
Lies, damned lies
and benchmarks

INMOS Technical Note 27

INMOS Limited

72-TCH-027-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 The Whetstone benchmark 5
2.1 Understanding the program 5
2.2 The effect of optimisations . 6
2.3 Limitations of the Whetstone 6

3 The Savage Benchmark 10
3.1 Speed and accuracy of elementary functions 10

4 The Dhrystone benchmark 11
4.1 String manipulation performance 11

5 Conclusion 13

References 14

A Comparative benchmark results 15
A.1 Whetstone . 15
A.2 Savage . 17
A.3 Dhrystone . 17

B Source of the occam programs 18
B.1 Whetstone . 18
B.2 Dhrystone . 22

C Elementary function performance 28

D Benchmarking the IMS T212 30

3

1 Introduction

A benchmark is supposed to be a standard measure of performance that
enables one computer to be compared with another. However, a car is a
simpler machine than a computer, and yet no-one expects all the relevant
features of a car to be contained in a single number. Even in the specialised
world of motor-racing, knowing the b.h.p. or the top speed is not enough to
predict which car will be fastest round the track, and computing equivalents
such as ’MIPS’ or ’MFlops’ are similarly misleading.

For any application it is performance on that application which counts,
and benchmarks are relevant only so far as they resemble it. For exam-
ple, some microprocessors can match the speed of super-minicomputers on
non-numerical benchmarks, although their floating-point performance and
input-output capability can be substantially inferior. Also, microprocessor
architectures tend to give atypically high performance on small programs,
by making good use of small register sets, caches, on-chip memory etc., and
nearly all benchmark programs are very small in order to be easily dissemi-
nated.

Ideally, computers should be compared by running the intended application
on each of them, but usually this is impractical, and benchmarks are of-
ten used instead. Some benchmarks have been carefully constructed and,
in context, they can be a good guide to processor performance, provided
their limitations are clearly understood. The Whetstone benchmark is one
such, and is widely used as an indicator of performance on numerical tasks,
although it omits some aspects of such applications, which we consider sep-
arately. The Savage benchmark tests only a narrow aspect of performance,
but is often included in sets of benchmarks, so we consider it briefly. On the
other hand, there are benchmarks which are badly constructed and cannot
be related to any real application. An example is the Dhrystone benchmark,
which, regrettably, is also widely used as a vague measure of processor power.

It is important to realise that all of these benchmarks are intended as tests
for single-processor machines. None of them are particularly suited to paral-
lelism; but then none of them are real application programs! Real programs
are generally used to process data of some kind, and very often different
parts of the data can be dealt with independently, allowing for large perfor-
mance gains when several processors are used. Applications designed with
parallelism in mind can often also be split into parts which can perform
successive operations on the same flow of data in parallel, using a pipeline
or other structure, allowing still more processors to be used effectively.

It is likely that the wide variety of possible architectures for parallel machines
will render benchmarking impractical. Until that time we must live with

4

benchmarks, so in this note we look at these three: the Whetstone, the
Savage and the Dhrystone. We consider their merits and limitations, and
provide performance figures and source listings.

2 The Whetstone benchmark

The Whetstone benchmark program [1] was constructed to compare pro-
cessor power for scientific applications. Running the program is considered
equivalent to executing (approximately) one million ’Whetstone’ instruc-
tions. Performance, as measured by the benchmark, is quoted in ’Whet-
stones per second’ and differs from any measure of pure floating-point per-
formance given in ’flops’. In addition to floating-point operations, it includes
integer arithmetic, array indexing, procedure calls, conditional jumps, and
elementary function evaluations. These are mixed in proportions carefully
chosen to simulate a ’typical’ scientific application program of a decade ago.

2.1 Understanding the program

The virtue of the Whetstone benchmark is that it approaches real programs
in complexity, whereas many other benchmarks only measure performance
on simple loops. For example, a large part of the ’Linpack’ benchmark
effectively measures only the time to perform a loop of the form:

SEQ i = 0 FOR N
a[i] := b[i]+(t*c[i])

However, this complexity means that in order to relate the resulting perfor-
mance figures to a real application, it is necessary to consider the precise
composition of the benchmark. The occam source of the Whetstone is given
in section B.1. This is a straightforward translation of the ALGOL original,
which consists of a series of modules designed to typify different aspects of
a scientific computation. The core of each module is performed a certain
number of times, determined by a ’best fit’ to statistics of actual programs.

The time taken to execute a particular module may depend more on the
speed of floating-point operations than on the specific task it represents. For
example, module 2 is concerned with ’array accessing’, but for each iteration
of the loop there are 20 array accesses and 17 floating-point operations. On
machines where the duration of a floating-point operation is much longer
than the time taken to load or store a number, the floating-point operations
will dominate the time to perform the module. This is also true of other
modules. So the overall Whetstone performance will be largely determined

5

by the floating-point speed of such machines. It will also depend on the
speed of evaluation of elementary functions, because of the large number of
such evaluations in modules 7 and 11. This is an area where applications
vary widely, and the Whetstone represents an average which may be very
different from any particular application.

2.2 The effect of optimisations

Since the benchmark is written in a high-level language (originally ALGOL;
commonly FORTRAN; and in this case occam) it must be compiled before
it can be executed. This makes the interpretation of the results more diffi-
cult since they depend not only on the hardware but also on the software
which is used. As compilers become more sophisticated there is a danger
that the original purpose of the benchmark will be lost in all the optimi-
sations that can be done. The purpose of the benchmark is to cause the
execution of (typically) one million ’Whetstone’ instructions, which repre-
sent low-level operations of an abstract machine, and not to get through a
particular FORTRAN program as fast as possible. Thus ’global’ or source-
level optimisations (either automatic or by hand) invalidate the benchmark
since they miss out some of the ’Whetstone’ instructions. Indeed, since no-
one is interested in the results of the computations they could be optimised
out altogether! By contrast the choice of high-level language to express
the benchmark is relatively insignificant, provided its semantics are not too
different from those of FORTRAN or ALGOL.

The occam compilers used to benchmark transputers aim to produce effi-
cient code, but do not perform global or source-level optimisations. Conse-
quently all the ’Whetstone’ instructions implicit in the original program are
performed.

2.3 Limitations of the Whetstone

It is important to realise that significant aspects of many contemporary
scientific calculations are absent from the Whetstone, whilst others are over-
emphasised:

1. No consideration is given to the quality of floating-point calculations,
and their speed is measured only indirectly.

2. There are no multi-dimensional arrays, which are common in numerical
programs, and the arrays which are present are very small.

3. The number of elementary function evaluations is probably atypical of

6

modern programs, and despite this heavy usage no account is taken of
their accuracy.

We examine these points in the following sections.

Floating-point operations on the IMS T414

The floating-point operations provided for the IMS T414 are both fast and
of high quality. Although the IMS T414 was designed to provide fast arith-
metic operations on 32-bit integer values, it was appreciated that for many
applications it would be necessary to perform floating-point arithmetic and
so there are special instructions in the IMS T414 to support the implemen-
tation of floating-point operations in software.

The use of formal program proving methods has ensured that the quality of
the software implementation is very high [2]. The software packages correctly
implement IEEE-standard floating-point arithmetic, including the handling
of denormalised numbers.

Although implemented in software, floating-point operations on the IMS T414
are very fast, comparable with those performed by special floating-point co-
processor chips. For example, the assignment in the occam fragment below:

REAL32 a, b, c :
SEQ
...
a := b * c
...

will execute in about 11 µS, provided all the code and variables are in internal
RAM. By comparison, the, same assignment on an 8 Mhz Intel 80286/80287
combination would take about 31 µS (using the fastest possible memory).
Even on 64-bit floating-point numbers, where it might be expected that
software would lose out against hardware, the IMS T414 would take about
38 µS whilst the Intel combination would take about 44 µS.

Floating-point operations on the IMS T800

To achieve even higher performance than the IMS T414, the IMS T800 has
a 64-bit floating-point unit on-chip. Its microcode was derived from the
formally-proven occam implementation, so that the results of floating-point
calculations by the two processors are identical (and correct) - only the speed
differs. On an IMS T800 the assignment above would take only 29 cycles
(1.45 µS for a 20MHz version, 0.97 µS for a 30MHz version), again assuming
internal RAM is used.

7

The table below gives the typical and worst case operation times for floating
point arithmetic on an IMS 414, (50 nS cycle time) and on an IMS T800
(50 nS and 33 nS cycle times). For the IMS T414 this assumes the, code of
the floating-point package is in the internal RAM.

IMS T414-20 IMS T800-20 IMS T800-30
Typical Worst Typical Worst Typical Worst

REAL32
+,− 11.5 µS 15.0 µS 350 nS 450 nS 230 nS 300 nS

∗ 10.0 µS 12.0 µS 550 nS 900 nS 370 nS 600 nS
/ 11.3 µS 14.0 µS 800 nS 1400 nS 530 nS 930 nS

REAL64
+,− 28.2 µS 35.0 µS 350 nS 450 nS 230 nS 300 nS

∗ 38.0 µS 47.0 µS 1000 nS 1350 nS 670 nS 900 nS
/ 55.8 µS 71.0 µS 1550 nS 2150 nS 1030 nS 1430 nS

Table 1: Floating-point operation times

Multi-dimensional arrays

Although not represented in the Whetstone benchmark, multi-dimensional
arrays are common in many numerical applications. The IMS T414 and
IMS T800 have a fast multiplication instruction (’product’) which is used for
the multiplication implicit in multidimensional array access. For example,
in the following fragment of occam:

[20][20]REAL32 A :
SEQ
...
B := A[I][J]
...

performing the assignment involves calculating the offset of element A[I][J]
from the base of the array A.

The transputer compiler would generate the following code for this compu-
tation:

load local I
load constant 20
product
load local J
add

Since the product instruction executes in a time dependent on the highest
bit set in its second operand, and the highest bit set in the constant 20 is

8

bit 5, in this case the ’product’ instruction will execute in only 8 cycles.
In general, the multiplication in an address calculation is performed in a
time approximately proportional to the logarithm of the array dimension.
When combined with the concurrent operation of the CPU and FPU on the
IMS T800 this enables address calculations to be entirely overlapped with
floating-point calculations in most cases.

Elementary functions on the IMS T414 and IMS T800

The implementation of elementary functions involves a trade-off between
speed, accuracy, and code-size. Whilst total accuracy is mathematically im-
possible, errors must be kept within reasonable bounds or else the functions
are useless. The need to constrain code-size precludes the use of certain
very fast algorithms which make use of very large look-up tables and linear
interpolation.

The elementary function libraries used on the INMOS transputers are writ-
ten in occam. They use rational approximations (quotients of polynomials),
rather than table look-up or ’CORDIC’ methods, as this gives the fastest
execution whilst remaining accurate and code-compact. The single-length
functions typically require a few hundred bytes of code (approximately 400
on the IMS T414 and 300 on the IMS T800), and have average errors of less
than half a unit in the last bit. The functions handle all IEEE-standard val-
ues, including denormalised numbers, Not-a-Numbers, and Infinities. Fur-
ther details are given in [3] and [4].

On the IMS T414 the rational approximations are computed using fixed-
point arithmetic rather than floatingpoint. The IMS T414 has a ’fractional
multiply’ instruction which multiplies two 32-bit numbers together, treating
each as a fraction between +1 and -1; the normal ’add’ instruction will add
such fractions. As a result of this the multiply and add, needed in each
stage of a polynomial evaluation, will execute in under 3.5 µS; if floating-
point arithmetic were used these operations would take about seven times
as long.

However the performance of the IMS T800 FPU is such that the multiply
and add stage of a floating-point polynomial takes only 0.9 µS, so the library
for this processor evaluates the rational approximations using floating-point
arithmetic. Of course this library may be used on the IMS T414, producing
identical results to those which would be obtained on an IMS T800, because
of the equivalence of the floating-point software and hardware.

The importance of the speed of elementary function evaluation to the overall
Whetstone performance figure is indicated by the proportion of time spent
evaluating them, as indicated in the following table:

9

Processor : IMS T414 IMS T800
Floating-point format : Single Double Single Double

Trigonometric functions 26% 34% 23% 29%
Standard functions 13% 17% 21% 23%

Total 39% 51% 44% 52%

Table 2: Percentage of total execution time

These percentages would probably be lower on a processor with special hard-
ware for speeding up elementary function evaluation. Neither the IMS T414
nor the IMS T800 have any such special hardware, since including it would
have compromised some other aspect of performance, so the speed and ac-
curacy of elementary function evaluation is a good test of these processors.
This is considered more fully in the next section, and timings for the indi-
vidual functions are given in section C.

3 The Savage Benchmark

3.1 Speed and accuracy of elementary functions

The Savage benchmark is a benchmark of elementary function evaluation
only. It is actually named after its creator [5], although it is indeed quite
a vicious test of an unsuspecting function library! It tests both speed and
accuracy; in occam it is:

#USE "dblmath.lib"
REAL64 a :
SEQ
a := 1.0(REAL64)
time ? start.time

SEQ i = 0 FOR 2499
a := DTAN(DATAN(DEXP(DALOG(DSQRT(a*a))))) + 1.0 (REAL64)

time ? finish.time

If the function subroutines were exact the final value of a would be 2500.0,
so the difference from this figure is a measure of their accuracy. However it
is important to note that the format (in this case IEEE double-precision)
enforces a fundamental limitation no matter how carefully the functions are
evaluated. The minimum error that can be achieved using double-precision

10

floating-point is 1.177 ∗ 10−9, and it can be seen from the table in section
A.2 that the occam function library produces a result which is very close to
this figure. Some implementations give results more accurate than this, by
using ’extended double precision’ (80 bits) to evaluate the expression, only
rounding to double-precision when the store into a is done.

Some results from this benchmark are given in section A.2. It is certainly
not typical of application programs, but it does give some indication of
performance on elementary function evaluation only.

4 The Dhrystone benchmark

4.1 String manipulation performance

The Dhrystone [6] is a synthetic benchmark designed to test processor per-
formance on ’systems programs’. In fact it has a number of flaws which se-
riously limit its usefulness as a guide to performance on ’typical’ programs.
Unfortunately its use has become widespread, with results published on the
USENET, and manufacturers reporting their performance in terms of ’Dhry-
stones per second’. It was originally published in Ada, but the most widely
used version is a translation into C, distributed over USENET.

As the construction of the Dhrystone is fully explained in the original publi-
cation, our discussion of the benchmark is limited to its drawbacks. The two
principal flaws are the omission of any significant looping from the program
and the inclusion of character string operations.

Whilst the Dhrystone’s major advantage over many small benchmarks is
that is does not consist of just a single loop, it suffers from the drawback that
it does not do any significant amount of looping. This is unsound because
most programs do contain loops and code executed within them will often
account for most of the execution time. Also, when generating code for
loops, a good compiler will seek to minimise the time to execute the loop
repeatedly, possibly at the expense of more loop initialisation. Furthermore,
research shows [7] that the code found within loops differ from code outside
of loops; for example, most accesses to subscripted variables occur within
loops.

The second major drawback of the Dhrystone that it uses strings, even
though the only dynamic statistics in [6] show no use of strings (although the
static statistics from the same source do show use of strings). In addition, the
use of strings causes a large number of other problems with the benchmark.
There are too many to consider in detail, so we will just look at the most
significant.

11

The first problem comes from the method of construction of the benchmark,
which was to ensure that the distribution of operators and operands matched
that found in ’typical’ programs. Unfortunately, the operators and operands
seem to have been treated independently, and as a result, the statement

if String_Par_In_1 > String_Par_In_2

occurs in the Ada original. This may look inoffensive but when a translation
into, for example, C occurs the result is

if (strcmp(StrParI1, StrParI2) > 0)

which involves a very suspicious looking call to a library routine. As very
little computation is performed in the benchmark this may be very signif-
icant. The amount of time taken to perform the comparison will, in fact,
depend on the two strings being compared. In the Dhrystone the strings
used are:

"DHRYSTONE PROGRAM, 2’ND STRING"

and

"DHRYSTONE PROGRAM, 1’ST STRING"

which match for the first 19 characters! The overall result of this is that, with
a straightforward implementation of strcmp the only loop of any significance
has been introduced by accident rather than by design.

The second problem is that the program contains a string assignment, which
also becomes more blatant when the program is translated. In the Dhrystone
as originally published, written in Ada, the strings in the program were
declared to be 30 characters long. This means that a processor with the
ability to copy data in blocks would be able to do the assignment very
efficiently. When the translation to C takes place the translator has to
make a choice; either the strings are converted into C strings, or they are
changed into a structure. The former is more natural whilst the latter is
more in keeping with the original program. The effect of this is, again, that
a seemingly small part of the benchmark contributes significantly to the
overall result.

One final point that should be noted is that the Dhrystone program, al-
though intended to represent a typical ’system program’, is actually ex-
tremely small, which again may make the results misleading.

12

The best known version of the Dhrystone benchmark is that in C, dis-
tributed on the USENET. It is a fair translation of the Ada except that
it uses C-strings rather than fixed-sized byte arrays. The consequences of
this alteration have already been discussed.

For some time an erroneous version of the Dhrystone was circulated on
the USENET. When making comparisons of performance it is essential to
check that the Dhrystone figure is for the correct Version of the benchmark,
known as version 1.1 by the USENET community. Figures for his erroneous
version would be substantially higher than figures for the correct version. In
particular the figures given in [8] are for the erroneous version.

The occam version attempts to be as close to the Ada as possible. There are
some problems with this which were tackled as follows. The first difficulty
is that the Ada Dhrystone uses structures, which occam does not support.
The occam Dhrystone simulates structures using arrays, with the byte ar-
ray (string) being ’punned’ onto several words of the array. The second
problem is that occam does not provide dynamic storage allocation which
is used for allocating the structures. The occam Dhrystone uses an array of
structures instead (this is of no significance to performance as the allocation
of the structure is not timed as part of the benchmark). There are some
other minor changes which have been necessitated such as re-ordering the
declaration of procedures as in occam they must be declared before they are
used.

The source of the occam version of the Dhrystone benchmark is given in
section B.2.

5 Conclusion

The Whetstone benchmark is one of the most respected and widely used
measures of performance on ’scientific’ applications, even though it does not
address important aspects of such computations, and overemphasises others.
The IMS T414 and IMS T800 microprocessors are very well suited to such
applications, and this is reflected in their Whetstone performance, shown in
section A.1.

The Savage benchmark only measures performance on elementary functions,
but is quite widely used in the microcomputing world. Although Transputers
have no special hardware for elementary functions, in order to maximise
performance on more common operations [4], they perform extremely well,
as can be seen from the results in section A.2.

Thus the IMS T414 surpasses all other single-chip processors in performing
numerical calculations with software, and outperforms many processor /co-

13

processor combinations. The IMS T800 is the world’s fastest microprocessor,
superior even to multi-chip sets and bit-slice machines.

The Dhrystone is also widely used, even though it is essentially useless as
an indicator of performance on real programs. The table in section A.3
shows that Transputers give a high figure on this benchmark, but this is
of relatively little significance. It is interesting to note that at least one
recent 32-bit microprocessor has special hardware for processing strings;
not surprisingly its projected Dhrystone figure is extremely high. However
only programs that only process strings are likely to realise this promised
performance. Transputers have not been optimised to ’pass’ a particular
benchmark; they are general-purpose processors delivering high performance
on all applications.

References

[1] A Synthetic Benchmark, Curnow H.J., and Wichmann B.A., Computer
Journal 19 no. 1, February 1976.

[2] Formal Methods Applied to a Floating Point Number System, Barrett
G., Oxford University Computing Laboratory Technical Monograph
PRG-58 1987.

[3] Transputer Development System Manual, INMOS Limited, Prentice
Hall 1988.

[4] Technical Note 6: IMS T800 Architecture, INMOS Limited, Bristol,
U.K. INMOS 1986.

[5] Dr. Dobb’s Journal, Savage B., September 1983, p120.

[6] Dhrystone: a synthetic systems programming benchmark, Reinhold P.
Weicker, Communications of the ACM, Vol. 27, Number 10, October
1984.

[7] An Empirical Analysis of FORTRAN programs, Robinson and Torsun,
Computer Journal 19 no. 1, February 1976.

[8] The 80386: A High Performance Workstation Microprocessor, Intel
Corporation, 1986, Order number: 231776-001.

14

A Comparative benchmark results

A.1 Whetstone

The following tables compare the performance figures of the transputers
with other processors and processor /co-processor combinations for both
the single and double precision Whetstone benchmarks. Some of the figures
may have been superseded since these tables were compiled, but they are
adequate for illustrative purposes.

System Thousands of Single-precision
Whetstones per Second

IMS T800-30 (projected) 6800
IMS T800-20 4548
WE 32200/32206-24 2800
INTEL 80386 + 80387 1860
VAX 11/780 1083
MVII 925
SUN-3 860
NS 32332/32081 728
IMS T414-20 704
NS 32032 and 32081 390
INTEL 286/287 300
IBM RT-PC + FPA 200
IMS T212-20 181
INTEL 8086 + 8087 178
MC 68000 13
IBM RT-PC 12
System Thousands of Double-precision

Whetstones per Second
IMS T800-30 (projected) 4400
IMS T800-20 2932
INTEL 80386 + 80387 1730
MVII 925
SUN-3 790
VAX 11/780 715
IMS T414-20 161
INTEL 8086 + 8087 152

The figures for the IMS T414-20 were obtained by running the program on an
IMS T414B-20 (50 nS cycle time), with 150 nS cycle time external memory.
Note that running the program on a slower system, such as are provided by
INMOS for hosting the development system, will give a lower figure. The

15

IBM RT-PC software only
IBM RT-PC + FPA with NS32081 floating-point chip, in ’direct mode’
IMS T212-20 20 MHz, using product occam compiler
IMS T414-20 20 MHz, using product occam compiler
IMS T800-20 20 MHz, using product occam compiler
IMS T800-30 30 MHz, scaled from -20 result
INTEL 8086 + 8087 8 MHz
INTEL 286/287 10 MHz
INTEL 386/387 20 MHz
MC 68000 10 MHz, assembler coded software floating-point
MVII MicroVAX II with FPA, running MicroVMS
NS 32032 and 32081 10 MHz
NS 32332 and 32081 15 MHz
SUN-3 MC 68020 (16 MHz) and MC 68881 (12.5 MHz)
WE 32200/32206-24 24 MHz
VAX 11/780 8MB memory, FPA, running under UNIX 4.3BSD

Table 3: Systems used for the benchmarks

figures for the IMS T800-20 were obtained by running the program on an
IMS T8000-20 (50 nS cycle time). Figures for the faster version (30 MHz)
were then obtained by straightforward scaling.

The figure for the IMS T212-20 was obtained by running the program on an
IMS T212-20 (50 nS cycle time), with 100 nS cycle time external memory,
using the technique of section D.

Our sources for the other figures are as follows:

IBM RT-PC IBM FIT Personal Computer Technology,
SA 23-1057, IBM 1986

INTEL 8086 + 8087 Sun-3 Benchmarks (Sun Microsystems, inc)
INTEL 286/287 Sun benchmark document
INTEL 386/387 Doug Rick, 80387 Marketing Manager
MC 68000 Published figure
MVII Sun Benchmark document
NS 32032 and 32081 Ray Curry, National Semiconductor, via USENET
NS 32332 and 32081 Ray Curry, National Semiconductor, via USENET
SUN-3 Sun published data
WE 32200/32206-24 Electronics, December 18, 1986
VAX 11/780 John Mashey at MIPS Computer Systems,

via USENET

16

A.2 Savage

System CPU,FPP MHz Language Time Error
IMS T800 30.0 Occam 0.3 1.2E-9
IMS T800 20.0 Occam 0.4 1.2E-9
Sun-3/160 68020,68881 16.7 Sun 3.0 F77 0.4 2.0E-12
HP 9000/320 68020,68881 Pascal 0.7 2.8E-7
VAX 8600 Fortran 77 0.9 1.8E-8
DMS 8086,8087 Turbo Pascal 3.8 1.1E-9
Zenith Z-248 80286,80287 8.0 Fortran 77 4.5 1.2E-9
IMS T414 20.0 Occam 6.3 1.2E-9
IBM PC-AT 80286,80287 6.0 Turbo Pascal 7.4 1.2E-9
Sun-3/160 68020 16.7 Sun 3.0 F77 21.5 3.1E-7
IMS T212 20.0 Occam 21.9 1.2E-9
Turbo-Amiga 68020 14.3 Absoft F77V2.2B 21.9 1.8E-7

Information in this table (except for the Transputer figures) was supplied
on USENET on 16th December 1986 by Al Alburto et al. The Transputer
figures were obtained using the product occam compiler and libraries. The
time for the IMS T800-30 was obtained by scaling the -20 result.

A.3 Dhrystone

The following tables compare the performance of INMOS Transputers with
other processors. The figure for the IMS T414 was obtained from an IMS B001
evaluation board, running an IMS T414B-20 with 3 cycle external memory.
Note that running the program on a slower system, such as are provided by
INMOS for hosting the development system, will give a lower figure. The
other transputer figures were obtained by running the program on INMOS
TRAMs.

It should be noted that Dhrystone figures, especially those quoted by man-
ufacturers, are often invalid. Either they refer to the incorrect version 1.0
(and if no version is given, this is usually the case) or else they use opti-
mising compilers, which are forbidden for this benchmark (frequently both).
The figures above are believed to be free of such contamination. It is regret-
ted that no such figure is currently available for the 80386, and so an old
predicted figure is given instead.

17

System Dhrystones
per Second

IBM 3090/200 31250

IMS T800-30 (proj.) 13400
IMS T800-20 8956
IMS T212-20 8711
IMS T414-20 8193

VAX 8600 6423
Gould PN9080 Custom ECL 4992

Intel 386-16 (predicted) 4300
MC68020-17 3977

Intel 80286-9 1976
VAX 11/780 1650
MC68000-8 1136

B Source of the occam programs

B.1 Whetstone

This is the source of the occam version of the Whetstone benchmark. The
output statements have been omitted, since they complicate the benchmark-
ing process without affecting the results in any way. However the modules
which are executed zero times have been included, since their omission would
be a ’global optimisation’ affecting the code-size. This is the single-precision
version; the double-precision version is obtained by replacing all occurrences
of REAL32 by REAL64, and all the library function calls by their double-
precision versions.

PROC Whetstone (VAL [11]INT n, VAL INT iterations, INT time0, time1)

#USE "snglmath.lib" -- this incorporates library code for the functions
TIMER time :
[4] REAL32 e1 :
INT j, k, l :
REAL32 t, t1, t2 :

PROC p3 (VAL REAL32 xdash, ydash, REAL32 z)
REAL32 x, y :
SEQ
x := t * (xdash + ydash)

18

y := t * (x + ydash)
z := (x + y) / t2

:
PROC p0 ()
SEQ
e1 [j] := e1 [k]
e1 [k] := e1 [l]
e1 [l] := e1 [j]

:
PROC pa ([4]REAL32 e)
SEQ j = 0 FOR 6
SEQ
e[0] := (((e[0] + e[1]) + e[2]) - e[3]) * t
e[1] := (((e[0] + e[1]) - e[2]) + e[3]) * t
e[2] := (((e[0] - e[1]) + e[2]) + e[3]) * t
e[3] := ((((-e[0]) + e[1]) + e[2]) + e[3]) / t2

:
SEQ
-- INITIALISE CONSTANTS
t := 0.499975(REAL32)
t1 := 0.50025(REAL32)
t2 := 2.0(REAL32)

-- RECORD START TIME
time ? time0

-- MODULE 1 : SIMPLE IDENTIFIERS
REAL32 x1, x2, x3, x4 :
SEQ
x1 := 1.0(REAL32)
x2 := -1.0(REAL32)
x3 := -1.0(REAL32)
x4 := -1.0(REAL32)
SEQ i = 0 FOR n[0] * iterations
SEQ
x1 := (((x1 + x2) + x3) - x4) * t
x2 := (((x1 + x2) - x3) + x4) * t
x3 := (((x1 - x2) + x3) + x4) * t
x4 := ((((-x1) + x2) + x3) + x4) * t

-- MODULE 2 : ARRAY ELEMENTS
SEQ
e1 [0] := 1.0(REAL32)
e1 [1] := -1.0(REAL32)
e1 [2] := -1.0(REAL32)
e1 [3] := -1.0(REAL32)
SEQ i = 0 FOR n[1] * iterations
SEQ
e1[0] := (((e1[0] + e1[1]) + e1[2]) - e1[3]) * t

19

e1[1] := (((e1[0] + e1[1]) - e1[2]) + e1[3]) * t
e1[2] := (((e1[0] - e1[1]) + e1[2]) + e1[3]) * t
e1[3] := ((((-e1[0]) + e1[1]) + e1[2]) + e1[3]) * t

-- MODULE 3 : ARRAY AS PARAMETER
SEQ i = 0 FOR n[2] * iterations
pa (e1)

-- MODULE 4 : CONDITIONAL JUMPS
SEQ
j := 1
SEQ i = 0 FOR n[3] * iterations
SEQ
IF
j = 1
j := 2

TRUE
j := 3

IF
j > 2
j := 0

TRUE
j := 1

IF
j < 1
j := 1

TRUE
j := 0

-- MODULE 5 : OMITTED IN ORIGINAL

-- MODULE 6 : INTEGER ARITHMETIC
SEQ
j := 1
k := 2
l := 3
SEQ i = 0 FOR n[5] * iterations
SEQ
j := (j * (k - j)) * (l - k)
k := (l * k) - ((l - j) * k)
l := (l - k) * (k + j)
e1 [l - 2] := REAL32 ROUND ((j + k) + l)
e1 [k - 2] := REAL32 ROUND ((j * k) * l)

-- MODULE 7 : TRIGONOMETRIC FUNCTIONS
REAL32 x, y :
SEQ
x := 0.5(REAL32)
y := 0.5(REAL32)

20

SEQ i = 0 FOR n[6] * iterations
SEQ
x := t * ATAN ((t2 * (SIN(x)*COS(x))) /

((COS(x + y) + COS(x - y)) - 1.0(REAL32)))
y := t * ATAN ((t2 * (SIN(y)*COS(y))) /

((COS(x + y) + COS(x - y)) - 1.0(REAL32)))

-- MODULE 8 : PROCEDURE CALLS
REAL32 x, y, z :
SEQ
x := 1.0(REAL32)
y := 1.0(REAL32)
z := 1.0(REAL32)
SEQ i = 0 FOR n[7] * iterations
p3 (x, y, z)

-- MODULE 9 : ARRAY REFERENCES
SEQ
j := 1
k := 2
l := 3
e1 [0] := 1.0(REAL32)
e1 [1] := 2.0(REAL32)
e1 [2] := 3.0(REAL32)
SEQ i = 0 FOR n[8] * iterations
p0 ()

-- MODULE 10 : INTEGER ARITHMETIC
SEQ
j := 2
k := 3
SEQ i = 0 FOR n[9] * iterations
SEQ
j := j + k
k := j + k
j := k - j
k := (k - j) - j

-- MODULE 11 : STANDARD FUNCTIONS
REAL32 x :
SEQ
x := 0.75(REAL32)
SEQ i = 0 FOR n[10] * iterations
REAL32 r2 :
x := SQRT (EXP (ALOG (x) /t1))

-- RECORD FINISH TIME
time ? time1

:

21

The Whetstone benchmark is run at high priority to ensure that a 1 µS
resolution timer is used.

The table n contains the number of iterations for each loop in the bench-
mark; these were calculated to make the benchmark equivalent to a ’typical’
scientific application. This array of weights is an integral part of the bench-
mark, and if it is altered the results are not comparable with figures quoted
in ’Whetstones’.

The actual number of iterations of each loop is the product of the table
entry and the second parameter of the Whetstone procedure. If this is set
to 10 then 1 million ’Whetstones’ are performed.

B.2 Dhrystone

This is the source of the program run on an IMS T414B-20, compiled with
the product occam compiler.

PROC Dhrystone(CHAN OF INT32 In, Out)

-- Define constants etc for the Struct equivalent
VAL NULL IS 0 :
VAL Ident1 IS 1 :
VAL Ident2 IS 2 :
VAL Ident3 IS 3 :
VAL Ident4 IS 4 :
VAL Ident5 IS 5 :

VAL PtrComp IS 0 : -- ’pointer’ to one of these records
VAL Discr IS 1 :
VAL EnumComp IS 2 :
VAL IntComp IS 3 :
VAL StringComp IS 4 : -- StringComp is subsequent 30 bytes

VAL StringSize IS 30 :
VAL StringWords IS 8 : -- allocate 30/4 + 1 = 8 words on an IMS T414

VAL StructSize IS StringWords + 4 :

[3][StructSize]INT Records : -- all the records required

-- Global variable declarations
[51]INT Array1 :
[51][51]INT Array2 :
INT IntGlob :
BOOL BoolGlob :
BYTE Char1Glob, Char2Glob :

22

INT PtrGlb, PtrGlbNext :

-- array placement
PLACE Array1 AT (#800 / 4) : -- placement for an IMS T414 and IMS T800
PLACE Array2 AT (#800 / 4) + 51 :
Array2Glob IS Array2 :
Array1Glob IS Array1 :

INT FUNCTION Func1 (VAL BYTE CharPar1, CharPar2)
INT Res :
VALOF
BYTE CharLoc1, CharLoc2 :
SEQ
CharLoc1 := CharPar1
CharLoc2 := CharLoc1
IF
CharLoc2 <> CharPar2 -- true
SEQ
Res := Ident1

TRUE
Res := Ident2

RESULT Res
:
BOOL FUNCTION Func2 (VAL [StringSize]BYTE StrParI1, StrParI2)
BOOL Res :
VALOF
INT FUNCTION strcmp (VAL [StringSize]BYTE S1, S2)
INT order :
VALOF
IF
IF i = 0 FOR StringSize
S1[i] <> S2[i]
IF
(INT S1[i]) > (INT S2[i])
order := 1

TRUE
order := -1

TRUE
order := 0

RESULT order
:
-- StrParI1 = "DHRYSTONE, 1*’ST STRING"
-- StrParI2 = "DHRYSTONE, 2*’ND STRING"
INT IntLoc :
BYTE CharLoc :
SEQ
IntLoc := 1
WHILE IntLoc <= 1 -- executed once
IF

23

Func1(StrParI1[IntLoc], StrParI2[IntLoc+1]) = Ident1
SEQ
CharLoc := ’A’
IntLoc := IntLoc + 1

TRUE
SKIP

VAL CharLoc.int IS INT CharLoc : -- because no ‘>’ for BYTES
IF
(CharLoc.int >= (INT ’W’)) AND (CharLoc.int <= (INT ’Z’))
IntLoc := 7 -- not executed

TRUE
SKIP

IF
CharLoc = ’X’
Res := TRUE -- not executed

strcmp(StrParI1, StrParI2) > 0
SEQ -- not executed
IntLoc := IntLoc + 7
Res := TRUE

TRUE
Res := FALSE

RESULT Res
:
BOOL FUNCTION Func3(VAL INT EnumParIn)
BOOL Res :
VALOF
INT EnumLoc :
SEQ
EnumLoc := EnumParIn
IF
EnumLoc = Ident3
Res := TRUE

TRUE
Res := FALSE

RESULT Res
:
PROC P8([51]INT Array1Par, [51][51]INT Array2Par, VAL INT IntParI1, IntParI2)
-- once; IntParI1 = 3, IntParI2 = 7
INT IntLoc, IntIndex :
SEQ
IntLoc := IntParI1 + 5
Array1Par[IntLoc] := IntParI2
Array1Par[IntLoc + 1] := Array1Par[IntLoc]
Array1Par[IntLoc + 30] := IntLoc
SEQ IntIndex = IntLoc FOR 2 -- twice
Array2Par[IntLoc][IntIndex] := IntLoc

Array2Par[IntLoc][IntLoc-1] := Array2Par[IntLoc][IntLoc-1] + 1
Array2Par[IntLoc+20][IntLoc] := Array1Par[IntLoc]
IntGlob := 5

24

:
PROC P7 (VAL INT IntParI1, IntParI2, INT IntParOut) -- thrice
-- 1) IntParI1 = 2, IntParI2 = 3, IntParOut := 7
-- 2) IntParI1 = 6, IntParI2 = 10, IntParOut := 18
-- 3) IntParI1 = 10, IntParI2 = 5, IntParOut := 17
INT IntLoc :
SEQ
IntLoc := IntParI1 + 2
IntParOut := IntParI2 + IntLoc

:
PROC P5() -- once
SEQ
Char1Glob := ’A’
BoolGlob := FALSE

:
PROC P4() -- once
BOOL BoolLoc :
SEQ
BoolLoc := Char1Glob = ’A’
BoolLoc := BoolLoc OR BoolGlob
Char2Glob := ’B’

:
PROC P3(INT PtrParOut) -- executed once
SEQ
IF
PtrGlb <> NULL -- true
PtrParOut := Records[PtrGlb][PtrComp]

TRUE
IntGlob := 100

P7(10, IntGlob, Records[PtrGlb][IntComp])
:
PROC P6 (VAL INT EnumParIn, INT EnumParOut) -- once
-- EnumParOut = Ident3, EnumParOut := Ident2
SEQ
EnumParOut := EnumParIn
IF
NOT Func3(EnumParIn) -- not taken
EnumParOut := Ident4

TRUE
SKIP

CASE EnumParIn
Ident1
EnumParOut := Ident1

Ident2
IF
IntGlob > 100
EnumParOut := Ident1

TRUE
EnumParOut := Ident4

25

Ident3 -- this one chosen
EnumParOut := Ident2

Ident4
SKIP

Ident5
EnumParOut := Ident3

:
PROC P2(INT IntParIO) -- executed once
INT IntLoc, EnumLoc :
BOOL Going :
SEQ
IntLoc := IntParIO + 10
Going := TRUE
WHILE Going -- executed once
SEQ
IF
Char1Glob = ’A’
SEQ
IntLoc := IntLoc - 1
IntParIO := IntLoc - IntGlob
EnumLoc := Ident1

TRUE
SKIP

Going := EnumLoc <> Ident1
:
PROC P1(VAL INT PtrParln) -- executed once
[StructSize] INT NextRecTemp :
SEQ
NextRecTemp := Records[PtrGlb] -- must do this to avoid aliasing
Records[PtrParln][IntComp] := 5
NextRecTemp[IntComp] := Records[PtrParln][IntComp]
NextRecTemp[PtrComp] := Records[PtrParln][PtrComp]
P3(NextRecTemp[PtrComp])
-- NextRecTemp[PtrComp] = Records[PtrGlb][PtrComp] = PtrGlbNext
IF
NextRecTemp[Discr] = Ident1 -- it does
INT IntCompTemp :
SEQ
NextRecTemp[IntComp] := 6
P6(Records[PtrParln][EnumComp], NextRecTemp[EnumComp])
NextRecTemp[PtrComp] := Records[PtrGlb][PtrComp]
IntCompTemp := NextRecTemp[IntComp] -- to avoid aliasing
P7(IntCompTemp, 10, NextRecTemp[IntComp])

TRUE
Records[PtrParln] := NextRecTemp

Records[Records[PtrParln][PtrComp]] := NextRecTemp
:
PROC P0(INT32 out, VAL INT32 loops)
TIMER TIME :

26

[StringSize]BYTE String1Loc, String2Loc :
INT IntLoc1, IntLoc2, IntLoc3 :
BYTE CharLoc :
INT EnumLoc :
INT StartTime, EndTime, NullTime :
VAL Loops IS 10 * (INT loops) :
SEQ
-- initialisation
-- initialise arrays to avoid overflow
SEQ i = 0 FOR SIZE Array1Glob
Array1Glob[i] := 0

SEQ i = 0 FOR SIZE Array2Glob
SEQ j = 0 FOR SIZE Array2Glob[0]
Array2Glob[i][j] := 0

PtrGlb := 1
PtrGlbNext := 2
-- initialise record ’pointed’ to by PtrGlb
Record IS Records[PtrGlb] :
SEQ
Record[PtrComp] := PtrGlbNext
Record[Discr] := Ident1
Record[EnumComp] := Ident3
Record[IntComp] := 40
[4*StringWords]BYTE ByteBuff RETYPES

[Record FROM StringComp FOR StringWords] :
[ByteBuff FROM 0 FOR StringSize]:=

"DHRYSTONE PROGRAM, SOME STRING"
String1Loc := "DHRYSTONE PROGRAM, 1*’ST STRING"

-- measure loop overhead
TIME ? StartTime
SEQ i = 0 FOR Loops
SKIP

TIME ? EndTime
NullTime := EndTime MINUS StartTime

TIME ? StartTime
SEQ i = 0 FOR Loops
SEQ
P5()
P4()
-- Char1Glob = ’A’, Char2Glob = ’B’, BoolGlob = FALSE
IntLoc1 := 2
IntLoc2 := 3
String2Loc := "DHRYSTONE PROGRAM, 2*’ND STRING"
EnumLoc := Ident2
BoolGlob := NOT Func2(String1Loc, String2Loc)
-- BoolGlob = TRUE
WHILE IntLoc1 < IntLoc2 -- body executed once only

27

SEQ
IntLoc3 := (5 * IntLoc1) - IntLoc2
P7(IntLoc1, IntLoc2, IntLoc3)
IntLoc1 := IntLoc1 + 1

P8(Array1Glob, Array2Glob, IntLoc1, IntLoc3)
-- IntGlob = 5
P1(PtrGlb)
SEQ Charlndex = INT ’A’ FOR ((INT Char2Glob) - ((INT ’A’)-1))
-- twice
IF
EnumLoc = Func1(BYTE Charlndex, ’C’)
P6(Ident1, EnumLoc)

TRUE
SKIP

-- EnumLoc = Ident1
-- IntLoc1 = 3, IntLoc2 = 3, IntLoc3 = 7
IntLoc3 := IntLoc2 * IntLoc1
IntLoc2 := IntLoc3 / IntLoc1
IntLoc2 := (7 * (IntLoc3 - IntLoc2)) - IntLoc1
P2(IntLoc1)

TIME ? EndTime

out := INT32 ((EndTime MINUS StartTime) - NullTime)
:
PRI PAR -- to get high priority timer
INT32 count, result :
SEQ
In ? count
P0(result, count)
Out ! result

SKIP
:

This program is intended to be run on a single processor, with channel
out mapped onto a hard link connected to another processor, running a
process which outputs the number of loops to be performed (to improve
the resolution of the timer) - typically 10000 - and then inputs the number
of microseconds taken. A simple calculation turns this into a number of
’Dhrystones per second’.

C Elementary function performance

The table below gives the time taken to evaluate complete standard elemen-
tary functions on an IMS T800-20 and an IMS T414-20, each with 150 nS
external RAM. Timings are given for both the case when the function code
and the process workspace are in the on-chip RAM (for the IMS T800) and

28

when the code is stored in the external RAM (both processors). The figures
for each function were derived from measurements taken for 8000 arguments
chosen at random from the interval [0.0, 10.0], except for arcsine and arc-
cosine where the points were drawn from the interval [-1.0, 1.0], and the
double-precision hyperbolic functions, for which the points were drawn from
[0.0, 20.0].

IMS T800-20 IMS T800-20 IMS T414-20
ON-CHIP OFF-CHIP OFF-CHIP

single-precision mean max mean max mean max
SORT 5.9 6.4 6.0 6.5 26.0 27.6
ALOG 22.5 22.9 27.4 27.9 131.1 141.4

ALOG10 25.7 26.1 31.4 31.9 145.2 155.3
EXP 22.0 22.2 26.7 27.0 120.6 126.8
SIN 16.2 16.8 19.2 19.9 146.7 169.6

COS 18.9 19.3 22.2 22.6 178.1 186.8
TAN 18.4 19.2 22.3 23.2 142.7 164.4
ASIN 17.0 22.2 19.8 25.3 105.1 145.7

ACOS 16.7 21.3 19.8 24.8 101.5 132.6
ATAN 18.5 21.9 22.6 26.4 125.6 161.7
SINH 26.6 28.7 32.7 35.3 149.8 167.6

COSH 26.2 26.7 31.9 32.6 155.2 166.1
TANH 23.4 28.3 28.6 34.6 137.3 175.6

double-precision mean max mean max mean max
DSQRT 12.2 12.9 12.2 13.0 204.0 212.8
DALOG 34.5 38.5 45.0 46.0 607.9 636.1

DALOG10 42.5 43.1 49.9 50.9 658.7 687.4
DEXP 39.8 40.4 47.0 47.7 512.9 538.5
DSIN 33.1 34.2 38.1 39.2 590.0 655.2

DCOS 29.4 29.9 33.7 34.2 671.9 700.0
DTAN 35.8 37.3 42.0 43.7 632.4 712.2
DASIN 33.1 41.7 37.0 45.7 587.0 758.7

DACOS 32.9 40.6 36.8 44.9 574.3 714.2
DATAN 31.3 35.7 36.6 41.7 565.6 701.8
DSINH 45.9 47.8 54.2 56.5 609.5 649.0

DCOSH 44.8 45.4 53.3 54.1 618.4 648.5
DTANH 44.2 47.4 52.8 56.8 623.6 686.4

Table 4: Timings in microseconds

No figures are given for the IMS T212, but as a rough guide, consider single-
precision functions to take between 5 and 7 times as long as for an IMS T414.

29

D Benchmarking the IMS T212

It should be noted that obtaining benchmark figures for the IMS T212 is
slightly more involved than for either the IMS T414 or the IMS T800. This
is because the built-in timer has only 16 bits on this processor, as opposed to
32 on the other two processors, so consequently the clock ’wraps round’ very
much faster. In fact it does so faster than a benchmark program can be run,
and so the run-time of the program cannot be obtained simply by reading
the clock at the beginning and end of the run, as shown in the preceding
listings.

The solution to this problem is to use another processor to perform the
timing. Instead of reading the timer the program on the IMS T212 sends a
message to another processor (an IMS T414 or an IMS T800) which responds
by reading its own timer. The quoted benchmark results for the IMS T212
were obtained in this way.

30

	1 Introduction
	2 The Whetstone benchmark
	2.1 Understanding the program
	2.2 The effect of optimisations
	2.3 Limitations of the Whetstone

	3 The Savage Benchmark
	3.1 Speed and accuracy of elementary functions

	4 The Dhrystone benchmark
	4.1 String manipulation performance

	5 Conclusion
	References
	A Comparative benchmark results
	A.1 Whetstone
	A.2 Savage
	A.3 Dhrystone

	B Source of the occam programs
	B.1 Whetstone
	B.2 Dhrystone

	C Elementary function performance
	D Benchmarking the IMS T212

