
Notes on
Graphics Support and

Performance Improvements
on the IMS T800

INMOS Technical Note 26

Guy Harriman

July 1987
72-TCH-026-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 Graphics Support 5
2.1 Introduction . 5
2.2 Graphics Example . 5
2.3 The Graphics Instructions . 7

2.3.1 Two-Dimensional Block Move Of All Bytes 7
2.3.2 Two-Dimensional Block Move Of Non-Zero Bytes . . . 8
2.3.3 Two-Dimensional Block Move Of Zero Bytes 8

2.4 Use Of Two-Dimensional Block Move 9
2.5 Passing Parameters To The Instructions 9
2.6 Relative Performance on the IMS T800 10
2.7 Conclusion . 11

3 Floating Point Support - The Whetstone Benchmark 11
3.1 Introduction . 11
3.2 The Whetstone Program . 11
3.3 Conclusion . 15

4 Cyclic Redundancy Check Generation 15
4.1 Introduction . 15
4.2 Little-Endian Versus Big-Endian 16
4.3 The IMS T800 Occam2 Compiler CRC Library Procedures . 18
4.4 The CRC Support Instructions 29
4.5 Conclusion . 30

5 Link Data Bandwidth Improvement 30
5.1 Introduction . 30
5.2 Overlapped Acknowledges . 30
5.3 Double Buffering . 31
5.4 Benchmark Results . 32
5.5 Conclusion . 33

6 Oscillographs 34

3

1 Introduction

A transputer is a microcomputer with its own local memory, and with links
for interconnecting between transputers and other transputer family prod-
ucts.

The IMS T800 is a 64-bit floating point member of a family of transputers,
all of which are consistent with the INMOS transputer architecture described
in the transputer reference manual. It is based on the IMS T414 design, but
includes certain improvements and additions.

A fast autonomous floating point unit (FPU) on the IMS T800 replaces the
microcoded floating point support of the IMS T414B. The 64-bit floating
point unit provides single length and double length operation according
to the ANSI-IEEE 754-1985 standard for floating point arithmetic and is
able to perform floating point arithmetic operations concurrently with the
processor, sustaining in excess of 1.5 MegaFlops.

A number of improvements were made to the central processing unit (CPU),
including the addition of a number of instructions to replace important code
sequences, optimising their speed of execution. Graphics support was added
in the form of block move instructions.

The improvements were designed to boost performance in some important
application areas, such as general concurrent (parallel) processing, commu-
nications, and high speed graphics, beyond the floating point performance
improvement provided by the FPU alone. To further enhance performance,
the amount of single cycle access internal static ram has been doubled on
the IMS T800.

Significant improvement in link performance has been made possible on the
IMS T800. The links were redesigned to double the data throughput by
allowing the acknowledge packet to be sent before the data packet has been
fully received.

This technical note on the IMS T800 begins by introducing the graphics sup-
port instructions, with an example of their use. It gives the results of the
Whetstone benchmark for floating point performance, describes the imple-
mentation and speed of CRC generation, and compares the link performance
of the IMS T800 with the IMS T414B.

Further details of the Whetstone benchmark system referred to in this doc-
ument can be found in Technical Note 27.

4

2 Graphics Support

2.1 Introduction

The IMS T800 has special instructions provided to support graphics, in
addition to the support provided for floating point arithmetic.

Pixels may be represented by single or multiple bytes in the graphics mem-
ory. They can be rapidly drawn, by overlaying, in such a way as to produce
complex images.

The three new graphics instructions which have been added are concerned
with moving a two-dimensional block of data from source to destination. The
instructions differ in how the source and destination data are combined. The
instruction move2dall replaces the original values of the destination bytes
with the values of the source bytes. The instruction move2dnonzero only
replaces the original value of each destination byte with the value of the
corresponding source byte if the source byte is not zero (the colour black)
in value. The third instruction, move2dzero, only replaces the original value
of each destination byte with the value of the corresponding source byte if
the source byte is zero in value.

2.2 Graphics Example

To illustrate this technique for graphics, the following example may be made.
If it is required to display the letter E in striped colours, as seen through a
keyhole, the graphics instructions may be easily applied to this task.

Three templates or predefined arrays of source data are needed in order
to form the letter E in striped colours, through a keyhole. A template of
the letter is taken from a table held in memory. This table would hold all
the characters in as many type faces and as many orientations as required
by the application. If the characters are held as an 8 by 8 byte array, its
hexadecimal representation might be

A separate 8 by 8 byte array would hold the striped colours. If the two
required colours have byte values #35 and #5A, for example, it would be

5

held as

A third template would be the mask of a keyhole, and might look like

The first operation is to copy the striped colour template to a workspace
area using move2dall. Then the letter E is applied to this workspace area by
copying the E template to the workspace using move2dzero. The workspace
now looks like

Next, the keyhole template is copied to the workspace using move2dzero.
The workspace now appears as

This final pattern can now be copied to the video ram display area for display
on the screen using move2dall.

A total of four moves have been made to make up this complex pattern on
the screen. If the internal ram is used as the workspace area and for the
keyhole and striped colour templates, the 16 reads and writes in the copying

6

only take 32 processor cycles. When move2dnonzero and move2dzero are
used, and none of the bytes need to be written to the destination in a word,
the write operation itself is inhibited and takes two processor cycles to occur
instead of the number of processor cycles in the memory access.

In order to improve on the performance, it may be legitimate to hold char-
acters in store with the striped colour already applied to them, and to only
apply the keyhole template at execution time. This would remove one of
the move2dzero operations from the four moves used above.

From this example it can be seen that such functions as arbitrarily shaped
overlapping windows may be achieved by the consecutive application of the
graphics instructions. The instruction move2dnonzero is useful in the case of
putting one image partially on top of another. The instruction move2dzero
is useful when it is required to clip an image to a certain shape.

Taking a colour workstation application using an IMS T800-20, with a screen
resolution of 1024 by 1024 8 bit pixels, four cycle (200 nSec) dynamic ram
and video ram, and displaying characters which are defined to be 16 by
16 pixels, each character requires (4 * 16) words to be transfered to the
video ram. The size of the table for 80 characters would be (16 * 16 * 80)
bytes, that is 20 Kbytes. Assuming that half of the words in the character
table have all four bytes of zero value, and that the character table is held
in the external dynamic ram, there will be 4 * 64 cycles spent in reading
the character from the table. There will also be, on average, 2 * 64 cycles
spent on writing the character to video ram. For every row in the move2dall
instruction there will also be an overhead of about 12 cycles. The total
number of processor cycles taken to display one character will therefore be
approximately

(4 ∗ 64) + (2 ∗ 64) + (12 ∗ 16) = 576

The time taken for an IMS T800-20 is therefore 28.8 microseconds per char-
acter. A screen of 1000 arbitrarily positioned characters can be drawn in
28.8 milliseconds, that is a screen refresh rate of 35 times per second.

2.3 The Graphics Instructions

The function of these two-dimensional block move instructions may best be
described by occam PROCs.

2.3.1 Two-Dimensional Block Move Of All Bytes

PROC Move2D (VAL[][]BYTE Source, VAL INT sx, sy,
[][]BYTE Dest, VAL INT dx, dy,

7

width, length)
SEQ y = 0 FOR length
[Dest[y+dy] FROM dx FOR width] :=
[Source[y+sy] FROM sx FOR width]

:

This moves a block of size width, length which starts at byte Source[sy][sx]
to the block starting at byte Dest[dy][dx].

The Move2D procedure is implemented by the instruction move2dall.

2.3.2 Two-Dimensional Block Move Of Non-Zero Bytes

PROC Draw2D (VAL[][]BYTE Source, VAL INT sx, sy,
[][]BYTE Dest, VAL INT dx, dy,
width, length)

BYTE temp:
SEQ line = 0 FOR length
SEQ point = 0 FOR width
SEQ
temp := Source[line+sy][point+sx]
IF
temp = (BYTE 0)
SKIP

TRUE
Dest[line+dy][point+dx] := temp

:

This moves a block of size width, length which starts at byte Source[sy][sx] to
the block starting at byte Dest[dy][dx]. However, for every byte transferred
a check is made to see if it is zero. If this is the case then that byte is not
copied, and the destination remains unaltered.

The Draw2D procedure is implemented by the instruction move2dnonzero.

2.3.3 Two-Dimensional Block Move Of Zero Bytes

PROC Clip2D (VAL[](]BYTE Source, VAL INT sx, sy,
[][]BYTE Dest, VAL INT dx, dy,
width, length)

BYTE temp:
SEQ line = 0 FOR length
SEQ point = 0 FOR width
SEQ
temp := Source[line+sy][point+sx]
IF

8

temp = (BYTE 0)
Dest[line+dy][point+dx] := temp

TRUE
SKIP

:

This moves a block of size width, length which starts at byte Source[sy][sx] to
the block starting at byte Dest[dy][dx]. However for every byte transferred
a check is made to see if it is zero. If this is the case then that byte is copied.

The Clip2D procedure is implemented by the instruction move2dzero.

2.4 Use Of Two-Dimensional Block Move

Draw2D and Clip2D are complementary. Draw2D is used for the copying of
irregular shapes onto the screen. Clip2D is used in the creation of templates,
where non-rectangular shapes are masked out from a picture. Complex
shapes can be formed easily by multiple use of Draw2D and Clip2D to form
images, before copying the shape with Move2D to a video frame buffer for
display.

2.5 Passing Parameters To The Instructions

Six parameters are required to perform two-dimensional block moves. They
are

1 The address of the least significant byte to be copied from (the first
source byte).

2 The address of the least significant byte to be copied to (the first
destination byte).

3 The width or number of bytes in each row to be copied.

4 The length or number of rows to be copied.

5 The stride or number of bytes in each row of the source array.

6 The stride or number of bytes in each row of the destination array.

The instruction move2dinit sets up three of these parameters in the reserved
workspace in internal memory between #80000048 (above the interrupt save
space) and #80000070 (MemStart). Three words of the reserved workspace
are used for low priority two-dimensional block moves, and three other words

9

of the reserved workspace are used for high priority two-dimensional block
moves. On entry to move2dinit the stride of the source array is in the Creg,
the stride of the destination array is in the Breg and the length is in the
Areg. The three instructions move2dall, move2dnonzero and move2dzero
contain on entry the address of the first source byte in the Creg, the address
of the first destination byte in the Breg and the width in the Areg.

2.6 Relative Performance on the IMS T800

The occam procedures and the equivalent instructions were executed with
code and data in external memory for a range of array sizes on an IMS
T800A. This IMS T800A-20 was put on an Inmos B004 evaluation board
having four cycle external memory, and operated at 20 MHz processor cycle
frequency. All the benchmarking was done at high priority, in order to
prevent the screen and keyboard handling from timeslicing the execution
of the program, and to give access to the high priority timer which has a
resolution of one microsecond.

The size of the destination array was 1024 by 1024 bytes. The source arrays
were not initialised, and so contained an arbitrary number of zero value
bytes. Therefore it is not relevant to compare the times taken for Clip2D and
Draw2D for any array size. However, the relative performance for each array
for the procedure and the equivalent instructions for Clip2D and Draw2D
are based on identical initial conditions, and these may be meaningfully
compared.

The following results were obtained:

Source Type of Time For Time For
Array Size Move Procedure Instruction

512 * 512 Move2D 30318 µsec 27015 µsec
512 * 512 Draw2D 1595661 µsec 18262 µsec
512 * 512 Clip2D 2359623 µsec 26227 µsec

256 * 256 Move2D 8502 µsec 6839 µsec
256 * 256 Draw2D 399061 µsec 4702 µsec
256 * 256 Clip2D 590293 µsec 6551 µsec

8 * 8 Move2D 72 µsec 14 µsec
8 * 8 Draw2D 442 µsec 14 µsec
8 * 8 Clip2D 579 µsec 14 µsec

1 * 1 Move2D 16 µsec 4 µsec
1 * 1 Draw2D 20 µsec 3 µsec
1 * 1 Clip2D 16 µsec 4 µsec

10

2.7 Conclusion

It can be seen that the overhead of doing one-dimensional block moves and
a replicated SEQ in the Move2D occam procedure falls from 500% for an 8
* 8 array to 12

It can also be seen that the overhead of detecting zero value bytes and
conditionally storing them one a time in Draw2D and Clip2D compared
with the use of move2dnonzero and move2dzero increases from a factor of
30 for an 8 * 8 array to a factor of 90 for a 512 * 512 array.

The advantage of using the graphics instructions instead of dedicated hard-
ware is the flexibility that software offers. The performance provided should
be adequate for many applications, but it is of course easy to linearly in-
crease this performance by adding more IMS T800’s to a system, giving each
a proportion of the video ram to draw into. It is most straightforward to
divide the screen in the way in which the video ram chips are partitioned.
The serial port of the video rams can be connected up as they would be with
a single IMS T800 as a processor.

3 Floating Point Support - The Whetstone Bench-
mark

3.1 Introduction

The Whetstone program is often used to compare the floating point per-
formance of machines, as it contains a ’normal’ mixture of accessing data
structures, integer arithmetic, and floating pointing arithmetic.

For this benchmark, an IMS T800B was put into a B004 IBM PC/AT eval-
uation board running with four cycle external memory. The transputer
development system (TDS) was run on the IMS T800B, and the T800 com-
piler was used to compile the Whetstone benchmark program, which was
then loaded and run on the IMS T800B.

3.2 The Whetstone Program

The Whetstone program (Randell and Russell, 1964) consists of eleven mod-
ules, each of which contains a loop. The number of times the loop is executed
is called the weighting of the module. The modules were designed to provide
a good fit to the statistics of language usage by the choice of the following
loop count values:

11

Module Purpose Internal Loop
Number Of Module Count (Weighting)

1 Simple Identifiers 0
2 Array Elements 12
3 Array As Parameter 14
4 Conditional Jumps 345
5 Omitted 0
6 Integer Arithmetic 210
7 Trig Functions 32
8 Procedure Calls 899
9 Array References 616
10 Integer Arithmetic 0
11 Standard Functions 93

The zero weightings were given because in these cases the best fit of the
benchmark to the statistical analysis showed that the weightings should
have been negative.

The Whetstone program was translated into occam exactly as prescribed by
the original. All procedure calls were preserved, and all 11 of the original
modules were used, including those that are not executed in the standard
itself (modules 1, 5, and 10) so that the code size was that of the stan-
dard. None of the expression orders were modified to make them quicker to
execute.

The program was executed at high priority, to allow the high priority proces-
sor clock to be read. This clock has a resolution of one microsecond, while
the low priority has a resolution of 64 microseconds. After each module had
completed execution, the timer was read.

The program includes five transcendental functions (sin, cos, arctan, log,
and exponential), and the compiled size for the occam version is such that
both the code and data fit in 3.5 Kbytes. It is therefore possible to run the
benchmark in internal memory.

Ten iterations of the Whetstone loop give one million Whetstones. The time
taken for ten iterations for single length data, with the effect of internal and
external (four cycle access) memory is shown below :

12

Data Position of
Length Code Data Module Execution Time
Single Internal Internal 1 0 µsec
Single Internal Internal 2 1212 µsec
Single Internal Internal 3 9175 µsec
Single Internal Internal 4 8194 µsec
Single Internal Internal 5 0 µsec
Single Internal Internal 6 12810 µsec
Single Internal Internal 7 52576 µsec
Single Internal Internal 8 55290 µsec
Single Internal Internal 9 27411 µsec
Single Internal Internal 10 0 µsec
Single Internal Internal 11 49523 µsec

Single External Internal 1 0 µsec
Single External Internal 2 1328 µsec
Single External Internal 3 10436 µsec
Single External Internal 4 13074 µsec
Single External Internal 5 0 µsec
Single External Internal 6 16381 µsec
Single External Internal 7 73729 µsec
Single External Internal 8 70612 µsec
Single External Internal 9 38439 µsec
Single External Internal 10 0 µsec
Single External Internal 11 65878 µsec

Single External External 1 0 µsec
Single External External 2 1843 µsec
Single External External 3 16130 µsec
Single External External 4 17885 µsec
Single External External 5 0 µsec
Single External External 6 27140 µsec
Single External External 7 97535 µsec
Single External External 8 104797 µsec
Single External External 9 68992 µsec
Single External External 10 0 µsec
Single External External 11 85066 µsec

The time taken for ten iterations for double length data, with the effect of
Internal and External (four cycle access) memory is shown below:

13

Data Position of
Length Code Data Module Execution Time
Double Internal Internal 1 0 µsec
Double Internal Internal 2 1494 µsec
Double Internal Internal 3 11415 µsec
Double Internal Internal 4 9228 µsec
Double Internal Internal 5 0 µsec
Double Internal Internal 6 16065 µsec
Double Internal Internal 7 119385 µsec
Double Internal Internal 8 79667 µsec
Double Internal Internal 9 44349 µsec
Double Internal Internal 10 0 µsec
Double Internal Internal 11 95701 µsec

Double External Internal 1 0 µsec
Double External Internal 2 1649 µsec
Double External Internal 3 13036 µsec
Double External Internal 4 14195 µsec
Double External Internal 5 0 µsec
Double External Internal 6 21345 µsec
Double External Internal 7 146688 µsec
Double External Internal 8 89623 µsec
Double External Internal 9 50137 µsec
Double External Internal 10 0 µsec
Double External Internal 11 108346 µsec

Double External External 1 0 µsec
Double External External 2 2446 µsec
Double External External 3 21369 µsec
Double External External 4 18402 µsec
Double External External 5 0 µsec
Double External External 6 31753 µsec
Double External External 7 187389 µsec
Double External External 8 141227 µsec
Double External External 9 82790 µsec
Double External External 10 0 µsec
Double External External 11 139744 µsec

The Whetstone ratings, formed by summing the execution times for the
individual modules, are as follows:

Data Position of Total
Length Code Data Execution Time MWhet/sec
Single Internal Internal 216191 µsec 4.63
Single External Internal 289877 µsec 3.45
Single External External 419388 µsec 2.38
Double Internal Internal 377304 µsec 2.65
Double External Internal 445019 µsec 2.25
Double External External 625120 µsec 1.60

14

3.3 Conclusion

The Single length Whetstone rating for an IMS T800B-20 was shown to
be 4.6 MWhetstones per second. The quoted figures for the benchmark
are for the use of Internal memory. The effect of External memory on the
execution times of the Single length Whetstone program was investigated
to demonstrate the performance cost of executing floating point programs
from External memory. However, the efficiency of compiled occam is such
that even as large a program as the Whetstone program can fit into Internal
memory.

The performance of the IMS T800A-20 was 3.8 MWhetstones per second.
The IMS T800B-20 achieved a rating of 4.6 MWhetstones per second by
the use of three-bits-at-a-time floating point multiplication-instead of the
two-bits-at-a-time multiplication used on the IMS T800A, and by the use
of TIMES instead of ’*’to do integer multiplication. TIMES in occam2
compiles to the prod instruction, whereas ’*’ compiles to the mul instruction.
On the IMS T800B both small negative and small positive multipliers are
executed quickly, in a time proportional to the bit position of the most
significant bit set in the modulus of the multiplier. On the IMS T800A
and IMS T414B only small positive numbers were treated in this way. The
mul instruction always takes 38 cycles. The prod instruction, unlike the mul
instruction, does not evaluate the overflow condition from the multiplication,
but can be used to improve performance wherever error checking is not
required. The compiler can always substitute prod for mul when the user
selects ’REDUCED’ error checking in the compiler parameters, as overflow
is ignored.

Further details of the Whetstone benchmark system referred to in this doc-
ument can be found in Technical Note 27.

4 Cyclic Redundancy Check Generation

4.1 Introduction

A group of four instructions was added to the IMS T800 to provide a method
for efficiently generating cyclic redundancy checks (CRCs). These checks
are based on the addition of a small amount of redundant information to
the end of messages, and are generated in such a way that an error in
the transmission of a message is most likely to be detected. The method
uses the shifting and exclusive-oring of the message to produce a checksum
in the same way that pseudo-random or maximal length numbers can be
produced. This method can also be understood as the polynomial division

15

of the message to produce a remainder, the message being treated as a
single binary number. The polynomial divisor is known as the polynomial
generator, and is chosen for an application for its particular properties. The
remainder (checksum) has the property in polynomial division that when
it is placed at the least significant end of the message, and the division is
performed over both the message and the checksum, then the remainder
is zero. It can therefore be understood that if both the message and the
checksum are transmitted, and the division performed over both by the
receiver, then the receiver can identify if the transmission was corrupted by
the remainder not being zero.

In hardware, the implementation of the CRC is normally done with a shift
register of the required bit length, and exclusive-or gates connected to give
the effect of the polynomial generator. Thus the bit length of the checksum
and the value of the polynomial generator are fixed in the hardware.

The approach taken on the IMS T800 was to generate the CRC checksum
in microcode, as this gave the user flexibility in the choice of bit length
(up to a 32 bit word), and control over the choice of polynomial generator.
As the function of checksum evaluation is division in which the conditional
subtraction is replaced by conditional exclusive-oring, the logic and datapath
structures which are used for integer division were used in the same way to
perform polynomial division.

4.2 Little-Endian Versus Big-Endian

During the history of the development of communications standards, much
confusion and incompatibility has been caused by the choice by different
manufacturers of their definitions of the order of bit significance in the stor-
age of data objects.

If the least significant bit of a data object is stored at the numerically small-
est bit address, and all more significant bits are stored in ascending address
order, the convention used is known as little-endian. On the other hand,
if the most significant bit of a data object is stored at the smallest bit ad-
dress, and all less significant bits are stored in ascending address order, the
convention is known as big-endian. The INMOS transputer architecture
convention is strictly little-endian.

There is an entire range of manufacturers’ conventions, from completely
little-endian to completely big-endian. Many conventions are inconsistent
within themselves, having for example bits within bytes ordered in one di-
rection, but bytes within words ordered in the opposite direction.

The little-endian scheme dictates that the most significant bit of the mes-

16

sage is held at the highest value address. This means that the message is
stored in the same way as it would be if it was a binary number on which
arithmetic was to be performed. As division is done by dividing the most
significant part of the dividend, and proceeding to the least significant end
of the dividend, it follows that polynomial division for the calculation of
the checksum should start from the most significant bit of the message.
The predefined procedure CRCFromMSB in the occam2 compiler library
implements CRC generation starting from the most significant bit of an ar-
bitrarily aligned byte string. The instruction crcword is used to apply the
polynomial generator to each word-in the message beginning at the most
significant word.

An example of a standard which starts the CRC calculation from the most
significant end is called XMODEM. This standard uses a 16 bit check-
sum, with a CCITT (X.25) HDLC/SDLC generator polynomial #11021
(G(x)=x**16 + x**12 + x**5 + 1). This polynomial generator is passed as
a parameter to CRCFromMSB as #10210000, as the most significant 16 bits
of the 32 bit integer form the 16 bit CRC register. The order of bytes within
an occam string must be reversed before applying CRCFromMSB. The result
is left in the most significant 16 bits of the 32 bit integer CRCResult.

The following XMODEM test cases, where the strings are written in reverse
order to occam strings, were used to check the correctness of CRCFromMSB:

InputString
Polynomial CRC
Generator Result

”T” #10210000 #1A710000
”EHT” #10210000 #1E0A0000
”9876543210,XOF,NWORB,KCIUQ,EHT” #10210000 #04980000

In order to check CRCs which have been generated according to the big-
endian convention, the predefined procedure CRCFromLSB is provided. The
predefined procedure CRCFromLSB in the occam2 compiler library imple-
ments CRC generation starting from the least significant bit of an arbitrarily
aligned byte string. As the instruction crcword is used to apply the polyno-
mial generator to each word in the message beginning at the least significant
word, and crcword starts from the MSB, each word is bit reversed after being
loaded in the CPU stack using the instruction bitrevword.

Two related examples of standards which start the CRC calculation from
the least significant end are CCITTCRC and SDLC. These standards also
use a 16 bit checksum, with the CCITT (X.25) HDLC/SDLC generator
polynomial #11021 (G(x)=x**16 + x**12 + x**5 + 1), passed as a param-
eter to CRCFromLSB as #10210000, as the most significant 16 bits of the
32 bit integer form the 16 bit CRC register. The result is left in the least

17

significant 16 bits of the 32 bit integer CRCResult. The difference between
CCITT-CRC and SDLC is that in hardware the CRC register is initialised
to #FFFF in SDLC. This prevents leading zeroes from being added to or
deleted from the message without being detected by SDLC, as they do not
effect MODEM or CCITT-CRC checksums. In order to correctly compute
an SDLC checksum in software, the least two significant bytes of the message
must be BITNOTed. If the message is only one byte long, then this byte
and the least significant byte of the integer CRCResult must be BITNOTed.

The following CCITT-CRC test cases were used to check the correctness of
CRCFromLSB:

InputString
Polynomial CRC
Generator Result

”T” #10210000 #000014A1
”THE” #10210000 #00007D8D
”THE,QUICK,BROWN,FOX,0123456789” #10210000 #00007DC5

The rule of one’s-complementing the first two bytes of the string, or in
the case of the one byte string ”T”, one’s-complementing the ”T” and the
least significant byte of CRCResult, must be applied to generate SDLC.
The following SDLC test cases were also used to check the correctness of
CRCFromLSB:

InputString
Polynomial CRC
Generator Result

”T” #10210000 #00001826
”THE” #10210000 #000044BE
”THE,QUICK,BROWN,FOX,0123456789” #10210000 #0000DF91

4.3 The IMS T800 Occam2 Compiler CRC Library Proce-
dures

The CRC library procedures have been written to efficiently perform check-
sum calculation on arbitrarilyaligned byte vectors. As the most important
uses involve large messages which tend to be placed in external memory, the
message is taken in sixteen word chunks, and if the message is not already
word aligned in memory, block moved into the vector []BYTE AlignedBuffer
which is PLACED in the workspace of the CRC procedure. The purpose of
doing this is to realign each chunk to a word boundary, and then to have
fast access to the aligned chunk as the vector []BYTE AlignedBuffer would
be held in internal memory. The instruction crcword is used in the opti-
mum way in this section of the CRC procedures, as both the CRCResult
and the PolynomialGenerator are left on the CPU stack after each word is

18

read either directly from the message, or if it had to be block moved, from
the []BYTE AlignedBuffer vector.

The words remaining from the message after all the complete sixteen word
chunks have been processed are CRCed one word at a time. Finally any bytes
left over from the message are CRCed one at a time with the instruction
crcbyte. As the final bit of the message must pass all the way through the
CRCResult register, the checksum is completed by using a word value of
zero as data with the instruction crcword.

This is the occam2 source of the library procedure CRCFromMSB:

PROC CRCFromMSB (VAL []BYTE InputString,
VAL INT PolynomialGenerator,
INT CRCResult)

-- Comment
-- The string of bytes is polynomially divided by the generator
-- starting from the most significant bit of the most significant byte
-- byte in decreasing bit order.

-- All the bits in the string of bytes must be shifted through the
-- CRC register, including the least significant bit of the string.

-- VARS
VAL []BYTE ZeroWord RETYPES [0] :
VAL BPW IS SIZE ZeroWord :
VAL BufferWordSize IS 16 :
VAL BufferSize IS BufferWordSize * BPW :
[BufferSize]BYTE AlignedBuffer : -- Assumes Byte vectors are word aligned
PLACE AlignedBuffer IN WORKSPACE :
INT Aligned :
INT WordCount :
INT ByteCount :
INT Base :

SEQ
Base := SIZE InputString
-- WordCount := WordSel(ByteCount)
ByteCount := SIZE InputString
GUY
LDL ByteCount
WCNT -- Areg := WordSel(Areg); Breg := ByteSel(Areg)
STL WordCount
STL ByteCount

-- Aligned := &InputString[Base] /\ (BPW - 1))
GUY

19

LDL Base
LDLP InputString
BSUB
WCNT -- Areg := WordSel(Areg); Breg := ByteSel(Areg)
REV
STL Aligned

-- CRC 16 Words at a time
IF
Aligned = 0
WHILE (WordCount >= BufferWordSize)
SEQ
Base := Base - BufferSize
-- CRC 16 words
VAL AlignedBuffer IS [InputString FROM Base FOR BufferSize] :
GUY
LDL PolynomialGenerator
LDL CRCResult
LDLP AlignedBuffer
LDNL 15
CRCWORD
LDLP AlignedBuffer
LDNL 14
CRCWORD
LDLP AlignedBuffer
LDNL 13
CRCWORD
LDLP AlignedBuffer
LDNL 12
CRCWORD
LDLP AlignedBuffer
LDNL 11
CRCWORD
LDLP AlignedBuffer
LDNL 10
CRCWORD
LDLP AlignedBuffer
LDNL 9
CRCWORD
LDLP AlignedBuffer
LDNL 8
CRCWORD
LDLP AlignedBuffer
LDNL 7
CRCWORD
LDLP AlignedBuffer
LDNL 6
CRCWORD
LDLP AlignedBuffer

20

LDNL 5
CRCWORD
LDLP AlignedBuffer
LDNL 4
CRCWORD
LDLP AlignedBuffer
LDNL 3
CRCWORD
LDLP AlignedBuffer
LDNL 2
CRCWORD
LDLP AlignedBuffer
LDNL 1
CRCWORD
LDLP AlignedBuffer
LDNL 0
CRC WORD
LDLP CRCResult
STNL 0

WordCount := WordCount - BufferWordSize
TRUE
WHILE (WordCount >= BufferWordSize)
SEQ
Base := Base - BufferSize
AlignedBuffer := [InputString FROM Base FOR BufferSize]
-- CRC 16 words in buffer
GUY
LDL PolynomialGenerator
LDL CRCResult
LDLP AlignedBuffer
LDNL 15
CRCWORD
LDLP AlignedBuffer
LDNL 14
CRC WORD
LDLP AlignedBuffer
LDNL 13
CRCWORD
LDLP AlignedBuffer
LDNL 12
CRCWORD
LDLP AlignedBuffer
LDNL 11
CRCWORD
LDLP AlignedBuffer
LDNL 10
CRCWORD
LDLP AlignedBuffer

21

LDNL 9
CRCWORD
LDLP AlignedBuffer
LDNL 8
CRCWORD
LDLP AlignedBuffer
LDNL 7
CRCWORD
LDLP AlignedBuffer
LDNL 6
CRCWORD
LDLP AlignedBuffer
LDNL 5
CRCWORD
LDLP AlignedBuffer
LDNL 4
CRCWORD
LDLP AlignedBuffer
LDNL 3
CRCWORD
LDLP AlignedBuffer
LDNL 2
CRCWORD
LDLP AlignedBuffer
LDNL 1
CRCWORD
LDLP AlignedBuffer
LDNL 0
CRCWORD
LDLP CRCResult
STNL 0

WordCount := WordCount - BufferWordSize

-- Deal with remaining words
IF
WordCount > 0
VAL Length IS WordCount * BPW :
SEQ
-- Copy remaining whole words into buffer and do CRC on buffer
Base := Base - Length
[AlignedBuffer FROM 0 FOR Length] := [InputString FROM

Base FOR Length]
[]INT AlignedWordBuffer RETYPES AlignedBuffer :
SEQ i = 1 FOR WordCount
CRCResult := CRCWORD (AlignedWordBuffer [WordCount-i],

CRCResult, PolynomialGenerator)
TRUE
SKIP

22

-- Deal with remaining bytes
-- deal with remaining bytes (must be less than one word)

IF
ByteCount > 0
SEQ
-- Align remaining bytes of string into top part of word
[AlignedBuffer FROM 0 FOR BPW] := ZeroWord
Base := Base - ByteCount
[AlignedBuffer FROM BPW - ByteCount FOR ByteCount] :=
[InputString FROM Base FOR ByteCount]

INT Data RETYPES [AlignedBuffer FROM 0 FOR BPW]
SEQ i = 0 FOR ByteCount
SEQ
CRCResult := CRCBYTE (Data, CRCResult, PolynomialGenerator)
Data := Data << 8

TRUE
SKIP

-- The LSB of the byte string must be shifted through
-- CRCResult, with zero data shifted in from DataRegister.

CRCResult := CRCWORD (0, CRCResult, PolynomialGenerator)
:

This is the occam2 source of the library procedure CRCFromLSB:

PROC CRCFromLSB (VAL []BYTE InputString,
VAL INT PolynomialGenerator,
INT CRCResult)

-- Comment
-- The string of bytes is polynomially divided by the generator
-- starting from the least significant bit of the least significant byte
-- byte in increasing bit order.

-- All the bits in the string of bytes must be shifted through the
-- CRC register, including the most significant bit of the string.

-- VARS
VAL []BYTE ZeroWord RETYPES [0] :
VAL BPW IS SIZE ZeroWord :
VAL BufferWordSize IS 16 :
VAL BufferSize IS BufferWordSize * BPW :
[BufferSize] BYTE AlignedBuffer : -- Assumes Byte vectors are word aligned
PLACE AlignedBuffer IN WORKSPACE :

23

INT Aligned :
INT WordCount :
INT ByteCount :
INT Base :

SEQ
Base := 0
-- WordCount := WordSel(ByteCount)
ByteCount := SIZE InputString
GUY
LDL ByteCount
WCNT -- Areg := WordSel(Areg); Breg := ByteSel(Areg)
STL WordCount
STL ByteCount

-- Aligned := &InputString /\ (BPW - 1)
GUY
LDL Base
LDLP InputString
BSUB
WCNT -- Areg := WordSel(Areg); Breg := ByteSel(Areg)
REV
STL Aligned

-- CRC 16 Words at a time
IF
Aligned = 0
WHILE (WordCount >= BufferWordSize)
SEQ
VAL AlignedBuffer IS [InputString FROM Base FOR BufferSize] :
-- CRC 16 words
GUY
LDL PolynomialGenerator
LDL CRCResult
LDLP AlignedBuffer
LDNL 0
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 1
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 2
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 3
BITREVWORD

24

CRCWORD
LDLP AlignedBuffer
LDNL 4
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 5
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 6
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 7
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 8
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 9
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 10
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 11
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 12
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 13
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 14
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 15
BITREVWORD
CRCWORD

25

LDLP CRCResult
STNL 0

WordCount := WordCount - BufferWordSize
Base := Base + BufferSize

TRUE
WHILE (WordCount >= BufferWordSize)
SEQ
AlignedBuffer := [InputString FROM Base FOR BufferSize]
-- CRC 16 words
GUY
LDL PolynomialGenerator
LDL CRCResult
LDLP AlignedBuffer
LDNL 0
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 1
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 2
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 3
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 4
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 5
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 6
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 7
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 8
BITREVWORD
CRCWORD

26

LDLP AlignedBuffer
LDNL 9
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 10
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 11
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 12
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 13
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 14
BITREVWORD
CRCWORD
LDLP AlignedBuffer
LDNL 15
BITREVWORD
CRCWORD
LDLP CRCResult
STNL 0

WordCount := WordCount - BufferWordSize
Base := Base + BufferSize

-- Deal with remaining words
IF
WordCount > 0
VAL Length IS WordCount * BPW :
SEQ
-- Copy remaining whole words into buffer and do CRC on buffer
[AlignedBuffer FROM 0 FOR Length] := [InputString FROM

Base FOR Length]
[]INT AlignedWordBuffer RETYPES AlignedBuffer :
SEQ i = 0 FOR WordCount
CRCResult := CRCWORD (BITREVWORD (AlignedBuffer[i]),

CRCResult, PolynomialGenerator)
Base := Base + Length

TRUE
SKIP

27

-- Deal with remaining bytes
-- deal with remaining bytes (must be less than one word)
IF
ByteCount > 0
SEQ
-- Align remaining bytes of string into top part of word
[AlignedBuffer FROM 0 FOR BPW] := ZeroWord
[AlignedBuffer FROM 0 FOR ByteCount] :=
[InputString FROM Base FOR ByteCount]

INT Data RETYPES [AlignedBuffer FROM 0 FOR BPW] :
SEQ
Data := BITREVWORD (Data)
SEQ i = 0 FOR ByteCount
SEQ
CRCResult := CRCBYTE (Data, CRCResult, PolynomialGenerator)
Data := Data << 8

TRUE
SKIP

-- The MSB of the byte string must be shifted through
-- CRCResult, with zero data shifted in from DataRegister.

CRCResult := BITREVWORD (CRCWORD (0, CRCResult, PolynomialGenerator))
:

One difference between CRCFromMSB and CRCFromLSB is that the mes-
sage is taken in chunks starting from the most significant end in CRCFromMSB
and from the least significant end in CRCFromLSB. Another difference is
that bit reversal has to be applied to each word of the message using the
instruction bitrevword before it is CRCed, and that the final CRCResult is
also bit-reversed with the instruction bitrevword in CRCFromLSB.

Using an IMS T800B-20 in an IMS B004 evaluation board with four cycle
external memory, the performance in calculating CRCs with the library
procedures was measured. Timings were taken with the high priority timer
to give one microsecond resolution. The strings were word-aligned. The
measurements were taken with the test program compiled with software
range-checking enabled, and with it disabled.

28

Procedure
Range String Time to MBits/sec
Check Length CRC CRCed

CRCFromMSB OFF #20 74 µsec 3.5
CRCFromMSB ON #20 79 µsec 3.2
CRCFromLSB OFF #20 86 µsec 3.0
CRCFromLSB ON #20 94 µsec 2.7

CRCFromMSB OFF #100 183 µsec 11.2
CRCFromMSB ON #100 189 µsec 10.8
CRCFromLSB OFF #100 308 µsec 6.6
CRCFromLSB ON #100 314 µsec 6.5

CRCFromMSB OFF #1000 2697 µsec 12.1
CRCFromMSB ON #1000 2781 µsec 11.8
CRCFromLSB OFF #1000 4672 µsec 7.0
CRCFromLSB ON #1000 4768 µsec 6.9

CRCFromMSB OFF #10000 42912 µsec 12.2
CRCFromMSB ON #10000 44253 µsec 11.8
CRCFromLSB OFF #10000 74482 µsec 7.0
CRCFromLSB ON #10000 76015 µsec 6.9

CRCFromMSB OFF #100000 686356 µsec 12.2
CRCFromMSB ON #100000 707807 µsec 11.9
CRCFromLSB OFF #100000 1191463 µsec 7.0
CRCFromLSB ON #100000 1216768 µsec 6.9

4.4 The CRC Support Instructions

Two instructions, crcword and crcbyte, directly support CRC calculation.
They use the CPU stack to implement the algorithm. On entry to the in-
structions, Creg contains the PolynomialGenerator, Breg contains the cur-
rent checksum, and Areg contains the data to be CRCed.

The polynomial division of each bit is performed by shifting Areg one place
more significant into Breg, with zero shifted into the least significant bit of
Areg, and the most significant bit of Breg being shifted out. If the bit shifted
out of Brag has the value 1, then the value of the Creg is exclusive-ored into
the shifted Breg.

The shifting step is applied to the data for the number of bits in a word
in crcword (thirty-two times for the IMS T800), and eight times in crcbyte.
Finally the CPU stack is popped to leave the new checksum in Areg, and
the PolynomialGerierator in Breg.

29

4.5 Conclusion

The CRC instructions may either be used directly, or they may be applied to
byte strings by using the CRCFromMSB and CRCFromLSB library proce-
dures. The library procedures allow standard CRCs to be used, so that data
which is provided in a CRCed format from outside a transputer system may
be checked efficiently. When a CRC is to be applied for additional data se-
curity within a transputer system, and the data sent down transputer links,
it is possible to choose a thirty-two bit PolynomialGenerator, which gives
much better security than the standard sixteen bit PolynomialGenerators,
and to use CRCFromMSB instead of CRCFromLSB. As CRCFromMSB does
not require bit-reversal, it is faster to execute than CRCFromLSB.

The speed of execution of the CRCFromMSB and CRCFromLSB procedures
reaches maximum efficiency for messages of 256 bytes or more. The cost of
compiling with range-checking applied is about a 3% slow-down in speed
of execution. The CRC rate of 12 MBits per sec (1.5 MBytes per sec) is
nearly sufficient to allow continuous transmission out of a link, which has a
unidirectional data transmission bandwidth of 1.8 MBytes per sec at a link
speed setting of 20 MBits per sec.

5 Link Data Bandwidth Improvement

5.1 Introduction

Two major changes were made to improve the data throughput of the serial
links on the IMS T800 compared with the serial links on the IMS T414B. The
first change was the introduction of overlapped acknowledges, the second
change was the addition of double buffering on both input to and output
from the links.

5.2 Overlapped Acknowledges

The IMS T414B links do not output acknowledges until complete bytes
have been received. The IMS T800 links can output an acknowledge after
starting to receive a byte of data; this is known as generating overlapped
acknowledges, because an acknowledge can be sent during the reception of
a byte. Overlapped acknowledges allow bytes of data to be sent without a
delay between them, as long as data is available in the output buffer.

30

5.3 Double Buffering

On the IMS T414B, a single word (four bytes) is available for outputting
before a link has to read the next word from memory. Therefore after the
transmission of four bytes there is a delay, while data is read from memory,
before the next byte can be output. On the IMS T800 there is a double
word buffer. The link control logic prefetches the next word of data into
the second buffer while the current word is being output from the first
buffer. The prefetching of the next word of data may occur at any time
after the second buffer is loaded into the first buffer. It is therefore possible
to maintain a constant rate of outputting bytes of data simultaneously out
of all the links as long as sufficient memory bandwidth is available.

On the IMS T414B, a single byte of input is double buffered while a pre-
viously inputted word is written to store. Although this gives sufficient
double buffering if the memory cycle time is reasonably fast, the provision
of a complete word of double buffering on the IMS T800 means that the
buffered word does not have to be written to memory until four more bytes
of data have been input to the link, to avoid a gap appearing in the flow of
bytes.

If external memory is used, it is possible to configure it to be as slow as 11
cycles per access if the processor is idle, or 6 cycles per access if the processor
is busy, and still support input to or output from all links simultaneously
at 20 MBits/sec for an IMS T800-20, without any degradation of the uni-
directional data rate. Similarly, if external memory is used, it is possible to
configure it to be as slow as 9 cycles per access if the processor is idle, or
4 cycles per access if the processor is busy, and still support input to and
output from all links simultaneously at 20 MBits/sec for an IMS T800-20,
without any degradation of the bidirectional data rate. The effect of having
slower memory than this is to cause gaps to appear every four bytes. The
size of the gaps will be 50 nsecs for every additional memory cycle required
beyond the maximum number of memory cycles for the full data throughput.

At a link speed of 20 MBits/sec on the IMS T800 there is one extra bit
period of idle time added every two bytes of unidirectional transfer, giving
an average time of 11.5 bit periods per byte transfered instead of the 11
bit periods of the protocol. However, at a link speed of 10 MBits/sec or 5
MBits/sec on the IMS T800 there are no bit periods added between bytes
beyond the 11 bits of the protocol.

31

5.4 Benchmark Results

Figures 1 to 10 are oscillographs made with a Hewlett-Packard HP541101GHz
bandwidth digitizing sampling oscilloscope. Figures 1 to 5 show an IMS
T800B-20 which has link 2 connected to link 3, and the effect of memory
cycle time on unidirectional and bidirectional data rate. Similarly, figures 6
to 10 show an IMS T414B20 which has link 2 connected to link 3, and the
effect of memory cycle time on link data rate.

The transputers were booted down link 0. All links were set to operate at
20 MBits/sec, while the transputers were operated at a voltage of 5V and
ambient temperature. The data sent in all cases was #FF, being held as a
source table in internal memory. The received data was also written by the
links into internal memory. Link 0 was not used after booting the transputer,
while link 1 was connected back to itself (link 1 output connected to link
1 input). Link 2 was connected to link 3. The same data was output on
links 1, 2, and 3. Link 2 output was displayed on the upper part of each
oscillograph, and link 3 output was displayed on the lower part. While link
data transfers were taking place, the processor was performing a byte slice
assignment (block move) from external memory to external memory. The
processor was therefore using the maximum memory bandwidth possible
while the links were active.

The data packet #FF appears as a logic 1 level on the links for 10 bit
periods (500 nsecs). The data packets can therefore be easily distinguished
from acknowledge packets which appear as a logic 1 level for one bit period
(50 nsecs).

Two programs were run; in figures 1 to 3 and 6 to 8 the data transfer is
unidirectional, from link 2 to link 3, while figures 4 to 5 and 9 to 10 the data
transfer is bidirectional, between link 2 and link 3.

It can be seen in figure 1 that on the IMS T800 the acknowledge is output,
approximately, during the reception of the fifth bit of the eleven bits of a
data packet. This allows enough time for the outputting link to prepare
to output the next byte while completing the output of the current byte.
However, figure 6 shows that on the IMS T414B the acknowledge is only
output about fifteen bit periods after the start bit of the data packet is
received.

Figures 2 to 5 show ten bytes being transmitted on the IMS T800; this
number of bytes allows an accurate calculation of the data throughput of
the links to be made. There is no effect of memory speed on the sustained
link throughput rate.

It can be seen in figures 7 to 10 that on the IMS T414B the delay between

32

every four bytes is increased as the memory cycle time is increased, because
the next word of data to be transmitted is fetched from memory. Again,
these figures show ten bytes being transmitted on the IMS T414B to allow
an accurate calculation of the sustained data throughput of the links to be
made.

The following table summarises the results obtained.

Device Store Data Total Bandwidth
Type Cycles Transfer on 4 links
IMS T800-20 3 Unidirectional 7.1 MBytes/sec
IMS T800-20 9 Unidirectional 7.1 MBytes/sec
IMS T800-20 3 Bidirectional 9.4 MBytes/sec
IMS T800-20 9 Bidirectional 9.4 MBytes/sec

IMS T414B-20 3 Unidirectional 3.4 MBytes/sec
IMS T414B-20 9 Unidirectional 2.8 MBytes/sec
IMS T414B-20 3 Bidirectional 6.8 MBytes/sec
IMS T414B-20 9 Bidirectional 5.0 MBytes/sec

5.5 Conclusion

By studying the two sets of figures (1 to 5 for the IMS T800, 6 to 10 for
the IMS T414B) it can be seen that the data transfer rate is significantly
faster on the IMS T800 than on the IMS T414B. The effect of overlapped
acknowledges is to allow bytes to be output one after the other, without a
significant gap between bytes. The access time of the external memory does
not have any effect on the throughput as long as it is smaller than the value
which provides enough bandwidth for the processor and links on the IMS
T800. It has a direct effect on the throughput on the IMS T414B, adding
50 nsec for every extra memory cycle added to the memory access time, by
adding an extra cycle time to the gap between every four bytes (the time
taken for a link to read a word from memory).

33

6 Oscillographs

T800B-20 3 Cycle Store

Vcc = 5V 25◦C Clockln = 5 MHz

Link 2 Connected to Link 3 20 MBits/sec

Figure 1:

Delta T is Time from Start of Data to Start of Acknowledge

34

T800B-20 3 Cycle Store

Vcc = 5V 25◦C Clockln = 5 MHz

Link 2 Connected to Link 3 20 MBits/sec

Figure 2:

Delta T is Time for Ten Bytes to be Transmitted from Link 2

Total Bandwidth (4 links) = 7.1 MBytes/sec

Unidirectional

35

T800B-20 9 Cycle Store

Vcc = 5V 25◦C Clockln = 5 MHz

Link 2 Connected to Link 3 20 MBits/sec

Figure 3:

Delta T is Time for Ten Bytes to be Transmitted from Link 2

Total Bandwidth (4 links) = 7.1 MBytes/sec

Unidirectional

36

T800B-20 3 Cycle Store

Vcc = 5V 25◦C Clockln = 5 MHz

Link 2 Connected to Link 3 20 MBits/sec

Figure 4:

Delta T is Time for Ten Bytes to be Transmitted from Link 3

Total Bandwidth (4 links) = 9.4 MBytes/sec

Bidirectional

37

T800B-20 9 Cycle Store

Vcc = 5V 25◦C Clockln = 5 MHz

Link 2 Connected to Link 3 20 MBits/sec

Figure 5:

Delta T is Time for Ten Bytes to be Transmitted from Link 3

Total Bandwidth (4 links) = 9.4 MBytes/sec

Bidirectional

38

T414B-20 3 Cycle Store

Vcc = 5V 25◦C Clockln = 5 MHz

Link 2 Connected to Link 3 20 MBits/sec

Figure 6:

Delta T is Time from Start of Data to Start of Acknowledge

39

T414B-20 3 Cycle Store

Vcc = 5V 25◦C Clockln = 5 MHz

Link 2 Connected to Link 3 20 MBits/sec

Figure 7:

Delta T is Time for Ten Bytes to be Transmitted from Link 2

Total Bandwidth (4 links) = 3.4 MBytes/sec

Unidirectional

40

T414B-20 9 Cycle Store

Vcc = 5V 25◦C Clockln = 5 MHz

Link 2 Connected to Link 3 20 MBits/sec

Figure 8:

Delta T is Time for Ten Bytes to be Transmitted from Link 2

Total Bandwidth (4 links) = 2.8 MBytes/sec

Unidirectional

41

T414B-20 3 Cycle Store

Vcc = 5V 25◦C Clockln = 5 MHz

Link 2 Connected to Link 3 20 MBits/sec

Figure 9:

Delta T is Time for Ten Bytes to be Transmitted from Link 3

Total Bandwidth (4 links) = 6.8 MBytes/sec

Bidirectional

42

T414B-20 9 Cycle Store

Vcc = 5V 25◦C Clockln = 5 MHz

Link 2 Connected to Link 3 20 MBits/sec

Figure 10:

Delta T is Time for Ten Bytes to be Transmitted from Link 3

Total Bandwidth (4 links) = 5.0 MBytes/sec

Bidirectional

43

	1 Introduction
	2 Graphics Support
	2.1 Introduction
	2.2 Graphics Example
	2.3 The Graphics Instructions
	2.3.1 Two-Dimensional Block Move Of All Bytes
	2.3.2 Two-Dimensional Block Move Of Non-Zero Bytes
	2.3.3 Two-Dimensional Block Move Of Zero Bytes

	2.4 Use Of Two-Dimensional Block Move
	2.5 Passing Parameters To The Instructions
	2.6 Relative Performance on the IMS T800
	2.7 Conclusion

	3 Floating Point Support - The Whetstone Benchmark
	3.1 Introduction
	3.2 The Whetstone Program
	3.3 Conclusion

	4 Cyclic Redundancy Check Generation
	4.1 Introduction
	4.2 Little-Endian Versus Big-Endian
	4.3 The IMS T800 Occam2 Compiler CRC Library Procedures
	4.4 The CRC Support Instructions
	4.5 Conclusion

	5 Link Data Bandwidth Improvement
	5.1 Introduction
	5.2 Overlapped Acknowledges
	5.3 Double Buffering
	5.4 Benchmark Results
	5.5 Conclusion

	6 Oscillographs

