
1d1 static
ldnlp tree
wsub

stnl n.refract

get data to save

get pointer to base of node

get static chain

generate pointer to tree ( in outer scope)
generate pointer to tree [ nodeptr]

and store to tree [ nodePtr + n.refract]

whereas the second version

10

As an example of ab-



node [ n.refract] := nil

will generate the following, appreciably shorter and faster fragment of code

ldc nil -- get data to save
idl node —-- load abbreviation
stnl n.refract -- and store

Of course there is an initial overhead to generate the abbreviation, but this
is rapidly swamped by the subsequent savings.

2.1.7 Abbreviations - accelerating byte manipulation

Under certain circumstances abbreviations can considerably speed up byte
manipulation. If it is necessary to frequently extract byte fields from a word,
then accessing abbreviations to each byte is faster than either shifting and
masking, or retyping and using byte accesses. For example

INT word :
[4] BYTE bWord RETYPES word :
BYTE b0 IS bWord [0]
BYTE b1 IS bWord [1]
BYTE b2 IS bWord [2]
BYTE b3 IS bWord [3]
SEQ
. use b0 bl b2 b3

To access bits 16..23 in word, simply reference b2, which will generate

1dl b2 -- load abbreviation (which is a BYTE pointer)
1b -- and load it

This approach is only cost-effective if more than one access to these bytes is
required, since there is run-time overhead in setting up these abbreviations.
For example, if each byte of each word in a vector is to be examined, the
best piece of code is

[big] INT vector :

INT word :

[4] BYTE bWord RETYPES word :
BYTE b0 IS bWord [0]

BYTE bl IS bWord [1]

11



BYTE b2 IS bWord [2]
BYTE b3 IS bWord [3]
SEQ i = 0 FOR big
SEQ
word := vector [i]
. use b0 bl b2 b3 to access each byte in word

since in this case the abbreviations are set up only once, but accessed many
times.

2.1.8 Abbreviations - opening out loops

Using abbreviations to open out loops can speed up execution considerably.
Take the following piece of occam, a simple vector addition.

SEQ i = 0 FOR 20000
ali] := b[i] + cl[i]

The transputer loops in about a microsecond, but adds in about 50 nanosec-
onds. Therefore to increase performance we must increase the number of
adds per loop -

VAL bigLoops IS 2000 >> 4 : -- 2000 / 16
VAL leftover IS 2000 - (bigLoops TIMES 16)
SEQ

SEQ i = 0 FOR bigLoops
VAL base IS i TIMES 16 :
aSlice IS [ a FROM base FOR 16 ]
bSlice IS [ b FROM base FOR 16 ]
cSlice IS [ c¢c FROM base FOR 16 ]
SEQ
aSlice [0] := bSlice [0] + cSlice [0]
aSlice [1] := bSlice [1] + cSlice [1]
aSlice [2] := bSlice [2] + cSlice [2]
aSlice [14] := bSlice[14] + cSlice[14]
aSlice [15] := bSlice[15] + cSlice[15]
SEQ i = 2000 - leftover FOR leftover
ali] := bl[i] + c[i]

Obviously, loops can be opened out in any language, on any processor, and
performance will tend be improved at the expense of increased code size.
However, opening loops out in slices of 16 has a knock-on effect on the
transputer, as optimal code with no prefix instructions is generated for each
addition statement. Compare the code generated for the two statements -

12



alil := bl[i] + c[i]

1dl i
1dl b
wsub
1ldnl O
1dl i
1d1
wsub
1ldnl O
add
1dl a
1dl i
wsub
stnl O

aSlice[15] := bSlice[15] + cSlicel[15]

1dl bSlice
1ldnl 15

1dl cSlice
1ldnl 15

add

1dl aSlice
stnl 15

The second piece of code is just over half the size of the first (and the first
will get bigger if range checking is switched on) and the number of loop end
(lend) instructions executed is reduced by a factor of 16.

2.1.9 Placing critical vectors on-chip

Although in general best performance is achieved by declaring vectors in
the outermost scope, this technique can be used in reverse. If for example
a large vector MUST be in on-chip memory for performance purposes, then
all other vectors can be declared global, and only the critical vector declared
in local scope. For example, the following piece of code clears the screen of
the BOO7 graphics board [7].

PROC clearScreen ( VAL BYTE pattern )
—- the screen is declared as
-- [2]1[512] [512] BYTE screenRAM :
[256] [1024] BYTE screen RETYPES screenRAM [ currentScreen]
[1024] BYTE fastVec : -- this is in on-chip memory
SEQ
initBYTEvec ( fastVec, pattern, 1024 ) -- fast byte initialiser

13



SEQ y = O FOR 256
screen [y] := fastVec

This process fires off 256 block move instructions, each of 1024 bytes. Since
the block move is reading from on-chip memory and writing to off-chip
memory it will proceed more quickly than

PROC clearScreen ( VAL BYTE pattern )
[612%512] BYTE screen RETYPES screenRAM [ currentScreen]
initBYTEvec ( screen, pattern, 512+#512 ) -- fast byte initialiser

where all data accesses are to off-chip memory. The time saved during the
block moves outweighs the cost of setting up the parameters to the block
moves, and of the initial initBYTEvec. See section 5.1 for more about block
moves, and the source of initBY TEvec.

2.1.10 Beware the PLACE statement

A common mistake in trying to make occam go faster is to physically place
data on-chip, using a PLACE statement. This does the right thing - the
compiler will physically place the variable on-chip, but the variable will be
outside local workspace.

Therefore to access the variable, its physical address must be generated, and
an indirection performed to load the contents of the address.

For example, declaring a variable at word address 30 above MOSTNEG
INT, and setting its value to 3 -

INT a :
PLACE a AT 30 : -- 30th word address above mint
a =3

ldc 3

mint
stnl 30

This code sequence takes 6 cycles (300 ns on a T414-20). Were a a local
variable, the code sequence would be

ldc 3
stl a

14



and would take only 2 cycles (100 ns) if the workspace were on-chip.

Placing variables in on-chip memory can also be extremely dangerous; if the
PLACEJ variable accidentally overlays a workspace location the results will
be unpredictable and could be disastrous.

The key to making variable accesses go faster is to keep the workspace on-
chip. Then if it is necessary for a vector to be on-chip, it can be declared in
local scope.

2.2 Block move

The T414 vector assignment instruction move [1] is directly supported by
the occam language. The vector assignment statement

[65536] BYTE bigVec, otherVec :
[ bigVec FROM O FOR 65536] := [ otherVec FROM O FOR 65536]

compiles down to only 4 instructions -

1di bigVec -- assuming the vectors are abbreviated
1d1 otherVec -- locally

ldc 65536 -- this will be prefixed of course

move

A very fast vector initialiser can be written using block moves. The fastest
initialiser of all is, unfortunately, illegal (but will work for word-aligned
vectors on a T414) -

PROC illegallnitBYTEvec ( [] BYTE vec, VAL BYTE pattern, VAL INT bytes )

SEQ
vec [0] := pattern -- clear first word
vec [1] := pattern -- since block move engine reads and
vec [2] := pattern -- writes words
vec [3] := pattern

[ vec FROM 4 FOR bytes - 4] := vec FROM O FOR bytes - 4]

The source and destination of the assignment are not disjoint, so this is
neither allowed nor even guaranteed to work on some processors. However,
the following non-overlapping vector initialiser is only some 2% slower for
large vectors, and is architecturally sound -
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PROC initBYTEvec ( [] BYTE vec, VAL BYTE pattern, VAL INT bytes )
INT dest, transfer :

SEQ

transfer := 1

dest := transfer

vec [0] := pattern

WHILE dest < bytes

SEQ

[ vec FROM dest FOR transfer ] := [ vec FROM O FOR transfer ]
dest := dest + transfer
transfer := transfer + transfer

This performs a logarithmic assignment, clearing the first byte of the vector,
then the next 2, then the next 4, 8, 16 etc. As printed above it will only clear
vectors which are an exact power of two in size, but very slight modifications
make it completely general.

2.3 Use TIMES

The T414 transputer has a fast (but unchecked) multiply instruction, which
is accessed with the occam operator TIMES. An integer multiply on the
T414-20 takes over a microsecond - using TIMES this will take as many
processor cycles as there are significant bits in the right-hand operand, plus
2 cycles overhead. Therefore,

a x 4
still takes over a microsecond, whereas

a TIMES 4

takes only 6 cycles (300 ns). Therefore, when multiplying integers by small
constants, use TIMES. Note that the IMS T800 Floating Point Transputer
has a modified version of TIMES which optimally multiplies small negative
integers.

3 Maximising multiprocessor performance

The following sections will describe how to obtain more performance from an
array of transputers. However, only very general guidelines can be offered.
Maximising multiprocessor performance is still an area of active research,
and any solution will tend to be specific to the problem at hand.
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3.1 Maximising link performance

The transputer links are autonomous DMA engines, capable of transferring
data bidirectionally at up to 20 Mbits/sec. They are capable of these data
rates without seriously degrading the performance of the processor. To
achieve maximum link throughput from a multi transputer system the links
and the processor should all be kept as busy as possible.

3.1.1 Decoupling communication and computation

To avoid the links waiting on the processor or the processor waiting on the
links, link communication should be decoupled from computation.

For example, the following program is part of a pipeline, inputting data, ap-
plying a transformation to each data item, then outputting the transformed
data.

PROC transform ( CHAN in, out )
[dataSize] INT data :
WHILE TRUE
SEQ
in 7 data
applyTransform ( data )
out ! data

If the channels in and out are transputer links, then the performance of
the pipeline will be degraded. The SEQ construct is forcing the transputer
to perform only one action at a time; it is either inputting, computing or
outputting; it could be doing all three at once. Embedding the transformer
between a pair of buffers will improve performance considerably -

PAR
buffer ( in, a )
transform ( a, b )
buffer ( b, out )

The buffers are decoupling devices, allowing the processor to perform com-
putation on one set of data, whilst concurrently inputting a new set, and
outputting the previous set.

In this example the buffer processes will simply input data then output it.
There is a transfer of data here which can be avoided, as all the data can
be passed by reference -

17



[dataSize] INT a, b, c :
. proc input
. proc transform
. proc output

SEQ
input ( a) -- start-up sequence .. pull in data
PAR
input ( b) -- now transform that data
transform ( a) -- and pull in more ...
WHILE TRUE
SEQ -— and from here on
PAR —-- the buffers pass round-robin
input ( ¢) -- between the inputter, transformer
transform ( b) -- and outputter
output (a
PAR
input (a)
transform ( c)
output ( b)
PAR
input ()
transform ( a)
output (o

Instead of input and output operations transferring data between the pro-
cesses, the processes transfer themselves between the data, each process
cycling between the vectors a, b and ¢ as the PAR statements close down
and restart.

This is a special case, a data flow architecture where all communication and
processing is synchronous - there is a lock-step in, transform, out sequence
which allows this sequential overlay of computing and communication. This
is not the case in many programs, where buffer processes are required.

Some applications are sufficiently concurrent that implicit buffering is taking
place in processes which communicate directly with links. This is the case
with the ray-tracer. The ray-tracer has extensive data routing processes,
and the insertion of additional buffering processes unexpectedly reduced the
performance (albeit by much less than one per cent). However these buffer
processes have been shown to be important, as subtle deadlocks can occur
if the buffers are removed.

3.1.2 Prioritisation

Correct use of prioritisation is important for most distributed programs
communicating via links. If a message is transmitted to a transputer and

18



requires throughrouting, it is essential that the transputer input the message
then output it with minimum delay - another transputer somewhere in the
system could be held up, waiting for the message. So, run all processes
which use links at high priority. There will tend to be more than one process
talking to links, at most eight, and the PRI PAR statement allows only one
process at each priority level. It is necessary to gather together all the link
communication processes, unify them into a process with a PAR statement,
and run this process at high priority.

The program from above now becomes

[dataSize] INT a, b, c :
. proc input
. proc transform
. proc output

SEQ
input ( a) -- start-up sequence .. pull in data
PRI PAR
input ( b) -- now transform that data (HI-PRI)
transform ( a) -- and pull in more ...
WHILE TRUE
SEQ -— and from here on
PRI PAR -- the buffers pass round-robin
PAR
input ( ¢) -- between the inputter, transformer
output ( a)
transform ( b) -- and outputter
PRI PAR
PAR

input ( a)
output ( b)
transform ( c)
PRI PAR
PAR
input (b
output ( ¢)
transform ( a)

As an example, this is the outermost level of the calculate process in the
ray tracer. Note the use of prioritisation, and global vectors. Everything
is prioritised except the process performing the computation - a scheme
which at first sight appears to be counter intuitive, but is of fundamental
importance in a parallel system. Accidental or misguided prioritisation of
computing processes will lead to disastrous performance degradation (see
section 5.5).

PROC calculate ( CHAN fromPrev, toNext, fromNext, toPrev,

19



VAL BOOL propogate )
. proc render
. proc routeWork
. proc mixPixels
CHAN tolocal, fromlLocal, requestWork :

-- run all through routers at hi-PRI, and do
-- all the floating point maths at lo-PRI

[256] INT buffA, buffB :
[(treeSize + worldModelSize) + gridSize] REAL32 heap :
WHILE TRUE
PRI PAR
PAR
routeWork ( buffA, fromPrev, toNext, toPrev, local,
requestWork, propogate )
mixPixels ( buffE, fromLocal, fromNext, toPrev, buffers )
render ( heap, tolLocal, fromLocal, requestWork )

3.2 Large link transfers

Setting up a transfer down a link takes about about a microsecond (20 pro-
cessor cycles), but once that transfer is started it will proceed autonomously
from the processor, consuming typically 4 processor cycles every 4 microsec-
onds (one memory read or write cycle per 32-bit word). Keep messages as
long as, possible. For example

[300] INT data :
SEQ
out ! some-data; 300; [ data FROM O FOR 300]

is far better than

[300] INT data
SEQ
out ! some.data; 300
SEQ i = 0 FOR 300
out ! data [i]

However, long link transfers increase latency when data must be throughrouted.
Some optimal message length will give the best compromise between over-
head on setting up transfers, and overhead on throughrouting. A detailed
discussion can be found in [11].

20



4 Dynamic load balancing and processor farms

Processor farms [5] are a general way of distributing problems which can be
decomposed into smaller independent sub-problems. If implemented care-
fully, processor farms can give linear performance in multi transputer sys-
tems - that is ten processors will perform 10 times as well as one proces-
sor. Processor farms come into their own when solving problems where the
amount of computation required for any given sub-problem is not constant.

For example, in the ray tracer one pixel may only require one traced ray to
determine its colour, but other pixels may require over a hundred.

Rather than give each processor say one tenth of the screen (assuming ten
processors in the array) , the screen is split into much smaller areas - in
this case 8x8 pixels, giving a total of 4096 work packets for a 512x512 pixel
screen. These are handed out piecewise to the farm. Each processor in the
farm computes the colours of the pixels for that small area, and passes the
pixels back, the pixel packet being an implicit request for another area of
screen to be rendered.

Since work is only given to the farm on demand, load is balanced dynam-
ically, with the whole system keeping itself as busy as possible. Buffer
processes overlay data transfer with communication, reducing the commu-
nication overhead to zero, and the end-case latency of a processors farm
implemented this way is far lower than in a statically load-balanced system.

Here is a diagram of the ray tracer.

The key to the processor farm is a valve process, allowing work packets into
the farm only when there is an idle processor. The structure of this valve is

PAR
-- pump work unconditionally
SEQ i = 0 FOR workPackets
inject ! packet
-- regulate flow of work into farm

SEQ
idle := processors
WHILE running

PRI ALT
fromFarm 7 results
idle := idle + 1
(idle > 0) & inject ? packet
SEQ
tofarm ! packet
idle := idle - 1
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where the crucial statement is the guarded ALT,
(idle > 0) & inject 7 packet

only allowing work to pass from the pumper into the farm when there is an
idle processor. The ALT is prioritised to accept results - this is explained in
section 5.3.

The processor farm technique has been used to implement a very fast Man-
delbrot Set generator [5][10] and a step-coverage simulator for VLSI cir-
cuits [9]. A large forecasting/statistical modelling package is in the process
of being implemented as a processor farm. In all cases fully implemented,
linearity of performance to number of processors has been high, from 80-
99.5%. That is, ten processors perform between 8 and 9.95 times as well as
one processor.

Array of calculators

flow of work

graphicsEngine

Figure 4: Structure of ray tracing program

5 A worked example: the INMOS ray tracer

Ray tracing [8] is a computer graphics technique capable of generating ex-
tremely realistic images. It handles inter-object reflections, refraction and
shadowing effects in a simple and elegant algorithm. However, ray tracing
has one major drawback - it devours computing resource. In [8] very sim-
ple scenes were rendered on a powerful minicomputer, taking from 45 to
180 minutes per image.

The structure of the INMOS ray tracer was described in [4] and [5] - in
this section the performance enhancement techniques described above will
be illustrated with reference to the ray tracer.
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Finally, results will be presented comparing the optimised implementation
of the ray tracer with deliberately de-tuned versions.

5.1 The ray tracer

As described in section 4 and in [4], the ray tracer consists of three major
processes - controller, calculator and graphicsEngine.

5.2 The controller process

The controller is at the heart of the processor farm. The internal structure
of the controller is illustrated below.

valve process (work flow regulator)

toGraphics t°Fa| rm

——
fromFarm

toValve

work pumper

Figure 5: The controller process

The valve process is regulating the flow of work into the farm of calculators,
and passing results packets on to the graphics card. It is very important
that the controller responds quickly to incoming results packets. Therefore
the process accepting results packets is prioritised, and the ALT construct
in the valve process is prioritised to accept results rather than pass on work.
Each calculator has a buffered work packet, so it is more important that
results be passed on to the graphics card rather than more work packets
passed out to the farm.

5.3 The calculator process

The calculator contains a work router, a pixel stream mixer and a renderer
(section 3.1.2).

All the vectors used by mixPixels routeWork and calculate are declared at
the outermost lexical level, and passed into the processes as parameters.
Keeping the workspace of the work routing processes in internal memory is
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renderer

work router

work packets in work packets out
—> >
results pickets out results packets in

pixel stream mixer

Figure 6: The calculator process

very important in a processor farro, as the latency of response to link inputs
is reduced. When a process is scheduled, several words are written into the
workspace of the descheduled process, and these write cycles will be slower if
the workspace is off-chip, thus increasing process-swap time and degrading
the performance of the farm as a whole.

5.4 The graphics process
The graphics process accepts pixels from the controller and plots them on

a B0OO7 graphics board [7]. The internal structure of the graphics process is
illustrated below.

pixels in

plotter pixel buffer

Figure 7: The graphics process
The buffer process in graphicsEngine improves overall performance slightly,

by overlaying the plotting of one patch with inputting the next. The buffer
process is prioritised over the plotter.

5.5 Performance figures

To test the actual performance degradation due to non-adherence to these
techniques, several deliberately de-tuned versions of the ray tracer were
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built, each omitting one or more of the enhancements described above. The
results are presented below.

Features Timings Relative degradation
None (fully optimised) 143.28s 0.00%
Inappropriate buffering (see 3.1.1) 143.47s 0.13%
No global vectors 190.74s 33.12%
No prioritised communications 156.56s 9.27%
All above 199.87s 39.50%
Prioritised computation 1862.39s 1299.80%

Note the appalling performance (a factor of 13 degradation!) when compu-
tation is prioritised at the expense of communication. Throughrouting of
data can never occur, and most of the processors are idle for most of the
time, as they can neither off-load their results nor input new work packets,
as the computing processes on their neighbours are not allowing the com-
munications processes to be scheduled. This is obviously a gross mistake.

A more subtle mistake is the omission of prioritisation altogether. The
figures quoted above are for 16 processors, resulting in a 9% degradation
in performance. This figure gets worse as the ratio of communication to
computation increases, and this ratio increases linearly with the number of
processors in the array.

6 Conclusions

Several techniques have been presented for performance enhancement of
occam programs running on transputers.

These techniques can be summarised as
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Enhancement technique Section

Declare large vectors at the outermost lexical level 2.1.3

Use abbreviations to minimise static chaining 2.1.3
Use abbreviations to remove range checking 2.1.6
Use abbreviations to accelerate byte manipulation 2.1.7
Use abbreviations to open out loops 2.1.8
Place critical vectors on-chip 2.1.9
Clear large vectors with block move 2.2
Use TIMES 2.3
Decouple communication and computation 3.1.1
Use buffer processes on links where necessary 3.1.1
Prioritise processes which use links 3.1.2
Keep messages as long as possible 3.1.3
Use dynamic load balancing if appropriate 4

Some techniques (dynamic load balancing, link buffering, buffer process pri-
oritisation) are applicable only to arrays of transputers, others (optimum
use of on-chip memory) should be applied at all times.

It has been shown that severe performance degradation can occur if an oc-
cam program is written without appropriate application of these techniques.
Therefore these techniques should be considered for all occam applications.

A Handling recursion in occam

Occam does not allow recursion, so recursive algorithms must be restated
in a non-recursive manner. A good example is the anti-aliasing algorithm
from the ray tracer.

In computer graphics, anti-aliasing is a term used to describe algorithms
which reduce perceptually disturbing artefacts in images. These artefacts
are aliases, and are due to the point-sampling nature of computer graphics
algorithms (see [8]). In order to reduce these aliases (and hence generate
more realistic images) it is necessary to perform area-sampling, so that the
colour assigned to each pixel on the display is an integration over the entire
pixel area, rather than a single point sample.

The simplest approach to anti-aliasing is therefore to supersample each pixel
(e.g trace 16 rays rather than 1) and return the average colour - this implies
a factor of 16 increase in the work load, over-an already compute-intensive
algorithm. Therefore an adaptive supersample is performed.
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The purpose of adaptive supersampling is to generate an anti-aliased image
without the expense of supersampling all pixels in the image. The algorithm
supersamples those pixels where detectable colour changes have occurred,
splitting these pixels into four sub-pixels and recurring. This results (in most
cases) in an acceptable image at an average 30-50% increase in computation
time, over a simple ray ’trace.

Expressed recursively in PASCAL, the algorithm is

FUNCTION averageColour ( x0, yO, size, level : INTEGER) : INTEGER;
FORWARD;

FUNCTION averageColour ( x0, yO, size, level : INTEGER) : INTEGER 1};
VAR
A, B, C, D, half : INTEGER;

BEGIN
A := rayTrace ( x0, y0);
B := rayTrace ( xO+size, yO0);
C := rayTrace ( xO0, yO+size) ;
D := rayTrace ( xO+size, yO+size);

IF (level < maxLevel) AND
(colourDifference ( A, B, C, D) > maxDiff) THEN

BEGIN
half := size / 2
averageColour :=
( averageColour ( xO0, yO, half, level+l) +
averageColour ( xO+half, yO, half, level+l) +
averageColour ( xO, yO+half, half, level+l) +
averageColour ( xO+half, yO+half, half, level+l)) / 4;
END
ELSE

averageColour := (A + B + C + D) / 4;
END;

The recursion bottoms out either when a maximum recursion level has been
reached, or when the colour difference across the corners of the pixel is
deemed acceptable. The INMOS implementation has the maximum recur-
sion level set to 2, so up to 16 rays will be traced per pixel for anti-aliasing.

In occam, the implementation is more verbose, but is simple to understand.
The program explicitly manipulates 2 stacks - actions (i.e what the program
should do next) and parameters (i.e the data on which the program shall
act) are stored on one stack, and returned results (in this case colour values)
are kept on the other.

An action value is popped off the stack and the appropriate action per-
formed. If a TRACE action is to be performed then four points (represent-
ing the corners of the pixel) are raytraced, and their colours compared - if
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Figure 8: Magnified object silhouette A) without and B) with anti-aliasing

the colour spread is acceptable then the average colour is pushed onto the
colour stack, otherwise a MIX action and four further TRACE actions are

pushed onto the action stack.

If a MIX action is to be performed, four colour values are popped off the
colour stack, and their average pushed back.

The algorithm terminates on a HALT action, at which time the pixel’s colour

is held on top of the colour stack.

PROC averageColour ( INT averageColour,

VAL INT xO,
. declare actions - HALT MIX
. declare variables, declare
. procs to manipulate action
... procs to manipulate colour
SEQ
. init stack pointers
pushlAction ( HALT )
push4Action ( x0,y0,size0,1)
action := TRACE
WHILE action <> HALT
IF
action = TRACE
INT a, b, c, d, diff :

yO, sizeO )

a b c d and TRACE x0 yO size level
stacks, sp

/ parameter stack

stack

-- pre-load stack with HALT action
-- and parameters for this pixel

X, y, size, level )

vy )

SEQ
pop4Action (
rayTrace ( a, x,
rayTrace ( b, xtsize, y )
rayTrace ( c, x,

y+size )

rayTrace ( d, xtsize, y+size )
colourDifference ( diff, a, b, c, d )

IF
(level < maxLevel) AND (diff > maxDiff)
SEQ
size := size / 2
level := level+l

pushlAction ( MIX )
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pushbAction ( TRACE, x, v, size, level )

pushbAction ( TRACE, x+size, vy, size, level )

pushbAction ( TRACE, x, y+size, size, level )

push4Action ( x+size, y+size, size, level )
TRUE
SEQ

pushiColour (((a + b) + (c + d)) / 4)
poplAction ( action)
action = MIX
INT a, b, c, d :
SEQ
pop4Colour ( a, b, c, d )
pushiColour (((a + b) + (c + d)) / 4)
poplAction ( action)
poplColour ( averageColour)

Note that as presented the algorithm is extremely inefficient, re-ray tracing
points several times over. The algorithm as implemented caches previous
results (in a large vector declared at the outermost lexical level and abbre-
viated into a local variable).

Figure 9: Ray traced image with anti-aliasing
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