
Security aspects of
occam 2

INMOS Technical Note 32

Roger Shepherd

October 1987
72-TCH-032-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 The data types of occam 2 4

3 Channel protocols 5

4 Numerical behaviour 9

5 Abbreviations 10

6 Alias checking 11

7 Checking the validity of parallel constructs 15

8 Run-time error handling in occam 2 16

9 Conclusion 17

References 17

3

1 Introduction

The major reason for the design of the occam 2 [1] programming language
was a desire to incorporate floating point arithmetic into occam. This had to
be done without breaching the security of the language. As a result occam 2
is well defined [2], many programming errors are detectable at compile time,
and run-time errors are reliably and cheaply detectable. This paper describes
various aspects of the language design which relate to security; some of these,
such as ’channel protocols’ overcome problems caused by the introduction
of new data-types to the language, others, such as alias checking, tackle
security problems which are present in most other programming languages.

2 The data types of occam 2

The occam 1 programming language provided concurrency, message passing
and a limited set of data types; the word, the channel and vectors of words
or of channels. Although this was sufficient for many purposes, there were
instances where a language which had a richer set of data types would offer
significant advantages. In particular:

1 We wanted to support numerical programming; for occam to become the
FORTRAN of parallel processing we would have to support floating-point
arithmetic and multiple dimensional arrays.

2 We wanted to be able to pass messages of length greater than a single
word. This is because much of the cost of passing a message is due to
process synchronisation rather than data transfer. A language which would
permit several words to be communicated in a single transfer would be more
efficient than one which could transfer only single words.

3 We wanted to program systems of processors which did not share a com-
mon wordlength. In such systems communication would have to be in terms
of some unit other than the word.

As a result occam 2 supports several primitive data types. There is a ma-
chine dependent data-type, INT, which loosely corresponds to the VAR of
occam 1. INT is the type of signed integer values most efficiently provided
by the machine. As this normally corresponds with the size of an address in
the a machine values of type INT are used for such purposes as replicator in-
dices and array subscripts. Unlike occam 1, there is a separate type BOOL,
which represents boolean values, and a BYTE type, which represents un-
signed integers in the range 0 to 255. (Note that although occam 1 could
pack and unpack values into bytes, the byte was not a proper data-type; all
arithmetic and message passing was done in terms of words).

4

There are occasions where the use of a machine dependent type such as INT
is not satisfactory; for example, where a message is to be passed between
two machines of differing word length, or where a calculation has to be
performed to a particular precision, regardless of the machine on which it is
to be performed. To cope with these situations, occam 2 has a further three
integer types, INT16, INT32 and INT64, which represent signed integers
with a length of 16, 32 and 64 bits respectively.

There are two floating-point types called REAL32 and REAL64. These
correspond to the single and double length floating point numbers of the
IEEE Standard for Binary Floating Point. In fact occam does not support
the multiple error symbols of the standard as this would undermine the
substitution semantics of the language; for example, in full IEEE arithmetic,
x = y does not imply that x op z = y op z.

In addition to the primitive types, occam has array types. The components
of an array may be of any single type. As an array may have components
of an array type, occam 2 does provide multi-dimensional arrays. An array
may be subscripted (giving a component of the array), assigned, passed as
a message and used as a parameter to a procedure or a function.

3 Channel protocols

The presence of several different data types in occam 2 introduces the prob-
lem of how to extend the communication model to handle them. The prob-
lem arises from the need to ensure that when a message is passed, the type
of data sent by the transmitter matches the type of data expected by the
receiver. It is desirable to provide some sort of checking of channel com-
munication for two reasons. Firstly, it is very easy to make mistakes in
communication and anything which enables these mistakes to be detected
at compile time is helpful. Secondly, the effect of run-time errors in com-
munication can be at least as devastating as subscript errors; it can cause
store to be overwritten arbitrarily, or can cause the breakdown of process
synchonisation.

A number of different proposals were considered during the design of occam
2. Some, such as restricting a channel to communicating a single type,
were rejected due to lack of flexibility. Others, such as type-checking all
communication at run-time, were rejected as they carried too much run-
time overhead.

The solution adopted in occam 2, the channel protocol, allows great freedom
over what is communicated on a channel, but ensures security. Whenever
a channel is declared the structure of all communication occuring on that

5

channel must also be declared as a channel protocol. This enables most
communication to be checked at compile-time, and simplifies any remaining
run-time checks.

The simplest protocol permits communication of a single type which may,
of course, be an array type. For example, if the channel greeting is being
used to communicate strings which are to be displayed on a 12-character
LCD display, it might be declared

CHAN OF [12]BYTE greeting :

The compiler can subsequently check that all inputs and outputs correspond
to this protocol. Thus the compiler would accept

greeting ! "Hello world!"

but would reject

greeting ! "Goodbye world!"

as the string has too many characters.

Whilst this example is perfect for the application described it does raise the
question of how to deal with arrays whose size is determined at run-time. As
this is a fairly general requirement occam has a protocol which corresponds
to a counted array. When a message is passed on a channel with a counted
array protocol, the length of the array is communicated and then the array
is communicated. Suppose in the previous example, the string was to be
displayed, not on a 12-character LCD display, but as a line on a terminal.
We might then declare a channel terminal as

CHAN OF INT::[]BYTE terminal :

indicating that inputs would be of the form

terminal ? count::array

which first receives the number of elements to be input into the variable
count and then inputs into the first count elements of array. Similarly,
outputs would be of the form

terminal ! count::array

6

which first outputs the value of count and then outputs the first count
elements of the array array.

Where a channel has been declared with a counted array as its protocol,
some checks can be made at compile-time but others must wait until run-
time. For example, with the channel terminal declared above, the compiler
would reject the output

terminal ! "Hello world!"

as it is not of the correct form. However, it would accept the following

[4000]BYTE lengthy :
SEQ
...
terminal ! SIZE lengthy::lengthy

which would cause a run-time error when input by the following fragment
of program

[80]BYTE line.buffer :
SEQ
...
terminal ? count::line.buffer

as the compiler inserts code to check the value of count against the length
of the array line. buffer.

In addition to the protocols described above, called simple protocols, which
permit a single item to be communicated, occam 2 has sequential protocols
which permit a specified number of items to be transmitted by a single input
or output. Suppose that we wanted to extend the previous example so that
the message passed along the channel terminal specified the line on which
the string was to be displayed. We want to send messages which first send
the line number and then the text to be displayed. We can name a suitable
protocol and then use it to declare the channel. (The previous examples
have used simple protocols which do not require naming).

PROTOCOL line IS INT; INT::[]BYTE :
CHAN OF line terminal :

As a result of this declaration the compiler is able to check that all com-
munications are of the correct form. For example, the following would be
detected as an error

7

terminal ! 12::"Hello world!"; line.number

since the order of the line number and the line have been swapped.

Often a single channel is used to pass messages with different structures. For
example, suppose we are writing a program to control a pen plotter which
has a number of simple operations of the form ’pen up’ or ’pen down’, and a
single draw operation ’move pen’ which requires a pair of co-ordinates. We
can indicate that we wish to send messages of two different structures by
using a variant protocol. In this case we would declare a protocol plotter.
control consisting of two tagged protocols.

PROTOCOL plotter.control
CASE
simple.command; INT
move.command; REAL32; REAL32

The compiler only permits outputs which first output one of the tags, fol-
lowed by an output matching the remainder of the tagged protocol. For
example, the following output will cause the plotter to move to the origin

plotter ! move.command; 0.0(REAL32); 0.0(REAL32)

If we had made a mistake here such as omitting the move. command tag or
sending the co-ordinates as integers, the compiler would detect the error.

An input on a channel which has a variant protocol is necessarily more
complex than an output. The actual form the input will take depends on the
tag received. To cope with this occam 2 has a ’case input’ which first inputs
a tag and then selects a matching input and then executes an associated
process. For example, the program which actually drives the plotter would
have an input such as

plotter ? CASE
simple.command; command
execute.command(command)

move.command; x; y
move.pen.to(x, y)

When this is executed a tag is input from the channel plotter and used to
select the matching input. For example, if the tag input is move. com-
mand then an input to x and y will occur, followed by the execution of the
procedure move. pen. to.

8

It is not necessary to list all possible tags in a case input. When a case input
receives a tag which does not match any of the tagged inputs this is treated
as an error. There are occasion where a program is expecting a specific
tag to be received; in these cases a special form of input can be used. For
example, if the pen plotter driver is expecting a simple. command then the
program would look like

SEQ
...
plotter ? CASE simple.command; command
...

This special case input is equivalent to

plotter ? CASE
simple.command; command
SKIP

4 Numerical behaviour

The numerical behaviour of operations in occam 2 is well defined. Usually
overflow, division by zero, et cetera are treated as errors. However, it is
recognised that sometimes it is necessary to perform calculations where these
events are not considered to be errors. To this end occam 2 provides the
PLUS, MINUS and TIMES operators which are unchecked.

The presence of the large number of concrete data types in the language
raises the question of how constant values should be represented. In occam
2, only INT literals expressed as undecorated decimal strings (eg 123) or as
hexadecimal strings (eg #FA77FE16), BYTE literals expressed as a quoted
character (eg ’Z’) and the BOOL constants (TRUE and FALSE) take their
types implicitly; all other constants are explicit about their type. Whilst
the requirement for explicit typing may seen unnecessary it does ensure that
arithmetic on constants is performed correctly. For example, the result of
the calculation 16777216.0 + 1.0 depends on whether the numbers are inter-
preted as REAL32s (in which case the result is 16777216.0) or as REAL64s
(in which case the result is 16777217.0). It is for similar reasons that occam
requires that all conversions between types is stated explicitly.

A similar decision has been taken in deciding to perform arithmetic accord-
ing to the type of data on which it is being performed. All intermediate
results are calculated as if they were of the same type as the result. This
is unusual; it is quite common for the intermediate results of floating point

9

calculations to be held in an extended format. Whilst this may seem ad-
vantageous, it actually has two important drawbacks. The first is that it
can lead to ’double rounding’ and thus a less accurate result than if the
arithmetic were performed to the correct precision. For example, in the
program

VAL REAL32 a IS 2-100(1+2-23) :
VAL REAL32 b IS 2-27(1-3 x 2-23) :
r := a * b

a different result from that obtained by rounding straight into single length
format is obtained if the calculation is first rounded to an extended precision
and then into the correct precision. The second drawback is that storing a
result becomes an arithmetic operation which undermines the substitution
semantics of the language. This has important consequences as various
common optimisations, such as common sub-expression elimination, would
not longer be valid. For example, the two programs below would not be
equivalent

REAL32 dummy :
SEQ
dummy := x * y SEQ
a := dummy + a a := (x * y) + a
b := dummy + b b := (x * y) + b

5 Abbreviations

The occam 2 language defines procedure calling in terms of ’abbreviation’
and textual substitution. An abbreviation enables a name to be given to a
variable or array element or to an expression. For example

INT element IS array[subscript] :

introduces the name element to identify the array component array [sub-
script] and

VAL INT twice.x IS 2 * x :

introduces twice.x as a name for the expression 2 * x.

In order to keep the semantics of abbreviation simple, and the implementa-
tion of abbreviation and parameter passing efficient, various rules concerning

10

abbreviations are enforced. One such rule is that the abbreviation of an ex-
pression is only valid if its scope contains no assignment to a variable in the
expression. For example, consider the following program

VAL x IS y[i][j] :
SEQ
...
z := x
...

The rule mentioned above ensures that there are (at least) three possible
implementations of the abbreviation. The first simply replaces the occurence
of x in z := x with y[i] [j]. The second assigns the value of y [i] [j] to a
new ’variable’ x when the abbreviation is executed and uses that variable
in the’assignment. Finally, the third sets up a pointer to y [i] [j] when the
abbreviation occurs and de-references that pointer when the assignments
occurs.

One important consequence of defining parameter passing in terms of abbre-
viation is that VAL parameters can be passed either by copying the value
(suitable for single word values), or by passing a pointer to the value (suit-
able for arrays).

6 Alias checking

Aliasing occurs when, within a scope, there are two or more names which
identify the same object. When aliasing is present, the meaning of programs
becomes obscure, because assignment to one name can affect the value of
another name.

For example, the following procedure clearly leaves the value of its parameter
x unchanged (note that the use of the PLUS and MINUS operators ensures
that arithmetic overflow is not a problem)

PROC nonsense(INT x, VAL INT y)
SEQ
x := x PLUS y
x := x MINUS y

as is demonstrated by the following expansion of nonsense(n, 3)

INT x IS n :
VAL INT y IS 3 :

11

SEQ
x := x PLUS y
x := x MINUS y

which is equivalent to

SEQ
n := n PLUS 3
n := n MINUS 3

which can be shown to be equivalent to n := n which is, in turn, equivalent
to SKIP.

However, consider what would be the expansion of nonsense (n, n)

INT x IS n :
VAL INT y IS n : -- invalid abbreviation
SEQ
x := x PLUS y
x := x MINUS y

which would be equivalent to

SEQ
n := n PLUS n
n := n MINUS n

The value of n after this instance of nonsense, were it valid, would be 0.
Similarly, the instance nonsense(i, v[i]),were it valid would be equivalent to

SEQ
i := i PLUS v[i]
i := i MINUS v[i]

the effect of which is very difficult to predict as in each of the assignments
v[i] would probably reference a different component of v.

It is now recognised that aliasing can be the source of particularly insidious
program bugs and, to counter this, aliasing is forbidden in some modern
languages, for example, Euclid [3]. In occam 2, aliasing is restricted, not
only for the reason outlined above but also to simplify checking the valid-
ity of parallel constructs. The rules imposed in occam 2 forbid the use of
an element which been has abbreviated within the scope of that abbrevia-
tion. In the expansion of the instance of nonsense (n, n) given above the
abbreviation

12

VAL INT y IS n:

is invalid because the name n has occured on the right hand side of an
abbreviation which is currently in scope.

The majority of the anti-aliasing rules of occam 2 can be checked at compile
time, however, those which permit an array to be used in a second abbre-
viation provided that the same element of the array is not abbreviated can
require run-time checking. For example, consider

first IS order[1] :
second IS order[2] :

which can be checked at compile time. However, the abbreviations

first IS order[1] :
n.th IS order[n] :

cannot as the second abbreviation is only valid if n is not equal to 1. The
compiler will insert code to check this at run-time. (Although it may seem
strange to perform this sort of check at run time, rather than compile-time,
it is really no different from range checking subscripts at run-time!).

The imposition of rules forbidding aliasing does have a perhaps unexpected
impact in the use of procedures. The anti-aliasing rules require that when
calling a procedure all non-VAL parameters are distinct, and are distinct
from any VAL-parameters. These rules can lead to some procedure instances
being unexpectedly rejected. For example, the procedure

PROC factorial(INT result, VAL INT argument)
SEQ
result := 1
SEQ i = 1 FOR argument
result := result * i

:

returns as its result the factorial of its argument. (Note that a negative
argument will cause the replicated sequence to behave like STOP). The
instance factorial (result, 3) will set result to 6. However, consider factorial
(n, n) which is supposed to set n to n factorial. This instance is, in fact,
illegal according to the anti-aliasing rules. The reason for this can be seen
if the instance is expanded

13

INT result IS n :
VAL INT argument IS n : -- invalid abbreviation
SEQ
result := 1
SEQ i = 1 FOR argument
result := result * i

which, if it were legal, would be equivalent to

SEQ
n := 1
SEQ i = 1 FOR n
n := n * i

which, in turn, would be equivalent to n := 1, not n factorial! To get the
effect originally desired we have to write

INT temp :
SEQ

factorial(temp, n)
n := temp

The explicit introduction of temporary variables is undesirable and can be
avoided in occam 2 because of the presence of functions. These permit us
to define

INT FUNCTION factorial(VAL INT argument)
INT product :
VALOF
product := 1
SEQ i = 1 FOR argument
product := product * i

RESULT product
:

and to write n := factorial(n).

In occam 2 the functions are proper functions; they are side-effect free and
deterministic. This is of great practical importance as it means that the
compiler can compile replicated alternatives. Consider, for example the
following alternative

ALT i = 0 FOR n
f(i) & c ? a
P(i)

14

where n is a variable. The occam compiler will generate code which evaluates
each function instance, f M, twice; once when enabling the guards, once
when disabling. Similarly, a compiler which used a polling implementation
of alternative would also be correct.

7 Checking the validity of parallel constructs

The occam 2 language specifies that if a variable is assigned to or is used in
an input then that variable may not be used in any parallel process. Thus
the compiler will reject a program such as

PAR
x := 42
x := 69

However, consider the procedure parallel.assignment

PROC parallel.assignment(INT x, y)
PAR
x := 42
y := 69

:

The validity of any instance of this procedure will depend on the parame-
ters used in that instance. This suggests that the compiler must check the
validity of each procedure instance by substituting the parameters into the
body of the procedure. However, the fact that alias checking is performed
means that the compiler can check the validity in two stages.

During the first stage of checking each procedure is checked on the assump-
tion that all parameters and free variables are distinct. This will accept the
procedure parallel. assignment but, for example, would reject

PROC invalid.parallel.assignment(INT x, y)
PAR

x := 42
x := 69

:

The second stage of checking is performed by the alias check which occurs
for each procedure instance. For example

parallel.assignment(x, y)

15

would be accepted, but

parallel.assignment(x, x)

would be rejected.

It is important to notice that little more information is required about a
procedure in order to perform parallel disjointness checking than is required
for simple type-checking of its parameters. This opens the possiblity of con-
structing a completely secure system for the dynamic loading and execution
of procedures.

8 Run-time error handling in occam 2

When a language such as occam 2 is used for the programming of secure
or reliable systems, the behaviour of that system when an error occurs is
of great concern. There seems to be no single method of dealing with er-
rors,which is universally applicable to all systems. For this reason, occam 2
specifies that run-time errors are to be handled in one of three ways, each
of which is suitable for use at different times.

The first mode is to ignore all run-time errors. This is potentially very
dangerous and it is to be hoped that this will, one day, be made illegal
except for systems which have been proved to be correct. This mode will
most probably be used for benchmarking.

The other two modes detect run-time errors and prevent them from cor-
rupting non-errant parts of the system. The first of these respectable modes
causes all run-time errors to be signalled and to bring the whole system to
a halt. This is known as ’halt’ mode. In this mode the primitive process
STOP is treated as if it caused an error. This mode is extremely useful for
program debugging and is suitable for any system where an error is to be
handled externally. For example, in at least one existing automobile engine
management system, if the processor signals an error then the system reverts
to its default settings by external analogue circuitry.

The second of the respectable modes, ’stop’ mode, allows more control and
containment of errors than does ’halt’ mode. In stop mode all errant pro-
cesses are mapped onto the process STOP. This will have the effect of grad-
ually propagating the STOP process throughout the system. Although,
at first sight, this does not seem very useful, it is possible for other parts
of system to detect that one part has gone wrong, for example, by use of
’watchdog’ timers. This allows multiply redundant systems, or gracefully
degrading systems to be constructed.

16

9 Conclusion

The design of the occam 2 programming language has been influenced by
the need to ensure that programming errors are as difficult to make as
possible and that when they are made they should be detectable. The
properties of the data types in the language have been carefully specified
to ensure that they are consistent with the semantics of occam. The use of
channel protocols makes possible the detection of many programming errors
at compile time and ensures that total security can be attained at run-time
with little cost. The insistence that names are not aliased detects some
particularly obscure programming errors and greatly simplifies checking the
validity of parallel constructs.

References

[1] Occam 2 language definition, David May, INMOS Limited

[2] Occam 2 Reference Manual, INMOS limited. 1987.

[3] Compile-Time Detection of Aliasing in Euclid Programs, James R.
Cordy, Software - Practice and experience, Vol. 14(8) pp 755-768.

17

	1 Introduction
	2 The data types of occam 2
	3 Channel protocols
	4 Numerical behaviour
	5 Abbreviations
	6 Alias checking
	7 Checking the validity of parallel constructs
	8 Run-time error handling in occam 2
	9 Conclusion
	References

