
Long arithmetic
on the transputer

INMOS Technical Note 39

INMOS

72-TCH-039

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 Requirements 4

3 Facilities available on the transputer 5

4 Interface description for the Occam Predefines 5
4.1 The integer arithmetic functions 5
4.2 Arithmetic shifts . 7

5 Methodology 8
5.1 Addition . 9
5.2 Subtraction . 10
5.3 Multiplication . 10
5.4 Division . 13

6 Shift Operations 14
6.1 Normalisation . 16

7 Performance 17
7.1 Optimisation, using multiplication as an example 17
7.2 Performance Figures . 19

8 Conclusions 19

A The Occam Predefined Procedures 20
A.1 Definition of terms . 20
A.2 The integer arithmetic functions 20
A.3 Arithmetic shifts . 26
A.4 Word rotation . 27

References 28

3

1 Introduction

This note describes how to use the facilities provided in the transputer and
occam to implement long arithmetic, i.e. arithmetic on arbitrarily large
integers.

The transputer family naturally handles integers of the wordlength of the
machine (16 bit on T2xx family, 32 bit on T4xx and T8xx families). There
is also particular support from a communications point of view for bytes
and messages of bytes, into which all other types can be mapped. The
T4xx family has special instructions to accelerate software implementation
of floating point numbers, and the T8xx family has hardware floating point
facilities.

Occam supports bytes, 16-bit integers, 32-bit integers, 64-bit integers, 32-bit
floating point and 64-bit floating point on all transputer types.

Floating point representation allows the expression and manipulation of very
large values, but in so doing trades precision for range. Thus for absolute
integer precision with very large number range, floating point is not appro-
priate.

Certain applications use long integers for other reasons, such as generating
Cyclic Redundancy Checks, cryptography, spread-spectrum radio etc.

(Note that later members of the T4xx family, and all the T8xx family,
include dedicated instructions for cyclic redundancy checking.)

The INMOS occam compilers give direct access to the transputer instruc-
tions through predefined procedures that compile into inline code, rather
than a procedure call. This note demonstrates that the efficiency of these
is such that the performance cannot be significantly improved by using as-
sembly language.

2 Requirements

The need is to be able to perform arithmetic on integers of any length, not
limited by the wordsize of the cpu. For simplicity, however, it is usual to
implement an integer length that is a multiple of the cpu wordlength.

Clearly, arithmetic on such integers is going to be slower than on the ma-
chine’s natural length, but it is a requirement that the overhead in such
operations is not excessive (exact figures would be application dependent).

Certain applications have indicated needs for up to 3200 bit integers for
cryptography, and 5115 bits for spread spectrum communications, so clearly

4

the 64 bit facilities provided by occam need extension.

3 Facilities available on the transputer

The transputer instruction set has support for long arithmetic. These in-
clude instructions which perform addition and subtraction, with carries and
borrows to allow extension to arbitrary length operations. These instruc-
tions are directly available in occam as predefined procedures, for which the
compiler generates in-line code, with no procedure call overhead.

Both signed and unsigned versions are available when appropriate, and the
procedures are listed below.

Occam predefines used for long arithmetic:

LONGADD signed add with carry
LONGSUM unsigned add with carry
LONGSUB signed subtract with borrow
LONGDIFF unsigned subtract with borrow
LONGPROD unsigned multiply with carry-in
LONGDIV unsigned divide
SHIFTRIGHT double word shift right
SHIFTLEFT double word shift left
NORMALISE double word normalise
ASHIFTRIGHT single word arithmetic shiftright -instruction sequence
ASHIFTLEFT single word arithmetic shiftleft -instruction sequence

The add, sub and ashift predefines would be used for the most significant
word of a long integer for signed work, using unsigned for the body of the
integer.

For unsigned operands, sum, diff and shifts would be used throughout.

The next section gives the occam interface for these routines. A detailed
definition of their operation, in occam, is given in section A, taken from
reference [1]. Note that this is a definition; in general the compiler inserts
only parameter loads and the instruction itself.

4 Interface description for the Occam Predefines

4.1 The integer arithmetic functions

LONGADD performs the addition of signed quantities with a carry in. The
function is invalid if arithmetic overflow occurs.

5

INT FUNCTION LONGADD (VAL INT left, right, carry.in)
-- Adds (signed) left word to right word with least significant
-- bit of carry.in.

LONGSUM performs the addition of unsigned quantities with a carry in
and a carry out. No overflow can occur.

INT, INT FUNCTION LONGSUM (VAL INT left, right, carry.in)
-- Adds (unsigned) left word to right word with the least
-- significant bit of carry.in.
-- Returns two results, the first value is one if a carry occurs,
-- zero otherwise, the second result is the sum.

LONGSUB performs the subtraction of signed quantities with a borrow in.
The function is invalid if arithmetic overflow occurs.

INT FUNCTION LONGSUB (VAL INT left, right, borrow.in)
-- Subtracts (signed) right word and borrow.in from left word.

LONGDIFF performs the subtraction of unsigned quantities with borrow in
and borrow out. No overflow can occur.

INT, INT FUNCTION LONGDIFF (VAL INT left, right, borrow.in)
-- Subtracts (unsigned) right word and borrow.in from left word.
-- Returns two results, the first is one if a borrow occurs,
-- zero otherwise, the second result is the difference.

LONGPROD performs the multiplication of two unsigned quantities, adding
in an unsigned carry word. Produces a double length unsigned result. No
overflow can occur.

INT, INT FUNCTION LONGPROD (VAL INT left, right, carry.in)
-- Multiplies (unsigned) left word by right word and adds carry.in.
-- Returns the result as two integers most significant word first.

LONGDIV divides an unsigned double length number by an unsigned single
length number. The function produces an unsigned single length quotient
and an unsigned single length remainder. An overflow will occur if the
quotient is not representable as an unsigned single length number. The
function becomes invalid if the divisor is equal to zero.

INT, INT FUNCTION LONGDIV (VAL INT dividend.hi, dividend.lo, divisor)
-- Divides (unsigned) dividend. hi and dividend.lo by divisor.
-- Returns two results the first is the quotient and the second
-- is the remainder.

6

SHIFTRIGHT performs a right shift on a double length quantity. The
function must be called with the number of places in range, otherwise the
implementation can produce unexpected effects.

i.e. 0 <= places <= 2*bitsperword

INT, INT FUNCTION SHIFTRIGHT (VAL INT hi.in, lo.in, places)
-- Shifts the value in hi. in and lo. in right by the given
-- number of places. Bits shifted in are set to zero.
-- Returns the result as two integers most significant word first.

SHIFTLEFT performs a left shift on a double length quantity. The function
must be called with the number of places in range, otherwise the implemen-
tation can produce unexpected effects.

i.e. 0 <= places <= 2*bitsperword

INT, INT FUNCTION SHIFTLEFT (VAL INT hi.in, lo.in, places)
-- Shifts the value in hi. in and lo. in left by the given
-- number of places. Bits shifted in are set to zero.
-- Returns the result as two integers most significant word first.

NORMALISE normalises a double length quantity. No overflow can occur.

INT, INT, INT FUNCTION NORMALISE (VAL INT hi.in, lo.in)
-- Shifts the value in hi. in and lo. in left until the highest
-- bit is set. The function returns three integer results
-- The first returns the number of places shifted.
-- The second and third return the result as two integers with
-- the most significant word first;
-- If the input value was zero, the first result is 2*bitsperword.

4.2 Arithmetic shifts

ASHIFTRIGHT performs an arithmetic right shift, shifting in and main-
taining the sign bit. The function must be called with the number of places
in range, otherwise the implementation can produce unexpected effects.

i.e. 0 <= places <= bitsperword

No overflow can occur.

N.B the result of this function is NOT the same as division by a power of
two.

7

INT FUNCTION ASHIFTRIGHT (VAL INT operand, places)
-- Shifts the value in operand right by the given number
-- of places. The status of the high bit is maintained.

ASHIFTLEFT performs an arithmetic left shift, shifting out the most sig-
nificant bits, and filling the least significant bits with zeroes. The function
is invalid if significant bits are shifted out, i.e. if the most significant bit
changes value at any point in the shift operation, signalling an overflow.
The function must be called with the number of places in range, otherwise
the implementation can produce unexpected effects.

i.e. 0 <= places <= bitsperword

N.B the result of this function is the same as multiplication by a power of
two.

INT FUNCTION ASHiFTLEFT (VAL INT argument, places)
-- Shifts the value in argument left by the given number
-- of places. Bits shifted in are set to zero.

5 Methodology

This section will show the code required to provide general purpose long
arithmetic. At this point the code will be written for algorithmic efficiency
but occam clarity. For ultimate performance see the performance section
for optimisations.

For each operation, a procedure will be demonstrated that takes as input
arrays of integers being the operands, and returns an array of integers that
is the result. All operands are arbitrarily sized integer arrays, so that if
fed arrays of 100 words, that is the size for which the operation will be
performed. To be safe, such routines should test for compatibility of the sizes
of the three arrays passed, which should be identical for add and subtract,
n,n and 2n for multiply and divide. The code for this is omitted from the
examples below for clarity.

The first two, add and subtract, are trivial, and as the result has the same
length as the operands, are shown for the operation a := a op b. Multiply
is simple to program, but there are subtleties of the powerful transputer
operations to be noted to achieve algorithmic efficiency. Divide accentuates
this even further, and is more dependent on the algorithm, for which one
is referred to [2]. As the result has a different length from the operands,
multiply and divide are illustrated for the operation a := b op c.

All arrays are assumed to be stored little-endian, i.e. the element with

8

the lowest index is the least significant. The code could equally support
big- endian arrays if required. Within a word, the bits MUST be stored
littleendian to match the transputer hardware.

5.1 Addition

As an example, the general addition code will be derived from first double-
length, then triple-length.

The following example adds two double length unsigned quantities explicitly.
occam actually supports this implicitly as type INT64.

PROC add.double.unsigned ([2]INT result, VAL [2]INT rightop)
INT carry:
SEQ
carry , result[0] := LONGSUM (result[0],rightop[0],0)
carry , result[1] := LONGSUM (result[1],rightop[1],carry)

:

To make this a signed operation, the final operation, i.e. that on the most
significant word, is performed using the LONGADD predefine. This pro-
duces exactly the same result, but will raise the error flag if overflow should
occur.

PROC add.double.signed ([2]INT result,VAL [2]INT rightop)
INT carry:
SEQ
carry , result[0] := LONGSUM (result[0],rightop[0],0)
result[1] := LONGADD (result[1],rightop[1],carry)

:

To extend beyond double length simply involves using the same operation
again.

PROC add.triple.signed ([3]INT result,VAL [3]INT rightop)
INT carry:
SEQ
carry , result[0] := LONGSUM (result[0],rightop[0],0)
carry , result[1] := LONGSUM (result[1],rightop[1],carry)
result[2] := LONGADD (result[2],rightop[2],carry)

:

To create the general purpose case, one uses a loop rather than in-line code,
and controls the loop with the length of the array passed in, which is ac-
cessible at runtime in occam. The following code performs a long-add on

9

compatible arrays of integers. This version operates on signed integers,
clearly one could make it slightly smaller for unsigned integers by looping
one more time and omitting the last statement.

PROC add.long.signed.int([]INT result,VAL []INT rightop)

INT carry:
VAL last.index IS (SIZE rightop) -1:

SEQ
carry := 0

SEQ i = 0 FOR last.index
carry,result[i] := LONGSUM (result[i],rightop[i],carry)

result[last.index] := LONGADD (result[last.index],
rightop[last.index],carry)

:

5.2 Subtraction

Similarly for subtraction, using the appropriate pair of predefines in exactly
the same harness, with the same comments applying.

PROC subtract.long.signed.int([]INT result,VAL []INT rightop)

INT borrow:
VAL last.index IS (SIZE rightop) -1:

SEQ
borrow := 0

SEQ i = 0 FOR last.index
borrow,result[i] := LONGDIFF (result[i],rightop[i],borrow)

result[last.index] := LONGSUB (result[last.index],
rightop [last.index],borrow)

5.3 Multiplication

Multiplication is more complex. The algorithm is best developed by mimick-
ing a child doing long multiplication. Imagine multiplying 12 by 34. First,
one removes the sign from both operands, generating the result sign as s1
XOR s2.

10

Then one takes the least significant digit of the multiplier(4) and multiplies
all the digits of the multiplicand by it, writing the answer down with no
shift to the left. One then takes the next digit to the left(3) and multiplies
all digits of the multiplicand by it, writing the result down with a one digit
shift to the left. This continues until all digits have been multiplied, then
all the partial results are added for a final result.

12 12 12 12
x 34 34 34 34
----- ----- ----- -----

48 48 48
36 36 +
----- -----

408

To analyse this operation, consider the position we write each result. Units
times units we write in the units column, tens times tens in the hundreds
column, so clearly the destination column is 10 to the power (m + n), where
m and n are the powers of ten of the corresponding operand columns.

To implement this directly on a computer would require a large amount
of memory. A 100 word integer would require 100 rows of intermediate
results, and each row would be around 100 words... i.e. ten thousand
words of memory, or 40K bytes on a 32 bit machine. Also, the control and
implementation of the final add would use excessive cpu time.

The solution on the transputer instruction set, mapped into occam via the
predefined procedures, is to incorporate the add operation into each multi-
ply, so that only one intermediate result is maintained, and that can clearly
occupy the same space as the final result will occupy eventually. In order
to achieve this, the result array must be cleared before use. Remember this
code is designed for clarity... efficiency comes later. Clearly (i+j) could be
evaluated once in the inner loop, and clearly leftop [i] need only be accessed
once per outer loop.

PROC multiply.long.unsigned.int([]INT result,VAL []INT leftop,rightop)
SEQ

SEQ i = 0 FOR SIZE result
result[i] := 0

SEQ i = 0 FOR SIZE leftop

INT carry:
SEQ
carry := 0

11

SEQ j = 0 FOR SIZE rightop
INT temp:
SEQ

temp, result[i+j] :=
LONGPROD(leftop[i], rightop[j], result[i+j])

carry, result[i+j+1] := LONGSUM(result[i+j+1],temp,carry)
:

The reason this comes out so simply comes from the design of the instruc-
tions. Note that the multiply operation performs an accumulation for us,
as its carry input takes a full word width operand. We need a double width
accumulate however, so a long-sum is used to complete the operation for the
upper word of the result. Note that the carry from the long-sum is required
TWO words further up the result. This is achieved by holding it until the
next iteration, when the index will be one higher, and storing it one higher
than the index as usual.

Note that this algorithm will actually multiply arrays of differing length,
providing the length of the result array is appropriate. Note also that as the
loop counts start at zero, the highest loopcontrol value being n-i, the final
access of the final carry operation is to imax+jmax+1. The result array is
of size 2n, but the last access is to index (n-1) + (n-1) + 1, i.e. 2n-1, the
correct last address.

There is a more efficient way of dealing with signed multiply than mimicking
the human. Deleting a minus sign is easy, but negating a very long twos-
complement integer may not be, as it could affect the bit pattern of every
word.

The solution is to perform a multiply assuming the operands are both pos-
itive, and then to correct the result by subtraction if either of them was
negative, as shown below

PROC multiply.long.signed.int([]INT result,VAL []INT leftop,rightop)
SEQ
multiply.long.unsigned.int(result,leftop,rightop)

result.top.half IS
[result FROM SIZE leftop FOR SIZE rightop]:

VAL leftop.top.word IS leftop[(SIZE leftop) -1]:
IF
leftop.top.word < 0
subtract.long.unsigned.int (result.top.half,rightop)

TRUE
SKIP

12

result.top.half IS
[result FROM SIZE rightop FOR SIZE leftop]:

VAL rightop.top.word IS rightop[(SIZE rightop) -1]:
IF
rightop.top.word < 0
subtract.long.unsigned.int (result.top.half,leftop)

TRUE
SKIP

:

Note that the above code handles differing length arrays, but assumes that
the long subtract procedure can also, which the example given thereof can-
not.

5.4 Division

Division is another order of magnitude more complex than multiplication.
As with multiplication, one mimics the human, extracting the sign operation
first. To perform the division, a human makes a guess at a partial result,
multiplies back and subtracts to achieve a remainder. If the remainder is
negative, the guess was too large, so is repeated. If the remainder is greater
than the divisor, the guess was too small.

The computer does exactly the same, but it can be ’helped’ in making its
initial guess appropriately.(Ref 2, Knuth)

PROC divide.long.int([]INT result, VAL []INT leftop,rightop)
... declarations
SEQ
... extract signs from operands -> s.r, left.u,right.u
... normalise divisor (right.u)
higher.word.left := 0
SEQ i = 0 FOR SIZE leftop
VAL i.l.rev IS (SIZE leftop)-1) - i:
VAL i.r.rev IS (SIZE rightop)-1) - i:
SEQ
IF
higher.word.left = right.u[i.r.rev]
temp.result := MAX INT

TRUE
temp.result,remainder := LONGDIV (higher.word.left,

left.u[i.r.rev], right.u[i.l.rev])

IF
temp.result<>0
SEQ

13

multiply.long.unsigned.int(temp.vec,
[temp.result] ,right.u)

subtract.long.unsigned.int(left.u,temp.vec)

WHILE (left.u[(SIZE left.u)-1] /\ signbit) <> 0
SEQ
temp.result := temp.result - 1
add.long.unsigned.int(left.u, right.u)

TRUE
SKIP

result[i.l.rev] := temp.result
higher.word.left := left.u[i.l.rev]

... unnormalise wrt previous normalisation

... replace sign of result.
:

The trial result temp.result can be either one or two units too large. To
cover this possibility, the WHILE loop tests if the current remainder is
negative, and adds back the divisor as many times as necessary to remedy
the situation, adjusting the estimated quotient each time.

There is also a marginally faster version in Knuth that adds an extra test
to improve the guess, and thus guarantees to be accurate or one high, never
two high.

6 Shift Operations

The shift operations are simple in that there is only a single primitive to be
used per loop, but note should be taken that the same performance enhance-
ments as will be demonstrated on multiplication in section 7.1, particularly
opening out the loops and using abbreviations on blocks of sixteen words,
should be used here, as the actual shift operation is dwarfed in CPU time
by the loop control around it otherwise.

Note that the examples given here assume a shift of less than the natural
wordlength of the machine. In fact for any shift of 16 bits or greater, it is
more efficient to do a block move assignment to handle the byte offset, and
only tidy up the remaining bit-shift using this code.

It should also be noted that the shift left and rotate left operations should be
performed from the ’top’ of the vector, which means reversing the loop index,
whilst the shift/rotate right operations are done from the lowest index.

14

PROC rotate.long.int.left([]INT buffer,VAL INT n)
INT highest,dump:
VAL last IS (SIZE buffer) -1:
SEQ
highest := buffer[last]
SEQ ii = 0 FOR last
VAL i IS last - ii:
buffer[i],dump := SHIFTLEFT(buffer[i],buffer[i-1],n)

buffer[0],dump := SHIFTLEFT(buffer[0],highest,n)
:

To make it an unsigned shift left, one simply omits the wrap around. Note
that as a result, the last operation can be done with a conventional single
length shift.

PROC shift.long.int.left([]INT buffer,VAL INT n)
INT dump:
VAL last IS (SIZE buffer) -1:
SEQ
SEQ ii = 0 FOR last
VAL i IS last - ii:
buffer[i],dump := SHIFTLEFT(buffer[i],buffer[i-1],n)

buffer[0] := buffer[0] << n
:

For arithmetic shift, one simply handles the first (most significant) word
separately. Because the arithmetic shift on the transputer is single length, it
is appropriate to use this for overflow checking only, and repeat the operation
with a logical shift. Thus one simple inserts the following line before the
loop. (This does not apply to right shift, see later)

dump := ASHIFTLEFT(buffer[last],n)

Similarly, for right shifts, noting that we progress the other direction along
the vector:

PROC rotate.long.int.right([]INT buffer, n)
INT first,dump:
VAL last IS (SIZE buffer) -1:
SEQ
first := buffer[0]
SEQ i = 0 FOR last
dump,buffer[i] := SHIFTRIGHT(buffer[i+i],buffer[i],n)

dump,buffer[last] := SHIFTRIGHT(first,buffer[last],n)
:

15

Again, shift and arithmetic shift involve removing the wraparound, and us-
ing ASHIFTRiGHT for the last line, respectively. Note that the arithmetic
shift is done last, not first, with the right shift, as we progress up the vector
from least significant to most significant.

6.1 Normalisation

Normalisation is similar to shifting, but is conditional on the data, so is split
into five sections. Firstly, from the most significant end, the first non-zero
word is found. That word is then normalised, using a single application of
the normalise predefine, which also pulls in any bits needed from the next
word down. The third operation is to shift all the remaining words left by
the number of places returned by the normalise routine, and then the fourth
is to move the active words, now correctly word aligned, to the top of the
array. The final operation is to clear the vacated words at the bottom of the
array.

PROC normalise.long.integer ([]INT buffer)
INT pointer, trash :
INT places :
VAL len IS SIZE buffer :
SEQ
-- find first non-zero word
IF
IF i = 1 FOR len
buffer[len MINUS i] <> 0
pointer := len MINUS i

TRUE
pointer := 0

-- normalise that word, pulling in bits as
-- needed from next word down
places,buffer[len],trash :=

NORMALISE(buffer[pointer],buffer[pointer-1])

VAL diff IS (len) MINUS (pointer)
SEQ
-- shift the rest of the buffer left by the
-- same number of bits
shift.left ([buffer FROM 0 FOR pointer],places)

-- block move up to the top of the buffer
SEQ i = 0 FOR (pointer PLUS 1)
VAL ii IS (pointer) MINUS (i) :
buffer[ii PLUS diff] := buffer[ii]

16

-- fill the vacated words with zeros
SEQ ii = 0 FOR (diff MINUS 1)
buffer [ii] := 0

:

7 Performance

7.1 Optimisation, using multiplication as an example

Addition and subtraction are sufficiently simple, and sufficiently directly
built on the transputer instructions that little algorithmic optimisation can
be done. However, as the arithmetic operations are so fast, they suffer
greatly from the loop control overhead, so benefit greatly from opening out
the loops.

However multiplication can be considerably optimised, in three steps. The
first is to take invariant expressions outside loops, saving both indexing and
arithmetic. The second is to set up abbreviations (or pointers) to frequently
accessed arrays.

The third, and most beneficial, is to open out the inner loop by some fac-
tor, ideally sixteen. This both saves loop control, but combined with the
abbreviations means that many array accesses are reduced to constant in-
dices, which are very fast on the transputer. This does have the restriction
that the arrays must be a multiple of the opening factor, rather than truly
variable size. The second method is a stepping stone to the third, and the
performance benefit of it is not seen until the loop is opened.

The following sections show the inner two loops suitably modified:

Simple Code

SEQ i = 0 FOR SIZE leftop

SEQ
carry := 0
VAL leftop.i IS leftop[i]:

SEQ j = 0 FOR SIZE rightop -- usually the same size

VAL ij IS i + j :
VAL ij1 IS ij + 1 :
SEQ
temp, result[ij] :=

LONGPROD(leftop.i, rightop[j], result[ij])

17

carry, result[ij1] := LONGSUM(result[ij1],temp,carry)

Using Array Abbreviations and opened loops

SEQ i = 0 FOR SIZE leftop

SEQ
carry := 0
VAL leftop.i IS leftop[i]:

SEQ j = 0 FOR (SIZE rightop)/opening.factor

VAL ij IS i + j :
VAL ij1 IS ij + 1 :
VAL rightop.j IS [rightop FROM (J TIMES opening.factor)

FOR opening.factor]:
result.ij IS [result FROM i+(j TIMES opening.factor)

FOR opening.factor + 1]:
SEQ

VAL k IS 0:
SEQ
temp, result.ij[k] :=

LONGPROD(leftop.i,rightop.j[k],result.ij[k])

carry, result.ij[k+1] :=
LONGSUM (result.ij[k+1],temp, carry)

VAL k IS 1:
SEQ
.
.

.

.
VAL k IS opening.factor-1:
SEQ
.
.

Points to note here are that now all access to the arrays are of the form k or
k + constant. As k itself is a constant, this will be folded at compile time,
so all array accesses in the inner loop have constant indices and are thus
very fast, using instructions designed for that operation.

18

7.2 Performance Figures

The following table gives the performance of each of the algorithms men-
tioned above, and for the optimised versions with open loops, and finally
for the same operation in assembly language. These numbers are all for a
20MHz 32 bit transputer.

Performance in microseconds for 3200 bit integer

OPERATION SIMPLE OPTIMISED ASSEMBLER
OCCAM

ADD/SUBTRACT 305 164 164
MULTIPLY 57700 43500 43485
DIVIDE 36-72ms - -
SHIFT/ROTATE 1 bit 300 167 153
SHIFT/ROTATE 8 bit 336 202 187
SHIFT/ROTATE 15 bit 372 236 211
SHIFT/ROTATE 8*N 41 41 41
NORMALISE 384 - -

Note that assembler coding gains very little, and also the spectacular per-
formance of the shift 8*N version, due to the block move hardware in the
transputer.

Divide spends most of its time multiplying out the estimated results, so has
little scope for optimising other than in the multiply. Divide and Normalise
have data-dependent execution times. The figures given are mid-range, i.e.
(max.time+min.time)/2.

8 Conclusions

The long arithmetic facilities in occam allow very efficient implementation of
arbitrary length integers, meaning that there is no benefit in using assembler.

The underlying instructions of the transputer are directly accessible as in-
line procedures in occam, and are themselves sophisticated primitives allow-
ing maximum performance in such computationally intense applications.

The assistance of Roger Shepherd (INMOS, Architecture Group) is grate-
fully acknowledged, particularly for help with the divide algorithms, and of
Andy Hamilton and John Carey, INMOS Central Applications, for bench-
marking and verification work.

19

A The Occam Predefined Procedures

A.1 Definition of terms

For the purpose of explanation imagine a new type INTEGER, and the
associated conversion. This imaginary type is capable of representing the
complete set of integers and is presumed to be represented as an infinite bit
two’s complement number. With this one exception the following are occam
descriptions of the various arithmetic functions.

-- constants used in the following description
VAL bitsperword IS machine. wordsize(INTEGER) :
VAL range IS storeable. values(INTEGER) :

-- range = 2^bitsperword
VAL maxint IS INTEGER (MOSTPOS INT) :

-- maxint = (range/2 - 1)
VAL minint IS INTEGER (MOSTNEG INT) :

-- minint = -(range/2)
-- INTEGER literals
VAL one IS 1(INTEGER) :
VAL two IS 2(INTEGER) :
-- mask
VAL wordmask IS range - one :

In occam, values are considered to be signed. However, in these functions
the concern is with other interpretations. In the construction of multiple
length arithmetic the need is to interpret words as containing both signed
and unsigned integers. In the following the new INTEGER type is used to
manipulate these values, and other values which may require more than a
single word to store.

The sign conversion of a value is defined in the functions unsign and sign.
These are used in the description following but they are NOT functions
themselves.

A.2 The integer arithmetic functions

LONGADD performs the addition of signed quantities with a carry in. The
function is invalid if arithmetic overflow occurs.

The action of the function is defined as follows:

INT FUNCTION LONGADD (VAL INT left, right, carry.in)
-- Adds (signed) left word to right word with least significant

20

-- bit of carry.in.

INTEGER sum.i, carry.i, left.i, right.i :
VALOF
SEQ
carry.i := INTEGER (carry.in /\ 1)
left. i := INTEGER left
right.i := INTEGER right
sum.i := (left.i + right.i) + carry.i

-- overflow may occur in the following conversion
-- resulting in an invalid process
RESULT INT sum.i

:

LONGSUM performs the addition of unsigned quantities with a carry in
and a carry out. No overflow can occur.

The action of the function is defined as follows:

INT, INT FUNCTION LONGSUM (VAL INT left, right, carry.in)
-- Adds (unsigned) left word to right word with the least
-- significant bit of carry.in.
-- Returns two results, the first value is one if a carry occurs,
-- zero otherwise, the second result is the sum.

INT carry.out :
INTEGER sum.i, left.i, right.i :
VALOF
SEQ
left.i := unsign (left)
right.i := unsign (right)
sum.i := (left.i + right.i) + INTEGER (carry.in /\ 1)
IF -- assign carry
sum.i >= range
SEQ
sum.i := sum.i - range
carry.out := 1

TRUE
carry.out := 0

RESULT carry.out, sign (sum.i)
:

LONGSUB performs the subtraction of signed quantities with a borrow in.
The function is invalid if arithmetic overflow occurs.

The action of the function is defined as follows:

INT FUNCTION LONGSUB (VAL INT left, right, borrow.in)

21

-- Subtracts (signed) right word from left word and subtracts
-- borrow.in from the result.

INTEGER diff.i, borrow.i, left.i, right.i :
VALOF
SEQ
borrow.i := INTEGER (borrow.in /\ 1)
left.i := INTEGER left
right.i := INTEGER right
diff.i := (left.i - right.i) - borrow.i

-- overflow may occur in the following conversion
-- resulting in an invalid process
RESULT INT diff.i

:

LONGDIFF performs the subtraction of unsigned quantities with borrow in
and borrow out. No overflow can occur.

The action of the function is defined as follows:

INT, INT FUNCTION LONGDIFF (VAL INT left, right, borrow.in)
-- Subtracts (unsigned) right word from left word and subtracts
-- borrow.in from the result.
-- Returns two results, the first is one if a borrow occurs,
-- zero otherwise, the second result is the difference.

INTEGER diff.i, left.i, right.i :
VALOF
SEQ
left.i := unsign (left)
right.i := unsign (right)
diff.i := (left.i - right.i) - INTEGER (borrow.in /\ 1)
IF -- assign borrow
diff.i < 0
SEQ
diff.i := diff.i + range
borrow.out := 1

TRUE
borrow.out := 0

RESULT borrow.out, sign (diff.i)
:

LONGPROD performs the multiplication of two unsigned quantities, adding
in an unsigned carry word. Produces a double length unsigned result. No
overflow can occur.

The action of the function is defined as follows:

22

INT, INT FUNCTION LONGPROD (VAL INT left, right, carry.in)
-- Multiplies (unsigned) left word by right word and adds carry.in.
-- Returns the result as two integers most significant word first.

INTEGER prod.i, prod.lo.i, prod.hi.i, left.i, right.i, carry.i :
VALOF
SEQ
carry.i := unsign (carry.in)
left.i := unsign (left)
right.i := unsign (right)
prod.i := (left.i * right.i) + carry.i
prod.lo.i := prod.i REM range
prod.hi.i := prod.i / range

RESULT sign (prod.hi.i), sign (prod.lo.i)
:

LONGDIV divides an unsigned double length number by an unsigned single
length number. The function produces an unsigned single length quotient
and an unsigned single length remainder. An overflow will occur if the
quotient is not representable as an unsigned single length number. The
function becomes invalid if the divisor is equal to zero.

The action of the function is defined as follows:

INT, INT FUNCTION LONGDIV (VAL INT dividend.hi, dividend.lo, divisor)
-- Divides (unsigned) dividend. hi and dividend.lo by divisor.
-- Returns two results the first is the quotient and the second
-- is the remainder.

INTEGER divisor.i, dividend.i, hi, lo, quot.i, rem.i :
VALOF
SEQ
hi := unsign (dividend.hi)
lo := unsign (dividend.lo)
divisor.i := unsign (divisor)
dividend.i := (hi * range) + lo
quot.i := dividend.i / divisor.i
rem.i := dividend.i REM divisor.i

-- overflow may occur in the following conversion of quot.i
-- resulting in an invalid process
RESULT sign (quot.i), sign (rem.i)

:

SHIFTRIGHT performs a right shift on a double length quantity. The
function must be called with the number of places in range, otherwise the
implementation can produce unexpected effects.

i.e. 0 <= places <= 2*bitsperword

23

The action of the function is defined as follows:

INT, INT FUNCTION SHIFTRIGHT (VAL INT hi.in, lo.in, places)
-- Shifts the value in hi. in and lo. in right by the given
-- number of places. Bits shifted in are set to zero.
-- Returns the result as two integers most significant word first.

INT hi.out, lo.out:
VALOF
IF
(places < 0) OR (places > (two*bitsperword))
SEQ
hi.out := 0
lo.out := 0

TRUE
INTEGER operand, result, hi, lo :
SEQ
hi := unsign (hi.in)
lo := unsign (lo.in)
operand := (hi << bitsperword) + lo
result := operand >> places
lo := result /\ wordmask
hi := result >> bitsperword
hi.out := sign (hi)
lo.out := sign (lo)

RESULT hi.out, lo.out
:

SHIFTLEFT performs a left shift on a double length quantity. The function
must be called with the number of places in range, otherwise the implemen-
tation can produce unexpected effects.

i.e. 0 <= places <= 2*bitsperword

The action of the function is defined as follows:

INT, INT FUNCTION SHIFTLEFT (VAL INT hi.in, lo.in, places)
-- Shifts the value in hi. in and lo. in left by the given
-- number of places. Bits shifted in are set to zero.
-- Returns the result as two integers most significant word first.

VALOF
IF
(places < 0) OR (places > (two*bitsperword))
SEQ
hi.out := 0
lo.out := 0

TRUE

24

INTEGER operand, result, hi, lo :
SEQ
hi := unsign (hi.in)
lo := unsign (lo.in)
operand := (hi << bitsperword) + lo
result := operand << places
lo := result /\ wordmask
hi := result >> bitsperword
hi.out := sign (hi)
lo.out := sign (lo)

RESULT hi.out, lo.out
:

NORMALISE normalises a double length quantity. No overflow can occur.

The action of the function is defined as follows:

INT, INT, INT FUNCTION NORMALISE (VAL INT hi.in, lo.in)
-- Shifts the value in hi. in and lo. in left until the highest
-- bit is set. The function returns three integer results
-- The first returns the number of places shifted.
-- The second and third return the result as two integers with
-- the most significant word first;
-- If the input value was zero, the first result is 2*bitsperword.

INT places, hi.out, lo.out :
VALOF
IF
(hi.in = 0) AND (lo.in = 0)
places := INT (two*bitsperword)

TRUE
VAL msb IS one << ((two*bitsperword) - one) :
INTEGER operand, hi, lo :
SEQ
lo := unsign (lo.in)
hi := unsign (hi.in)
operand := (hi << bitsperword) + lo
places := 0
WHILE (operand /\ msb) = 0
SEQ
operand := operand << one
places := places + 1

hi := operand / range
lo := operand REM range
hi.out := sign (hi)
lo.out := sign (lo)

RESULT places, hi.out, lo.out
:

25

A.3 Arithmetic shifts

ASHIFTRIGHT performs an arithmetic right shift, shifting in and main-
taining the sign bit. The function must be called with the number of places
in range, otherwise the implementation can produce unexpected effects.

i.e. 0 <= places <= bitsperword

No overflow can occur.

N.B the result of this function is NOT the same as division by a power of
two.

e.g. -1/2 = 0
ASHIFTRIGHT (-1,1) = -1

The action of the function is defined as follows:

INT FUNCTION ASHIFTRIGHT (VAL INT operand, places) IS
INT(INTEGER (operand) >> places)

-- Shifts the value in operand right by the given number
-- of places. The status of the high bit is maintained.

:

ASHIFTLEFT performs an arithmetic left shift. The function is invalid if
significant bits are shifted out, signalling an overflow. The function must
be called with the number of places in range, otherwise the implementation
can produce unexpected effects.

i.e. 0 <= places <= bitsperword

N.B the result of this function is the same as multiplication by a power of
two. The action of the function is defined as follows:

INT FUNCTION ASHIFTLEFT (VAL INT argument, places)
-- Shifts the value in argument left by the given number
-- of places. Bits shifted in are set to zero.

INTEGER result.i :
VALOF
result.i := INTEGER (argument) << places
-- overflow may occur in the following conversion
-- resulting in an invalid process
RESULT INT result.i

:

26

A.4 Word rotation

ROTATERIGHT rotates a word right. Bits shifted out of the word on
the right, re-enter the word on the left. The function must be called with
the number of places in range, otherwise the implementation can produce
unexpected effects.

i.e. 0 <= places <= bitsperword

No overflow can occur.

The action of the function is defined as follows:

INT FUNCTION ROTATERIGHT (VAL INT argument, places)
-- Rotates the value in argument by the given number of places.

INTEGER high, low, argument.i :
VALOF
SEQ
argument.i := unsign(argument)
argument.i := (argument.i * range) >> places
high := argument.i / range
low := argument.i REM range

RESULT INT (high \/ low)
:

ROTATELEFT rotates a word left. Bits shifted out of the word on the left,
re-enter the word on the right. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected
effects.

i.e. 0 <= places <= bitsperword

The action of the function is defined as follows:

INT FUNCTION ROTATELEFT (VAL INT argument, places)
-- Rotates the value in argument by the given number of places.

INTEGER high, low, argument.i :
VALOF
SEQ
argument.i := unsign(argument)
argument.i := argument.i << places
high := argument.i / range
low := argument.i REM range

RESULT INT(high \/ low)
:

27

References

[1] occam 2 Reference Manual, INMOS Limited, Prentice Hall 1988, ISBN
0-13-629312-3 (Particularly Appendix L,pp105-113.)

[2] Seminumerical Algorithms, The Art of Computer Programming Vol
2, Donald Knuth, Addison-Wesley 1969,1981, ISBN 0-201-03822-6(v.2)
(Particularly Section 4.3)

28

	1 Introduction
	2 Requirements
	3 Facilities available on the transputer
	4 Interface description for the Occam Predefines
	4.1 The integer arithmetic functions
	4.2 Arithmetic shifts

	5 Methodology
	5.1 Addition
	5.2 Subtraction
	5.3 Multiplication
	5.4 Division

	6 Shift Operations
	6.1 Normalisation

	7 Performance
	7.1 Optimisation, using multiplication as an example
	7.2 Performance Figures

	8 Conclusions
	A The Occam Predefined Procedures
	A.1 Definition of terms
	A.2 The integer arithmetic functions
	A.3 Arithmetic shifts
	A.4 Word rotation

	References

